Thompson Phase II and Isaacson Phase II Environmental Site Assessments

Report Phase II Environmental Site Assessment Boeing Thompson Property 8811 East Marginal Way South Tukwila, Washington

April 2, 2009

Prepared for

The Boeing Company Seattle, Washington

TABLE OF CONTENTS

				<u>Page</u>
1.0	INT	RODUC	CTION	1-1
	1.1	PROP	PERTY DESCRIPTION	1-1
	1.2	BACK	KGROUND	1-1
2.0	FIEI	LD INV	ESTIGATION	2-1
	2.1	SOIL	AND GROUNDWATER INVESTIGATION	2-1
		2.1.1	Former Washdown Area	2-1
		2.1.2	Hydraulic Oil Release Area	2-2
		2.1.3	Hazardous Materials Sheds	2-2
		2.1.4	Former Storage Tanks	2-2
		2.1.5	Transformers	2-3
		2.1.6	Substation – Building 14-22	2-3
		2.1.7		2-3
	2.2		ER AREAS OF INVESTIGATION	2-3
		2.2.1	Sump Sampling	2-3
		2.2.2	Compressed Air System Sampling	2-4
3.0	INV	ESTIGA	ATION RESULTS	3-1
	3.1	PHYS	SICAL OBSERVATIONS AND FIELD-SCREENING RESULTS	3-1
		3.1.1	Soil Lithology and Depth to Groundwater	3-1
		3.1.2	Presence of Sheen, Odor, and/or Staining	3-1
		3.1.3	Field-Screening Results	3-2
	3.2	ANAI	LYTICAL RESULTS	3-2
		3.2.1	Former Washdown System	3-2
		3.2.2		3-4
		3.2.3	Hazardous Materials Sheds	3-4
		3.2.4	Former Storage Tanks	3-5
		3.2.5	Transformers	3-5
		3.2.6	E	3-5
		3.2.7		3-5
		3.2.8	Compressed Air System Sampling	3-5
		3.2.9	Groundwater Samples from Existing Monitoring Wells	3-6
4.0	SUN	/MARY	Y AND CONCLUSIONS	4-1
5.0	USE	OF TH	IIS REPORT	5-1
6.0	REF	ERENC	CES	6-1

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Vicinity Map
2	Site and Phase II Environmental Site Assessment Sample Location Plan
3	Volatile Organic Compounds in Groundwater at Concentrations Greater than the Screening Levels
4	Detected Concentrations of Arsenic in Groundwater

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Summary of Constituents Detected in Soil
2	Summary of Constituents Detected in Groundwater
3	Sump Analytical Results
4	Polychlorinated Biphenyl Wipe Sampling Analytical Results - Compressed Air System
5	Summary of Constituents Detected in Groundwater – Existing Monitoring Wells

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Methods and Procedures
В	Soil Boring Logs
C	Laboratory Analytical Reports
D	Selected Data Tables and Figures for Former PACCAR Property

1.0 INTRODUCTION

This report documents the results of a Phase II environmental site assessment (ESA) conducted in 2008 for The Boeing Company (Boeing) at the Thompson property (subject property) located at 8811 East Marginal Way South in Tukwila, Washington (Figure 1). The purpose of this investigation was to evaluate and document the soil and groundwater quality in areas of the subject property potentially impacted by Boeing operations as part of Boeing's risk management and due diligence activities. The areas of potential concern were identified as part of Boeing's Environment, Health, and Safety (EHS) property assessment process in the Phase I ESA previously conducted for the subject property (Landau Associates 2008a). The Phase I ESA identified environmental conditions at the subject property that, based on historical operations, previous investigations, or observations of site conditions, are considered to pose a potential liability to Boeing as owner of the property. In addition, Boeing requested investigation of a sump system and the facility compressed air system as part of Boeing's building decommissioning protocol. Boeing also requested that Landau Associates complete a round of groundwater sampling from existing wells on the subject property and the adjacent Boeing Isaacson property; the results of sampling of the eight wells on or near the subject property are included in this report. The results of this Phase II investigation will be used to evaluate potential impacts to soil or groundwater at the subject property and the need for additional action, if appropriate.

1.1 PROPERTY DESCRIPTION

The subject property is currently owned and occupied by Boeing. Manufacturing operations were discontinued at the subject property in December 2007. The subject property is currently used for warehouse purposes. The subject property is improved with a 316,000 square foot (ft²) industrial building (Building 14-01) and several support structures including a boiler house (Building 14-02), two mechanical buildings (Buildings 14-03 and 14-14), a fire pump house and water tank (Building 14-13), an electrical substation (Building 14-22), two guard shacks (one out-of-use, unlabeled structure and Building 14-11), a cafeteria (Building 14-15), a restroom/shower facility (Building 14-12), and hazardous waste storage trailers (unlabeled). A site plan is provided as Figure 2.

1.2 BACKGROUND

Landau Associates conducted a Phase I ESA at the subject property for Boeing (Landau Associates 2008a). The Phase I ESA included a review of historical environmental documentation for the subject property, and observations of current conditions at the subject property on January 31, 2008 and

April 21, 2008. The Phase I ESA identified the following *recognized environmental conditions* at the subject property that were considered to pose a potential liability to Boeing:

- Arsenic was detected in soil and groundwater at the subject property during previous investigations at concentrations greater than the Washington State Model Toxics Control Act (MTCA) cleanup levels. Arsenic was detected in groundwater at the subject property at concentrations ranging from 3.6 micrograms per liter (µg/L) to 690 µg/L during the most recent sampling event in 2008. The highest detected concentration of arsenic in soil at the subject property was 393 milligrams per kilogram (mg/kg), which was detected in a sample collected in 1988 from within the former location of Slip 5. The presence of arsenic in soil and groundwater from the subject property at concentrations greater than MTCA cleanup levels is a recognized environmental condition.
- Historical records indicate that the Mineralized Cell Wood Preserving Company formerly operated in the vicinity of the subject property, on the northern side of the former Slip 5. The practice of this company involved heating a solution of arsenic and sulfate salts of copper and zinc, and applying the solution to the base of logs under pressure. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were drained directly to the ground surface. The release of arsenic and metals to the ground surface is a *recognized environmental condition*.
- Based on previous subsurface investigations at the subject property, fill material within the former Slip 5 area includes bricks, wood debris, and slag material. Debris within the fill material is a potential source of impact to subsurface soil and groundwater at the subject property. Metals have been detected in the fill material at concentrations greater than the MTCA Method A cleanup levels. The presence of metals at concentrations greater than the MTCA cleanup levels is a *recognized environmental condition*.
- A large area of the western portion of Building 14-01 was formerly used for washing and painting of airplane sections. Workers in this area washed airplane sections with a solution containing methyl isobutyl ketone to prepare the sections for painting. Wastewater and overspray were washed into one of three concrete trenches, which ran north to south through the painting area. The trenches conveyed the solution to sumps located on the exterior of the southern side of Building 14-01, near the southwestern corner of the building. The waste was pumped from the sumps to two aboveground storage tanks (ASTs) located in the western yard of Building 14-01 via underground piping. The potential release of waste solution to the subsurface soil and groundwater from the former washdown system is considered a recognized environmental condition.
- Copper brush plating was previously conducted in the southwestern portion of Building 14-01. Waste plating solution was collected in a sump (discussed below) then conveyed to a 5,000-gallon (gal) AST located in the western yard of Building 14-01 via underground piping. The potential release of waste solution to the subsurface soil and groundwater from the copper plating operation is considered a *recognized environmental condition*.
- An aqueous degreaser is located in the southwestern portion of Building 14-01. The degreaser has been out of use since about 2001. A sign on the degreaser indicates that Daraclean 212, a non-hazardous substance, was used as the cleaning solution; however, it is possible that chlorinated solvents were used previously. Pumps and other equipment associated with the degreaser are located in a separate mechanical room to the south of the degreaser. A sump is located within the mechanical room. Liquid was observed in the sump

at the time of the site reconnaissance. Labels on piping and equipment within the mechanical room indicate that the sump is associated with a brush plating system that is no longer in operation. The sump and associated piping may have been converted for use associated with the aqueous degreaser. The potential release of degreaser solution to subsurface soil and groundwater is considered a *recognized environmental condition*.

- A 500-gal diesel underground storage tank (UST) was removed from the western side of Building 14-02. There are no data available regarding the condition of subsurface soil in the area of the 500-gal diesel UST. The former presence of a petroleum UST on the subject property, and the lack of sampling data, is a *recognized environmental condition*.
- A release of hydraulic oil from a holding tank associated with an oil/water separator located in the hydraulic test pad area (eastern yard of Building 14-03) was reported in 1992. The oil/water separator, holding tank, and associated piping were removed in 1995. Approximately 900 tons of petroleum-impacted soil were excavated from the area surrounding the oil/water separator and holding tank; however, there is no information available regarding the condition of subsurface soil and groundwater in the area of the excavation. The release of petroleum hydrocarbons to the subsurface soil, and the lack of confirmation sampling data, is a recognized environmental condition.
- Dark staining was observed on the gravel surface along the northern wall of the electrical substation (Building 14-22) located at the southeastern corner of the subject property, which may be indicative of a release of petroleum from the substation. The potential release of petroleum from the substation is a *recognized environmental condition*.

The following additional *recognized environmental conditions* were identified associated with the adjacent or surrounding properties:

- Impacts to soil and groundwater have been identified at the former PACCAR property (8801 East Marginal Way South) located adjacent to the south of the subject property. Impacts to sediment and surface water are also suspected by the Washington State Department of Ecology (Ecology) to be present. The contaminants of concern consist of petroleum products, phenolic compounds, non-halogenated solvents, halogenated organic compounds, and metals. The current status of this site is not known. The potential exists for this site to impact the subject property and is considered a *recognized environmental condition*.
- Arsenic has been detected in soil and groundwater at concentrations greater than the applicable MTCA cleanup levels at the Boeing Isaacson site, located adjacent to the north of the subject property. Remedial activities, including excavation and soil stabilization, have been conducted at this site; however, based on available information, soil containing concentrations of arsenic greater than the cleanup level has been left in place and may be acting as a continual source of arsenic to groundwater. The potential for this site to impact the subject property is a *recognized environmental condition*.

Boeing conducted a Phase II ESA to document current conditions at the subject property and further assess the potential for conditions of environmental concern. The sampling locations for the Phase II ESA were selected based on the findings of the Phase I ESA and a request from Boeing to address standard building considerations in the event of property divestitures (e.g., air compressor line sampling). Sampling was also conducted in two areas of the subject property where no specific recognized

environmental conditions were identified, but that may be of concern to potential purchasers (hazardous materials storage sheds and transformers north of Building 14-02).

The Phase II ESA was conducted in accordance with the work plan (Landau Associates 2008b). In addition to the analytes identified in the work plan, selected samples were analyzed for semivolatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs) to provide information on all chemicals of concern identified in the Early Action Area 6 (which includes the Boeing Thompson property) Source Control Action Plan report (Ecology 2008). The following sections describe the field investigation and present the investigation results.

2.0 FIELD INVESTIGATION

The soil and groundwater investigation and sump sampling were completed at the subject property November 3 through November 6, 2008. Sampling of the compressed air system was conducted on November 21, 2008. The following sections summarize field activities associated with soil and groundwater sampling and additional investigation activities. Specific information regarding field procedures and sampling methodology is presented in Appendix A.

2.1 SOIL AND GROUNDWATER INVESTIGATION

The soil and groundwater investigation included 32 direct-push borings located in areas of potential concern identified in the Phase I ESA. The sampling locations are shown on Figure 2. Thirty-four (34) soil and 11 groundwater samples were collected from the subject property for analysis by Analytical Resources, Inc. laboratory in Tukwila, Washington. The sampling areas are described in the following sections. Laboratory analytical methods are listed in Tables 1 and 2.

Boeing requested that Landau Associates complete a round of groundwater sampling from existing wells on the subject property and the adjacent Boeing Isaacson property. The sampling was completed in February 2009, as described in Section 2.1.7.

2.1.1 FORMER WASHDOWN AREA

Twenty-one (21) soil borings were advanced in the area of the former washdown system: nine locations in the area of the former system trenches inside Building 14-01 (TDP-5 to TDP-13), six locations in the area of the former system sumps on the southern side of Building 14-01 (TDP-1 to TDP-4, TDP-25, and TDP-26), and six locations in the area of the former system piping and aboveground storage tanks on the western side of Building 14-01 (TDP-14 to TDP-19). In accordance with the work plan, soil borings in the area of the former washdown system and degreaser were advanced to depths ranging from 8 ft to 16 ft below ground surface (BGS), except where refusal was encountered (see below).

Soil samples were collected from each of the 21 direct-push borings in this area and groundwater samples were collected from 8 of the borings (TDP-1, TDP-7, TDP-8, TDP-11, TDP-16, TDP-18, TDP-25, and TDP-26). Indications of impact were not observed during field screening, therefore, in accordance with the work plan, soil samples collected from soil borings inside the building were generally collected from below the depth of the bottom of the former trench system (approximately 6 ft BGS). Soil samples from borings advanced on the southern side of Building 14-01 were collected from depths ranging from 4 ft to 9 ft BGS. Refusal was encountered in three of the borings at depths ranging from 6 ft

to 7 ft BGS; therefore, these borings did not reach the depth of the former sumps (approximately 9 ft BGS). Soil samples collected from borings advanced on the western side of Building 14-01 were generally collected from below the depth of the former piping system (approximately 4 ft BGS).

Soil and groundwater samples collected from borings in this area were analyzed for volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), and metals. In addition, soil and groundwater samples collected from selected direct-push borings (TDP-1, TDP-7, TDP-8, TDP-11, TDP-16, TDP-18, TDP-25, and TDP-26) were analyzed for SVOCs, polycyclic aromatic hydrocarbons (PAHs; groundwater samples only), and PCBs.

2.1.2 HYDRAULIC OIL RELEASE AREA

Two soil borings (TDP-31 and TDP-32) were advanced in the hydraulic oil release area, northeast of Building 14-03. Soil samples were collected from both of the direct-push borings in this area and a groundwater sample was collected from TDP-31. In accordance with the work plan, soil samples were collected from the capillary fringe zone, approximately 6 inches above the top of the water table.

Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from TDP-31 were analyzed for SVOCs, PAHs (groundwater sample only), and PCBs.

2.1.3 HAZARDOUS MATERIALS SHEDS

Four soil borings (TDP-27 through TDP-30) were advanced in the area of the hazardous materials sheds, south and southeast of Building 14-03. Soil samples were collected from each of the direct-push borings in this area and groundwater samples were collected from two locations (TDP-28 and TDP-29). In accordance with the work plan, soil samples were collected from the capillary fringe zone, approximately 6 inches above the top of the water table.

Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from TDP-28 and TDP-29 were analyzed for SVOCs, PAHs (groundwater samples only), and PCBs.

2.1.4 FORMER STORAGE TANKS

One soil boring (TDP-24) was advanced in the area of the former heating oil and diesel USTs on the western side of Building 14-02. In accordance with the work plan, the soil sample was collected from the capillary fringe zone, approximately 6 inches above the top of the water table. The soil sample collected from this area was analyzed for TPH.

Groundwater samples were not collected from this area. Landau Associates attempted to collect samples from existing monitoring wells located on the western side of Building 14-02 (TH-MW-1 and TH-MW-2); however, there was not a sufficient quantity of water in the wells to collect samples.

2.1.5 Transformers

Two soil borings (TDP-22 and TDP-23) were advanced in the area of the transformers on the northern side of Building 14-02. In accordance with the work plan, soil samples collected in this area were collected from the upper 4-ft interval. The soil samples collected from this area were analyzed for TPH, metals, and PCBs. Groundwater samples were not collected from this area.

2.1.6 Substation – Building 14-22

Two soil borings (TDP-20 and TDP-21) were advanced in the area of the electrical substation located near the southeastern corner of the subject property. In accordance with the work plan, soil samples collected in this area were collected from the upper 4-ft interval. The soil samples collected from this area were analyzed for TPH, metals, and PCBs. Groundwater samples were not collected from this area.

2.1.7 Groundwater Samples from Existing Monitoring Wells

Groundwater samples were collected from eight existing monitoring wells located on or near the subject property (I-203, I-205, I-206, PZ-2, PZ-4, PZ-6, PZ-7, and PZ-8). Samples were collected using low-flow sampling methodologies. Groundwater samples collected from existing monitoring wells were analyzed for VOCs, TPH, metals, SVOCs, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and PCBs.

2.2 OTHER AREAS OF INVESTIGATION

At the request of Boeing, Landau Associates collected a water sample from a sump located in the southwestern portion of Building 14-01 and collected wipe samples from the compressed air system. The results of these investigations are presented in the following sections.

2.2.1 SUMP SAMPLING

One water sample (TH-SUMP) was collected from the sump located in the southwestern portion of Building 14-01. The sump is associated with the former brush plating operations. The water sample

was collected using a peristaltic pump and dedicated tubing and was analyzed for VOCs, TPH, and metals.

2.2.2 COMPRESSED AIR SYSTEM SAMPLING

Wipe samples were collected from the outside surface of each of the two air compressors located in Building 14-02 (COMP1-WIPE and COMP2-WIPE) and from inside 11 quick-connect ports located throughout the compressed air system (LINE1-WIPE through LINE11-WIPE) in Buildings 14-01, 14-14, and 14-02. The wipe samples were analyzed for PCBs.

3.0 INVESTIGATION RESULTS

In order to evaluate soil and groundwater quality at the subject property, physical observations of the soil and groundwater encountered during exploration were documented and soil from each exploration was screened for VOCs using a photoionization detector (PID). In addition, soil samples from each direct-push boring location and groundwater samples from selected locations were submitted to ARI laboratory for chemical analysis. This section presents the results of the physical observations and chemical analyses.

3.1 PHYSICAL OBSERVATIONS AND FIELD-SCREENING RESULTS

Physical observations were documented by Landau Associates personnel during the soil and groundwater investigation. Observations included soil lithology, depth to groundwater, presence of sheen on the soil or at the water table, odor, and visible soil staining. In addition, soil samples were screened for VOCs using a PID. These observations are documented in the soil boring logs presented in Appendix B and summarized below.

3.1.1 SOIL LITHOLOGY AND DEPTH TO GROUNDWATER

The 32 soil borings advanced at the subject property generally encountered fine to coarse sand with varying silt content. Generally, fill material (including debris in some locations) was encountered from the surface to depths ranging from 2 ft to 14.5 ft BGS and was underlain by native material, which was characterized by a higher silt content than the fill material. The following observations were made during the soil and groundwater investigation:

- Borings TDP-2 through TDP-4 encountered refusal at depths ranging from 6 ft to 7 ft BGS due to the presence of a concrete slab. White crushed rock was encountered in each of these borings at depths ranging from 3 ft to 6 ft BGS.
- Debris including wood and brick was encountered at depths ranging from 6 ft to 15 ft BGS in borings TDP-13, -17, -18, -20, and -24.
- A layer of organic matter was encountered at depths ranging from 11 ft to 13 ft BGS in borings TDP-28 through TDP-30.
- Groundwater was encountered at depths ranging between 12 ft to 14 ft BGS.

3.1.2 PRESENCE OF SHEEN, ODOR, AND/OR STAINING

Visual or olfactory evidence of contamination was observed in samples retrieved from 1 of the 32 soil borings. Petroleum odor and sheen were noted at a depth of 13 ft BGS at TDP-31 (hydraulic oil

release area). This corresponds to the depth of the water table at this location. An odor of decomposing organic material was noted in soil samples retrieved from TDP-5 (1 ft to 5 ft BGS), TDP-16 (3 ft to 15 ft BGS), TDP-17 (1 ft to 7 ft BGS), TDP-22 (6 ft to 8 ft BGS), and TDP-30 (10 ft to 15 ft BGS).

3.1.3 FIELD-SCREENING RESULTS

Soil from each 5-ft sample interval from each boring was screened using a PID. PID screening results are presented on the soil boring logs in Appendix B and are summarized as follows:

- In the area of the former washdown system, PID readings ranged from 0 parts per million (ppm) to 12.8 ppm.
- In the area of the previous hydraulic oil release, a PID reading of 1.2 ppm was recorded at a depth of 12.5 ft BGS. This very low PID reading is not likely to indicate the presence of VOCs.
- VOCs were not detected during field screening with the PID in samples collected from the area of the transformers, substation, hazardous materials storage sheds, or former tanks.

3.2 ANALYTICAL RESULTS

Laboratory analytical reports are included in Appendix C. The laboratory data were validated in accordance with the work plan (Landau Associates 2008b) and were determined to be acceptable for use. The soil and groundwater analytical results for detected compounds are presented in Tables 1 and 2, respectively. Cleanup levels have not been developed for the Thompson property. To provide context for evaluation of the analytical results, the results were compared to standard Washington State Model Toxics Control Act (MTCA) Method C formula values for direct human contact (soil only); MTCA Method B (groundwater) and Method C (soil) levels for protection of fresh surface water and for protection of marine surface water; and PACCAR Potential Cleanup Standards proposed by PACCAR in its Interim Action Work Plan (AMEC 2008), for the adjacent property to the south. The most stringent of these values for the constituents detected at the Thompson property, usually those for protection of fresh surface water, are used as screening levels for comparison with the analytical results. The results of the soil and groundwater investigation are discussed by area in the following sections.

3.2.1 FORMER WASHDOWN SYSTEM

Analytical results for this area are summarized as follows:

• Trichloroethene (TCE) was detected in one soil sample (TDP-26) at a concentration of 66 micrograms per kilogram (μg/kg), which is greater than the screening level (17 μg/kg). As is shown on Figure 2, this soil boring is located along the southern property boundary. TCE was detected in soil samples collected from two other locations in this area (TDP-1 and

TDP-25) at a concentration of $6.2~\mu g/kg$, and was not detected in any other soil samples collected from this area at concentrations greater than the laboratory reporting limits. No other VOCs were detected in this area at concentrations greater than the screening levels.

- Vinyl chloride was detected in five of eight groundwater samples collected from the area of the former washdown system (TDP-7, TDP-8, TDP-16, TDP-25, and TDP-26) at concentrations greater than the screening level [concentrations exceeding the screening level range from 0.2 micrograms per liter (μg/L) to 140 μg/L]. The concentration detected in the sample collected from TDP-26 (140 μg/L), located near the Thompson/PACCAR property boundary, is more than 75 times greater than the concentrations detected at the other locations in this area. Other chlorinated solvents [cis-1,2-dichloroethylene (cis-1,2-DCE), 1,1-dichloroethylene (1,1-DCE), tetrachloroethylene (PCE), and TCE] were detected in the groundwater samples collected from TDP-25 and TDP-26 at concentrations greater than the screening levels. With the exception of cis-1,2-DCE, which was detected at a concentration well below the screening level at TDP-8, these constituents were not detected in the remaining water samples collected from this area at concentrations greater than the laboratory reporting limits. VOCs detected in groundwater at concentrations greater than the screening levels are shown on Figure 3.
- Metals (arsenic, copper, lead, and mercury) were detected in soil at several locations in the former washdown area at concentrations greater than the screening levels. Lead was detected in the sample collected from TDP-5 at a concentration of 139 mg/kg, which is greater than the screening level, but below the Method A cleanup levels for unrestricted land uses and for industrial properties. Detected concentrations of arsenic that are greater than the screening level ranged from 8 mg/kg to 18 mg/kg (which are all below the Method A cleanup levels for unrestricted land uses and for industrial properties). Detected concentrations of copper that exceed the screening level ranged from 36.6 mg/kg to 97.1 mg/kg. Detected concentrations of mercury that are greater than the screening level ranged from 0.11 mg/kg to 0.23 mg/kg (which are all below the Method A cleanup levels for unrestricted land uses and for industrial properties).
- Arsenic was detected in five of eight groundwater samples collected from this area at concentrations greater than the screening level (detected concentrations that are greater than the screening level ranged from 11.4 μ g/L to 128 μ g/L). No other metals were detected in groundwater in this area at concentrations greater than the screening levels. Detected concentrations of arsenic in groundwater are shown on Figure 4.
- SVOCs (including PAHs) were not detected in soil in this area at concentrations greater than the screening levels; however, SVOCs were detected in groundwater at concentrations greater than screening levels in four groundwater samples collected from this area. Carbazole was detected in the sample collected from TDP-1 at an estimated concentration of 6.9 μg/L. Bis(2-ethylhexyl)phthalate (BEHP) was detected in three samples at concentrations ranging from 1.3 μg/L to 2.5 μg/L.
- Diesel-range and oil-range petroleum hydrocarbons were detected in soil at nine locations in this area at concentrations greater than the laboratory reporting limits; however, none of the detected concentrations are greater than the screening levels. Petroleum hydrocarbons were not detected in groundwater at concentrations greater than the laboratory reporting limits.
- PCBs were not detected in soil or groundwater at concentrations greater than the laboratory reporting limits in any of the samples from this area.

3.2.2 HYDRAULIC OIL RELEASE AREA

Analytical results for this area are summarized as follows:

- Arsenic was detected in one soil sample (TDP-31) at a concentration of 9 mg/kg, which is greater than the screening level, but less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties.
- No other constituents were detected in soil at concentrations greater than the screening levels, or in many cases, the laboratory reporting limit.
- BEHP (3.0 μ g/L) and oil-range petroleum hydrocarbons (estimated at 3.2 mg/L) were detected in the water sample collected from this area at concentrations greater than the screening levels.
- No other constituents were detected in groundwater at concentrations greater than the screening levels, or in many cases, the laboratory reporting limit.

3.2.3 HAZARDOUS MATERIALS SHEDS

Analytical results for this area are summarized as follows:

- VOCs were not detected in soil or groundwater in this area at concentrations greater than the screening levels.
- Arsenic was detected in two soil samples (TDP-29 and TDP-30) at concentrations of 8 mg/kg and 13 mg/kg, respectively, which are greater than the screening level. Mercury was detected in one soil sample (TDP-30) at a concentration of 0.17 mg/kg, which is greater than the screening level. The detected concentrations of arsenic and mercury in soil are less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties. Arsenic was detected in one groundwater sample (TDP-28) collected from this area at a concentration of 13.0 μg/L, which is greater than the screening level.
- SVOCs were not detected in soil in this area at concentrations greater than the laboratory reporting limits. BEHP (3.8 μg/L) was detected in one groundwater sample (TDP-28) collected from this area at a concentration greater than the screening level.
- TPH and PCBs were not detected at concentrations greater than the laboratory reporting limits in soil or groundwater samples collected from this area.

3.2.4 FORMER STORAGE TANKS

Contaminants of concern were not detected at concentrations greater than the laboratory reporting limits in the sample collected from this area.

3.2.5 Transformers

Analytical results for this area are summarized as follows:

- TPH and PCBs were not detected in soil at concentrations greater than the laboratory reporting limits.
- Mercury was detected in the soil sample collected from TDP-23 at a concentration of 0.11 mg/kg, which is slightly greater than the screening level (0.1 mg/kg), but less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties (2 mg/kg).

3.2.6 Substation – Building 14-22

Analytical results for this area as summarized as follows:

- TPH and PCBs were not detected in soil at concentrations greater than the laboratory reporting limits.
- Metals (cadmium, chromium, copper, and lead) were detected at concentrations greater than the laboratory reporting limits but less than the screening levels.

3.2.7 SUMP SAMPLING

Analytical results for the sump sample are presented in Table 3 and are summarized as follows:

- The VOCs methylene chloride (42 μ g/L), toluene (29 μ g/L), and styrene (11 μ g/L) were detected in the sample at concentrations greater than the laboratory reporting limits.
- Diesel-range (estimated at 2.5 mg/L) and oil-range (estimated at 62 mg/L) petroleum hydrocarbons were detected in the sample at concentrations greater than the laboratory reporting limits.
- The metals arsenic (23.8 μ g/L), cadmium (58 μ g/L), chromium (510 μ g/L), copper (1,950 μ g/L), and lead (6 μ g/L) were detected in the sample at concentrations greater than the laboratory reporting limits.

The results of the sump sampling will be used by Boeing to characterize the sump contents for disposal.

3.2.8 COMPRESSED AIR SYSTEM SAMPLING

Analytical results for the wipe samples are presented in Table 4 and are summarized as follows:

- PCBs (specifically, Aroclor 1254) were detected in both of the wipe samples collected from the surface of the air compressors in Building 14-02 at concentrations greater than the laboratory reporting limits.
- PCBs were not detected in any of the 11 wipe samples collected from the compressed air system quick-connect ports at concentrations greater than the laboratory reporting limits.

3.2.9 GROUNDWATER SAMPLES FROM EXISTING MONITORING WELLS

Analytical results for groundwater samples collected from existing monitoring wells on or near the subject property are presented in Table 5 and are summarized as follows:

- Arsenic was detected in samples collected from seven of the eight existing monitoring wells at concentrations ranging from 5.0 μg/L to 575 μg/L (Figure 4). Arsenic was detected at concentrations less than the screening level in the sample collected from PZ-7 (5.0 μg/L). Arsenic was not detected at a concentration greater than the laboratory reporting limit in the sample collected from PZ-8. The highest concentration of arsenic was detected in the sample collected from I-206 (575 μg/L), followed by the concentration in the sample collected from PZ-6 (505 μg/L). These wells are located near the southwestern corner of the subject property and along the northern property boundary in the western one-third of the subject property, respectively. Arsenic concentrations in groundwater are generally higher in the western half of the subject property than the eastern half. No other metals were detected in groundwater samples collected from existing monitoring wells at concentrations greater than the laboratory reporting limits.
- Vinyl chloride was detected in the sample collected from I-206 at a concentration of 1.8 μg/L (Figure 3), which is greater than the screening level (0.025 μg/L). Vinyl chloride was not detected at concentrations greater than the laboratory reporting limits in the any of the other samples collected from existing monitoring wells.
- Other VOCs (acetone; cis-1,2-dichloroethene; trans-1,2-dichloroethene; 1,1-dichloroethane; 1,2-dichloropropane; and carbon disulfide) were detected in one or more groundwater samples collected from existing monitoring wells at concentrations greater than the laboratory reporting limit but less than the screening levels. Detected concentrations of chlorinated solvents in groundwater are shown on Figure 3.
- SVOCs (including cPAHs), PCBs, and petroleum hydrocarbons were not detected in groundwater samples from existing monitoring wells at concentrations greater than the laboratory reporting limits.

4.0 SUMMARY AND CONCLUSIONS

The objective of the Phase II investigation was to evaluate and document the soil and groundwater quality in areas of the subject property potentially impacted by Boeing operations as part of Boeing's risk management and due diligence activities. The sampling locations for the Phase II ESA were selected based on the findings of the Phase I ESA and a request from Boeing to address standard building considerations in the event of property divestiture (sump sampling and compressed air system sampling). Sampling was also conducted in two areas of the subject property where no specific recognized environmental conditions were identified, but that may be of concern to potential purchasers (hazardous materials storage sheds and transformers north of Building 14-02).

Thirty-two soil borings were advanced at the subject property. One water sample was collected from a sump located in Building 14-01 and 13 wipe samples were collected from the compressed air system.

The results of the soil and groundwater investigation are summarized below by area:

Former Washdown System: Chlorinated solvents were detected in soil (TCE) and groundwater (TCE; vinyl chloride; cis-1,2-DCE; 1,1-DCE; and PCE) in the area of the former washdown system at concentrations greater than the screening levels. The highest concentrations of chlorinated solvents in soil and groundwater were detected in samples from along the southern property boundary. In the case of vinyl chloride, the concentration detected along the property boundary was more than 75 times greater than the concentrations detected in other samples in this area. The data suggest an offsite source (south of the subject property) of chlorinated solvents in this area.

Metals were detected in soil and groundwater in this area and SVOCs (carbazole and BEHP) were detected in groundwater in this area at concentrations greater than the screening levels. Detected concentrations of metals in soil are greater than the screening levels, but are less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties (there is no MTCA Method A cleanup level for copper). Arsenic is the only metal detected in groundwater at concentrations greater than the screening level. The sources of the arsenic, carbazole, and BEHP are not known.

- **Hydraulic oil release area:** Arsenic was detected in soil at a concentration greater than the screening level, but less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties. BEHP and oil-range TPH were detected in groundwater at concentrations greater then the screening levels. The source of the TPH in groundwater is likely the former hydraulic oil release in this area. The source of the BEHP is not known.
- Hazardous materials sheds: Metals were detected in soil at concentrations greater than the screening levels, but less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties (with the exception of copper; there is no MTCA Method A cleanup level for copper). Arsenic and BEHP were detected in groundwater in this area at concentrations greater than the screening levels. The sources of these constituents are not known. This area is located within the estimated former boundary of Slip 5. It is possible that impacted fill material was placed in this area.

- Former storage tanks: Constituents of concern were not detected in this area at concentrations greater than the screening levels.
- **Transformers:** Mercury was detected in one sample at a concentration slightly greater than the screening level, but less than the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties.
- **Substation Building 14-22:** Constituents of concern were not detected in this area at concentrations greater than the screening levels.
- **Sump Sampling:** VOCs, TPH, and metals were detected in the sump water sample. The analytical results will be used by Boeing to characterize the sump water for disposal prior to decommissioning the sump.
- Compressed Air System: PCBs were detected in wipe samples collected from the surface of two air compressors located in Building 14-02. PCBs were not detected in any of the wipe samples collected from quick-connect ports throughout the compressed air system. The data suggest that PCB-containing oil may have been used in the compressed air system at one time.
- Groundwater Samples from Existing Monitoring Wells: Arsenic was detected in six of eight groundwater samples collected from existing monitoring wells at concentrations greater than the screening levels. The highest concentrations of arsenic were detected in wells located near the southwestern corner of the subject property (I-206) and along the northern boundary in the western one-third of the subject property (PZ-6), respectively. Arsenic concentrations in groundwater are generally higher in the western half of the subject property than in the eastern half. A source of arsenic has not been identified on the subject property.

Vinyl chloride was detected at a concentration greater than the screening level in one groundwater sample (I-206). Vinyl chloride was not detected at concentrations greater than the laboratory reporting limits in any of the other samples collected from existing monitoring wells.

• **Property-Wide Groundwater:** The results of the groundwater sampling from existing monitoring wells, combined with the results of sampling from direct-push locations on the subject property (specifically, samples collected from TDP-25 and TDP-26), suggest an offsite source (south of the subject property) of chlorinated solvents to groundwater in the southwestern portion of the subject property. Chlorinated solvents have been identified in groundwater at the former PACCAR property, located adjacent to the south of the subject property (AMEC 2008). Based on modeling completed by AMEC (consultant for PACCAR), there is potential that the chlorinated solvent plume extends into groundwater on the subject property. Figures and data tables from the Draft Interim Action Work Plan for this property are presented in Appendix D.

Arsenic was detected at concentrations greater than the screening levels in groundwater samples collected from direct-push borings and existing monitoring wells across the subject property. An onsite source of arsenic impact to groundwater was not identified during this investigation.

BEHP was detected at concentration greater than the screening levels in groundwater samples collected from direct-push borings in several areas of the subject property. BEHP was not

detected in any of the samples collected from existing monitoring wells at concentrations greater than the laboratory reporting limits. The source of BEHP in groundwater is not known.

Carbazole (former washdown system) and oil-range petroleum hydrocarbons (former hydraulic oil release area) were each detected at a concentration greater than the screening level in one groundwater sample collected from a direct-push boring. Neither of these constituents was detected at a concentration greater than the laboratory reporting limit in groundwater samples collected from existing monitoring wells. The source of the oil-range petroleum hydrocarbons is likely the former hydraulic oil release. The source of the carbazole is not known.

Based on the data available, limited impact to soil has been identified at the subject property. TCE was detected at a concentration greater than the screening level in one soil sample in the area to the south of the former washdown system, along the southern property boundary. Metals were detected in soil at concentrations greater than the screening levels in several areas across the subject property. With the exception of copper, for which there is no Method A soil cleanup level, the detected concentrations of metals are below the MTCA Method A cleanup levels for unrestricted land uses and for industrial properties. No other contaminants of concern were detected in soil at concentrations greater than the screening levels.

Impact to groundwater was identified in three areas of the subject property. VOCs (chlorinated solvents) were detected in groundwater at concentrations greater than the screening levels in the area of the former washdown system and the southwestern corner of the subject property. As indicated previously, the highest concentrations were detected in samples collected from along the southern property boundary. These data, combined with available data for the former PACCAR property located adjacent to the south of the subject property, suggest a potential offsite source of these constituents, to the south of the subject property. TPH was detected at a concentration greater than the screening level in one groundwater sample collected from the former hydraulic oil release area and is likely the result of the former release in this area. Arsenic was detected at concentrations greater than the screening level in the area of the former washdown system, in the area of the hazardous materials sheds, and in six of the eight groundwater samples collected from existing monitoring wells located throughout the subject property. The source of the arsenic is not known. Carbazole was detected at a concentration greater than the screening level in one groundwater sample in the area of the former washdown system. The source of this constituent is not known. BEHP was detected at concentrations greater than the screening level in the area of the former washdown system, the hydraulic oil release, and the hazardous materials storage sheds. The source of BEHP is not known. BEHP was not detected in soil or groundwater samples collected from existing monitoring wells at the subject property at concentrations greater than the laboratory reporting limits.

5.0 USE OF THIS REPORT

This Phase II ESA Report has been prepared for the exclusive use of Boeing for specific application to the Thompson property in Tukwila, Washington. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

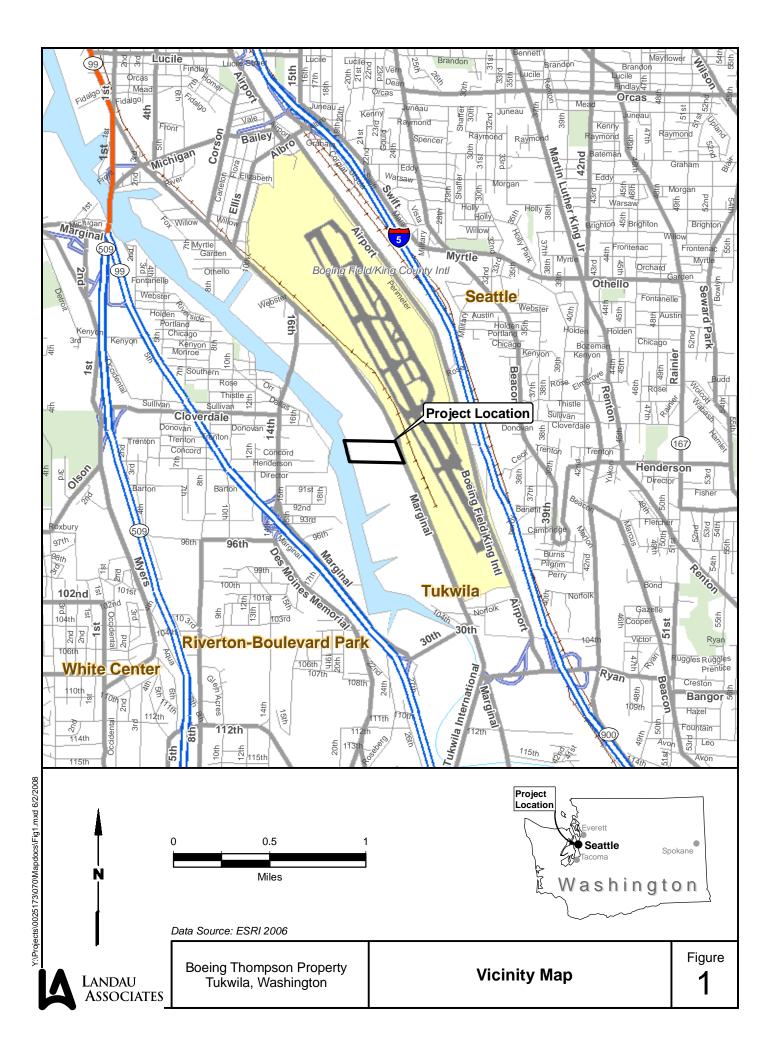
Kathryn F. Hartley Project Scientist

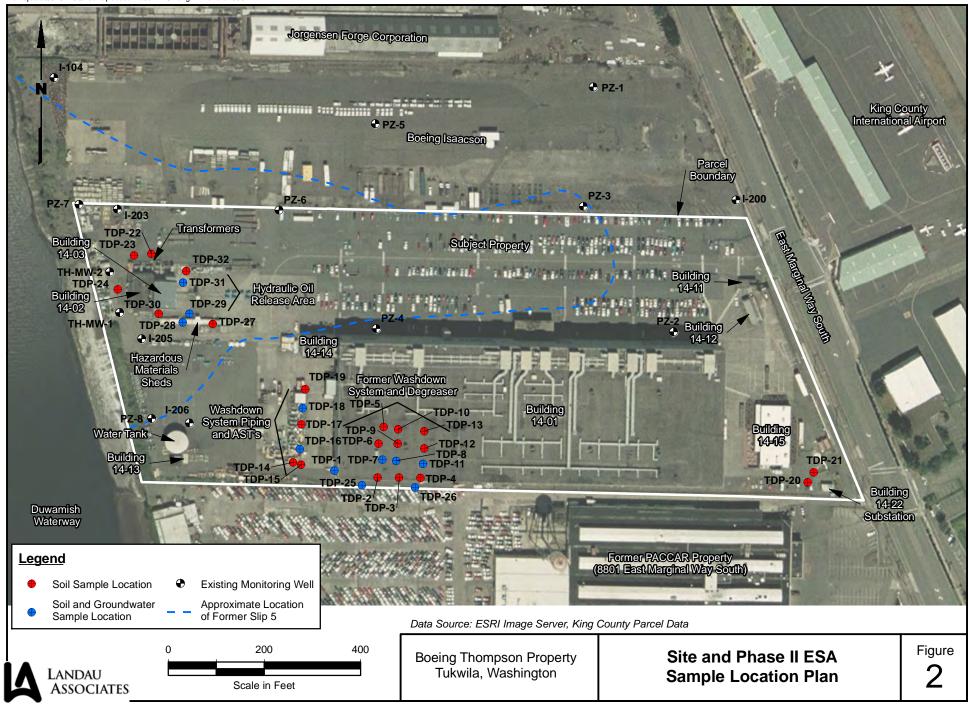
Kristy J./Hendrickson, P.I

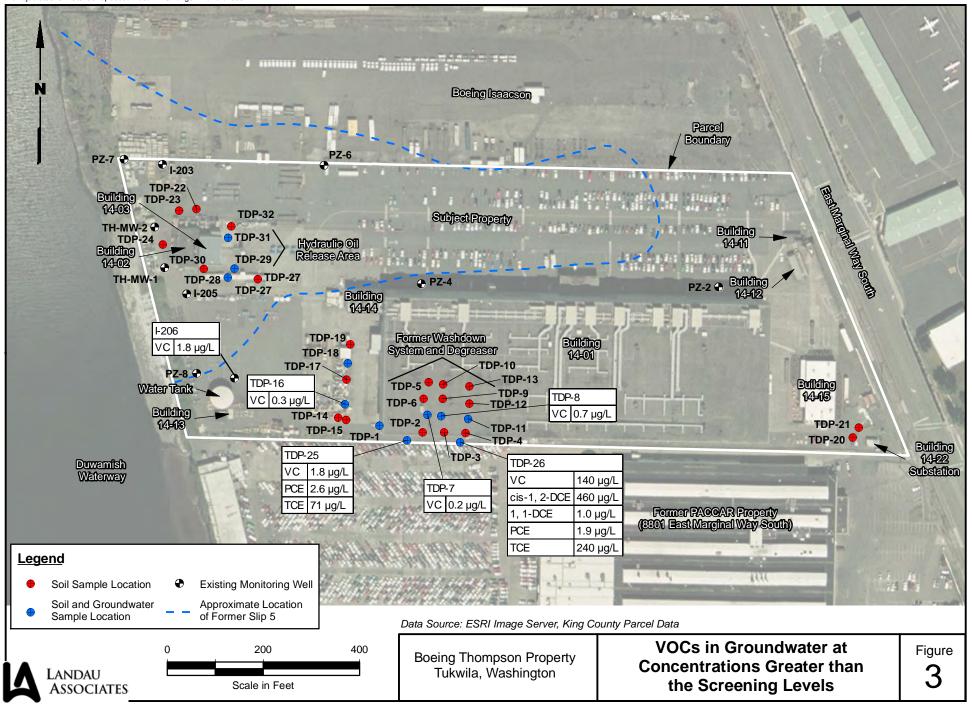
Principal

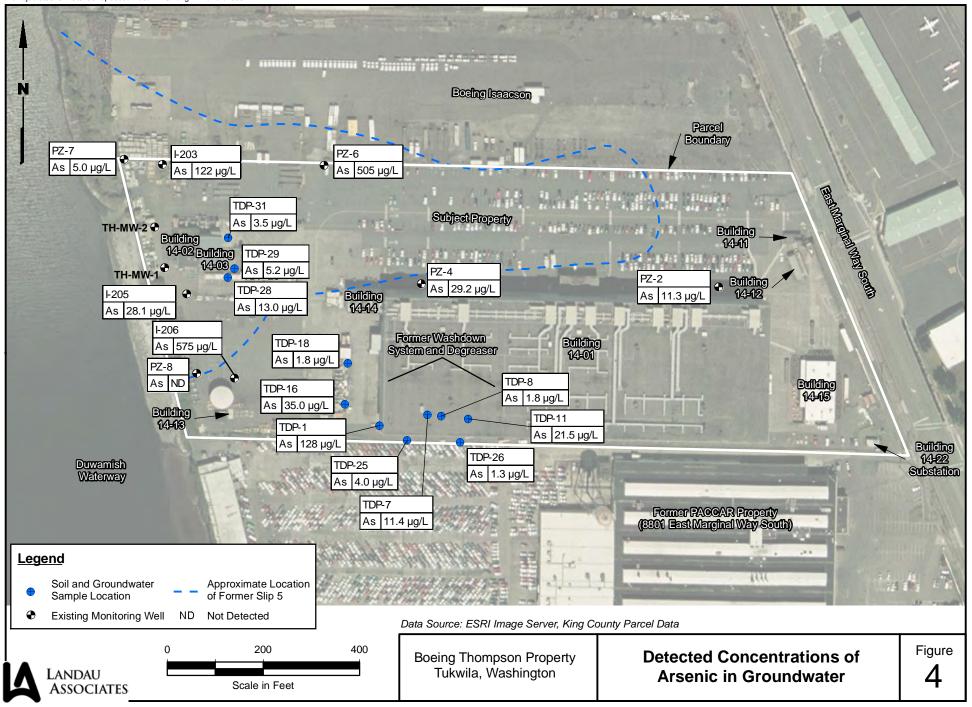
KFH/KJH/ccy

6.0 REFERENCES


AMEC Earth & Environmental, Inc. 2008. Report: Draft Interim Action Work Plan with Remedial Investigation and Feasibility Study for the Upland Portion for Soil and Groundwater Cleanup at the 8801 East Marginal Way South Site and Former PACCAR Kenworth Truck Company Site, Tukwila, Washington. Prepared for PACCAR Inc. May 16.


Ecology. 2008. Draft 2: Source Control Action Plan, Lower Duwamish Waterway, RM 3.7-3.9 East (Early Action Area 6). Publication No. 08-09-002. Washington State Department of Ecology. October.


Ecology. 1994. *Natural Background Soil Metals Concentrations in Washington State*. Publication No. 94-115. Washington State Department of Ecology, Toxics Cleanup Program. October.


Landau Associates. 2008a. Report: Environment, Health, and Safety Assessment / Phase I Environmental Site Assessment, Boeing Thompson Property, Tukwila, Washington. Prepared for the Boeing Company. August 11.

Landau Associates. 2008b. Work Plan: *Phase II Environmental Site Assessment, Boeing Thompson Property, Tukwila, Washington.* Prepared for The Boeing Company. October 31.

TABLE 1 SUMMARY OF CONSTITUENTS DETECTED IN SOIL BOEING THOMPSON SITE TUKWILA, WASHINGTON

	ı				1	Former W	ashdown System I	Pining South of 1	4-01		İ	Form	er Washdown Sve	tem Piping Inside 1	4-01	
Location	PACCAR Interim	Method C	Method C	Method C	TDP1-9	TDP2-5	TDP3-5	TDP4-4	TDP25-9	TDP26-8	TDP5-5	TPD6-8	TDP7-8	TDP8-8	TDP9-8	TDP10-7
Lab ID	: Action Work Plan	Direct Contact	Protection of Marine	Protection of Fresh	NX93A	NX93B	NX93C	NX93D	NY44J	NY64A	NX93E	NY07A	NY07B	NY07C	NY07D	NY07P
Date Collected	: Cleanup Levels (d))	Surface Water	Surface Water	11/3/2008	11/3/2008	11/3/2008	11/3/2008	11/5/2008	11/6/2008	11/3/2008	11/4/2008	11/4/2008	11/4/2008	11/4/2008	11/4/2008
VOLATILES (µg/kg)																
Method SW8260B																
Methylene Chloride		18.000.000	2,600	20	7.7	1.6 U	1.9 U	2.0 U	1.3 U	1.4 U	2.1 U	2.7 U	1.6 U	2.3 U	1.3 U	2.5 U
Acetone		350.000.000	-,	3,200	280	9.2	9.0	22	18	39	45	59	44	94	50	120
Carbon Disulfide		350,000,000	_	5,600	7.7	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	9.8	1.0	4.4	2.3	26
1,1-Dichloroethane		700,000,000	_	8,700	1.6	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	1.1 U	0.6 U	1.2 L
trans-1.2-Dichloroethene		70.000.000	540.000	540	2.6	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	1.1 U	0.6 U	1.2 L
cis-1,2-Dichloroethene		35,000,000	-	350	74	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	1.5	0.6 U	1.2 L
2-Butanone		1,000,000,000 (e)		19,600	53	4.1 U	4.8 U	5.1 U	3.3 U		7.6	9.8	7.0	12	9.9	25
Trichloroethene		1,100,000	200	16	6.2	0.8 U	1.0 U	1.0 U	6.2	66	1.1 U	1.4 U	0.8 U	1.1 U	0.6 U	1.2 L
Benzene		2,400,000	290	7	1.5	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	4.3	0.6 U	1.2 U
Tetrachloroethene		240.000	40	7	1.3 1.2 U	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	4.3 1.1 U	0.6 U	1.2 U
Toluene		280,000,000	109,000	4,600	1.2 U	0.8 U	1.0 U	1.0 U	0.7 U		1.1 U	1.4 U	0.8 U	2.0	0.6 U	1.2 U
			.	,								_				1.2 U 2.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1,000,000,000 (e)	-	10,500,000	2.4 U	1.6 U	1.9 U	2.0 U	1.3 U	1.4 U	2.1 U	2.7 U	1.6 U	2.3 U	1.3 U	2.5 U
SEMIVOLATILES (µg/kg)																
Method SW8270D																
4-Methylphenol		-	-	200	62 U	NA	NA	NA	64 U	59 U	NA	NA	63 U	170	NA	NA
Naphthalene		70,000,000	138,000	4,500	62 U	NA	NA	NA	64 U		NA	NA	63 U	260 J	NA	NA
2-Methylnaphthalene		14,000,000	-	-	62 U	NA	NA	NA	64 U	59 U	NA	NA	63 U	64 J	NA	NA
Acenaphthylene		-	_	_	62 U	NA	NA	NA	64 U		NA	NA	63 U	71 J	NA	NA
Phenanthrene	70,000,000 / 2,000		_	_	62 U	NA	NA	NA	64 U		NA	NA	63 U	160 J	NA	NA
Fluoranthene	. 0,000,000 / 2,000	140.000	89,000	88,000	62 U	NA	NA	NA	64 U		NA	NA	63 U	100 J	NA	NA
Pyrene		110,000,000	3,500,000	650,000	62 U	NA	NA	NA	64 U		NA	NA	63 U	110 J	NA	NA
Chrysene	17,980,000 / 85	-	140	22	62 U	NA	NA	NA	64 U	59 U	NA NA	NA	63 U	61 U	NA	NA
Benzo(b)fluoranthene	1,798,000 / 289	_	440	69	62 U	NA	NA	NA	64 U		NA NA	NA.	63 U	61 U	NA	NA
Total cPAHs	1,790,0007209	18,000	-	-	ND	NA NA	NA NA	NA NA	ND	ND	NA NA	NA NA	ND	ND	NA NA	NA NA
. 514. 51. 7 11.15		.0,000			2				2				5			
PETROLEUM HYDROCARBONS (mg/kg)																
NWTPH-HCID																
Diesel-Range Organics					50 U	50 U	57	53	50 U	50 U	50 U	50 U	50 U	50 U	50 U	NA
Lube Oil-Range Organics					100	100 U	110	110	100	100	100 U	100 U	100 U	100 U	100 U	NA
NWTPH-Dx (mg/kg)																
Diesel-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	16	19	110	78	61	6.5	NA	NA	NA	NA	NA	NIA
		, , ,	, , ,	, , ,	99	95	740	640	340	24	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lube Oil-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	99	95	740	640	340	24	NA	NA	NA	NA	NA	NA
TOTAL METALS (mg/kg)																
Method SW6010B/7471A																
Arsenic		88	7 (b)	7 (b)	9	5 U	6	18	5 U	7	5 U	6 U	6 U	6 U	6 U	NA
Cadmium		3,500	1.2	1 (b)	0.4	0.2 U	0.2	1.0	0.2 U	0.4	0.2 U	0.2 U	0.2 U	0.2	0.2 U	NA
Chromium		1,000,000 (c)(e)	1,000,000 (e)	2,000	12.3	21.8	21.2	29.0	35.8	20.8	8.8	13.6	16.5	13.8	15.1	NA
Copper	129,500 / 19.6	130,000	36 (b)	36 (b)	31.6	23.2	24.8	67.1	14.3	36.6	10.8	20.5 J	20.2	21.6	17.7	NA
Lead	1,000 / 812	1,000 (a)	1,600	110	17	2	139	106	2	12 J	2 U	2 U	2	7	2 U	NA
Mercury		1.100	0.1 (b)	0.1 (b)	0.06	0.05 U	0.06	0.20	0.04 U		0.04 U	0.05 U	0.05 U	0.05 U	0.05 U	NA

TABLE 1 SUMMARY OF CONSTITUENTS DETECTED IN SOIL BOEING THOMPSON SITE TUKWILA, WASHINGTON

	Former Washdown System Piping Inside 14-01 Former Washdown System Piping and ASTs We												ı		
Location:	PACCAR Interim	Method C	Method C	Method C	TDP10-8	TDP11-7	TDP11-9	ng Inside 14-01 TDP12-7	TDP13-7	TDP14-4	Former Was TDP15-4	TDP16-3	ping and ASIs W TDP17-4	est of 14-01 TDP18-4	TDP19-4
Lab ID:	Action Work Plan	Direct Contact	Protection of Marine	Protection of Fresh	NY07E	NY07F	NY07G	NY07H	NY07J	NY07K	NY07L	NY44A	NY44B	NY44C	NY44D
Date Collected:	Cleanup Levels (d) Biroot Contact	Surface Water	Surface Water	11/4/2008	11/4/2008	11/4/2008	11/4/2008	11/4/2008	11/4/2008	11/4/2008	11/5/2008	11/5/2008	11/5/2008	11/5/2008
VOLATILES (μg/kg)															
Method SW8260B															
Methylene Chloride		18.000.000	2,600	20	1.3 U	1.8 U	1.3 U	2.5 U	2.2 U	2.2 U	1.6 U	1.4 U	2.0 U	2.1 U	2.0 U
Acetone		350,000,000	-	3,200	44	97	23	86	51	25	31	20	57	22	77
Carbon Disulfide		350,000,000	_	5,600	5.8	22	2.5	8.8	8.5	1.3	0.8 U	0.7 U	5.6	1.1 U	1.0 U
1,1-Dichloroethane		700,000,000	_	8,700	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	0.8 U	0.7 U	1.0 U	1.1 U	1.0 U
trans-1,2-Dichloroethene		70,000,000	540,000	540	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	0.8 U	0.7 U	1.0 U	1.1 U	1.0 U
cis-1,2-Dichloroethene		35,000,000	-	350	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	0.8 U	0.7 U	1.0 U	1.1 U	1.0 U
2-Butanone		1.000.000.000 (e)	_	19.600	7.4	20	4.5	14	7.9	5.5 U	4.0 U	3.5 U	9.0	5.3 U	5.2
Trichloroethene		1,100,000	200	16	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	0.8 U	0.7 U	1.0 U	1.1 U	1.0 U
Benzene		2,400,000	290	7	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	2.3	0.7 U	1.0 U	1.1 U	1.3
Tetrachloroethene		240,000	40	7	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	1.5	0.7 U	1.0 U	1.1 U	1.0 U
Toluene		280,000,000	109,000	4.600	0.7 U	0.9 U	0.6 U	1.2 U	1.1 U	1.1 U	0.8 U	0.7 U	1.0 U	1.1 U	1.0 U
		· ' '	,	10,500,000				2.5 U		2.2 U					
1,1,2-Trichloro-1,2,2-trifluoroethane		1,000,000,000 (e)	-	10,500,000	1.3 U	1.8 U	1.3 U	2.5 U	2.2 U	2.2 0	1.6 U	1.4 U	2.0 U	2.1 U	2.0 U
SEMIVOLATILES (µg/kg)															
Method SW8270D															
4-Methylphenol		_	_	200	NA	NA	60 U	NA	NA	NA	NA	62 U	NA	62 U	NA
Naphthalene		70,000,000	138,000	4,500	NA	NA	60 U	NA	NA	NA.	NA	62 U	NA	110 J	NA
2-Methylnaphthalene		14,000,000	-	-	NA	NA	60 U	NA	NA	NA NA	NA	62 U	NA	62 U	NA NA
Acenaphthylene		-	_	_	NA	NA NA	60 U	NA	NA NA	NA NA	NA	62 U	NA NA	62 U	NA NA
Phenanthrene	70,000,000 / 2,000	_	_	_	NA	NA NA	60 U	NA	NA NA	NA NA	NA NA	71 J	NA NA	120 J	NA NA
Fluoranthene	70,000,000 / 2,000	140.000	89,000	88.000	NA NA	NA NA	60 U	NA	NA NA	NA NA	NA NA	62 U	NA NA	150 J	NA NA
Pyrene		110,000,000	3,500,000	650,000	NA NA	NA NA	60 U	NA NA	NA	NA NA	NA	62 U	NA NA	120 J	NA NA
Chrysene	17,980,000 / 85	-	140	22	NA NA	NA NA	60 U	NA NA	NA NA	NA NA	NA NA	62 U	NA NA	91 J	NA NA
Benzo(b)fluoranthene	1,798,000 / 289		440	69	NA NA	NA NA	60 U	NA NA	NA NA	NA NA	NA NA	62 U	NA NA	76 J	NA NA
Total cPAHs	1,790,0007209	18,000	440	09	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	8.51	NA NA
Total CPARS		18,000	-	-	NA	INA	ND	INA	INA	INA	NA	ND	INA	0.51	INA
PETROLEUM HYDROCARBONS (mg/kg)															
NWTPH-HCID															
Diesel-Range Organics					50 U	NA	50 U	170 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Lube Oil-Range Organics					100 U	NA	100	330	100 U	100 U	100 U	100 U	100 U	100 U	100
NWTPH-Dx (mg/kg)															
Diesel-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	NA	NA	20	140	NA	NA	NA	NA	NA	NA	23
Lube Oil-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	NA	NA	130	990	NA	NA	NA	NA	NA	NA	110
TOTAL METAL C (mar/len)															
TOTAL METALS (mg/kg) Method SW6010B/7471A															
		00	7 (h)	7 /6\	6.11	NΙΛ	E 11	0	40.11	47	_	7	7	40	6 11
Arsenic		88	7 (b)	7 (b)	6 U	NA	5 U		10 U	17	9	7	•	12	6 U
Cadmium		3,500	1.2	1 (b)	0.2 U	NA	0.2 U	0.8	0.6 U	0.6	0.2 U	0.3 U	0.3 U	0.6	0.3 U
Chromium	400 500 / 40 0	1,000,000 (c)(e)	1,000,000 (e)	2,000	20.7	NA	17.1	20.0	17	24.6	17.3	18.1	21.3	26.1	12.9 J
Copper	129,500 / 19.6	130,000	36 (b)	36 (b)	18.9	NA	24.8	31.3	97.1	36.6	25.7	28.8	34.3	NA	16.4 J
Lead	1,000 / 812	1,000 (a)	1,600	110	2 U	NA	3	13	6 U	18	3	4	5	28	30 J
Mercury		1,100	0.1 (b)	0.1 (b)	0.06 U	NA	0.04 U	0.19	0.06 U	0.13	0.06 U	0.05	0.11	0.23	0.07

TABLE 1 SUMMARY OF CONSTITUENTS DETECTED IN SOIL BOEING THOMPSON SITE TUKWILA, WASHINGTON

	I		Substation (F	Building 14-22)	Transformers	North of 14-02	UST W of 14-02	ſ	Hazardous Mate	rials Storage Sh	ads	Hydraulic Oil Release Area			
Location:	PACCAR Interim	Method C	Method C	Method C	TDP20-3	TDP21-3	TDP22-3	TDP23-3	TDP24-11	TDP27-11	TDP28-11	TDP29-11	TDP30-11	TDP31-12	TDP32-11
Lab ID:	Action Work Plan	Direct Contact	Protection of Marine	Protection of Fresh	NY44E	NY44F	NY44G	NY44H	NY44I	NY64B	NY64C (RE)	NY64D	NY64E	NY64F (RE)	NY64G
Date Collected:	Cleanup Levels (d)		Surface Water	Surface Water	11/5/2008	11/5/2008	11/5/2008	11/5/2008	11/5/2008	11/6/2008	11/6/2008	11/6/2008	11/6/2008	11/6/2008	11/6/2008
VOLATILES (µg/kg)															
VOLATILES (μg/kg) Method SW8260B															
Methylene Chloride		18.000.000	2,600	20	NA	NA	NA	NA	NA	1.8 U	1.6 U	1.4 U	2.2 U	1.8 U	1.4 U
Acetone		350,000,000	-,	3.200	NA	NA	NA	NA	NA	25	48	95	83	29	15
Carbon Disulfide		350,000,000	_	5,600	NA	NA	NA	NA	NA	0.9 U		22	22	2.7	0.9
1,1-Dichloroethane		700,000,000	-	8,700	NA	NA	NA	NA	NA	0.9 U		0.7	1.4	0.9 U	0.7 U
trans-1,2-Dichloroethene		70,000,000	540,000	540	NA	NA	NA	NA	NA	0.9 U	0.8 U	0.7 U	1.1 U	0.9 U	0.7 U
cis-1,2-Dichloroethene		35,000,000	-	350	NA	NA	NA	NA	NA	0.9 U	0.8 U	0.7 U	1.1 U	0.9 U	0.7 U
2-Butanone		1,000,000,000 (e)	-	19,600	NA	NA	NA	NA	NA	4.6 U	8.8	20	16	4.6 U	3.4 U
Trichloroethene		1,100,000	200	16	NA	NA	NA	NA	NA	0.9 U	0.8 U	0.7 U	1.1 U	0.9 U	0.7 U
Benzene		2,400,000	290	7	NA	NA	NA	NA	NA	0.9 U	0.8 U	0.7 U	1.1 U	0.9 U	0.7 U
Tetrachloroethene		240,000	40	7	NA	NA	NA	NA	NA	0.9 U	0.8 U	0.7 U	1.1 U	0.9 U	0.7 U
Toluene		280,000,000	109,000	4,600	NA	NA	NA	NA	NA	0.9 U	1.2	0.9	1.1 U	0.9 U	0.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1,000,000,000 (e)	-	10,500,000	NA	NA	NA	NA	NA	1.8 U	1.6 U	1.4 U	2.2 U	2.6	1.4 U
SEMIVOLATILES (µg/kg) Method SW8270D															
4-Methylphenol		_	_	200	NA	NA	NA	NA	NA	NA	61 U	60 U	NA	64 U	NA
Naphthalene		70,000,000	138,000	4,500	NA	NA NA	NA	NA NA	NA NA	NA NA	61 U	60 U	NA NA	64 U	NA NA
2-Methylnaphthalene		14,000,000	-	-	NA NA	NA NA	NA	NA NA	NA NA	NA NA	61 U	60 U	NA NA	64 U	NA
Acenaphthylene		-	_	_	NA	NA	NA	NA	NA	NA NA	61 U	60 U	NA	64 U	NA
Phenanthrene	70,000,000 / 2,000	-	-	-	NA	NA	NA	NA	NA.	NA NA	61 U	60 U	NA	64 U	NA
Fluoranthene		140,000	89,000	88,000	NA	NA	NA	NA	NA	NA	61 U	60 U	NA	64 U	NA
Pyrene		110,000,000	3,500,000	650,000	NA	NA	NA	NA	NA	NA	61 U	60 U	NA	64 U	NA
Chrysene	17,980,000 / 85	-	140	22	NA	NA	NA	NA	NA	NA	61 U	60 U	NA	64 U	NA
Benzo(b)fluoranthene	1,798,000 / 289	-	440	69	NA	NA	NA	NA	NA	NA	61 U	60 U	NA	64 U	NA
Total cPAHs		18,000	-	-	NA	NA	NA	NA	NA	NA	ND	ND	NA	ND	NA
PETROLEUM HYDROCARBONS (mg/kg) NWTPH-HCID															
Diesel-Range Organics					50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50	50 U
Lube Oil-Range Organics					100 U	100 U	100 U	100 U	100 U	100 U		100 U	100 U	100	100 U
NWTPH-Dx (mg/kg)															
Diesel-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	NA	NA	NA	NA	NA	NA	NA	NA	NA	58	NA
Lube Oil-Range Organics		2,000 (a)	2,000 (a)	2,000 (a)	NA	NA	NA	NA	NA	NA	NA	NA	NA	400	NA
TOTAL METALS (mg/kg) Method SW6010B/7471A															
Arsenic		88	7 (b)	7 (b)	6 U	5 U	5 U	5 U	NA	6	6	8	13	9	5 U
Cadmium		3,500	1.2	1 (b)	0.3 U	0.3	0.2 U	0.2 U	NA	0.2 U	0.3	0.7	0.8	0.2 U	0.2 U
Chromium		1,000,000 (c)(e)	1,000,000 (e)	2,000	14.5	15.1	24.0	24.6	NA	16.4	17.8	20.4	24.8	14.7	29.4
Copper	129,500 / 19.6	130,000	36 (b)	36 (b)	NA	13.3	15.6	17.7	NA	13.7	20.5	26.2	35.9	15.9	20.5
Lead	1,000 / 812	1,000 (a)	1,600	110	3	2 U	4	11	NA	2 U	4	7	15	2	2 U
Mercury		1,100	0.1 (b)	0.1 (b)	0.05 U	0.05 U	0.04 U	0.11	NA	0.05 U	0.06 U	0.10	0.17	0.05	0.05 U

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample detection limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NA = Not Analyzed.

ND = Not Detected

⁽a) = MTCA Method A cleanup level for industrial properties.

⁽b) = Statewide background concentration (Ecology 1994).

⁽c) = Value listed is for chromium III.

⁽d) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008). The first number is Method C Ingestion (Method A industrial for lead).

The second number is Soil to Water Partition Calculation or Ecology Sediment Quality Standards for phenanthrene.

⁽e) = Screening level adjusted to 100% (1,000,000 mg/kg or 1,000,000,000 μ g/kg)

TABLE 2 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER BOEING THOMPSON SITE TUKWILA, WASHINGTON

	Location: Lab ID:	PACCAR Interim Action Work Plan Cleanup Levels (d)	Method B Protection of Marine Surface	Method B Protection of Fresh Surface	Pi	er Washdown bing South of TDP25-GW NY44M	-		mer Washdown Syst ng Inside Building 14 TDP8-GW NY07M		Former Wash West of Bu TDP16-GW NY44K		Hazardous Materia TDP28-GW NY64I	al Storage Sheds TDP29-GW NY64J	Hydraulic Oil Release Area TDP31-GW NY64K
	Date Collected:	Cicariap Levels (u)	Water	Water	11/3/2008	11/5/2008	11/6/2008	11/4/2008	11/4/2008	11/4/2008	11/5/2008	11/5/2008	11/6/2008	11/6/2008	11/6/2008
VOLATILES (μg/L) Method SW8260B											_				
Vinyl Chloride Chloroethane		2.4	2.4	0.025	1.0 U 1.0 U	1.8 0.2	140 1.0 U	0.2 0.2 U	0.7 0.2 U	0.2 U 0.2 U	0.3 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
Acetone Carbon Disulfide 1,1-Dichloroethene			3.2	800 800 0.057	5.0 U 1.0 U 1.0 U	5.8 0.2 U 0.2 U	5.0 U 1.0 U 1.0	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.2 U 0.2 U	3.0 U 0.4 0.2 U
1,1-Dichloroethane trans-1,2-Dichloroethene			10,000	1,600 100	1.0 U 1.0 U	1.9 0.5	4.0 7.6	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	1.0 0.2 U	0.4 0.2 U	0.3 0.2 U
cis-1,2-Dichloroethene 1,1,1-Trichloroethane		80 1.5	420,000 30	70 200 2.5	1.0 U 1.0 U	45 0.4 71	1.2 240	0.2 U 0.2 U 0.2 U	0.4 0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U 0.2 U
Trichloroethene Tetrachloroethene Ethylbenzene 1,1,2-Trichloro-1,2,2-trifluoroeth	ane	0.39	3.3 2,100	2.5 0.7 530 240,000	1.0 U 1.0 U 1.0 U 2.0 U	2.6 0.4 0.2 U	1.9 1.0 U 2.0 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U 0.4
o-Xylene Total Xylenes	u			1,600	1.0 U	0.2 0.2	1.0 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SEMIVOLATILES (µg/L) Method SW8270D Phenol			1,100,000	4,800	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	9.1	1.0 U
2-Methylphenol 4-Methylphenol Benzoic Acid				400 40 64,000	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 U 1.0 U 10 U	1.0 3.9 24	1.0 U 1.0 U 10 U
2-Methylnaphthalene Acenaphthene Diethylphthalate			640 28,000	32 640 12,800	7.9 14 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 2.0	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 28 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U
Phenanthrene Carbazole bis(2-Ethylhexyl)phthalate 1-Methylnaphthalene			2.2	4.4 1.2	1.8 6.9 J 1.0 U [6.9 J	1.0 U 1.0 U 1.3 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 [1.0 U	1.0 U 1.0 U 2.5 1.0 U	1.0 U 1.0 U 1.1 1.0 U	4.7 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.8 1.0 U	1.0 U 1.0 U 3.8 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 3.0 1.0 U
PAHs (µg/L) Method SW8270SIM			4.000	400	0.40	0.40 1	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11	
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene			4,900	160 32	0.13 5.8 4.4	0.13 J 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.11 0.10 U 0.10 U
Acenaphthene Fluorene Phenanthrene			640 3,500 90	640 640	8.6 0.62 1.2	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	15 0.10 U 2.6	0.64 0.10 U 0.10 U	0.10 U 0.10 U 0.13	0.10 U 0.10 U 0.11	0.10 U 0.10 U 0.10
Fluoranthene Pyrene Benzo(a)anthracene Chrysene			2,600 0.020 (e)	90 480 0.028 0.028	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U	0.39 0.36 0.14	0.10 U 0.11 0.10 U	0.10 U 0.10 U 0.10 U 0.10 U
Benzo(k)fluoranthene			0.019 (e) 0.036 (e)	0.028	0.10 U	0.10 U		0.10 U	0.10 U 0.10 U	0.10 U	0.10 U 0.10 U	0.10 U	0.10	0.10 U 0.10 U	
PETROLEUM HYDROCARBO NWTPH-HCID Diesel-Range Organics Oil-Range Organics	NS (mg/L)				0.63 U 0.63 U	0.63 U 0.63 U		0.63 U 0.63 U	0.63 U 0.63 U	0.63 U 0.63 U	0.63 U 0.63 U	0.63 U 0.63 U	0.63 U 0.63 U	0.63 0.63	0.63 ∪ 0.63
NWTPH-Dx (mg/L) Diesel-Range Organics Oil-Range Organics		0.5		0.5 (a) 0.5 (a)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.25 U. 0.50 U.	0.47 J 3.2 J
DISSOLVED METALS (µg/L) Method EPA200.8/SW6010B/S Arsenic	W7470A		8 (b)	8 (b)	128	4.0	1.3	11.4	1.8	21.5	35.0	1.8	13.0	5.2	3.5
Chromium			240,000 (c)	57 (c)	6	5 U	5 U	7	5 U	14	5 U	5 U	5 U	5 U	5 U

TABLE 2 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER BOEING THOMPSON SITE TUKWILA, WASHINGTON

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

U = Indicates the compound was undetected at the reported concentration.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NA = Not Analyzed.

- (a) = MTCA Method A cleanup level for industrial properties.
- (b) = Statewide background concentration (Ecology 1994).
- (c) = Value listed is for chromium III.
- (d) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan.
- (e) = Adjusted up to practical quantitation limit (PQL). PQL calculated from laboratory method detection limit (MDL). PQL = 10 x MDL.

TABLE 3 SUMP ANALYICAL RESULTS BOEING THOMPSON SITE TUKWILA, WASHINGTON

Date	Location: Lab ID: Collected:	TH-SUMP NY64L 11/6/2008
VOLATILES (µg/L)	00001.001	. 17672000
Method SW8260B		
Chloromethane		10 U
Bromomethane		10 U
Vinyl Chloride		10 U
Chloroethane		10 U
Methylene Chloride		42
Acetone Carbon Disulfide		50 U 10 U
1,1-Dichloroethene		10 U
1,1-Dichloroethane		10 U
trans-1,2-Dichloroethene		10 U
cis-1,2-Dichloroethene		10 U
Chloroform		10 U
1,2-Dichloroethane		10 U
2-Butanone		50 U
1,1,1-Trichloroethane Carbon Tetrachloride		10 U 10 U
Vinyl Acetate		50 U
Bromodichloromethane		10 U
1,2-Dichloropropane		10 U
cis-1,3-Dichloropropene		10 U
Trichloroethene		10 U
Dibromochloromethane		10 U
1,1,2-Trichloroethane		10 U
Benzene		10 U 10 U
trans-1,3-Dichloropropend 2-Chloroethylvinylether	3	50 U
Bromoform		10 U
4-Methyl-2-Pentanone (M	IBK)	50 U
2-Hexanone	,	50 U
Tetrachloroethene		10 U
1,1,2,2-Tetrachloroethane)	10 U
Toluene		29
Chlorobenzene Ethylbenzene		10 U 10 U
Styrene		10 0
Trichlorofluoromethane		10 U
1,1,2-Trichloro-1,2,2-triflu	oroethane	20 U
m,p-Xylene		20 U
o-Xylene		10 U
Total Xylenes		
PETROLEUM HYDROCA	ARBONS (mg/	L)
NWTPH-HCID		1011
Gasoline Range Organics Diesel Range Organics	5	1.0 U 2.5
Lube Oil		2.5
NWTPH-Dx (mg/L)		25 J
Diesel Range Organics Lube Oil		62 J
LUDE OII		02 J
TOTAL METALS (µg/L)		
Method EPA200.8/SW60	10B/SW7470 <i>A</i>	
Arsenic		23.8
Cadmium Chromium		58 510
Copper		1,950
Lead		6
Mercury		2 U

 $[\]mbox{\bf U} = \mbox{\bf Indicates}$ the compound was undetected at the reported concentration.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

TABLE 4 POLYCHLORINATED BIPHENYL WIPE SAMPLING ANALYTICAL RESULTS COMPRESSED AIR SYSTEM BOEING THOMPSON SITE TUKWILA, WASHINGTON

	Location: Lab ID: Date Collected:	LINE1-WIPE OB27A 11/21/2008	LINE2-WIPE OB27B 11/21/2008	LINE3-WIPE OB27C 11/21/2008	LINE4-WIPE OB27D 11/21/2008	LINE5-WIPE OB27E 11/21/2008	LINE6-WIPE OB27F 11/21/2008	LINE7-WIPE OB27G 11/21/2008	LINE8-WIPE OB27H 11/21/2008
PCBs (µg)									
Method SW8082									
Aroclor 1016		1.0 U							
Aroclor 1242		1.0 U							
Aroclor 1248		1.0 U							
Aroclor 1254		1.0 U							
Aroclor 1260		1.0 U							
Aroclor 1221		1.0 U							
Aroclor 1232		1.0 U							

TABLE 4 POLYCHLORINATED BIPHENYL WIPE SAMPLING ANALYTICAL RESULTS COMPRESSED AIR SYSTEM BOEING THOMPSON SITE TUKWILA, WASHINGTON

	Location: Lab ID: Date Collected:	LINE9-WIPE OB27I 11/21/2008	LINE10-WIPE OB27J 11/21/2008	LINE11-WIPE OB27K 11/21/2008	COMP1-WIPE OB27L 11/21/2008	COMP2-WIPE OB27M 11/21/2008
PCBs (µg)						
Method SW8082						
Aroclor 1016		1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Aroclor 1242		1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Aroclor 1248		1.0 U	1.0 U	1.0 U	5.0 U	7.5 U
Aroclor 1254		1.0 U	1.0 U	1.0 U	5.5	10
Aroclor 1260		1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Aroclor 1221		1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Aroclor 1232		1.0 U	1.0 U	1.0 U	5.0 U	5.0 U

U = Indicates the compound was undetected at the reported concentration.

TABLE 5 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER - EXISTING MONITORING WELLS BOEING THOMPSON SITE TUKWILA, WASHINGTON

	Levels (a)	Water	Fresh Surface Water	I-203 OL19F 2/4/2009	I-205 OL19E 2/4/2009	I-2055 OL19G 2/4/2009	I-206 OL19D 2/4/2009	PZ-2 OL19C 2/4/2009	PZ-4 OL19B 2/4/2009	PZ-6 OL24A 2/4/2009	PZ-7 OK85A 2/2/2009	PZ-8 OL19A 2/4/2009
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Copper Zinc		8 (b) 20 (b) 160 (b)	8 (b) 20 (b) 160 (b)	122 2 U 10 U	28.1 2 U 10 U	27.4 2 U 10 U	575 2 U 10 U	11.3 2 U 10 U	29.2 2 U 10 U	505 2 U 10 U	5.0 2 U 10 U	1.0 U 2 U 10 U
VOLATILES (µg/L) Method SW8260B Vinyl Chloride Acetone Carbon Disulfide 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,2-Dichloropropane	2.4	2.4 10,000 15	0.025 800 800 1,600 100 70 0.50	0.2 U 3.1 0.2 U 0.2 U 0.2 U 1.3 0.2 U	0.2 U 2.5 U 0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 2.5 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U	1.8 4.2 0.2 U 0.3 0.4 0.7 0.2 U	0.2 U 2.6 0.2 U 0.2 U 0.2 U 0.5	0.2 U 3.0 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 3.9 0.2 0.2 U 0.2 U 0.2 U	0.2 U 4.8 0.2 U 0.2 U 0.2 U 0.2 U	0.2 U 2.5 U 0.2 U 0.2 U 0.2 U 0.2 U

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

 $[\]mbox{U} = \mbox{Indicates}$ the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample detection limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

⁽a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008).

⁽b) = Statewide background concentration (PTI 1989).

Methods and Procedures

METHODS AND PROCEDURES

Introduction

This appendix describes the procedures used for conducting field activities during the Phase II environmental site assessment at the Boeing Thompson site (subject property) located at 8811 East Marginal Way South in Tukwila, Washington. The primary objective of this appendix is to provide sampling methodology consistent with accepted procedures to document that the data collected are adequate for use in characterizing site conditions.

SOIL INVESTIGATION ACTIVITIES

The soil investigation was conducted to evaluate and document the soil and groundwater quality in areas of the subject property potentially impacted by Boeing operations as part of Boeing's risk management and due diligence activities. Soil sampling procedures are presented in the following sections.

Subsurface Soil Sampling

Boreholes for soil and groundwater sample collection were advanced using a truck-mounted, direct-push drilling rig. Borings were accomplished by a driller licensed in the State of Washington and were monitored and documented by a Landau Associates field representative. Prior to initiation of drilling, the locations of each proposed exploration were checked in the field to locate aboveground utilities or physical limitations that would prevent drilling at the proposed location. In addition, a public utility locate service was contacted to locate underground utilities at the perimeter of the site and a private utility locate service was contracted to clear explorations for underground utilities. The final location for each borehole was based on the findings of the field check.

The direct-push borings were advanced to depths ranging from 6 feet (ft) to 15 ft BGS, based on the area of investigation. Continuous soil samples were collected from the borings using a 60-inch long, 1.5-inch inside-diameter (ID) core sampler. The sampler was advanced to the top of the sample interval then advanced over the desired depth interval, thereby coring the soil inside the sampler's disposable, single-use liner. The sampler was then withdrawn to retrieve the liner and soil sample. The liner was cut to remove the soil sample. A new liner was placed in the core sampler and this process was repeated until all desired soil samples were obtained. Between locations, the core sampler was decontaminated as described in the Sampling Equipment Decontamination section.

After the liner was cut, the soil type was field-classified in accordance with the Unified Soil Classification System (USCS) and recorded on Log of Exploration forms. The soil column retained in the sample liner was then field-screened for evidence of impact. Field screening was conducted by visually inspecting the soil for sheen and staining, and screening soil vapors for volatile organic compounds (VOCs) using a portable photoionization detector (PID).

Where field-screening results indicated the potential presence of soil contamination, a sample was collected from the affected area for laboratory testing. If no evidence of contamination was observed during field screening, soil samples were selected for analysis based on the area of investigation addressed by the soil boring, in accordance with the work plan. Soil samples were collected using methodology consistent with industry standard of practice for meeting Washington State Department of Ecology and U.S. Environmental Protection Agency (EPA) requirements. Soil samples collected for analysis of VOCs were collected using EPA Method 5035A. Upon completion of sampling, each soil boring was backfilled with bentonite chips.

GROUNDWATER INVESTIGATION ACTIVITIES

The groundwater investigation was conducted to document conditions at the subject property and assess the potential for impacts due to current or historical operations. The sampling procedures are presented below.

Groundwater Sampling

The groundwater samples were collected from selected direct-push borings using a disposable screen and riser. The temporary well screen was a 5-ft long, 0.75-inch ID, 0.010-inch slot size, polyvinyl chloride (PVC) screen. Once the target depth was reached (approximately 2 ft below the top of the shallow groundwater table), the temporary well was inserted into the direct-push boring and groundwater was extracted using disposable polyethylene tubing and a peristaltic pump. Groundwater was purged from the temporary well screen prior to sample collection until suspended particles were reduced. Prior to sample collection, field parameters including temperature, pH, and conductivity were measured and recorded on sample collection forms. A new PVC well screen and riser and new polyethylene tubing were used for each well. Samples were pumped directly into laboratory-supplied containers. Samples collected for dissolved metals analysis were field-filtered by passing water through a 0.45-micron filter prior to filling the laboratory-supplied containers.

SAMPLE ANALYSES

Selected soil and water samples were delivered by Landau Associates to Analytical Resources, Inc. of Tukwila, Washington for analysis.

QUALITY ASSURANCE/QUALITY CONTROL

The accuracy of the data was determined through evaluation of recovery of spiked surrogates, matrix spikes, and spiked laboratory control samples. The data were determined to be acceptable for use.

Sample Containers, Preservation, and Storage

Soil and groundwater samples submitted to the analytical laboratory for analysis were collected in the appropriate sample containers provided by the analytical laboratory. The samples were preserved by cooling to a temperature of 4°C, as required by the analytical method. Maximum holding and extraction times until analysis were strictly adhered to by field personnel and the analytical laboratory.

Sample Transportation and Handling

The transportation and handling of soil and groundwater samples were conducted so that the integrity of the samples was protected. Samples were logged on a chain-of-custody (COC) form and were kept in coolers on ice until delivery to the analytical laboratory. The COC form accompanied each shipment of samples to the laboratory.

Sample Custody

The primary objective of sample custody is to create an accurate, written record that can be used to trace the possession and handling of samples so that their quality and integrity can be documented from collection until completion of all required analyses. Adequate sample custody was achieved by means of approved field and analytical documentation. Such documentation includes the COC record that was initially completed by the sampler and was, thereafter, signed by those individuals who accepted custody of the samples. A sample was considered to be in custody if at least one of the following was true:

- It was in someone's physical possession.
- It was in someone's view.
- It was secured in a locked container or otherwise sealed so that tampering would be evident.
- It was kept in a secured area, restricted to authorized personnel only.

Sample control and COC protocols in the field and during transportation to the laboratory were conducted in general conformance with the procedures described below:

- As few people as possible handled samples.
- Sample containers were obtained new or pre-cleaned from the laboratory performing the analyses.
- The sample collector was personally responsible for the completion of the COC record and the care and custody of samples collected until they were transferred to another person or dispatched properly under COC protocols.
- The cooler in which the samples were delivered to the laboratory was accompanied by the COC record identifying its contents.

When samples were transferred, the individuals relinquishing and receiving the samples signed the COC form and recorded the date and time of transfer. The sample collector signed the form in the first signature space. Each person taking custody observed whether the shipping container was correctly sealed and in the same condition as noted by the previous custodian (if applicable). The case narrative provided by the analytical laboratory indicates that all samples were received in good condition.

Sampling Equipment Decontamination

All reusable sampling equipment used (i.e., stainless steel bowls, stainless steel spoons, soil handauger, etc.) was cleaned using a three-step process, as follows:

- 1. Scrub surfaces of equipment that would be in contact with the sample with brushes using an Alconox solution
- 2. Rinse and scrub equipment with clean tap water
- 3. Rinse equipment a final time with distilled water to remove tap water impurities.

Decontamination of the reusable sampling devices occurred between collection of each sample.

Heavy Equipment Decontamination

Heavy equipment (i.e., the drilling rigs and drilling equipment that were used downhole, or that contacted material and equipment going downhole) was cleaned using the procedures described for sampling equipment except that potable tap water was used as the rinsing agent.

MANAGEMENT OF INVESTIGATION-DERIVED WASTE

Soil cuttings generated during boring advancement and water generated during well purging and decontamination were temporarily stored on site in 55-gallon drums. Waste characterization samples were collected from the drums and the results were forwarded to Boeing for use in profiling the waste for disposal. Disposable equipment and clothing were disposed as solid waste.

Soil Boring Logs

Soil Classification System

USCS

MAJOR GRAPHIC LETTER SYMBOL SYMBOL

TYPICAL DESCRIPTIONS (2)(3)

	DIVISIONS		SYMBOL S	YMBOL"	DESCRIPTIONS (2)(3)
) s (e)	GRAVEL AND GRAVELLY SOIL	CLEAN GRAVEL		GW	Well-graded gravel; gravel/sand mixture(s); little or no fines
SOIL srial is e size	GRAVELLI SOIL	(Little or no fines)	00000	GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines
1 _ 9 \$	(More than 50% of coarse fraction retained	GRAVEL WITH FINES (Appreciable amount of	3 6 8 6 8 6	GM	Silty gravel; gravel/sand/silt mixture(s)
-GRAINED 150% of mat No. 200 siev	on No. 4 sieve)	fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
	SAND AND SANDY SOIL	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
SSE than	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
COARSE (More than	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of		SM	Silty sand; sand/silt mixture(s)
$Q = \overline{u}$	through No. 4 sieve)	fines)		SC	Clayey sand; sand/clay mixture(s)
SOIL 6 of • than ze)	SII T AI	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
SC % of er th				CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay
NEC an 50 small	(Liquia limit	less than 50)		OL	Organic silt; organic, silty clay of low plasticity
-GRAINED fore than 50° rial is smalle	SII T AI	ND CLAY		МН	Inorganic silt; micaceous or diatomaceous fine sand
INE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)				СН	Inorganic clay of high plasticity; fat clay
FINE (No	(Liquid limit g	greater than 50)		ОН	Organic clay of medium to high plasticity; organic silt
	HIGHLY OF	RGANIC SOIL		PT	Peat; humus; swamp soil with high organic content

GRAPHIC LETTER

SYMBOL SYMBOL TYPICAL DESCRIPTIONS

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement
ROCK	RK	Rock (See Rock Classification)
WOOD	WD WD	Wood, lumber, wood chips
DEBRIS	6/6/6/ DB	Construction debris, garbage

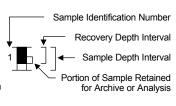
- Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
 - Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
 - 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

Primary Constituent: > 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc. Secondary Constituents: > 30% and $\leq 50\%$ - "very gravelly," "very sandy," "very silty," etc. > 15% and $\leq 30\%$ - "gravelly," "sandy," "silty," etc. Additional Constituents: > 5% and $\leq 15\%$ - "with gravel," "with sand," "with silt," etc.

≤ 5% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted.

4. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating conditions, field tests, and laboratory tests, as appropriate.

Drilling and Sampling Key SAMPLER TYPE SAMPLE NL


SAMPLE NUMBER & INTERVAL

Code Description

3.25-inch O.D., 2.42-inch I.D. Split Spoon

OTHER MATERIALS

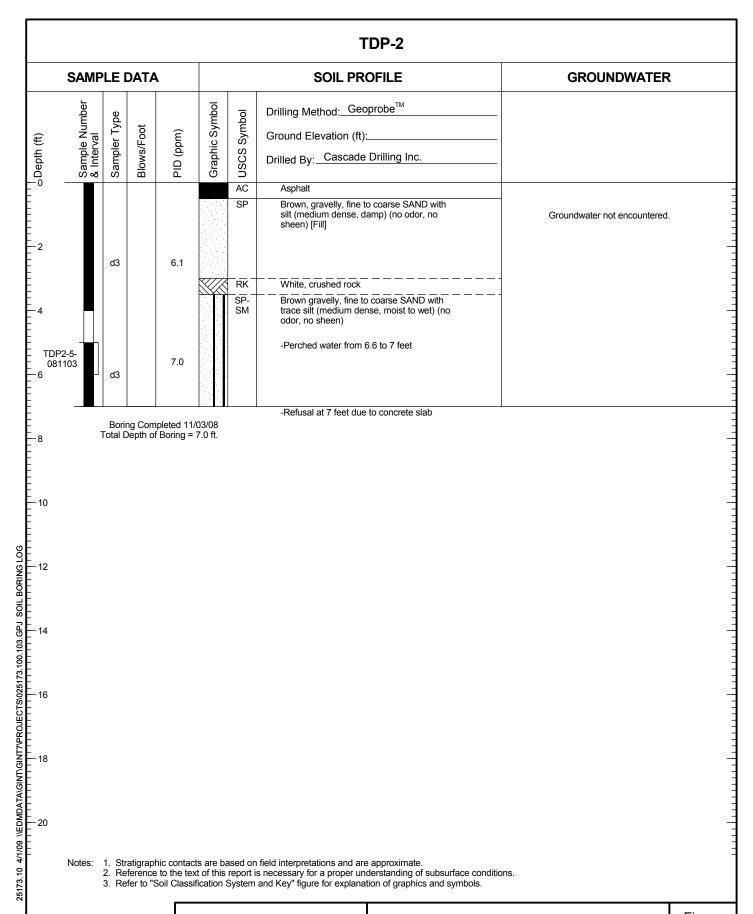
- b 2.00-inch O.D., 1.50-inch I.D. Split Spoon
- c Shelby Tube
- d Grab Sample
- e Single-Tube Core Barrel
- f Double-Tube Core Barrel
- g 2.50-inch O.D., 2.00-inch I.D. WSDOT
- h 3.00-inch O.D., 2.375-inch I.D. Mod. California
- i Other See text if applicable
- 1 300-lb Hammer, 30-inch Drop
- 2 140-lb Hammer, 30-inch Drop
- 3 Pushed
- 4 Vibrocore (Rotosonic/Geoprobe)
- 5 Other See text if applicable

Field and Lab Test Data

Code	Description
PP = 1.0	Pocket Penetrometer, tsf
TV = 0.5	Torvane, tsf
PID = 100	Photoionization Detector VOC screening, ppm
W = 10	Moisture Content, %
D = 120	Dry Density, pcf
-200 = 60	Material smaller than No. 200 sieve, %
GS	Grain Size - See separate figure for data
AL	Atterberg Limits - See separate figure for data
GT	Other Geotechnical Testing
CA	Chemical Analysis

Groundwater

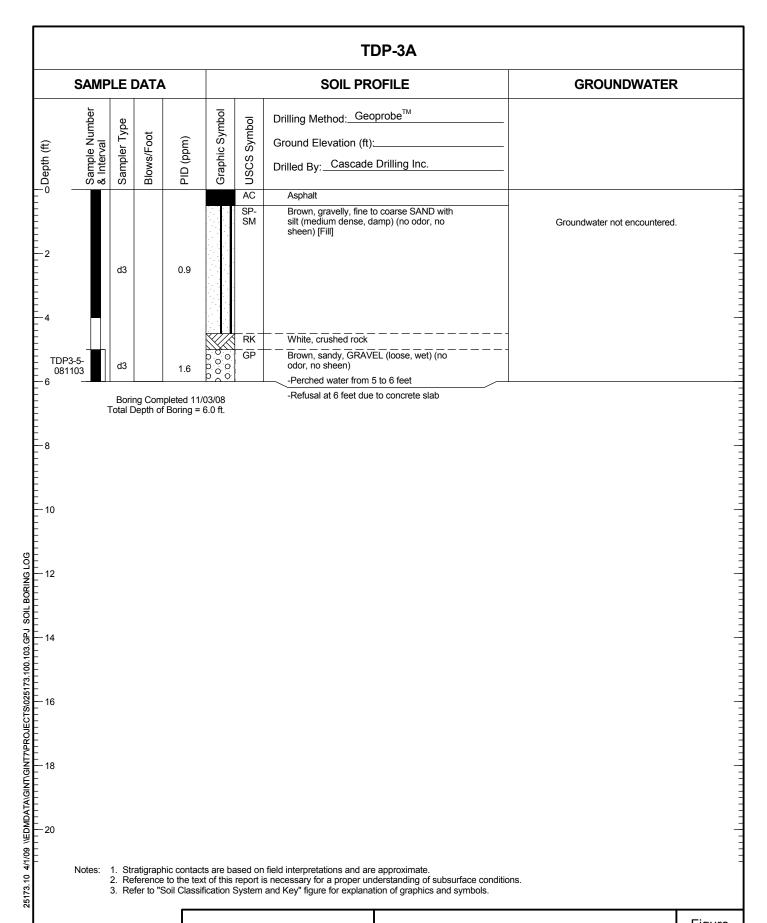
Approximate water level at time of drilling (ATD)
Approximate water level at time other than ATD


Boeing Thompson Property Tukwila, Washington

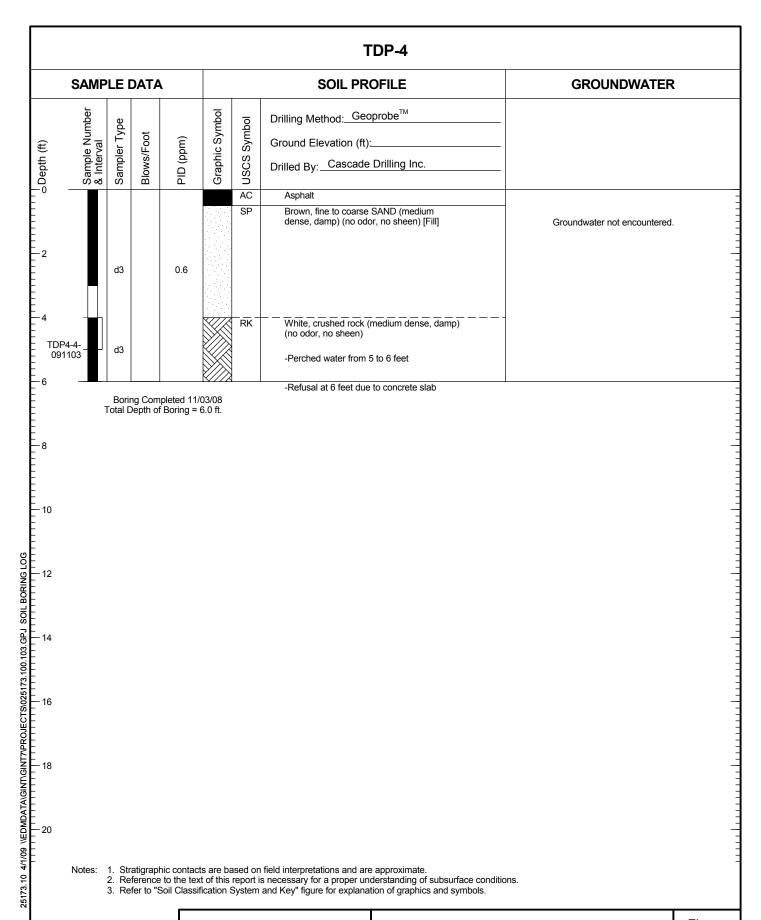
Soil Classification System and Key

SAM	PLE I	DATA	\		SOIL PROFILE	GROUNDWATER
Depth (ft) Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
-2	d3		0.0		P Brown, gravelly, fine to coarse SAND	
-6 -8 TDP1-9- 081103	d3		10.5		Dark gray, fine to medium SAND with silt and rock and glass debris (dense, damp to moist) (no odor, no sheen) Gray, silty, fine to medium SAND (medium dense, moist to wet) (no odor, no sheen) [Native] -Increased silt content with depth	
-12	d3		12.3			∑ ATD

Log of Boring TDP-1



Log of Boring TDP-2


Figure R_3

SAIVIP	LE C	DATA				SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	AS USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Asphalt Brown, fine to coarse SAND with trace silt	
	d3		6.5		G.	(medium dense, dry) (no odor, no sheen) [Fill]	Groundwater not encountered.
	d3		3.3		SP- SM	White, crushed rock Dark brown, gravelly, fine to coarse SAND with silt (loose, wet) (no odor, no sheen) -Perched water from 5 to 6 feet	

LANDAU ASSOCIATES

LANDAU **ASSOCIATES** Boeing Thompson Property Tukwila, Washington

LANDAU **ASSOCIATES** Boeing Thompson Property Tukwila, Washington

Log of Boring TDP-4

Log of Boring TDP-5

	IPLE I	DATA	١		SOIL PROFILE	GROUNDWATER
Sample Number	& Interval Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol		Water Level
	d3		0.3	AC SM		
⁻ DP6-8- 081104	d3		0.8	SI	Gray, silty, fine SAND (dense, moist to wet) (no odor, no sheen) [Native] -Increased sand content from 12 to 15 feet	
2	d3		0.6			∑ atd

Log of Boring TDP-6

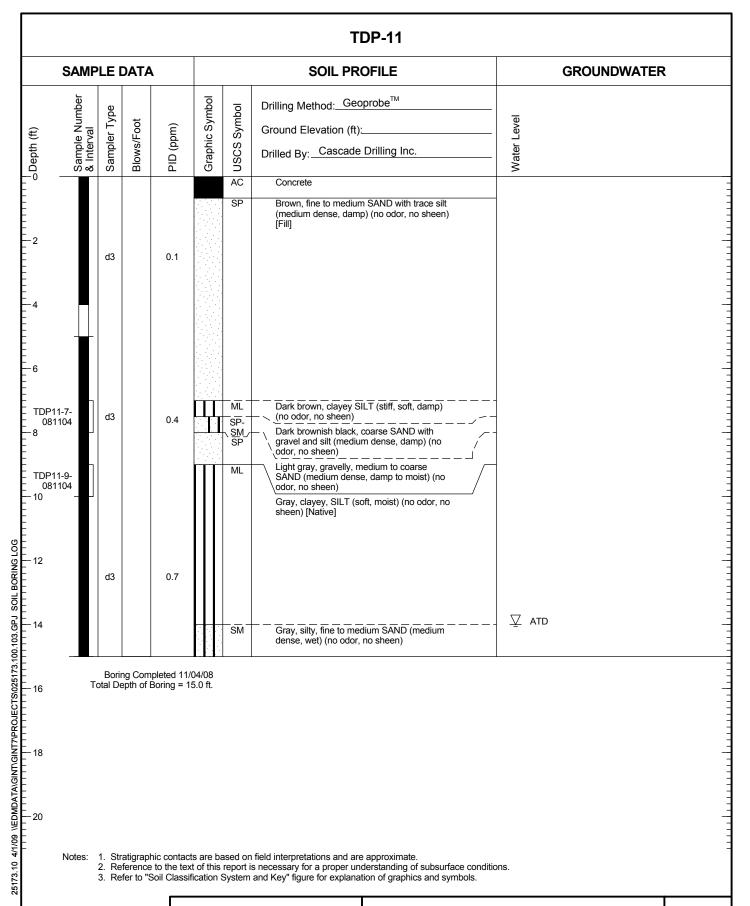
Figure R_8

	SAMP	LE [DATA				SOIL PROFILE	GROUNDWATER	
o Deptn (π)	Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level	
						AC SM	Concrete Brown, silty, fine to medium SAND (medium dense, damp) (no odor, no sheen) [Fill]		
2		d3		0.5			dense, damp) (no odor, no sneem) [riii]		
6									
8 TDP7 081	7-8- 104	d3		0.5					
10	_					SM	Gray, silty, fine to medium SAND (medium dense, moist to wet) (no odor, no sheen) [Native]		
12	-	d3		1.1				$ar{ar{ abla}}$ atd	
14									
16	To	Borir	ng Com	pleted 11/0 Boring = 15	04/08 5.0 ft.				
10				-					
18									
20									
							n field interpretations and are approximate. is necessary for a proper understanding of subsurface condition and Key" figure for explanation of graphics and symbols.		

Log of Boring TDP-7

S	AMP	LE [DATA				SOIL PROFILE	GROUNDWATER
o Deptin (ir.)	Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
0 —						AC SM	Concrete Brown, silty, fine to medium SAND (medium	
2		d3		0.6		Sivi	dense, damp) (no odor, no sheen) [Fill] -Gravel at 2 feet (lense thickness 0.25)	
6							-Gravel at 6 feet (lense thickness 0.25)	
8		d3				SM	Dark gray, silty, fine to medium SAND with organic debris (medium dense, damp) (no odor, no sheen) Gray, silty, fine to medium SAND (dense, moist to wet) (no odor, no sheen) [Native]	
TDP8-9 08110- 10	4	d3		0.2			- Increased sand at 12 feet	
14				V. <u>-</u>				abla atd
16	To	Borir	ng Com	pleted 11/0 Boring = 1	04/08 5.0 ft.			
18								
20								
	_4	4 01					n field interpretations and are approximate.	

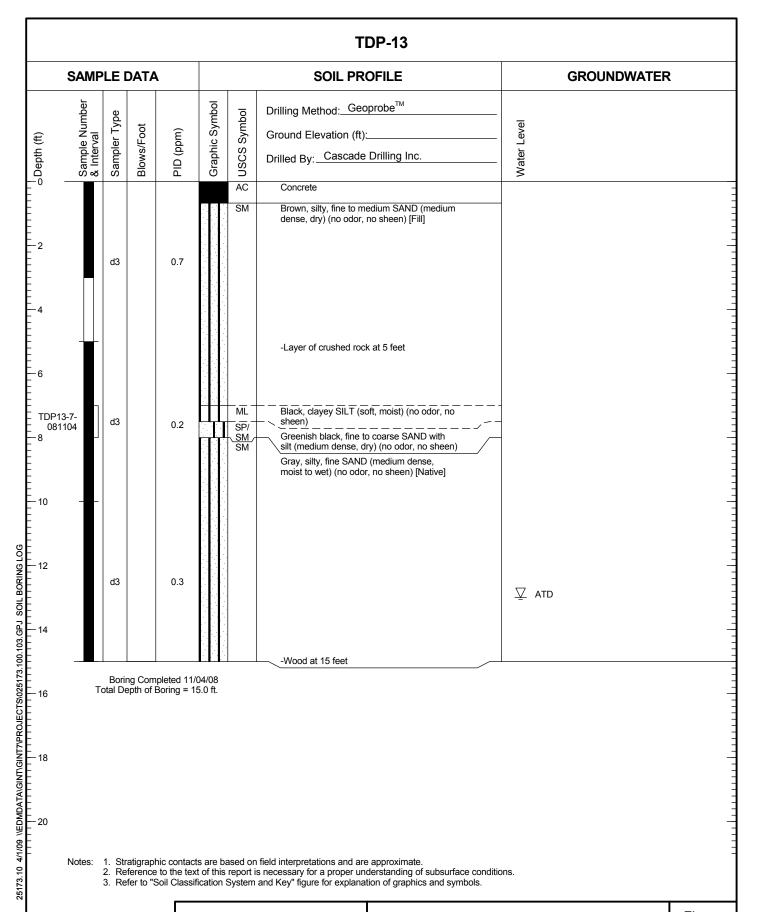
SAMPLE DATA		SOIL PROFILE	GROUNDWATER
Sample Number & Interval Sampler Type Blows/Foot	PID (ppm) Graphic Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
2 d3 4	1.2	AC Concrete SP/ Brown, fine to medium SAND with silt and trace gravel (medium dense, damp) (no odor/ no sheen) [Fill] -Becomes reddish color from 4 to 7 feet SP Greenish brown, fine to coarse SAND with trace silt and gravel (medium dense, damp) (no odor, no sheen) Gray, silty, fine to medium SAND (medium dense, moist to wet) (no odor, no sheen) [Native] -Silty layer at 10 feet	∑ ATD
Boring Com Total Depth of I	pleted 11/04/08 Boring = 15.0 ft.		



Log of Boring TDP-9

SAMI	PLE I	DATA	\		SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
,				AC		
2 4 	d3		0.0	SF SN		
DP10-7- 081104 DP10-8- 081104	d3		0.1	SA SF SA SA	Brown, fine to medium SAND with silt	
2	d3		0.0		-Increased sand and decreased silt at 12 ft BGS	<u> </u>

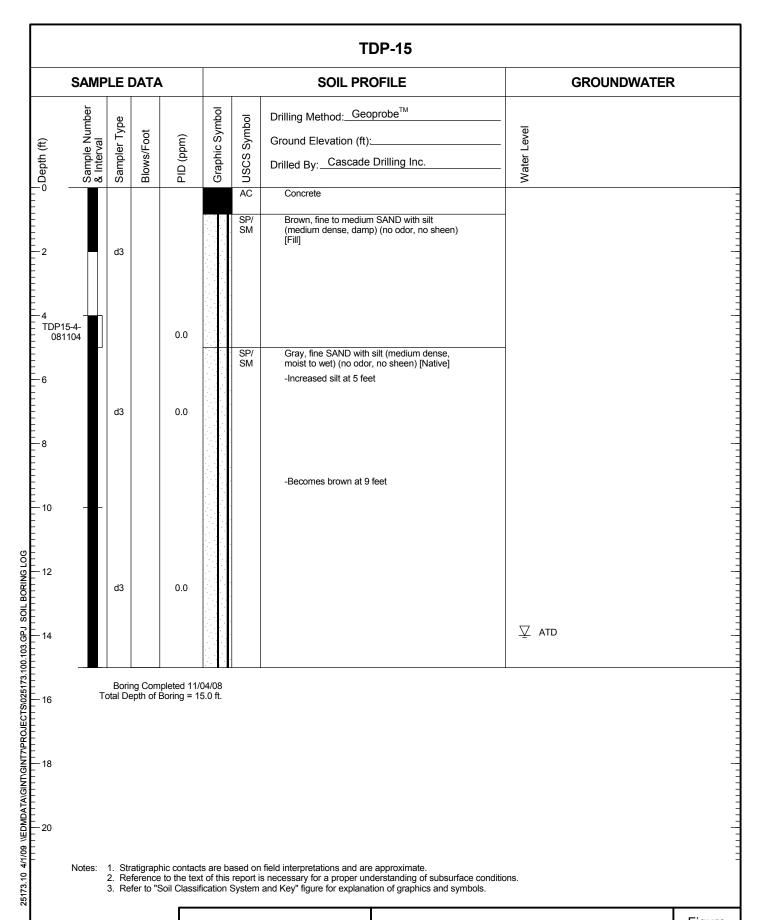
Log of Boring TDP-10



Log of Boring TDP-11

SAMPLE DATA			١.			SOIL PROFILE	GROUNDWATER	
Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft): Drilled By:Cascade Drilling Inc.	Water Level	
	d3		0.4		AC SM	Concrete Brown, silty, fine to medium SAND with trace gravel (medium dense, damp) (no odor, no sheen) [Fill]		
6 TDP12-7- 081104 8	d3		0.7		ML SM	Grayish black, clayey SILT (soft, damp) (no odor, no sheen) Greenish gray, silty, fine to medium SAND with gravel (dense, moist) (no odor, no sheen)		
12	d3		0.4		SM	Gray silty, fine SAND (medium dense, moist to wet) (no odor, no sheen) [Native]	abla atd	

Log of Boring TDP-12

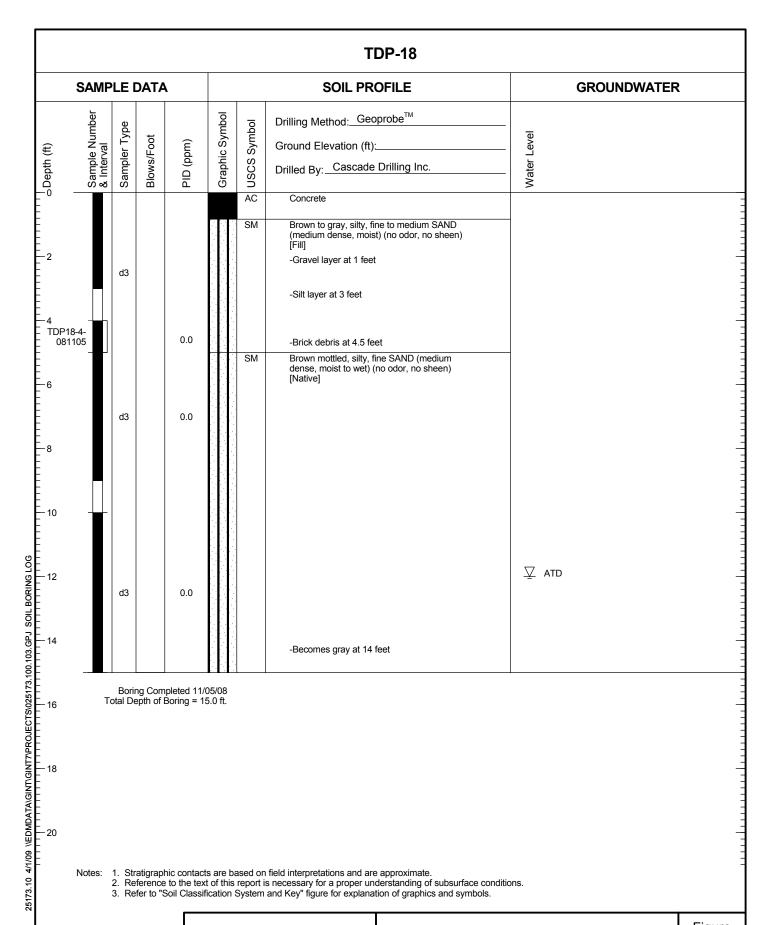


Log of Boring TDP-13

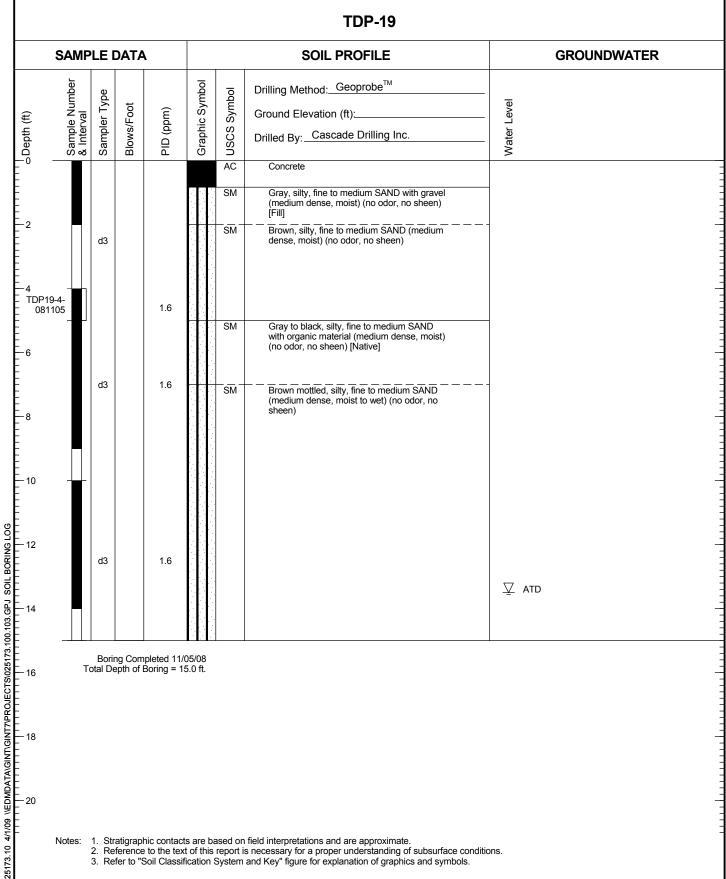
SAM	IPLE I	DATA	١			SOIL PROFILE	GROUNDWATER
Sample Number	& Interval Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	NSCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Concrete	Water Level
2 4 TDP14-4- 081104	d3		0.0		SP/ SM	Brown, fine to medium SAND with silt (medium dense, moist) (no odor, no sheen) [Fill]	
6	d3		0.0		SP/ SM SM	Gray, sandy, SILT (soft, moist) (no odor, no sheen) Brown, fine to medium SAND with silt (medium dense, moist) (no odor, no sheen) Dark gray, silty, fine SAND with organic debris (medium dense, moist) (no odor, no sheen) Brown mottled, silty, fine to medium SAND (medium dense, moist) (no odor, no sheen) [Native]	
10 – 12	- d3		0.0		SM SP/ SM	Gray, silty fine to medium SAND (medium dense, moist) (no odor, no sheen) Brown, fine to medium SAND with silt (medium dense, wet) (no odor, no sheen) -Increased silt content at 14 feet	abla atd
-	Bori Total Do	ng Comepth of I	pleted 11/ Boring = 1:	04/08 5.0 ft.		·	
20 Notes	: 1. Str 2. Re 3. Re	atigranl	nic contact	s are ha	need on	field interpretations and are approximate.	

Log of Boring TDP-14

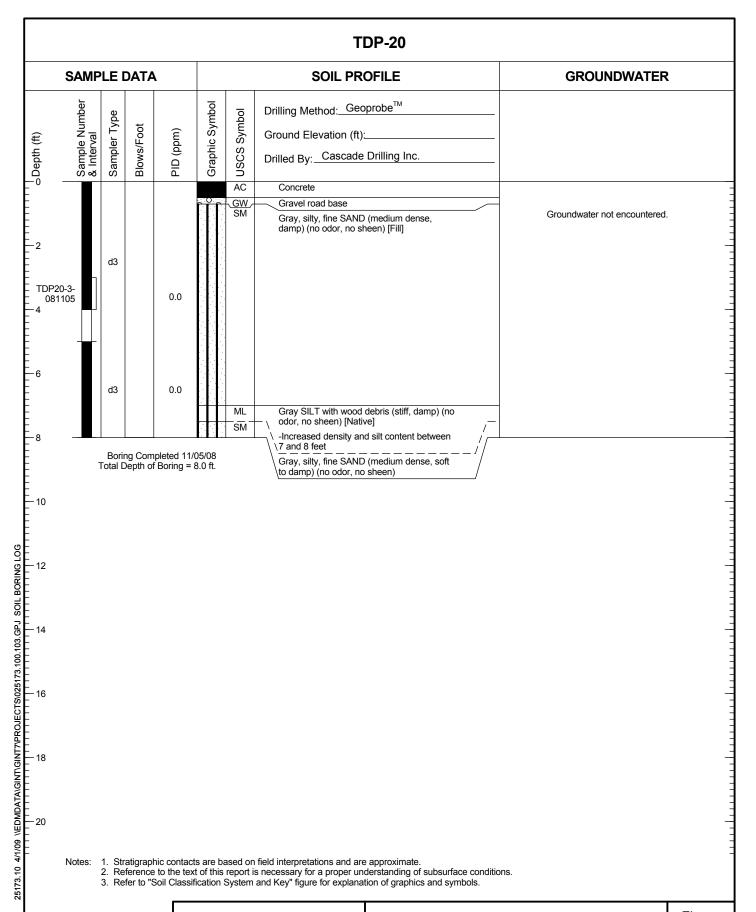
Log of Boring TDP-15


TDP16-3-081105 d3 d3 0.0 Drilling Method: _Geoprobe™ Ground Elevation (ft):
dense, damp) (no odor, no sheen) [Fill] Dark gray, silty, fine SAND with organic debris (dense, moist to wet) (organic-like odor, no sheen) [Native] Becomes brown between 5 and 5.5 feet Increase silt content with depth
d3 0.0 10 d3 0.0 10 d3 0.0 10 d3 0.0 d3 0.0 d3 d3 0.0 d3 d3 0.0 d3
d3 0.0
Boring Completed 11/05/08 Total Depth of Boring = 15.0 ft.

SAM	PLE I	DATA	١			SOIL PROFILE	GROUNDWATER
Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	NSCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Concrete	Water Level
2 4 TDP17-4- 081105	d3		0.0		SM	Brown to gray, silty, fine to medium SAND (medium dense, moist) (organic-like odor, no sheen) [Fill] -Silt layer from 3 to 4 feet	
6						-Brick debris at 6 feet	
					SM	Brown mottled, silty, fine SAND (medium	
8	d3		0.0			dense, moist) (no odor, no sheen) [Native]	
12	d3		0.0			-Increased sand content at 11 feet	<u> </u>
14					SM	Gray, silty, fine SAND (medium dense, wet) (no odor, no sheen)	
18	Total De	epth of l	ipleted 11/1/Boring = 1:	s are ba	ased or	n field interpretations and are approximate. s necessary for a proper understanding of subsurface condition and Key" figure for explanation of graphics and symbols.	

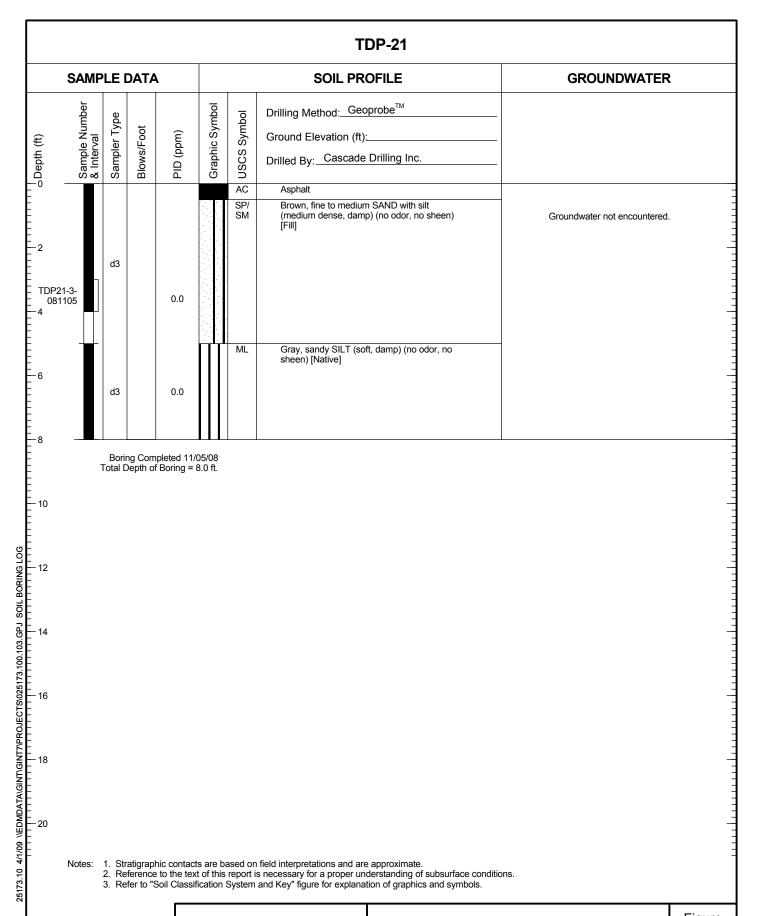


Log of Boring TDP-17



Log of Boring TDP-18

Log of Boring TDP-19



LANDAU ASSOCIATES

Boeing Thompson Property Tukwila, Washington

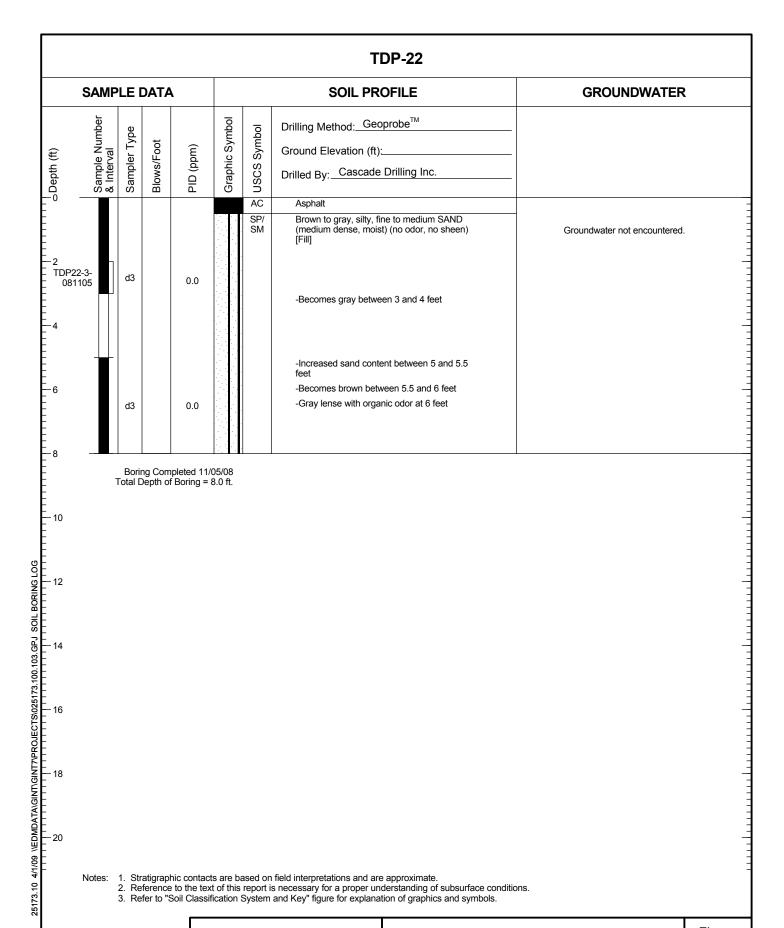
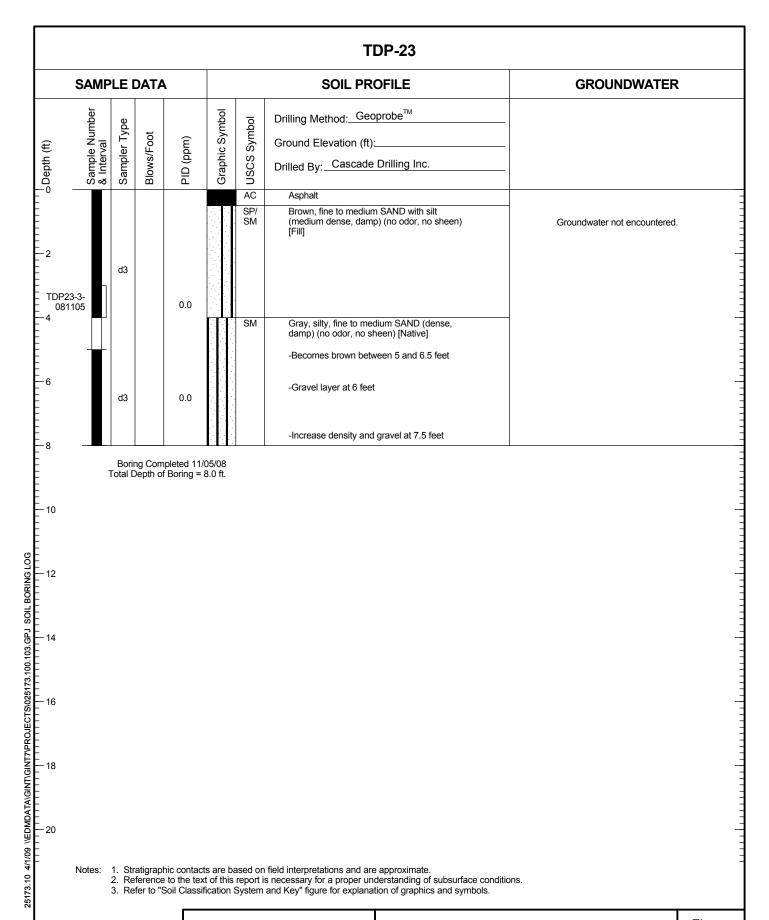

Log of Boring TDP-20

Figure R_22

Log of Boring TDP-21



LANDAU ASSOCIATES

Boeing Thompson Property Tukwila, Washington

Log of Boring TDP-22

Figure R_24

LANDAU ASSOCIATES Boeing Thompson Property Tukwila, Washington

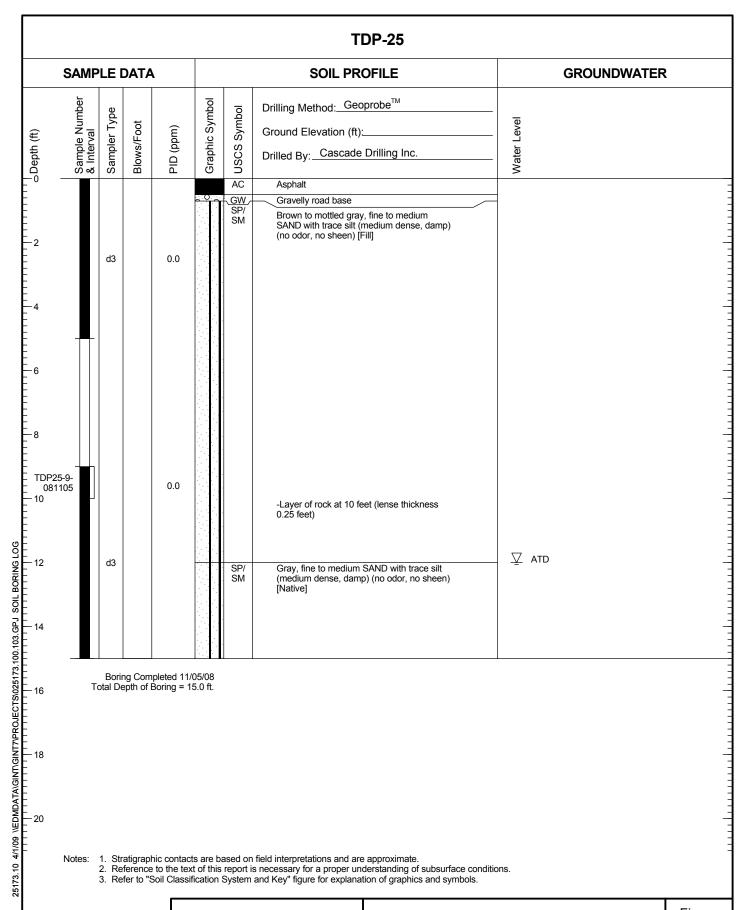

Log of Boring TDP-23

Figure R_25

Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc. AC Asphalt SP Brown, fine to coarse SAND with gravel (medium dense, damp) (no odor, no sheen) [Fiii] SM Gray, silty, fine to medium SAND (medium dense, damp to wet) (no odor, no sheen) [Nathve]
d 3 0.0 SM Gray, silty, fine to medium SAND (medium dense, damp to wet) (no odor, no sheen) SM Gray, silty, fine to medium SAND (medium dense, damp to wet) (no odor, no sheen) Native Compared to the
Degree 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
081105 12 d 3 (lense thickness 0.25 feet)
Boring Completed 11/05/08 Total Depth of Boring = 15.0 ft.
18

Log of Boring TDP-24

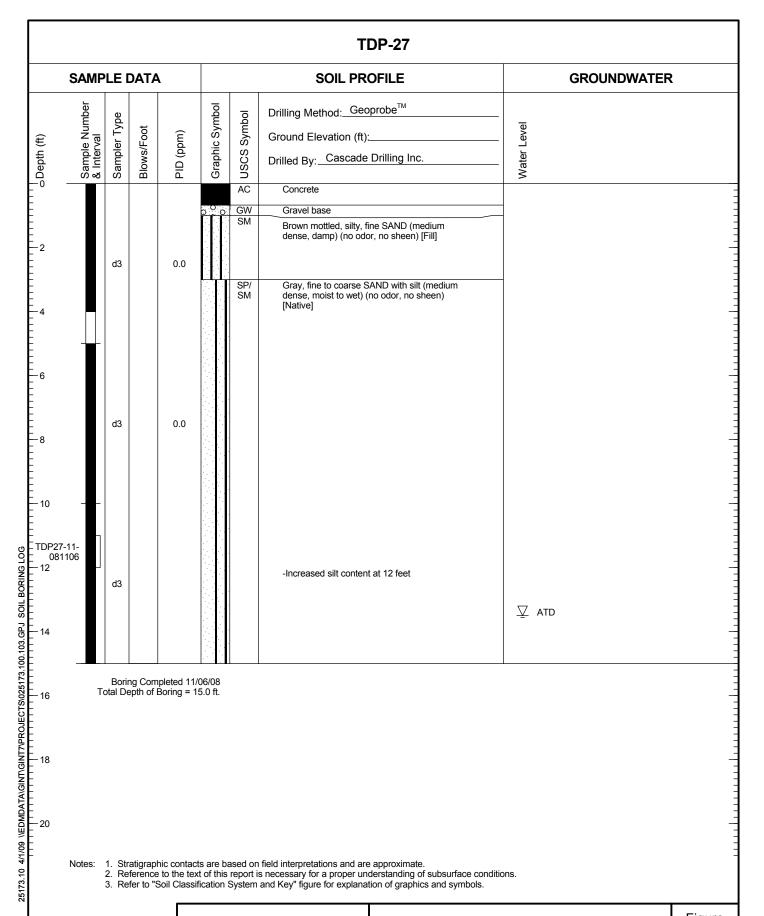

Log of Boring TDP-25

Figure R_27

SAMPLE DAT	A		SOIL PROFILE	GROUNDWATER
Sample Number & Interval Sampler Type Blows/Foot	PID (ppm)	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft): Drilled By:Cascade Drilling Inc.	Water Level
d3 P26-8- 081106	0.0	SM SM	Asphalt Brown, fine to coarse SAND with gravel and silt (medium dense, damp) (no odor, no sheen) [Fill] Brown, fine to medium SAND with silt -Layer of crushed rock at 2 feet -Becomes gray with trace gravel Brown mottled, silty, fine SAND (medium dense, moist to wet) (no odor, no sheen)	
d3	1.1	SM	Gray, silty, fine SAND (medium dense, wet) (no odor, no sheen) [Native]	ATD
Boring Co Total Depth o	mpleted 11/06/06 f Boring = 15.0 ft	8 t.		

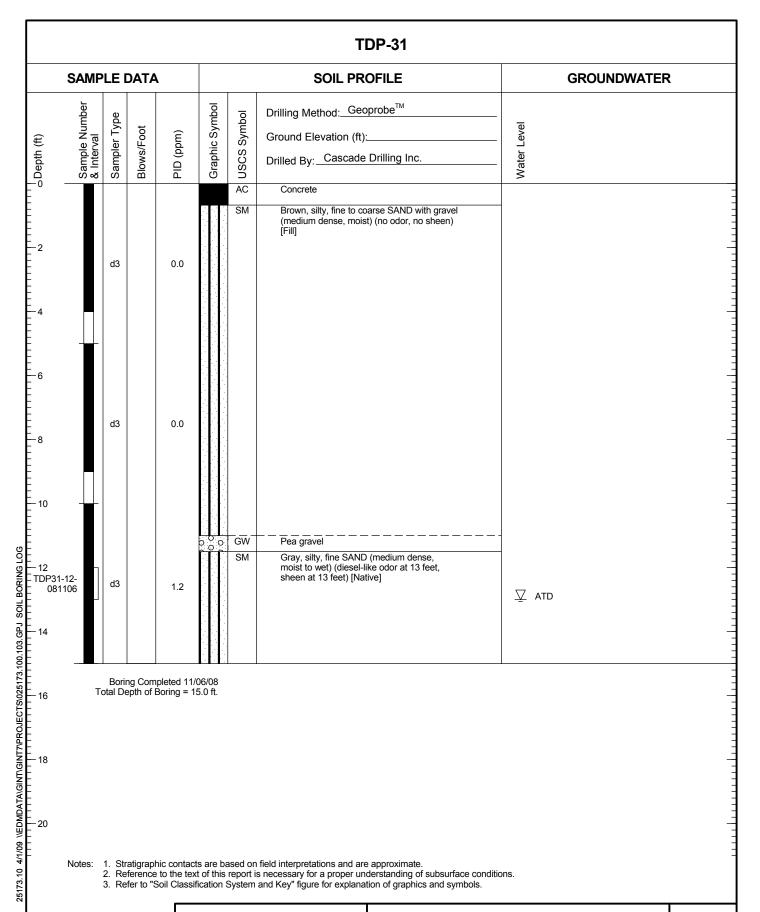
Log of Boring TDP-26

Log of Boring TDP-27

Drilling Method: Geoprobe Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Drilled By: Cascade Drilling Inc. Drilled By: Son Drilled By: Cascade Drilling Inc. Drilled By: Son Drilled By: S	
d3 0.0 SP/ SM Brown, fine to coarse SAND with silt (medium dense, moist) (no odor, no sheen) [Fill] -Silt layer at 3 feet	
TDP28-11- 081106 12 d3 Gray, silty, fine SAND (medium dense, moist) (no odor, no sheen) [Native] -Organic debris at 11 feet -Increased silt at 13 feet	
Boring Completed 11/06/08 Total Depth of Boring = 15.0 ft.	

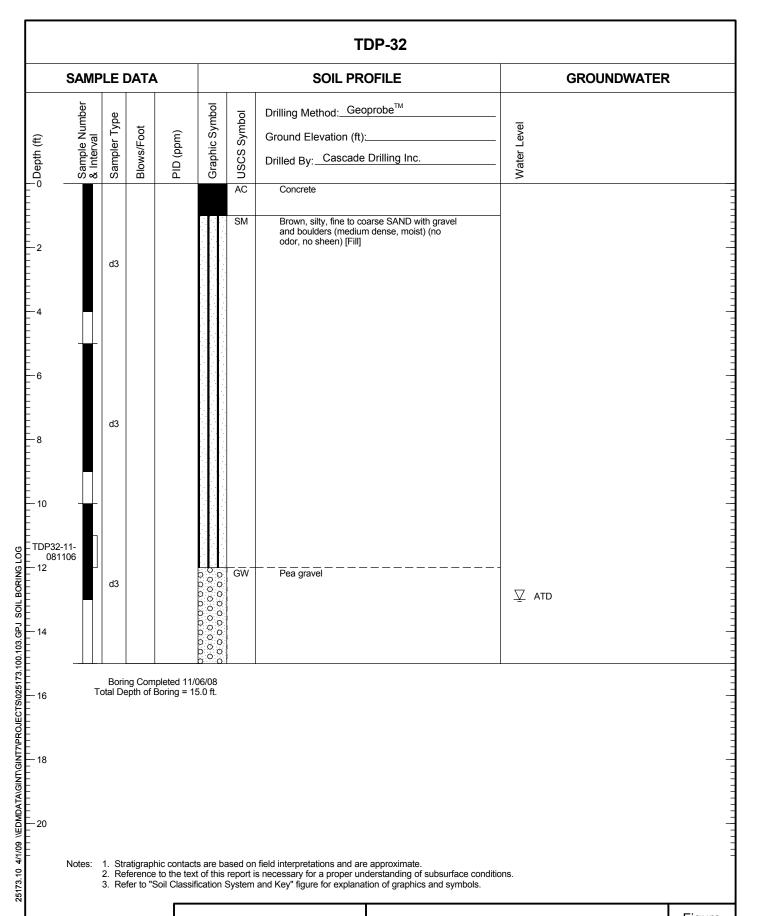
SAM	PLE I	DATA				SOIL PROFILE	GROUNDWATER
Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	OSCS Symbol	Drilling Method: Geoprobe [™] Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Concrete	Water Level
4	d3		0.0		SP	Brown, fine to coarse SAND (loose, moist) (no odor, no sheen) [Fill] -Increased silt content at 1.5 feet	
8	d3		0.0		SP/ SM	Gray, fine to medium SAND with silt (medium dense, moist to wet) (no odor, no sheen) [Native]	
TDP29-11- 081106 12	d3		0.0			-Organic layer present at 11.5 feet	∑ atd

Log of Boring TDP-29


Figure B-31

Drilling Method: Geoprobe Manager Ground Elevation (ft): Drilled By: Cascade Drilling Inc. Drilled By: Cascade Drilling Inc. Drilled By: SP/ SM (medium dense, moist) (no odor, no sheen) Fill]
2 d3 0.0 (medium dense, moist) (no odor, no sheen) [Fill] 6
SM Gray, silty, fine to medium SAND (medium dense, moist to wet) (organic-like odor, no sheen) [Native] -Organic matter at 11 feet d3 -Organic matter at 13 feet

Log of Boring TDP-30


Figure B-32

Log of Boring TDP-31

Figure **B_3**3

Log of Boring TDP-32

Figure B-34

Laboratory Analytical Reports (on CD-ROM)

November 24, 2008

Tim Syverson Landau Associates, Inc. 130 Second Ave Edmonds, WA 98020

RE: Project: Boeing Thompson, 025173

ARI Job No.: NX93

Dear Tim:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, the analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted five soil samples and one water sample on November 3, 2008. Two coolers were received with temperatures 7.4 and 9.6°C. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, NWTPH-Dx, and MTCA Metals, as requested. Please note that the SIM PAH analysis was cancelled for sample **TDP1-9-081103** and MTCA Metals were requested instead of RCRA Metals for all samples.

Volatiles Analyses: The internal standard percent difference of d4-1,4-Dichlorobenzene was outside the control limit for sample TDP1-9-081103. The sample was re-analyzed and the internal standard was comparable to the original analysis. Both sets of data have been included in this report for your review. No further corrective action was required.

Continuing Calibrations had compounds outside of the 20% control limit for the 11/05/08, 11/11/08, and 11/12/08 volatiles analyses, but were accepted outliers under ARI SOPs. No further /corrective action was taken.

Several matrix spike and matrix spike duplicate percent recoveries for the volatiles analysis were outside the control limits for sample **TDP4-4-081103**. No further corrective action is required for matrix QC as the outliers are indicators of matrix characteristics.

Semivolatiles Analyses: The surrogate percent recovery of d4-1,2-Dichlorobenzene was outside the control limits slightly high for LCS-110508. All other surrogate percent recoveries were within control limits. No further corrective action was required.

Several matrix spike/matrix spike duplicate and LCS/LCSD percent recoveries were outside the advisory control limits for sample TDP1-9-081103 and LCS-111108. All compounds were undetected in the associated sample. No further corrective action was required.

Several LCSD percent recoveries were outside the control limits high for LCS-110508. All LCS percent recoveries were within the control limits. No further corrective action was required.

The LCS and LCSD percent recoveries of 1-Methylnaphthalene were outside the control limits high for LCS-110508. The outliers were allowed as marginal exceedances. No further corrective action was required.

There were no anomalies associated with the SIM PAH analysis.

There were no anomalies associated with the PCBs analyses.

NWTPH-HCID Analyses: Please note that all samples that were detected for Diesel or Motor Oil were re-analyzed by method NWTPH-Dx.

There were no anomalies associated with the NWPH-Dx analysis.

There were no anomalies associated with the Metals analyses.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

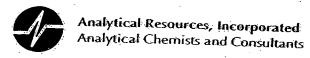
Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211


kellyb@arilabs.com

www.arilabs.com

LANDAU Spokane (5)	09) 327-9737				Date 11/3/08
ASSOCIATES Portland (Ti	gard) (503) 443-6010	hain-of-Cu	stody Record		Pageof
Project Name Borns The Project Location/Event Scriff Sampler's Name Project Contact	Project No.DZ	SOFIS POPULAR	Testing Pa	arameters	Turnaround Time Standard Accelerated
Send Results To Charfell Sample I.D. TD71-9'-08(103	Date Time Matrix	No. of Containers			tions/Comments
TDP2-5-081\03 TDP3-5-081103 TDP4-4'-081103 TDP5-5-081103	1300 J 12/00 12/35 Y 15/0 W	ス X X X ス ス X X X X X X X X X X X X X X	X	aliquot from ck NWTPH-Dx: run acid w	ter samples to settle, collect ear portion ash/silica gel cleanup es standardized to product
				VOC/BTEX/VF von-preser preserved verserved v	PH (soli): ved v/methanol v/sodium bisulfate
				— Freeze upo — Dissolved n Other, 113/0	n receipt netal water samples field filtered H MHals 4 CW
Special Shipment/Handling or Storage Requirements Relinquished by	Received by			Method of Shipment	
Signature Printed Name Company Date 13 88 Time 12 7	Signature Tay Printed Name Company	<u>es</u>	Relinquished by Signature Printed Name Company	Received by Signature Printed Name Company	
Time 1920	<u>Date</u> <u>113.09</u>	Time 16:20	Date Time	Date	Time

Seattle (Edmonds) (425) 778-0907

Tacoma (253) 926-2493

Cooler Receipt Form

ARI Client <u>Gandau</u> COC No:	Project No.	Basin T.		
COC No:	Project Name:_	Boeing The	mpso	
Assigned ARI Job No: NX 93	Tracking No:			_
Preliminary Examination Phase:	· · · · · · · · · · · · · · · · · · ·			·
Were intact, properly signed and dated custody. Were custody papers included with the cooler?	seals attached to	the outside of to o	cooler? (YES) NO
Were custody papers properly filled out (ink, sign			····· (XES	NO
Record cooler temperature (recommended 2.0-6	o o o o		······································) NO
	ou chemisi	ry	<u>9.0</u>	27.4°C
Cooler Accepted by:		Date: -3·0	3 Time 7	(0:70)
Complete custody form	s and attach all	shipping docume	ents	4.00
.og-In Phase:				
Was a temperature blank included in the cooler? What kind of packing material was used?		·	YES	(10)
				(NO)
., as some entire asea (ii abbtobuate).				NO
so o an bottles sealed in individual plastic bags?	_2			NO
an bodie arrive in good condition (unbroken)?	<u> </u>			
vere all bottle labels complete and legible?	<u></u>	÷.		NO
nd an bottle laders and lags agree with custody pa	apers?			NO
. Or an police used confect for the requested and	alvses?			NO
o any or the analyses (bottles) require preservation	on? fattach occes	maria - L. C. C.	YES	NO.
recall voc vials free of all bubbles?			ALA	NO
as sufficient amount of sample sent in each bottl	e?		NES	NO NO
	•	•		NO
	Date: _	11.4.08 Tir	ne: 12:50	
** Notify Project Manage	r of discrepanci	es or concerns *		
		 		
plain discrepancies or negative responses:				
		•		
			•	
•			•	
	Ву:	£	Date:	ľ

Subject: RE: HCID results for Thompson

From: "Kathryn Hartley" < khartley@landauinc.com>

Date: Wed, 12 Nov 2008 08:29:09 -0800 **To:** "Kelly Bottem" <kellyb@arilabs.com>

CC: "Tim Syverson" <tsyverson@landauinc.com>, "Anne Halvorsen"

<AHalvorsen@landauinc.com>

Kelly,

Please add NWTPH-D analysis for the following samples:

NX93A (Landau sample ID TDP1-9-081103)

NX93B (Landau sample ID TDP2-5-081103)

NX93C (Landau sample ID TDP3-5-081103)

NX93D (Landau sample ID TDP4-4-081103)

Please confirm that you received this message.

Thank you,

Kathryn F. Hartley

Senior Staff Scientist

Landau Associates

130 2nd Avenue South

Edmonds, WA 98020

(425) 329-0268

----Original Message----

From: Kelly Bottem [mailto:kellyb@arilabs.com]

Sent: Tuesday, November 11, 2008 3:58 PM

To: Kathryn Hartley; Tim Syverson Subject: HCID results for Thompson

Kelly Bottem, Client Services Manager

Analytical Resources, Inc.

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1 Sample ID: TDP1-9-081103

SAMPLE

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 18:29

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 4.21 g-dry-wt

Purge Volume: 5.0 mL Moisture: 19.9%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	Ü
75-01-4	Vinyl Chloride	1.2	< 1.2	Ü
75-00-3	Chloroethane	1.2	< 1.2	Ü
75-09-2	Methylene Chloride	2.4	7.7	
67-64-1	Acetone	5.9	280	
75-15-0	Carbon Disulfide	1.2	7.7	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	IJ
75-34-3	1,1-Dichloroethane	1.2	1.6	Ů
156-60-5	trans-1,2-Dichloroethene	1.2	2.6	
156-59-2	cis-1,2-Dichloroethene	1.2	74	
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	Ü
78-93-3	2-Butanone	5.9	53	-
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	Ü
56-23-5	Carbon Tetrachloride	1.2	< 1.2	Ü
108-05-4	Vinyl Acetate	5.9	< 5.9	Ū
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87 - 5	1,2-Dichloropropane	1.2	< 1.2	Ū
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	6.2	
124-48-1	Dibromochloromethane	1.2	< 1.2	Ü
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U
71-43-2	Benzene	1.2	1.5	
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	5.9	< 5.9	U
75-25-2	Bromoform	1.2	< 1.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.9	< 5.9	U
591-78-6	2-Hexanone	5.9	< 5.9	U
127-18-4	Tetrachloroethene	1.2	< 1.2	Ü
79-34-5 108-88-3	1,1,2,2-Tetrachloroethane	1.2	< 1.2	Ü
108-88-3	Toluene	1.2	< 1.2	U
100-41-4	Chlorobenzene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	U
75-69-4	Styrene Trichlorofluoromethane	1.2	< 1.2	U
76-13-1		1.2	< 1.2	Ū
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe m,p-Xylene		< 2.4	U
95-47-6	o-Xylene	1.2	< 1.2	U
JJ 47 U.	O WATELIA	1.2	< 1.2	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	88.2%
d8-Toluene	96.8%
Bromofluorobenzene	74.4%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: Reported: 11/25/08

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/12/08 12:21

Sample ID: TDP1-9-081103 REANALYSIS

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Sample Amount: 4.09 g-dry-wt

Purge Volume: 5.0 mL Moisture: 19.9%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	Ü
75-01-4	Vinyl Chloride	1.2	< 1.2	Ü
75-00-3	Chloroethane	1.2	< 1.2	Ü
75-09-2	Methylene Chloride	2.4	5.2	
67-64-1	Acetone	6.1	230	
75-15-0	Carbon Disulfide	1.2	4.7	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	Ü
75-34-3	1,1-Dichloroethane	1.2	< 1.2	Ü
156-60-5	trans-1,2-Dichloroethene	1.2	1.4	
156-59-2	cis-1,2-Dichloroethene	1.2	38	
67-66-3	Chloroform	1.2	< 1.2	Ü
107-06-2	1,2-Dichloroethane	1.2	< 1.2	Ü
78-93-3	2-Butanone	6.1	35	
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	Ü
56-23-5	Carbon Tetrachloride	1.2	< 1.2	Ū
108-05-4	Vinyl Acetate	6.1	< 6.1	U
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87 - 5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	3.8	
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	Ü
71-43-2	Benzene	1.2	< 1.2	Ü
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	6.1	< 6.1	U
75-25-2	Bromoform	1.2	< 1.2	Ü
108-10-1	=	6.1	< 6.1	U
591-78-6	2-Hexanone	6.1	< 6.1	Ü
127-18-4 79-34-5	Tetrachloroethene	1.2	< 1.2	U
108-88-3	1,1,2,2-Tetrachloroethane	1.2	< 1.2	Ü
108-88-3	Toluene	1.2	< 1.2	Ü
100-90-7	Chlorobenzene	1.2	< 1.2	Ü
100-41-4	Ethylbenzene	1.2	< 1.2	Ü
75-69-4	Styrene Trichlorofluoromethane	1.2	< 1.2	U
76-13-1		1.2	< 1.2	Ü
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe m,p-Xylene		< 2.4	U
95-47-6	o-Xylene	1.2	< 1.2	Ü
JJ 47 U	O WATELIE	1.2	< 1.2	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	94.3%
d8-Toluene	99.3%
Bromofluorobenzene	78.4%

1 of 1 Page

Sample ID: TDP2-5-081103

SAMPLE

Lab Sample ID: NX93B LIMS ID: 08-29921

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 18:56

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 6.09 g-dry-wt

Purge Volume: 5.0 mL Moisture: 7.8%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	U
74-83-9	Bromomethane	0.8	< 0.8	U
75-01-4	Vinyl Chloride	0.8	< 0.8	U
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.6	< 1.6	U
67-64-1	Acetone	4.1	9.2	
75-15-0	Carbon Disulfide	0.8	< 0.8	Ü
75-35-4	1,1-Dichloroethene	0.8	< 0.8	U
75-34-3	1,1-Dichloroethane	0.8	< 0.8	U
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	U
67-66-3	Chloroform	0.8	< 0.8	U
107-06-2	1,2-Dichloroethane	0.8	< 0.8	Ü
78-93-3	2-Butanone	4.1	< 4.1	Ü
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	U
56-23-5	Carbon Tetrachloride	0.8	< 0.8	U
108-05-4	Vinyl Acetate	4.1	< 4.1	U
75-27-4	Bromodichloromethane	0.8	< 0.8	U
78-87-5	1,2-Dichloropropane	0.8	< 0.8	U
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	U
79-01-6	Trichloroethene	0.8	< 0.8	Ü
124-48-1	Dibromochloromethane	0.8	< 0.8	U
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	< 0.8	U
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	4.1	< 4.1	U
75-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.1	< 4.1	U
591-78-6	2-Hexanone	4.1	< 4.1	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	< 0.8	U
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.6	< 1.6	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	97.9%
d8-Toluene	100%
Bromofluorobenzene	94.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NX93C LIMS ID: 08-29922

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 19:23

Sample ID: TDP3-5-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 5.21 g-dry-wt

Purge Volume: 5.0 mL Moisture: 15.2%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	Ū
75-09-2	Methylene Chloride	1.9	< 1.9	Ü
67-64-1	Acetone	4.8	9.0	
75-15-0	Carbon Disulfide	1.0	< 1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ü
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ü
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ü
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U .
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	4.8	< 4.8	Ü
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	4.8	< 4.8	Ü
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ü
110-75-8	2-Chloroethylvinylether	4.8	< 4.8	Ü
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.8	< 4.8	Ū
591-78-6	2-Hexanone	4.8	< 4.8	Ū
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	Ü
75-69-4 76-13-1	Trichlorofluoromethane	1.0	< 1.0	Ü
	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.9	Ü
1330-20-7 95-47-6	m,p-Xylene	1.0	< 1.0	Ü
33-41-0	o-Xylene	1.0	< 1.0	Ü

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	102%
Bromofluorobenzene	97.3%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Sample ID: TDP4-4-081103

SAMPLE

Lab Sample ID: NX93D LIMS ID: 08-29923

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 19:50

Reported: 11/25/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Sample Amount: 4.92 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.1	22	
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ū
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ū
78-93-3	2-Butanone	5.1	< 5.1	Ū
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	Ū
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ū
108-05-4	Vinyl Acetate	5.1	< 5.1	Ū
75-27-4	Bromodichloromethane	1.0	< 1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ū
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ū
124-48-1	Dibromochloromethane	1.0	< 1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.1	< 5.1	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.1	< 5.1	U
591-78-6	2-Hexanone	5.1	< 5.1	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ū
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
100-42-5	Styrene	1.0	< 1.0	Ū
75-69-4	Trichlorofluoromethane	1.0	< 1.0	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ü
1330-20-7	m,p-Xylene	1.0	< 1.0	Ū
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	99.1%
d8-Toluene	97.2%
Bromofluorobenzene	86.5%

Page 1 of 1

Matrix: Soil

LIMS ID: 08-29923

Reported: 11/25/08

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 21:10

Sample ID: TDP4-4-081103 MATRIX SPIKE

Lab Sample ID: NX93D

Project: BOEING THOMPSON 025173

QC Report No: NX93-Landau Associates, Inc.

Date Sampled: 11/03/08

Date Received: 11/03/08

Sample Amount: 4.59 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.1%

CAS Number	Analyte	RL	Result	Q
CAS Number	Anaryce	- Ku	Result	<u></u>
74-87-3	Chloromethane	1.1		
74-83-9	Bromomethane	1.1		
75-01-4	Vinyl Chloride	1.1		
75-00-3	Chloroethane	1.1		
75-09-2	Methylene Chloride	2.2		
67-64-1	Acetone	5.4		
75-15-0	Carbon Disulfide	1.1		
75-35-4	1,1-Dichloroethene	1.1		
75-34-3	1,1-Dichloroethane	1.1		
156-60-5	trans-1,2-Dichloroethene	1.1		
156-59-2	cis-1,2-Dichloroethene	1.1		
67-66-3	Chloroform	1.1		
107-06-2	1,2-Dichloroethane	1.1		
78-93-3	2-Butanone	5.4		
71-55-6	1,1,1-Trichloroethane	1.1		
56-23-5	Carbon Tetrachloride	1.1		
108-05-4	Vinyl Acetate	5.4		
75-27-4	Bromodichloromethane	1.1		
78-87-5	1,2-Dichloropropane	1.1		
10061-01-5	cis-1,3-Dichloropropene	1.1		
79-01-6	Trichloroethene	1.1		
124-48-1	Dibromochloromethane	1.1		
79-00-5	1,1,2-Trichloroethane	1.1		
71-43-2	Benzene	1.1		
10061-02-6	trans-1,3-Dichloropropene	1.1		
110-75-8	2-Chloroethylvinylether	5.4		
75-25-2	Bromoform	1.1		
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.4		
591-78-6	2-Hexanone	5.4		
127-18-4	Tetrachloroethene	1.1		
79-34-5	1,1,2,2-Tetrachloroethane	1.1		
108-88-3	Toluene	1.1		
108-90-7	Chlorobenzene	1.1		
100-41-4	Ethylbenzene	1.1		
100-42-5	Styrene	1.1		
75-69-4	Trichlorofluoromethane	1.1		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.2	·	
1330-20-7	m,p-Xylene	1.1		
95-47-6	o-Xylene	1.1		

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	98.3%
d8-Toluene	99.5%
Bromofluorobenzene	89.1%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NX93D LIMS ID: 08-29923

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 21:37

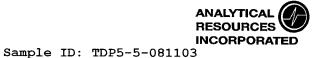
Sample ID: TDP4-4-081103 MATRIX SPIKE DUP

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08


Sample Amount: 4.68 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.1%

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	1.1	
74-83-9	Bromomethane	1.1	
75-01-4	Vinyl Chloride	1.1	
75-00-3	Chloroethane	1.1	
75-09-2	Methylene Chloride	2.1	
67-64-1	Acetone	5.4	
75-15-0	Carbon Disulfide	1.1	
75-35-4	1,1-Dichloroethene	1.1	
75-34-3	1,1-Dichloroethane	1.1	
156-60-5	trans-1,2-Dichloroethene	1.1	
156-59-2	cis-1,2-Dichloroethene	1.1	
67-66-3	Chloroform	1.1	
107-06-2	1,2-Dichloroethane	1.1	
78-93-3	2-Butanone	5.4	
71-55-6	1,1,1-Trichloroethane	1.1	
56-23-5	Carbon Tetrachloride	1.1	
108-05-4	Vinyl Acetate	5.4	
75-27-4	Bromodichloromethane	1.1	
78-87-5	1,2-Dichloropropane	1.1	
10061-01-5	cis-1,3-Dichloropropene	1.1	
79-01-6	Trichloroethene	1.1	
124-48-1	Dibromochloromethane	1.1	
79-00-5	1,1,2-Trichloroethane	1.1	
71-43-2	Benzene	1.1	
10061-02-6	trans-1,3-Dichloropropene	1.1	
110-75-8	2-Chloroethylvinylether	5.4	
75-25-2	Bromoform	1.1	
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.4	
591-78-6	2-Hexanone	5.4	
127-18-4	Tetrachloroethene	1.1	
79-34-5	1,1,2,2-Tetrachloroethane	1.1	
108-88-3	Toluene	1.1	
108-90-7	Chlorobenzene	1.1	
100-41-4			
100-41-4	Ethylbenzene	1.1	
	Styrene	1.1	
75-69-4	Trichlorofluoromethane	1.1	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		
1330-20-7	m,p-Xylene	1.1	
95-47-6	o-Xylene	1.1	

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	95.1%
d8-Toluene	96.4%
Bromofluorobenzene	87.1%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NX93E LIMS ID: 08-29924

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 20:16

Reported: 11/25/08

1: *f*f

QC Report No: NX93-Landau Associates, Inc.

SAMPLE

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Sample Amount: 4.74 g-dry-wt

Purge Volume: 5.0 mL Moisture: 8.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.1	< 2.1	U
67-64-1	Acetone	5.3	45	
75-15-0	Carbon Disulfide	1.1	< 1.1	U
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1	U
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.3	7.6	
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	U
108-05-4	Vinyl Acetate	5.3	< 5.3	U
75-27-4	Bromodichloromethane	1.1	< 1.1	U
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	< 1.1	U
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
71-43-2	Benzene	1.1	< 1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.3	< 5.3	U
75 - 25-2	Bromoform	1.1	< 1.1	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.3	< 5.3	U
591-78-6	2-Hexanone	5.3	< 5.3	U
127-18-4	Tetrachloroethene	1.1	< 1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	U
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.1	U
1330-20-7	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	103%
Bromofluorobenzene	98.0%

Page 1 of 1

Sample ID: TDP1-GW-081103

QC Report No: NX93-Landau Associates, Inc.

SAMPLE

Lab Sample ID: NX93F LIMS ID: 08-29925

Matrix: Water

Data Release Authorized

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 20:43

Reported: 11/25/08

Project: BOEING THOMPSON 025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75-00-3	Chloroethane	1.0	< 1.0	Ü
75-09-2	Methylene Chloride	2.0	< 2.0	Ü
67-64-1	Acetone	5.0	< 5.0	Ü
75-15-0	Carbon Disulfide	1.0	< 1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ü
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ü
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ū
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	Ü
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ū
79-01-6	Trichloroethene	1.0	< 1.0	Ū
124-48-1	Dibromochloromethane	1.0	< 1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ū
71-43-2	Benzene	1.0	< 1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ū
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25-2	Bromoform	1.0	< 1.0	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ü
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	Ü
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ü
1330-20-7	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ü
		1.0	` 1.0	U

Reported in µg/L (ppb)

d4-1,2-Dichloroethane	98.1%
d8-Toluene	101%
Bromofluorobenzene	97.4%

Page 1 of 1

Matrix: Water

LIMS ID: 08-29925

Reported: 11/25/08

Lab Sample ID: MB-110508

Data Release Authorized:

METHOD BLANK

QC Report No: NX93-Landau Associates, Inc.

Sample ID: MB-110508

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Instrument/Analyst: FINN3/JZ Sample Amount: 20.0 mL Date Analyzed: 11/05/08 14:58 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	Π
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ü
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in µg/L (ppb)

d4-1,2-Dichloroethane	89.2%
d8-Toluene	94.8%
Bromofluorobenzene	99.2%

Page 1 of 1

Sample ID: MB-111108

METHOD BLANK

Lab Sample ID: MB-111108

LIMS ID: 08-29921

Matrix: Soil

Data Release Authorized

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/11/08 11:51

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ü
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25-2	Bromoform	1.0	< 1.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ü
591-78-6	2-Hexanone	5.0	< 5.0	Ŭ
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	100%
Bromofluorobenzene	96.7%

Sample ID: MB-111208 Page 1 of 1

Lab Sample ID: MB-111208

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 11:40

METHOD BLANK

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt
Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	101%
Bromofluorobenzene	98.3%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-111208	Method Blank	Low	100%	101%	98.3%	NA	0
LCS-111208	Lab Control	Low	95.6%	101%	99.8%	NA	0
LCSD-111208	Lab Control Dup	Low	94.7%	99.9%	99.8%	NA	0
NX93A	TDP1-9-081103	Low	88.2%	96.8%	74.4%	NA	0
NX93ARE	TDP1-9-081103	Low	94.3%	99.3%	78.4%	NA	Ö
MB-111108	Method Blank	Low	101%	100%	96.7%	NA	Ö
LCS-111108	Lab Control	Low	96.1%	102%	101%	NA	Ö
LCSD-111108	Lab Control Dup	Low	99.2%	100%	100%	NA	ő
NX93B	TDP2-5-081103	Low	97.9%	100%	94.9%	NA	Ö
NX93C	TDP3-5-081103	Low	103%	102%	97.3%	NA	Ö
NX93D	TDP4-4-081103	Low	99.1%	97.2%	86.5%	NA	Ō
NX93DMS	TDP4-4-081103	Low	98.3%	99.5%	89.1%	ΝA	Ō
NX93DMSD	TDP4-4-081103	Low	95.1%	96.4%	87.1%	NA	0
NX93E	TDP5-5-081103	Low	100%	103%	98.0%	NA	0
		LCS	MB LIM	IITS	(QC LIMI	TS
SW8260B		Low		Med	Low	~	Med
· ·	2-Dichloroethane	75-120)	76-120	72-1	34	69-120
(TOL) = d8-To	luene	80-122	2	80-120	78-1:	24	80-120
	fluorobenzene	79-120)	80-120	66-12	20	76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-120)	80-120	79-12	20	80-120

Log Number Range: 08-29920 to 08-29924

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
NX93F	TDP1-GW-081103	5	98.1%	101%	97.4%	NA	0
SW8260B		LCS	/MB LIMI	TS		QC LIMI	TS
	= d4-1,2-Dichloroethane 79-120 = d8-Toluene 80-120				80-12 80-12	•	
(BFB) = B	Bromofluorobenzene d4-1,2-Dichlorobenzene	80-120 80-120 80-120		72-120 80-124			

Prep Method: SW5030B

Log Number Range: 08-29925 to 08-29925

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-29925

Matrix: Water

Data Release Authorized:

Reported: 11/25/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: FINN3/JZ

LCSD: FINN3/JZ

Date Analyzed LCS: 11/05/08 14:02

LCSD: 11/05/08 14:36

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	3.3	4.0	82.5%	3.1	4.0	77.5%	6.2%
Bromomethane	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%
Vinyl Chloride	3.4	4.0	85.0%	3.4	4.0	85.0%	0.0%
Chloroethane	3.5	4.0	87.5%	3.4	4.0	85.0%	2.9%
Methylene Chloride	3.6	4.0	90.0%	3.4	4.0	85.0%	5.7%
Acetone	19.3	20.0	96.5%	22.3	20.0	112%	14.4%
Carbon Disulfide	3.2	4.0	80.0%	3.4	4.0	85.0%	6.1%
1,1-Dichloroethene	3.4	4.0	85.0%	3.5	4.0	87.5%	2.9%
1,1-Dichloroethane	3.7	4.0	92.5%	3.7	4.0	92.5%	0.0%
trans-1,2-Dichloroethene	3.5	4.0	87.5%	3.5	4.0	87.5%	0.0%
cis-1,2-Dichloroethene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Chloroform	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
1,2-Dichloroethane	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
2-Butanone	21.5	20.0	108%	21.8	20.0	109%	1.4%
1,1,1-Trichloroethane	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
Carbon Tetrachloride	4.1	4.0	102%	4.2	4.0	105%	2.4%
Vinyl Acetate	3.0	4.0	75.0%	3.3	4.0	82.5%	9.5%
Bromodichloromethane	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,2-Dichloropropane	4.1	4.0	102%	4.1	4.0	102%	0.0%
cis-1,3-Dichloropropene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Trichloroethene	4.1	4.0	102%	4.1	4.0	102%	0.0%
Dibromochloromethane	4.6	4.0	115%	4.1	4.0	102%	11.5%
1,1,2-Trichloroethane	4.2	4.0	105%	3.7	4.0	92.5%	12.7%
Benzene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
trans-1,3-Dichloropropene	3.8	4.0	95.0%	3.7	4.0	92.5%	2.7%
2-Chloroethylvinylether	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
Bromoform	4.6	4.0	115%	4.4	4.0	110%	4.4%
4-Methyl-2-Pentanone (MIBK)	20.7	20.0	104%	19.9	20.0	99.5%	3.9%
2-Hexanone	22.4	20.0	112%	22.6	20.0	113%	0.9%
Tetrachloroethene	4.6	4.0	115%	4.7	4.0	118%	2.2%
1,1,2,2-Tetrachloroethane	4.1	4.0	102%	4.0	4.0	100%	2.5%
Toluene	4.1	4.0	102%	4.0	4.0	100%	2.5%
Chlorobenzene	4.5	4.0	112%	4.2	4.0	105%	6.9%
Ethylbenzene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Styrene	4.5	4.0	112%	4.3	4.0	108%	4.5%
Trichlorofluoromethane	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
1,1,2-Trichloro-1,2,2-trifluoroetha	3.6	4.0	90.0%	3.9	4.0	97.5%	8.0%
m,p-Xylene	8.8	8.0	110%	8.5	8.0	106%	3.5%
o-Xylene	4.5	4.0	112%	4.4	4.0	110%	2.2%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-29925

Matrix: Water

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Analyte		Spike dded-LCS Red	covery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	d4-1,2-Dichloroethane		86.5%				
	Bromofluorobenzene	95.2% 102%	97.5% 100%				

LCSD: FINN5/PAB

LCSD: 11/11/08 12:39

Page 1 of 2

Sample ID: LCS-111108

QC Report No: NX93-Landau Associates, Inc.

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111108

LIMS ID: 08-29921

Matrix: Soil

Data Release Authorized:

Instrument/Analyst LCS: FINN5/PAB

Date Analyzed LCS: 11/11/08 10:47

Reported: 11/25/08

Project: BOEING THOMPSON 025173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	49.2	50.0	98.4%	45.9	50.0	91.8%	6.9%
Bromomethane	51.6	50.0	103%	49.2	50.0	98.4%	4.8%
Vinyl Chloride	53.2	50.0	106%	50.6	50.0	101%	5.0%
Chloroethane	47.8	50.0	95.6%	45.2	50.0	90.4%	5.6%
Methylene Chloride	48.7	50.0	97.4%	46.8	50.0	93.6%	4.0%
Acetone	198	250	79.2%	186	250	74.4%	6.2%
Carbon Disulfide	55.4	50.0	111%	51.5	50.0	103%	7.3%
1,1-Dichloroethene	53.6	50.0	107%	50.8	50.0	102%	5.4%
1,1-Dichloroethane	52.7	50.0	105%	49.9	50.0	99.8%	5.5%
trans-1,2-Dichloroethene	52.4	50.0	105%	50.2	50.0	100%	4.3%
cis-1,2-Dichloroethene	54.3	50.0	109%	49.7	50.0	99.4%	8.8%
Chloroform	53.2	50.0	106%	49.5	50.0	99.0%	7.2%
1,2-Dichloroethane	48.7	50.0	97.4%	46.6	50.0	93.2%	4.4%
2-Butanone	216	250	86.4%	210	250	84.0%	2.8%
1,1,1-Trichloroethane	50.9	50.0	102%	48.1	50.0	96.2%	5.7%
Carbon Tetrachloride	51.5	50.0	103%	47.8	50.0	95.6%	7.5%
Vinyl Acetate	46.6	50.0	93.2%	45.9	50.0	91.8%	1.5%
Bromodichloromethane	50.9	50.0	102%	48.0	50.0	96.0%	5.9%
1,2-Dichloropropane	50.4	50.0	101%	46.9	50.0	93.8%	7.2%
cis-1,3-Dichloropropene	50.6	50.0	101%	47.5	50.0	95.0%	6.3%
Trichloroethene	52.7	50.0	105%	50.0	50.0	100%	5.3%
Dibromochloromethane	51.7	50.0	103%	48.1	50.0	96.2%	7.2%
1,1,2-Trichloroethane	49.0	50.0	98.0%	47.2	50.0	94.4%	3.7%
Benzene	56.5	50.0	113%	53.4	50.0	107%	5.6%
trans-1,3-Dichloropropene	49.2	50.0	98.4%	46.6	50.0	93.2%	5.4%
2-Chloroethylvinylether	48.2	50.0	96.4%	45.6	50.0	91.2%	5.5%
Bromoform	46.7	50.0	93.4%	43.8	50.0	87.6%	6.4%
4-Methyl-2-Pentanone (MIBK)	212	250	84.8%	212	250	84.8%	0.0%
2-Hexanone	196	250	78.4%	187	250	74.8%	4.7%
Tetrachloroethene	55.2	50.0	110%	50.1	50.0	100%	9.7%
1,1,2,2-Tetrachloroethane	45.9	50.0	91.8%	43.5	50.0	87.0%	5.4%
Toluene	52.5	50.0	105%	50.1	50.0	100%	4.7%
Chlorobenzene	54.8	50.0	110%	50.5	50.0	101%	8.2%
Ethylbenzene	59.5	50.0	119%	55.2	50.0	110%	7.5%
Styrene	56.0	50.0	112%	52.0	50.0	104%	7.4%
Trichlorofluoromethane	49.8	50.0	99.6%	49.4	50.0	98.8%	0.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	55.4	50.0	111%	51.7	50.0	103%	6.9%
m,p-Xylene	115	100	115%	102	100		12.0%
o-Xylene	53.4	50.0	107%	49.4	50.0	98.8%	7.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2 Sample ID: LCS-111108

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111108

LIMS ID: 08-29921

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Analyte

LCS

Spike Added-LCS Recovery

LCS

Spike

LCSD

LCSD Added-LCSD Recovery RPD

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	96.1%	99.2%
d8-Toluene	102%	100%
Bromofluorobenzene	101%	100%

LCSD: FINN5/PAB

LCSD: 11/12/08 11:13

Sample ID: LCS-111208 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111208

LIMS ID: 08-29920 Matrix: Soil

Data Release Authorized:

Instrument/Analyst LCS: FINN5/PAB

Date Analyzed LCS: 11/12/08 10:39

Reported: 11/25/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	44.0	50.0	88.0%	47.4	50.0	94.8%	7.4%
Bromomethane	35.6	50.0	71.2%	38.5	50.0	77.0%	7.8%
Vinyl Chloride	45.4	50.0	90.8%	49.9	50.0	99.8%	9.4%
Chloroethane	42.7	50.0	85.4%	47.8	50.0	95.6%	11.3%
Methylene Chloride	45.7	50.0	91.4%	48.8	50.0	97.6%	6.6%
Acetone	202	250	80.8%	212	250	84.8%	4.8%
Carbon Disulfide	57.6	50.0	115%	63.0	50.0	126%	9.0%
1,1-Dichloroethene	50.0	50.0	100%	54.3	50.0	109%	8.2%
1,1-Dichloroethane	48.0	50.0	96.0%	52.1	50.0	104%	8.2%
trans-1,2-Dichloroethene	48.3	50.0	96.6%	52.5	50.0	105%	8.3%
cis-1,2-Dichloroethene	49.0	50.0	98.0%	53.2	50.0	106%	8.2%
Chloroform	47.2	50.0	94.4%	50.0	50.0	100%	5.8%
1,2-Dichloroethane	42.8	50.0	85.6%	44.8	50.0	89.6%	4.6%
2-Butanone	228	250	91.2%	244	250	97.6%	6.8%
1,1,1-Trichloroethane	46.5	50.0	93.0%	49.9	50.0	99.8%	7.1%
Carbon Tetrachloride	44.8	50.0	89.6%	48.4	50.0	96.8%	7.7%
Vinyl Acetate	50.5	50.0	101%	54.4	50.0	109%	7.4%
Bromodichloromethane	49.0	50.0	98.0%	52.5	50.0	105%	6.9%
1,2-Dichloropropane	46.7	50.0	93.4%	49.8	50.0	99.6%	6.4%
cis-1,3-Dichloropropene	50.2	50.0	100%	53.6	50.0	107%	6.6%
Trichloroethene	47.1	50.0	94.2%	50.2	50.0	100%	6.4%
Dibromochloromethane	53.2	50.0	106%	56.2	50.0	112%	5.5%
1,1,2-Trichloroethane	46.9	50.0	93.8%	50.3	50.0	101%	7.0%
Benzene	49.3	50.0	98.6%	52.9	50.0	106%	7.0%
trans-1,3-Dichloropropene	50.1	50.0	100%	54.3	50.0	109%	8.0%
2-Chloroethylvinylether	52.5	50.0	105%	55.0	50.0	110%	4.7%
Bromoform	51.8	50.0	104%	57.3	50.0	115%	10.1%
4-Methyl-2-Pentanone (MIBK)	221	250	88.4%	246	250	98.4%	10.7%
2-Hexanone	200	250	80.0%	228	250	91.2%	13.1%
Tetrachloroethene	47.5	50.0	95.0%	51.2	50.0	102%	7.5%
1,1,2,2-Tetrachloroethane	46.9	50.0	93.8%	50.9	50.0	102%	8.2%
Toluene	47.0	50.0	94.0%	50.2	50.0	100%	6.6%
Chlorobenzene	48.4	50.0	96.8%	52.0	50.0	104%	7.2%
Ethylbenzene	51.0	50.0	102%	55.0	50.0	110%	7.5%
Styrene	49.7	50.0	99.4%	53.8	50.0	108%	7.9%
Trichlorofluoromethane	45.4	50.0	90.8%	49.4	50.0	98.8%	8.4%
1,1,2-Trichloro-1,2,2-trifluoroetha		50.0	96.4%	52.0	50.0	104%	7.6%
m, p-Xylene	99.0	100	99.0%	107	100	107%	7.8%
o-Xylene	47.6	50.0	95.2%	51.5	50.0	103%	7.9%
•			50.20	94.0	50.0	1000	,

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111208

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111208

LIMS ID: 08-29920

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

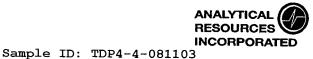
025173

Analyte

LCS

Spike LCS Added-LCS Recovery

Spike


LCSD

LCSD Added-LCSD Recovery RPD

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	95.6%	94.7%
d8-Toluene	101%	99.9%
Bromofluorobenzene	99.8%	99.8%

Page 1 of 1

Lab Sample ID: NX93D LIMS ID: 08-29923

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst MS: FINN5/PAB

MSD: FINN5/PAB

Date Analyzed MS: 11/11/08 21:10

MSD: 11/11/08 21:37

QC Report No: NX93-Landau Associates, Inc.

MATRIX SPIKE

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount MS: 4.59 g-dry-wt

MSD: 4.68 g-dry-wt

Purge Volume MS: 5.0 mL

MSD: 5.0 mL

Moisture: 11.1%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Chloromethane	< 1.0 U	53.3	54.5	97.8%	52.6	53.4	98.5%	1.3%
Bromomethane	< 1.0 U	31.0	54.5	56.9%	33.7	53.4	63.1%	8.3%
Vinyl Chloride	< 1.0 U	51.1	54.5	93.8%	50.6	53.4	94.8%	1.0%
Chloroethane	< 1.0 U	49.9	54.5	91.6%	48.9	53.4	91.6%	2.0%
Methylene Chloride	< 2.0 U	51.6	54.5	94.7%	50.2	53.4	94.0%	2.8%
Acetone	22.2	331	272	114%	300	267	104%	9.8%
Carbon Disulfide	< 1.0 U	55.0	54.5	101%	54.7	53.4	102%	0.5%
1,1-Dichloroethene	< 1.0 U	59.6	54.5	109%	59.7	53.4	112%	0.2%
1,1-Dichloroethane	< 1.0 U	53.9	54.5	98.9%	52.3	53.4	97.9%	3.0%
trans-1,2-Dichloroethene	< 1.0 U	51.0	54.5	93.6%	50.3	53.4	94.2%	1.4%
cis-1,2-Dichloroethene	< 1.0 U	51.3	54.5	94.1%	51.1	53.4	95.7%	0.4%
Chloroform	< 1.0 U	50.2	54.5	92.1%	49.6	53.4	92.9%	1.2%
1,2-Dich1oroethane	< 1.0 U	46.0	54.5	84.4%	43.8	53.4	82.0%	4.9%
2-Butanone	< 5.1 U	322	272	118%	291	267	109%	10.1%
1,1,1-Trichloroethane	< 1.0 U	45.7	54.5	83.9%	46.6	53.4	87.3%	2.0%
Carbon Tetrachloride	< 1.0 U	41.9	54.5	76.9%	41.8	53.4	78.3%	0.2%
Vinyl Acetate	< 5.1 U	< 5.4 U	54.5	NA	< 5.4 U	53.4	NA	NA
Bromodichloromethane	< 1.0 U	47.5	54.5	87.2%	46.5	53.4	87.1%	2.1%
1,2-Dichloropropane	< 1.0 U	48.9	54.5	89.7%	47.8	53.4	89.5%	2.3%
cis-1,3-Dichloropropene	< 1.0 U	47.5	54.5	87.2%	46.8	53.4	87.6%	1.5%
Trichloroethene	< 1.0 U	80.9	54.5	148%	80.6	53.4	151%	0.4%
Dibromochloromethane	< 1.0 U	51.8	54.5	95.0%	51.8	53.4	97.0%	0.0%
1,1,2-Trichloroethane	< 1.0 U	40.1	54.5	73.6%	38.0	53.4	71.2%	5.4%
Benzene	< 1.0 U	51.9	54.5	95.2%	50.7	53.4	94.9%	2.3%
trans-1,3-Dichloropropene	< 1.0 U	46.5	54.5	85.3%	44.5	53.4	83.3%	4.4%
2-Chloroethylvinylether	< 5.1 U	55.7	54.5	102%	51.7	53.4	96.8%	7.4%
Bromoform	< 1.0 U	65.4	54.5	120%	67.4	53.4	126%	3.0%
4-Methyl-2-Pentanone (MIBK)	< 5.1 U	277	272	102%	250	267	93.6%	10.2%
2-Hexanone	< 5.1 U	298	272	110%	279	267	104%	6.6%
Tetrachloroethene	< 1.0 U	42.1	54.5	77.2%	43.4	53.4	81.3%	3.0%
1,1,2,2-Tetrachloroethane	< 1.0 U	< 1.1 U	54.5	NA	< 1.1 U	53.4	NA	NA
Toluene	< 1.0 U	43.8	54.5	80.4%	43.6	53.4	81.6%	0.5%
Chlorobenzene	< 1.0 U	43.3	54.5	79.4%	45.1	53.4	84.5%	4.1%
Ethy1benzene	< 1.0 U	44.3	54.5	81.3%	45.9	53.4	86.0%	3.5%
Styrene	< 1.0 U	40.6	54.5	74.5%	41.6	53.4	77.9%	2.4%
Trichlorofluoromethane	< 1.0 U	47.8	54.5	87.7%	47.4	53.4	88.8%	0.8%
1,1,2-Trichloro-1,2,2-trifl		46.7	54.5	85.7%	46.8	53.4	87.6%	0.2%
m,p-Xylene	< 1.0 U	84.4	109	77.4%	86.5	107	80.8%	2.5%
o-Xylene	< 1.0 U	39.2	54.5	71.9%	40.6	53.4	76.0%	3.5%

Reported in µg/kg (ppb)

NA-No recovery due to high concentration of analyte in original sample, calculated negative recovery, or undetected spike. RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NX93F LIMS ID: 08-29925

Matrix: Water

Data Release Authorized: Reported: 11/10/08

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 13:11 Instrument/Analyst: NT1/VTS

Sample ID: TDP1-GW-081103 SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

Event: 025173 Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	0.13
91-57-6	2-Methylnaphthalene	0.10	5.8
90-12-0	1-Methylnaphthalene	0.10	4.4
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	8.6
86-73-7	Fluorene	0.10	0.62
85-01-8	Phenanthrene	0.10	1.2
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70 - 3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	66.0%
d14-Dibenzo(a,h)anthracene	69.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Client ID	MNP	DBA	TOT OUT
MB-110508	61.0%	86.3%	0
LCS-110508	64.0%	88. 7 %	0
LCSD-110508	66.3%	87.3%	0
TDP1-GW-081103	66.0%	69.3%	0

		LCS/MB LIMITS	QC LIMITS
	d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene	(49-113) (49-132)	(44-112) (10-138)

Prep Method: SW3520C

Log Number Range: 08-29925 to 08-29925

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-29925 Matrix: Water

Data Release Authorized:

Reported: 11/10/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

Event: 025173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/05/08

Date Analyzed LCS: 11/08/08 12:21

LCSD: 11/08/08 12:46

Instrument/Analyst LCS: NT1/VTS

LCSD: NT1/VTS

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	1.83	3.00	61.0%	1.93	3.00	64.3%	5.3%
2-Methylnaphthalene	1.84	3.00	61.3%	1.98	3.00	66.0%	7.3%
1-Methylnaphthalene	1.77	3.00	59.0%	1.89	3.00	63.0%	6.6%
Acenaphthylene	2.04	3.00	68.0%	2.02	3.00	67.3%	1.0%
Acenaphthene	1.97	3.00	65.7%	2.00	3.00	66.7%	1.5%
Fluorene	2.11	3.00	70.3%	2.13	3.00	71.0%	0.9%
Phenanthrene	2.19	3.00	73.0%	2.27	3.00	75.7%	3.6%
Anthracene	2.13	3.00	71.0%	2.20	3.00	73.3%	3.2%
Fluoranthene	2.39	3.00	79.7%	2.43	3.00	81.0%	1.7%
Pyrene	2.59	3.00	86.3%	2.61	3.00	87.0%	0.8%
Benzo(a)anthracene	2.34	3.00	78.0%	2.31	3.00	77.0%	1.3%
Chrysene	2.36	3.00	78.7%	2.42	3.00	80.7%	2.5%
Benzo(b)fluoranthene	2.42	3.00	80.7%	2.34	3.00	78.0%	3.4%
Benzo(k)fluoranthene	2.42	3.00	80.7%	2.63	3.00	87.7%	8.3%
Benzo(a)pyrene	2.35	3.00	78.3%	2.35	3.00	78.3%	0.0%
Indeno(1,2,3-cd)pyrene	2.42	3.00	80.7%	2.47	3.00	82.3%	2.0%
Dibenz(a,h)anthracene	2.47	3.00	82.3%	2.44	3.00	81.3%	1.2%
Benzo(q,h,i)perylene	2.40	3.00	80.0%	2.52	3.00	84.0%	4.9%
Dibenzofuran	2.05	3.00	68.3%	2.11	3.00	70.3%	2.9%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	64.0%	66.3%
d14-Dibenzo(a,h)anthracene	88.7%	87.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: MB-110508 METHOD BLANK

Lab Sample ID: MB-110508

LIMS ID: 08-29925

Matrix: Water Data Release Authorized:

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 11:57

Instrument/Analyst: NT1/VTS

Reported: 11/10/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

Event: 025173 Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 61.0% d14-Dibenzo(a,h)anthracene 86.3%

ANALYTICAL RESOURCES INCORPORATED Sample ID: TDP1-9-081103

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08

Date Analyzed: 11/12/08 09:06 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: NX93-Landau Associates, Inc.

SAMPLE

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 12.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 19.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	90.2%
Tetrachlorometaxylene	93.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Client ID	74.	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-111008 LCS-111008 LCSD-111008 TDP1-9-081103 TDP1-9-081103 TDP1-9-081103		94.2% 95.5% 98.5% 90.2% 95.2% 95.0%	30-160 30-160 30-160 30-160 30-160 30-160	95.5% 94.5% 94.8% 93.0% 92.5% 94.0%	30-160 30-160 30-160 30-160 30-160 30-160	0 0 0 0 0

Microwave (MARS) Control Limits
Prep Method: SW3546

Log Number Range: 08-29920 to 08-29920

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: TDP1-9-081103

MS/MSD

Lab Sample ID: NX93A

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: VT>

Reported: 11/15/08

Date Extracted MS/MSD: 11/10/08

Date Analyzed MS: 11/12/08 09:23

MSD: 11/12/08 09:40

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount MS: 12.0 g-dry-wt

MSD: 12.4 g-dry-wt

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel: No

Percent Moisture: 19.9%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 33.3 U	121	166	72.9%	120	161	74.5%	0.8%
Aroclor 1260	< 33.3 U	145	166	87.3%	142	161	88.2%	2.1%

Results reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08

Date Analyzed: 11/12/08 09:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: TDP1-9-081103 MATRIX SPIKE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 12.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 19.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	95.2%
Tetrachlorometaxylene	92.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 09:40
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP1-9-081103
MATRIX SPIKE DUP

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Sample Amount: 12.4 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 19.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	95.0%
Tetrachlorometaxvle	ne 94.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: LCS-111008

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: V

Reported: 11/15/08

Date Extracted LCS/LCSD: 11/10/08

Date Analyzed LCS: 11/12/08 08:32

LCSD: 11/12/08 08:49

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: LCS-111008 LCS/LCSD

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL LCSD: 4.0 mL

Dilution Factor LCS: 1.00 LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	139	167	83.4%	144	167	86.4%	3.5%
Aroclor 1260	155	167	93.0%	161	167	96.6%	3.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	95.5%	98.5%
Tetrachlorometaxylene	94.5%	94.8%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: MB-111008

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: VI>

Reported: 11/15/08

Date Extracted: 11/10/08

Date Analyzed: 11/12/08 08:15 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: MB-111008

METHOD BLANK

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

CAS Number Analyte		RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 Ū
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	94.2%
Tetrachlorometaxylene	95.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP1-GW-081103 SAMPLE

Lab Sample ID: NX93F LIMS ID: 08-29925

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

: **/**

Date Extracted: 11/05/08
Date Analyzed: 11/07/08 18:23
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	61.5%
Tetrachlorometaxylene	82.5%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-110508 LCS-110508 LCSD-110508	98.5%	47-101 47-101 47-101	91.0%	61-104 61-104 61-104	0 0 0
TDP1-GW-081103	61.5%	42-120	82.5%	55-102	0

Prep Method: SW3510C

Log Number Range: 08-29925 to 08-29925

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: LCS-110508

LCS/LCSD

Lab Sample ID: LCS-110508

LIMS ID: 08-29925 Matrix: Water

Data Release Authorized;

Reported: 11/11/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/05/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/07/08 17:49 LCSD: 11/07/08 18:06

Final Extract Volume LCS: 5.0 mL LCSD: 5.0 mL

Instrument/Analyst LCS: ECD5/JGR

Dilution Factor LCS: 1.00

LCSD: ECD5/JGR

LCSD: 1.00

Silica Gel: No

GPC Cleanup: No Sulfur Cleanup: No

Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.52	5.00	90.4%	4.22	5.00	84.4%	6.9%
Aroclor 1260	4.84	5.00	96.8%	4.69	5.00	93.8%	3.1%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	98.5%	75.2%
Tetrachlorometaxylene	91.0%	87.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: MB-110508

LIMS ID: 08-29925

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/05/08 Date Analyzed: 11/07/08 17:32

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-110508 METHOD BLANK

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	81.5%
Tetrachlorometaxylene	75.5%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Data Release Authorized: Reported: 11/11/08

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NX93A 08-29920	TDP1-9-081103 HC ID: MOTOR OIL	11/05/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100 89.8%
MB-110508 08-29921	Method Blank	11/05/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 86.2%
NX93B 08-29921	TDP2-5-081103 HC ID:	11/05/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 89.6%
NX93BDP 08-29921	TDP2-5-081103 HC ID: DRO/MOTOR C	11/05/08 DIL	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100 91.1%
NX93C 08-29922	TDP3-5-081103 HC ID: DRO/MOTOR C	11/05/08 DIL	11/08/08	2.0	Gas Diesel Oil o-Terphenyl	< 23 U > 57 > 110 89.9%
NX93D 08-29923	TDP4-4-081103 HC ID: DRO/MOTOR C	11,00,00	11/08/08	2.0	Gas Diesel Oil o-Terphenyl	< 21 U > 53 > 110 89.6%
NX93E 08-29924	TDP5-5-081103 HC ID:	11/05/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 91.5%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a055.d Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08 ARI ID: NX75MBS1 Client ID: NX75MBS1

Injection: 08-NOV-2008 02:14

Dilution Factor: 1

E T D	. 27	RESUI	THO
L TD	: JA	KEDUL	コエコ

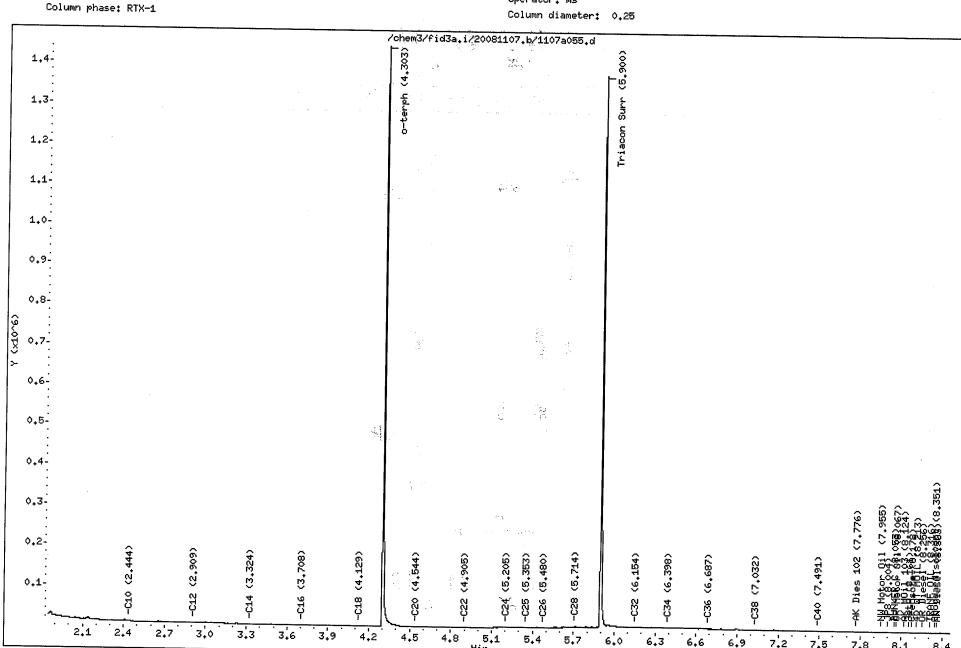
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	 1.796	0.001	236227	 37589	GAS	Tol-C12)		
C8	1.892	0.001	18003	11740	DIESEL	(C12-C24)	191830	3.
C10	2.444	-0.001	5777	6644	M.OIL	(C24-C38)	680321	11 54
C12	2.909	-0.003	2644	2757	AK-102	•	318999	15
C14	3.324	-0.001	1838	1137	AK-103	(C25-C36)	533035	58
C16	3.708	0.004	1334	1452	OR.DIES		431188	20
C18	4.129	-0.001	969	249	OR.MOIL	(C28-C40)	719496	77
C20	4.544	-0.004	1405	798	JET-A	(C10-C18)	221247	13
C22	4.905	0.002	1430	454	MIN.OIL		680321	53
C24	5.205	-0.003	2622	2654	MSPIRIT	(Tol-C12)	1369467	87
C25	5.353	0.008	3133	3757	İ			
C26	5.480	0.005	4128	3646	İ			
C28	5.714	-0.001	,7792	7609	Ì			
C32	6.154	-0.001	:::8317	2457		i dina		
C34	្នុ6.398	0.001	7991	2524	. [451
	8.445	-0.002	5473	. 4151	JP-4	(Tol-C14)	1416780	125
C36	6.687	0.008	7016	2228	CREOSOT	(C8-C22)	570081	91
C38	7.032	0.003	6511	2451	1			
C40	7.491	0.004	6295	8186	BUNKERC	(C10-C38)	992390	111
AZDIESEL (C	======= 10-C22)	======== 24	====== 44432	15	=======	========	========	=====
AZMOIL (C	22-C32)	<u>;</u> 33	37828 ₍₁₈₇₅	52				

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080)

AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	804961	38.8	86.2
Triacontane	761408	39.0	86.8

ms 11/11/08


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 399990.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
CICODOCE	0234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a055.d

Date : 08-NOV-2008 02:14 Client ID: NX75MBS1 Sample Info: NX75MBS1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a074.d Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Method: /chem3/f1d3a.1/20081107.b/ftphfid3a.m Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08 ARI ID: NX93A

Client ID: TDP1-9-081103

Injection: 08-NOV-2008 06:53

Dilution Factor: 1

	•			ELD.3	A RESUI	TC				
Compound	RT	Shift	Height		Area		ange	T	otal Area	Conc
Toluene	1.802	0.007	====== 218579	=====	:====== 198992	GAS	(Tol (12)	====	1601501	=====/
C8	1.895	0.004	16294		8439	DIESEL	·,		1601791	4 /
C10	2.438	-0.007	5686		9067	M.OIL	,		835028	49
C12	2.909	-0.003	2705		3543	AK-102	/		6280249	498
C14	3.327	0.003	2365		4028	AK-102	(C10-C25)		1017188	47
C16	3.705	0.001	2163		2632	OR.DIES	(C25-C36)		5128724	560
C18	4.131	0.002	2603		1479	OR.MOIL	(C10-C28)		2427311	115
C20	4.551	0.002	6774		10005	,	(C28-C40)		5854176	625
C22	4.901	-0.001	12254				(C10-C18)		268751	16
C24	5.207	0.000	28471		4631	MIN.OIL	(C24-C38)		6280249	490
C25	5.344	-0.001	37416		6738	MSPIRIT	(Tol-C12)		1601791	101
C26	5.478	0.001			12510					
C28	5.716	0.003	46208		8229					
C32	6.153	-0.001	62918		9974	ļ				
C34	6.393		69822	14 may 1	47607	!		/*************************************		
Filter Peak	,-		66598		58139	ļ				<i>\$8.</i>
C36	8.449	0.002	18885		8123	JP-4	(Tol-C14)	•	1654841	146 🥯
	6.683	0.004	57421		11274	CREOSOT	(C8-C22)		823372	132
C38	7.027	-0.003	48900		27061	Ì				4
C40	7.484	-0.003	34622		9462	BUNKERC	(C10-C38)		7230763	809.⊭
AZDIESEL (C1)	======: 0-C22)	=======================================	======= 27937	33	======	=======	========	====:	========	==========
	2-C32)		5223	577						
.=============	, 	.,c -=======	-5225		· 					a Sha

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080)

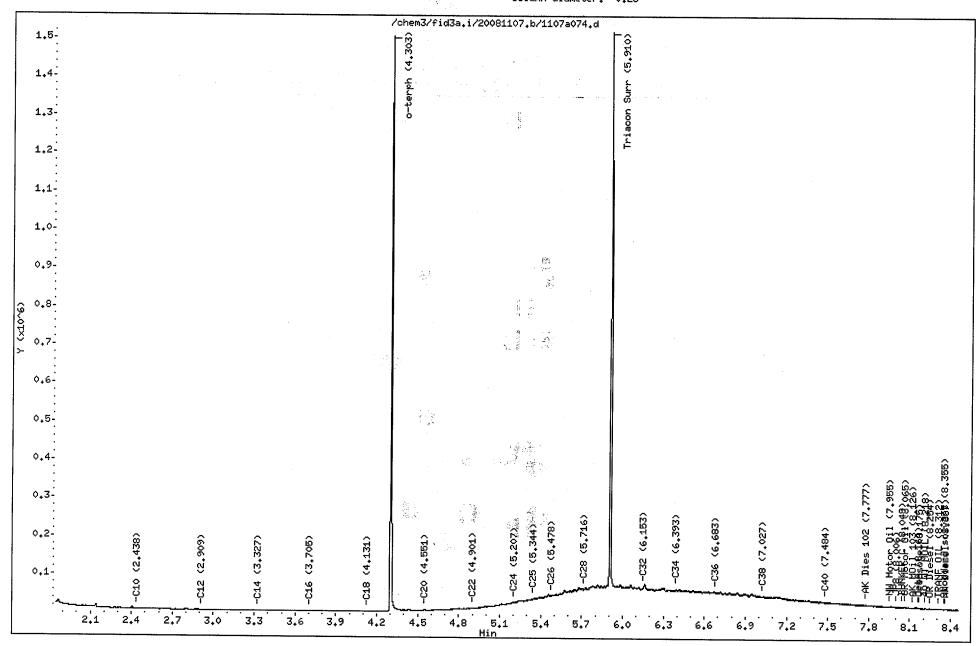
AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	838584	40.4	89.8
Triacontane	762379	39.1	86.9

ma 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 399990.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a074.d


Date : 08-NOV-2008 06:53 Client ID: TDP1-9-081103

Sample Info: NX93A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a076.d

Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08

ARI ID: NX93B

Client ID: TDP2-5-081103

Injection: 08-NOV-2008 07:23

Dilution Factor: 1

FID:3A RESULTS

_				TID.OH KEDUL	110			
Compound	RT	Shift	Height			ange	Total Area	Conc
Toluene	1.788	-0.007	252126			======== (Tol-C12)	 1385686	3
C8	1.893	0.002	16177	9286	DIESEL	(C12-C24)	522899	31
C10	2.437	-0.008	5511	8836	M.OIL		2139449	170
C12	2.909	-0.003	3977	2918	AK-102	(C10-C25)	654240	30
C14	3.327	0.002	4065	5185	AK-103	(C25-C36)	1750073	191
C16	3.706	0.001	3892	4605	OR.DIES	(C10-C28)	1046448	49
C18	4.128	-0.002	5250	5687	OR.MOIL	(C28-C40)	2103989	225
C20	4.545	-0.002	6144	8359	JET-A	(C10-C18)	307997	18
C22	4.899	-0.004	7364	8380	MIN.OIL	(C24-C38)	2139449	167
C24	5.214	0.006	7934	4540	MSPIRIT	(Tol-C12)	1385686	88
C25	5.345	0.000	9992	3375	İ			
C26	5.474	-0.001	12648	7662	Ì			
C28	5.711	-0.004	19038	5280				
C32	6.156	0.000	25523	6571			जे वनी	
C34	6.397	0.000	25202	27006			C. S.	
Filter Peak	8.452	0.004	8342	4762	JP-4	(Tol-C14)	1444785	127
C36	6.675	-0.004	22348	18655	CREOSOT	(C8-C22)	748568	120
C38	7.028	-0.001	16563	3299	İ		* v.	ζ _α Σ:
C40	7.490	0.003	12327	4596	BUNKERC	(C10-C38)	2776817	311″ 🧀
AZDIESEL (C1	.0-C22)	 48	8019	30	=======	:======:	=== = =========	
AZMOIL (C2	2-C32)	118	5415	184			. \$ F.,	

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080)

AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	836424	40.3	89.6 /
Triacontane	766305	39.3	87.3

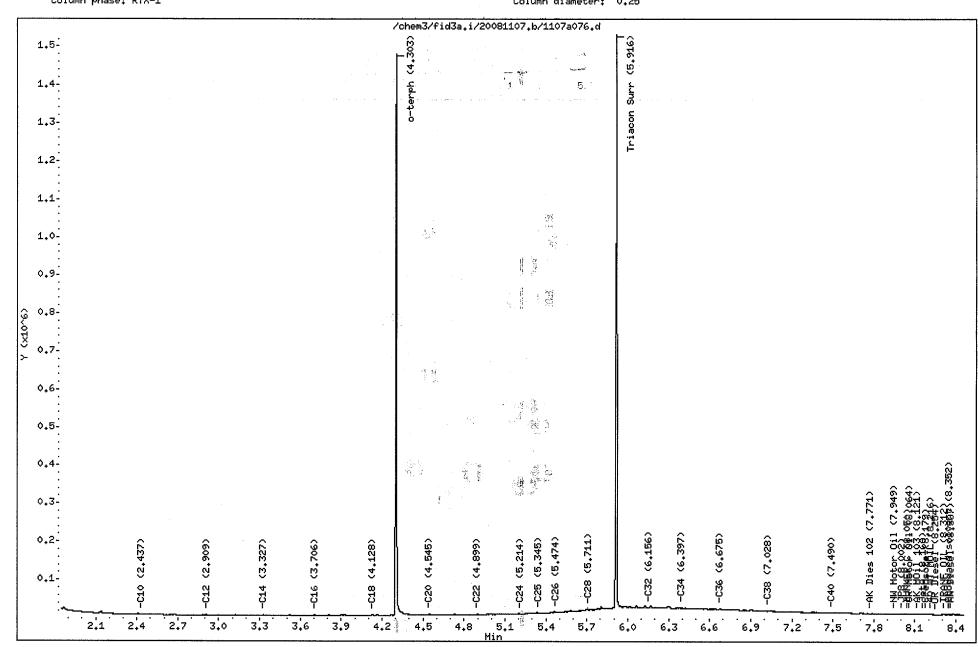
ms 11/11/08

·文章"

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	399990.8	11-NOV-2008/
Diesel	16911.5	04-NOV-2008
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a076.d

Date : 08-NOV-2008 07:23 Client ID: TDP2-5-081103


Sample Info: NX93B

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a077.d

Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08

ARI ID: NX93BDUP

Client ID: TDP2-5-081103 DUP

Injection: 08-NOV-2008 07:37

Dilution Factor: 1

FID:3A RESULTS	S	ILT	IJ	SI	Ε	R	Α	3	:	D	Ί	F
----------------	---	-----	----	----	---	---	---	---	---	---	---	---

Compound	RT 	Shift	Height	Area	R	ange	Tot	al Area	Conc	
Toluene	1.798	0.004	209699	218748	GAS	======= (Tol-C12)	======	======================================	3	
C8	1.888	-0.003	15519	10733	DIESEL	, - · - ,		716770	42 ~	/
C10	2.435	-0.009	5184	6806	M.OIL			2844622	225	/
C12	2.909	-0.003	4389	4220	AK-102	-		843199	39	
C14	3.326	0.001	5198	5729	AK-103			2332399	255	
C16	3.705	0.001	6365	6589	OR.DIES			1367483	65	
C18	4.128	-0.002	8331	7799	OR.MOIL			2764573	295	
C20	4.545	-0.002	10248	11066	JET-A			341115	20	
C22	4.899	-0.003	10959	12580	MIN.OIL	·		2844622	222	
C24	5.212	0.005	11112	2183	MSPIRIT	-		1219178	77	
C25	5.349	0.004	14152	6967	İ	. –,				
C26	5.483	0.008	16464	3272	j					
C28	5.713	-0.002	25365	14662	İ					
C3.2	6.159	0.003	35005	6211			غرقتها			
C34	6.397	0.001	33825	8540			137			5 (
Filter Peak	8.448	0.001	8.855	1944	JP-4	(Tol-C14)	٠.	1278911	113	12.7
C36	6.681	0.002	29457	11571	CREOSOT	(C8-C22)	•	863249	138	
C38	7.033	0.004	21948	10349	İ	,,), 3	
C40	7.487	0.000	15882	4972	BUNKERC	(C10-C38)	. :	3663170	410 ~	, - Q
	:===== .0-C22)	617	====== 7208	3 8		========	=====:	=======	=====	tares e
AZMOTI. (Co	3-C331	1500	Y2 2 E	0.45						

(C22-C32) 1590325 247

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080)

AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

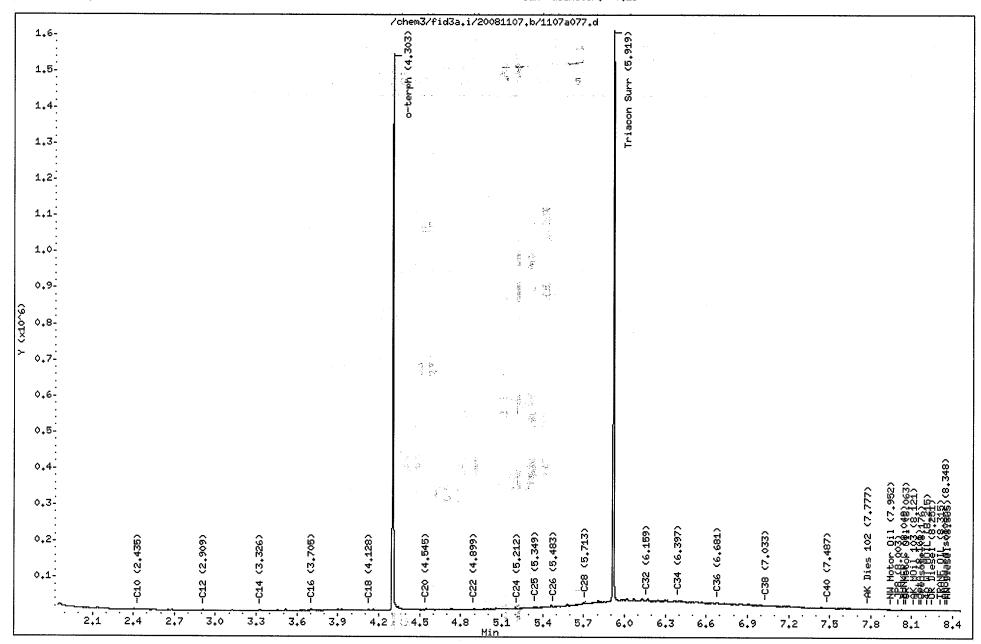
Surrogate	Area	Amount	%Rec
o-Terphenyl	850959	41.0	91.1
Triacontane	783612	40.2	89.3

ms 1/11/108

4.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 399990.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107.b/1107a077.d


Date : 08-NOV-2008 07:37 Client ID: TDP2-5-081103 DUP

Sample Info: NX93BDUP

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a078.d Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08

ARI ID: NX93C

Client ID: TDP3-5-081103

Injection: 08-NOV-2008 07:52

Dilution Factor:

FID.	3 D	DECIII.TC	

Compound	RT	Shift	Height	Area	R	ange	Total Area	Conc	
Toluene	1.798	0.003	123456	 113643	GAS	======================================		====== 2	
C8	1.890	-0.002	16094		DIESEL		2961629	175	•
C10	2.437	-0.008	6350	13942	M.OIL		12842139	1018	
C12	2.909	-0.003	10486	6827	AK-102	(C10-C25)	3294663	153	
C14	3.324	-0.001	12787	6274	AK-103	(C25-C36)	10990678	1201	
C16	3.702	-0.003	17845	12421	OR DIES	(C10-C28)	6147171	290	
C18	4.122	-0.008	41375	43722	OR.MOIL	(C28-C40)	11179253	1193	
C20	4.544	-0.004	17875	11568	JET-A	•	1130386	66	
C22	4.898	-0.005	35343	28588	MIN.OIL	(C24-C38)	12842139	1001	
C24	5.213	0.005	61068	54338	MSPIRIT		699679	44	
C25	5.343	-0.002	75587	16430		(102 011)	000075	11	
C26	5.476	0.001	88966	22990	İ				
C28	5.707	-0.008	142392	106874	Ì				
C3.2.	6.154	-0.001	167424	62494			. entropy		
C34	6.401	0.004	131598	28632			glen No		٠. ال
Filter Peak	8.444	-0.004	17611	6973	JP-4	(Tol-C14)	897200	79	n:
C36	6.674	-0.005	108364	59834	CREOSOT	(C8-C22)	2592188	416	
C38	7.034	0.005	72255	63283		(00 022)	2372100	410 %	
C40	7.486	-0.002	40328	23826	BUNKERC	(C10-C38)	15996771		
, fire	 L0-C22)	226	======= 58032	 141	#=======		=======================================		ana e

AZMOIL (C22-C32) 8191057 1272

Range Times: NW Diesel(2.962 - 5.258) NW Gas(11745 - 2.962) NW M.Oil(5.258 - 7.080)

AK102(24395 - 5.295) AK103(54295 - 64729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	419743	20.2	89.9 /
Triacontane	389647		88.8

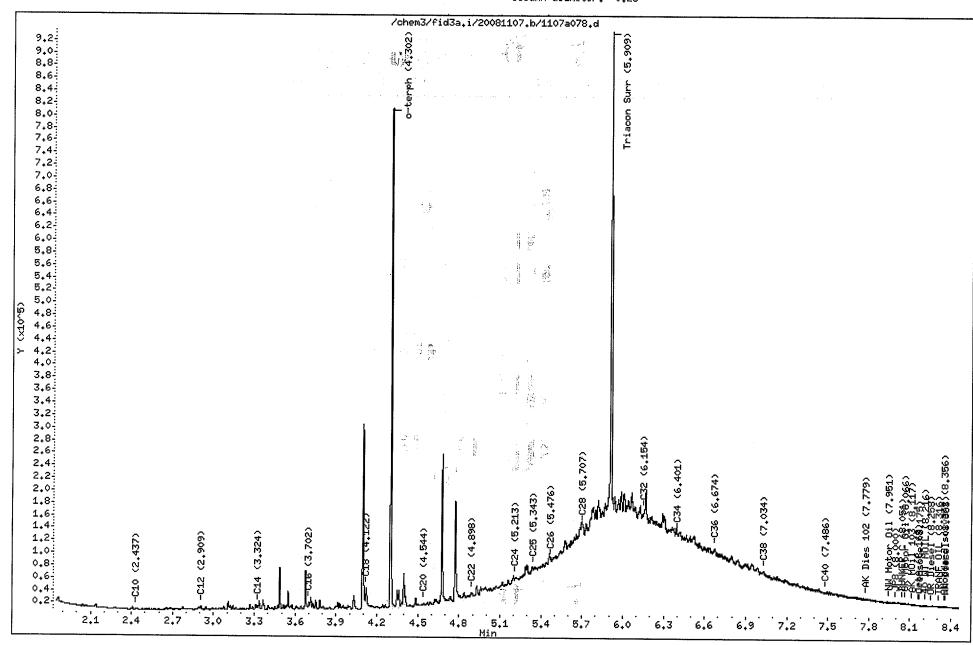
mo 11/11/08

was line

75

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 399990.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107.b/1107a078.d


Date : 08-NOV-2008 07:52 Client ID: TDP3-5-081103 Sample Info: NX93C,2

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0,25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a079.d

Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms Report Date: 11/11/2008 Macro: FID:3A1111b08

ARI ID: NX93D

Client ID: TDP4-4-081103

Injection: 08-NOV-2008 08:07 -

Dilution Factor:/ 2 \(\)

FTD.	3 Δ	RESULTS	

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.785	-0.009	131808	======== 160873	GAS	======================================	======================================	 3
C8	1.892	0.001	15468	16518	DIESEL	(C12-C24)	2019141	119
C10	2.436	-0.008	5931	7831	M.OIL	(C24-C38)	14608332	1158 /
C12	2.909	-0.003	5085	4809	AK-102	(C10-C25)	2290261	106
C14	3.326	0.001	5973	3537	AK-103	(C25-C36)	12786394	1397
C16	3.702	-0.002	5729	6657	OR.DIES	(C10-C28)	5534456	261
C18	4.128	-0.002	8780	7669	OR.MOIL	(C28-C40)	12550665	1340
C20	4.548	0.000	15025	12086	JET-A	(C10-C18)	465561	27
C22	4.899	-0.003	32974	28737	MIN.OIL	(C24-C38)	14608332	1139
C24	5.209	0.002	63059	12397	MSPIRIT	(Tol-C12)	1021767	65
C25	5.338	-0.007	85529	80311	İ			
C26	5.478	0.004	101778	22090	Ì			
C28	5.716	0.002	159223	31200				
C32	6.156	0.001	202375	75607	- Mary Control			
C34	6.396	0.000	162477	102016	1		Ex	
Filter Peak	8.447	0.000	17812	5284	JP-4	(Tol-C14)	1116198	98
C36	6.675	-0.004	115649	8 9 885	CREOSOT	(C8-C22)	1517346	243
C38	7.031	0.001	72118	36994				
C40	7.486	-0.001	38724	9121	BUNKERC	(C10-C38)	16759526	1875
AZDIESEL (C1	====== 0-C22)	120	====== 7028	75	=======	======		:=====
AZMOIL (G2	2-C32)	951	0965 1	477	æ.		i di	

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.7729) Jet A(2.395 - 4.180)

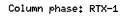
- 19 ₁			
Surrogate	Area	Amount	%Rec
o-Terphenyl	418182	20.2	89.6
Triacontane	375274	19.2	85.5

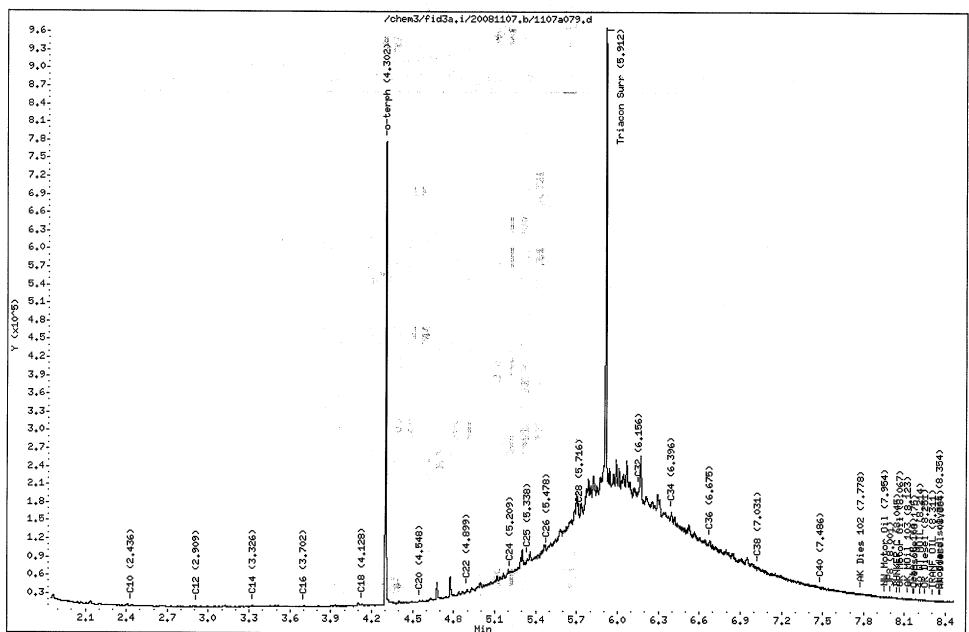
ms 11/11/08

iğ.

3.9

<i>f</i> .		
Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 399990.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008


Data File: /chem3/fid3a.i/20081107.b/1107a079.d


Date : 08-NOV-2008 08:07 Client ID: TDP4-4-081103 Sample Info: NX93D,2

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a080.d

Method: /chem3/fid3a.i/20081107.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A1111b08 ARI ID: NX93E /

Client ID: TDP5-5-081103

Injection: 08-NOV-2008 08:22

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	 1.808	0.013	 183508	238568	GAS	(Tol-C12)	579373	 1 <
C8	1.868	-0.024	19254	41889	DIESEL	(C12-C24)	466238	28
C10	2.437	-0.008	4960	7193	M.OIL	(C24-C38)	2000177	159
C12	2.910	-0.003	2684	2968	AK-102	(C10-C25)	584566	27
C14	3.330	0.005	2162	3907	AK-103	(C25-C36)	1673388	183
C16	3.708	0.003	2349	2465	OR.DIES	(C10-C28)	994855	47
C18	4.128	-0.002	3299	5044	OR.MOIL	(C28-C40)	1886881	201
C20	4.547	-0.001	5245	5644	JET-A	(C10-C18)	238207	14
C22	4.900	-0.003	6959	7376	MIN.OIL	(C24-C38)	2000177	156
C24	5.214	0.006	9318	4375	MSPIRIT	(Tol-C12)	579373	37
C25	5.355	0.010	11707	6201	ĺ		* * * * * * * * * * * * * * * * * * * *	
C26	5.482	0.007	13167	14602				
C28	5.714	-0.001	19052	3028				
C32	6.152	-0.004	23774	.9770			photos 5 j.	
C34	6.395	-0.002	23549	24943			. 🔃	
Filter Peak	8.449	0.002	8431	3838	JP-4	(Tol-C14)	622026	55
C36	6.676	0.003	17055	9389	CREOSOT	(C8-C22)	670918	108
C38	7.027	-0.003	14078	7779				
C40	7.491	0.004	10309	2258	BUNKERC	(C10-C38)	2563786 	287
AZDIESEL (C	====== 10-C22)	4(05275	25				
AZMOIL (C	22-C32)	12:	18668 1	.89			and so	

Range Times: NW Diesel (2.962 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	854211	41.2	91.5
Triacontane	784679	40.2	89.4

mo 11/11/08

.32. .557

. ne 1905 Trapiani

G. 2000.

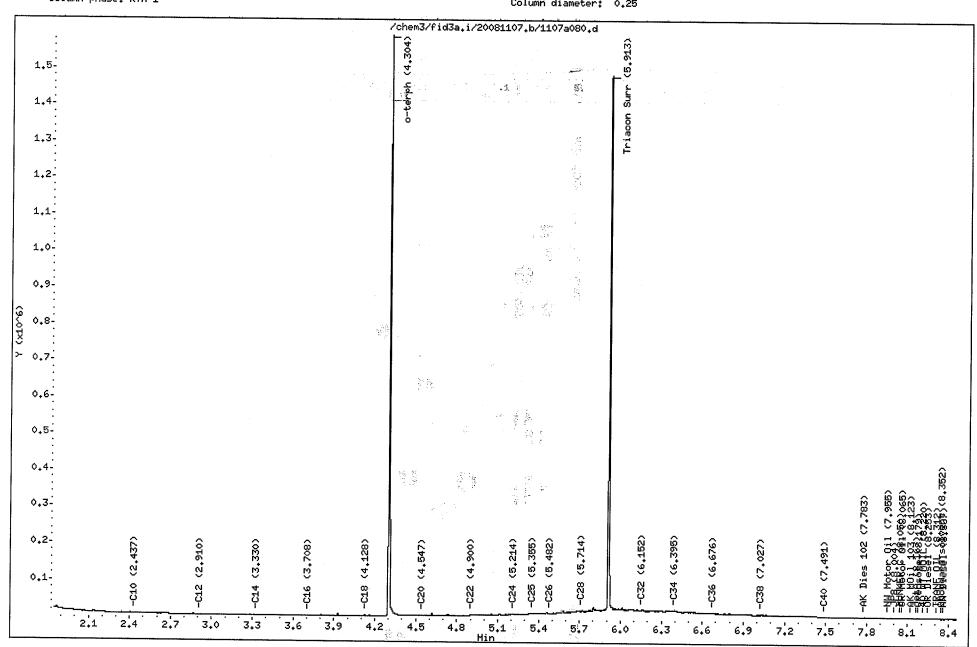
1984 152

30

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	399990.8	11-NOV-2008/
Diesel	16911.5	04-NOV-2008/
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008
· · · · · · · · · · · · · · · · · · ·		

Data File: /chem3/fid3a.i/20081107.b/1107a080.d

Date : 08-NOV-2008 08:22 Client ID: TDP5-5-081103


Sample Info: NX93E

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

HCID SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Client ID	O-TER TOT OUT	2
TDP1-9-081103	89.8% 0	
110508MB	86.2% 0	
TDP2-5-081103	89.6% 0	
TDP2-5-081103 DP	91.1% 0	
TDP3-5-081103	89.9% 0	
TDP4-4-081103	89.6% 0	
TDP5-5-081103	91.5% 0	

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(68-122) (50-150)

Prep Method: SW3550B

Log Number Range: 08-29920 to 08-29924

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Soil

Date Received: 11/03/08

ARI Job: NX93 Project: BOEING THOMPSON

025173

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
08-29920-NX93A 08-29921-110508MB 08-29921-NX93B 08-29921-NX93BDP 08-29922-NX93C	TDP1-9-081103 Method Blank TDP2-5-081103 TDP2-5-081103 TDP3-5-081103 TDP4-4-081103	8.13 g 10.0 g 9.29 g 9.45 g 8.76 g 9.37 g	5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL	D D D	11/05/08 11/05/08 11/05/08 11/05/08 11/05/08 11/05/08
08-29923-NX93D 08-29924-NX93E	TDP5-5-081103	9.83 g	5.00 mL		11/05/08

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 11/11/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-110508 08-29925	Method Blank	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 78.3%
NX93F 08-29925	TDP1-GW-081103 HC ID:	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 80.7%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a034.d ARI ID: NX93MBW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:03

Operator: ms Report Date: 11/11/2008

Dilution Factor: 1

Macro: FID:3A111108

F	ID	:	3A	RES	ULTS
---	----	---	----	-----	------

Compound	RT	Shift	Height	Area	Ri	ange	Total Area	Conc
========	========	======	=======	=========	=======			======
Toluene	1.790	-0.005	44905	63382	GAS	(Tol-C12)	520344	22
C8	1.899	0.007	17976	38555	DIESEL		251277	15
C10	2.437	-0.008	6611	14359	M.OIL		568432	45
C12	2.911	-0.002	7951	6909	AK-102		382286	18
C14	3.328	0.003	11676	13689	AK-103	(C25-C36)	435475	48
C16	3.708	0.003	10185	13448	OR.DIES	(C10-C28)	465532	22
C18	4.129	-0.001	5355	4730	OR.MOIL	(C28-C40)	636502	68
C20	4.556	0.008	1684	500	JET-A		285566	17
C22	4.901	-0.002	1564	920			568432	44
C24	5.208	0.000	2654	2634	:		520344	33
C25	5.343	-0.003	2053	1714		(-01 011)	320344	23
C26	5.479	0.004	2543	2606	İ			
C28	5.722	0.007	12042	12511				
C32	6.149	-0006	7244	11614				•
C34	6.393	-0.004	7071	4515		•		
Filter Peak	8.443	-0.004	5989	3346	JP-4	(Tol-C14)	581445	E 1
C36	6.687	0.007	7716	8629	CREOSOT	(C8-C22)	668214	51 107
C38	7.032	0.002	6467	1936		(00 022)	7 000214	10:7
C40	7.479	-0.008	6352	1644	BUNKERC	(C10-C38)	945940	106
AZDIESEL (C10-C22)	 31	====== L3996	20		=======================================	=======================================	=====
	C22-C32)		6335	41	47			
Pance Times		======== 1/0 0ss	======		=======			=====

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	731418	35.2	78.3
Triacontane	660083	33.8	75.2

ms 11/11/08

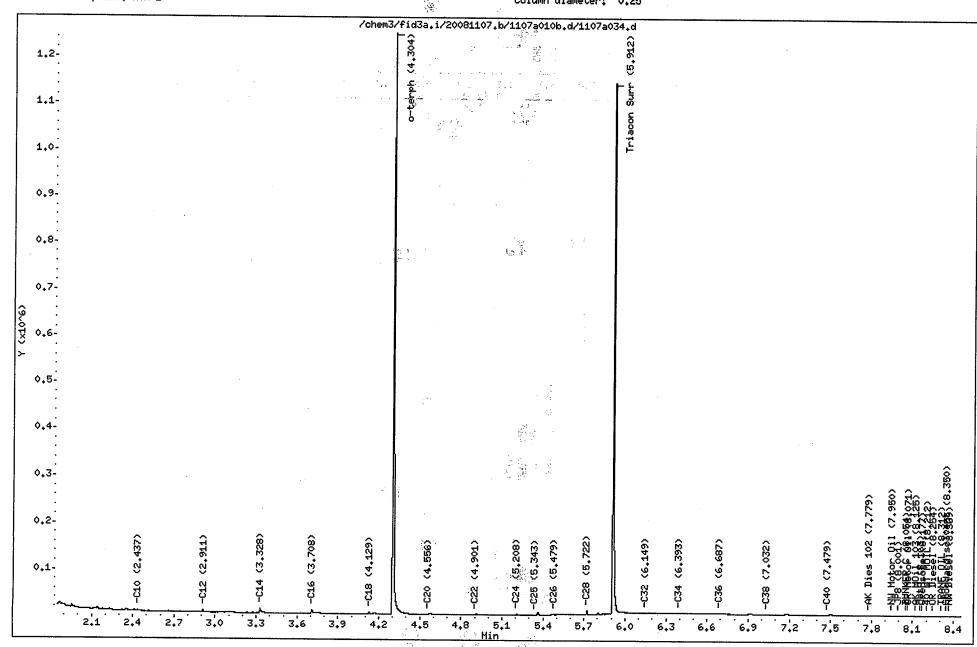
Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a034.d

Date : 07-NOV-2008 21:03

Client ID:

Sample Info: NX93MBW1


Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

3 Å.

Column diameter: 0,25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a037.d ARI ID: NX93F

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:48

Operator: ms

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.798	0.003	68796	69709	GAS	(Tol-C12)	1286444	ر ====== ر ک
C8	1.892	0.001	24353	17437	DIESEL	(C12-C24)	2371849	140
C10	2.440	-0.005	8620	17826	M.OIL	(C24-C38)	984554	78 🖊
C12	2.911	-0.001	10678	8674	AK-102	(C10-C25)	3118083	145
C14	3.321	-0.004	44129	33108	AK-103	(C25-C36)	802504	88
C16	3.703	-0.002	21438	10390	OR.DIES	(C10-C28)	3371564	159
C18	4.122	-0.008	16542	19373	OR.MOIL	(C28-C40)	912215	97
C20	4.547	-0.001	9074	5109	JET-A	(C10-C18)	2405005	140
C22	4.916	0.013	8489	4326	MIN.OIL	(C24-C38)	984554	77
C24	5.202	-0.006	10770	10239	MSPIRIT	(Tol-C12)	1286444	81
C25	5.338	-0.007	11003	13501				
C26	5.477	0.002	8633	6004				
C28	5.727	0.012	22862	26601	İ			
C32	6.144	-0.012	12566	15867	İ	Today.		
C34	6.405	0.008	11193	13504	İ	2.5		6.
Filter Peak	8.443	-0.005	6052	27.76	JP-4	(Tol-C14)	1962503	173
C36	6.676	-0.003	9149	4160	CREOSOT	(C8-C22)	3341704	536
C38	7.024	-0.006	7766	7988	•		4.5	* .
C40	7.495	0.008	7392	7574	BUNKERC	(C10-C38)	4084447	4.457
·	.0-C22) 2-C32)		95328 180 53807		======			=
AZMOTH (CZ	2-032)		53807103					

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080)

AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	753361	36.3	80.7
Triacontane	713788	36.6	

ms 1/11/08

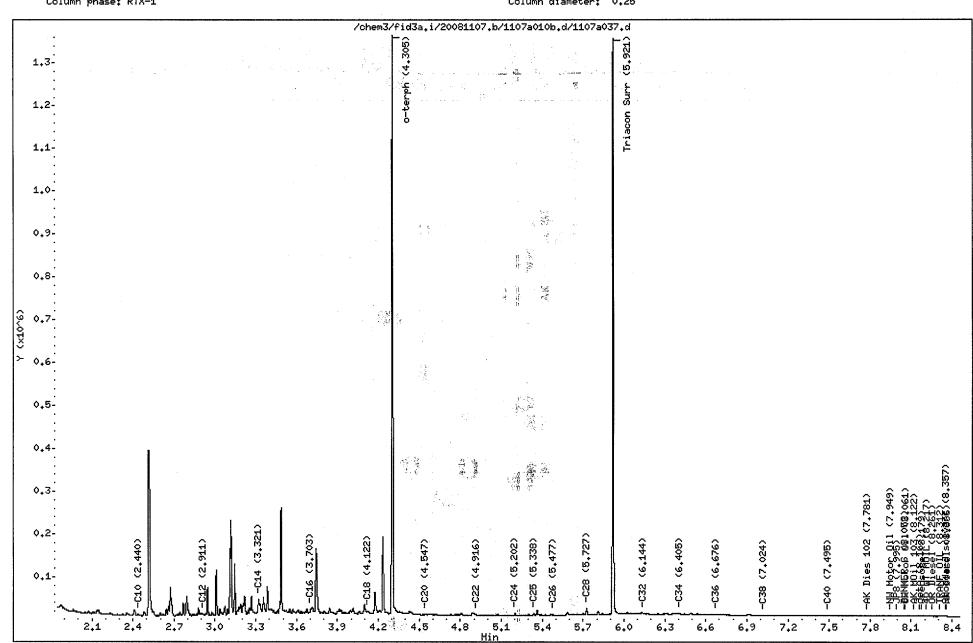
ES W

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
creosore	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a037.d

Date : 07-NOV-2008 21:48

Client ID:


Sample Info: NX93F

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Client ID	O-TER	TOT OUT
MB-110508	78.3%	0
LCS-110508	81.9%	0
LCSD-110508	88.3%	0
TDP1-GW-081103	80.7%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110) (50-150)

Prep Method: SW3510C

Log Number Range: 08-29925 to 08-29925

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-110508

LCS/LCSD

Lab Sample ID: LCS-110508

LIMS ID: 08-29925

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08

Date Received: 11/03/08

Date Extracted LCS/LCSD: 11/05/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/07/08 21:18

Final Extract Volume LCS: 1.0 mL

LCSD: 11/07/08 21:33

LCSD: 1.0 mL

 Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.12	3.00	70.7%	2.14	3.00	71.3%	0.9%

HCID Surrogate Recovery

LCS LCSD

o-Terphenyl

81.9% 88.3%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a035.d ARI ID: NX93LCSW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:18

Operator: ms Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.788	-0.007	59743	85666	GAS	(Tol-C12)	= == =================================	142
C8	1.886	-0.005	29568	29773	DIESEL	·	17921271	1060
C10	2.443	-0.002	104273	77259	M.OIL	·	868695	69
C12	2.911	-0.002	421010	262334	AK-102	(C10-C25)	20449930	949
C14	3.325	0.000	779473	358339	AK-103	(C25-C36)	701817	77
C16	3.704	0.000	808776	688728	OR.DIES	(C10-C28)	20794740	982
C18	4.131	0.001	564821	407239	OR.MOIL	(C28-C40)	643477	69
C20	4.546	-0.001	408907	319426	JET-A	·	14988543	874
C22	4.900	-0.003	171819	134530	MIN.OIL	(C24-C38)	868695	68
C24	5.201	-0.006	70962	53659	MSPIRIT	(Tol-C12)	3341877	211
C25	5.337	-0.008	41691	46935	İ	•		
C26	5.477	0.002	13463	12121	İ			
C28	5.726	0.011	17460	20587	İ			
C32	6.152	-0.004	7711	9429	j .	e (i)		
C34 36c	6.395	-0.002	7419	3113		<u> </u>	, Thúi	
Filter Peak	8.445	0.003	5804	4287	JP-4	(Tol-C14)	7102763	625
C36	6.671	-0.009	6946	2769	CREOSOT	(C8-C22)	20464871	3283
C38	7.032	0.002	6507	3505	İ			
C4.0	7.487	0.000	6199	2226	BUNKERC	(C10-C38)	21276380	2381

AZDIESEL (C10-C22) 19465575 1212 AZMOIL (C22-C32) 1195985 186

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

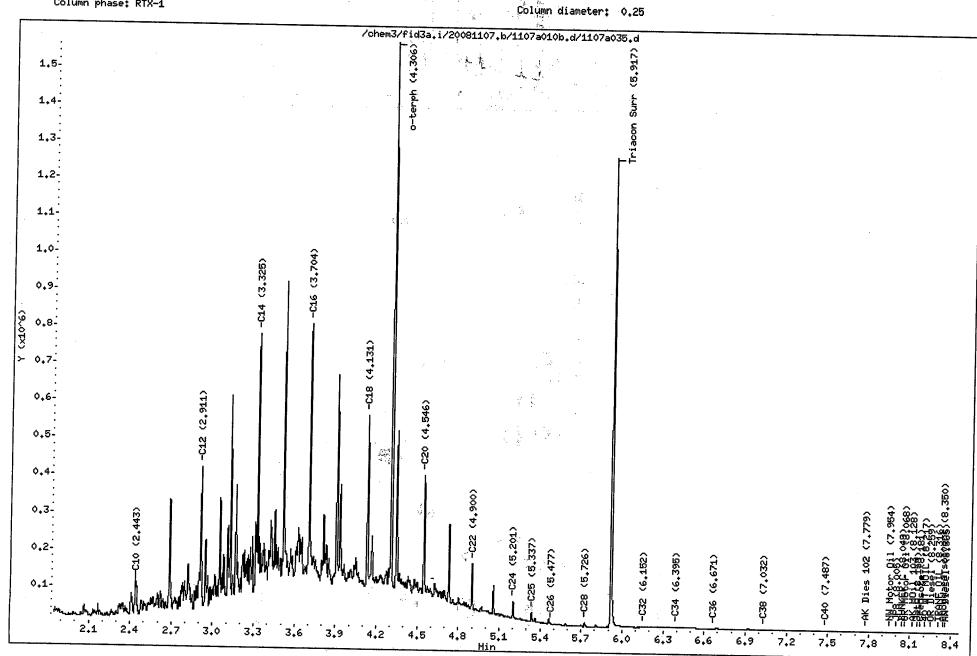
Surrogate	Area	Amount	%Rec
o-Terphenyl	765154	36.9	81.9
Triacontane	718956	36.9	81.9

ms 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
CLCOBOLE	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a035.d

Date : 07-NOV-2008 21:18


Client ID:

Sample Info: NX93LCSW1

Column phase: RTX-1

Instrument: fid3a.i

Openator: ms

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a036.d ARI ID: NX93LCSDW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:33

Operator: ms Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS								
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.789	-0.006	66545	106367		·=====================================		======
C8	1.887	-0.005	29691	106367	GAS	•	3425476	145
C10	2.442	-0.003		31546	DIESEL	(C12-C24)	18112296	1071
C12	2.911		111236	80461	M.OIL	(C24-C38)	916699	73
C12		-0.001	438998	263036	AK-102	(C10-C25)	20700757	961
	3.325	0.000	766762	357119	AK-103	(C25-C36)	734796	80
C16	3.705	0.001	801122	709238	OR.DIES	(C10-C28)	21060016	9.95
C18	4 131	0.001	540369	408990	OR.MOIL	(C28-C40)	673233	72
C20	4.548	0.000	401118	321728	JET-A	(C10-C18)	15136583	883
C22	4.901	-0.002	171482	133145	MIN.OIL	(C24-C38)	916699	71
C24	5.202	-0.005	71562	61701	MSPIRIT	(Tol-C12)	3425476	216
C25	5.338	-0.008	44264	45022		,,	3123170	210
C26	5.465	-0.010	26343	31391	İ			
C28	5.726	0.011	18995	18818	ŀ			
C32	6.152	-0.004	8256	13317	l	e.	•	
C34	6,.393	-0.004	7826	1717	ľ	· anden	* * * * * * * * * * * * * * * * * * * *	
Filter Peak	8 ¹ .446	-0.001	6128	3304	JP-4	(Tol-C14)	7067050	
C36	6.666	-0.013	7313	3500	CREOSOT		7267053	640
C38	7.035	0.005	6885	3027	CREOSOI	(C8-C22)	20692128	3319
C40	7.486	-0.002	6564		DIBINEDA	(610 600)		1.
==========	, <u>.</u> ======	-0.002		1572	BUNKERC	(C10-C38)	21574579	2414
AZDIESEL (C1	.0-C22)	1968	 4945 122	== == ================================				======
–	2-C32)			26 94			•	
		124	0440 IS	74				

1248240 Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	824356	39.7	88.3
Triacontane	772648	39.6	88.0

ms 1/11/08

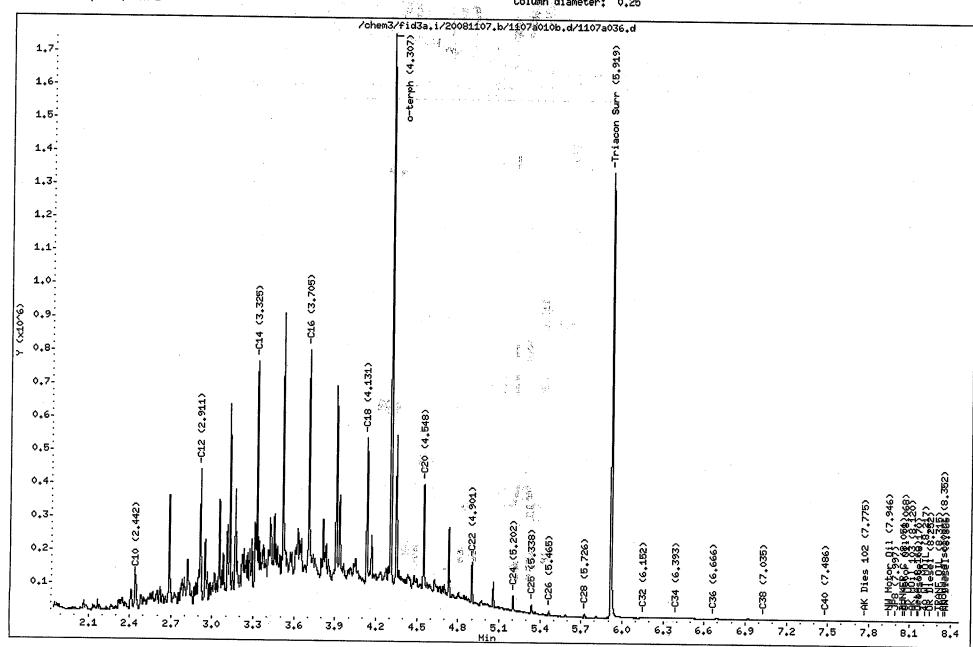
 $\Gamma_{\lambda}^{(p)}$

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a036.d

Date : 07-NOV-2008 21:33

Client ID:


Sample Info: NX93LCSDW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NX93

Matrix: Water
Date Received: 11/03/08

Project: BOEING THOMPSON

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
08-29925-110508MB	Method Blank	500 mL	1.00 mL	11/05/08
08-29925-110508LCS	Lab Control	500 mL	1.00 mL	11/05/08
08-29925-110508LCSD	Lab Control Dup	500 mL	1.00 mL	11/05/08
08-29925-NX93F	TDP1-GW-081103	500 mL	1.00 mL	11/05/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Data Release Authorized: Reported: 11/14/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-111208 08-29920	Method Blank HC ID:	11/12/08	11/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 92.7%
NX93A 08-29920	TDP1-9-081103 HC ID: DRO/MOTOR C	11/12/08 IL	11/14/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.8 12	16 99 89.3%
NX93B 08-29921	TDP2-5-081103 HC ID: DRO/MOTOR C	11/12/08 IL	11/14/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.4 11	19 95 91.1%
NX93C 08-29922	TDP3-5-081103 HC ID: DRO/MOTOR C	11/12/08 IL	11/14/08 FID3A	1.00 5.0	Diesel Motor Oil o-Terphenyl	29 58	110 740 105%
NX93D 08-29923	TDP4-4-081103 HC ID: DRO/MOTOR C	11/12/08 IL	11/14/08 FID3A	1.00 5.0	Diesel Motor Oil o-Terphenyl	28 56	78 640 97.3%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Data file: /chem3/fid3a.i/20081113.b/1113a045.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms Report Date: 11/14/2008

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93MBS1

Client ID:

Injection: 13-NOV-2008 23:16

307

Dilution Factor: 1

FID	· 37	DECI	TITS

G				OA KESUL	112		
Compound	RT =====	Shift 	Height	Area	Range	Total Area	Conc
Toluene	1.772	-0.002	98136	====== 79073	GAS (Tol-C12)	======================================	18
C8	1.875	0.000	24835	26285	DIESEL (C12-C24)	356006	24
C10	2.418	-0.005	14517	18769	M.OIL (C24-C38)	750637	72
C12	2.898	-0.001	7981	9328	AK-102 (C10-C25)	638976	34
C14	3.321	0.008	3737	3822	AK-103 (C25-C36)	606898	112
C16	3.695	0.003	2758	3722	OR.DIES (C10-C28)	767446	39
C18	4.117	0.002	2646	4184	OR.MOIL (C28-C40)	799056	85
C20	4.527	-0.004	2475	2904	JET-A (C10-C18)	499945	30
C22	4.893	0.006	2625	2423	MIN.OIL (C24-C38)	750637	59
C24	5.192	0.000	3437	2614	MSPIRIT (Tol-C12)	1155377	73
C25	5.331	0.002	3732	4321	(101 011)	1133377	, 3
C26	5.457	-0.001	4274	4085			
C28	5.700	0.005	5707	3234	ļ		
C32	6.125	-0.005	-16480	19473	ories		
C34	6.367	-0.001	8376	5280			See See
Filter Peak	^{3:3} 8.430	-0.002	5592	3672	JP-4 (Tol-C14)		111
C36	6.653	0.009	20858	32504	CREOSOT (C8-C22)	1190011	191
C38	6.989	0.003	6962	2622	(35 322)	41300H	101
C40	7.442	0.012	10042	13232	BUNKERC (C10-C38)		a. 155
	======================================	=	======================================		=======================================		=====

Range Times NW Diesel(2.949 - 5.242) NW Gas(1.724 - 2.949) NW M.Oil(5.242 - 7.037) AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

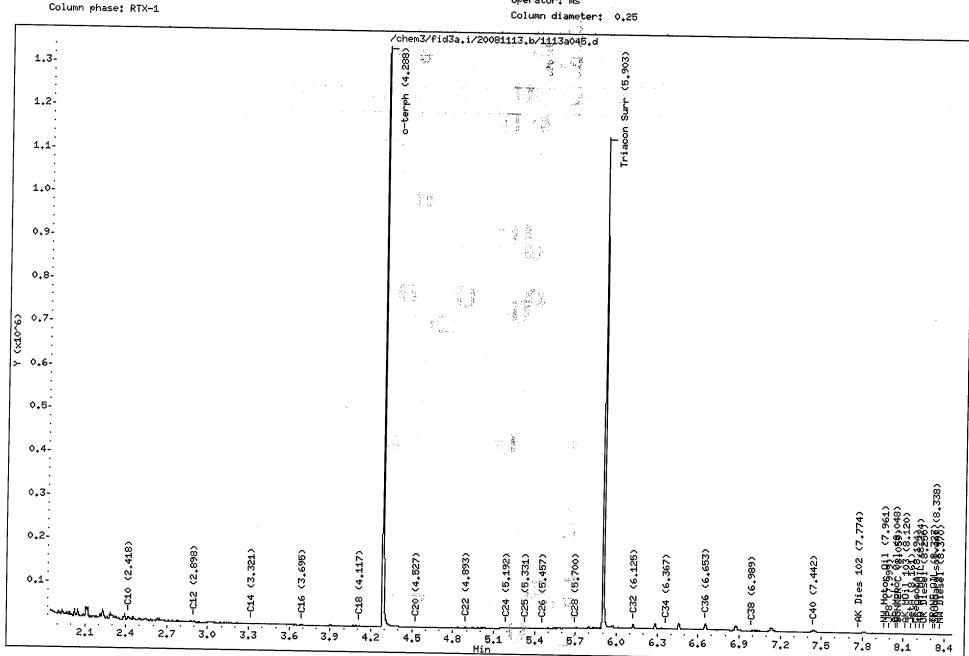
Alan a

Surrogate	Area	Amount	%Rec
o-Terphenyl	722844	41.7	92.7
Triacontane	639278	39.0	86.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
	0234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a045.d

Date : 13-NOV-2008 23:16


Client ID:

Sample Info: NX93MBS1

Operator: ms

Column diameter: 0.25

Instrument: fid3a.i

PC 11/14/08

河八

3.4

Data file: /chem3/fid3a.i/20081113.b/1113a089.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i
Operator: ms

AZMOIL (C22-C32)

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93A Client ID:

Injection: 14-NOV-2008 09:54

Dilution Factor: 1

Q - 1				FID:3A RESUI	LTS				
Compound	RT	Shift	Height	Area	R	ange	Total Area	Conc	
Toluene			========	========	========	========	=======================================	======	
C8	1.772	-0.002	54424	57845	GAS	·,	1033974	16	
	1.874	-0.001	22072	22800	DIESEL	·	2122173	140 🖊	120
C10	2.421	-0.002	12885	25707	M.OIL	(C24-C38)	8811527	845 🖍	W/ -
C12	2.898	-0.001	10522	6835	AK-102	(C10-C25)	2544144	134	
C14	3.314	0.000	8915	7291	AK-103	(C25-C36)	7744128	1424	
C16	3.690	-0.002	10529	10729	OR.DIES	(C10-C28)	5175477	264	
C18	4.112	-0.003	12612	16044	OR.MOIL	(C28-C40)	6957296	743	
C20	4.528	-0.004	19510	16986	JET-A	(C10-C18)	737314	44	
C22	4.883	-0.005	38680	34780	MIN.OIL	(C24-C38)	8811527	687	
C24	5.196	0.004	58938	26625	MSPIRIT	(Tol-C12)	1033974	65	
C25	5.325	-0.004	87781	86013	Ì			• •	
C26	5.453	-0.005	98762	130820	İ				
. C28	5.698	0.003	122984	65538	İ				
C32	6.127	-0.003	102775	80580	İ	, ** **			
C34	6.371	0.004	71473	41750	İ	5 5	· · · · · · · · · · · · · · · · · · ·		
Filter Peak	8.431	0.000	17552	5219	JP-4	(Tol-C14)	1168273	103	
C36	6.646	0.002	55879	21848	CREOSOT	(C8-C22)	2087605	335	.82° • 0
C38	6.991	0.004	45191	38619	İ	,,	200,7003	333	
C40	7.434	0.004	30668	14301	BUNKERC	(C10-C38)	11213798	1255	
AZDIESEL (C10-C22) 1485572 92									

Range Times: NW Diesel(2.949 - 5.242) NW Gas(1.724 - 2.949) NW M.Oil(5.242 - 7.037) AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

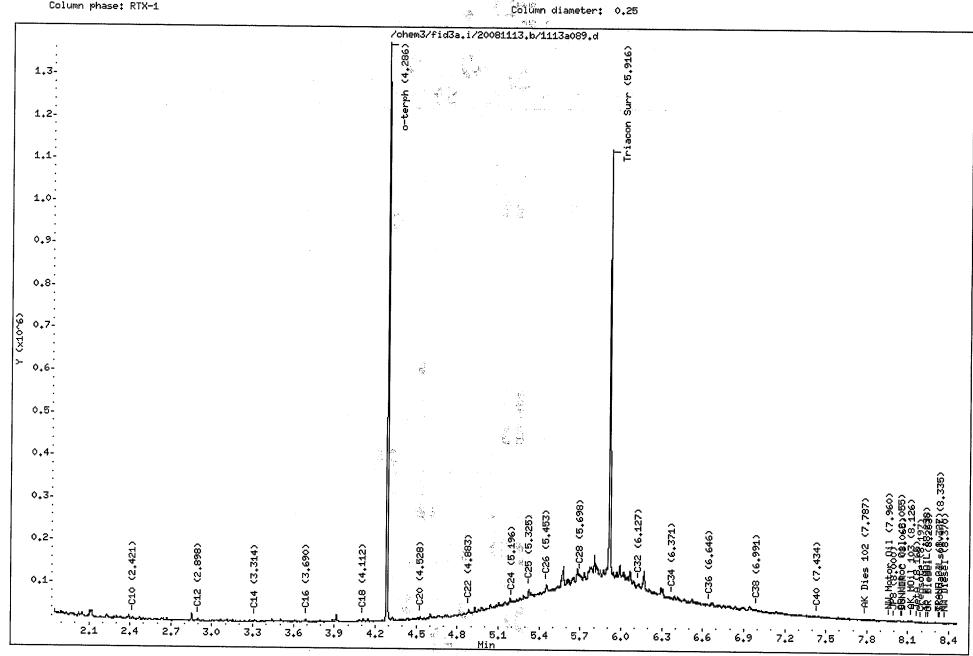
1040

Surrogate	Area	Amount	%Rec
o-Terphenyl	696177	40.2	89.3
Triacontane	495512	30.2	67 1

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008
Min Spirit OR Diesel OR M.Oil Bunker C	15825.3 19612.0 9368.4 8936.8	15-APR-2005 22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a089.d

Date : 14-NOV-2008 09:54


Client ID:

Sample Info: NX93A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

:55

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081113.b/1113a090.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i
Operator: ms

AZDIESEL (C10-C22)

AZMOIL (C22-C32)

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93B Client ID:

Injection: 14-NOV-2008 10:08

Dilution Factor: 1

	FID:3A RESULTS						
Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.773	-0.002	 79285	69604	GAS (Tol-C12)	======================================	14
C8	1.875	0.000	19960	18448	DIESEL (C12-C24)	2647860	175 ppc
C10	2.420	-0.004	10003	21367	M.OIL (C24-C38)	9262507	888 INU
C12	2.897	-0.002	14232	11554	AK-102 (C10-C25)	2955008	156
C14	3.313	0.000	22374	14094	AK-103 (C25-C36)	7973719	1466
C16	3.690	-0.002	35222	24561	OR.DIES (C10-C28)	5155068	263
C18	4.111	-0.004	39286	35513	OR.MOIL (C28-C40)	8149027	870
C20	4.528	-0.004	45316	46430	JET-A (C10-C18)	1038555	62
C22	4.885	-0.003	51380	48255	MIN.OIL (C24-C38)	9262507	722
C24	5.191	-0.002	71684	65543	MSPIRIT (Tol-C12)	916640	58
C25	5.329	-0.001	78450	85875			
C26	5.459	0.001	101577	131933	İ		
C28	5.700	0.005	127364	188401	j	1.	
C32	6.127	-0.003	112593	46231	/ since		
C34	6.372	0.004	102473	47888	1	517	
Filter Peak	8.433	0.002	21166 _ವ ೃ	13176	JP-4 (Tol-C14)	1079712	95 _{/eb} -
C36	6.646	0.001	78423	45320	CREOSOT (C8-C22)	2613131	419
C38	6.990	0.003	60479	23558		9.	
C40	ূ7.431 =======	0.001 ======	42947	28402	BUNKERC (C10-C38)	⁹ 12132358	1358

Range Times: NW Diesel(2.949 - 5.242) NW Gas(1.724 - 2.949) NW M.Oil(5.242 - 7.037)

AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

131

 Surrogate
 Area
 Amount
 %Rec

 o-Terphenyl
 709492
 41.0
 91.0

 Triacontane
 581210
 35.4
 78.7

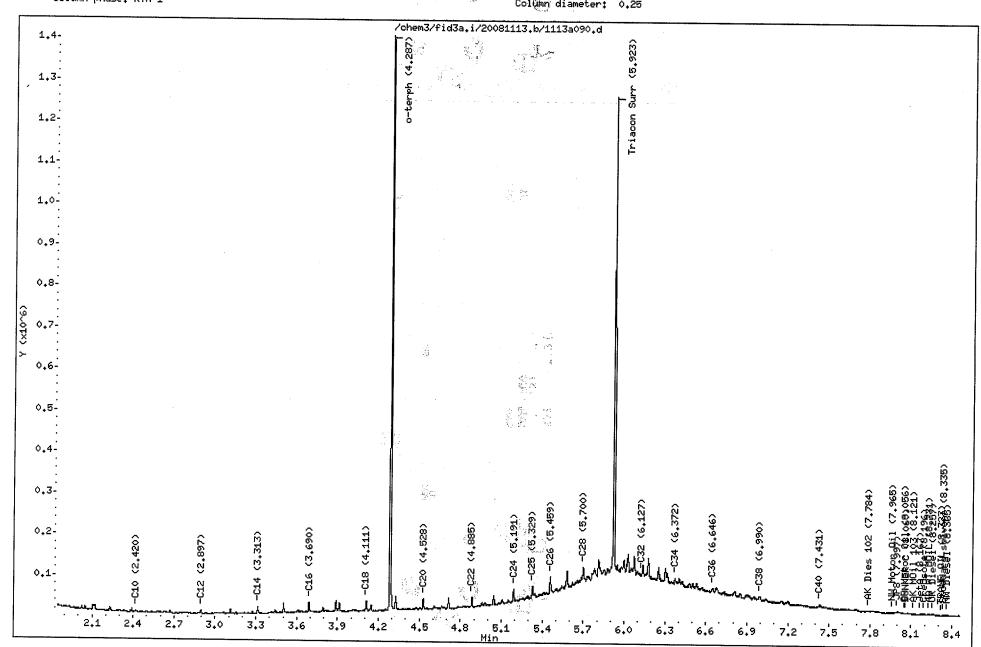
2103839

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a090.d

Date : 14-NOV-2008 10:08

Client ID:


Sample Info: NX93B

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081113.b/1113a052.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93C Client ID:

Injection: 14-NOV-2008 00:58

ici al

Dilution Factor: 5

FID: 3A RESULTS									
Compour	nd RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.771	-0.004	44315	46248			=======================================	======	2
C8	1.873	-0.001	22700		GAS	, ,	1007264	15	(a.)
C10	2.421	-0.001		24639	DIESEL	· ,	2809956		pro
C12			11324	19431	M.OIL	,,	13417148	1286	MO
	2.898	-0.001	22423	13816	AK-102	(C10-C25)	3269948	172	
C14	3.313	0.000	22233	14058	AK-103	(C25-C36)	11832309	2175	
C16	3.691	-0.001	15519	11807	OR.DIES	(C10-C28)	6606821	337	
C18	4.111	-0.004	16657	18496	OR.MOIL	(C28-C40)	11266787	1203	
C20	4.530	-0.002	21441	19537	JET-A	(C10-C18)	1125900	67	
C22	4.884	-0.004	44150	45968	MIN.OIL	(C24-C38)	13417148	1046	
C24	5.185	-0.007	80220	65961	MSPIRIT	(Tol-C12)	1007264	64	
C25	5.333	0.003	95540	50206		(101 012)	1007204	04	
C26	5.460	0.002	111872	57147	1				
C28	5.695	0.000	176938	97776					
C32	6.135	0.004	172904	73127	1				
C34	6.372	0.005	133351	148822		charact 6 2			
	Peak 8.429	-0.003						∕ b	
C36	6.644	47.775	20806	11830	JP-4	/	1284322	² 113	
		-0.001	92582	19980	CREOSOT	(C8-C22)	2565324	411	
C38	6.986	-0.001	64673	17860	ļ		".		٠,
C40	7.431	0.001	41080	6513	BUNKERC	(C10-C38)	16558081	1853	
77DTEC	========== FT /C10 C22\	=======	========	=========	=======	==============	=========		7

AZDIESEL (C10-C22) 2022350 126
AZMOIL (C22-C32) 9665527 1501

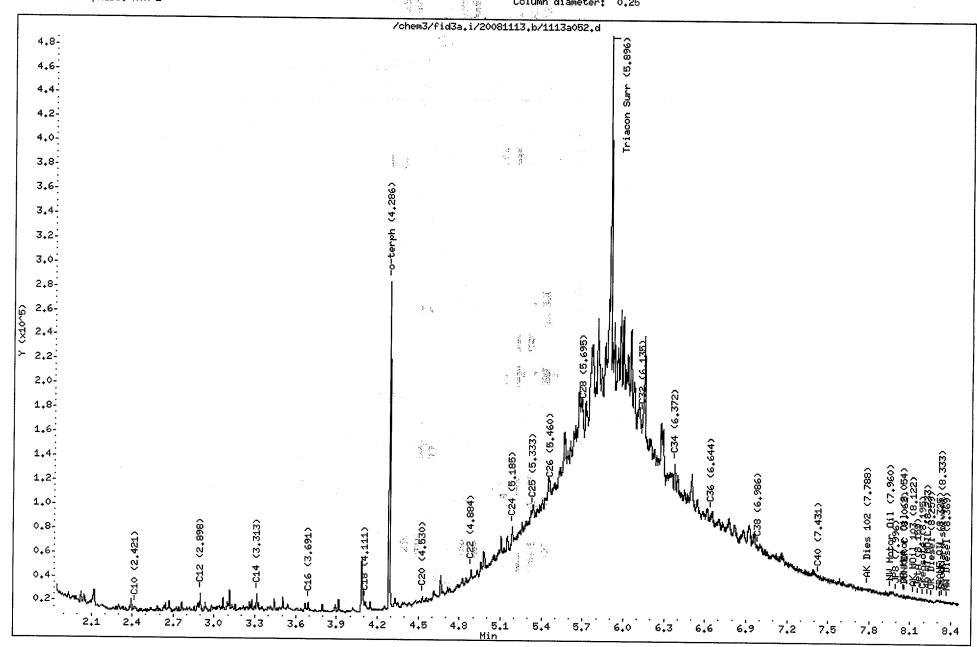
Range Times: NW Diesel (2.949 - 5.242) NW Gas (1.724 - 2.949) NW M.Oil (5.242 - 7.037) AK102 (2.373 - 5.279) AK103 (5.279 - 6.694) Jet A(2.373 - 4.165)

Surrogate	Area	Amount	%Rec
o-Terphenyl	164138	9.5	105.3
Triacontane	129781	7.9	87.9

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
OR M.Oil Bunker C Creosote	9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a052.d

Date : 14-NOV-2008 00:58


Client ID:

Sample Info: NX93C,5

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

Data file: /chem3/fid3a.i/20081113.b/1113a053.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93D Client ID:

Injection: 14-NOV-2008 01:12

Dilution Factor: 5

FID:3A RESULTS

Compound	RT	Shift	Height	Area		ange	Total Area	Conc	
Toluene	1.770	-0.005	50904	48297	GAS	======== (Tol-C12)	======================================	====== 14	= '
C8	1.871	-0.003	22701	24037	DIESEL	(C12-C24)	2098855		nro.
C10	2.417	-0.006	10200	14085	M.OIL	-	11889662	1140	MI
C12	2.898	-0.001	7409	5025	AK-102	(C10-C25)	2468278	130	1910
C14	3.315	0.001	7623	5736	AK-103	(C25-C36)	10383909	1909	
C16	3.694	0.002	7055	6360	OR DIES	(C10-C28)	5199650		
C18	4.115	0.000	10039	9312	OR.MOIL	(C28-C40)	10207640	1090	
C20	4.529	-0.003	16547	15149	JET-A		681753	41	
C22	4.885	-0.003	34915	36105	MIN.OIL	(C24-C38)	11889662	927	
C24	5.193	0.001	58370	9228	MSPIRIT	(Tol-C12)	908537	57	
C25	5.337	0.008	80422	90700	I	(101-012)	908537	5/	
C26	5.454	-0.003	98075	69699					
C28	5.696	0.001	146988	93107					
C32	6.128	-0.002	152243	69204	!	er.s			*
C34	6.367	0.000	103762	18579					
Filter Peak	8.430	-0.001	20436	.7228	 JP-4	(To 3 (C1.4.)	1044640		
C36	6.644	0.000	81976	49816	!	(Tol-C14)	1044643	92	. شمود
C38	6.992	0.005	60882	28875	CREOSOT	(C8-C22)	1959936	314	750
	7.430	0.000			D. D	(000 0 000 0)			
=======	∴/.43U ≟	0.000	40788	13589	BUNKERC	(C10-C38)	14225897	1592	
	10-C22)		.5179 8	:====== 38	=======	========		122222	

AZMOIL (C22-C32) 8417363 1307

Range Times: NW Diesel(2.949 - 5.242) NW Gas(1.724 - 2.949) NW M.Oil(5.242 - 7.037) AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

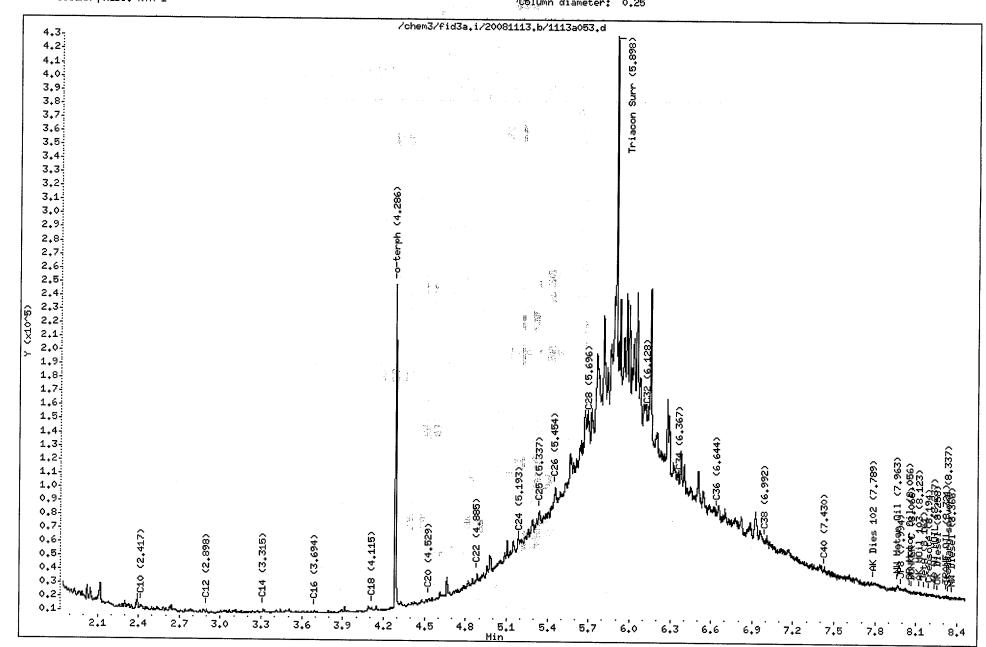
Surrogate	Area	Amount	%Rec
o-Terphenyl	151704	8.8	97.3
Triacontane	128253	7.8	86.8

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
OT CODOCC	0234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a053.d

Date : 14-NOV-2008 01:12

Client ID:


Sample Info: NX93D,5

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Client ID		OTER	TOT OUT
MB-111208		92.7%	0
LCS-111208		95.6%	0
LCSD-111208		95.8%	0
TDP1-9-081103		89.3%	0
TDP1-9-081103	MS	89.2%	0
TDP1-9-081103	MSD	80.3%	0
TDP2-5-081103		91.1%	0
TDP3-5-081103		105%	0
TDP4-4-081103		97.3%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(62-118) (49-125)

Prep Method: SW3546

Log Number Range: 08-29920 to 08-29923

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: TDP1-9-081103 MS/MSD

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Date Extracted MS/MSD: 11/12/08

Date Analyzed MS: 11/14/08 00:14

MSD: 11/14/08 00:29

Instrument/Analyst MS: FID/PKC

MSD: FID/PKC

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount MS: 8.14 g-dry-wt

MSD: 8.11 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 5.0

MSD: 5.0

Percent Moisture: 19.9%

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	16.4	138	184	66.1%	133	185	63.0%	3.7%

TPHD Surrogate Recovery

o-Terphenyl 89.2% 80.3%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Data file: /chem3/fid3a.i/20081113.b/1113a049.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93AMS

Client ID:

Injection: 14-NOV-2008 00:14

2-6

3. 4

·s, r

Y

Dilution Factor: 5

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Rá	ange	Total Area	Conc	
Toluene	1.771	-0.003	====== 54791	======================================	GAS	 (Tol-C12)	======================================	====== 25	
C8	1.872	-0.003	27322	34814	DIESEL	,	3413755	225	
C10	2.421	-0.002	62906	55278	M.OIL	(C24-C38)	2363849	227	
C12	2.899	0.000	126067	66555	AK-102	(C10-C25)	4236255	223	
C14	3.313	-0.001	148947	74924	AK-103	(C25-C36)	1982413	364	
C16	3.691	-0.001	138610	115884	OR.DIES	(C10-C28)	4801663	245	
C18	4.113	-0.002	98238	70628	OR.MOIL	(C28-C40)	2164131	231	
C20	4.529	-0.002	74652	55794	JET-A	(C10-C18)	3063715	182	
C22	4.885	-0.003	36703	30234	MIN.OIL	(C24-C38)	2363849	184	
C24	5.186	-0.006	23902	28236	MSPIRIT	(Tol-C12)	1607880	102	
C25	5.334	0.005	18370	1 9 375					
C26	5.463	0.006	19037	3415					
C28	5.693	-0.002	25956	17211	1		4		
C32~	6.131	0.001	27629	4050 <u>4</u> آفيمت			Arts .		
C34	6.370	0002	23230	13674			4		٠.
Filter Peak	8.429	-0.002	11067	6553	JP-4	(Tol-C14)	2353414	207	5 4.7
C36	6.643		21743	33928	CREOSOT	(C8-C22)	4545452	729	
C38	6.985	-0.002	17355	4122				5	
C40	7.429	-0.001	15167	5085	BUNKERC	(C10-C38)	6568306	735	رغازلانا،
AZDIESEL (C1	.0-C22)	381	.2967	======================================	=======	: = = = = = = = = = = = = = = = = = = =	=======================================	=====	TOOK OF
AZM@IL (C2	2-C32)	163	32469	254 (2.7%)			Mig.		

Range Times: NW Diesel (2.949 - 5.242) NW Gas (1.724 - 2.949) NW M.Oil (5.242 - 7.037)

AK102 (2.373 - 5.279) AK103 (5.279 - 6.694) Jet A(2.373 - 4.165)

 Surrogate
 Area
 Amount
 %Rec

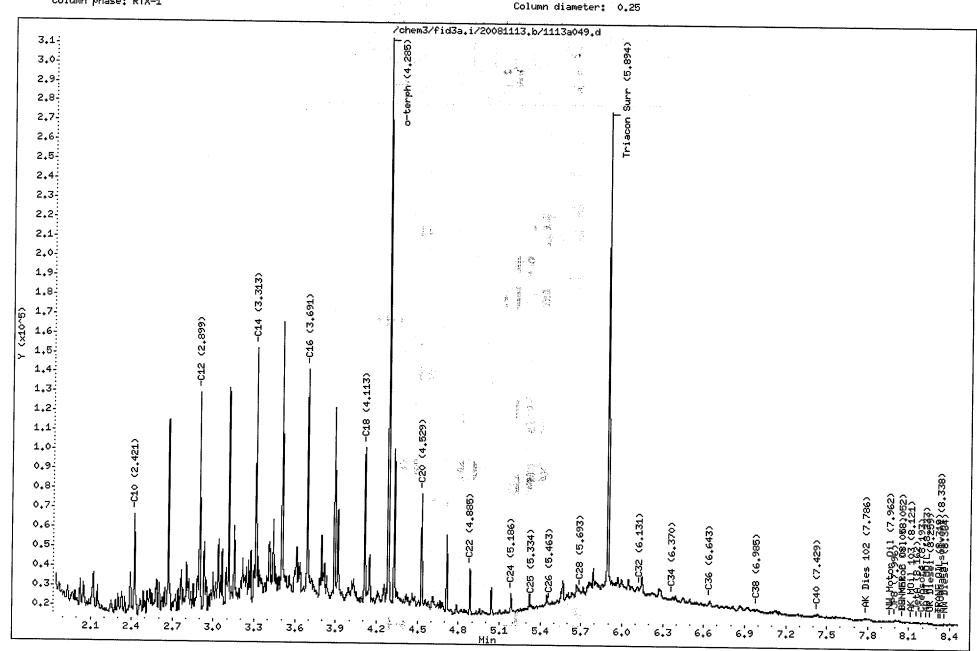
 o-Terphenyl
 139014
 8.0
 89.2

 Triacontane
 113067
 6.9
 76.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a049.d

Date : 14-NOV-2008 00:14


Client ID:

Sample Info: NX93AMS,5

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081113.b/1113a050.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms Report Date: 11/14/2008 Macro: FID:3A111308

ARI ID: NX93AMSD

Client ID:

Injection: 14-NOV-2008 00:29

Dilution Factor: 5

FID:3A RESULTS

				LID:3W KESOI	11.0			
Compound	RT 	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1 770			=========	=======	========	=======================================	======
	1.772	-0.002			GAS	,	1493494	23
C8	1.873	-0.001	26138		DIESEL	(C12-C24)	3252361	215
C10	2.422	-0.001	58571	41122	M.OIL	(C24-C38)	2639230	253
C12	2.899	0.000	109150	51423	AK-102	(C10-C25)	4017481	212
C14	3.313	0.000	130540	63374	AK-103	(C25-C36)	2203645	405
C16	3.691	0.000	124129	91715	OR.DIES	(C10-C28)	4648852	237
C18	4.113	-0.002	90438	67694	OR MOIL	(C28-C40)	2438430	260
C20	4.530	-0.002	64911		JET-A	(C10-C18)	2842418	169
C22	4.884	~0.003	34867		MIN.OIL	(C24-C38)	2639230	206
C24	5.186	-0.006	24549	35230	MSPIRIT	(Tol-C12)		
C25	5.333	0.004	19405	3075	INDITACI	(101-012)	1493494	94
C26	5.447	-0.010	26017	35388	1			
C28	5.696	0.001	28554		-			
C32	6.133	0.001				4.5		
GO 4	6.369			15931		S. was		
		0.002	26098	18445		4.6	45. *	
	8.431	.0.000	12636	4507	JP-4	(Tol-C14)	2190226	193
C36	6.644	dO.000	29203	55356	CREOSOT	(C8-C22)	4281602	687
C38	6.986	-0.001	19568	3885				
C40	7.428	-0.002	18085	12380	BUNKERC	(C10-C38)	6624773	74:1
AZDIESEL (C10	====== D-C22)	======= 35	======= 592201	========= 224	=======	=======================================	=======================================	=====
AZMOIL (C22	2-C3 ₂)	17	777580	276				9 Y

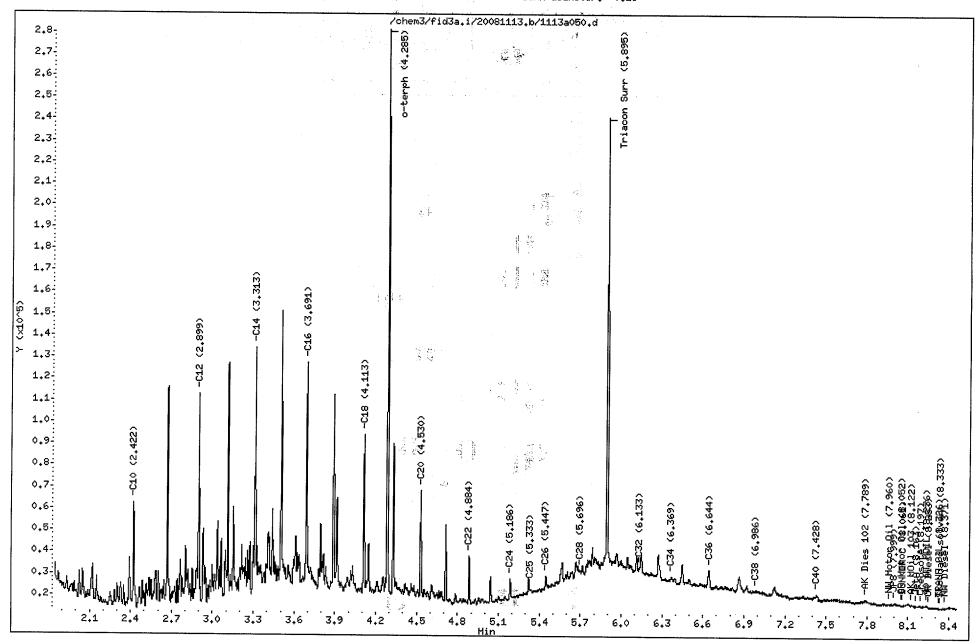
Range Times: NW Diesel (2.949 - 5.242) NW Gas (1.724 - 2.949) NW M.Oil (5.242 37.037) AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

Surrogate	Area	Amount	%Rec
o-Terphenyl	125266	7.2	80.4
Triacontane	100703	6.1	68.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a050.d

Date : 14-NOV-2008 00:29


Client ID:

Sample Info: NX93AMSD,5

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-111208

LCS/LCSD

Lab Sample ID: LCS-111208

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08

Date Received: 11/03/08

Date Extracted LCS/LCSD: 11/12/08

Instrument/Analyst LCS: FID/PKC

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 11/13/08 23:31 Final Extract Volume LCS: 1.0 mL LCSD: 11/13/08 23:45

LCSD: 1.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Spike LCS Spike LCSD LCSD Added-LCSD Recovery Range LCS Added-LCS Recovery RPD Diesel 111 150 74.0% 112 150 74.7% 0.9%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl 95.6% 95.8%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

LCSD: FID/PKC

Data file: /chem3/fid3a.i/20081113.b/1113a046.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/14/2008 Macro: FID:3A111308

ARI ID: NX93LCSS1

Client ID:

Injection: 13-NOV-2008 23:31

17.

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.770	-0.004	103536	81163	l gas	(Tol-C12)	4704150	72
C8	1.871	-0.003	40115	46680	DIESEL	(C12-C24)	16823740	1111
C10	2.421	-0.002	275391	171587	M.OIL	(C24-C38)	905348	87
C12	2.899	0.000	605397	283289	AK-102	(C10-C25)	20285972	1069
C14	3.313	-0.001	800440	351629	AK-103	(C25-C36)	736728	135
C16	3.691	-0.001	744366	526364	OR.DIES	(C10-C28)	20625368	1052
C18	4.115	0.000	531973	390542	OR.MOIL	(C28-C40)	679614	73
C20	4.531	-0.001	3.82593	288726	JET-A	(C10-C18)	15438377	917
C22	4.884	-0.004	158946	117563	MIN.OIL	(C24-C38)	905348	71
C24	5.186	-0.006	71290	53857	MSPIRIT	(Tol-C12)	4704150	297
C25	5.334	0.005	19545	15856	j			
C26	5.450	-0.008	25864	30304	Ì			
C28	5.699	0.004	7478	2082				
C32	6.122	-0.008	12605	19659	ĺ	Ser or Man		
C34	6.376	0.009	7737	7924			1 A	
Filter Peak	8.425	-0, 006	5281	4204	JP-4	(Tol-C14)	8685020	764
C36	6.654	0.010	12460	·· 27779	CREOSOT	(C8-C22)	20688478	3318
C38 🚴 😘	6.982	-0.005	6263	3752	İ		.	
C40	7.443	0.013	7764	14285	BUNKERC	(C10-C38)	21153862	2367
AZDIESEL (C1	====== 0-C22)	===== 191	.92319 1	======================================	=======	=======	=======================================	=====
AZMOIL (C2	2-C32)	11	.74570	182				12 -

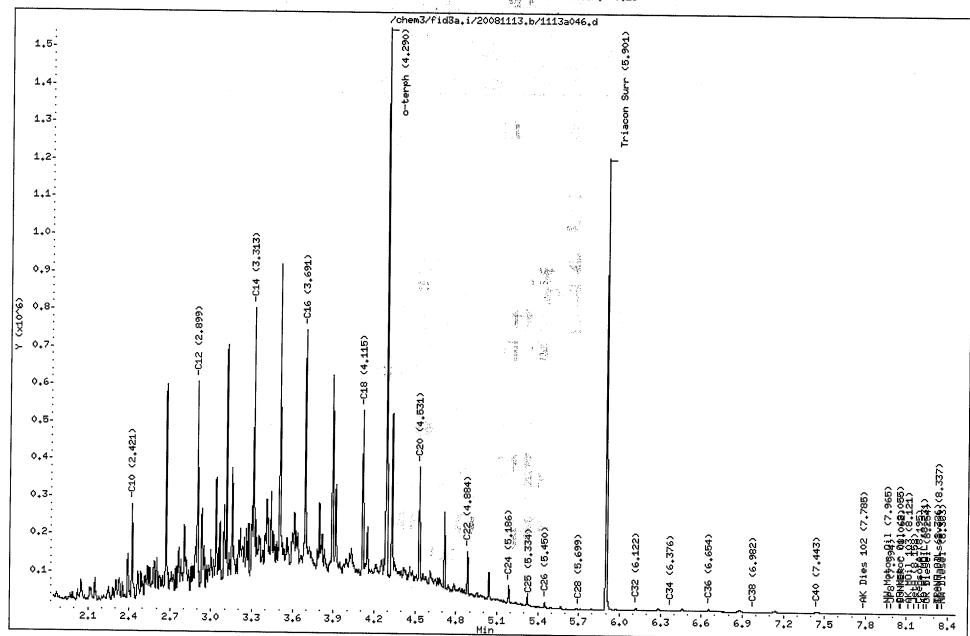
Range Times: NW Diesel(2.949 - 5.242) NW Gas(1.724 - 2.949) NW M.Oil(5.242 7.037) AK102(2.373 - 5.279) AK103(5.279 - 6.694) Jet A(2.373 - 4.165)

Surrogate Area Amount %Rec o-Terphenyl 744232 43.0 95.5 Triacontane 660733 40.3 89.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008
Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15825.3 19612.0 9368.4 8936.8 6234.4	15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a046.d

Date : 13-NOV-2008 23:31


Client ID:

Sample Info: NX93LCSS1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Cólumn diameter: 0.25

\$ E

Data file: /chem3/fid3a.i/20081113.b/1113a047.d Method: /chem3/fid3a.i/20081113.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/14/2008 Macro: FID:3A111308 ARI ID: NX93LCSDS1

Client ID:

Injection: 13-NOV-2008 23:45

Dilution Factor: 1

FID:3A	RESULTS
--------	---------

Compound	RT	Shift	Height	Area	Rai	nge	Total Area	Conc
Toluene	1.771	-0.003	122948	118438	GAS	(Tol-C12)	4812259	74
C8	1.871	-0.003	41840	47376		(C12-C24)	16993477	1122
C10	2.422	-0.002	297159	204312		(C24-C38)	1018335	98
C12	2.900	0.001	586670	327048		(C10-C25)	20507782	1080
C14	3.313	0.000	779949	357458	:	(C25-C36)	826566	152
C16	3.692	0.000	737339	633524	OR.DIES	(C10-C28)	20836327	1062
C18	4.116	0.001	518435	369005	OR.MOIL	(C28-C40)	812415	87
C20	4.530	-0.001	374452	290711	JET-A	(C10-C18)	15566382	925
C22	4.885	-0.002	160461	122771	MIN.OIL	(C24-C38)	1018335	79
C24	5.188	-0.004	69859	63027	MSPIRIT	(Tol-C12)	4812259	304
C25	5.324	-0.005	40727	42716	İ	-	* -	
C26	5.452	-0.005	24805	24910	Ì			
C28	5.686	-0.008	10693	13063	İ			
C32	6.122	-0.008	39032	38372	ĺ	ومشيعة .		
C34	6.362	-0.005	8076	5877	İ			t
	8.428	-0.003	5234	4071	∫ JP-4 ((Tol-C14)	8842889	778
C36	6.653	0.009	34236	55308	CREOSOT	(C8-C22)	20921845	3356
C38	6.991	0.004	6369	3810			ija i	
C40	7.437 =	0.007	13182	17297	BUNKERC ((C10-C38)	21479277	2403

AZDIESEL (C10-C22) 19403 AZMOIL (C22-C32) 1194

19403627 1208 1194603 ... 186

Range Times NW Diesel (2.949 - 5.242) NW Gas (1.724 - 2.949) NW M.Oil (5.242 - 7.037)

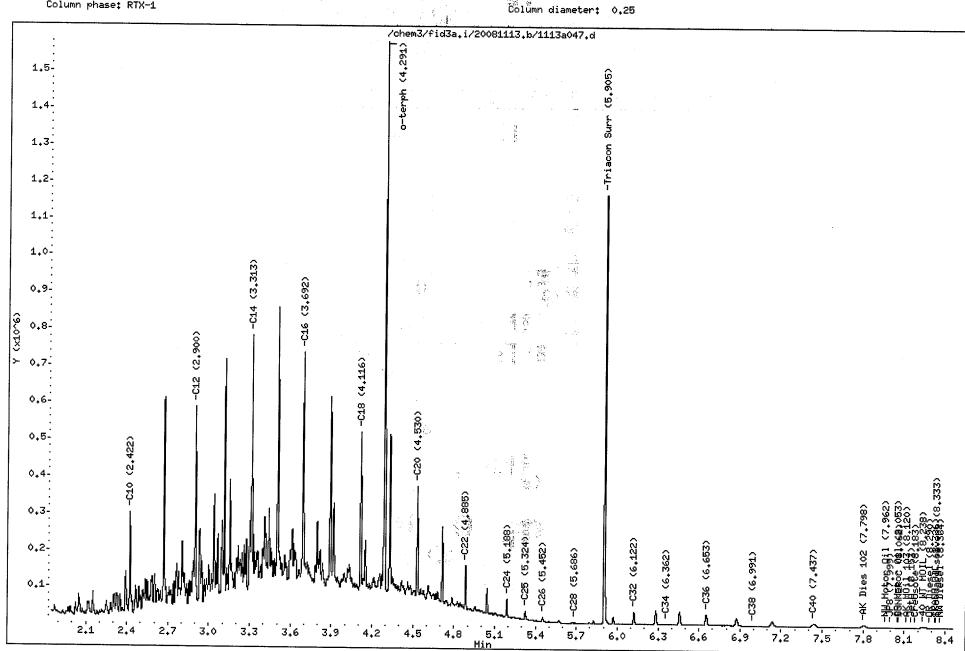
AK102 (2.373 - 5.279) AK103 (5.279 - 6.694) Jet A(2.373 - 4.165)

Surrogate	Area	Amount	%Rec	1000
o-Terphenyl Triacontane	746843 666563	43.1 40.6	95.8	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 16410.4 65383.2 15141.0 10432.5 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 13-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081113.b/1113a047.d

Date : 13-NOV-2008 23:45


Client ID:

Sample Info: NX93LCSDS1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NX93

Matrix: Soil

Project: BOEING THOMPSON

Date Received: 11/03/08

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-29920-111208MB1	Method Blank	10.0 g	1.00 mL	_	11/12/08
08-29920-111208LCS1	Lab Control	10.0 g	1.00 mL	_	11/12/08
08-29920-111208LCSD1	Lab Control Dup	10.0 g	1.00 mL	-	11/12/08
08-29920-NX93A	TDP1-9-081103	8.54 g	1.00 mL	D	11/12/08
08-29920-NX93AMS	TDP1-9-081103	8.14 g	1.00 mL	D	11/12/08
08-29920-NX93AMSD	TDP1-9-081103	8.11 g	1.00 mL	D	11/12/08
08-29921-NX93B	TDP2-5-081103	9.35 g	1.00 mL	D	11/12/08
08-29922-NX93C	TDP3-5-081103	8.68 g	1.00 mL	D	11/12/08
08-29923-NX93D	TDP4-4-081103	8.94 g	1.00 mL	D	11/12/08

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93A

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized Reported: 11/18/08

Percent Total Solids: 72.6%

Sample ID: TDP1-9-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08

Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	6	9	
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.3	0.4	
3050B	11/10/08	6010B	11/17/08	7440-47-3	Chromium	0.6	12.3	
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.3	31.6	
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	3	17	
CLP	11/10/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.06	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93B

LIMS ID: 08-29921

Matrix: Soil

Data Release Authorized

Reported: 11/18/08

Percent Total Solids: 92.5%

Sample ID: TDP2-5-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	5	5	U
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.2	0.2	Ū
3050B	11/10/08	6010B	11/17/08	7440-47-3	Chromium	0.5	21.8	
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.2	23.2	
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	2	2	
CLP	11/10/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93C LIMS ID: 08-29922 Matrix: Soil

Data Release Authorized:

Reported: 11/18/08

Percent Total Solids: 83.7%

Sample ID: TDP3-5-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	6	6	
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.2	0.2	
3050B	11/10/08	6010B	11/17/08	7440-47-3	Chromium	0.6	21.2	
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.2	24.8	
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	2	139	
CLP	11/10/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.06	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93D

LIMS ID: 08-29923 Matrix: Soil

Data Release Authorized

Reported: 11/18/08

Percent Total Solids: 87.3%

Sample ID: TDP4-4-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20505	7 4 4 0 40 -							
3050B	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	6	18	
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.2		
3050B	11/10/08	6010B	11/17/08	7440-47-3			1.0	
20 E O D	•			· -· -	Chromium	0.6	29.0	
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.2	67.1	
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	2		
CLP	11/10/08	7471A	11/11/00			_	106	
	11/10/00	/4/1A	11/14/08	7439-97-6	Mercury	0.04	0.20	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93E

LIMS ID: 08-29924

Matrix: Soil

Data Release Authorized:

Reported: 11/18/08

Percent Total Solids: 96.7%

Sample ID: TDP5-5-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08
Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050В	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	5	5	U
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/10/08	6010B	11/17/08	7440-47-3	Chromium	0.5	8.8	
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.2	10.8	
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	2	2	U
CLP	11/10/08	7471A	11/14/08	7439-97-6	Mercury	0.04	0.04	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93LCS

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/18/08

Sample ID: LAB CONTROL

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	197	200	98.5%	
Cadmium	6010B	47.7	50.0	95.4%	
Chromium	6010B	46.5	50.0	93.0%	
Copper	6010B	48.8	50.0	97.6%	
Lead	6010B	194	200	97.0%	
Mercury	7471A	1.02	1.00	102%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NX93MB

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/18/08

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/10/08	6010B	11/17/08	7440-38-2	Arsenic	5	5	U
3050B	11/10/08	6010B	11/17/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/10/08	6010B	11/17/08	7440-47-3	Chromium	0.5	0.5	U
3050B	11/10/08	6010B	11/17/08	7440-50-8	Copper	0.2	0.2	U
3050B	11/10/08	6010B	11/17/08	7439-92-1	Lead	2	2	U
CLP	11/10/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NX93F

LIMS ID: 08-29925

Matrix: Water

Data Release Authorized: Reported: 11/18/08

Sample ID: TDP1-GW-081103

SAMPLE

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	<u>Q</u>
200.8	11/06/08	200.8	11/13/08	7440-38-2	Arsenic	0.0002	0.0128	
6010B	11/06/08	6010B	11/17/08	7440-43-9	Cadmium	0.002	0.002	U
6010B	11/06/08	6010B	11/17/08	7440-47-3	Chromium	0.005	0.006	
6010B	11/06/08	6010B	11/17/08	7440-50-8	Copper	0.002	0.002	U
200.8	11/06/08	200.8	11/13/08	7439-92-1	Lead	0.001	0.001	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.0001	0.0001	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NX93LCS

LIMS ID: 08-29925

Matrix: Water

Data Release Authorized

Reported: 11/18/08

Sample ID: LAB CONTROL

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	0.0236	0.0250	94.4%	-
Cadmium	6010B	0.493	0.500	98.6%	
Chromium	6010B	0.472	0.500	94.4%	
Copper	6010B	0.466	0.500	93.2%	
Lead	200.8	0.025	0.025	100%	
Mercury	7470A	0.0023	0.0020	115%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NX93MB LIMS ID: 08-29925 Matrix: Water Data Release Authorized Reported: 11/18/08

Sample ID: METHOD BLANK

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
200.8	11/06/08	200.8	11/13/08	7440-38-2	Arsenic	0.0002	0.0002	U
6010B	11/06/08	6010B	11/17/08	7440-43-9	Cadmium	0.002	0.002	U
6010B	11/06/08	6010B	11/17/08	7440-47-3	Chromium	0.005	0.005	U
6010B	11/06/08	6010B	11/17/08	7440-50-8	Copper	0.002	0.002	U
200.8	11/06/08	200.8	11/13/08	7439-92-1	Lead	0.001	0.001	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.0001	0.0001	U

U-Analyte undetected at given RL RL-Reporting Limit

Sample ID: TDP1-9-081103 SAMPLE

Lab Sample ID: NX93A LIMS ID: 08-29920

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

Matrix: Soil

025173

Data Release Authorized:

Date Sampled: 11/03/08

Reported: 11/21/08

Date Received: 11/03/08

Date Extracted: 11/10/08 Date Analyzed: 11/19/08 19:53 Instrument/Analyst: NT4/LJR

Sample Amount: 8.11 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: No

Dilution Factor: 1.00 Percent Moisture: 19.9%

CAS Number RLAnalyte Result 108-95-2 < 62 U Phenol 62 < 62 U 111-44-4 Bis-(2-Chloroethyl) Ether 62 < 62 U 95-57-8 2-Chlorophenol 62 < 62 U 541-73-1 1,3-Dichlorobenzene 62 106-46-7 < 62 U 1,4-Dichlorobenzene 62 < 62 U 100-51-6 Benzyl Alcohol 62 < 62 U 95-50-1 1,2-Dichlorobenzene 62 95-48-7 < 62 U 2-Methylphenol 62 < 62 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 62 106-44-5 4-Methylphenol 62 < 62 U 621-64-7 N-Nitroso-Di-N-Propylamine 310 < 310 U 67-72-1 Hexachloroethane < 62 U 62 98-95-3 Nitrobenzene 62 < 62 U Isophorone 78-59-1 62 < 62 U 88-75-5 2-Nitrophenol 62 < 62 U 105-67-9 2,4-Dimethylphenol 62 < 62 U 65-85-0 Benzoic Acid 620 < 620 U 111-91-1 bis(2-Chloroethoxy) Methane < 62 U 62 120-83-2 2,4-Dichlorophenol 310 < 310 U < 62 U 120-82-1 1,2,4-Trichlorobenzene 62 91-20-3 Naphthalene 62 < 62 U 106-47-8 4-Chloroaniline 310 < 310 U < 62 U 87-68-3 Hexachlorobutadiene 62 < 310 U 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 62 < 62 U 77-47-4 Hexachlorocyclopentadiene 310 < 310 U 88-06-2 2,4,6-Trichlorophenol 310 < 310 U 95-95-4 2,4,5-Trichlorophenol 310 < 310 U 91-58-7 2-Chloronaphthalene < 62 U 62 88-74-4 2-Nitroaniline 310 < 310 U 131-11-3 Dimethylphthalate 62 < 62 U 208-96-8 Acenaphthylene < 62 U 62 99-09-2 3-Nitroaniline 310 < 310 U < 62 U 83-32-9 Acenaphthene 62 51-28-5 2,4-Dinitrophenol 620 < 620 U 100-02-7 4-Nitrophenol 310 < 310 U 132-64-9 Dibenzofuran 62 < 62 U 606-20-2 2,6-Dinitrotoluene 310 < 310 U 121-14-2 2,4-Dinitrotoluene 310 < 310 U

ANALYTICAL RESOURCES ' INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: TDP1-9-081103 SAMPLE

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Date Analyzed: 11/19/08 19:53

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	< 62 U
7005-72-3	4-Chlorophenyl-phenylether	62	< 62 U
86-73-7	Fluorene	62	< 62 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	620	< 620 U
86-30-6	N-Nitrosodiphenylamine	62	< 62 U
101-55-3	4-Bromophenyl-phenylether	62	< 62 U
118-74-1	Hexachlorobenzene	62	< 62 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	62	< 62 U
86-74-8	Carbazole	62	< 62 U
120-12-7	Anthracene	62	< 62 U
84-74-2	Di-n-Butylphthalate	62	< 62 U
206-44-0	Fluoranthene	62	< 62 U
129-00-0	Pyrene	62	< 62 U
85-68-7	Butylbenzylphthalate	62	< 62 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	62	< 62 U
117-81-7	bis(2-Ethylhexyl)phthalate	62	< 62 U
218-01-9	Chrysene	62	< 62 Ŭ
117-84-0	Di-n-Octyl phthalate	62	< 62 Ŭ
205-99-2	Benzo(b) fluoranthene	62	< 62 U
207-08-9	Benzo(k)fluoranthene	62	< 62 U
50-32-8	Benzo(a)pyrene	62	< 62 U
193-39-5	Indeno(1,2,3-cd)pyrene	62	< 62 U
53-70-3	Dibenz(a,h)anthracene	62	< 62 U
191-24-2	Benzo(g,h,i)perylene	62	< 62 U
90-12-0	1-Methylnaphthalene	62	< 62 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	82.8%
d14-p-Terphenyl	77.6%	d4-1,2-Dichlorobenzene	80.8%
d5-Phenol	72.0%	2-Fluorophenol	73.6%
2,4,6-Tribromophenol	94.7%	d4-2-Chlorophenol	77.3%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-111008	88.4%	95.6%	104%	93.2%	89.1%	84.3%	111%	90.7%	0
LCS-111008	92.0%	102%	115%	92.8%	83.7%	87.2%	122%	93.1%	0
LCSD-111008	92.0%	106%	117%	90.8%	81.6%	86.4%	125%	93.1%	0
TDP1-9-081103	77.6%	82.8%	77.6%	80.8%	72.0%	73.6%	94.7%	77.3%	0
TDP1-9-081103 MS	80.4%	90.8%	94.8%	76.4%	79.5%	75.5%	105%	80.3%	0
TDP1-9-081103 MSD	77.2%	86.0%	96.0%	74.8%	76.3%	72.5%	106%	77.3%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	=	d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
(PHL)	=	d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
		2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 08-29920 to 08-29920

Sample ID: TDP1-9-081103 MS/MSD

Lab Sample ID: NX93A LIMS ID: 08-29920

Project: BOEING THOMPSON

Matrix: Soil

025173

Data Release Authorized: Reported: 11/21/08

Date Sampled: 11/03/08 Date Received: 11/03/08

Date Extracted MS/MSD: 11/10/08

Sample Amount MS: 8.14 g-dry-wt

MSD: 8.07 g-dry-wt

QC Report No: NX93-Landau Associates, Inc.

Date Analyzed MS: 11/19/08 20:27

Final Extract Volume MS: 0.5 mL

MSD: 11/19/08 21:02 Instrument/Analyst MS: NT4/LJR

MSD: 0.5 mL Dilution Factor MS: 1.00

MSD: 1.00

MSD: NT4/LJR

Percent Moisture: 19.9 %

GPC Cleanup: NO

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 61.7	1260	1540	88.3%	1250	1550	07.10	0.7%
		1360	1540		1350		87.1%	
Bis-(2-Chloroethyl) Ether	< 61.7	1170	1540	76.0%	861	1550	55.5%	30.4%
2-Chlorophenol	< 61.7	1300	1540	84.4%	1320	1550	85.2%	1.5%
1,3-Dichlorobenzene	< 61.7	1250	1540	81.2%	1290	1550	83.2%	3.1%
1,4-Dichlorobenzene	< 61.7	1270	1540	82.5%	1310	1550	84.5%	3.1%
Benzyl Alcohol	< 61.7	2150	3070	70.0%	2200	3100	71.0%	2.3%
1,2-Dichlorobenzene	< 61.7	1270	1540	82.5%	1320	1550	85.2%	3.9%
2-Methylphenol	< 61.7	1290	1540	83.8%	1300	1550	83.9%	0.8%
2,2'-Oxybis(1-Chloropropane		1080	1540	70.1%	1120	1550	72.3%	3.6%
4-Methylphenol	< 61.7	2630	3070	85.7%	2630	3100	84.8%	0.0%
N-Nitroso-Di-N-Propylamine		1150	1540	74.7%	1160	1550	74.8%	0.9%
Hexachloroethane	< 61.7	1160	1540	75.3%	1140	1550	73.5%	1.7%
Nitrobenzene	< 61.7	1120	1540	72.7%	1130	1550	72.9%	0.9%
Isophorone	< 61.7	1370	1540	89.0%	1350	1550	87.1%	1.5%
2-Nitrophenol	< 61.7	1490	1540	96.8%	1470	1550	94.8%	1.4%
2,4-Dimethylphenol	< 61.7	1430	1540	92.9%	1400	1550	90.3%	2.1%
Benzoic Acid	< 617	4410	4610	95.7%	4440	4650	95.5%	0.7%
bis(2-Chloroethoxy) Methane	e< 61.7	1320	1540	85.7%	1330	1550	85.8%	0.8%
2,4-Dichlorophenol	< 308	1540	1540	100%	1520	1550	98.1%	1.3%
1,2,4-Trichlorobenzene	< 61.7	1430	1540	92.9%	1430	1550	92.3%	0.0%
Naphthalene	< 61.7	1470	1540	95.5%	1450	1550	93.5%	1.4%
4-Chloroaniline	< 308	4230	3690	115%	4480	3720	120%	5.7%
Hexachlorobutadiene	< 61.7	1480	1540	96.1%	1440	1550	92.9%	2.7%
4-Chloro-3-methylphenol	< 308	1510	1540	98.1%	1510	1550	97.4%	0.0%
2-Methylnaphthalene	< 61.7	1480	1540	96.1%	1480	1550	95.5%	0.0%
Hexachlorocyclopentadiene	< 308	1360	4610	29.5%	1160	4650	24.9%	15.9%
2,4,6-Trichlorophenol	< 308	1540	1540	100%	1560	1550	101%	1.3%
2,4,5-Trichlorophenol	< 308	1510	1540	98.1%	1520	1550	98.1%	0.7%
2-Chloronaphthalene	< 61.7	1630	1540	106%	1630	1550	105%	0.0%
2-Nitroaniline	< 308	1460	1540	94.8%	1460	1550	94.2%	0.0%
Dimethylphthalate	< 61.7	1480	1540	96.1%	1440	1550	92.9%	2.7%
Acenaphthylene	< 61.7	1540	1540	100%	1550	1550	100%	0.6%
3-Nitroaniline	< 308	3020	3930	76.8%	3040	3970	76.6%	0.7%
Acenaphthene	< 61.7	1530	1540	99.4%	1520	1550	98.1%	0.7%
2,4-Dinitrophenol	< 617	4680	4610	102%	4490	4650	96.6%	4.1%
4-Nitrophenol	< 308	1470	1540	95.5%	1480	1550	95.5%	0.7%
Dibenzofuran	< 61.7	1490	1540	96.8%	1520	1550	98.1%	2.0%
2,6-Dinitrotoluene	< 308	1760	1540	114%	1740	1550	112%	1.1%
2,4-Dinitrotoluene	< 308	1690	1540	110%	1700	1550	110%	0.6%
Diethylphthalate	< 61.7	1530	1540	99.4%	1530	1550	98.7%	0.0%
4-Chlorophenyl-phenylether		1550	1540	101%	1610	1550	104%	3.8%
Fluorene	< 61.7	1540	1540	100%	1600	1550	103%	3.8%
4-Nitroaniline	< 308	1430	1540	92.9%	1440	1550	92.9%	0.7%
4,6-Dinitro-2-Methylphenol	< 617	2670	4610	57.9%	2370	4650	51.0%	11.9%
N-Nitrosodiphenylamine	< 61.7	1460	1540	94.8%	1460	1550	94.2%	0.0%
11 111CLOBOAT PITCH A TUMETITE	~ 01./	7-700	T240	J = . U 0	7400	1000	ノエ・ムつ	0.00

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TDP1-9-081103 MS/MSD

Lab Sample ID: NX93A LIMS ID: 08-29920

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

Matrix: Soil

025173

Date Analyzed MS: 11/19/08 20:27
MSD: 11/19/08 21:02

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
4-Bromophenyl-phenylether	< 61.7	1520	1540	98.7%	1480	1550	95.5%	2.7%
Hexachlorobenzene	< 61.7	1590	1540	103%	1540	1550	99.4%	3.2%
Pentachlorophenol	< 308	1800	1540	117%	1820	1550	117%	1.1%
Phenanthrene	< 61.7	1580	1540	103%	1550	1550	100%	1.9%
Carbazole	< 61.7	1620	1540	105%	1570	1550	101%	3.1%
Anthracene	< 61.7	1500	1540	97.4%	1470	1550	94.8%	2.0%
Di-n-Butylphthalate	< 61.7	1480	1540	96.1%	1450	1550	93.5%	2.0%
Fluoranthene	< 61.7	1730	1540	112%	1680	1550	108%	2.9%
Pyrene	< 61.7	1560	1540	101%	1650	1550	106%	5.6%
Butylbenzylphthalate	< 61.7	1500	1540	97.4%	1590	1550	103%	5.8%
3,3'-Dichlorobenzidine	< 308	2860	3930	72.8%	3150	3970	79.3%	9.7%
Benzo(a)anthracene	< 61.7	1590	1540	103%	1610	1550	104%	1.2%
bis(2-Ethylhexyl)phthalate	< 61.7	1530	1540	99.4%	1530	1550	98.7%	0.0%
Chrysene	< 61.7	1570	1540	102%	1550	1550	100%	1.3%
Di-n-Octyl phthalate	< 61.7	1500	1540	97.4%	1490	1550	96.1%	0.7%
Benzo(b)fluoranthene	< 61.7	1860	1540	121%	2120	1550	137%	13.1%
Benzo(k)fluoranthene	< 61.7	2250	1540	146%	1910	1550	123%	16.3%
Benzo(a)pyrene	< 61.7	1340	1540	87.0%	1320	1550	85.2%	1.5%
Indeno(1,2,3-cd)pyrene	< 61.7	784	1540	50.9%	813	1550	52.5%	3.6%
Dibenz(a,h)anthracene	< 61.7	810	1540	52.6%	848	1550	54.7%	4.6%
Benzo(g,h,i)perylene	< 61.7	648	1540	42.1%	678	1550	43.7%	4.5%
1-Methylnaphthalene	< 61.7	1560	1540	101%	1570	1550	101%	0.6%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Sample ID: TDP1-9-081103 MATRIX SPIKE

Lab Sample ID: NX93A LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08

Date Analyzed: 11/19/08 20:27

Instrument/Analyst: NT4/LJR

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Sample Amount: 8.14 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 19.9%

CAS Number	Analyte	RL	Resul
108-95-2	Phenol	61	
111-44-4	Bis-(2-Chloroethyl) Ether	61	
95-57-8	2-Chlorophenol	61	
541-73-1	1,3-Dichlorobenzene	61	
106-46-7	1,4-Dichlorobenzene	61	
100-51-6	Benzyl Alcohol	61	
95-50-1	1,2-Dichlorobenzene	61	
95-48-7	2-Methylphenol	61	
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	
106-44-5	4-Methylphenol	61	
621-64-7	N-Nitroso-Di-N-Propylamine	310	
67-72-1	Hexachloroethane	61	
98-95-3	Nitrobenzene	61	
78-59-1	Isophorone	61	
88-75-5	2-Nitrophenol	61	
105-67-9	2,4-Dimethylphenol	61	
65-85-0	Benzoic Acid	610	
111-91-1	bis(2-Chloroethoxy) Methane	61	
120-83-2	2,4-Dichlorophenol	310	
120-82-1	1,2,4-Trichlorobenzene	61	
91-20-3	Naphthalene	61	
106-47-8	4-Chloroaniline	310	
87-68-3	Hexachlorobutadiene	61	
59-50-7	4-Chloro-3-methylphenol	310	
91-57-6	2-Methylnaphthalene	61	
77-47-4	Hexachlorocyclopentadiene	310	
88-06-2	2,4,6-Trichlorophenol	310	
95-95-4	2,4,5-Trichlorophenol	310	
91-58-7	2-Chloronaphthalene	61	
88-74-4	2-Nitroaniline	310	
131-11-3	Dimethylphthalate	61	
208-96-8	Acenaphthylene	61	
99-09-2	3-Nitroaniline	310	
83-32-9	Acenaphthene	61	
51-28-5	2,4-Dinitrophenol	610	
100-02-7	4-Nitrophenol	310	
132-64-9	Dibenzofuran	61	
606-20-2	2,6-Dinitrotoluene	310	
121-14-2	2,4-Dinitrotoluene	310	

Page 2 of 2

Matrix: Soil

Sample ID: TDP1-9-081103 MATRIX SPIKE

Lab Sample ID: NX93A QC Report No: NX93-Landau Associates, Inc. LIMS ID: 08-29920 Project: BOEING THOMPSON

025173

Date Analyzed: 11/19/08 20:27

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	
7005-72-3	4-Chlorophenyl-phenylether	61	
86-73-7	Fluorene	61	
100-01-6	4-Nitroaniline	310	
534-52-1	4,6-Dinitro-2-Methylphenol	610	
86-30-6	N-Nitrosodiphenylamine	61	
101-55-3	4-Bromophenyl-phenylether	61	
118-74-1	Hexachlorobenzene	61	
87-86-5	Pentachlorophenol	310	
85-01-8	Phenanthrene	61	
86-74-8	Carbazole	61	
120-12-7	Anthracene	61	
84-74-2	Di-n-Butylphthalate	61	
206-44-0	Fluoranthene	61	
129-00-0	Pyrene	61	
85-68-7	Butylbenzylphthalate	61	
91-94-1	3,3'-Dichlorobenzidine	310	
56-55-3	Benzo(a)anthracene	61	
117-81-7	bis(2-Ethylhexyl)phthalate	61	
218-01-9	Chrysene	61	
117-84-0	Di-n-Octyl phthalate	61	
205-99-2	Benzo(b)fluoranthene	61	
207-08-9	Benzo(k)fluoranthene	61	
50-32-8	Benzo(a)pyrene	61	
193-39-5	Indeno(1,2,3-cd)pyrene	61	
53-70-3	Dibenz(a,h)anthracene	61	
191-24-2	Benzo(g,h,i)perylene	61	
90-12-0	1-Methylnaphthalene	61	

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	80.4%	2-Fluorobiphenyl	90.8%
d14-p-Terphenyl	94.8%	d4-1,2-Dichlorobenzene	76.4%
d5-Phenol	79.5%	2-Fluorophenol	75.5%
2,4,6-Tribromophenol	105%	d4-2-Chlorophenol	80.3%

Sample ID: TDP1-9-081103

MATRIX SPIKE DUPLICATE

Lab Sample ID: NX93A LIMS ID: 08-29920

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

Matrix: Soil

025173

Data Release Authorized: Reported: 11/21/08

Date Sampled: 11/03/08
Date Received: 11/03/08

Date Extracted: 11/10/08
Date Analyzed: 11/19/08 21:02
Instrument/Analyst: NT4/LJR

Sample Amount: 8.07 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: No

Dilution Factor: 1.00
Percent Moisture: 19.9%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	62	
111-44-4	Bis-(2-Chloroethyl) Ether	62	
95-57-8	2-Chlorophenol	62	-
541-73-1	1,3-Dichlorobenzene	62	
106-46-7	1,4-Dichlorobenzene	62	
100-51-6	Benzyl Alcohol	62	
95-50-1	1,2-Dichlorobenzene	62	
95-48-7	2-Methylphenol	62	
108-60-1	2,2'-Oxybis(1-Chloropropane)	62	
106-44-5	4-Methylphenol	62	
621-64-7	N-Nitroso-Di-N-Propylamine	310	
57-72-1	Hexachloroethane	62	
98-95-3	Nitrobenzene	62	
78-59-1	Isophorone	62	-
38-75-5	2-Nitrophenol	62	
105-67-9	2,4-Dimethylphenol	62	
55-85-0	Benzoic Acid	620	
111-91-1	bis(2-Chloroethoxy) Methane	62	
120-83-2	2,4-Dichlorophenol	310	
120-82-1	1,2,4-Trichlorobenzene	62	
91-20-3	Naphthalene	62	
106-47-8	4-Chloroaniline	310	
37-68-3	Hexachlorobutadiene	62	
59-50-7	4-Chloro-3-methylphenol	310	
91-57-6	2-Methylnaphthalene	62	
77-47-4	Hexachlorocyclopentadiene	310	
38-06-2	2,4,6-Trichlorophenol	310	
95-95-4	2,4,5-Trichlorophenol	310	
91-58-7	2-Chloronaphthalene	62	
38 - 74-4	2-Nitroaniline	310	
131-11-3	Dimethylphthalate	62	
208-96-8	Acenaphthylene	62	
99-09-2	3-Nitroaniline	310	
33-32-9	Acenaphthene	62	
51-28-5	2,4-Dinitrophenol	620	
100-02-7	4-Nitrophenol	310	
132-64-9	Dibenzofuran	62	
506-20-2	2,6-Dinitrotoluene	310	
121-14-2	2,4-Dinitrotoluene	310	

ANALYTICAL **RESOURCES INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: TDP1-9-081103

MATRIX SPIKE DUPLICATE

Lab Sample ID: NX93A LIMS ID: 08-29920

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

Matrix: Soil

025173

Date Analyzed: 11/19/08 21:02

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	
7005-72-3	4-Chlorophenyl-phenylether	62	
86-73-7	Fluorene	62	
100-01-6	4-Nitroaniline	310	
534-52-1	4,6-Dinitro-2-Methylphenol	620	
86-30-6	N-Nitrosodiphenylamine	62	
101-55-3	4-Bromophenyl-phenylether	62	
118-74-1	Hexachlorobenzene	62	
87-86-5	Pentachlorophenol	310	·
85-01-8	Phenanthrene	62	
86-74-8	Carbazole	62	
120-12-7	Anthracene	62	
84-74-2	Di-n-Butylphthalate	62	
206-44-0	Fluoranthene	62	
129-00-0	Pyrene	62	
85-68-7	Butylbenzylphthalate	62	
91-94-1	3,3'-Dichlorobenzidine	310	
56-55-3	Benzo(a) anthracene	62	
117-81-7	bis(2-Ethylhexyl)phthalate	62	
218-01-9	Chrysene	62	
117-84-0	Di-n-Octyl phthalate	62	
205-99-2	Benzo(b) fluoranthene	62	
207-08-9	Benzo(k)fluoranthene	62	
50-32-8	Benzo(a) pyrene	62	
193-39-5	Indeno(1,2,3-cd)pyrene	62	
53-70-3	Dibenz(a,h)anthracene	62	
191-24-2	Benzo(q,h,i)perylene	62	
90-12-0	1-Methylnaphthalene	62	

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	77.2%	2-Fluorobiphenyl	86.0%
d14-p-Terphenyl	96.0%	d4-1,2-Dichlorobenzene	74.8%
d5-Phenol	76.3%	2-Fluorophenol	72.5%
2,4,6-Tribromophenol	106%	d4-2-Chlorophenol	77.3%

Sample ID: LCS-111008 LCS/LCSD

Lab Sample ID: LCS-111008

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: 11/03/08 Date Received: 11/03/08

Date Extracted LCS/LCSD: 11/10/08

Sample Amount LCS: 7.50 g LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL Date Analyzed LCS: 11/18/08 12:31 LCSD: 11/18/08 13:06

LCSD: 0.5 mL

Instrument/Analyst LCS: NT4/LJR

Dilution Factor LCS: 1.00

LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

Percent Moisture: NA

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	1790	1670	107%	1810	1670	108%	1.1%
Bis-(2-Chloroethyl) Ether	1530	1670	91.6%	1550	1670	92.8%	1.3%
2-Chlorophenol	1660	1670	99.4%	1690	1670	101%	1.8%
1,3-Dichlorobenzene	1610	1670	96.4%	1650	1670	98.8%	2.5%
1,4-Dichlorobenzene	1640	1670	98.2%	1650	1670	98.8%	0.6%
Benzyl Alcohol	2960	3330	88.9%	2940	3330	88.3%	0.7%
1,2-Dichlorobenzene	1650	1670	98.8%	1680	1670	101%	1.8%
2-Methylphenol	1690	1670	101%	1690	1670	101%	0.0%
2,2'-Oxybis(1-Chloropropane	1410	1670	84.4%	1430	1670	85.6%	1.4%
4-Methylphenol	3310	3330	99.4%	3320	3330	99.7%	0.3%
N-Nitroso-Di-N-Propylamine	1500	1670	89.8%	1510	1670	90.4%	0.7%
Hexachloroethane	1590	1670	95.2%	1630	1670	97.6%	2.5%
Nitrobenzene	1410	1670	84.4%	1430	1670	85.6%	1.4%
Isophorone	1720	1670	103%	1750	1670	105%	1.7%
2-Nitrophenol	1830	1670	110%	1860	1670	111%	1.6%
2,4-Dimethylphenol	1640	1670	98.2%	1680	1670	101%	2.4%
Benzoic Acid	1400	5000	28.0%	1390	5000	27.8%	0.7%
bis(2-Chloroethoxy) Methane	1660	1670	99.4%	1680	1670	101%	1.2%
2,4-Dichlorophenol	1990	1670	119%	2070	1670	124%	3.9%
1,2,4-Trichlorobenzene	1750	1670	105%	1830	1670	110%	4.5%
Naphthalene	1780	1670	107%	1830	1670	110%	2.8%
4-Chloroaniline	7350	4000	184%	7330	4000	183%	0.3%
Hexachlorobutadiene	1820	1670	109%	1870	1670	112%	2.7%
4-Chloro-3-methylphenol	1940	1670	116%	1980	1670	119%	2.0%
2-Methylnaphthalene	1840	1670	110%	1900	1670	114%	3.2%
Hexachlorocyclopentadiene	4970	5000	99.4%	5190	5000	104%	4.3%
2,4,6-Trichlorophenol	1960	1670	117%	2010	1670	120%	2.5%
2,4,5-Trichlorophenol	1910	1670	114%	2040	1670	122%	6.6%
2-Chloronaphthalene	2000	1670	120%	2090	1670	125%	4.4%
2-Nitroaniline	1880	1670	113%	1950	1670	117%	3.7%
Dimethylphthalate	1890	1670	113%	1940	1670	116%	2.6%
Acenaphthylene	1900	1670	114%	1960	1670	117%	3.1%
3-Nitroaniline	5070	4270	119%	5090	4270	119%	0.4%
Acenaphthene	1890	1670	113%	1960	1670	117%	3.6%

Page 2 of 2

Sample ID: LCSD-111008

LCS/LCSD

Lab Sample ID: LCS-111008

QC Report No: NX93-Landau Associates, Inc.

LIMS ID: 08-29920

Project: BOEING THOMPSON

Matrix: Soil

025173

Date Analyzed LCS: 11/18/08 12:31 LCSD: 11/18/08 13:06

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	6520	5000	130%	6880	5000	138%	5.4%
4-Nitrophenol	2170	1670	130%	2090	1670	125%	3.8%
Dibenzofuran	1900	1670	114%	2020	1670	121%	6.1%
2,6-Dinitrotoluene	2230	1670	134%	2260	1670	135%	1.3%
2,4-Dinitrotoluene	2210	1670	132%	2340	1670	140%	5.7%
Diethylphthalate	2010	1670	120%	2080	1670	125%	3.4%
4-Chlorophenyl-phenylether	2010	1670	120%	2150	1670	129%	6.7%
Fluorene	2040	1670	122%	2170	1670	130%	6.2%
4-Nitroaniline	2040	1670	122%	2120	1670	127%	3.8%
4,6-Dinitro-2-Methylphenol	4040	5000	80.8%	4240	5000	84.8%	4.8%
N-Nitrosodiphenylamine	1880	1670	113%	1940	1670	116%	3.1%
4-Bromophenyl-phenylether	1890	1670	113%	2030	1670	122%	7.1%
Hexachlorobenzene	1980	1670	119%	2160	1670	129%	8.7%
Pentachlorophenol	2140	1670	128%	2180	1670	131%	1.9%
Phenanthrene	1900	1670	114%	1990	1670	119%	4.6%
Carbazole	1930	1670	116%	2000	1670	120%	3.6%
Anthracene	1890	1670	113%	2010	1670	120%	6.2%
Di-n-Butylphthalate	1920	1670	115%	1980	1670	119%	3.1%
Fluoranthene	1980	1670	119%	2040	1670	122%	3.0%
Pyrene	1960	1670	117%	2070	1670	124%	5.5%
Butylbenzylphthalate	1950	1670	117%	2000	1670	120%	2.5%
3,3'-Dichlorobenzidine	4990	4270	117%	5080	4270	119%	1.8%
Benzo(a)anthracene	1930	1670	116%	1980	1670	119%	2.6%
bis(2-Ethylhexyl)phthalate	1930	1670	116%	1970	1670	118%	2.1%
Chrysene	1970	1670	118%	2020	1670	121%	2.5%
Di-n-Octyl phthalate	1910	1670	114%	1940	1670	116%	1.6%
Benzo(b)fluoranthene	2020	1670	121%	2050	1670	123%	1.5%
Benzo(k)fluoranthene	1940	1670	116%	1990	1670	119%	2.5%
Benzo(a)pyrene	1680	1670	101%	1710	1670	102%	1.8%
Indeno(1,2,3-cd)pyrene	1830	1670	110%	1870	1670	112%	2.2%
Dibenz(a,h)anthracene	1850	1670	111%	1900	1670	114%	2.7%
Benzo(g,h,i)perylene	1650	1670	98.8%	1700	1670	102%	3.0%
1-Methylnaphthalene	1940	1670	116%	2000	1670	120%	3.0%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	92.0%	92.0%
2-Fluorobiphenyl	102%	106%
d14-p-Terphenyl	115%	117%
d4-1,2-Dichlorobenzene	92.8%	90.8%
d5-Phenol	83.7%	81.6%
2-Fluorophenol	87.2%	86.4%
2,4,6-Tribromophenol	122%	125%
d4-2-Chlorophenol	93.1%	93.1%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Sample ID: MB-111008 METHOD BLANK

Lab Sample ID: MB-111008

LIMS ID: 08-29920

Matrix: Soil

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08 Date Analyzed: 11/18/08 11:56 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
7 7-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Sample ID: MB-111008
METHOD BLANK

Lab Sample ID: MB-111008

LIMS ID: 08-29920

Matrix: Soil

Date Analyzed: 11/18/08 11:56

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a) anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b)fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	88.4%	2-Fluorobiphenyl	95.6%
d14-p-Terphenyl	104%	d4-1,2-Dichlorobenzene	93.2%
d5-Phenol	89.1%	2-Fluorophenol	84.3%
2,4,6-Tribromophenol	111%	d4-2-Chlorophenol	90.7%

Sample ID: TDP1-GW-081103

SAMPLE

Lab Sample ID: NX93F LIMS ID: 08-29925

QC Report No: NX93-Landau Associates, Inc. Project: BOEING THOMPSON

Matrix: Water

025173

Data Release Authorized:

Date Sampled: 11/03/08
Date Received: 11/03/08

Reported: 11/10/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Date Extracted: 11/05/08
Date Analyzed: 11/08/08 02:09
Instrument/Analyst: NT6/LJR

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	7.9
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	14
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP1-GW-081103

SAMPLE

Lab Sample ID: NX93F LIMS ID: 08-29925

Matrix: Water

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Analyzed: 11/08/08 02:09

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	1.8
86-74-8	Carbazole	1.0	6.9
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	6.9

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	82.8%	2-Fluorobiphenyl	81.6%
d14-p-Terphenyl	88.8%	d4-1,2-Dichlorobenzene	72.4%
d5-Phenol	88.0%	2-Fluorophenol	82.7%
2.4.6-Tribromophenol	95.7%	d4-2-Chlorophenol	85.9%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-110508	83.2%	81.2%	102%	81.2%	89.1%	84.0%	88.5%	85.3%	0
LCS-110508	90.0%	86.4%	101%	88.0%*	96.3%	90.1%	94.9%	92.5%	1
LCSD-110508	88.4%	85.2%	102%	72.8%	95.2%	89.6%	96.5%	91.2%	0
TDP1-GW-081103	82.8%	81.6%	88.8%	72.4%	88.0%	82.7%	95.7%	85.9%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
		d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 08-29925 to 08-29925

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

Page 1 of 2

Sample ID: LCS-110508 LCS/LCSD

Lab Sample ID: LCS-110508 QC Report No: NX93-Landau Associates, Inc.

LIMS ID: 08-29925 Project: BOEING THOMPSON Matrix: Water

025173

Data Release Authorized: Date Sampled: 11/03/08 Reported: 11/10/08 Date Received: 11/03/08

Date Extracted LCS/LCSD: 11/05/08 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/07/08 15:49 Final Extract Volume LCS: 0.50 mL LCSD: 11/07/08 16:24 LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	rcsd	Added-LCSD	Recovery	RPD
Phenol	22.9	25.0	91.6%	23.7	25.0	94.8%	3.4%
Bis-(2-Chloroethyl) Ether	24.6	25.0	98.4%	24.8	25.0	99.2%	0.8%
2-Chlorophenol	24.5	25.0	98.0%	25.4	25.0	102%	3.6%
1,3-Dichlorobenzene	20.6	25.0	82.4%	18.3	25.0	73.2%	11.8%
1,4-Dichlorobenzene	20.7	25.0	82.8%	18.4	25.0	73.6%	11.8%
Benzyl Alcohol	43.2	50.0	86.4%	43.3	50.0	86.6%	0.2%
1,2-Dichlorobenzene	21.3	25.0	85.2%	19.2	25.0	76.8%	10.4%
2-Methylphenol	25.5	25.0	102%	26.0	25.0	104%	1.9%
2,2'-Oxybis(1-Chloropropane)25.3	25.0	101%	26.2	25.0	105%	3.5%
4-Methylphenol	51.8	50.0	104%	53.5	50.0	107%	3.2%
N-Nitroso-Di-N-Propylamine	26.6	25.0	106%	27.2	25.0	109%	2.2%
Hexachloroethane	19.1	25.0	76.4%	16.2	25.0	64.8%	16.4%
Nitrobenzene	23.2	25.0	92.8%	24.4	25.0	97.6%	5.0%
Isophorone	27.1	25.0	108%	27.9	25.0	112%	2.9%
2-Nitrophenol	25.6	25.0	102%	26.9	25.0	108%	5.0%
2,4-Dimethylphenol	17.2	25.0	68.8%	19.6	25.0	78.4%	13.0%
Benzoic Acid	89.6	75.0	119%	89.0	75.0	119%	0.7%
bis(2-Chloroethoxy) Methane	25.7	25.0	103%	27.3	25.0	109%	6.0%
2,4-Dichlorophenol	25.7	25.0	103%	26.9	25.0	108%	4.6%
1,2,4-Trichlorobenzene	22.6	25.0	90.4%	20.3	25.0	81.2%	10.7%
Naphthalene	23.6	25.0	94.4%	23.6	25.0	94.4%	0.0%
4-Chloroaniline	67.0	60.0	112%	65.6	60.0	109%	2.1%
Hexachlorobutadiene	22.0	25.0	88.0%	18.5	25.0	74.0%	17.3%
4-Chloro-3-methylphenol	26.8	25.0	107%	28.2	25.0	113%	5.1%
2-Methylnaphthalene	22.6	25.0	90.4%	23.0	25.0	92.0%	1.8%
Hexachlorocyclopentadiene	44.9	75.0	59.9%	42.1	75.0	56.1%	6.4%
2,4,6-Trichlorophenol	24.6	25.0	98.4%	26.2	25.0	105%	6.3%
2,4,5-Trichlorophenol	24.9	25.0	99.6%	25.9	25.0	104%	3.9%
2-Chloronaphthalene	23.7	25.0	94.8%	24.2	25.0	96.8%	2.1%
2-Nitroaniline	24.5	25.0	98.0%	26.3	25.0	105%	7.1%
Dimethylphthalate	24.9	25.0	99.6%	26.5	25.0	106%	6.2%
Acenaphthylene	23.5	25.0	94.0%	24.6	25.0	98.4%	4.6%
3-Nitroaniline	77.3	64.0	121%	81.1	64.0	127%	4.8%
Acenaphthene	24.4	25.0	97.6%	25.3	25.0	101%	3.6%
2,4-Dinitrophenol	98.7	75.0	132%	99.9	75.0	133%	1.2%
4-Nitrophenol	24.6	25.0	98.4%	25.5	25.0	102%	3.6%
Dibenzofuran	23.5	25.0	94.0%	24.3	25.0	97.2%	3.3%
2,6-Dinitrotoluene	26.2	25.0	105%	28.2	25.0	113%	7.4%
2,4-Dinitrotoluene	27.1	25.0	108%	28.8	25.0	115%	6.1%
Diethylphthalate	25.0	25.0	100%	26.3	25.0	105%	5.1%
4-Chlorophenyl-phenylether	24.3	25.0	97.2%	25.5	25.0	102%	4.8%
Fluorene	25.2	25.0	101%	26.6	25.0	106%	5.4%
4-Nitroaniline	26.0	25.0	104%	28.0	25.0	112%	7.4%
4,6-Dinitro-2-Methylphenol	58.3	75.0	77.7%	59.2	75.0	78.9%	1.5%
N-Nitrosodiphenylamine	24.5	25.0	98.0%	25.4	25.0	102%	3.6%

Page 2 of 2

Sample ID: LCS-110508 LCS/LCSD

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

LIMS ID: 08-29925 Matrix: Water

Date Analyzed: 11/07/08 15:49

Lab Sample ID: LCS-110508

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	24.8	25.0	99.2%	26.2	25.0	105%	5.5%
Hexachlorobenzene	25.1	25.0	100%	26.1	25.0	104%	3.9%
Pentachlorophenol	24.5	25.0	98.0%	25.2	25.0	101%	2.8%
Phenanthrene	25.1	28.0	89.6%	26.5	28.0	94.6%	5.4%
Carbazole	26.8	25.0	107%	28.0	25.0	112%	4.4%
Anthracene	24.4	25.0	97.6%	25.4	25.0	102%	4.0%
Di-n-Butylphthalate	26.2	25.0	105%	27.4	25.0	110%	4.5%
Fluoranthene	26.0	25.0	104%	27.2	25.0	109%	4.5%
Pyrene	26.5	25.0	106%	27.9	25.0	112%	5.1%
Butylbenzylphthalate	27.6	25.0	110%	28.9	25.0	116%	4.6%
3,3'-Dichlorobenzidine	65.8	64.0	103%	65.8	64.0	103%	0.0%
Benzo(a)anthracene	25.8	25.0	103%	27.0	25.0	108%	4.5%
bis(2-Ethylhexyl)phthalate	28.8	25.0	115%	30.1	25.0	120%	4.4%
Chrysene	24.8	28.0	88.6%	26.1	28.0	93.2%	5.1%
Di-n-Octyl phthalate	25.0	25.0	100%	26.2	25.0	105%	4.7%
Benzo(b) fluoranthene	27.6	25.0	110%	27.0	25.0	108%	2.2%
Benzo(k)fluoranthene	25.8	28.0	92.1%	29.3	28.0	105%	12.7%
Benzo(a)pyrene	21.9	25.0	87.6%	22.7	25.0	90.8%	3.6%
Indeno(1,2,3-cd)pyrene	24.7	25.0	98.8%	25.7	25.0	103%	4.0%
Dibenz(a,h)anthracene	24.3	25.0	97.2%	25.6	25.0	102%	5.2%
Benzo(g,h,i)perylene	23.9	25.0	95.6%	25.0	25.0	100%	4.5%
1-Methylnaphthalene	26.4	25.0	106%	26.4	25.0	106%	0.0%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	90.0%	88.4%
2-Fluorobiphenyl	86.4%	85.2%
d14-p-Terphenyl	101%	102%
d4-1,2-Dichlorobenzene	88.0%	72.8%
d5-Phenol	96.3%	95.2%
2-Fluorophenol	90.1%	89.6%
2,4,6-Tribromophenol	94.9%	96.5%
d4-2-Chlorophenol	92.5%	91.2%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: MB-110508 METHOD BLANK

Lab Sample ID: MB-110508

LIMS ID: 08-29925

Matrix: Water Data Release Authorized:

Reported: 11/10/08

Date Extracted: 11/05/08 Date Analyzed: 11/07/08 15:15 Instrument/Analyst: NT6/LJR

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-110508
METHOD BLANK

Lab Sample ID: MB-110508

LIMS ID: 08-29925

Matrix: Water

Date Analyzed: 11/07/08 15:15

QC Report No: NX93-Landau Associates, Inc.

Project: BOEING THOMPSON

025173

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	83.2%	2-Fluorobiphenyl	81.2%
d14-p-Terphenyl	102%	d4-1,2-Dichlorobenzene	81.2%
d5-Phenol	89.1%	2-Fluorophenol	84.0%
2,4,6-Tribromophenol	88.5%	d4-2-Chlorophenol	85.3%

November 25, 2008

Tim Syverson Landau Associates, Inc. 130 Second Ave Edmonds, WA 98020

RE: Project: Seattle/Phase II, 025173.070

ARI Job No.: NY07

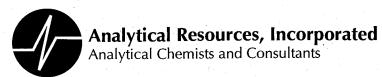
Dear Tim:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, the analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted thirteen soil samples and three water samples on November 4, 2008. Three coolers were received with temperatures of 1.0, 2.6, and 3.4°C. Sample **TDP12-9-081104** was placed on hold pending further client instruction. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, NWTPH-Dx, and Total and Dissolved Metals, as requested. Please note that the SIM PAH analysis was cancelled for all soil samples.

Volatiles Analyses: Continuing Calibrations had compounds outside of the 20% control limit for the 11/05/08 volatiles analysis, but were accepted outliers under ARI SOPs. No further corrective action was taken.

Semivolatiles Analyses: The internal standard percent difference of Perylene-d12 was outside the control limit for sample TDP11-9-081104. The sample was re-analyzed at a dilution and all internal standard percent differences were within the control limit. Both sets of data have included in this report for your review. No further corrective action was required.


The surrogate percent recovery of d4-1,2-Dichlorobenzene was outside the control limits slightly high for LCS-110508. All other surrogate percent recoveries were within control limits. No further corrective action was required.

The LCS and LCSD percent recoveries of Benzoic Acid fell outside the control limits for LCS-111108. No further corrective action is required for this compound as it is a known poor performer.

Several LCS and LCSD percent recoveries were outside the control limits high for LCS-111108. No further corrective action was required.

Several LCSD percent recoveries were outside the control limits high for LCS-110508. All LCS percent recoveries were within control limits. No further corrective action was required.

The LCS and LCSD percent recoveries of 1-Methylnaphthalene were outside the control limits high for LCS-110508. All samples were undetected for this compound. No further corrective action was required.

There were no anomalies associated with the SIM PAH analysis.

There were no anomalies associated with the PCBs analyses.

NWTPH-HCID Analyses: Please note that all samples that were detected for Diesel or Motor Oil were re-analyzed by method NWTPH-Dx.

There were no anomalies associated with the NWPH-Dx analysis.

Metal Analyses: The duplicate relative percent difference of copper was outside the control limit for sample **TPD6-8-081104**. All other quality control parameters were met for copper. No further corrective action was required.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

 $\underline{kellyb@arilabs.com}$

www.arilabs.com

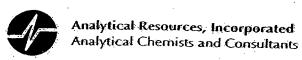
NYUZ

Seattle (Edmonds) (425) 778-0907

☐ **Tacoma** (253) 926-2493

☐ **Spokane** (509) 327-9737

LANDAU Spokane (509) 327-9737


ASSOCIATES Portland (Tigard) (503) 443-6010

3.4, 2.6, 1.0

Date 1	184	08	
Page	L_of		

Chain-of-Custody Record

Project Name Boews Thous	気介 Project No. SC	5173070	/ 23/	Testing Param	Tan Ban Gan a Time
Project Location/Event SATTLE	PhaseII	21 /200 /0	**************************************		
Sampler's Name Shanketo, P	the state of the s		$\langle \gamma / N \rangle / \sim 5$		Accelerated
Project Contact Kothyw Vo					
Send Results To L Hove Conf.	T Sperson, 1	1 Hoheson		\S\S\\ / /	
	•	NO. Of //_17_3	5/07/2/17		/ / Observations/Comments
Sample I.D. Date		Containers / / X	7-7/17/6 ×	}	
TDP7-8-081104 1	745 1	1 2 2	XXX	X	Allow water samples to settle, collect aliquot from clear portion
1288-8-081104	940	XX	XXX		NWTPH-Dx:
TDP9-8-081104	1120	XX	X		run acid wash/silica gel cleanup
TDR10-8-08/1024	1165	Y X X	X		run samples standardized to product
TDP11-7-0811024 TDP11-7-0811024	1240	4	X		Analyze for EPH if no specific
10711-1081104 10712-17-081104	1315	XX of	XXX		product identified
TDP12-9-081104	1370		valed blow		VOC/BTEX/VPH (soll):
10P13-7-081104	1343	T XX	×		non-preserved X preserved w/methanol
TD714-4-0811001	1413		X		preserved w/sodium bisulfate
TDP15-4-0811021	1240	7 XX	X I		Freese upon receipt
TDP8-GM-OBILBE	945 W	16 31	XXXX	X	Dissolved metal water samples field filtered
TDP1-GW-081164	1330	16 × X	X X X X	X	Other
12PH-GW-08H04 4	1330				
Special Shipment/Handling or Storage/Requirements					Method of Shipment
# linquished by	Received by	7 -	Relinquished	by	Received by
Signature , h	Signature Levy	asse	Signature		Signature
Printed Name	Printed Name	Rigg	Printed Name		Printed Name
URI,	AR\ Company				
Company I To		1660	Company		Company
Date 114/88 Time 550	Date 11/4/08	Time <u>1550</u>	Date	Time	Date Time

Cooler Receipt Form

ARI Client Boeing	Project Name: Boeing Thompson
COC No:	Delivered by MCALA
Assigned ARI Job No: NY07	Delivered by: Would Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody. Were custody papers included with the cooler?	seals attached to the outside of to cooler? YES NO NO
Were custody papers properly filled out (ink, sig	ned, etc.) YES NO
Record cooler temperature (recommended 2.0-	6.0 °C for chemistry 39,26,10c
Cooler Accepted by:	KR Date: 11/4/00 Time: 1560
	ns and attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler? What kind of packing material was used?	YES NO
Was sufficient ice used (if appropriate)?	YES NO
Were all bottles sealed in individual plastic bags?	YES NO
Did all bottle arrive in good condition (unbroken)?	·
Were all bottle labels complete and legible?	?
Did all bottle labels and tags agree with custody p	papers? YES (NO)
Were all bottles used correct for the requested ar	nalyses?
Do any of the analyses (bottles) require preserval	tion? (attach preservation checklist) YES NO
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bot	
amples Logged by:	Date: 11/5/08 Time: 950
** Notify Project Manag	rer of discrepancies or concerns **
xplain discrepancies or negative responses:	
Sample TDP10-7-08110	4 extra 4 samples
loggedat end of 113	1

Ву

Date:

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TPD6-8-081104

Page 1 of 1

Lab Sample ID: NY07A LIMS ID: 08-30002

Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 13:08

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 3.66 g-dry-wt

Purge Volume: 5.0 mL Moisture: 27.6%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.4	< 1.4	U
74-83-9	Bromomethane	1.4	< 1.4	U
75-01-4	Vinyl Chloride	1.4	< 1.4	U
75-00-3	Chloroethane	1.4	< 1.4	U
75-09-2	Methylene Chloride	2.7	< 2.7	U
67-64-1	Acetone	6.8	59	
75-15-0	Carbon Disulfide	1.4	9.8	
75-35-4	1,1-Dichloroethene	1.4	< 1.4	U
75-34-3	1,1-Dichloroethane	1.4	< 1.4	U
156-60-5	trans-1,2-Dichloroethene	1.4	< 1.4	U
156-59-2	cis-1,2-Dichloroethene	1.4	< 1.4	U
67-66-3	Chloroform	1.4	< 1.4	U
107-06-2	1,2-Dichloroethane	1.4	< 1.4	U
78-93-3	2-Butanone	6.8	9.8	
71-55-6	1,1,1-Trichloroethane	1.4	< 1.4	U
56-23-5	Carbon Tetrachloride	1.4	< 1.4	U
108-05-4	Vinyl Acetate	6.8	< 6.8	U
75-27-4	Bromodichloromethane	1.4	< 1.4	U
78-87-5	1,2-Dichloropropane	1.4	< 1.4	U
10061-01-5	cis-1,3-Dichloropropene	1.4	< 1.4	U
79-01-6	Trichloroethene	1.4	< 1.4	U
124-48-1	Dibromochloromethane	1.4	< 1.4	U
79-00-5	1,1,2-Trichloroethane	1.4	< 1.4	U
71-43-2	Benzene	1.4	< 1.4	U
10061-02-6	trans-1,3-Dichloropropene	1.4	< 1.4	U
110-75-8	2-Chloroethylvinylether	6.8	< 6.8	U
75-25-2	Bromoform	1.4	< 1.4	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.8	< 6.8	U
591-78-6	2-Hexanone	6.8	< 6.8	U
127-18-4	Tetrachloroethene	1.4	< 1.4	U
79-34-5	1,1,2,2-Tetrachloroethane	1.4	< 1.4	U
108-88-3	Toluene	1.4	< 1.4	U
108-90-7	Chlorobenzene	1.4	< 1.4	U
100-41-4	Ethylbenzene	1.4	< 1.4	U
100-42-5	Styrene	1.4	< 1.4	U
75-69-4	Trichlorofluoromethane	1.4	< 1.4	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.7	U
1330-20-7	m,p-Xylene	1.4	< 1.4	U
95-47-6	o-Xylene	1.4	< 1.4	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	101%
Bromofluorobenzene	94.1%

Page 1 of 1

Lab Sample ID: NY07B LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 13:35

Sample ID: TDP7-8-081104

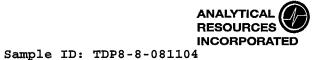
SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08


Sample Amount: 6.14 g-dry-wt

Purge Volume: 5.0 mL Moisture: 22.4%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	U
74-83-9	Bromomethane	0.8	< 0.8	U
75-01-4	Vinyl Chloride	0.8	< 0.8	U
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.6	< 1.6	U
67-64-1	Acetone	4.1	44	
75-15-0	Carbon Disulfide	0.8	1.0	
75-35-4	1,1-Dichloroethene	0.8	< 0.8	U
75-34-3	1,1-Dichloroethane	0.8	< 0.8	U
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	U
67-66-3	Chloroform	0.8	< 0.8	U
107-06-2	1,2-Dichloroethane	0.8	< 0.8	U
78-93-3	2-Butanone	4.1	7.0	
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	U
56-23-5	Carbon Tetrachloride	0.8	< 0.8	U
108-05-4	Vinyl Acetate	4.1	< 4.1	U
75-27-4	Bromodichloromethane	0.8	< 0.8	U
78-87-5	1,2-Dichloropropane	0.8	< 0.8	U
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	U
79-01-6	Trichloroethene	0.8	< 0.8	U
124-48-1	Dibromochloromethane	0.8	< 0.8	U
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	< 0.8	U
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	4.1	< 4.1	U
75-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.1	< 4.1	U
591-78-6	2-Hexanone	4.1	< 4.1	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	< 0.8	U
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.6	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	109%
d8-Toluene	101%
Bromofluorobenzene	99.1%

Page 1 of 1

Lab Sample ID: NY07C

LIMS ID: 08-30004 Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 14:02

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 4.38 g-dry-wt

Purge Volume: 5.0 mL Moisture: 20.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.3	< 2.3	U
67-64-1	Acetone	5.7	94	
75-15-0	Carbon Disulfide	1.1	4.4	
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	1.5	
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	Ū
78-93-3	2-Butanone	5.7	12	
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	Ū
108-05-4	Vinyl Acetate	5.7	< 5.7	Ū
75-27-4	Bromodichloromethane	1.1	< 1.1	Ū
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	< 1.1	U
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
71-43-2	Benzene	1.1	4.3	
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.7	< 5.7	U
7 5-25-2	Bromoform	1.1	< 1.1	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.7	< 5.7	U
591-78-6	2-Hexanone	5.7	< 5.7	U
127-18-4	Tetrachloroethene	1.1	< 1.1	U
7 9-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	2.0	
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.3	< 2.3	U
1330-20-7	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	92.2%
d8-Toluene	93.6%
Bromofluorobenzene	68.8%

Page 1 of 1

Lab Sample ID: NY07D LIMS ID: 08-30005

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 14:28

Sample ID: TDP9-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 7.69 g-dry-wt

Purge Volume: 5.0 mL Moisture: 17.3%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.6	< 0.6	U
74-83-9	Bromomethane	0.6	< 0.6	U
75-01-4	Vinyl Chloride	0.6	< 0.6	U
75-00-3	Chloroethane	0.6	< 0.6	U
75-09-2	Methylene Chloride	1.3	< 1.3	U
67-64-1	Acetone	3.2	50	
75-15-0	Carbon Disulfide	0.6	2.3	
75-35-4	1,1-Dichloroethene	0.6	< 0.6	U
75-34-3	1,1-Dichloroethane	0.6	< 0.6	U
156-60-5	trans-1,2-Dichloroethene	0.6	< 0.6	U
156-59-2	cis-1,2-Dichloroethene	0.6	< 0.6	U
67-66-3	Chloroform	0.6	< 0.6	U
107-06-2	1,2-Dichloroethane	0.6	< 0.6	U
78-93-3	2-Butanone	3.2	9.9	
71-55-6	1,1,1-Trichloroethane	0.6	< 0.6	U
56-23-5	Carbon Tetrachloride	0.6	< 0.6	U
108-05-4	Vinyl Acetate	3.2	< 3.2	U
75-27-4	Bromodichloromethane	0.6	< 0.6	U
78-87-5	1,2-Dichloropropane	0.6	< 0.6	U
10061-01-5	cis-1,3-Dichloropropene	0.6	< 0.6	U
79-01-6	Trichloroethene	0.6	< 0.6	U
124-48-1	Dibromochloromethane	0.6	< 0.6	U
79-00-5	1,1,2-Trichloroethane	0.6	< 0.6	U
71-43-2	Benzene	0.6	< 0.6	U
10061-02-6	trans-1,3-Dichloropropene	0.6	< 0.6	U
110-75-8	2-Chloroethylvinylether	3.2	< 3.2	U
75-25-2	Bromoform	0.6	< 0.6	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.2	< 3.2	U
591-78-6	2-Hexanone	3.2	< 3.2	U
127-18-4	Tetrachloroethene	0.6	< 0.6	U
79-34-5	1,1,2,2-Tetrachloroethane	0.6	< 0.6	U
108-88-3	Toluene	0.6	< 0.6	U
108-90-7	Chlorobenzene	0.6	< 0.6	U
100-41-4	Ethylbenzene	0.6	< 0.6	U
100-42-5	Styrene	0.6	< 0.6	U
75-69-4	Trichlorofluoromethane	0.6	< 0.6	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.3	< 1.3	U
1330-20-7	m,p-Xylene	0.6	< 0.6	U
95-47-6	o-Xylene	0.6	< 0.6	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	109%
d8-Toluene	102%
Bromofluorobenzene	96.0%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY07E LIMS ID: 08-30006

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 14:55

SAMPLE

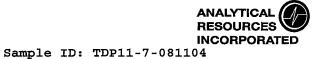
Sample ID: TDP10-8-081104

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08


Sample Amount: 7.50 g-dry-wt Purge Volume: 5.0 mL

Moisture: 12.9%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.3	< 1.3	U
67-64-1	Acetone	3.3	44	
75-15-0	Carbon Disulfide	0.7	5.8	
75-35-4	1,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	< 0.7	U
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	< 0.7	U
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.3	7.4	
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.3	< 3.3	U
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	< 0.7	U
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.3	< 3.3	U
75-25-2	Bromoform	0.7	< 0.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.3	< 3.3	U
591-78-6	2-Hexanone	3.3	< 3.3	U
127-18-4	Tetrachloroethene	0.7	< 0.7	U
79-34-5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	< 0.7	U
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	U
75-69-4	Trichlorofluoromethane	0.7	< 0.7	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.3	U
1330-20-7	m,p-Xylene	0.7	< 0.7	U
95-47-6	o-Xylene	0.7	< 0.7	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	105%
d8-Toluene	101%
Bromofluorobenzene	91.8%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY07F LIMS ID: 08-30007

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 15:22

Reported: 11/14/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII 025173.070

SAMPLE

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 5.63 g-dry-wt

Purge Volume: 5.0 mL Moisture: 24.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.8	< 1.8	U
67-64-1	Acetone	4.4	97	
75-15-0	Carbon Disulfide	0.9	22	
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.4	20	
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.4	< 4.4	U
75-27-4	Bromodichloromethane	0.9	< 0.9	U
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	U
71-43-2	Benzene	0.9	< 0.9	U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.4	< 4.4	U
75-25-2	Bromoform	0.9	< 0.9	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.4	< 4.4	U
591-78-6	2-Hexanone	4.4	< 4.4	U
127-18-4	Tetrachloroethene	0.9	< 0.9	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
108-90-7	Chlorobenzene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	U
100-42-5	Styrene	0.9	< 0.9	U
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.8	< 1.8	U
1330-20-7	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U
JJ =1 U	0 11,10110	0.0	` 0.5	J

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	98.1%
d8-Toluene	96.5%
Bromofluorobenzene	83.7%

Sample ID: TDP11-9-081104 Page 1 of 1

SAMPLE

Lab Sample ID: NY07G

LIMS ID: 08-30008 Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 15:53

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 7.85 g-dry-wt

Purge Volume: 5.0 mL Moisture: 9.3%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.6	< 0.6	U
74-83-9	Bromomethane	0.6	< 0.6	U
75-01-4	Vinyl Chloride	0.6	< 0.6	U
75-00-3	Chloroethane	0.6	< 0.6	U
75-09-2	Methylene Chloride	1.3	< 1.3	U
67-64-1	Acetone	3.2	23	
75-15-0	Carbon Disulfide	0.6	2.5	
75-35-4	1,1-Dichloroethene	0.6	< 0.6	U
75-34-3	1,1-Dichloroethane	0.6	< 0.6	U
156-60-5	trans-1,2-Dichloroethene	0.6	< 0.6	U
156-59-2	cis-1,2-Dichloroethene	0.6	< 0.6	U
67-66-3	Chloroform	0.6	< 0.6	U
107-06-2	1,2-Dichloroethane	0.6	< 0.6	U
78-93-3	2-Butanone	3.2	4.5	
71-55-6	1,1,1-Trichloroethane	0.6	< 0.6	U
56-23-5	Carbon Tetrachloride	0.6	< 0.6	U
108-05-4	Vinyl Acetate	3.2	< 3.2	U
75-27-4	Bromodichloromethane	0.6	< 0.6	U
78-87-5	1,2-Dichloropropane	0.6	< 0.6	U
10061-01-5	cis-1,3-Dichloropropene	0.6	< 0.6	U
79-01-6	Trichloroethene	0.6	< 0.6	U
124-48-1	Dibromochloromethane	0.6	< 0.6	U
79-00-5	1,1,2-Trichloroethane	0.6	< 0.6	U
71-43-2	Benzene	0.6	< 0.6	U
10061-02-6	trans-1,3-Dichloropropene	0.6	< 0.6	U
110-75-8	2-Chloroethylvinylether	3.2	< 3.2	U
75-25-2	Bromoform	0.6	< 0.6	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.2	< 3.2	U
591-78-6	2-Hexanone	3.2	< 3.2	U
127-18-4	Tetrachloroethene	0.6	< 0.6	U
79-34-5	1,1,2,2-Tetrachloroethane	0.6	< 0.6	U
108-88-3	Toluene	0.6	< 0.6	U
108-90-7	Chlorobenzene	0.6	< 0.6	U
100-41-4	Ethylbenzene	0.6	< 0.6	U
100-42-5	Styrene	0.6	< 0.6	U
75-69-4	Trichlorofluoromethane	0.6	< 0.6	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.3	U
1330-20-7	m,p-Xylene	0.6	< 0.6	U
95-47-6	o-Xylene	0.6	< 0.6	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	101%
Bromofluorobenzene	97.7%

Page 1 of 1

Data Release Authorized:

Reported: 11/14/08

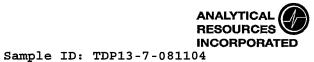
Matrix: Soil

Sample ID: TDP12-7-081104 SAMPLE

Lab Sample ID: NY07H QC Report No: NY07-The Boeing Company LIMS ID: 08-30009 Project: SEATTLE/PHASEII

Project: SEATTLE/PHASEII 025173.070

Date Sampled: 11/04/08
Date Received: 11/04/08


Instrument/Analyst: FINN5/PAB Sample Amount: 4.04 g-dry-wt

Date Analyzed: 11/11/08 16:16 Purge Volume: 5.0 mL Moisture: 26.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	U
75-01-4	Vinyl Chloride	1.2	< 1.2	U
75-00-3	Chloroethane	1.2	< 1.2	U
75-09-2	Methylene Chloride	2.5	< 2.5	U
67-64-1	Acetone	6.2	86	
75-15-0	Carbon Disulfide	1.2	8.8	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	U
75-34-3	1,1-Dichloroethane	1.2	< 1.2	U
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	U
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	U
78-93-3	2-Butanone	6.2	14	
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U
108-05-4	Vinyl Acetate	6.2	< 6.2	U
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	< 1.2	U
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U
71-43-2	Benzene	1.2	< 1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	6.2	< 6.2	U
75-25-2	Bromoform	1.2	< 1.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.2	< 6.2	U
591-78-6	2-Hexanone	6.2	< 6.2	U
127-18-4	Tetrachloroethene	1.2	< 1.2	U
7 9-34-5	1,1,2,2-Tetrachloroethane	1.2	< 1.2	U
108-88-3	Toluene	1.2	< 1.2	U
108-90-7	Chlorobenzene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	U
100-42-5	Styrene	1.2	< 1.2	U
75-69-4	Trichlorofluoromethane	1.2	< 1.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.5	U
1330-20-7	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	95.2%
Bromofluorobenzene	82.6%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY07J LIMS ID: 08-30011

Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 16:42

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 4.54 g-dry-wt

Purge Volume: 5.0 mL Moisture: 21.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.2	< 2.2	U
67-64-1	Acetone	5.5	51	
75-15-0	Carbon Disulfide	1.1	8.5	
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1	U
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.5	7.9	
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	U
108-05-4	Vinyl Acetate	5.5	< 5.5	U
75-27-4	Bromodichloromethane	1.1	< 1.1	U
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	< 1.1	U
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
71-43-2	Benzene	1.1	< 1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.5	< 5.5	U
75-25-2	Bromoform	1.1	< 1.1	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.5	< 5.5	U
591-78-6	2-Hexanone	5.5	< 5.5	U
127-18-4	Tetrachloroethene	1.1	< 1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	U
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.2	< 2.2	U
1330-20-7	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	99.0%
Bromofluorobenzene	84.0%

Page 1 of 1

SAMPLE

Sample ID: TDP14-4-081104

Lab Sample ID: NY07K

LIMS ID: 08-30012 Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 11/11/08 17:09

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 4.57 g-dry-wt

Purge Volume: 5.0 mL Moisture: 34.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	υ
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.2	< 2.2	U
67-64-1	Acetone	5.5	25	
75-15-0	Carbon Disulfide	1.1	1.3	
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1	U
67-66-3	Chloroform	1.1	< 1.1	υ
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.5	< 5.5	U
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	U
108-05-4	Vinyl Acetate	5.5	< 5.5	U
75-27-4	Bromodichloromethane	1.1	< 1.1	U
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	< 1.1	U
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
71-43-2	Benzene	1.1	< 1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.5	< 5.5	Ų
75-25-2	Bromoform	1.1	< 1.1	υ
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.5	< 5.5	U
591-78-6	2-Hexanone	5.5	< 5.5	U
127-18-4	Tetrachloroethene	1.1	< 1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	υ
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.2	< 2.2	U
1330-20-7	m,p-Xylene	1.1	< 1.1	υ
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	100%
Bromofluorobenzene	95.6%

Sample ID: TDP15-4-081104 SAMPLE

Page 1 of 1 SAMP

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 6.21 g-dry-wt

Purge Volume: 5.0 mL Moisture: 22.9%

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/11/08 17:36

Lab Sample ID: NY07L

LIMS ID: 08-30013

Matrix: Soil

74-83-9 Bromomethane 0.8 < 0.8 U 75-01-4 Vinyl Chloride 0.8 < 0.8 U 75-00-3 Chloroethane 0.8 < 0.8 U 75-09-2 Methylene Chloride 1.6 < 1.6 U 67-64-1 Acetone 4.0 31 T 75-15-0 Carbon Disulfide 0.8 < 0.8 U 75-35-4 1,1-Dichloroethene 0.8 < 0.8 U 75-34-3 1,1-Dichloroethane 0.8 < 0.8 U 156-60-5 trans-1,2-Dichloroethene 0.8 < 0.8 U 67-66-3 Chloroform 0.8 < 0.8 U 107-06-2 1,2-Dichloroethane 0.8 < 0.8 U 78-93-3 2-Butanone 4.0 < 4.0 U 71-55-6 1,1,1-Trichloroethane 0.8 < 0.8 U 78-89-3 2-Butanone 4.0 < 4.0 U 78-27-4 Bromodichloromethane 0.8	CAS Number	Analyte	RL	Result	Q
75-01-4 Vinyl Chloride	74-87-3	Chloromethane	0.8	< 0.8	U
75-00-3 Chloroethane	74-83-9	Bromomethane	0.8		U
75-09-2 Methylene Chloride 1.6	75-01-4	Vinyl Chloride	0.8		U
75-09-2 Methylene Chloride 1.6 < 1.6	75-00-3	Chloroethane	0.8	< 0.8	U
75-15-0 Carbon Disulfide 0.8 < 0.8 U 75-35-4 1,1-Dichloroethene 0.8 < 0.8 U 75-34-3 1,1-Dichloroethene 0.8 < 0.8 U 156-60-5 trans-1,2-Dichloroethene 0.8 < 0.8 U 156-59-2 cis-1,2-Dichloroethene 0.8 < 0.8 U 107-06-3 Chloroform 0.8 < 0.8 U 107-06-2 1,2-Dichloroethane 0.8 < 0.8 U 78-93-3 2-Butanone 4.0 < 4.0 U 75-27-4 Bromodichloromethane 0.8 < 0.8 U 108-05-4 Vinyl Acetate 4.0 < 4.0 U 75-27-4 Bromodichloromethane 0.8 < 0.8 U 10061-01-5 cis-1,3-Dichloropropene 0.8 < 0.8 U 104-48-1 Dibromochloromethane 0.8 < 0.8 U 124-48-1 Dibromochloromethane 0.8 < 0.8 U 17-43-2 Benzene 0.8 U 10061-02-6 trans-1,3-Dichloropropene 0.8 < 0.8 U 108-01-04-4 Ethylbenzene 0.8 Co.8 U 108-88-3 Toluene 0.8 Co.8 U 108-90-7 Chlorobenzene 0.8 Co.8 U 108-90-7 Chlorobenzene 0.8 Co.8 U 108-90-7 Trichloroethene 0.8 Co.8 U 108-10-1 Styrene 0.8 Co.8 U 108-90-7 Chlorobenzene 0.8 Co.8 U 108-90-7 Chlorobenzene 0.8 Co.8 U 108-90-7 Trichloropropene 0.8 Co.8 U 108-90-7 Trichloroethene 0.8 Co.8 U 108-90-7 Chlorobenzene 0.8 Co.8 U 108-90-7 Trichloroethene 0.8 Co.8 U 108-90-7 Trichloropropene 0.8 Co.8 U 108-90-7 Tric	75-09-2	Methylene Chloride			U
75-35-4 1,1-Dichloroethene 0.8 75-34-3 1,1-Dichloroethene 0.8 75-34-3 1,1-Dichloroethene 0.8 75-6-60-5 1,2-Dichloroethene 0.8 75-6-3 1,2-Dichloroethene 0.8 75-6-3 1,2-Dichloroethene 0.8 75-6-3 1,2-Dichloroethene 0.8 75-93-3 2-Butanone 0.8 75-93-3 2-Butanone 0.8 75-27-4 1,1-Trichloroethane 0.8 75-27-4 1,2-Dichloroethane 0.8 75-27-4 1,2-Dichloropropane 0.8 75-27-4 1,2-Dichloropropane 0.8 75-27-4 1,2-Dichloropropane 0.8 75-27-4 1,2-Dichloropropane 0.8 75-27-4 1,2-Dichloropropane 0.8 75-27-4 1,2-Dichloropropane 0.8 0.8 0.8 0.8 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	67-64-1	Acetone	4.0	31	
75-34-3 1,1-Dichloroethane 0.8	75-15-0	Carbon Disulfide	0.8		U
156-60-5 trans-1,2-Dichloroethene 0.8 < 0.8	75-35-4	1,1-Dichloroethene	0.8		U
156-59-2 cis-1,2-Dichloroethene 0.8 0.8 U	75-34-3	1,1-Dichloroethane	0.8	< 0.8	U
150-39-2	156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
107-06-2	156-59-2	cis-1,2-Dichloroethene	0.8		U
78-93-3 2-Butanone 4.0 < 4.0	67-66-3	Chloroform			-
71-55-6	107-06-2	1,2-Dichloroethane			U
	78-93-3	2-Butanone	4.0	< 4.0	U
108-05-4	71-55-6	1,1,1-Trichloroethane			
No. No.	56-23-5	Carbon Tetrachloride			
78-87-5	108-05-4	Vinyl Acetate	4.0		-
1,2-Bichloropropens	75-27-4	Bromodichloromethane	0.8		
79-01-6 Trichloroethene 0.8	78-87-5	1,2-Dichloropropane			-
124-48-1	10061-01-5	cis-1,3-Dichloropropene			
79-00-5	79-01-6	Trichloroethene			-
71-43-2 Benzene 0.8 2.3 10061-02-6 trans-1,3-Dichloropropene 0.8 < 0.8 U 110-75-8 2-Chloroethylvinylether 4.0 < 4.0 U 75-25-2 Bromoform 0.8 < 0.8 U 108-10-1 4-Methyl-2-Pentanone (MIBK) 4.0 < 4.0 U 591-78-6 2-Hexanone 4.0 < 4.0 U 127-18-4 Tetrachloroethene 0.8 1.5 79-34-5 1,1,2,2-Tetrachloroethane 0.8 < 0.8 U 108-88-3 Toluene 0.8 < 0.8 U 108-90-7 Chlorobenzene 0.8 < 0.8 U 100-41-4 Ethylbenzene 0.8 < 0.8 U 100-42-5 Styrene 0.8 < 0.8 U 75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	124-48-1		-		-
10061-02-6 trans-1,3-Dichloropropene 0.8 < 0.8	79-00-5	1,1,2-Trichloroethane		-	U
110-75-8 2-Chloroethylvinylether 4.0 < 4.0 U 75-25-2 Bromoform 0.8 < 0.8 U 108-10-1 4-Methyl-2-Pentanone (MIBK) 4.0 < 4.0 U 591-78-6 2-Hexanone 4.0 < 4.0 U 127-18-4 Tetrachloroethene 0.8 1.5 79-34-5 1,1,2,2-Tetrachloroethane 0.8 < 0.8 U 108-88-3 Toluene 0.8 < 0.8 U 108-90-7 Chlorobenzene 0.8 < 0.8 U 100-41-4 Ethylbenzene 0.8 < 0.8 U 100-42-5 Styrene 0.8 < 0.8 U 75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	71-43-2	Benzene	0.8		
75-25-2 Bromoform 0.8 < 0.8 U 108-10-1 4-Methyl-2-Pentanone (MIBK) 4.0 < 4.0 U 591-78-6 2-Hexanone 4.0 < 4.0 U 127-18-4 Tetrachloroethene 0.8 1.5 79-34-5 1,1,2,2-Tetrachloroethane 0.8 < 0.8 U 108-88-3 Toluene 0.8 < 0.8 U 108-90-7 Chlorobenzene 0.8 < 0.8 U 100-41-4 Ethylbenzene 0.8 < 0.8 U 100-42-5 Styrene 0.8 < 0.8 U 75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
75-25-2 Bromoform 0.8 < 0.8	110-75-8	2-Chloroethylvinylether			-
591-78-6 2-Hexanone 4.0 < 4.0		Bromoform			-
127-18-4 Tetrachloroethene 0.8 1.5 79-34-5 1,1,2,2-Tetrachloroethane 0.8 < 0.8	108-10-1	4-Methyl-2-Pentanone (MIBK)	4.0		_
79-34-5	591-78-6	2-Hexanone			U
108-88-3 Toluene 0.8 < 0.8	127-18-4				
108-88-3 Toluene 0.8 < 0.8	79-34-5	1,1,2,2-Tetrachloroethane	0.8		U
100-41-4 Ethylbenzene 0.8 < 0.8 U 100-42-5 Styrene 0.8 < 0.8 U 75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	108-88-3		0.8	< 0.8	U
100-42-5 Styrene 0.8 < 0.8 U 75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	108-90-7	Chlorobenzene	-		-
75-69-4 Trichlorofluoromethane 0.8 < 0.8 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	100-41-4	Ethylbenzene	-		-
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 1.6 < 1.6 U 1330-20-7 m,p-Xylene 0.8 < 0.8 U	100-42-5	Styrene			_
1330-20-7 m,p-Xylene 0.8 < 0.8 U	75-69-4				
1330-20-7 m,p-xy1enc	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe			-
95-47-6 O-Xylene 0.8 < 0.8 U	1330-20-7	m,p-Xylene			_
· - · - · · · · · · · · · · · · · ·	95-47-6	o-Xylene	0.8	< 0.8	Ū

Reported in $\mu g/kg$ (ppb)

	4050
d4-1,2-Dichloroethane	105%
d8-Toluene	102%
Bromofluorobenzene	95.9%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Sample ID: TDP10-7-081104

SAMPLE

Lab Sample ID: NY07P

LIMS ID: 08-30017 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/11/08 18:03

Reported: 11/14/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 4.06 g-dry-wt

Purge Volume: 5.0 mL Moisture: 37.8%

	Moisture: 37.8%			
CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	U
75-01-4	Vinyl Chloride	1.2	< 1.2	U
75-00-3	Chloroethane	1.2	< 1.2	U
75-09-2	Methylene Chloride	2.5	< 2.5	U
67-64-1	Acetone	6.2	120	
75-15-0	Carbon Disulfide	1.2	26	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	U
75-34-3	1,1-Dichloroethane	1.2	< 1.2	U
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	U
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	U
78-93-3	2-Butanone	6.2	25	
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U
108-05-4	Vinyl Acetate	6.2	< 6.2	U
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	< 1.2	U
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U
71-43-2	Benzene	1.2	< 1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	6.2	< 6.2	U
75-25-2	Bromoform	1.2	< 1.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.2	< 6.2	U
591-78-6	2-Hexanone	6.2	< 6.2	U
127-18-4	Tetrachloroethene	1.2	< 1.2	U
79-34-5	1,1,2,2-Tetrachloroethane	1.2	< 1.2	Ŭ
108-88-3	Toluene	1.2	< 1.2	Ū
108-90-7	Chlorobenzene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	U
100-42-5	Styrene	1.2	< 1.2	U
75-69-4	Trichlorofluoromethane	1.2	< 1.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.5	U
1330-20-7	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	96.4%
Bromofluorobenzene	87.5%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII 025173.070

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-111108	Method Blank	Low	101%	100%	96.7%	NA	0
LCS-111108	Lab Control	Low	96.1%	102%	101%	NA	0
LCSD-111108	Lab Control Dup	Low	99.2%	100%	100%	NA	0
NY07A	TPD6-8-081104	Low	108%	101%	94.1%	NА	0
NY07B	TDP7-8-081104	Low	109%	101%	99.1%	NA	0
NY07C	TDP8-8-081104	Low	92.2%	93.6%	68.8%	NA	0
NY07D	TDP9-8-081104	Low	109%	102%	96.0%	NA	0
NY07E	TDP10-8-081104	Low	105%	101%	91.8%	NA	0
NY07F	TDP11-7-081104	Low	98.1%	96.5%	83.7%	NA	0
NY07G	TDP11-9-081104	Low	108%	101%	97.7%	NA	0
NY07H	TDP12-7-081104	Low	100%	95.2%	82.6%	NA	0
NY07J	TDP13-7-081104	Low	103%	99.0%	84.0%	NA	0
NY07K	TDP14-4-081104	Low	108%	100%	95.6%	NA	0
NY07L	TDP15-4-081104	Low	105%	102%	95.9%	NA	0
NY07P	TDP10-7-081104	Low	103%	96.4%	87.5%	NA	0
		LCS	MB LIM	IITS		QC LIMI	TS
SW8260B		Low		Med	Low	•	Med
(DCE) = d4-1,	,2-Dichloroethane	75-120)	76-120	72-1	34	69-120
(TOL) = d8-Tc		80-122	2	80-120	78-1	24	80-120
(BFB) = Bromo	ofluorobenzene	79-120)	80-120	66-1	20	76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-120)	80-120	79-1	20	80-120

Log Number Range: 08-30002 to 08-30017

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-111108 Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-111108

LIMS ID: 08-30002

Matrix: Soil Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst LCS: FINN5/PAB

LCSD: FINN5/PAB

Date Analyzed LCS: 11/11/08 10:47

LCSD: 11/11/08 12:39

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	49.2	50.0	98.4%	45.9	50.0	91.8%	6.9%
Bromomethane	51.6	50.0	103%	49.2	50.0	98.4%	4.8%
Vinyl Chloride	53.2	50.0	106%	50.6	50.0	101%	5.0%
Chloroethane	47.8	50.0	95.6%	45.2	50.0	90.4%	5.6%
Methylene Chloride	48.7	50.0	97.4%	46.8	50.0	93.6%	4.0%
Acetone	198	250	79.2%	186	250	74.4%	6.2%
Carbon Disulfide	55.4	50.0	111%	51.5	50.0	103%	7.3%
1,1-Dichloroethene	53.6	50.0	107%	50.8	50.0	102%	5.4%
1,1-Dichloroethane	52.7	50.0	105%	49.9	50.0	99.8%	5.5%
trans-1,2-Dichloroethene	52.4	50.0	105%	50.2	50.0	100%	4.3%
cis-1,2-Dichloroethene	54.3	50.0	109%	49.7	50.0	99.4%	8.8%
Chloroform	53.2	50.0	106%	49.5	50.0	99.0%	7.2%
1,2-Dichloroethane	48.7	50.0	97.4%	46.6	50.0	93.2%	4.4%
2-Butanone	216	250	86.4%	210	250	84.0%	2.8%
1,1,1-Trichloroethane	50.9	50.0	102%	48.1	50.0	96.2%	5.7%
Carbon Tetrachloride	51.5	50.0	103%	47.8	50.0	95.6%	7.5%
Vinyl Acetate	46.6	50.0	93.2%	45.9	50.0	91.8%	1.5%
Bromodichloromethane	50.9	50.0	102%	48.0	50.0	96.0%	5.9%
1,2-Dichloropropane	50.4	50.0	101%	46.9	50.0	93.8%	7.2%
cis-1,3-Dichloropropene	50.6	50.0	101%	47.5	50.0	95.0%	6.3%
Trichloroethene	52.7	50.0	105%	50.0	50.0	100%	5.3%
Dibromochloromethane	51.7	50.0	103%	48.1	50.0	96.2%	7.2%
1,1,2-Trichloroethane	49.0	50.0	98.0%	47.2	50.0	94.4%	3.7%
Benzene	56.5	50.0	113%	53.4	50.0	107%	5.6%
trans-1,3-Dichloropropene	49.2	50.0	98.4%	46.6	50.0	93.2%	5.4%
2-Chloroethylvinylether	48.2	50.0	96.4%	45.6	50.0	91.2%	5.5%
Bromoform	46.7	50.0	93.4%	43.8	50.0	87.6%	6.4%
4-Methyl-2-Pentanone (MIBK)	212	250	84.8%	212	250	84.8%	0.0%
2-Hexanone	196	250	78.4%	187	250	74.8%	4.7%
Tetrachloroethene	55.2	50.0	110%	50.1	50.0	100%	9.7%
1,1,2,2-Tetrachloroethane	45.9	50.0	91.8%	43.5	50.0	87.0%	5.4%
Toluene	52.5	50.0	105%	50.1	50.0	100%	4.7%
Chlorobenzene	54.8	50.0	110%	50.5	50.0	101%	8.2%
Ethylbenzene	59.5	50.0	119%	55.2	50.0	110%	7.5%
Styrene	56.0	50.0	112%	52.0	50.0	104%	7.4%
Trichlorofluoromethane	49.8	50.0	99.6%	49.4	50.0	98.8%	0.8%
1,1,2-Trichloro-1,2,2-trifluoroetha		50.0	111%	51.7	50.0	103%	6.9%
m,p-Xylene	115	100	115%	102	100	102%	12.0%
o-Xylene	53.4	50.0	107%	49.4	50.0	98.8%	7.8%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111108

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111108 LIMS ID: 08-30002

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Matrix: Soil

Spike

LCS

Spike

LCSD

Analyte

LCS

Added-LCS Recovery

LCSD Added-LCSD Recovery RPD

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	96.1%	99.2%
d8-Toluene	102%	100%
Bromofluorobenzene	101%	100%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: MB-111108

LIMS ID: 08-30002

Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/11/08 11:51

QC Report No: NY07-The Boeing Company

Sample ID: MB-111108

METHOD BLANK

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
	<u> -</u>			

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	100%
Bromofluorobenzene	96.7%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B 1 of 1 Page

Sample ID: TDP8-GW-081104

SAMPLE

Lab Sample ID: NY07M

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30014

Project: SEATTLE/PHASEII

Matrix: Water

025173.070

Data Release Authorized: Reported: 11/07/08

Date Sampled: 11/04/08 Date Received: 11/04/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 11/05/08 18:45 Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	0.7	
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	0.4	
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ŭ
108-88-3	Toluene	0.2	< 0.2	Ŭ
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	Ŭ
100-42-5	Styrene	0.2	< 0.2	Ŭ
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ŭ
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ū

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	99.0%
d8-Toluene	96.5%
Bromofluorobenzene	94.8%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B 1 of 1 Page

Sample ID: TDP7-GW-081104 SAMPLE

Lab Sample ID: NY07N LIMS ID: 08-30015

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

Matrix: Water

025173.070

Data Release Authorized: MW Reported: 11/07/08

Date Sampled: 11/04/08 Date Received: 11/04/08

Instrument/Analyst: FINN3/JZ

Date Analyzed: 11/05/08 19:13

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	0.2	
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.5%
d8-Toluene	96.2%
Bromofluorobenzene	97.5%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: TDP11-GW-081104 SAMPLE

Lab Sample ID: NY070

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30016

Reported: 11/07/08

Project: SEATTLE/PHASEII

Matrix: Water Data Release Authorized:

025173.070 Date Sampled: 11/04/08 Date Received: 11/04/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 11/05/08 19:39 Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
)J =1 U	·1			

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	105%
d8-Toluene	95.0%
Bromofluorobenzene	97.5%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
NYO7M	TDP8-GW-081104	20	99.0%	96.5%	94.8%	NA	0
NYO7N	TDP7-GW-081104	20	98.5%	96.2%	97.5%	NA	0
MB-110508	Method Blank	20	89.2%	94.8%	99.2%	NА	0
LCS-110508	Lab Control	20	86.2%	95.2%	102%	NA	0
LCSD-110508	Lab Control Dup	20	86.5%	97.5%	100%	NA	0
NY070	TDP11-GW-081104	20	105%	95.0%	97.5%	NA	0
		LCS	S/MB LIM	ITS		QC LIMI	TS
SW8260B							
(DCE) = d4-1	,2-Dichloroethane		70-131			64-14	_
(TOL) = d8-Te			80-120			78-12	5
(10-)	ofluorobenzene		74-121			71-12	0
\/	,2-Dichlorobenzene		80-120			80-12	:1

Prep Method: SW5030B

Log Number Range: 08-30014 to 08-30016

ORGANICS ANALYSIS DATA SHEET
Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-30016 Matrix: Water

Data Release Authorized:

Reported: 11/07/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: FINN3/JZ

LCSD: FINN3/JZ

Date Analyzed LCS: 11/05/08 14:02

LCSD: 11/05/08 14:36

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	3.3	4.0	82.5%	3.1	4.0	77.5%	6.2%
Bromomethane	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%
Vinyl Chloride	3.4	4.0	85.0%	3.4	4.0	85.0%	0.0%
Chloroethane	3.5	4.0	87.5%	3.4	4.0	85.0%	2.9%
Methylene Chloride	3.6	4.0	90.0%	3.4	4.0	85.0%	5.7%
Acetone	19.3	20.0	96.5%	22.3	20.0	112%	14.4%
Carbon Disulfide	3.2	4.0	80.0%	3.4	4.0	85.0%	6.1%
1,1-Dichloroethene	3.4	4.0	85.0%	3.5	4.0	87.5%	2.9%
1,1-Dichloroethane	3.7	4.0	92.5%	3.7	4.0	92.5%	0.0%
trans-1,2-Dichloroethene	3.5	4.0	87.5%	3.5	4.0	87.5%	0.0%
cis-1,2-Dichloroethene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Chloroform	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
1,2-Dichloroethane	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
2-Butanone	21.5	20.0	108%	21.8	20.0	109%	1.4%
1,1,1-Trichloroethane	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
Carbon Tetrachloride	4.1	4.0	102%	4.2	4.0	105%	2.4%
Vinvl Acetate	3.0	4.0	75.0%	3.3	4.0	82.5%	9.5%
Bromodichloromethane	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,2-Dichloropropane	4.1	4.0	102%	4.1	4.0	102%	0.0%
cis-1,3-Dichloropropene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Trichloroethene	4.1	4.0	102%	4.1	4.0	102%	0.0%
Dibromochloromethane	4.6	4.0	115%	4.1	4.0	102%	11.5%
1,1,2-Trichloroethane	4.2	4.0	105%	3.7	4.0	92.5%	12.7%
• •	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Benzene trans-1,3-Dichloropropene	3.8	4.0	95.0%	3.7	4.0	92.5%	2.7%
2-Chloroethylvinylether	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
Bromoform	4.6	4.0	115%	4.4	4.0	110%	4.4%
4-Methyl-2-Pentanone (MIBK)	20.7	20.0	104%	19.9	20.0	99.5%	3.9%
2-Hexanone	22.4	20.0	112%	22.6	20.0	113%	0.9%
Tetrachloroethene	4.6	4.0	115%	4.7	4.0	118%	2.2%
1,1,2,2-Tetrachloroethane	4.1	4.0	102%	4.0	4.0	100%	2.5%
	4.1	4.0	102%	4.0	4.0	100%	2.5%
Toluene	4.5	4.0	112%	4.2	4.0	105%	6.9%
Chlorobenzene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Ethylbenzene	4.5	4.0	112%	4.3	4.0	108%	4.5%
Styrene	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
Trichlorofluoromethane	3.6	4.0	90.0%	3.9	4.0	97.5%	8.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	8.8	8.0	110%	8.5	8.0	106%	3.5%
m,p-Xylene	4.5	4.0	112%	4.4	4.0	110%	2.2%
o-Xylene	4.5	1.0					

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-30016

Matrix: Water

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Analyte

Spike

LCS

Spike

LCSD

LCS

Added-LCS Recovery

LCSD Added-LCSD Recovery RPD

d4-1,2-Dichloroethane

d8-Toluene

.86.2% 86.5% 95.2% 97.5%

Bromofluorobenzene

102% 100%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: MB-110508 METHOD BLANK

Lab Sample ID: MB-110508

LIMS ID: 08-30016

Matrix: Water
Data Release Authorized:

Instrument/Analyst: FINN3/JZ
Date Analyzed: 11/05/08 14:58

Reported: 11/07/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	IJ

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	89.2%
d8-Toluene	94.8%
Bromofluorobenzene	99.2%

Sample ID: TDP7-8-081104

Lab Sample ID: NY07B

SAMPLE

LIMS ID: 08-30003

QC Report No: NY07-The Boeing Company

Matrix: Soil

Project: SEATTLE/PHASEII 025173.070

Data Release Authorized: Reported: 11/21/08

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted: 11/10/08 Date Analyzed: 11/18/08 20:08 Instrument/Analyst: NT4/LJR

Sample Amount: 7.98 g-dry-wt

GPC Cleanup: No

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.4%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	63	< 63 U
111-44-4	Bis-(2-Chloroethyl) Ether	63	< 63 U
95-57-8	2-Chlorophenol	63	< 63 U
541-73-1	1,3-Dichlorobenzene	63	< 63 U
106-46-7	1,4-Dichlorobenzene	63	< 63 U
100-51-6	Benzyl Alcohol	63	< 63 U
95-50-1	1,2-Dichlorobenzene	63	< 63 U
95-48-7	2-Methylphenol	63	< 63 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	63	< 63 U
106-44-5	4-Methylphenol	63	< 63 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	63	< 63 U
98-95-3	Nitrobenzene	63	< 63 U
78-59-1	Isophorone	63	< 63 U
88-75-5	2-Nitrophenol	63	< 63 U
105-67-9	2,4-Dimethylphenol	63	< 63 U
65-85-0	Benzoic Acid	630	< 630 U
111-91-1	bis(2-Chloroethoxy) Methane	63	< 63 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	63	< 63 U
91-20-3	Naphthalene	63	< 63 U
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	63	< 63 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	63	< 63 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	63	< 63 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	63	< 63 U
208-96-8	Acenaphthylene	63	< 63 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	63	< 63 U
51-28-5	2,4-Dinitrophenol	630	< 630 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	63	< 63 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Page 2 of 2

Sample ID: TDP7-8-081104

SAMPLE

Lab Sample ID: NY07B

LIMS ID: 08-30003

Matrix: Soil

Date Analyzed: 11/18/08 20:08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	63	< 63 U
7005-72-3	4-Chlorophenyl-phenylether	63	< 63 U
86-73-7	Fluorene	63	< 63 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	630	< 630 U
86-30-6	N-Nitrosodiphenylamine	63	< 63 U
101-55-3	4-Bromophenyl-phenylether	63	< 63 U
118-74-1	Hexachlorobenzene	63	< 63 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	63	< 63 U
86-74-8	Carbazole	63	< 63 U
120-12-7	Anthracene	63	< 63 Ū
84-74-2	Di-n-Butylphthalate	63	< 63 U
206-44-0	Fluoranthene	63	< 63 U
129-00-0	Pyrene	63	< 63 U
85-68-7	Butylbenzylphthalate	63	< 63 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	63	< 63 U
117-81-7	bis(2-Ethylhexyl)phthalate	63	< 63 U
218-01-9	Chrysene	63	< 63 U
117-84-0	Di-n-Octyl phthalate	63	< 63 U
205-99-2	Benzo(b)fluoranthene	63	< 63 U
207-08-9	Benzo(k)fluoranthene	63	< 63 U
50-32-8	Benzo(a)pyrene	63	< 63 U
193-39-5	Indeno(1,2,3-cd)pyrene	63	< 63 U
53-70-3	Dibenz(a,h)anthracene	63	< 63 U
191-24-2	Benzo(g,h,i)perylene	63	< 63 U
90-12-0	1-Methylnaphthalene	63	< 63 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	81.6%	2-Fluorobiphenyl	85.2%
d14-p-Terphenyl	90.8%	d4-1,2-Dichlorobenzene	86.4%
d5-Phenol	82.7%	2-Fluorophenol	79.5%
2,4,6-Tribromophenol	101%	d4-2-Chlorophenol	83.2%

Page 1 of 2

Lab Sample ID: NY07C LIMS ID: 08-30004

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

Date Extracted: 11/10/08 Date Analyzed: 11/18/08 20:43 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: TDP8-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 8.23 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 20.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	61	< 61 U
111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
95-57-8	2-Chlorophenol	61	< 61 U
541-73-1	1,3-Dichlorobenzene	61	< 61 U
106-46-7	1,4-Dichlorobenzene	61	< 61 U
100-51-6	Benzyl Alcohol	61	< 61 U
95-50-1	1,2-Dichlorobenzene	61	< 61 U
95-48-7	2-Methylphenol	61	< 61 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
106-44-5	4-Methylphenol	61	170
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	61	< 61 U
98-95-3	Nitrobenzene	61	< 61 U
78-59-1	Isophorone	61	< 61 U
88-75-5	2-Nitrophenol	61	< 61 U
105-67-9	2,4-Dimethylphenol	61	< 61 U
65-85-0	Benzoic Acid	610	< 610 U
111-91-1	bis(2-Chloroethoxy) Methane	61	< 61 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	61	< 61 U
91-20-3	Naphthalene	61	260
106-47-8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	61	< 61 U
59-50-7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	61	64
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	61	< 61 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	61	< 61 U
208-96-8	Acenaphthylene	61	71
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	61	< 61 U
51-28-5	2,4-Dinitrophenol	610	< 610 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	61	< 61 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

Page 2 of 2

Sample ID: TDP8-8-081104

SAMPLE

Lab Sample ID: NY07C

LIMS ID: 08-30004

Matrix: Soil

Date Analyzed: 11/18/08 20:43

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	61	160
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	100
129-00-0	Pyrene	61	110
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a) anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k) fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	82.8%	2-Fluorobiphenyl	87.2%
d14-p-Terphenyl	82.8%	d4-1,2-Dichlorobenzene	85.2%
d5-Phenol	80.0%	2-Fluorophenol	76.5%
2,4,6-Tribromophenol	102%	d4-2-Chlorophenol	82.7%

Page 1 of 2

Lab Sample ID: NY07G LIMS ID: 08-30008

Matrix: Soil

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08
Date Analyzed: 11/19/08 21:37
Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: TDP11-9-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 8.33 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 9.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
111-44-4	Bis-(2-Chloroethyl) Ether	60	< 60 U
95-57-8	2-Chlorophenol	60	< 60 U
541-73-1	1,3-Dichlorobenzene	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	60	< 60 U
98-95-3	Nitrobenzene	60	< 60 U
78-59-1	Isophorone	60	< 60 U
88-75-5	2-Nitrophenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
111-91-1	bis(2-Chloroethoxy) Methane	60	< 60 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	< 60 U
106-47-8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	60	< 60 U
59-50-7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	60	< 60 U
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	60	< 60 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	60	< 60 U
51-28-5	2,4-Dinitrophenol	600	< 600 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	60	< 60 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

Page 2 of 2

Sample ID: TDP11-9-081104

SAMPLE

Lab Sample ID: NY07G

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30008

Project: SEATTLE/PHASEII

Matrix: Soil

Date Analyzed: 11/19/08 21:37

025173.070

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	60	< 60 U
7005-72-3	4-Chlorophenyl-phenylether	60	< 60 U
86-73-7	Fluorene	60	< 60 U
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	600	< 600 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
101-55-3	4-Bromophenyl-phenylether	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	< 60 U
86-74-8	Carbazole	60	< 60 U
120-12-7	Anthracene	60	< 60 U
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	< 60 U
129-00-0	Pyrene	60	< 60 U
85-68-7	Butylbenzylphthalate	60	< 60 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a) anthracene	60	< 60 U
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	< 60 U
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo(b)fluoranthene	60	< 60 U
207-08-9	Benzo(k) fluoranthene	60	< 60 U
50-32-8	Benzo(a)pyrene	60	< 60 U
193-39-5	Indeno(1,2,3-cd)pyrene	60	< 60 U
53-70-3	Dibenz(a,h)anthracene	60	< 60 U
191-24-2	Benzo(g,h,i)perylene	60	< 60 U
90-12-0	1-Methylnaphthalene	60	< 60 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	86.8%	2-Fluorobiphenyl	88.8%
d14-p-Terphenyl	104%	d4-1,2-Dichlorobenzene	88.4%
d5-Phenol	80.8%	2-Fluorophenol	81.1%
2,4,6-Tribromophenol	109%	d4-2-Chlorophenol	85.3%

Page 1 of 2

Lab Sample ID: NY07G LIMS ID: 08-30008

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

Date Extracted: 11/10/08
Date Analyzed: 11/18/08 21:18
Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: TDP11-9-081104

DILUTION

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 8.33 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 9.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	180	< 180 U
111-44-4	Bis-(2-Chloroethyl) Ether	180	< 180 U
95-57-8	2-Chlorophenol	180	< 180 U
541-73-1	1,3-Dichlorobenzene	180	< 180 U
106-46-7	1,4-Dichlorobenzene	180	< 180 U
100-51-6	Benzyl Alcohol	180	< 180 U
95-50-1	1,2-Dichlorobenzene	180	< 180 U
95-48-7	2-Methylphenol	180	< 180 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	180	< 180 U
106-44-5	4-Methylphenol	180	< 180 U
621-64-7	N-Nitroso-Di-N-Propylamine	900	< 900 U
67-72-1	Hexachloroethane	180	< 180 U
98-95-3	Nitrobenzene	180	< 180 U
78-59-1	Isophorone	180	< 180 U
88-75-5	2-Nitrophenol	180	< 180 U
105-67-9	2,4-Dimethylphenol	180	< 180 U
65-85-0	Benzoic Acid	1,800	< 1,800 U
111-91-1	bis(2-Chloroethoxy) Methane	180	< 180 U
120-83-2	2,4-Dichlorophenol	900	< 900 U
120-82-1	1,2,4-Trichlorobenzene	180	< 180 U
91-20-3	Naphthalene	180	< 180 Ŭ
106-47-8	4-Chloroaniline	900	< 900 Ŭ
87-68-3	Hexachlorobutadiene	180	< 180 U
59-50-7	4-Chloro-3-methylphenol	900	< 900 Ŭ
91 - 57-6	2-Methylnaphthalene	180	< 180 U
77-47-4	Hexachlorocyclopentadiene	900	< 900 Ŭ
88-06-2	2,4,6-Trichlorophenol	900	< 900 U
95-95-4	2,4,5-Trichlorophenol	900	< 900 U
91-58-7	2-Chloronaphthalene	180	< 180 U
88-74-4	2-Nitroaniline	900	< 900 U
131-11-3	Dimethylphthalate	180	< 180 U
208-96-8	Acenaphthylene	180	< 180 U
99-09-2	3-Nitroaniline	900	< 900 U
83-32-9	Acenaphthene	180	< 180 U
51-28-5	2,4-Dinitrophenol	1,800	< 1,800 U
100-02-7	4-Nitrophenol	900	< 900 U
132-64-9	Dibenzofuran	180	< 180 U
606-20-2	2,6-Dinitrotoluene	900	< 900 U
121-14-2	2,4-Dinitrotoluene	900	< 900 U

Page 2 of 2

Sample ID: TDP11-9-081104

DILUTION

Lab Sample ID: NY07G

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30008

Project: SEATTLE/PHASEII 025173.070

Matrix: Soil

Date Analyzed: 11/18/08 21:18

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	180	< 180 U
7005-72-3	4-Chlorophenyl-phenylether	180	< 180 U
86-73-7	Fluorene	180	< 180 U
100-01-6	4-Nitroaniline	900	< 900 U
534-52-1	4,6-Dinitro-2-Methylphenol	1,800	< 1,800 U
86-30-6	N-Nitrosodiphenylamine	180	< 180 U
101-55-3	4-Bromophenyl-phenylether	180	< 180 U
118-74-1	Hexachlorobenzene	180	< 180 U
87-86-5	Pentachlorophenol	900	< 900 U
85-01-8	Phenanthrene	180	< 180 U
86-74-8	Carbazole	180	< 180 U
120-12-7	Anthracene	180	< 180 U
84-74-2	Di-n-Butylphthalate	180	< 180 U
206-44-0	Fluoranthene	180	< 180 U
129-00-0	Pyrene	180	< 180 U
85-68-7	Butylbenzylphthalate	180	< 180 U
91-94-1	3,3'-Dichlorobenzidine	900	< 900 U
56-55-3	Benzo(a)anthracene	180	< 180 U
117-81-7	bis(2-Ethylhexyl)phthalate	180	< 180 U
218-01-9	Chrysene	180	< 180 U
117-84-0	Di-n-Octyl phthalate	180	< 180 U
205-99-2	Benzo(b)fluoranthene	180	< 180 U
207-08-9	Benzo(k)fluoranthene	180	< 180 U
50-32-8	Benzo(a)pyrene	180	< 180 U
193-39-5	Indeno(1,2,3-cd)pyrene	180	< 180 U
53-70-3	Dibenz(a,h)anthracene	180	< 180 U
191-24-2	Benzo(g,h,i)perylene	180	< 180 U
90-12-0	1-Methylnaphthalene	180	< 180 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	94.1%	2-Fluorobiphenyl	94.4%
_		d4-1,2-Dichlorobenzene	96.7%
d14-p-Terphenyl	99.1%		
d5-Phenol	90.4%	2-Fluorophenol	84.8%
2 4 6-Tribromophenol	116%	d4-2-Chlorophenol	92.8%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-111008	88.4%	95.6%	104%	93.2%	89.1%	84.3%	111%	90.7%	0
LCS-111008	92.0%	102%	115%	92.8%	83.7%	87.2%	122%	93.1%	Ö
LCSD-111008	92.0%	106%	117%	90.8%	81.6%	86.4%	125%	93.1%	0
TDP7-8-081104	81.6%	85.2%	90.8%	86.4%	82.7%	79.5%	101%	83.2%	0
TDP8-8-081104	82.8%	87.2%	82.8%	85.2%	80.0%	76.5%	102%	82.7%	0
TDP11-9-081104	86.8%	88.8%	104%	88.4%	80.8%	81.1%	109%	85.3%	0
TDP11-9-081104 DL	94.1%	94.4%	99.1%	96.7%	90.4%	84.8%	116%	92.8%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	=	d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
(PHL)	==	d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
(TBP)	=	2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 08-30003 to 08-30008

Page 1 of 2

Sample ID: LCS-111008

LCS/LCSD

Lab Sample ID: LCS-111008

LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Date Extracted LCS/LCSD: 11/10/08

Date Analyzed LCS: 11/18/08 12:31

LCSD: 11/18/08 13:06

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	1790	1670	107%	1810	1670	108%	1.1%
Bis-(2-Chloroethyl) Ether	1530	1670	91.6%	1550	1670	92.8%	1.3%
2-Chlorophenol	1660	1670	99.4%	1690	1670	101%	1.8%
1,3-Dichlorobenzene	1610	1670	96.4%	1650	1670	98.8%	2.5%
1,4-Dichlorobenzene	1640	1670	98.2%	1650	1670	98.8%	0.6%
Benzyl Alcohol	2960	3330	88.9%	2940	3330	88.3%	0.7%
1,2-Dichlorobenzene	1650	1670	98.8%	1680	1670	101%	1.8%
2-Methylphenol	1690	1670	101%	1690	1670	101%	0.0%
2,2'-Oxybis(1-Chloropropane)1410	1670	84.4%	1430	1670	85.6%	1.4%
4-Methylphenol	3310	3330	99.48	3320	3330	99.7%	0.3%
N-Nitroso-Di-N-Propylamine	1500	1670	89.8%	1510	1670	90.4%	0.7%
Hexachloroethane	1590	1670	95.2%	1630	1670	97.6%	2.5%
Nitrobenzene	1410	1670	84.4%	1430	1670	85.6%	1.4%
Isophorone	1720	1670	103%	1750	1670	105%	1.7%
2-Nitrophenol	1830	1670	110%	1860	1670	111%	1.6%
2,4-Dimethylphenol	1640	1670	98.2%	1680	1670	101%	2.4%
Benzoic Acid	1400	5000	28.0%	1390	5000	27.8%	0.7%
bis(2-Chloroethoxy) Methane	1660	1670	99.4%	1680	1670	101%	1.2%
2,4-Dichlorophenol	1990	1670	119%	2070	1670	124%	3.9%
1,2,4-Trichlorobenzene	1750	1670	105%	1830	1670	110%	4.5%
Naphthalene	1780	1670	107%	1830	1670	110%	2.8%
4-Chloroaniline	7350	4000	184%	7330	4000	183%	0.3%
Hexachlorobutadiene	1820	1670	109%	1870	1670	112%	2.7%
4-Chloro-3-methylphenol	1940	1670	116%	1980	1670	119%	2.0%
2-Methylnaphthalene	1840	1670	110%	1900	1670	114%	3.2%
Hexachlorocyclopentadiene	4970	5000	99.4%	5190	5000	104%	4.3%
2,4,6-Trichlorophenol	1960	1670	117%	2010	1670	120%	2.5%
2,4,5-Trichlorophenol	1910	1670	114%	2040	1670	122%	6.6%
2-Chloronaphthalene	2000	1670	120%	2090	1670	125%	4.4%
2-Nitroaniline	1880	1670	113%	1950	1670	117%	3.7%
Dimethylphthalate	1890	1670	113%	1940	1670	116%	2.6%
Acenaphthylene	1900	1670	114%	1960	1670	117%	3.1%
3-Nitroaniline	5070	4270	119%	5090	4270	119%	0.4%
Acenaphthene	1890	1670	113%	1960	1670	117%	3.6%

Page 2 of 2

Sample ID: LCSD-111008 LCS/LCSD

Lab Sample ID: LCS-111008

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30003

Project: SEATTLE/PHASEII

Matrix: Soil

025173.070

Date Analyzed LCS: 11/18/08 12:31 LCSD: 11/18/08 13:06

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	6520	5000	130%	6880	5000	138%	5.4%
4-Nitrophenol	2170	1670	130%	2090	1670	125%	3.8%
Dibenzofuran	1900	1670	114%	2020	1670	121%	6.1%
2,6-Dinitrotoluene	2230	1670	134%	2260	1670	135%	1.3%
2,4-Dinitrotoluene	2210	1670	132%	2340	1670	140%	5.7%
Diethylphthalate	2010	1670	120%	2080	1670	125%	3.4%
4-Chlorophenyl-phenylether	2010	1670	120%	2150	1670	129%	6.7%
Fluorene	2040	1670	122%	2170	1670	130%	6.2%
4-Nitroaniline	2040	1670	122%	2120	1670	127%	3.8%
4,6-Dinitro-2-Methylphenol	4040	5000	80.8%	4240	5000	84.8%	4.8%
N-Nitrosodiphenylamine	1880	1670	113%	1940	1670	116%	3.1%
4-Bromophenyl-phenylether	1890	1670	113%	2030	1670	122%	7.1%
Hexachlorobenzene	1980	1670	119%	2160	1670	129%	8.7%
Pentachlorophenol	2140	1670	128%	2180	1670	131%	1.9%
Phenanthrene	1900	1670	114%	1990	1670	119%	4.6%
Carbazole	1930	1670	116%	2000	1670	120%	3.6%
Anthracene	1890	1670	113%	2010	1670	120%	6.2%
Di-n-Butylphthalate	1920	1670	115%	1980	1670	119%	3.1%
Fluoranthene	1980	1670	119%	2040	1670	122%	3.0%
Pyrene	1960	1670	117%	2070	1670	124%	5.5%
Butylbenzylphthalate	1950	1670	117%	2000	1670	120%	2.5%
3,3'-Dichlorobenzidine	4990	4270	117%	5080	4270	119%	1.8%
Benzo(a)anthracene	1930	1670	116%	1980	1670	119%	2.6%
bis(2-Ethylhexyl)phthalate	1930	1670	116%	1970	1670	118%	2.1%
Chrysene	1970	1670	118%	2020	1670	121%	2.5%
Di-n-Octyl phthalate	1910	1670	114%	1940	1670	116%	1.6%
Benzo(b)fluoranthene	2020	1670	121%	2050	1670	123%	1.5%
Benzo(k)fluoranthene	1940	1670	116%	1990	1670	119%	2.5%
Benzo(a)pyrene	1680	1670	101%	1710	1670	102%	1.8%
Indeno(1,2,3-cd)pyrene	1830	1670	110%	1870	1670	112%	2.2%
Dibenz(a,h)anthracene	1850	1670	111%	1900	1670	114%	2.7%
Benzo(g,h,i)perylene	1650	1670	98.8%	1700	1670	102%	3.0%
1-Methylnaphthalene	1940	1670	116%	2000	1670	120%	3.0%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	92.0%	92.0%
2-Fluorobiphenyl	102%	106%
d14-p-Terphenyl	115%	117%
d4-1,2-Dichlorobenzene	92.8%	90.8%
d5-Phenol	83.7%	81.6%
2-Fluorophenol	87.2%	86.4%
2,4,6-Tribromophenol	122%	125%
d4-2-Chlorophenol	93.1%	93.1%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: MB-111008

LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

Date Extracted: 11/10/08 Date Analyzed: 11/18/08 11:56 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: MB-111008 METHOD BLANK

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

100-51-6 Benzyl Alcohol 67 < 67 U 95-50-1 1,2-Dichlorobenzene 67 < 67 U 95-48-7 2-Methylphenol 67 < 67 U 108-60-1 2,2'-Oxybis (1-Chloropropane) 67 < 67 U 106-44-5 4-Methylphenol 67 < 67 U 621-64-7 N-Nitroso-Di-N-Propylamine 330 C 330 U 67-72-1 Hexachloroethane 67 < 67 U 98-95-3 Nitrobenzene 67 < 67 U 78-59-1 Isophorone 67 < 67 U 88-75-5 2-Nitrophenol 67 < 67 U 105-67-9 2,4-Dimethylphenol 67 < 67 U 111-91-1 bis (2-Chloroethoxy) Methane 67 < 67 U 120-83-2 2,4-Dichlorophenol 330 < 330 U 120-82-1 1,2,4-Trichlorobenzene 67 < 67 U 106-47-8	CAS Number	Analyte	RL	Result
95-57-8 2-Chlorophenol 67 <67 U 541-73-1 1,3-Dichlorobenzene 67 <67 U 106-46-7 1,4-Dichlorobenzene 67 <67 U 100-51-6 Benzyl Alcohol 67 <67 U 95-50-1 1,2-Dichlorobenzene 67 <67 U 95-50-1 2-Methylphenol 67 <67 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 67 <67 U 106-44-5 4-Methylphenol 67 <67 U 106-44-5 4-Methylphenol 67 <67 U 106-44-5 4-Methylphenol 67 <67 U 621-64-7 N-Nitroso-Di-N-Propylamine 330 <330 U 98-95-3 Nitrobenzene 67 <67 U 98-95-3 Nitrobenzene 67 <67 U 98-95-3 Nitrobenzene 67 <67 U 98-75-1 Isophorone 67 <67 U 98-75-1 Jsophorone 67 <67 U 98-75-0 Penzoic Acid 670 <67 U 111-91-1 bis(2-Chloropthonl 67 <67 U 120-83-2 2,4-Dichloropthonl 330 <330 U 120-82-1 1,2,4-Trichlorobenzene 67 <67 U 91-20-3 Naphthalene 67 <67 U 91-20-3 Naphthalene 67 <67 U 91-20-3 Naphthalene 67 <67 U 91-57-6 2-Methylphenol 330 <330 U 91-57-6 2-Methylnaphthalene 67 <67 U 98-68-3 Hexachlorobutadiene 67 <67 U 98-68-3 Hexachlorophenol 330 <330 U 91-57-6 2-Methylnaphthalene 67 <67 U 98-76-47-4 Hexachlorocylopentadiene 330 <330 U 91-58-7 2-Chloronaphthalene 67 <67 U 98-96-8 Acenaphthylene 67 <67 U 98-96-8 Acenaphthylene 67 <67 U 98-96-8 Acenaphthene 67 <67 U 98-96-8 Acenaphthene 67 <67 U 98-96-8 Acenaphthene 67 <67 U 98-96-97 4-Dinitrophenol 330 <330 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U 93-32-9 Acenaphthene 67 <67 U	108-95-2	Phenol	67	< 67 U
541-73-1 1,3-Dichlorobenzene 67 < 67	111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
106-46-7 1,4-Dichlorobenzene 67 < 67	95-57-8	2-Chlorophenol	67	< 67 U
100-51-6 Benzyl Alcohol 67 < 67	541-73-1		67	< 67 U
95-50-1 1,2-Dichlorobenzene 67 < 67 U 95-48-7 2-Methylphenol 67 < 67 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 67 < 67 U 106-44-5 4-Methylphenol 67 < 67 U 621-64-7 N-Nitroso-Di-N-Propylamine 330 < 330 U 67-72-1 Hexachloroethane 67 < 67 U 98-95-3 Nitrobenzene 67 < 67 U 88-75-5 2-Nitrophenol 67 < 67 U 105-67-9 2,4-Dimethylphenol 67 < 67 U 111-91-1 bis (2-Chloroethoxy) Methane 67 < 67 U 112-083-2 2,4-Dichlorophenol 330 < 330 U 120-82-1 1,2,4-Trichlorobenzene 67 < 67 U 106-47-8 4-Chloroaniline 330 < 330 U 87-68-3 Hexachlorobutadiene 67 < 67 U 107-47-4 Hexachlorocyclopentadiene 330 < 330 U 991-57-6 2-Methylnaphthalene 67 < 67 U 97-47-4 Hexachlorophenol 330 < 330 U 98-68-7 2-Chloronaphthalene 67 < 67 U 991-58-7 2-Chlorophenol 330 < 330 U 991-58-7 2-Chlorophenol 330 < 330 U 991-58-7 3-Chlorophenol 330 < 330 U 991-57-6 2-Methylnaphthalene 67 < 67 U 991-58-7 2-Chloronaphthalene 67 < 67 U 991-58-7 2-Chloronaphthalene 67 < 67 U 991-58-7 2-Chloronaphthalene 67 < 67 U 988-74-4 2-Nitroaniline 330 < 330 U 991-58-7 2-Chloronaphthalene 67 < 67 U 988-74-4 2-Nitroaniline 330 < 330 U 9330 U	106-46-7		67	< 67 U
95-48-7	100-51-6		67	
108-60-1 2,2'-Oxybis(1-Chloropropane) 67 < 67	95-50-1	1,2-Dichlorobenzene	67	< 67 U
106-44-5 4-Methylphenol 67 < 67	95-48-7		67	< 67 U
621-64-7 N-Nitroso-Di-N-Propylamine 330 < 330	108-60-1		67	< 67 U
67-72-1 Hexachloroethane 67 < 67	106-44-5	4-Methylphenol	67	< 67 U
98-95-3 Nitrobenzene 67 < 67	621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
78-59-1 Isophorone 67 < 67	67-72-1		67	< 67 U
88-75-5 2-Nitrophenol 67 < 67	98-95-3	Nitrobenzene	67	< 67 U
105-67-9 2,4-Dimethylphenol 67 < 67 U	78-59-1	Isophorone	67	< 67 U
65-85-0 Benzoic Acid 670 < 670	88-75-5		67	< 67 U
111-91-1 bis(2-Chloroethoxy) Methane 67 < 67 U	105-67-9	2,4-Dimethylphenol	67	< 67 U
120-83-2 2,4-Dichlorophenol 330 < 330	65-85-0		670	< 670 U
120-82-1 1,2,4-Trichlorobenzene 67 < 67	111-91-1		67	< 67 U
91-20-3 Naphthalene 67 < 67	120-83-2		330	< 330 U
106-47-8 4-Chloroaniline 330 < 330 U	120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
87-68-3 Hexachlorobutadiene 67 < 67	91-20-3	Naphthalene	67	< 67 U
59-50-7 4-Chloro-3-methylphenol 330 < 330 U	106-47-8	4-Chloroaniline	330	< 330 U
91-57-6 2-Methylnaphthalene 67 < 67 U 77-47-4 Hexachlorocyclopentadiene 330 < 330 U 88-06-2 2,4,6-Trichlorophenol 330 < 330 U 95-95-4 2,4,5-Trichlorophenol 330 < 330 U 91-58-7 2-Chloronaphthalene 67 < 67 U 88-74-4 2-Nitroaniline 330 < 330 U 131-11-3 Dimethylphthalate 67 < 67 U 208-96-8 Acenaphthylene 67 < 67 U 99-09-2 3-Nitroaniline 330 < 330 U 83-32-9 Acenaphthene 67 < 67 U 51-28-5 2,4-Dinitrophenol 670 < 670 U 100-02-7 4-Nitrophenol 330 < 330 U 132-64-9 Dibenzofuran 67 < 67 U 606-20-2 2,6-Dinitrotoluene 330 < 330 U	87-68-3		67	< 67 U
77-47-4 Hexachlorocyclopentadiene 330 < 330 U 88-06-2 2,4,6-Trichlorophenol 330 < 330 U 95-95-4 2,4,5-Trichlorophenol 330 < 330 U 91-58-7 2-Chloronaphthalene 67 < 67 U 88-74-4 2-Nitroaniline 330 < 330 U 131-11-3 Dimethylphthalate 67 < 67 U 208-96-8 Acenaphthylene 67 < 67 U 99-09-2 3-Nitroaniline 330 < 330 U 83-32-9 Acenaphthene 67 < 67 U 51-28-5 2,4-Dinitrophenol 670 < 670 U 100-02-7 4-Nitrophenol 330 < 330 U 132-64-9 Dibenzofuran 67 < 67 U 606-20-2 2,6-Dinitrotoluene 330 < 330 U	59-50-7		330	
88-06-2 2,4,6-Trichlorophenol 330 < 330 U	91-57-6	2-Methylnaphthalene	67	< 67 U
95-95-4 2,4,5-Trichlorophenol 330 < 330 U	77-47-4	Hexachlorocyclopentadiene	330	< 330 U
91-58-7 2-Chloronaphthalene 67 < 67 U	88-06-2		330	< 330 U
88-74-4 2-Nitroaniline 330 < 330 U	95-95-4	2,4,5-Trichlorophenol	330	< 330 U
131-11-3 Dimethylphthalate 67 < 67 U	91-58-7	2-Chloronaphthalene	67	< 67 U
208-96-8 Acenaphthylene 67 < 67	88-74-4	2-Nitroaniline	330	< 330 U
99-09-2 3-Nitroaniline 330 < 330 U	131-11-3	Dimethylphthalate	67	< 67 U
83-32-9 Acenaphthene 67 < 67 U	208-96-8	Acenaphthylene	67	< 67 U
51-28-5 2,4-Dinitrophenol 670 < 670	99-09-2	3-Nitroaniline	330	< 330 U
100-02-7 4-Nitrophenol 330 < 330 U	83-32-9		67	< 67 U
132-64-9 Dibenzofuran 67 < 67 U	51-28-5	2,4-Dinitrophenol	670	< 670 U
606-20-2 2,6-Dinitrotoluene 330 < 330 U	100-02-7	4-Nitrophenol	330	< 330 U
	132-64-9	Dibenzofuran	67	< 67 U
121-14-2 2,4-Dinitrotoluene 330 < 330 U	606-20-2	2,6-Dinitrotoluene	330	< 330 U
	121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: MB-111008

METHOD BLANK

Lab Sample ID: MB-111008 QC Report No: NY07-The Boeing Company LIMS ID: 08-30003

Project: SEATTLE/PHASEII

025173.070

Matrix: Soil Date Analyzed: 11/18/08 11:56

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a) anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b) fluoranthene	67	< 67 U
207-08-9	Benzo(k) fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	88.4%	2-Fluorobiphenyl	95.6%
d14-p-Terphenyl	104%	d4-1,2-Dichlorobenzene	93.2%
d5-Phenol	89.1%	2-Fluorophenol	84.3%
2.4.6-Tribromophenol	111%	d4-2-Chlorophenol	90.7%

Page 1 of 2

Lab Sample ID: NY07M LIMS ID: 08-30014

Matrix: Water

Data Release Authorized: Reported: 11/10/08

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 02:43 Instrument/Analyst: NT6/LJR

Sample ID: TDP8-GW-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

AS Number	Analyte	RL	Result
08-95-2	Phenol	1.0	< 1.0 U
11-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
5-57-8	2-Chlorophenol	1.0	< 1.0 U
11-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
06-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
00-51-6	Benzyl Alcohol	5.0	< 5.0 U
5-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
5-48-7	2-Methylphenol	1.0	< 1.0 U
08-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
06-44-5	4-Methylphenol	1.0	< 1.0 U
21-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
7-72-1	Hexachloroethane	1.0	< 1.0 U
3-95-3	Nitrobenzene	1.0	< 1.0 U
3-59-1	Isophorone	1.0	< 1.0 U
3-75-5	2-Nitrophenol	5.0	< 5.0 U
05-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
5-85-0	Benzoic Acid	10	< 10 U
11-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
20-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
20-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
L-20-3	Naphthalene	1.0	< 1.0 U
06-47-8	4-Chloroaniline	5.0	< 5.0 U
7-68-3	Hexachlorobutadiene	1.0	< 1.0 U
9-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
L-57-6	2-Methylnaphthalene	1.0	< 1.0 U
7-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
3-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
5-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
L-58-7	2-Chloronaphthalene	1.0	< 1.0 U
3-74-4	2-Nitroaniline	5.0	< 5.0 U
31-11-3	Dimethylphthalate	1.0	< 1.0 U
08-96-8	Acenaphthylene	1.0	< 1.0 U
9-09-2	3-Nitroaniline	5.0	< 5.0 U
3-32-9	Acenaphthene	1.0	< 1.0 U
L-28-5	2,4-Dinitrophenol	10	< 10 U
	-	5.0	< 5.0 U
			< 1.0 U
			< 5.0 U
	· · · · · · · · · · · · · · · · · · ·		< 5.0 U
			< 1.0 U
00-02-7 32-64-9 06-20-2 21-14-2 4-66-2	4-Nitrophenol Dibenzofuran 2,6-Dinitrotoluene 2,4-Dinitrotoluene Diethylphthalate	5.0 1.0 5.0 5.0	< <

Page 2 of 2

Sample ID: TDP8-GW-081104

SAMPLE

Lab Sample ID: NY07M LIMS ID: 08-30014

Matrix: Water

Date Analyzed: 11/08/08 02:43

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	2.5
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	75.2%
d14-p-Terphenyl	95.2%	d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	83.5%	2-Fluorophenol	77.6%
2.4.6-Tribromophenol	91.2%	d4-2-Chlorophenol	80.0%

Page 1 of 2

Sample ID: TDP7-GW-081104

SAMPLE

Lab Sample ID: NY07N LIMS ID: 08-30015

Matrix: Water

Data Release Authorized: Reported: 11/10/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 03:17 Instrument/Analyst: NT6/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	2.0

Page 2 of 2

Sample ID: TDP7-GW-081104

SAMPLE

Lab Sample ID: NY07N

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30015

Project: SEATTLE/PHASEII 025173.070

Matrix: Water

Date Analyzed: 11/08/08 03:17

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.0
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	76.0%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	78.0%	d4-1,2-Dichlorobenzene	72.4%
d5-Phenol	80.5%	2-Fluorophenol	76.3%
2.4.6-Tribromophenol	87.7%	d4-2-Chlorophenol	78. 7 %

Page 1 of 2

Sample ID: TDP11-GW-081104

SAMPLE

Lab Sample ID: NY070 LIMS ID: 08-30016

Matrix: Water

Data Release Authorized:

Reported: 11/10/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted: 11/05/08 Sample Amount: 500 mL
Date Analyzed: 11/08/08 03:52 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT6/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95 - 50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP11-GW-081104

SAMPLE

Lab Sample ID: NY070 QC Report No: NY07-The Boeing Company

LIMS ID: 08-30016 Project: SEATTLE/PHASEII Matrix: Water 025173.070

Date Analyzed: 11/08/08 03:52

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.1
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	78.0%
d14-p-Terphenyl	75.6%	d4-1,2-Dichlorobenzene	73.2%
d5-Phenol	84.3%	2-Fluorophenol	77.9%
2.4.6-Tribromophenol	88.0%	d4-2-Chlorophenol	79.5%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-110508	83.2%	81.2%	102%	81.2%	89.1%	84.0%	88.5%	85.3%	0
LCS-110508	90.0%	86.4%	101%	88.0%*	96.3%	90.1%	94.9%	92.5%	1
LCSD-110508	88.4%	85.2%	102%	72.8%	95.2%	89.6%	96.5%	91.2%	0
TDP8-GW-081104	77.6%	75.2%	95.2%	64.4%	83.5%	77.6%	91.2%	80.0%	0
TDP7-GW-081104	76.0%	77.2%	78.0%	72.4%	80.5%	76.3%	87.7%	78.7%	0
TDP11-GW-081104	77.6%	78.0%	75.6%	73.2%	84.3%	77.9%	88.0%	79.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 08-30014 to 08-30016

Page 1 of 2

Sample ID: LCS-110508

LCS/LCSD

Lab Sample ID: LCS-110508

LIMS ID: 08-30014 Matrix: Water

Data Release Authorized:

Reported: 11/10/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted LCS/LCSD: 11/05/08

Sample Amount LCS: 500 mL LCSD: 500 mL

Date Analyzed LCS: 11/07/08 15:49

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

LCSD: 11/07/08 16:24 Instrument/Analyst LCS: NT6/LJR

Dilution Factor LCS: 1.00

LCSD: NT6/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	22.9	25.0	91.6%	23.7	25.0	94.8%	3.4%
Bis-(2-Chloroethyl) Ether	24.6	25.0	98.4%	24.8	25.0	99.2%	0.8%
2-Chlorophenol	24.5	25.0	98.0%	25.4	25.0	102%	3.6%
1,3-Dichlorobenzene	20.6	25.0	82.4%	18.3	25.0	73.2%	11.8%
1,4-Dichlorobenzene	20.7	25.0	82.8%	18.4	25.0	73.6%	11.8%
Benzyl Alcohol	43.2	50.0	86.4%	43.3	50.0	86.6%	0.2%
1,2-Dichlorobenzene	21.3	25.0	85.2%	19.2	25.0	76.8%	10.4%
2-Methylphenol	25.5	25.0	102%	26.0	25.0	104%	1.9%
2,2'-Oxybis(1-Chloropropane	25.3	25.0	101%	26.2	25.0	105%	3.5%
4-Methylphenol	51.8	50.0	104%	53.5	50.0	107%	3.2%
N-Nitroso-Di-N-Propylamine	26.6	25.0	106%	27.2	25.0	109%	2.2%
Hexachloroethane	19.1	25.0	76.4%	16.2	25.0	64.8%	16.4%
Nitrobenzene	23.2	25.0	92.8%	24.4	25.0	97.6%	5.0%
Isophorone	27.1	25.0	108%	27.9	25.0	112%	2.9%
2-Nitrophenol	25.6	25.0	102%	26.9	25.0	108%	5.0%
2,4-Dimethylphenol	17.2	25.0	68.8%	19.6	25.0	78.4%	13.0%
Benzoic Acid	89.6	75.0	119%	89.0	75.0	119%	0.7%
bis(2-Chloroethoxy) Methane	25.7	25.0	103%	27.3	25.0	109%	6.0%
2,4-Dichlorophenol	25.7	25.0	103%	26.9	25.0	108%	4.6%
1,2,4-Trichlorobenzene	22.6	25.0	90.4%	20.3	25.0	81.2%	10.7%
Naphthalene	23.6	25.0	94.4%	23.6	25.0	94.4%	0.0%
4-Chloroaniline	67.0	60.0	112%	65.6	60.0	109%	2.1%
Hexachlorobutadiene	22.0	25.0	88.0%	18.5	25.0	74.0%	17.3%
4-Chloro-3-methylphenol	26.8	25.0	107%	28.2	25.0	113%	5.1%
2-Methylnaphthalene	22.6	25.0	90.4%	23.0	25.0	92.0%	1.8%
Hexachlorocyclopentadiene	44.9	75.0	59.9%	42.1	75.0	56.1%	6.4%
2,4,6-Trichlorophenol	24.6	25.0	98.4%	26.2	25.0	105%	6.3%
2,4,5-Trichlorophenol	24.9	25.0	99.6%	25.9	25.0	104%	3.9%
2-Chloronaphthalene	23.7	25.0	94.8%	24.2	25.0	96.8%	2.1%
2-Nitroaniline	24.5	25.0	98.0%	26.3	25.0	105%	7.1%
Dimethylphthalate	24.9	25.0	99.6%	26.5	25.0	106%	6.2%
Acenaphthylene	23.5	25.0	94.0%	24.6	25.0	98.4%	4.6%
3-Nitroaniline	77.3	64.0	121%	81.1	64.0	127%	4.8%
Acenaphthene	24.4	25.0	97.6%	25.3	25.0	101%	3.6%
2,4-Dinitrophenol	98.7	75.0	132%	99.9	75.0	133%	1.2%
4-Nitrophenol	24.6	25.0	98.4%	25.5	25.0	102%	3.6%
Dibenzofuran	23.5	25.0	94.0%	24.3	25.0	97.2%	3.3%
2,6-Dinitrotoluene	26.2	25.0	105%	28.2	25.0	113%	7.4%
2,4-Dinitrotoluene	27.1	25.0	108%	28.8	25.0	115%	6.1%
Diethylphthalate	25.0	25.0	100%	26.3	25.0	105%	5.1%
4-Chlorophenyl-phenylether	24.3	25.0	97.2%	25.5	25.0	102%	4.8%
Fluorene	25.2	25.0	101%	26.6	25.0	106%	5.4%
4-Nitroaniline	26.0	25.0	104%	28.0	25.0	112%	7.4%
4,6-Dinitro-2-Methylphenol	58.3	75.0	77.7%	59.2	75.0	78.9%	1.5%
N-Nitrosodiphenylamine	24.5	25.0	98.0%	25.4	25.0	102%	3.6%

Page 2 of 2

Sample ID: LCS-110508

LCS/LCSD

Lab Sample ID: LCS-110508

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30014

Project: SEATTLE/PHASEII

Matrix: Water

025173.070

Date Analyzed: 11/07/08 15:49

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
4-Bromophenyl-phenylether	24.8	25.0	99.2%	26.2	25.0	105%	5.5%
Hexachlorobenzene	25.1	25.0	100%	26.1	25.0	104%	3.9%
Pentachlorophenol	24.5	25.0	98.0%	25.2	25.0	101%	2.8%
Phenanthrene	25.1	28.0	89.6%	26.5	28.0	94.6%	5.4%
Carbazole	26.8	25.0	107%	28.0	25.0	112%	4.4%
Anthracene	24.4	25.0	97.6%	25.4	25.0	102%	4.0%
Di-n-Butylphthalate	26.2	25.0	105%	27.4	25.0	110%	4.5%
Fluoranthene	26.0	25.0	104%	27.2	25.0	109%	4.5%
Pyrene	26.5	25.0	106%	27.9	25.0	112%	5.1%
Butylbenzylphthalate	27.6	25.0	110%	28.9	25.0	116%	4.6%
3,3'-Dichlorobenzidine	65.8	64.0	103%	65.8	64.0	103%	0.0%
Benzo(a)anthracene	25.8	25.0	103%	27.0	25.0	108%	4.5%
bis(2-Ethylhexyl)phthalate	28.8	25.0	115%	30.1	25.0	120%	4.4%
Chrysene	24.8	28.0	88.6%	26.1	28.0	93.2%	5.1%
Di-n-Octyl phthalate	25.0	25.0	100%	26.2	25.0	105%	4.7%
Benzo(b)fluoranthene	27.6	25.0	110%	27.0	25.0	108%	2.2%
Benzo(k)fluoranthene	25.8	28.0	92.1%	29.3	28.0	105%	12.7%
Benzo(a)pyrene	21.9	25.0	87.6%	22.7	25.0	90.8%	3.6%
Indeno(1,2,3-cd)pyrene	24.7	25.0	98.8%	25.7	25.0	103%	4.0%
Dibenz(a,h)anthracene	24.3	25.0	97.2%	25.6	25.0	102%	5.2%
Benzo(g,h,i)perylene	23.9	25.0	95.6%	25.0	25.0	100%	4.5%
1-Methylnaphthalene	26.4	25.0	106%	26.4	25.0	106%	0.0%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	90.0%	88.4%
2-Fluorobiphenyl	86.4%	85.2%
d14-p-Terphenyl	101%	102%
d4-1,2-Dichlorobenzene	88.0%	72.8%
d5-Phenol	96.3%	95.2%
2-Fluorophenol	90.1%	89.6%
2,4,6-Tribromophenol	94.9%	96.5%
d4-2-Chlorophenol	92.5%	91.2%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: MB-110508 METHOD BLANK

Lab Sample ID: MB-110508

Date Extracted: 11/05/08

LIMS ID: 08-30014 Matrix: Water

Data Release Authorized:

Date Analyzed: 11/07/08 15:15

Instrument/Analyst: NT6/LJR

Reported: 11/10/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
121-14-2 84-66-2	Diethylphthalate	1.0	< 1.0 U
04-00-2	precul remarace	1.0	\ 1.0 0

Page 2 of 2

Sample ID: MB-110508

METHOD BLANK

Lab Sample ID: MB-110508

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30014

Project: SEATTLE/PHASEII

Matrix: Water

025173.070

Date Analyzed: 11/07/08 15:15

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene `	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	83.2%	2-Fluorobiphenyl	81.2%
d14-p-Terphenyl	102%	d4-1,2-Dichlorobenzene	81.2%
d5-Phenol	89.1%	2-Fluorophenol	84.0%
2,4,6-Tribromophenol	88.5%	d4-2-Chlorophenol	85.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: TDP8-GW-081104

SAMPLE

Lab Sample ID: NY07M LIMS ID: 08-30014

Matrix: Water

Data Release Authorized: Reported: 11/11/08 QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

Event: 025173.070 Date Sampled: 11/04/08

Date Sampled: 11/04/08
Date Received: 11/04/08

Date Extracted: 11/05/08
Date Analyzed: 11/08/08 13:36
Instrument/Analyst: NT1/VTS

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55 - 3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	62.7%
d14-Dibenzo(a,h)anthracene	71.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: TDP7-GW-081104

SAMPLE

Lab Sample ID: NY07N

LIMS ID: 08-30015

Matrix: Water
Data Release Authorized:
Reported: 11/11/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

Event: 025173.070
Date Sampled: 11/04/08
Date Received: 11/04/08

Date Extracted: 11/05/08
Date Analyzed: 11/08/08 14:32
Instrument/Analyst: NT1/VTS

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 65.0% d14-Dibenzo(a,h)anthracene 65.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY070 LIMS ID: 08-30016

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 14:57 Instrument/Analyst: NT1/VTS

Sample ID: TDP11-GW-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

Event: 025173.070 Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	59.3%
d14-Dibenzo(a.h)anthracene	37.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	MNP	DBA	TOT OUT
MB-110508	61.0%	86.3%	0
LCS-110508	64.0%	88.7%	0
LCSD-110508	66.3%	87.3%	0
TDP8-GW-081104	62.7%	71.0%	0
TDP7-GW-081104	65.0%	65.0%	0
TDP11-GW-081104	59.3%	37.3%	0

			LCS/MB LIMITS	QC LIMITS
(MNP)	=	d10-2-Methylnaphthalene	(49-113)	(44-112)
(DBA)	=	d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C

Log Number Range: 08-30014 to 08-30016

82.3%

81.3%

84.0%

70.3%

2.0%

1.2%

4.9%

2.9%

3.00

3.00

3.00

3.00

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-110508

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110508

LIMS ID: 08-30014 Matrix: Water

Dibenzofuran

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Data Release Authorized: Reported: 11/11/08

Date Extracted LCS/LCSD: 11/05/08

Date Analyzed LCS: 11/08/08 12:21

Instrument/Analyst LCS: NT1/VTS

LCSD: 11/08/08 12:46

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

Event: 025173.070

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

2.47

2.44

2.52

2.11

80.7%

82.3%

80.0%

68.3%

LCSD: NT1/VTS				LCSD	: 1.00		
Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	1.83	3.00	61.0%	1.93	3.00	64.3%	5.3%
2-Methylnaphthalene	1.84	3.00	61.3%	1.98	3.00	66.0%	7.3%
1-Methylnaphthalene	1.77	3.00	59.0%	1.89	3.00	63.0%	6.6%
Acenaphthylene	2.04	3.00	68.0%	2.02	3.00	67.3%	1.0%
Acenaphthene	1.97	3.00	65.7%	2.00	3.00	66.7%	1.5%
Fluorene	2.11	3.00	70.3%	2.13	3.00	71.0%	0.9%
Phenanthrene	2.19	3.00	73.0%	2.27	3.00	75.7%	3.6%
Anthracene	2.13	3.00	71.0%	2.20	3.00	73.3%	3.2%
Fluoranthene	2.39	3.00	79.7%	2.43	3.00	81.0%	1.7%
Pyrene	2.59	3.00	86.3%	2.61	3.00	87.0%	0.8%
Benzo(a)anthracene	2.34	3.00	78.0%	2.31	3.00	77.0%	1.3%
Chrysene	2.36	3.00	78.7%	2.42	3.00	80.7%	2.5%
Benzo(b)fluoranthene	2.42	3.00	80.7%	2.34	3.00	78.0%	3.4%
Benzo(k) fluoranthene	2.42	3.00	80.7%	2.63	3.00	87.7%	8.3%
Benzo(a) pyrene	2.35	3.00	78.3%	2.35	3.00	78.3%	0.0%

Reported in μ g/L (ppb)

3.00

3.00

3.00

3.00

RPD calculated using sample concentrations per SW846.

2.42 2.47

2.40

2.05

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	64.0%	66.3%
d14-Dibenzo(a,h)anthracene	88.7%	87.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: MB-110508

LIMS ID: 08-30014

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/05/08 Date Analyzed: 11/08/08 11:57 Instrument/Analyst: NT1/VTS

Sample ID: MB-110508 METHOD BLANK

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

Event: 025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 61.0% d14-Dibenzo(a,h)anthracene 86.3%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY07B LIMS ID: 08-30003

Matrix: Soil

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 09:57
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP7-8-081104 SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 22.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	* 32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	92.2%
Tetrachlorometaxylene	92.2%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY07C LIMS ID: 08-30004

Matrix: Soil

Data Release Authorized: VT

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 10:14
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP8-8-081104 SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 13.0 g-dry-wt

Final Extract Volume: 4.0 mL
Dilution Factor: 1.00
Silica Gel: No

Percent Moisture: 20.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	98.2%
Tetrachlorometaxylene	84.8%

ANALYTICAL RESOURCES **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY07G LIMS ID: 08-30008

Matrix: Soil

Data Release Authorized: V1

Reported: 11/15/08

Date Extracted: 11/10/08 Date Analyzed: 11/12/08 10:31 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: TDP11-9-081104 SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 9.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11 097-6 9 -1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	91.8%
Tetrachlorometaxylene	94.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-111008	94.2%	30-160	95.5%	30-160	0
LCS-111008	95.5%	30-160	94.5%	30-160	0
LCSD-111008	98.5%	30-160	94.8%	30-160	0
TDP7-8-081104	9 2.2%	30-160	92.2%	30-160	0
TDP8-8-081104	98.2%	30-160	84.8%	30-160	0
TDP11-9-081104	91.8%	30-160	94.0%	30-160	0

Microwave (MARS) Control Limits

Prep Method: SW3546
Log Number Range: 08-30003 to 08-30008

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: LCS-111008

LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted LCS/LCSD: 11/10/08

Date Analyzed LCS: 11/12/08 08:32

LCSD: 11/12/08 08:49

Instrument/Analyst LCS: ECD5/JGR

LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-111008

LCS/LCSD

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00 Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	139	167	83.4%	144	167	86.4%	3.5%
Aroclor 1260	155	16 7	93.0%	16 1	16 7	96.6%	3.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	95.5%	98.5%
Tetrachlorometaxylene	94.5%	94.8%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: MB-111008

LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized: \(\sqrt{1} \right)

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 08:15
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

RESOURCES INCORPORATION INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORATION IN INCORPORA

METHOD BLANK

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	94.2%
Tetrachlorometaxylene	95.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY07M LIMS ID: 08-30014

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/05/08
Date Analyzed: 11/07/08 18:40
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: TDP8-GW-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	71.2%
Tetrachlorometaxylene	74.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Matrix: Water

Sulfur Cleanup: No

QC Report No: NY07-The Boeing Company Lab Sample ID: NY07N LIMS ID: 08-30015

Project: SEATTLE/PHASEII

SAMPLE

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Reported: 11/11/08 Date Extracted: 11/05/08

Data Release Authorized:

Sample Amount: 500 mL Date Analyzed: 11/07/08 18:57 Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Instrument/Analyst: ECD5/JGR Silica Gel: No GPC Cleanup: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	63.2%
Tetrachlorometaxylene	80.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP11-GW-081104

SAMPLE

Lab Sample ID: NY070

QC Report No: NY07-The Boeing Company

LIMS ID: 08-30016

Project: SEATTLE/PHASEII

Matrix: Water

025173.070

Data Release Authorized: Reported: 11/11/08

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted: 11/05/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Date Analyzed: 11/07/08 19:14 Instrument/Analyst: ECD5/JGR

Dilution Factor: 1.00

GPC Cleanup: No Sulfur Cleanup: No

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	55.8%
Tetrachlorometaxvlene	68.5%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-110508	81.5%	47-101	75.5%	61-104	0
LCS-110508	98.5%	47-101	91.0%	61-104	0
LCSD-110508	75.2%	47-101	87.5%	61-104	0
TDP8-GW-081104	71.2%	42-120	74.8%	55-102	0
TDP7-GW-081104	63.2%	42-120	80.0%	55-102	0
TDP11-GW-081104	55.8%	42-120	68.5%	55-102	0

Prep Method: SW3510C Log Number Range: 08-30014 to 08-30016

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: LCS-110508

LIMS ID: 08-30014

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted LCS/LCSD: 11/05/08

Date Analyzed LCS: 11/07/08 17:49

LCSD: 11/07/08 18:06

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: No

Sample ID: LCS-110508

LCS/LCSD

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.52	5.00	90.4%	4.22	5.00	84.4%	6.9%
Aroclor 1260	4.84	5.00	96.8%	4.69	5.00	93.8%	3.1%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	98.5%	75.2%
Tetrachlorometaxylene	91.0%	87.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: MB-110508

LIMS ID: 08-30014 Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/05/08 Date Analyzed: 11/07/08 17:32

Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: No

Sample ID: MB-110508 METHOD BLANK

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	81.5%
Tetrachlorometaxylene	75.5%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

1 of 2 Matrix: Soil

NY07H

08-30009

TDP12-7-081104

HC ID: MOTOR OIL

Data Release Authorized:

Reported: 11/06/08

QC Report No: NY07-The Boeing Company

025173.070

Project: SEATTLE/PHASEII

Diesel

o-Terphenyl

Oil

< 170 U

> 330

80.2%

Extraction Analysis Result Date Date DLRange ARI ID Sample ID < 20 U 11/05/08 MB-110508 Method Blank 11/05/08 1.0 Gas < 50 U Diesel 08-30002 < 100 U Oil 86.0% o-Terphenyl > 20 TPD6-8-081104 11/05/08 11/06/08 1.0 Gas NY07A < 50 U 08-30002 HC ID: ---Diesel < 100 U Oil 86.5% o-Terphenyl TPD6-8-081104 11/05/08 11/06/08 1.0 Gas > 20 NY07ADP < 50 U 08-30002 HC ID: ---Diesel < 100 U Oil o-Terphenyl 89.7% TDP7-8-081104 11/05/08 11/06/08 1.0 Gas > 20 NY07B HC ID: ---Diesel < 50 U 08-30003 Oil < 100 U o-Terphenyl 89.9% 11/06/08 1.0 Gas > 20 TDP8-8-081104 11/05/08 NY07C < 50 U Diesel HC ID: ---08-30004 Oil < 100 U 93.1% o-Terphenyl > 20 11/05/08 11/06/08 1.0 Gas TDP9-8-081104 NY07D < 50 U Diesel HC ID: ---08-30005 Oil < 100 U o-Terphenyl 90.8% 11/05/08 11/06/08 1.0 Gas > 20 NY07E TDP10-8-081104 < 50 U Diesel 08-30006 HC ID: ---< 100 U Oil 91.1% o-Terphenyl > 20 11/06/08 1.0 NY07G TDP11-9-081104 11/05/08 Gas < 50 U HC ID: MOTOR OIL Diesel 08-30008 > 100 Oil 87.3% o-Terphenyl < 67 U 11/05/08 11/06/08 5.0 Gas

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

2 of 2 Matrix: Soil

Data Release Authorized: Reported: 11/06/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NY07J 08-30011	TDP13-7-081104 HC ID:	11/05/08	11/06/08	1.0	Gas Diesel Oil o-Terphenyl	> 20 < 50 U < 100 U 90.5%
NY07K 08-30012	TDP14-4-081104 HC ID:	11/05/08	11/06/08	1.0	Gas Diesel Oil o-Terphenyl	> 20 < 50 U < 100 U 91.4%
NY07L 08-30013	TDP15-4-081104 HC ID:	11/05/08	11/06/08	1.0	Gas Diesel Oil o-Terphenyl	> 20 < 50 U < 100 U 92.8%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a053.d ARI ID: NYO7MBS1 Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID:

ಸಕ್ಕಾರ್ Injection: 05-NOV-2008 23:54 Instrument: fid3a.i

Operator: ms Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
==========		=======		========	=======		==========	=====/
Toluene	1.794	0.004	150358	154466	GAS	(Tol-C12)	1266171	38 ,
C8	1.893	0.001	9952	7282	DIESEL	(C12-C24)	126806	7 ^
C10	2.442	-0.001	5435	11898	M.OIL	(C24-C38)	269113	26 /
C12	2.921	-0.001	2198	2433	AK-102	(C10-C25)	222404	10
C14	3.343	0.004	1522	692	AK-103	(C25-C36)	206845	23
C16	3.721	-0.004	991	157	OR.DIES	(C10-C28)	262100	12
C18	4.162	0.005	735	404	OR.MOIL	(C28-C40)	299539	32
C20	4.580	0.004	872	223	JET-A	(C10-C18)	173866	10
C22	4.925	-0.006	895	736	MIN.OIL	(C24-C38)	269113	21
C24	5.235	0.003	1008	1005	MSPIRIT	(Tol-C12)	1266171	80
C25	5.365	-0.004	1161	1075	Ì			
C26	5.488	-0.007	1306	1201	ĺ			
C28	5.724	-0.007	2395	3149	ĺ			
C32	6.170	-0.001	4986	10764	20 C			
C34	6.419	0.001	3200	891			<u>1</u>	
Filter Peak	8.431	-0.023	2930	2712	JP-4	(Tol-C14)	1304953	115 .
C36	6.707	-0.002	3204	890	CREOSOT	(C8-C22)	397711	€ 64
C38	7.078	0.000	2877	1260	İ			
C40	7.541	-0.012	2696	590	BUNKERC	(C10-C38)	489398	55
AZDIESEL (C1	 -0-C22)	18	====== 30145	11	========			=====
	2-C32)		22659	19	. 1			

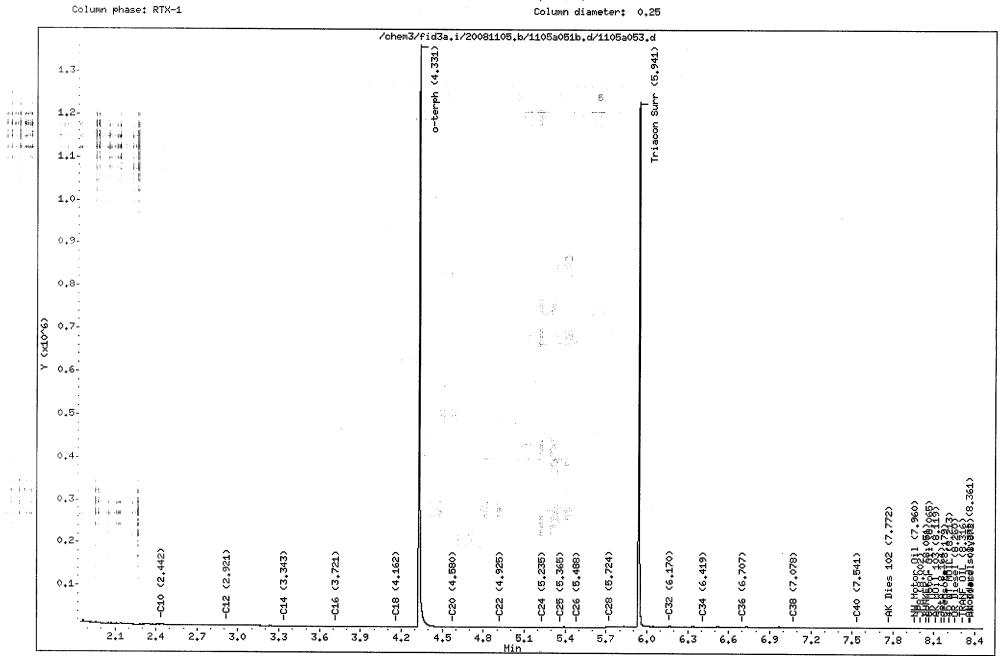
______ Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 4 4.208)

Surrogate	Area	${\tt Amount}$	&Rec
	-		
o-Terphenyl	803497	38.7	86.0
Triacontane	691612	40 1	89 1

mo 11/6/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4	04-NOV-2008 04-NOV-2008 06-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a053.d


Date : 05-NOV-2008 23:54

Client ID:

Sample Info: NY07MBS1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a054.d ARI ID: NY07A

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClTent ID:

Instrument: fid3a.i Injection: 06-NOV-2008 00:08

Operator: ms Dilution Factor: 1

Operator: ms Report Date: 11/06/2008
Macro: FID:3A110608

FID: 3A RESULTS

Compound	RT	Shift	Height	Area	Rā	ange	Total Area	Conc
Toluene	1.793	0.002	161634	======================================	GAS	(Tol-C12)	======================================	37
C8	1.896	0.004	10470	13021	DIESEL	(C12-C24)	150595	3,
C10	2.441	-0.001	5707	12509	M.OIL	(C24-C38)	278336	26
C12	2.922	0.001	2378	2546	AK-102	(C10-C25)	255623	12
C14	3.340	0.001	1679	732	AK-103	(C25-C36)	214872	23
C16	3.728	0.004	1142	1599	OR.DIES	(C10-C28)	295486	14
C18	4.155	-0.003	888	629	OR.MOIL	(C28-C40)	308345	33
C20	4.581	0.005	910	853	JET-A	(C10-C18)	195196	11
C22	4.924	-0.007	970	765	MIN.OIL	(C24-C38)	278336	22
C24	5.232	0.000	1008	959	MSPIRIT	(Tol-C12)	1239590	78
C25	5.361	-0.008	1151	943			•	
C26	5.486	-0.009	1295	1155				
C28	5.742	0.011	2065	2594				
C32	6.154	-0.016	6097	12728	l many		•	
C34	6.415	-0.003	3232	1865			1.0	
Filter Peak	8.449	-0.005	2652	1106	JP-4	(Tol-C14)	1284715	113.
C36	6.710	0.001	5539	12038	CREOSOT	(C8-C22)	449188	72
C38	7.074	-0.004	2868	1995			1.32	
C40 🙈	7.550	-0.002	3807	11769	BUNKERC	(C10-C38)	531539	59
•	LO-C22)		L2480	13			= = = = = = = = = = = = = = = = = = =	
AZMOIL (C2	22-C32)	-12	26896	20	. 73			, N

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

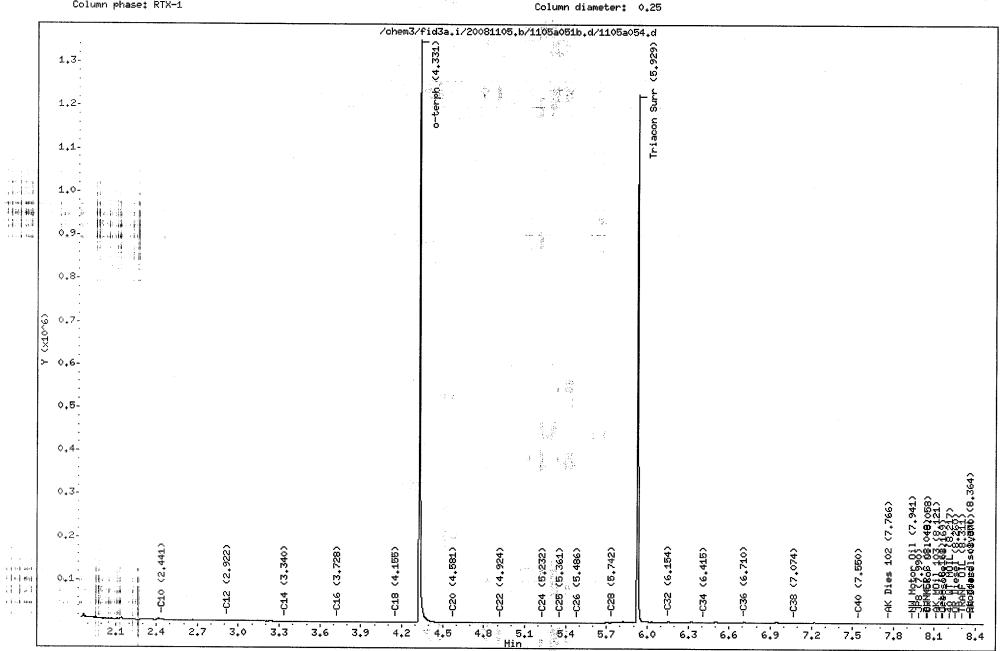
Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	807841 714499	38.9	86.5	_

mo 11/6/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 04-NOV-2008 06-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005 22-SEP-2008 08-AUG-2008
0100000	0231.1	00 110G Z000

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a054.d

Date : 06-NOV-2008 00:08


Client ID:

Sample Info: NYO7A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a055.d ARI ID: NY07ADUP Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient 10: NY07ADUP

Instrument: fid3a i Injection: 06-NOV-2008 00:23 Operator: ms

Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID:3A RESULTS

Compound	RT	Shift	Height		Area	Rá	ange	То	tal Area	Conc
Toluene	1.793	0.002	171633	====	162428		(Tol-C12)		1428285	43
C8	1.895	0.003	10477		11779	DIESEL	(C12-C24)		132770	- 8
C10	2.440	-0.002	5606		12382	M.OIL	(C24-C38)		268403	26 -
C12	2.921	0.000	2334		2554	AK-102	(C10-C25)		233377	11
C14	3.340	0.001	1613		288	AK-103	(C25-C36)		209844	23
C16	3.727	0.003	1106		1269	OR.DIES	(C10-C28)		272964	13
C18	4.153	-0.005	846		776	OR.MOIL	(C28-C40)	*	294063	31
C20	4.574	-0.002	920		451	JET-A	(C10-C18)		184379	11
C22	4.926	-0.005	943		850	MIN.OIL	(C24-C38)		268403	21
C24	5.231	-0.001	989		1017	MSPIRIT	(Tol-C12)		1428285	90
C25	5.359	-0.010	1115		945	j				
C26	5.486	-0.009	1252		1017	İ				
C28	5.741	0.010	1931		2370	İ				
C32	6.157	-0.014	5086		17678	İ	er retains			
C34	6.415	-0.002	3135		1436					
Filter Peak	8.451	. 4 0 . 003	2623		836	JP-4	(Tol-C14)		1469861	129
C36	6.711	0.002	4980		11494	CREOSOT	(C8-C22)		423713	68
C38	7.079	0.001	2863		915	1			4	
C40 %	7.550	-0.002	3499		7012	BUNKERC	(C10-C38)		499116	.56
APDIROUT (C1	·=======	======		====	======	======		=====	========	======
AZDIESEL (C1 AZMOIL (C2	2-C32)		0062	12						1
AZMOIL (CZ	2-032)	12	4555	19					tal.;	1 5

Range Times: NW Diesel (2.971 - 5.282) NW Gas (1.741 - 2.971) NW M.Oil (5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec
o-Terphenyl	837271	40.3	89.7
Triacontane	698105		89.9

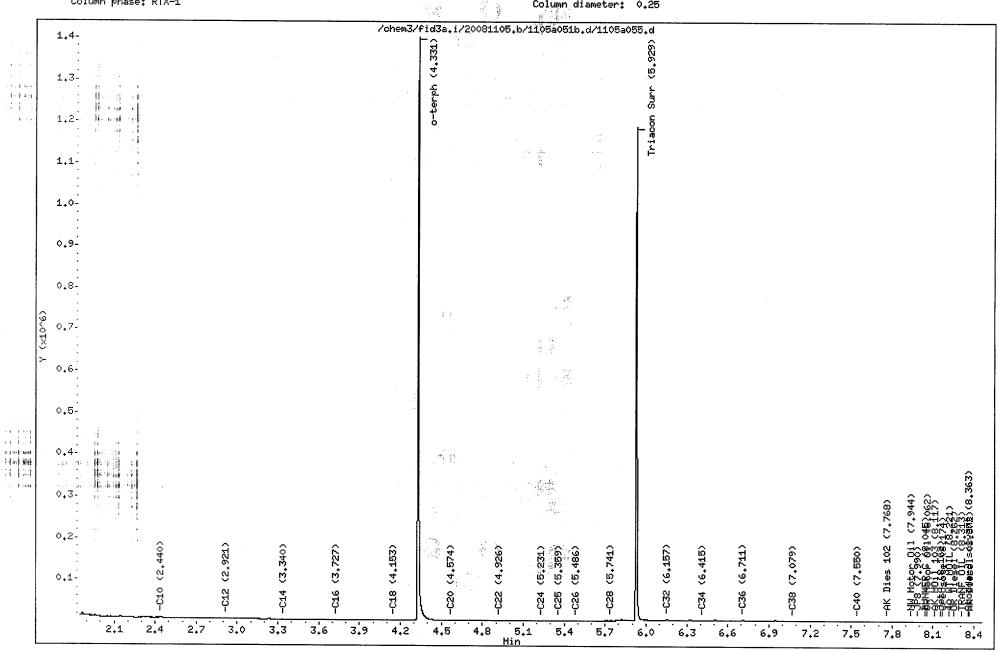
ms1/6/08

R F	Curve Date
20751.8	04-NOV-2008
	04-NOV-2008
33066.5	06-NOV-2008
16911.5	04-NOV-2008
10521.7	04-NOV-2008
21543.0	04-NOV-2008
9153.0	04-NOV-2008
11362.0	05-FEB-2007
17141.6	04-NOV-2008
12823.0	27-JUN-2008
15825.3	15-APR-2005
21174.8	
9368.4	
8936.8	22-SEP-2008
6234.4	08-AUG-2008
	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a055.d

Date : 06-NOV-2008 00:23

Client ID:


Sample Info: NYO7ADUP

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Analytical Resources Inc.
TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a056.d ARI ID: NY07B

Method: /chem3/fid3a.i/2008I105.b/1105a051b.d/ftphfid3a.mClient ID:

Injection: 06-NOV-2008 00:37

Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID: 3A RESULTS

Compound	RT	Shift	Height		Area	Ra	ange	Total Area	Conc
Toluene	1.794	0.003	 161836	====	132 19 3	GAS	(Tol-C12)	=== ==== 1365316	41
C8	1.895	0.004	10602		12441	DIESEL	(C12-C24)	136655	8 -
C10	2.440	-0.002	5825		13019	M.OIL	(C24-C38)	273824	26 -
C12	2.921	0.000	2431		2534	AK-102	(C10-C25)	246677	11
C14	3.341	0.002	1682		434	AK-103	(C25-C36)	209375	23
C16	3.725	0.001	1134		653	OR.DIES	(C10-C28)	288677	14
C18	4.152	-0.005	846		620	OR.MOIL	(C28-C40)	305608	33
C20	4.569	-0.007	916		602	JET-A	(C10-C18)	198686	12
C22	4.938	0.007	908		769	MIN.OIL	(C24-C38)	273824	21
C24	5.230	-0.001	1081		1019	MSPIRIT	(Tol-C12)	1365316	86
C25	5.362	-0.006	1225		1341	İ			
C26	5.487	-0.008	1373		1258	İ			
C28	5.733	0.002	1896		716	İ		•	
C32	6.161	-0.010	5405		16369		* 250.00		
C34	6.418	0.000	3247		1751	1	***************************************		
Filter Peak	8.448	0.005	2614	4.5	1244	JP-4	(Tol-C14)	1410203	124
C36	6.718	0.009	4995		11203	CREOSOT	(C8-C22)	448648	72
C38	7.077	-0.002	2838		1526				
C40	7.554	0.002	3403		4768	BUNKERC	(C10-C38)	518408	58
AZDIESEL (C1	0-C22)	======== 201	.===== .444	13	======	======	:========	=======================================	=====
AZMOIL (C2	2-C32)	127	37.6	20					

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128)

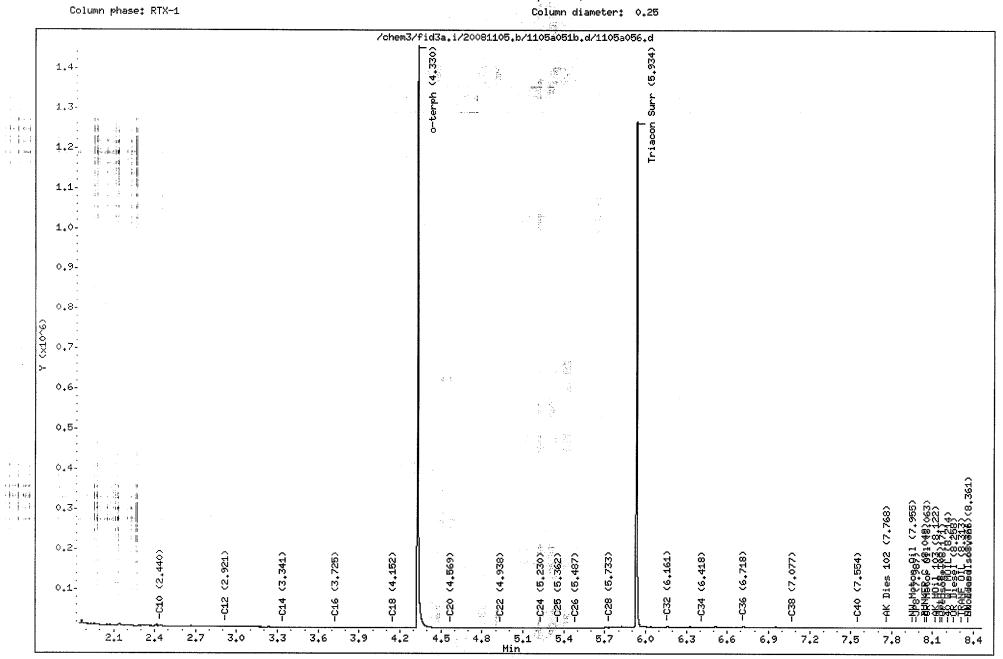
AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec
o-Terphenyl	839886	40.5	89.9
Triacontane	720373	41.7	92.8

ms4/6/08

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	17256.5	04-NOV-2008
Gas	33066.5	06-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	10521.7	04-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a056.d


Date : 06-NOV-2008 00:37

Client ID:

Sample Info: NY07B

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a057.d ARI ID: NY07C

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 06-NOV-2008 00:51

Operator: ms Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID:3A RESULTS

Compound	R ${f T}$	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.795	0.004	167837	174832	GAS	 (Tol-C12)	1437461	43
C8	1.894	0.003	10607	8391	DIESEL	(C12-C24)	301216	18
C10	2.441	-0.001	6025	9381	M.OIL	(C24-C38)	882346	84 -
C12	2.920	-0.001	2594	2532	AK-102	(C10-C25)	419871	19
C14	3.341	0.002	1882	598	AK-103	(C25-C36)	744273	81
C16	3.722	-0.002	1456	229	OR.DIES	(C10-C28)	656099	31
C18	4.152	-0.006	1406	759	OR.MOIL	(C28-C40)	762387	81
C20	4.577	0.001	2171	2016	JET-A	(C10-C18)	220327	13
C22	4.926	-0.005	3343	2948	MIN.OIL	(C24-C38)	882346	69
C24	5.228	-0.003	5383	1689	MSPIRIT	(Tol-C12)	1437461	91
C25	5.368	0.000	6788	1727				
C26	5.495	0.000	8044	1281				
C28	5.730	-0.001	11085	6553				
C32	6.169	-0.001	9980	3183			LL 23 Vicestra Pro 15	
C34	6.422	0.005	8379	2146			77.73	
Filter Peak	8.450	-0.004	3536	1748	JP-4	(Tol-C14)	1482627	130
C36	6.711	0.002	9484	17858	CREOSOT	(C8-C22)	544043	8.7
C38	7.079	0.001	5409	2127				7.77
C40	7.549	-0.003	5909	3116	BUNKERC	(C10-C38)	1292791	145
AZDIESEL (C	====== L0-C22)	3(======)5114	19		=======		=====
AZMOIL (C2	22-C32)	5.7	78109	90	•		, a 12.	

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128)

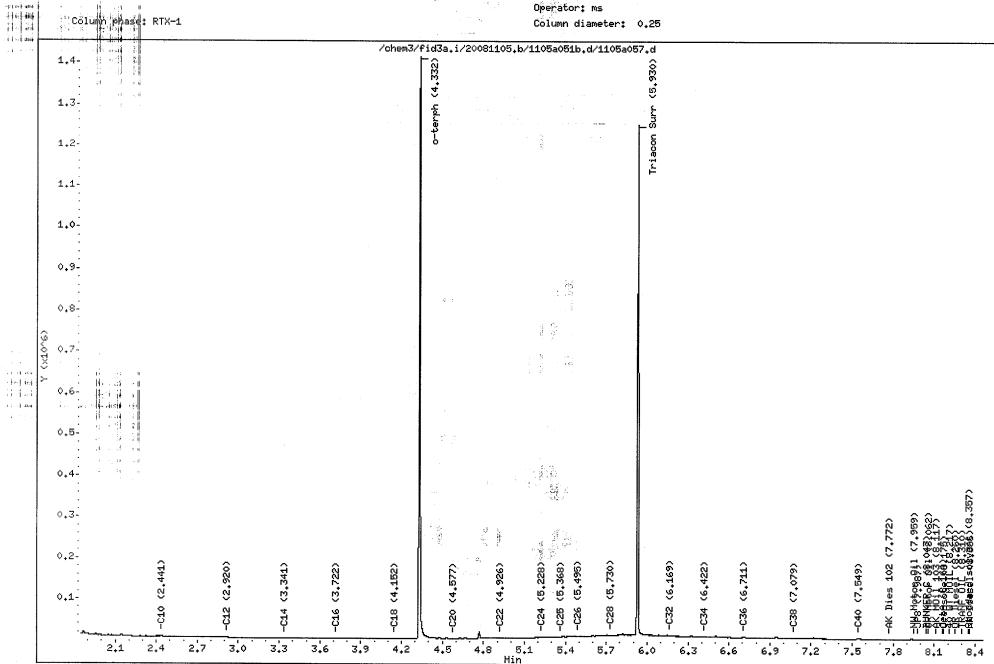
AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec
o-Terphenyl	869380	41.9	93.1
Triacontane	702822	40.7	90.5

mo 4/6/08

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	17256.5	04-NOV-2008
Gas	33066.5	06-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	10521.7	04-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a057.d


Date : 06-NOV-2008 00:51

Client ID:

Sample Info: NYO7C

Instrument: fid3a.i

Openator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a058.d ARI ID: NY07D

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mclient ID:

Linstrument: fid3a.i augustuse mid1pection: 06-NOV-2008 01:06

Operator: ms Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.796	0.006	======= 153557	184828	l GAS	========== (Tol-C12)	1251742	38
C8	1.895	0.003	10109	8189	DIESEL	(C12-C24)	156821	9 -
C10	2.442	-0.001	5625	12270	M.OIL		312698	30 -
C12	2.920	-0.001	2387	3450	AK-102	(C10-C25)	262008	12
C14	3.338	-0.001	1665	429	AK-103	(C25-C36)	238511	26
C16	3.726	0.002	1184	1376	OR.DIES	(C10-C28)	313919	15
C18	4.163	0.006	817	497	OR.MOIL	(C28-C40)	342392	37
C20	4.573	-0.003	988	527	JET-A	(C10-C18)	195325	11
C22	4.937	0.007	1009	643	MIN.OIL	(C24-C38)	312698	24
C24	5.227	-0.004	1234	828	MSPIRIT	(Tol-C12)	1251742	79
C25	5.370	0.002	1409	223				
C26	5.506	0.011	1679	1122				
C28	5.728	-0.003	2243	1240	1			
C32	6.181	0.011	3863	1525	1		Soldie d	
C34	6.414	-0.004	3623	2928				•
Filter Peak	8.452	-0.002	2718	809	JP-4	(Tol-C14)	1295895	114
C36	6.707	-0.002	5659	12973	CREOSOT	(C8-C22)	444550	71
C38	7.078	0.000	3100	923	İ			
C40	7.550	-0.003	4009	7192	BUNKERC	(C10-C38)	571598	64
AZDIESEL (C1	 LO-C22)	21	====== L4930	======== 13.	=======			====
AZMOIL (C2	22-C32)	14	16132	23			$\Delta = \frac{4}{7}.$	

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128)

AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

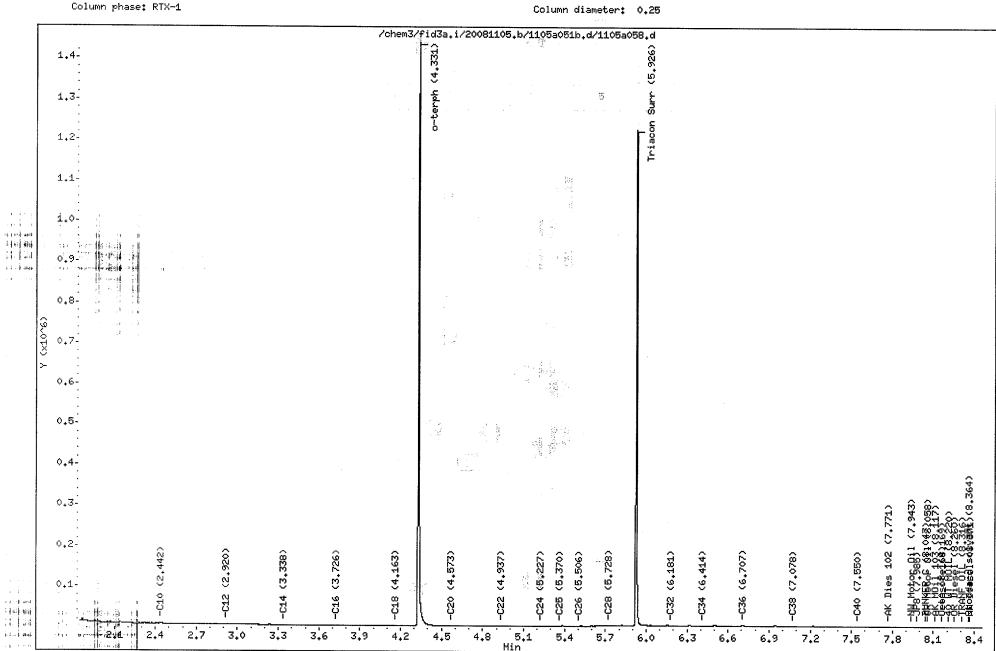
Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	847711 677897	40.8	90.8

ms 4/6/08

•		
Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr Gas	17256.5 33066.5	04-NOV-2008 06-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	10521.7	04-NOV-2008
AK102 AK103	21543.0 9153.0	04-NOV-2008 04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a058.d

Date : 06-NOV-2008 01:06


Client ID:

a tool same and not same I dan dan Till and

Sample Info: NY07D

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a059.d ARIBID: NY07E

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID:

Instrument: fid3a-i "Injection: 06-NOV-2008 01:20

Dilution Factor: 1

Macro: FID:3A110608

FID:3A RESULTS

Compound	RT	Shift	Height	Area		ange	Total Area	Conc
Toluene	1.795	0.004	158532	209413	GAS	(Tol-C12)	1300254	39
C8	1.895	0.004	10685	8162	DIESEL	(C12-C24)	285513	17 🖊
C10	2.441	-0.001	6069	12963	M.OIL	(C24-C38)	767606	73 –
C12	2.921	-0.001	3064	3722	AK-102	(C10-C25)	427063	20
C14	3.343	0.004	2533	4793	AK-103	(C25-C36)	651333	71
C16	3.724	0.000	1838	1847	OR.DIES	(C10-C28)	601515	28
C18	4.154	-0.004	1799	2512	OR.MOIL	(C28-C40)	700322	75
C20	4.576	0.000	2417	2002	JET-A	(C10-C18)	268198	16
C22	4.928	-0.003	3219	3348	MIN.OIL	(C24-C38)	767606	60
C24	5.225	-0.007	5332	5104	MSPIRIT	(Tol-C12)	1300254	82
C25	5.370	0.001	4558	908				
C26	5.506	0.011	5740	4353				
C28	5.729	-0.002	7694	2296	j ,			
C32	6.167	-0.003	9633	6015	75,000			. 5.3
C34	6.406	-0.011	10353	20765	1		•	₫. 4
Filter Peak	8.451	-0.003	3425	1219	JP-4	(Tol-C14)	1359348	120
C36	6.706	-0.004	8851	15235	CREOSOT	(C8-C22)	580301	93
C38	7.080	0.001	4843	1996				
C40	7.541	-0.012	5790	10681	BUNKERC	(C10-C38)	1186994	133
	.0-C22)	3:	====== 29349	21	======	:======:	=======================================	=====
AZMOIL (C2	22-C32)	4'	72035	73				: 133 133 133

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

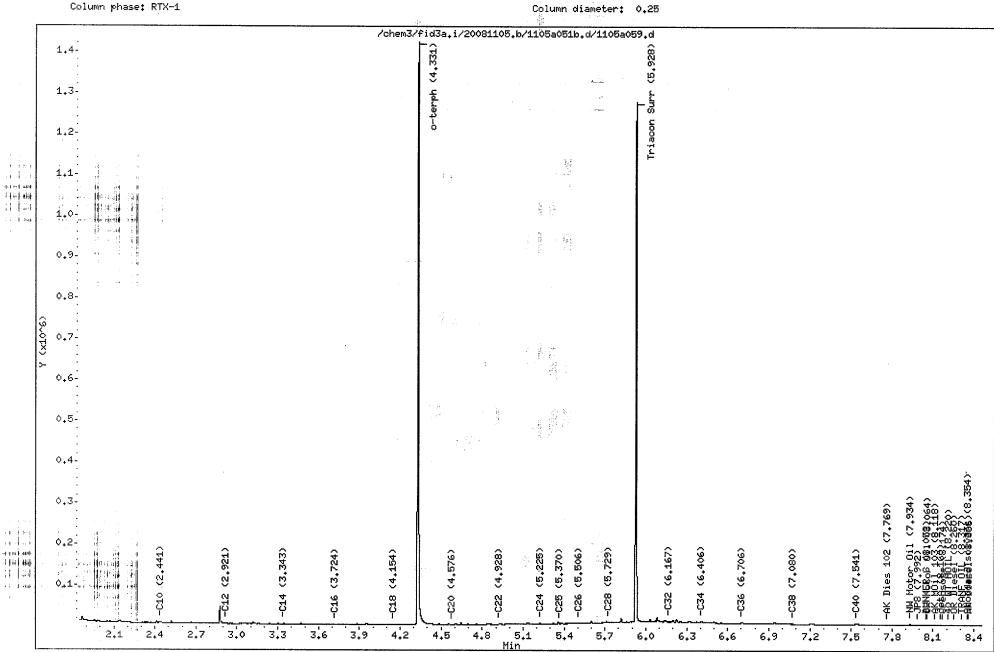
Surrogate	Area	Amount	%Rec
o-Terphenyl	850695 712104	41.0	91.1

ma 11/6/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas	20751.8 17256.5 33066.5	04-NOV-2008 04-NOV-2008 06-NOV-2008
Diesel Motor Oil AK102	16911.5 10521.7 21543.0	04-NOV-2008 04-NOV-2008 04-NOV-2008
AK103 JP4 JetA	9153.0 11362.0 17141.6	04-NOV-2008 05-FEB-2007 04-NOV-2008
Min Oil Min Spirit OR Diesel	12823.0 15825.3 21174.8	27-JUN-2008 15-APR-2005
OR M.Oil Bunker C Creosote	9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a059.d

Date : 06-NOV-2008 01:20


Client ID:

Sample Info: NY07E

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Analytical Resources Inc. -TPH Quantitation Report

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a060.d ARI ID: NY07G

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID: Instrument: fid3a.i Injection: 06-Injection: 06-NOV-2008 11:35-

Operator: ms

The second secon

Report Date: 11/06/2008 Macro: FID:3A110608

FID: 3A RESULTS

Compound	RT	Shift	Height		Area	Ra	ange	То	tal Area	Conc
Toluene	1.794	0.004	155168	====	 104176	GAS	Tol-C12)	=====	1316451	40 ·
C8	1.894	0.003	10413		8147	DIESEL	(C12-C24)		531233	31 -
C10	2.441	-0.001	6026		12646	M.OIL	(C24-C38)		2709553	258
C12	2.920	-0.001	2905		2919	AK-102	(C10-C25)		665171	31
C14	3.344	0.006	2487		4151	AK-103	(C25-C36)		2302793	252
C16	3.724	0.000	2117		1959	OR.DIES	(C10-C28)		1261758	60
C18	4.154	-0.003	2564		3377	OR.MOIL	(C28-C40)		2460843	263
C20	4.572	-0.004	4403		4261	JET-A	(C10-C18)		258339	15
C22	4.926	-0.005	7548		7771	MIN.OIL	(C24-C38)		2709553	211
C24	5.234	0.003	12355		2686	MSPIRIT	(Tol-C12)		1316451	83
C25	5.368	0.000	15784		4051					
C26	5.496	0.001	19136		4914					
C28	5.733	0.003	29289		16214					
C32	6.161	-0.009	33486		23275		lare an			
C34	6.418	0.000	25336		6053					
Filter Peak	8.453	-0.001	7156		2270	JP-4	(Tol-C14)		1370216	121
C36	6.711	0.002	22530		15903	CREOSOT	(C8-C22)		677567	109
C38	7.076	-0.002	15894		5340					
C40	7.558	0.005	12124		8571	BUNKERC	(C10-C38)		3352863	375
	====== 0-C22) 2-C32)		33843 30430	==== 27 269				====	=======	13 12 13 13 12 <u>12</u>

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741%-2.971) NW M.Oil(5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec
o-Terphenyl	815016	39.3	87.3
Triacontane	619648	35.9	79.8

mo11/6/08

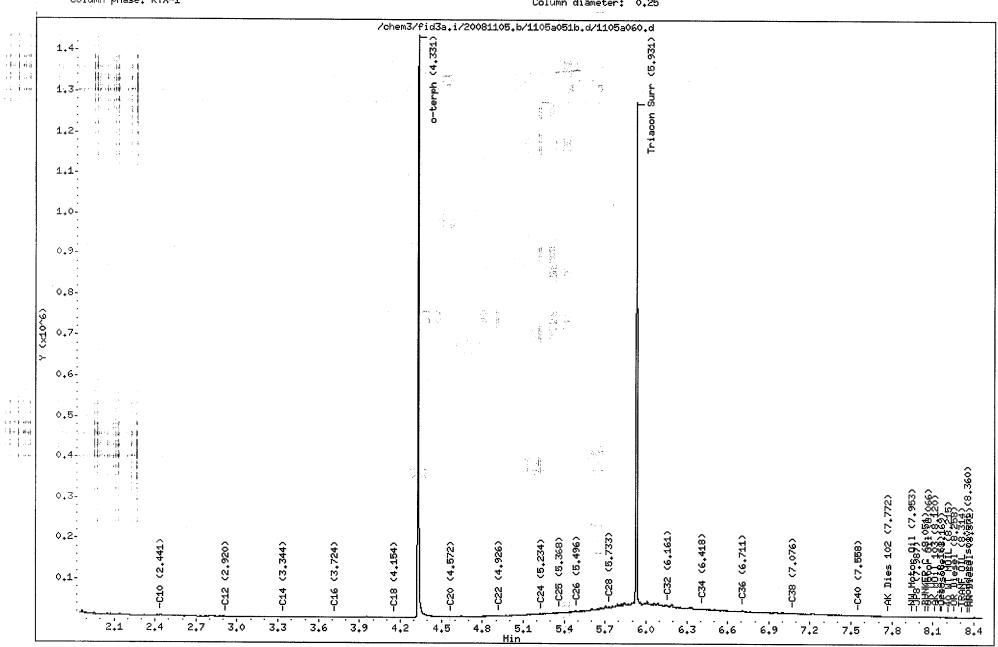
Dilution Factor: 1

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	17256.5	04-NOV-2008
Gas	33066.5	06-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	10521.7	04-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel OR M.Oil	21174.8 9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a060.d/3

Date : 06-NOV-2008 01:35

Client IB:


Sample Info: NY07G

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a061.d ARI ID: NY07H

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID:

Injection: 06-NOV-2008 01:49

Operator: ms Dilution Factor: 5

Report Date: 11/06/2008 Macro: FID:3A110608

FID: 3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.793	0.003	44262	44527	GAS	(Tol-C12)	547741	17
C8	1.892	0.001	9619	6838	DIESEL	(C12-C24)	819307	48
C10	2.440	-0.002	5146	11452	M.OIL	(C24-C38)	4285970	407
C12	2.921	0.000	2830	2076	AK-102	(C10~C25)	985599	46
C14	3.341	0.002	2680	3660	AK-103	(C25-C36)	3746891	409
C16	3.726	0.002	2437	1883	OR.DIES	(C10-C28)	2251350	106
C18	4.157	-0.001	3011	1754	OR.MOIL	(C28-C40)	3387846	362
C20	4.573	-0.003	5683	5547	JET-A	(C10-C18)	272875	16
C22	4.932	0.002	11531	5726	MIN.OIL	(C24-C38)	4285970	334
C24	5.236	0.004	26743	17132	MSPIRIT	(Tol-C12)	547741	35
C25	5.367	-0.001	35807	17982	1			
C26	5.491	-0.004	43879	25121				
C28	5.735	0.004	56487	8940	Ì			
C32	6.166	-0.004	45200	8065	ĺ		name.	
C34	6.419	0.001	36799	5805	97		NC-110"	
Filter Peak	8.451	-0.002	9402	3513	JP-4	(Tol-C14)	603883	.53
C36	6.707	-0.002	29943	28045	CREOSOT	(C8-C22)	759311	122
C38	7.077	-0.001	19532	2712				
C40	7.549	-0.003	14046	7177	BUNKERC	(C10-C38)	5209822	583
AZDIESEL (C1	0-C22)	======== 54	10125 34	======	=======		=======================================	====
AZMOIL (C2	2-C32)	310	3745 482				. :	

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 2.971) NW M.Oil(5.282 - 7.128)
AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

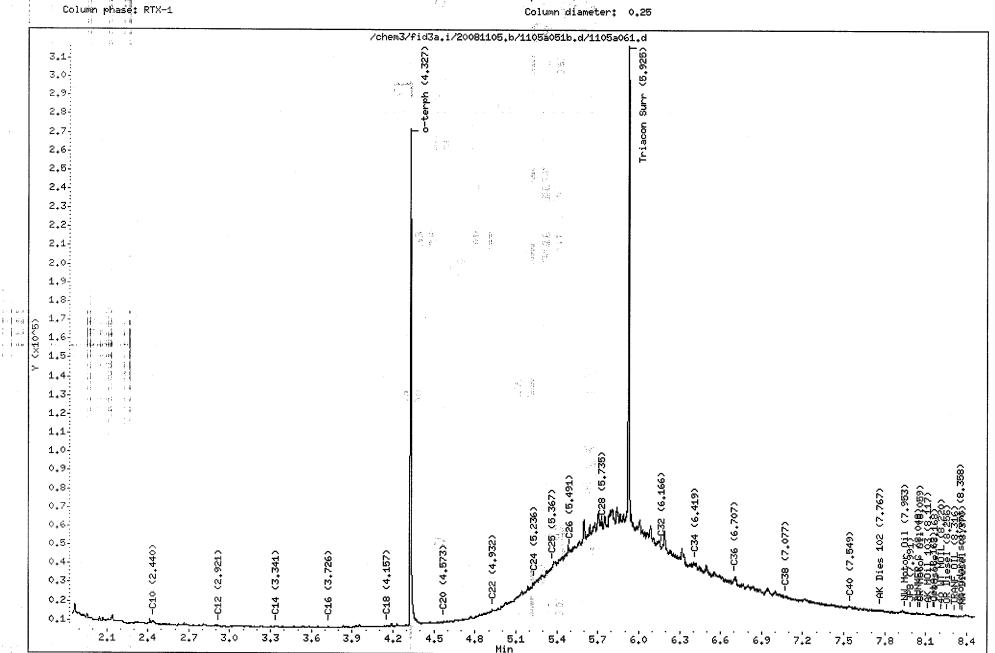
والوائدي بشغ	and the second		
Surrogate	Area	Amount	%Rec
o-Terphenyl	149922	7.2	80.3
Triacontane	118001	6.8	76.0

mo 11/6/08

Esta jakakka

- Liline

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4	04-NOV-2008 04-NOV-2008 06-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008


| Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a061.d | Date | 06-NOV-2008 01:49 | Client | ID: | | Sample | IMfo: NY07H,5

4.1 mg 4604

11-0 454

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a062.d ARI ID: NY07J

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mClient ID:

Enserument: fid3a.i

Operator: ms Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.794	0.003	167644	 180013	GAS	 (Tol-C12)	======================================	39
C8	1.894	0.003	9056	6285	DIESEL	(C12-C24)	287290	17 1
C10	2.442	0.000	4751	10952	M.OIL	(C24-C38)	1281806	122
C12	2.920	-0.001	2250	2634	AK-102	(C10-C25)	385046	18
C14	3.338	-0.001	1608	732	AK-103	(C25-C36)	1061160	116
C16	3.725	0.001	1351	1215	OR.DIES	(C10-C28)	670754	32
C18	4.152	-0.005	1163	874	OR.MOIL	(C28-C40)	1203926	129
C20	4.575	-0.001	1904	2061	JET-A	(C10-C18)	187363	11
C22	4.927	-0.003	3003	2220	MIN.OIL	(C24-C38)	1281806	100
C24	5.232	0.001	5881	820	MSPIRIT	(Tol-C12)	1273150	80
C25	5.372	0.004	7946	3850	İ			
C26	5.494	-0.001	9173	4516	İ			
C28	5.730	0.000	12909	8873			. <u>(1)</u>	
C32	6.166	-0.004	13937	8598	İ		and the second	
C34	6.420	0.003	12807	7549	5.5		- Maryor	
Filter Peak	8.451	-0.003	6035	3680	JP-4	(Tol-C14)	1315572	116
C36	6.708	-0.001	12539	13838	CREOSOT	(C8-C22)	443937	71
C38	7.078	0.000	9358	4073	1			
C40	7.558	0.006	7855	7507	BUNKERC	(C10-C38)	1655921	185
AZDIESEL (C1	0-C22)	24	======= 13722	 15	=======	========	=======================================	
	2-C32)			123			g ë	

Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128)

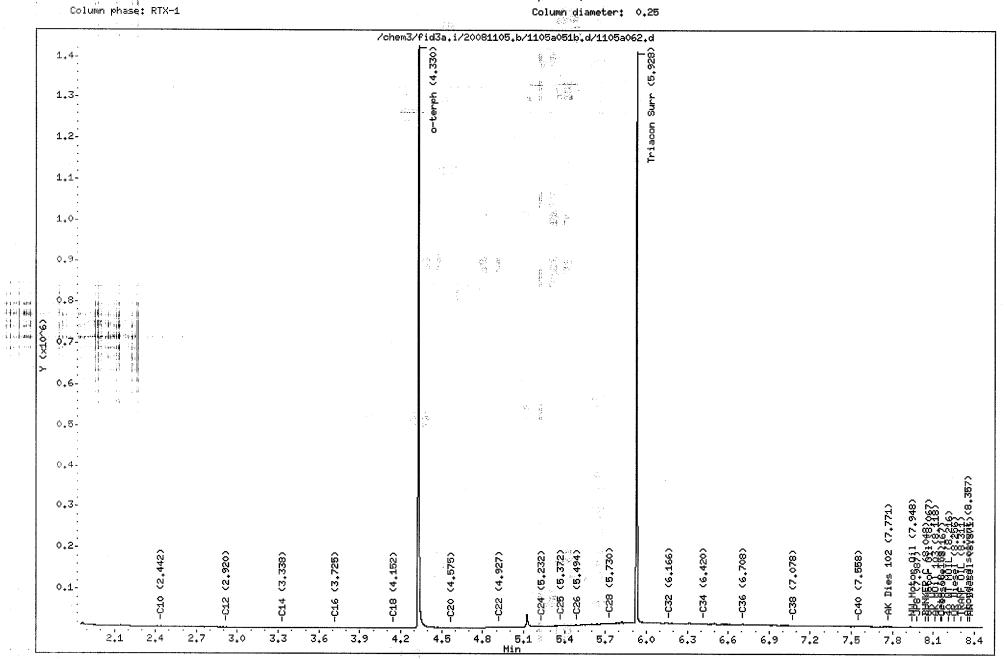
AKL02(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	844868 703980	40.7	90.5

mo1/6/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 04-NOV-2008 06-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a062.d


· Date : 06-NOV-2008 02:04

Client IU: Sample Info: NY07J

Instrument: fid3a.i

Operator: ms

٠,٤

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a063.d ARI ID: NY07K

Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a.mclient ID:

Instrument : fid3a.i

also um injection: 06-NOV-2008 02:18 🗩

Tinscrument sarrasa.

Dilution Factor: 1

Operator: ms Report Date: 11/06/2008 Macro: FID:3A110608

FID: 3A RESULTS

Q	D.III	61 1 6			-			_		_
Compound	RT	Shift	Height		Area	. Ra	ange	-	Total Area	Conc
_ ,		=======		====				====	========	=====
Toluene	1.793	0.002	167029		187055	!	(Tol-C12)		1379544	42 <
C8	1.892	0.001	9091		6712	DIESEL	(C12-C24)		186595	11
C10	2.442	-0.001	4808		11126	M.OIL	(C24-C38)		686245	65 —
C12	2.921	-0.001	2260		2397	AK-102	(C10-C25)		283879	13
C14	3.339	0.000	1552		309	AK-103	(C25-C36)		564160	62
C16	3.723	-0.001	1176		1032	OR.DIES	(C10-C28)		409111	19
C18	4.154	-0.004	1024		1011	OR.MOIL	(C28-C40)		681352	73
C20	4.578	0.002	1389		619	JET-A	(C10-C18)		179715	10
C22	4.932	0.001	1939		1905	MIN.OIL	(C24-C38)		686245	54
C24	5.228	-0.003	2981		2965	MSPIRIT	(Tol-C12)		1379544	87
C25	5.360	-0.009	4655		4064	i				
C26	5.498	0.003	3859		768					
C28	5.729	-0.002	5498		767					
C32	6.171	0.000	7616	14.57	1516	İ				
C34	6.412	-0.006	12711	3,7141	15309	i .			week See	
Filter Peak	8.450	-0.004	4172		2140	JP-4	(Tol-C14)		. 1416819	125
C36	6.709	-0.001	10560		17740	CREOSOT	(C8-C22)		425194	68
C38	7.086	0.008	5079		3327	0.1.2000	(00 022)		100101	00
C40	7.546	-0.007	6868		14710	BIINKERC	(C10-C38)		965743	108
==========		=======	=======				(62.0 650)		J05745	100
AZDIESEL (C	10-C22)	2	 14912	13						
	22-C32)		78655	59:				·. ·		
112110111 (C	ر دی دی	3	,0000	ر د د						w.

Range Times: NW Diesel (2.971 - 5.282) NW Gas (1.741 - 2.971) NW M.Oil (5.282 - 7.128) AK102 (2.393 - 5.318) AK103 (5.318 - 6.759) Jet A(2.393 - 4.208)

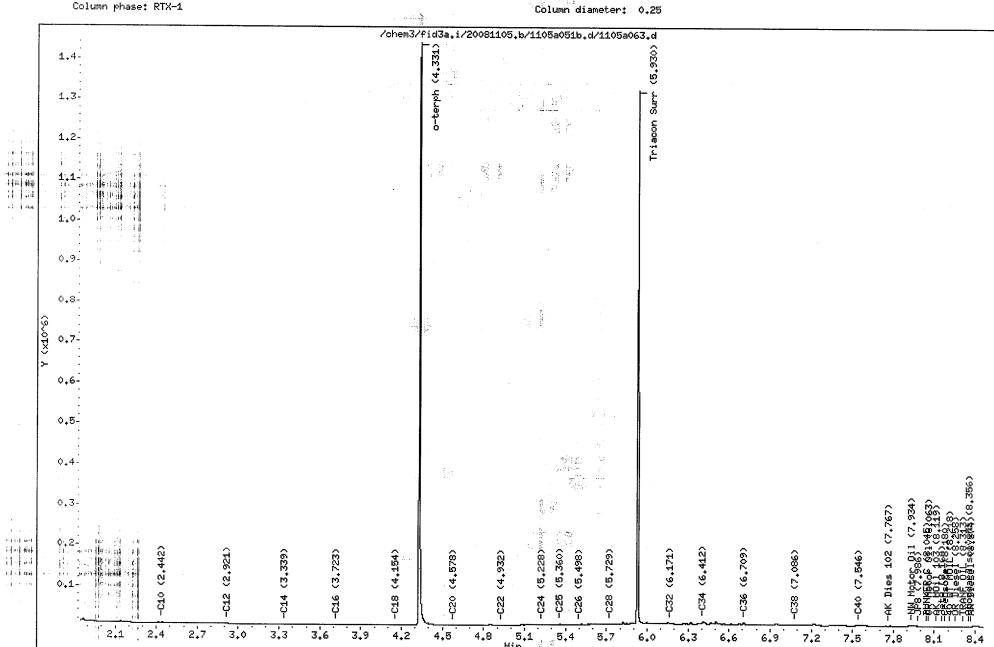
Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	853456 651355	41.1	91.4	-

mou/ 6/65

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a063.d

Date : 06-NOV-2008 02:18


Client ID:

Sample Info: NY07K

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a064.d ARI ID: NY07L Method: /chem3/fid3a.i/20081105.b/1105a051b.d/ftphfid3a/mc21ent ID:

Injection: 06-NOV-2008 02:33 Instrument: fid3a.i

Operator: -ms Dilution Factor: 1

Report Date: 11/06/2008 Macro: FID:3A110608

177	TD	- 27	DEC	ייי דיד
Η.	111	• 4A	RES	Π_{i} TS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.788	-0.003	161232	35206	GAS	(Tol-C12)	1360193	41
C8	1.894	0.002	9209	14834	DIESEL	(C12-C24)	151848	9 _
C10	2.441	-0.002	4927	10951	M.OIL	(C24-C38)	388597	37
C12	2.920	-0.001	2250	2741	AK-102	(C10-C25)	244850	11
C14	3.340	0.001	1528	5 17	AK-103	(C25-C36)	299810	33
C16	3.727	0.002	1087	1308	OR.DIES	(C10-C28)	312011	15
C18	4.159	0.002	845	99	OR.MOIL	(C28-C40)	418738	45
C20	4.580	0.004	1021	161	JET-A	(C10-C18)	174217	10
C22	4.935	0.004	1160	1069	MIN.OIL	(C24-C38)	388597	30
C24	5.227	-0.004	1585	1627	MSPIRIT	(Tol-C12)	1360193	86
C25	5.358	-0.010	1872	1878				
C26	5.503	0.008	2078	1785				
C28 ; ;	5.730	-0.001	3347	3659				
C32	6.173	0.002	4406	3503			1 5.54 52	
C34	6.417	-0.001	4322	4297			A. C. Control	
Filter Peak	8.452	-0.002	3242	1740	JP-4	(Tol-C14)	1396503	123
C36	6.716	0.007	4349	4163	CREOSOT	(C8-C22)	398295	64
C38	7.083	0.005	3736	1781				
C40	7.555	0.002	3889	542	BUNKERC	(C10-C38)	632307	71
AZDIESEL (C1	-===== .0-C22)	19	======= 94236	12	=======			
AZMOIL (C2	22-C32)	19	96525	31				

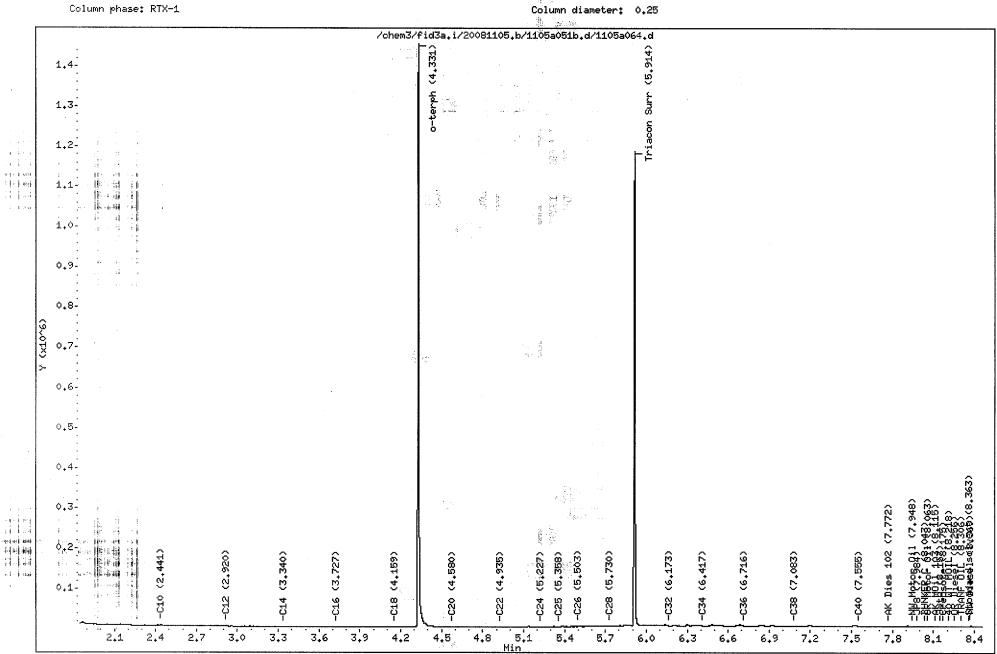
Range Times: NW Diesel(2.971 - 5.282) NW Gas(1.741 - 2.971) NW M.Oil(5.282 - 7.128) AK102(2.393 - 5.318) AK103(5.318 - 6.759) Jet A(2.393 - 4.208)

Surrogate	Area	Amount	%Rec	
o-Terphenyl	866108	41.7	92.7	•
Triacontane	689155	39.9	88.7	

mo 4/6/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 17256.5 33066.5 16911.5 10521.7 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 04-NOV-2008 06-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081105.b/1105a051b.d/1105a064.d


Date : 06-NOV-2008 02:33

Client ID:

Sample Info: NYO7L

Instrument: fid3a.i

Operator: ms

HCID SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Client ID	O-TER TO	T OUT
110508MB	86.0%	0
TPD6-8-081104	86.5%	0
TPD6-8-081104 DP	89.7%	0
TDP7-8-081104	89.9%	0
TDP8-8-081104	93.1%	0
TDP9-8-081104	90.8%	0
TDP10-8-081104	91.1%	0
TDP11-9-081104	87.3%	0
TDP12-7-081104	80.2%	0
TDP13-7-081104	90.5%	0
TDP14-4-081104	91.4%	0
TDP15-4-081104	92.8%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(68-122)

(50-150)

Prep Method: SW3550B

Log Number Range: 08-30002 to 08-30013

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY07

Matrix: Soil Pr

Date Received: 11/04/08

Project: SEATTLE/PHASEII

025173.070

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
08-30002-110508MB	Method Blank	10.0 g	5.00 mL	-	11/05/08
08-30002-NY07A	TPD6-8-081104	7.48 g	5.00 mL	D	11/05/08
08-30002-NY07ADP	TPD6-8-081104	7.44 g	5.00 mL	D	11/05/08
08-30003-NY07B	TDP7-8-081104	8.00 g	5.00 mL	D	11/05/08
08-30004-NY07C	TDP8-8-081104	8.13 g	5.00 mL	D	11/05/08
08-30005-NY07D	TDP9-8-081104	8.34 g	5.00 mL	D	11/05/08
08-30006-NY07E	TDP10-8-081104	8.78 g	5.00 mL	D	11/05/08
08-30008-NY07G	TDP11-9-081104	9.16 g	5.00 mL	D	11/05/08
08-30009-NY07H	TDP12-7-081104	7.51 g	5.00 mL	D	11/05/08
08-30011-NY07J	TDP13-7-081104	8.10 g	5.00 mL	D	11/05/08
08-30012-NY07K	TDP14-4-081104	6.67 g	5.00 mL	D	11/05/08
08-30013-NY07L	TDP15-4-081104	7.74 g	5.00 mL	D	11/05/08

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Data Release Authorized: Reported: 11/11/08

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-110508 08-30014	Method Blank	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 78.3%
NY07M 08-30014	TDP8-GW-081104 HC ID:	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 82.3%
NY07N 08-30015	TDP7-GW-081104 HC ID:	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 70.4%
NY070 08-30016	TDP11-GW-081104 HC ID:	11/05/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 68.4%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a034.d ARI ID: NX93MBW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:03

Operator: ms Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=========	======	=======	========		========	========	=======================================	
Toluene	1.790	-0.005	44905	63382	GAS	(Tol-C12)	520344	22
C8	1.899	0.007	17976	38555	DIESEL	(C12-C24)	251277	15
C10	2.437	-0.008	6611	14359	M.OIL	(C24-C38)	568432	45
C12	2.911	-0.002	7951	6909	AK-102	(C10-C25)	382286	18
C14	3.328	0.003	11676	13689	AK-103	(C25-C36)	435475	48
C16	3.708	0.003	10185	13448	OR.DIES	(C10-C28)	465532	22
C18	4.129	-0.001	5355	4730	OR.MOIL	(C28-C40)	636502	68
C20	4.556	0.008	1684	500	JET-A	(C10-C18)	285566	17
C22	4.901	-0.002	1564	920	MIN.OIL	(C24-C38)	568432	44
C24	5.208	0.000	2654	2634	MSPIRIT	(Tol-C12)	520344	33
C25	5.343	-0.003	2053	1714	ĺ			
C26	5.479	0.004	2543	2606	ĺ			
C28	5.722	0.007	12042	12511			the state of	
C32	6.149	-0006	7244	11614	- 1989 - 1989			1.5
C34	6.393	-0.004	7071	4515	712	•		
Filter Peak	8.443	-0.004	5989	3346	JP-4	(Tol-C14)	581445	51.
C36	6.687	0.007	7716	8629	CREOSOT	(C8-C22)	668214	107
C38	7.032	0.002	6467	1936			£ \$.	
C40, A.	7.479	-0.008	6352	1644	BUNKERC	(C10-C38)	945940	106
AZDIESEL (C1	===== 0-C22)	31	====== L3996	20			.==========	:====
AZMOIL (C2	2-C32)		6335	41	4			

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080)

AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	731418	35.2	78.3
Triacontane	660083	33.8	75.2

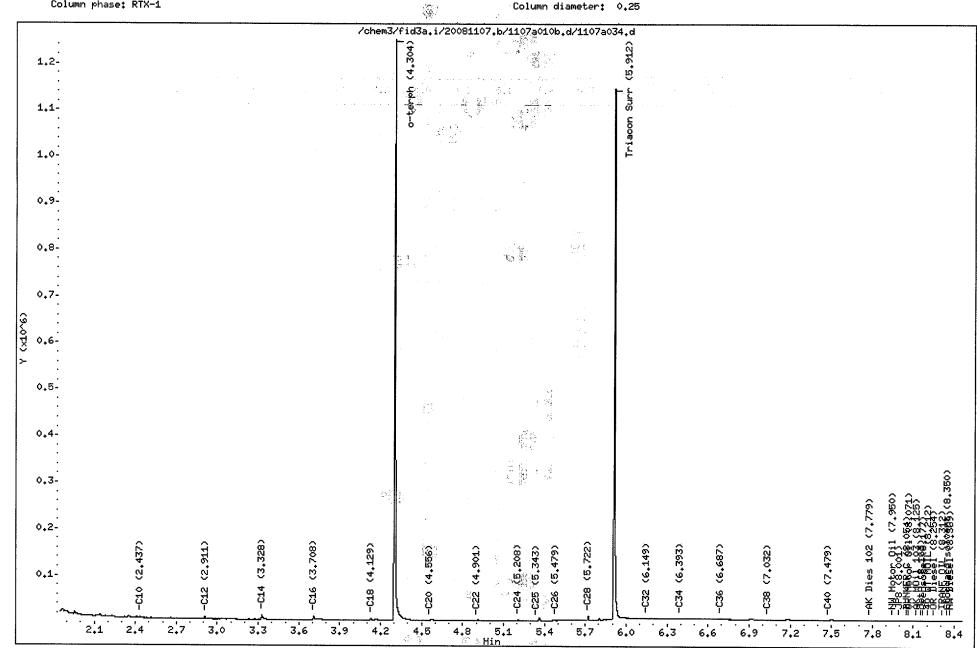
ms 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a,i/20081107,b/1107a010b,d/1107a034.d

Date : 07-NOV-2008 21:03

Client ID:


Sample Info: NX93MBW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

1,7

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a038.d ARI ID: NY07M

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 22:03 /

Dilution Factor: 1

Operator: ms

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.791	-0.004	60018	140444			.=========	
				149444	GAS	(Tol-C12)	669501	28 /
C8	1.895	0.003	18598	3704	DIESEL	(C12-C24)	861239	51
C10	2.439	-0.006	7515	16255	M.OIL	(C24-C38)	914080	72 ~
C12	2.911	-0.001	4919	5042	AK-102	(C10-C25)	1038202	48
C14	3.328	0.003	5801	7276	AK-103	(C25-C36)	744711	81
C16	3.705	0.001	8212	7017	OR.DIES	(C10-C28)	1277149	60
C18	4.128	-0.002	9360	11535	OR.MOIL	(C28-C40)	823263	88
C20	4.547	-0.001	9030	10706	JET-A	(C10-C18)	567964	33
C22	4.901	-0.001	8489	9416	MIN.OIL	(C24-C38)	914080	71
C24	5.204	-0.004	8952	10095	MSPIRIT	(Tol-C12)	669501	42
C25	5.345	0.000	8500	1184	İ			
C26	5.477	0.002	8420	5798	İ			
C28	5.716	0.001	8657	2238	į	4		
Ç32	6.150	-0006	10940	12688			e e e e e e e e e e e e e e e e e e e	
C34	6.392	-0.005	11092	22925			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Filter Peak	8.448	0.001	5971	2860	JP-4	(Tol-C14)	762418	6.7
.C36	6.679	0.000	8393	2011	CREOSOT	(C8-C22)	1238928	199
଼ ଝଁ38	7.025	-0.005	7322	5107	İ		3	
Ĉ40	7.478	-0.009	6639	3179	BUNKERC	(C10-C38)	1935973	217
=======================================	======	=======	======	=========	:========	.======		=====
AZDIESEL (C	10-C22)	83	35954	52		•		
AZMOIL (C	22-C32)		.4252	95	4		r 1	
<u>a_lp/a</u>							4.35%	

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102(2.395%- 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

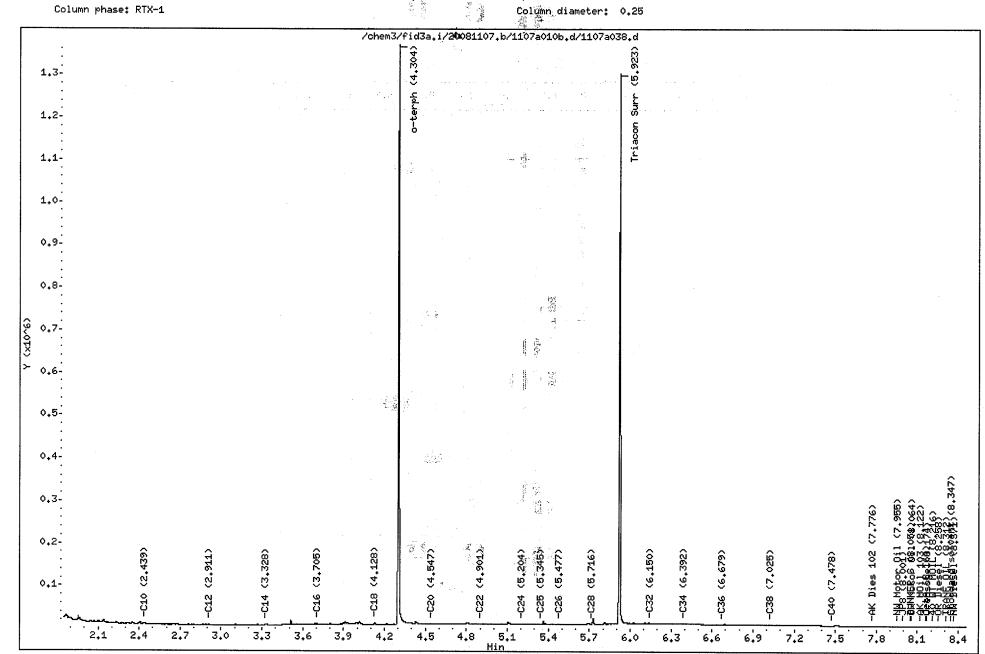
Surrogate	Area	Amount	%Rec	
o-Terphenyl	768133	37.0	82.3	_
Triacontane	700937	35.9	79.9	

ms 1/11/08

2.37

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a,i/20081107,b/1107a010b,d/1107a038,d


Date : 07-NOV-2008 22:03

Client ID:

Sample Info: NY07M

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a039.d ARI ID: NY07N

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 22:18

Operator: ms Dilution Factor:

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.801	0.006	42094	======================================	GAS	======== (Tol-C12)		26
C8	1.899	0.007	17974	26821	DIESEL	(C12-C24)	998009	59
C10	2.437	-0.008	7318	11815	M.OIL	(C24-C38)	1010531	80
C12	2.909	-0.003	3911	2548	AK-102	(C10-C25)	1177667	55
C14	3.319	-0.006	4825	1144	AK-103	(C25-C36)	837528	92
C16	3.702	-0.003	6979	3169	OR.DIES	(C10-C28)	1466153	69
C18	4.131	0.001	7881	2598	OR.MOIL	(C28-C40)	885194	94
C20	4.547	0.000	8942	6026	JET-A	(C10-C18)	607684	. 35
C22	4.898	-0.005	9236	7661	MIN.OIL	(C24-C38)	1010531	79
C24	5.201	-0.006	12640	13692	MSPIRIT	(Tol-C12)	622949	39
C25	5.348	0.003	10065	3393	Ì			
C26	5.475	0.000	9788	6217	İ			
C28	5.726	0.011	17729	24125				
C32	6.163	0.007	<i>1</i> 1018	1756		Jan Park		
	§⊳6.402	0.005	12558	14424		44-		
	8.446	-0.002	6100	2438	JP-4	(Tol-C14)	733985	65
C36	6.684	0.004	10731	79466	CREOSOT	(C8-C22)	1322544	212
C38	7.030	0.000	7666	5042	ĺ			
C40	7.493	0.006	7560	8968	BUNKERC	(C10-C38)	2164910	242
· ·	10-C22)	9	===== ===============================	======== 59	========	=========	=======================================	====
AZMOIL (C	22-C32)	`. 7 .	22376	112		4		

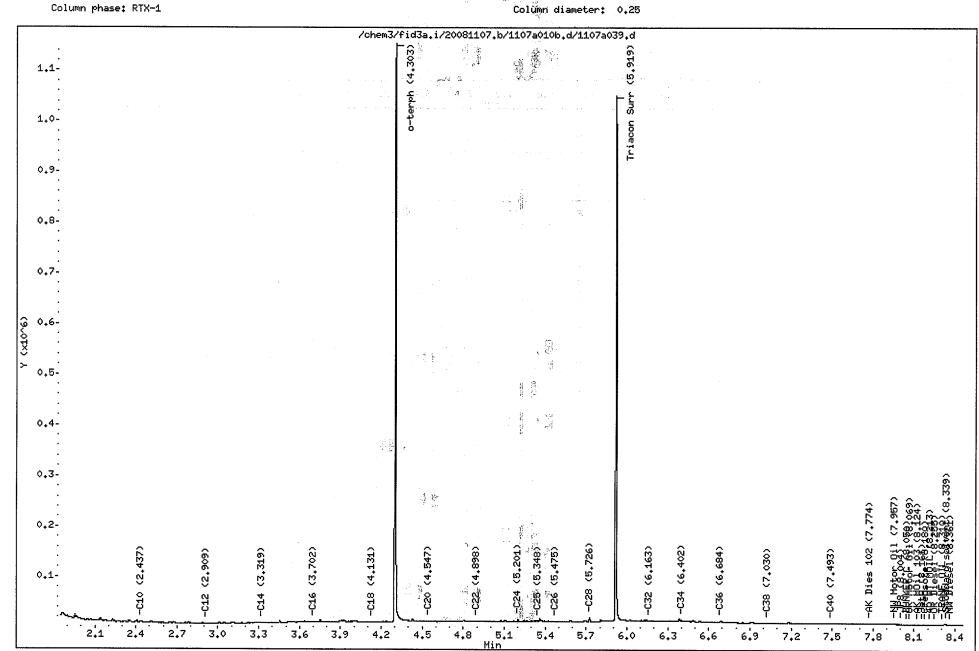
Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	657580	31.7	70.4
Triacontane	602635	30.9	68.7

ms 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a039.d


Date : 07-NOV-2008 22:18

Client ID:

Sample Info: NY07N

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a040.d ARI ID: NY070

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 22:33

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.789	-0.006	55841	137367	GAS	(Tol-C12)	689058	29
C8	1.896	0.004	17499	10063	DIESEL	(C12-C24)	881637	52
C10	2.424	-0.021	33737	27154	M.OIL	(C24-C38)	927231	73/
C12	2.909	-0.003	4406	3745	AK-102	(C10-C25)	1087703	50
C14	3.328	0.003	5025	3365	AK-103	(C25-C36)	762541	83
C16	3.705	0.000	6735	2512	OR.DIES	(C10-C28)	1331698	63
C18	4.128	-0.002	6999	1807	OR.MOIL	(C28-C40)	828493	88
C20	4.545	-0.003	7006	2059	JET-A	(C10-C18)	635583	37
C22	4.899	-0.003	7381	3622	MIN.OIL	(C24-C38)	927231	72
C24	5.202	-0.006	8428	7047	MSPIRIT	(Tol-C12)	689058	44
C25	5.345	-0.001	8606	2375	1			
C26	5.472	-0.002	8601	4044				
C28	5.711	-0.004	8,920	2473				
C32	6.155	-0.001	10440	3117		, arigina,		
C34	6.390	-0.007	9857	6101	İ			_6. · .
Filter Peak	8.448	0.001	6003	1797	JP-4	(Tol-C14)	799982	¹² 70
C36	6.679	0.000	9911	23798	CREOSOT	(C8-C22)	1290531	207
C38	7.029	-0.001	7465	3723	İ			
C40	7.488	0.000	7131	8209	BUNKERC	(C10-C38)	1995534	223
AZDIESEL (C1	====== L0-C22)	====== '8	====== 72913	54	======	========	=======================================	
- 14 · · · · · · · · · · · · · · · · · ·	22-C32)	_	37324	99				
=======================================		=======		========		.========	==========	=====

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

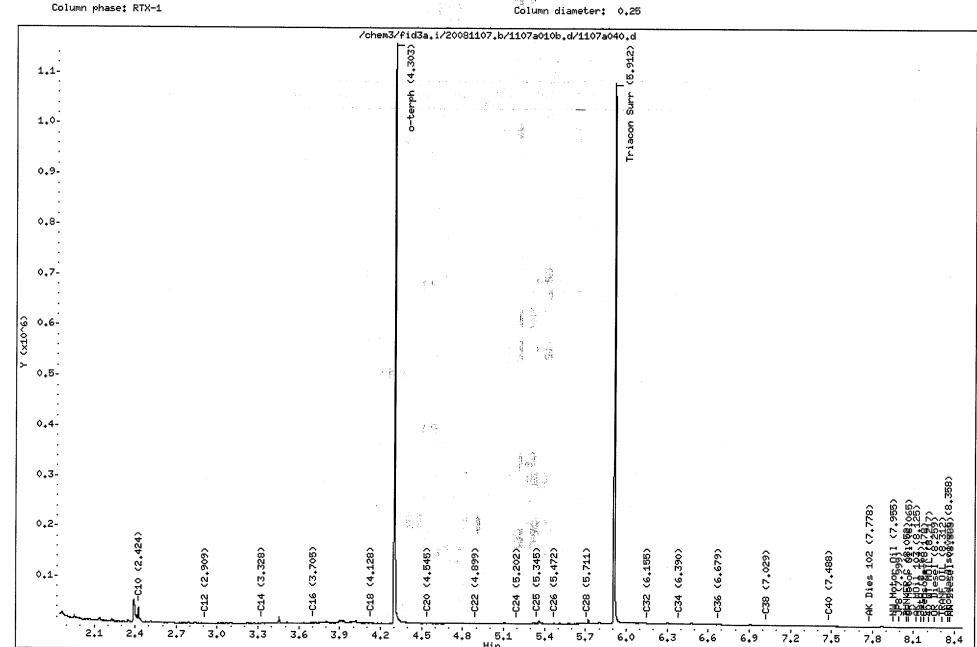
Surrogate	Area	Amount	%Rec
o-Terphenyl	639130	30.8	68.4
Triacontane	597519	30.6	68.1

ma1/11/08

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	23556.5	11-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a,i/20081107.b/1107a010b,d/1107a040.d

Date : 07-NOV-2008 22:33


Client ID:

Sample Info: NY070

Instrument: fid3a.i

Operator: ms

2.13

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Client ID	O-TER	TOT OUT
MB-110508	78.3%	0
LCS-110508	81.9%	0
LCSD-110508	88.3%	0
TDP8-GW-081104	82.3%	0
TDP7-GW-081104	70.4%	0
TDP11-GW-081104	68.4%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C

Log Number Range: 08-30014 to 08-30016

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-110508

LCS/LCSD

Lab Sample ID: LCS-110508

Instrument/Analyst LCS: FID/MS

LIMS ID: 08-30014 Matrix: Water

Data Release Authorized:

Reported: 11/11/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Date Extracted LCS/LCSD: 11/05/08 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/07/08 21:18 Final Extract Volume LCS: 1.0 mL LCSD: 11/07/08 21:33

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.12	3.00	70.7%	2.14	3.00	71.3%	0.9%

HCID Surrogate Recovery

LCS LCSD

o-Terphenyl

81.9% 88.3%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

LCSD: FID/MS

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a035.d ARI ID: NX93LCSW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:18

Operator: ms Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.788	-0.007	 59743	85666	GAS	(Tol-C12)	3341877	142
C8	1.886	-0.005	29568	29773	DIESEL	(C12-C24)	17921271	1060
C10	2.443	-0.002	104273	77259	M.OIL	(C24-C38)	868695	69
C12	2.911	-0.002	421010	262334	AK-102	(C10-C25)	20449930	949
C14	3.325	0.000	779473	358339	AK-103	(C25-C36)	701817	77
C16	3.704	0.000	808776	688728	OR.DIES	(C10-C28)	20794740	982
C18	4.131	0.001	564821	407239	OR.MOIL	(C28-C40)	643477	69
C20	4.546	-0.001	408907	319426	JET-A	(C10-C18)	14988543	874
C22	4.900	-0.003	171819	134530	MIN.OIL	(C24-C38)	868695	68
C24	5.201	-0.006	70962	53659	MSPIRIT	(Tol-C12)	3341877	211
C25	5.337	-0.008	41691	46935	İ			
C26	5.477	0.002	13463	12121	İ			
C28	5.726	0.011	17460	20587	İ			
C32	6.152	-0.004	7711	9429		45		
C34 ,30L	6.395	-0.002	7419	3113	1	3.	30	
Filter Peak	8.445	a -0.003	5804	4287	JP-4	(Tol-C14)	7102763	625
C36	6.671	ૈ −0.009	6946	2769	CREOSOT	(C8-C22)	20464871	3283
C38	7.032	0.002	6507	3505	1		, ,	
C40	7.487	0.000	6199	2226	BUNKERC	(C10-C38)	21276380	2381
7577505 (01	======	========		=======	======	=======	=======================================	====
AZDIESEL (C1)				212				
AZMOIĻ (C2:	2-C32)	119	5985	186		·/(\$)		

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M Oil (5

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

and the second second		7	7 . ·
Surrogate	Area	Amount	%Rec
o-Terphenyl	765154	36.9	81.9
Triacontane	718956	36.9	81 9

ms 11/11/08

frie or

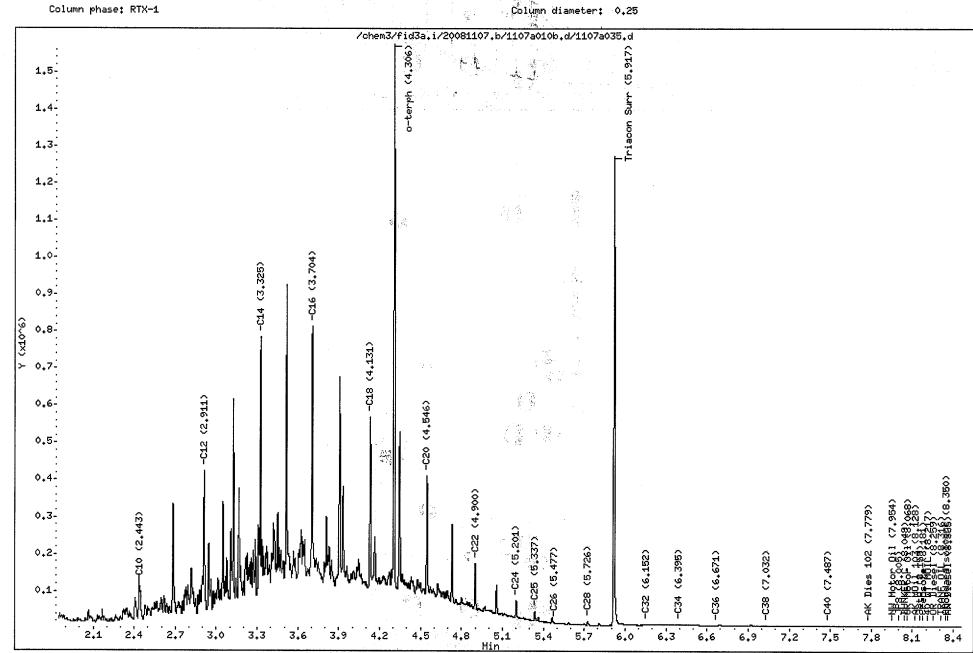
54

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
0100000	0234.4	00-A0G-2006

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a035.d

Date : 07-NOV-2008 21:18

Client ID:


Sample Info: NX93LCSW1

Column phase: RTX-1

Instrument: fid3a.i

Openator: ms

福 4 萬.

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a036.d ARI ID: NX93LCSDW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 21:33

Operator: ms Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT ======	Snirt	Height	Area 	Ra	ange	Total Area	Conc
Toluene	1.789	-0.006	66545	106367	GAS	(Tol-C12)	3425476	145
C8	1.887	-0.005	29691	31546	DIESEL	(C12-C24)	18112296	1071
C10	2.442	-0.003	111236	80461	M.OIL	(C24-C38)	916699	73
C12	2.911	-0.001	438998	263036	AK-102	(C10-C25)	20700757	961
C14	3.325	0.000	766762	357119	AK-103	(C25-C36)	734796	80
C16	3.705	0.001	801122	709238	OR.DIES	(C10-C28)	21060016	995
C18	4.131	0.001	540369	408990	OR.MOIL	(C28-C40)	673233	72
C20	4.548	0.000	401118	321728	JET-A	(C10-C18)	15136583	883
C22	4.901	-0.002	171482	133145	MIN.OIL	(C24-C38)	916699	71
C24	5.202	-0.005	71562	61701	MSPIRIT	(Tol-C12)	3425476	216
C25	5.338	-0.008	44264	45022	ĺ		4	
C26	5.465	-0.010	26343	31391	İ			
C28	5.726	0.011	18995	18818	j			
C32	6.152	-0.004	8256	13317		, Santa a	e de la Companya de l	
C34	6,.393	-0.004	7826	1717	İ	G.		. 3
Filter Peak	8 446	-0.001	6128	3304	JP-4	(Tol-C14)	7267053	640
C36	6.666	-0.013	7313	3500	CREOSOT	(C8-C22)	20692128	3319
GC38 <u>§</u> €	7.035	0.005	6885	3027				
C40	7.486	-0.002	6564	1572	BUNKERC	(C10-C38)	21574579	2414
AZDIESEL (C10	-====)-C22)	1968	======= 4945 12	:======= :26	========	========	*******	=====
AZMOIL (C22	(-C32)	124		.94		2 · .		

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102 (2.395 - 5.295) AK103 (5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	824356	39.7	88.3
Triacontane	772648	39.6	88.0

ms 1/11/08

355年7

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a036.d

Date : 07-NOV-2008 21:33

Client ID:

Sample Info: NX93LCSDW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY07

Matrix: Water

Project: SEATTLE/PHASEII

Date Received: 11/04/08

025173.070

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
08-30014-110508MB	Method Blank	500 mL	1.00 mL	11/05/08
08-30014-110508LCS	Lab Control	500 mL	1.00 mL	11/05/08
08-30014-110508LCSD	Lab Control Dup	500 mL	1.00 mL	11/05/08
08-30014-NY07M	TDP8-GW-081104	500 mL	1.00 mL	11/05/08
08-30015-NY07N	TDP7-GW-081104	500 mL	1.00 mL	11/05/08
08-30016-NY07O	TDP11-GW-081104	500 mL	1.00 mL	11/05/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1

Matrix: Soil

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Received: 11/04/08

Data Release Authorized:

Reported: 11/21/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-111008 08-30008	Method Blank HC ID:	11/10/08	11/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 94.7%
NY07G 08-30008	TDP11-9-081104 HC ID: DRO/MOTOR OII	11/10/08	11/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.5 11	20 130 93.3%
NY07H 08-30009	TDP12-7-081104 HC ID: DRO/MOTOR OII	11/10/08	11/20/08 FID3A	1.00 20	Diesel Motor Oil o-Terphenyl	140 270	140 990 78.7%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

PC 11/21/08

100

Data file: /chem3/fid3a.i/20081119.b/1119a050.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY02MBS1

Client ID:

Injection: 20-NOV-2008 07:11

Dilution Factor: 1

EID.	37	RES	סיד.דדו
PID		REO.	отто

Compound	RT	Shift	Height	A	rea	Ra	ange	Total Area	Conc
==========	=======	=======	=======	=====	=====	=======	=========		======
Toluene	1.772	-0.002	76632		86950	GAS	(Tol-C12)	1074695	16
C8	1.873	0.000	28662		7412	DIESEL	(C12-C24)	176505	12
C10	2.417	-0.003	11382		21802	M.OIL	(C24-C38)	248459	21
C12	2.894	-0.002	4979		5978	AK-102	(C10-C25)	405124	21
C14	3.308	0.000	2389		1183	AK-103	(C25-C36)	184273	18
C16	3.683	0.000	1381		218	OR.DIES	(C10-C28)	437352	22
C18	4.102	0.002	741		288	:	(C28-C40)	275204	27
C20	4.516	-0.001	875		907	JET-A	(C10-C18)	358076	
C22	4.876	0.004	860		473		(C24-C38)	248459	19
C24	5.174	-0.002	713		309		(Tol-C12)	1074695	68
C25	5.311	-0.001	866		427	İ	,		
C26	5.440	0.000	924		291	į			
C28	5.671	-0.003	1843		1674	j.			
C32	6.096	-0.006	3128		3382	İ		نيانية الم	
C34	6.335	0.000	2982		1244			33.	
Filter Peak	8.445	-0.004	2291		957	JP-4	(Tol-C14)	1147080	101
C36	6.602	-0.004	2817		2764	CREOSOT	(C8-C22)	995126	160
C38 ,	6.936	-0.002	2617	_	1402	j	,,	220200	3.14
C40	7.374	.: (0.002 :	2530		1054	BUNKERC	(C10-C38)	651759	73
AZDIESEL (C1	.0-C22)	329	====== 9219	20					=======================================
• • • •	2-C32)	_	6363	17				- Zo	

Range Times: NW Diesel (2.946 - 5.226) NW Gas (1.724 - 2.946) NW M.Oil (5.226 - 6.989) AK102 (2.370 - 5.262) AK103 (5.262 - 6.655) Jet A(2.370 - 4.150)

The second second to the

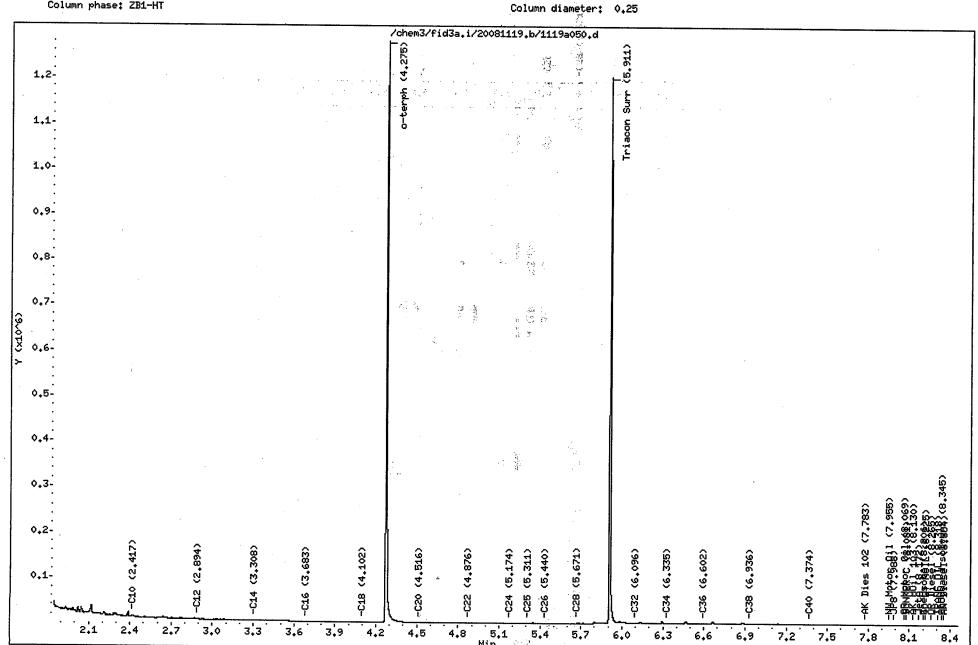
Surrogate	Area	Amount	%Rec
o-Terphenyl	737216	42.6	94.6
Triacontane	666142	40.0	88.9

ms 11/20/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a050.d

Date : 20-NOV-2008 07:11


Client ID:

Sample Info: NYO2MBS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

PC 11/21/18

1.4

Conc

Analytical Resources Inc. TPH Quantitation Report

FID:3A RESULTS

Area

Data file: /chem3/fid3a.i/20081119.b/1119a093.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Shift

0.001

-0.004

0.001

Height

179990

203770

146256

10250018

Instrument: fid3a.i

Operator: ms

Compound

C28

C32

Report Date: 11/20/2008 Macro: FID:3A111308

RT

5.676

6.103

6.330

(C22-C32)

ARI ID: NY07G

Client ID:

Range

Injection: 20-NOV-2008 17:39

-lythu bo oktowa

Total Area

Dilution Factor: 1

========		=======	========		=====			
Toluene	1.772	-0.002	88151	90587	GAS	(Tol-C12)	1102141	 =
C8	1.873	-0.001	28017	47117	DIESEL	(C12-C24)	2717756	179 DK
C10	2.418	-0.002	11257	19862	•	(C24-C38)	14340718	1222 /V/
C12	2.894	-0.001	7625	5191	AK-102	(C10-C25)	3103771	163
C14	3.309	0.001	8704	11124	AK-103	(C25-C36)	12767815	1262
C16	3.683	0.000	10807	8708	!	(C10-C28)	6636507	338
C18	4.100	0.000	14949	21295	:	(C28-C40)	11764363	1166
C20	4.515	-0.001	23976	17936	JET-A	(C10-C18)	813300	48
C22	4.871	-0.002	44609	42048	MIN.OIL	(C24-C38)	14340718	1118
C24	5.174	-0.002	79458	57212	MSPIRIT	(Tol-C12)	1102141	70
C25	5.312	-0.001	107800	131748	i	• •	·	,
C26	5.438	-0.002	126226	119384				

Filter Peak 8.446 -0.002 15927 11521 JP-4 (Tol-C14) 1249324 110 6.607 0.001 96757 CREOSOT 61471 (C8-C22) 2525938 405 C38 6.939 0.000 62911 21842 -0.003 C40 7.369 35946 22987 | BUNKERC (C10-C38) 17313201 1937 AZDIESEL (C10-C22) 1861250 116

59798

98367

166576

Range Times: NW Diesel(2.946 - 5.226) NW Gas(1.724 - 2.946) NW M.Oil(5.226 - 6.989)

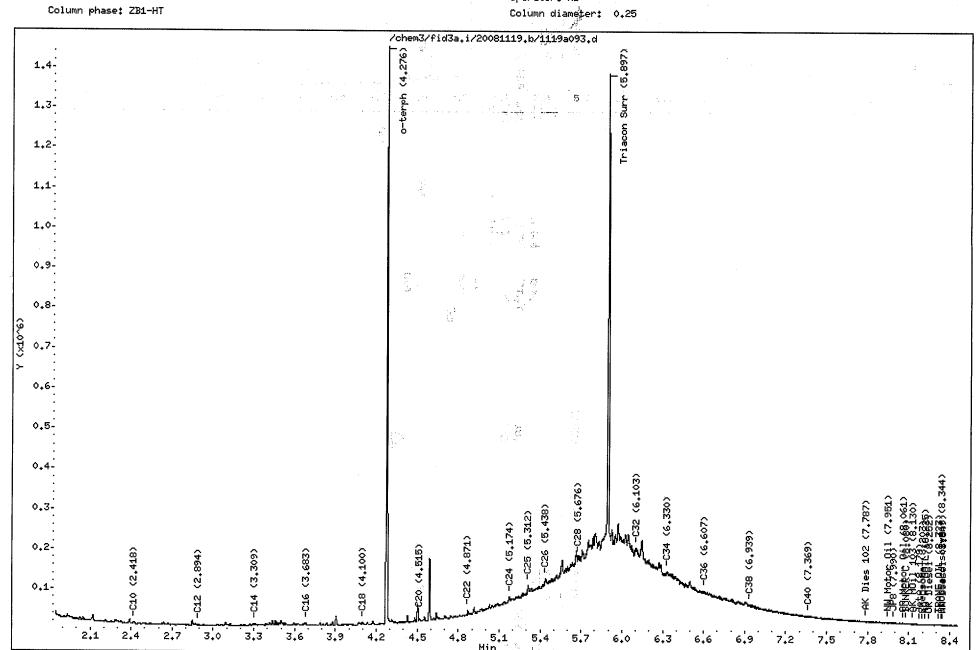
AK102(2.370 - 5.262) AK103(5.262 - 6.655) Jet (2.370 - 4.150)

1592

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	728014 635619	42.0	93.4

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8 6234.4	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a093.d


Date : 20-NOV-2008 17:39

Client ID:

Sample Info: NY07G

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081119.b/1119a070.d

Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY07H

Client ID:

Injection: 20-NOV-2008 12:02

Dilution Factor: 20

FID:3A RES	UT	JTS.
------------	----	------

Compound	RT	Shift	Height	Area	Ra	ange	Tot	al Area	Conc	
Toluene	1.772	-0.002	48672	 51036	l gas	======== (Tol-C12)		967829	==== = = 15	•
C8	1.872	-0.001	26006	26599	DIESEL	(C12-C24)		753275	50	pro
C10	2.417	-0.003	9628	12715	M.OIL	(C24-C38)		4300426	367~	pall-1
C12	2.893	-0.002	4606	4227	AK-102	(C10-C25)		1021881	54	, .
C14	3.310	0.002	3610	3855	AK-103	(C25-C36)		3666187	362	
C16	3.688	0.004	2904	2619	OR.DIES	(C10-C28)		2040117	104	
C18	4.102	0.001	2983	1519	OR.MOIL	(C28-C40)		3773303	374	
C20	4.518	0.001	5160	2651	JET-A	(C10-C18)		428889	25	
C22	4.871	-0.001	10130	7925	MIN.OIL	(C24-C38)		4300426	335	
C24	5.177	0.001	22833	19988	MSPIRIT	(Tol-C12)		967829	61	
C25	5.316	0.004	29052	22633	İ		** .			
C26	5.445	0.006	37435	17033	İ					
C28	5.672	-0.002	51297	30078	İ	v .				
C32	6.100	-0.002	54711	26745	ŀ	#KINS				mg 4%
C34	6.336	0.002	44603	4 4 7112		V.				V.
Filter Peak	8.447	-0.001	9762	4589	∞JP-4	(Tol-C14)		1051756	93	
C36	6.608	0.002	36939	20967	CREOSOT	(C8-C22)	Ž,	1218708	195	
C38	6.937	-0.001	28257	8953	İ					
C40	7.372	0.000	18390	50 5.7	BUNKERC	(C10-C38)		5266739	589	
77DIECEL /C1	·======	=======	=======	=========	========	========	=====	=========	=====	
	.0-C22)		28297	39 .						
AZMOIL (C2	2-C32)	26	71551	415		. 50 .				18 M
			========	========	=======	========	=====	=======	=====	action .

Range Times: NW Diesel(2.946 - 5.226) NW Gas(1.724 - 2.946) NW M.Oil(5.226 - 6.989)
AK102(2.370 - 5.262) AK103(5.262 - 6.655) Jet-A(2.370 - 4.150)

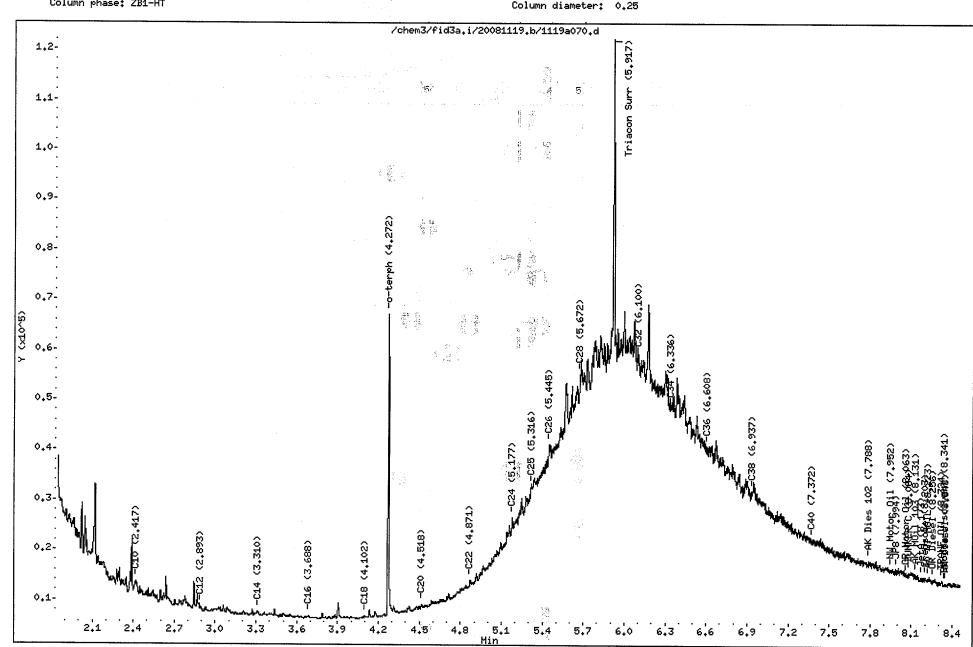
Surrogate	Area	Amount	%Rec
o-Terphenyl	30740	1.8	78.9
Triacontane	27274		72.8

Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	16652.3	18-NOV-2008
Gas	65383.2	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a070.d

Date : 20-NOV-2008 12:02

Client ID:


Sample Info: NY07H,20

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Client ID	OTER	TOT OUT
111008MBS	94.7%	0
111008LCS	96.4%	0
111008LCSD	102%	0
TDP11-9-081104	93.3%	0
TDP12-7-081104	78.7%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(52-121)

(48-119)

Prep Method: SW3546

Log Number Range: 08-30008 to 08-30009

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1 Sample ID: LCS-111008

LCS/LCSD

Lab Sample ID: LCS-111008

LIMS ID: 08-30008

Matrix: Soil

Data Release Authorized:

Date Extracted LCS/LCSD: 11/10/08

Instrument/Analyst LCS: FID3A/PKC

Reported: 11/21/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA

Date Received: NA

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 11/20/08 06:42 Final Extract Volume LCS: 1.0 mL LCSD: 11/20/08 06:56

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

LCSD Spike LCS Spike LCS LCSD Added-LCSD Recovery RPD Added-LCS Range Recovery 81.3% 128 150 85.3% 4.8% Diesel 122 150

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

102% 96.4%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

LCSD: FID3A/PKC

20

Data file: /chem3/fid3a.i/20081119.b/1119a048.d

Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i
Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY02LCSS1

Client ID:

Injection: 20-NOV-2008 06:42

Dilution Factor: 1

FTD.	3Δ	RESID	פת.

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
========		=======		=======	=======		=======================================	======
Toluene	1.771	-0.002	96447	116644	GAS	(Tol-C12)	4959909	76
C8	1.871	-0.003	49045	47228	DIESEL	(C12-C24)	18463159	1219
C10	2.419	-0.002	307365	195926	M.OIL	(C24-C38)	933314	80
C12	2.895	-0.001	593402	282258	AK-102	(C10-C25)	21976313	1158
C14	3.307	-0.001	806380	374583	AK-103	(C25-C36)	785542	78
C16	3.684	0.000	798012	667577	OR.DIES	(C10-C28)	22367347	1140
C18	4.103	0.003	505043	411215	OR.MOIL	(C28-C40)	601664	60
C20	4.518	0.001	381512	316805	JET-A	(C10-C18)	16533737	982
C22	4.873	0.000	175483	132090	MIN.OIL	(C24-C38)	933314	73
C24	5.178	0.002	72697	58882	MSPIRIT	(Tol-C12)	4959909	313
C25	5.314	0.002	43331	39095	i	•		
C26	5.443	0.003	26696	32625	İ			•
C28	5.680	0.006	11467	13274	İ		`	
C32	6.092	-0.010	<i>ੰ−∛</i> 7995	8134	i .			
C34	্র- 6.339	0.004	6821	4430	į			 V.
Filter Peal	६ 🥯 8.443	-0.006	3273	,.2523	JP-4	(Tol-C14)	9305519	··· 819
C36 ,	6.603	-0:002	5973	2253	CREOSOT	(C8-C22)	22452599	3601
C38	6.938	-0.001	4892	1163	i.	•		
C40	.2th 7.369	-0.003	4154	3885	BUNKERC	(C10-C38)	22858795	× 2558 ×
=======================================		=======	========				=========	
AZDIESEL	(C10-C22)	208	35757 12	97				
AZMOIL	(C22-C32)	12	89612 2	00		A3 -		25

Range Times NW Diesel (2.946 - 5.226) NW Gas (1.724 - 2.946) NW M.Oil (5.226 - 6.6989) AK102 (2.370 - 5.262) AK103 (5.262 - 6.655) Jet A(2.370 - 4.150)

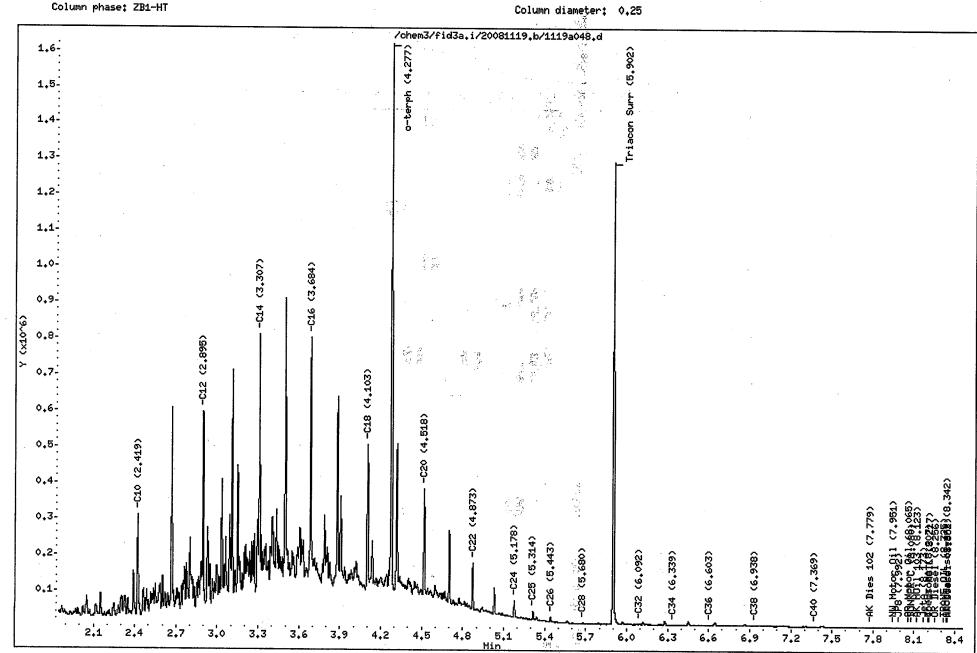
Surrogate	Area	Amount	%Rec
o-Terphenyl	751343	43.4	96.4
Triacontane	707528	42.5	94.4

ms 11/20708

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a048.d

Date : 20-NOV-2008 06:42


Client ID:

Sample Info: NYO2LCSS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081119.b/1119a049.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY02LCSDS1

Client ID:

Injection: 20-NOV-2008 06:56

Dilution Factor: 1

FID:3A RESUL	1	1	I		Е) :	:	3	Α		R	Е	S	Ţ	π	л	'S	
--------------	---	---	---	--	---	-----	---	---	---	--	---	---	---	---	---	---	----	--

Compound	RT	Shift	Height	Area	Ra	ange	To	tal Area	Conc
Toluene	1.774	0.000	105564	96741	======= GAS	(Tol-C12)		5200565	80
C8	1.873	0.000	50140	49585	DIESEL			19386077	1280
C10	2.419	-0.001	292729	178764	M.OIL	(C24-C38)		659708	56
C12	2.895	-0.001	653508	342388	AK-102	(C10-C25)		23062699	1215
C14	3.307	-0.001	825910	394861	AK-103	(C25-C36)		551624	55
C16	3.683	-0.001	835933	692208	OR.DIES	(C10-C28)		23399423	1193
C18	4.101	0.001	533585	414761	OR.MOIL	(C28-C40)		363341	36
C20	4.516	0.000	394153	341636	JET-A	(C10-C18)		17323356	1029
C22	4.873	0.000	172039	137852	MIN.OIL	(C24-C38)		659708	.51
C24	5.179	0.003	75937	55169	MSPIRIT	(Tol-C12)		5200565	329
C25	5.316	0.004	44114	46492	1		•		
C26	5.447	0.007	24800	26316	1				
C28	5.670	-0.004	6776	5183	1				
C32	6.098	-0.004	4256	2671	an Finan				-8
C34	6.340	0.006	3805	1587			et©.÷		***
Filter Peak	8.450	0.001	2682	801	JP-4	(Tol-C14)	7-427	9729517	856
C36	6.618	0.013	3909	4175	CREOSOT	(C8-C22)		23581410	3782
C38	6.931	-0.007	3473	2035	<u> </u>				
C40	7.374	0.002	3076	856	BUNKERC	(C10-C38)	. A.J.	23680184	2650
•	LO-C22) 22-C32)		88159 13 60876 1	======================================		=======	=====		=====
	,			-	y '			* ***	

Range Times: NW Diesel (2.946 - 5.226) NW Gas (1.724 - 2.946) NW M.Oil (5.226 - 6.989)

AK102 (2.370 - 5.262) AK103 (5.262 - 6.655) Jet A(2.370 - 4.150)

Surrogate	Area	Amount	%Rec
o-Terphenyl	792297	45.7	101.7
Triacontane	725057	43.5	

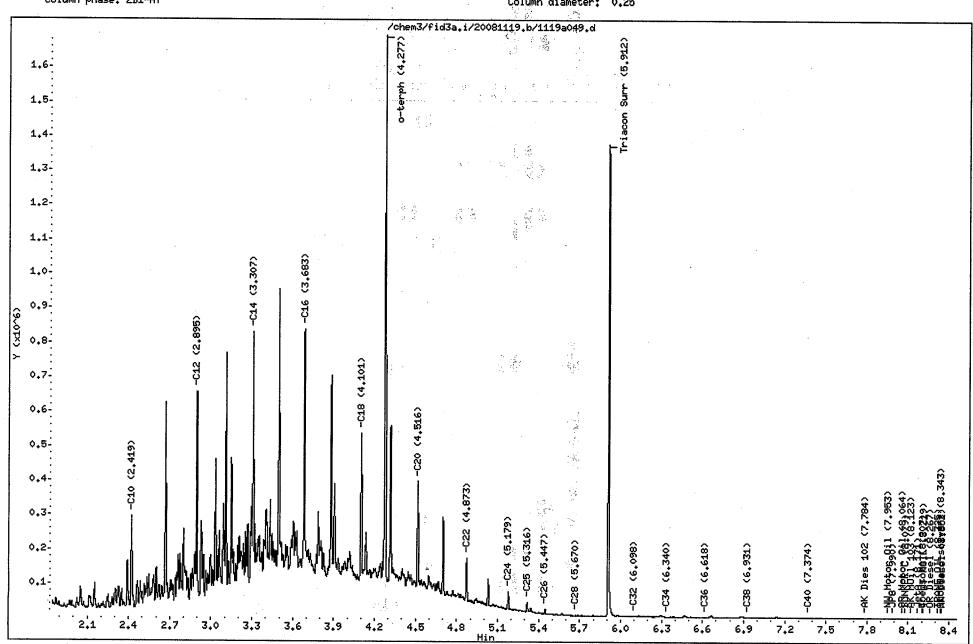
Aun 1120/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a049.d

Date : 20-NOV-2008 06:56

Client ID:


Sample Info: NYO2LCSDS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY07

Matrix: Soil

Project: SEATTLE/PHASEII

Date Received: 11/04/08

025173.070

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-30008-111008MB1 08-30008-111008LCS1 08-30008-111008LCSD1 08-30008-NY07G 08-30009-NY07H	Method Blank Lab Control Lab Control Dup TDP11-9-081104 TDP12-7-081104	10.0 g 10.0 g 10.0 g 9.12 g 7.42 g	1.00 mL 1.00 mL 1.00 mL 1.00 mL	_	11/10/08 11/10/08 11/10/08 11/10/08 11/10/08

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07A

LIMS ID: 08-30002

Matrix: Soil

Data Release Authorized

Reported: 11/20/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Sample ID: TPD6-8-081104

SAMPLE

Date Sampled: 11/04/08 Date Received: 11/04/08

Percent Total Solids: 84.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	6	6	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.6	13.6	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	20.5	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	2	U
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07B

LIMS ID: 08-30003 Matrix: Soil

Data Release Authorized:

Reported: 11/20/08

Sample ID: TDP7-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Percent Total Solids: 85.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	6	6	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.6	16.5	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	20.2	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	2	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07C

LIMS ID: 08-30004

Matrix: Soil

Data Release Authorized

Reported: 11/20/08

Sample ID: TDP8-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070
Date Sampled: 11/04/08
Date Received: 11/04/08

Percent Total Solids: 82.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	6	6	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.6	13.8	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	21.6	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	7	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	Ü

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07D

LIMS ID: 08-30005

Matrix: Soil

Data Release Authorized Reported: 11/20/08

Percent Total Solids: 78.6%

Sample ID: TDP9-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
11/13/08	6010B	11/18/08	7440-38-2	Arsenic	6	6	U
11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.6	15.1	
11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	17.7	
11/13/08	6010B	11/18/08	7439-92-1	Lead	2	2	U
11/13/08	747 1 A	11/14/08	7439-97-6	Mercury	0.05	0.05	U
	Date 11/13/08 11/13/08 11/13/08 11/13/08 11/13/08	Date Method 11/13/08 6010B 11/13/08 6010B 11/13/08 6010B 11/13/08 6010B 11/13/08 6010B	Date Method Date 11/13/08 6010B 11/18/08 11/13/08 6010B 11/18/08 11/13/08 6010B 11/18/08 11/13/08 6010B 11/18/08 11/13/08 6010B 11/18/08	Date Method Date CAS Number 11/13/08 6010B 11/18/08 7440-38-2 11/13/08 6010B 11/18/08 7440-43-9 11/13/08 6010B 11/18/08 7440-47-3 11/13/08 6010B 11/18/08 7440-50-8 11/13/08 6010B 11/18/08 7439-92-1	Date Method Date CAS Number Analyte 11/13/08 6010B 11/18/08 7440-38-2 Arsenic 11/13/08 6010B 11/18/08 7440-43-9 Cadmium 11/13/08 6010B 11/18/08 7440-47-3 Chromium 11/13/08 6010B 11/18/08 7440-50-8 Copper 11/13/08 6010B 11/18/08 7439-92-1 Lead	Date Method Date CAS Number Analyte RL 11/13/08 6010B 11/18/08 7440-38-2 Arsenic 6 11/13/08 6010B 11/18/08 7440-43-9 Cadmium 0.2 11/13/08 6010B 11/18/08 7440-47-3 Chromium 0.6 11/13/08 6010B 11/18/08 7440-50-8 Copper 0.2 11/13/08 6010B 11/18/08 7439-92-1 Lead 2	Date Method Date CAS Number Analyte RL mg/kg-dry 11/13/08 6010B 11/18/08 7440-38-2 Arsenic 6 6 11/13/08 6010B 11/18/08 7440-43-9 Cadmium 0.2 0.2 11/13/08 6010B 11/18/08 7440-47-3 Chromium 0.6 15.1 11/13/08 6010B 11/18/08 7440-50-8 Copper 0.2 17.7 11/13/08 6010B 11/18/08 7439-92-1 Lead 2 2

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07E

LIMS ID: 08-30006

Matrix: Soil

Data Release Authorized

Reported: 11/20/08

Sample ID: TDP10-8-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Percent Total Solids: 81.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	6	6	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.6	20.7	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	18.9	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	2	U
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.06	0.06	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07G LIMS ID: 08-30008

Matrix: Soil

Data Release Authorized Reported: 11/20/08

QC Report No: NY07-The Boeing Company

Sample ID: TDP11-9-081104

SAMPLE

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Percent Total Solids: 88.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	5	5	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.5	17.1	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	24.8	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	3	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.04	0.04	U

TOTAL METALS Page 1 of 1

Lab Sample ID: NY07H LIMS ID: 08-30009 Matrix: Soil

Data Release Authorized Reported: 11/20/08

Percent Total Solids: 64.7%

Sample ID: TDP12-7-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	7	8	
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.3	0.8	
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.7	20.0	
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.3	31.3	
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	3	13	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.06	0.19	

TOTAL METALS

Page 1 of 1

Sample ID: TDP13-7-081104

SAMPLE

Lab Sample ID: NY07J LIMS ID: 08-30011 Matrix: Soil

Data Release Authorized Reported: 11/20/08

Project: SEATTLE/PHASEII

QC Report No: NY07-The Boeing Company

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Percent Total Solids: 82.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/19/08	7440-38-2	Arsenic	10	10	U
3050B	11/13/08	6010B	11/19/08	7440-43-9	Cadmium	0.6	0.6	U
3050B	11/13/08	6010B	11/19/08	7440-47-3	Chromium	1	17	
3050B	11/13/08	6010B	11/19/08	7440-50-8	Copper	0.6	97.1	
3050B	11/13/08	6010B	11/19/08	7439-92-1	Lead	6	6	U
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.06	0.06	U

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07K LIMS ID: 08-30012

Matrix: Soil

Data Release Authorized: Reported: 11/20/08

Sample ID: TDP14-4-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070
Date Sampled: 11/04/08
Date Received: 11/04/08

Percent Total Solids: 72.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/13/08	6010B	11/19/08	7440-38-2	Arsenic	7	17	
3050B	11/13/08	6010B	11/19/08	7440-43-9	Cadmium	0.3	0.6	
3050B	11/13/08	6010B	11/19/08	7440-47-3	Chromium	0.7	24.6	
3050B	11/13/08	6010B	11/19/08	7440-50-8	Copper	0.3	36.6	
3050B	11/13/08	6010B	11/19/08	7439-92-1	Lead	3	18	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.06	0.13	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07L LIMS ID: 08-30013

Matrix: Soil

Data Release Authorized Reported: 11/20/08

Percent Total Solids: 78.9%

Sample ID: TDP15-4-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/19/08	7440-38-2	Arsenic	6	9	
3050B	11/13/08	6010B	11/19/08	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	11/13/08	6010B	11/19/08	7440-47-3	Chromium	0.6	17.3	
3050B	11/13/08	6010B	11/19/08	7440-50-8	Copper	0.2	25.7	
3050B	11/13/08	6010B	11/19/08	7439-92-1	Lead	2	3	
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.06	0.06	Ü

TOTAL METALS

Page 1 of 1

Sample ID: TPD6-8-081104

DUPLICATE

Lab Sample ID: NY07A LIMS ID: 08-30002

Matrix: Soil

Data Release Authorized:

Reported: 11/20/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	6 U	6 U	0.0%	+/- 6	L
Cadmium	6010B	0.2 U	0.2 U	0.0%	+/- 0.2	L
Chromium	6010B	13.6	11.8	14.2%	+/- 20%	
Copper	6010B	20.5	15.0	31.0%	+/- 20%	*
Lead	6010B	2 U	2 U	0.0%	+/- 2	L
Mercury	7471A	0.05 U	0.05 U	0.0%	+/- 0.05	L

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Sample ID: TPD6-8-081104

MATRIX SPIKE

Lab Sample ID: NY07A LIMS ID: 08-30002

Matrix: Soil

Data Release Authorized Reported: 11/20/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Arsenic	6010B	6 И	206	231	89.2%	
Cadmium	6010B	0.2 U	50.1	57.7	86.8%	
Chromium	6010B	13.6	60.4	57.7	81.1%	
Copper	6010B	20.5	69.5	57.7	84.9%	
Lead	6010B	2 U	200	231	86.6%	
Mercury	7471A	0.05 U	0.55	0.511	108%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07LCS

LIMS ID: 08-30003

Matrix: Soil

Data Release Authorized Reported: 11/20/08

Sample ID: LAB CONTROL

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	189	200	94.5%	
Cadmium	6010B	45.6	50.0	91.2%	
Chromium	6010B	45.2	50.0	90.4%	
Copper	6010B	48.0	50.0	96.0%	
Lead	6010B	189	200	94.5%	
Mercury	7471A	1.04	1.00	104%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY07MB LIMS ID: 08-30003 Matrix: Soil

Data Release Authorized: Reported: 11/20/08

Sample ID: METHOD BLANK

QC Report No: NY07-The Boeing Company Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/13/08	6010B	11/18/08	7440-38-2	Arsenic	5	5	U
3050B	11/13/08	6010B	11/18/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7440-47-3	Chromium	0.5	0.5	U
3050B	11/13/08	6010B	11/18/08	7440-50-8	Copper	0.2	0.2	U
3050B	11/13/08	6010B	11/18/08	7439-92-1	Lead	2	2	U
CLP	11/13/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Sample ID: TDP8-GW-081104

SAMPLE

Lab Sample ID: NY07M LIMS ID: 08-30014

Matrix: Water

Data Release Authorized:

Reported: 11/20/08

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/06/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	1.8	
6010B	11/06/08	6010B	11/18/08	7440-43-9	Cadmium	2	2	U
6010B	11/06/08	6010B	11/18/08	7440-47-3	Chromium	5	5	U
6010B	11/06/08	6010B	11/18/08	7440-50-8	Copper	2	2	U
200.8	11/06/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Sample ID: TDP7-GW-081104

SAMPLE

Lab Sample ID: NY07N LIMS ID: 08-30015

Matrix: Water

Data Release Authorized: Reported: 11/20/08

Project: SEATTLE/PHASEII

025173.070

QC Report No: NY07-The Boeing Company

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/06/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	11.4	
6010B	11/06/08	6010B	11/18/08	7440-43-9	Cadmium	2	2	U
6010B	11/06/08	6010B	11/18/08	7440-47-3	Chromium	5	7	
6010B	11/06/08	6010B	11/18/08	7440-50-8	Copper	2	2	U
200.8	11/06/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY070

LIMS ID: 08-30016 Matrix: Water

Data Release Authorized

Reported: 11/20/08

Sample ID: TDP11-GW-081104

SAMPLE

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: 11/04/08 Date Received: 11/04/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/06/08	200.8	11/14/08	7440-38-2	Arsenic	0.5	21.5	
6010B	11/06/08	6010B	11/18/08	7440-43-9	Cadmium	2	2	U
6010B	11/06/08	6010B	11/18/08	7440-47-3	Chromium	. 5	14	
6010B	11/06/08	6010B	11/18/08	7440-50-8	Copper	2	2	U
200.8	11/06/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY07LCS LIMS ID: 08-30014

Matrix: Water

Data Release Authorized

Reported: 11/20/08

Sample ID: LAB CONTROL

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
				<u>-</u>	
Arsenic	200.8	23.5	25.0	94.0%	
Cadmium	6010B	480	500	96.0%	
Chromium	6010B	463	500	92.6%	
Copper	6010B	466	500	93.2%	
Lead	200.8	24	25	96.0%	
Mercury	7470A	2.3	2.0	115%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY07MB

LIMS ID: 08-30014

Matrix: Water

Data Release Authorized

Reported: 11/20/08

Sample ID: METHOD BLANK

QC Report No: NY07-The Boeing Company

Project: SEATTLE/PHASEII

025173.070

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/06/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	0.2	U
6010B	11/06/08	6010B	11/18/08	7440-43-9	Cadmium	2	2	U
6010B	11/06/08	6010B	11/18/08	7440-47-3	Chromium	5	5	U
6010B	11/06/08	6010B	11/18/08	7440-50-8	Copper	2	2	U
200.8	11/06/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/06/08	7470A	11/07/08	7439-97-6	Mercury	0.1	0.1	U

November 25, 2008

Tim Syverson Landau Associates, Inc. 130 Second Ave Edmonds, WA 98020

RE: Project: Seattle/Phase II, 025173

ARI Job No.: NY44

Dear Tim:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, the analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted ten soil samples, three water samples, and a trip blank on November 5, 2008. Three coolers were received with temperatures of 0.8, 5.8, and 6.0°C. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, NWTPH-Dx, and Total and Dissolved Metals, as requested. Please note that the SIM PAH analysis was cancelled for all soil samples and MTCA Metals were requested instead of RCRA Metals for all samples.

Volatiles Analyses: Continuing Calibrations had compounds outside of the 20% control limit for the 11/7/08, 11/12/08, and 11/13/08 volatiles analyses, but were accepted outliers under ARI SOPs. No further corrective action was taken.

The internal standard percent difference of d4-1,4-Dichlorobenzene was outside the control limits for sample **TDP16-3-081105**. The sample was re-analyzed at a dilution and all internal standard percent differences were within control limits. Both sets of data have been included in this report for your review. No further corrective action was required.

Semivolatiles Analyses: The LCS and LCSD percent recoveries of Benzoic Acid fell outside the control limits for LCS-111108. No further corrective action is required for this compound as it is a known poor performer.

Several LCS and LCSD percent recoveries were outside the control limits high for LCS-111108. No further corrective action was required.

SIM PAH Analysis: The LCS percent recovery of 1-Methylnaphthalene fell outside the control limits low for LCS-110708. The LCSD percent recovery was within control limits. No further corrective action was required.

PCBs Analyses: The surrogate percent recoveries of Decachlorobiphenyl and Tetrachlorometaxylene fell outside the control limits for sample **TDP18-GW-081105**. The sample was re-extracted and re-analyzed outside the method recommended holding time. The re-analysis surrogate percent recoveries were within control limits. Both sets of data have been included in this report for your review. No further corrective action was required.

NWTPH-HCID Analyses: Please note that all samples that were detected for Diesel or Motor Oil were re-analyzed by method NWTPH-Dx.

There were no anomalies associated with the NWTPH-Dx analysis.

Metal Analyses: The duplicate relative percent differences of chromium, copper, and lead were outside the control limit for sample TPD19-4-081105. All other quality control parameters were met for these analytes. No further corrective action was required.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESQUECES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

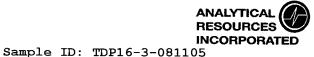
kellyb@arilabs.com

www.arilabs.com

✓ Seattle (Edmonds) (4 ☐ Tacoma (253) 926-24 ☐ Spokane (509) 327-9	93 N) 1 737	44		Date	· M2/08
ASSOCIATES Portland (Tigard) (503	3) 443-6010 ———— Ch a	ain-of-Cust	ody Record	Pag	eof
Project Name Nompson Project Location/Event Project Location/Event Project Contact Kathama Harbor Send Results To Kathama Date Sample I.D. Date	yurson, A t	S173 aWeV571 No. of Containers	Testing Pa	Observations/C	irnaround Time Standard Accelerated Decomposition
TDP16-3'-081105 11508		XXX F	XXX	Allow water sample aliquot from clear portion	ples to settle, collect ion
TDP18-41-081105 TDP19-41-081105 TDP20-31-081105 TDP21-31-081105 TDP22-31-081105 TDP23-3-081105 TDP25-9-081105 TDP16-GW-081105 TDP18-GW-081105	1015 1115 1210 1215 1230 1230 1315 1346 845 W	7 X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X	NWTPH-Dx:	dardized to duct no specific in anol no soulfate
Special Shipment/Handling				Method of Shipment	
or Storage Requirements Refiriquished by Signature EUZAbeth Pode	Received by Signature Kimbern K	Prosey .	Relinquished by	Received by Signature	
Printed Name	Printed Name		Printed Name	Printed Name Company	

Date

Date


Time

Time

Analytical Resources, Incorporated Analytical Chemists and Consultant
Analytical Chemists and Consultant

Cooler Receipt Form

ARI Client Casalaw DOLNG	Project Name:_	Phase I	L		· —
COC No:	Delivered by:	ianal			•
Assigned ARI Job No: NY44					
Preliminary Examination Phase:					
Were intact, properly signed and dated custody	seals attached to	the outside	de of to cooler?	YES	NO
Were custody papers included with the cooler?	• • • • • • • • • • • • • • • • • • • •			YES	NO
Were custody papers properly filled out (ink. sign	ned etc.)			VEC	NO
Record cooler temperature (recommended 2.0-6	6.0 °C for chemis	try		0,8,5	8.60c
Cooler Accepted by:	KR	•	11/5/08	.,	•
Complete custody form	is and attach all	shipping	documents		
Log-In Phase:					
Was a temperature blank included in the cooler?				V/50	<u></u>
What kind of packing material was used?					MO
Was sufficient ice used (if appropriate)?	***************************************	• • • • • • • • • • • • • • • • • • •			
Were all bottles sealed in individual plastic bags?					NO
Did all bottle arrive in good condition (unbroken)?					NO
Were all bottle labels complete and legible?					NO
Did all bottle labels and tags agree with custody p				\sim	NO
Were all bottles used correct for the requested an	oalvese?				NO
Do any of the analyses (bottles) require preserval	iaryses:				NO
Were all VOC vials free of air bubbles?	our (attach pies	servation c	necklist)	YES	NO
Was sufficient amount of sample sent in each both	tte?		NA	YES	NO
		-			NO
	Date:	. , .		1017	_
** Notify Project Manag	er of discrepand	cies or co	ncerns **		
Evalain discrepancies of a set					
Explain discrepancies or negative responses:	HAVI TOP	23-3~	081/15 /	11/	
Samples TDP20-3-081105 Missing one Sample, SO 1	ogged as	only	4 Conta	inerc	
Sample TOP16-GW-081105	does not	have	a tatal	haail	/-
Don Lainor SA-11795 MA+ 1	ROMAN +10	V. Mrs	$f \cdot \Lambda = 1$	2 -	15
To blanka added to	end of	115+	and la	néd	ŀ
Trip plants across to	-12111-08/10t	1017	SAMOORE	be re	
Trip blanks addled to. For Voa. one Sample TDP18 marked TDP16-GW-081105, but	were mat	ched c	ip by tim	l (
VoAs in samples &-H put	By A		Date:	11/6/02	9
mhกล					

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

SAMPLE

Lab Sample ID: NY44A LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized: Reported: 11/25/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 14:35

Sample Amount: 4.33 g-dry-wt

Purge Volume: 5.0 mL Moisture: 27.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	Ü
75-01-4	Vinyl Chloride	1.2	< 1.2	Ü
75-00-3	Chloroethane	1.2	< 1.2	Ü
75-09-2	Methylene Chloride	2.3	< 2.3	Ü
67-64-1	Acetone	5.8	70	
75-15-0	Carbon Disulfide	1.2	2.2	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	Ü
75-34-3	1,1-Dichloroethane	1.2	< 1.2	Ü
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	Ū
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	Ū
78-93-3	2-Butanone	5.8	9.2	
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U
108-05-4	Vinyl Acetate	5.8	< 5.8	U
75-27-4	Bromodichloromethane	1.2	< 1.2	Ü
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	< 1.2	U
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U
71-43-2	Benzene	1.2	3.9	
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	5.8	< 5.8	U
75-25-2	Bromoform	1.2	< 1.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.8	< 5.8	U
591-78-6	2-Hexanone	5.8	< 5.8	U
127-18-4	Tetrachloroethene	1.2	< 1.2	U
79-34-5	1,1,2,2-Tetrachloroethane	1.2	< 1.2	U
108-88-3	Toluene	1.2	< 1.2	U
108-90-7	Chlorobenzene	1.2	< 1.2	Ü
100-41-4	Ethylbenzene	1.2	< 1.2	Ü
100-42-5	Styrene	1.2	< 1.2	U
75-69-4	Trichlorofluoromethane	1.2	< 1.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.3	U
1330-20-7	m,p-Xylene	1.2	< 1.2	Ü
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	97.2%
Bromofluorobenzene	70.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TDP16-3-081105

Page 1 of 1

Lab Sample ID: NY44A LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/13/08 14:02

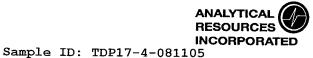
REANALYSIS

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08


Sample Amount: 7.11 g-dry-wt Purge Volume: 5.0 mL

Moisture: 27.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.4	< 1.4	U
67-64-1	Acetone	3.5	20	
75-15-0	Carbon Disulfide	0.7	< 0.7	U
75-35-4	l,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	< 0.7	U
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	< 0.7	U
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.5	< 3.5	U
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.5	< 3.5	U
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	< 0.7	U
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.5	< 3.5	U
75-25-2	Bromoform	0.7	< 0.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.5	< 3.5	U
591-78-6	2-Hexanone	3.5	< 3.5	U
127-18-4	Tetrachloroethene	0.7	< 0.7	U
79-34 - 5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	< 0.7	U
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	U
75-69-4	Trichlorofluoromethane	0.7	< 0.7	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.4	U
1330-20-7	m,p-Xylene	0.7	< 0.7	U
95-47-6	o-Xylene	0.7	< 0.7	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	98.5%
Bromofluorobenzene	94.7%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44B

LIMS ID: 08-30163 Matrix: Soil

Data Release Authorized: / Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 15:04

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 5.04 g-dry-wt Purge Volume: 5.0 mL

Moisture: 24.0%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	Ū
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	57	
75-15-0	Carbon Disulfide	1.0	5.6	
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ū
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ü
67-66-3	Chloroform	1.0	< 1.0	Ü
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ü
78-93-3	2-Butanone	5.0	9.0	•
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	5.0	< 5.0	Ü
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ū
79-01-6	Trichloroethene	1.0	< 1.0	Ū
124-48-1	Dibromochloromethane	1.0	< 1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ū
71-43-2	Benzene	1.0	< 1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ū
75-25-2	Bromoform	1.0	< 1.0	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100 - 41 - 4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

100%
98.9%
84.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TDP18-4-081105

Page 1 of 1SAMPLE

Lab Sample ID: NY44C LIMS ID: 08-30164

Matrix: Soil

Data Release Authorized: Réported: 11/25/08

Instrument/Analyst: FINN5/PAB

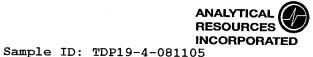
Date Analyzed: 11/12/08 15:28

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08


Sample Amount: 4.71 g-dry-wt Purge Volume: 5.0 mL

Moisture: 26.8%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.1	< 2.1	U
67-64-1	Acetone	5.3	22	
75-15-0	Carbon Disulfide	1.1	< 1.1	U
75-35-4	1,1-Dichloroethene	1.1	< 1.1	Ü
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1	U
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.3	< 5.3	U
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	U
108-05-4	Vinyl Acetate	5.3	< 5.3	U
75-27-4	Bromodichloromethane	1.1	< 1.1	U
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	Ü
79-01-6	Trichloroethene	1.1	< 1.1	U
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	Ü
71-43-2	Benzene	1.1	< 1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.3	< 5.3	U
75-25-2	Bromoform	1.1	< 1.1	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.3	< 5.3	U
591-78-6	2-Hexanone	5.3	< 5.3	U
127-18-4	Tetrachloroethene ·	1.1	< 1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	U
108-90-7	Chlorobenzene	1.1	< 1.1	Ŭ
100-41-4	Ethylbenzene	1.1	< 1.1	Ü
100-42-5	Styrene	1.1	< 1.1	Ü
75-69-4	Trichlorofluoromethane	11.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.1	< 2.1	U
1330-20-7	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	105%
d8-Toluene	99.2%
Bromofluorobenzene	93.2%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44D LIMS ID: 08-30165

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

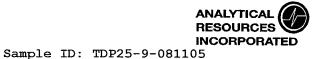
Instrument/Analyst: FINN5/PAB Date Analyzed: 11/12/08 15:55

QC Report No: NY44-The Boeing Company

SAMPLE

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08


Sample Amount: 5.07 g-dry-wt

Purge Volume: 5.0 mL Moisture: 27.3%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	Ū
75-09-2	Methylene Chloride	2.0	< 2.0	Ū
67-64-1	Acetone	4.9	77	
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ū
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ū
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ū
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	4.9	5.2	
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	4.9	< 4.9	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ū
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	1.3	
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	4.9	< 4.9	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.9		U
591-78-6	2-Hexanone	4.9	· -	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U
108-88-3	Toluene	1.0		Ŭ
108-90-7	Chlorobenzene	1.0		Ü
100-41-4 $100-42-5$	Ethylbenzene	1.0		U
75-69-4	Styrene	1.0		U
76-13-1	Trichlorofluoromethane	1.0		U
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe			U
95-47-6	m,p-Xylene	1.0		U
JJ-47-0	o-Xylene	1.0	< 1.0	Ü

Reported in µg/kg (ppb)

104%
99.7%
93.5%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44J LIMS ID: 08-30171

Matrix: Soil

Data Release Authorized: Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 16:22

QC Report No: NY44-The Boeing Company

SAMPLE

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 7.50 g-dry-wt

Purge Volume: 5.0 mL Moisture: 4.6%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.3	< 1.3	U
67-64-1	Acetone	3.3	18	
75-15-0	Carbon Disulfide	0.7	< 0.7	U
75-35-4	1,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	< 0.7	U
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	< 0.7	U
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.3	< 3.3	U
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.3	< 3.3	Ü
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	6.2	
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.3	< 3.3	U
75-25-2	Bromoform	0.7	< 0.7	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.3	< 3.3	U
591-78-6	2-Hexanone	3.3	< 3.3	U
127-18-4	Tetrachloroethene	0.7	< 0.7	U
79-34-5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	< 0.7	U
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	Ü
75-69-4	Trichlorofluoromethane	0.7	< 0.7	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.3	U
1330-20-7	m,p-Xylene	0.7	< 0.7	U
95-47-6	o-Xylene	0.7	< 0.7	Ü

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	101%
Bromofluorobenzene	99.3%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44K

LIMS ID: 08-30172

Matrix: Water
Data Release Authorized:
Reported: 11/25/08

Instrument/Analyst: NT5/JZ
Date Analyzed: 11/07/08 13:55

Sample ID: TDP16-GW-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	0.3	
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	Ü
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ü
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ü
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ü

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	123%
d8-Toluene	101%
Bromofluorobenzene	88.0%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44L

LIMS ID: 08-30173 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 11/07/08 14:23

Reported: 11/25/08

QC Report No: NY44-The Boeing Company

SAMPLE

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	Ū
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
78-93-3	2-Butanone	2.5	< 2.5	Ū
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ü
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ū
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	Ū
100-41-4	Ethylbenzene	0.2	< 0.2	Ū
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ü
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	Ū

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	124%
d8-Toluene	101%
Bromofluorobenzene	89.5%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Sample ID: TDP25-GW-081105

SAMPLE

Lab Sample ID: NY44M

LIMS ID: 08-30174

Matrix: Water

Data Release Authorized: Reported: 11/25/08

Instrument/Analyst: NT5/JZ

Date Analyzed: 11/07/08 14:50

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	1.8	
75-00-3	Chloroethane	0.2	0.2	
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	5.8	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	1.9	
156-60-5	trans-1,2-Dichloroethene	0.2	0.5	
156-59-2	cis-1,2-Dichloroethene	0.2	48	E
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	0.4	
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	70	E
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ü
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ü
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	2.6	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	Ü
100-41-4	Ethylbenzene	0.2	0.4	
100-42-5	Styrene	0.2	< 0.2	U
75-69-4 76-13-1	Trichlorofluoromethane	0.2	< 0.2	Ü
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
95-47-6	m,p-Xylene	0.4	< 0.4	U
35 -4 7-0	o-Xylene	0.2	0.2	

Reported in µg/L (ppb)

d4-1,2-Dichloroethane	136%
d8-Toluene	87.8%
Bromofluorobenzene	96.8%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: TDP25-GW-081105

DILUTION

Lab Sample ID: NY44M

LIMS ID: 08-30174

Matrix: Water
Data Release Authorized:
Reported: 11/25/08

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Instrument/Analyst: NT5/JZ
Date Analyzed: 11/07/08 19:25

Sample Amount: 4.00 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	Ü
74-83-9	Bromomethane	2.5	< 2.5	Ü
75-01-4	Vinyl Chloride	1.0	1.8	
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.5	< 2.5	U
67-64-1	Acetone	15	< 15	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	2.0	
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	45	
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	12	< 12	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	71	
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25-2 108-10-1	Bromoform	1.0	< 1.0	U
	4-Methyl-2-Pentanone (MIBK)	12	< 12	Ü
591-78-6 127-18-4	2-Hexanone	12	< 12	Ü
79-34-5	Tetrachloroethene	1.0	2.6	
	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3 108-90-7	Toluene	1.0	< 1.0	Ü
100-41-4	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1		1.0	< 1.0	U
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe m,p-Xylene		< 1.0	U
95-47-6	o-Xylene	2.0	< 2.0	U
JJ 4/ U	O varene	1.0	< 1.0	Ü

Reported in µg/L (ppb)

d4-1,2-Dichloroethane	134%
d8-Toluene	86.8%
Bromofluorobenzene	90.2%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY44N LIMS ID: 08-30175

Matrix: Water

Data Release Authorized: Reported: 11/25/08

Instrument/Analyst: NT5/JZ Date Analyzed: 11/07/08 13:01 Sample ID: TRIP BLANKS

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4 76-13-1	Trichlorofluoromethane	0.2	< 0.2	U
1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in µg/L (ppb)

d4-1,2-Dichloroethane	132%
d8-Toluene	103%
Bromofluorobenzene	89.0%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: MB-110708

Instrument/Analyst: NT5/JZ

Date Analyzed: 11/07/08 12:33

Data Release Authorized:

Reported: 11/25/08

QC Report No: NY44-The Boeing Company LIMS ID: 08-30175 Project: PHASE II Matrix: Water

025173

Sample ID: MB-110708

METHOD BLANK

Date Sampled: NA Date Received: NA

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	Ü
75-01-4	Vinyl Chloride	0.2	< 0.2	Ü
75-00-3	Chloroethane	0.2	< 0.2	Ü
75-09-2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	3.0	< 3.0	Ū
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93 - 3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78 - 87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ū

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	125%
d8-Toluene	102%
Bromofluorobenzene	90.8%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: MB-111208

LIMS ID: 08-30163

Matrix: Soil Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 11/12/08 11:40

QC Report No: NY44-The Boeing Company

Sample ID: MB-111208

METHOD BLANK

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	1.0	< 1.0 U
74-83-9	Bromomethane	1.0	< 1.0 U
75-01-4	Vinyl Chloride	1.0	< 1.0 U
75-00-3	Chloroethane	1.0	< 1.0 U
75-09-2	Methylene Chloride	2.0	< 2.0 U
67-64-1	Acetone	5.0	< 5.0 U
75-15-0	Carbon Disulfide	1.0	< 1.0 U
75-35-4	1,1-Dichloroethene	1.0	< 1.0 U
75-34-3	1,1-Dichloroethane	1.0	< 1.0 U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0 U
156-59 - 2	cis-1,2-Dichloroethene	1.0	< 1.0 U
67-66-3	Chloroform	1.0	< 1.0 U
107-06-2	1,2-Dichloroethane	1.0	< 1.0 U
78-93-3	2-Butanone	5.0	< 5.0 U
71-55 - 6	1,1,1-Trichloroethane	1.0	< 1.0 U
56-23 - 5	Carbon Tetrachloride	1.0	< 1.0 U
108-05-4	Vinyl Acetate	5.0	< 5.0 U
75-27-4	Bromodichloromethane	1.0	< 1.0 U
78-87-5	1,2-Dichloropropane	1.0	< 1.0 U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0 U
79-01-6	Trichloroethene	1.0	< 1.0 U
124-48-1	Dibromochloromethane	1.0	< 1.0 U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0 U
71-43-2	Benzene	1.0	< 1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0 U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0 U
75-25-2	Bromoform	1.0	< 1.0 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0 U
591-78-6	2-Hexanone	5.0	< 5.0 U
127-18-4	Tetrachloroethene	1.0	< 1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
108-90-7	Chlorobenzene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
100-42-5	Styrene	1.0	< 1.0 U
75-69-4	Trichlorofluoromethane	1.0	< 1.0 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0 U
1330-20-7	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	101%
Bromofluorobenzene	98.3%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: MB-111308

LIMS ID: 08-30162 Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/13/08 12:29

Sample ID: MB-111308

METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	Ū
75-09-2	Methylene Chloride	2.0	< 2.0	Ū
67-64-1	Acetone	5.0	< 5.0	Ū
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ü
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

d4-1,2-Dichloroethane	90.6%
d8-Toluene	101%
Bromofluorobenzene	97.5%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
							·····
NY44K	TDP16-GW-081105	20	123%	101%	88.0%	NA	0
NY44L	TDP18-GW-081105	20	124%	101%	89.5%	NA	Ö
NY44M	TDP25-GW-081105	20	136%	87.8%	96.8%	NA	Ö
NY44MRE	TDP25-GW-081105	20	134%	86.8%	90.2%	NA	Ö
MB-110708	Method Blank	20	125%	102%	90.8%	NA	Ō
LCS-110708	Lab Control	20	119%	98.8%	100%	NA	Ö
LCSD-110708	Lab Control Dup	20	116%	98.8%	102%	NA	Ō
NY44N	TRIP BLANKS	20	132%	103%	89.0%	NA	Ö
SW8260B		LCS	MB LIM	ITS		QC LIMI	TS
(DCE) = d4-1, 2-Dichloroethane			70-131			64-14	6
(TOL) = d8-Toluene		80-120			78-125		
(BFB) = Bromofluorobenzene		74-121			71-120		
(DCB) = d4-1,	2-Dichlorobenzene		80-120			80-12	1

Prep Method: SW5030B Log Number Range: 08-30172 to 08-30175

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-111308	Method Blank	Т	00.68	7070	0= =0		
		Low	90.6%	101%	97.5%	NA	0
LCS-111308	Lab Control	Low	91.6%	101%	100%	NA	0
LCSD-111308	Lab Control Dup	Low	93.5%	100%	100%	NA	0
NY44A	TDP16-3-081105	Low	102%	97.2%	70.9%	NA	0
NY44ARE	TDP16-3-081105	Low	108%	98.5%	94.7%	NA	0
MB-111208	Method Blank	Low	100%	101%	98.3%	NA	0
LCS-111208	Lab Control	Low	95.6%	101%	99.8%	NA	0
LCSD-111208	Lab Control Dup	Low	94.7%	99.9%	99.8%	NA	0
NY44B	TDP17-4-081105	Low	100%	98.9%	84.8%	NA	0
NY44C	TDP18-4-081105	Low	105%	99.2%	93.2%	NA	0
NY44D	TDP19-4-081105	Low	104%	99.7%	93.5%	NA	0
NY44J	TDP25-9-081105	Low	108%	101%	99.3%	NA	0
		LCS	MB LIM	ITS	I	OC LIMI	TS
SW8260B		Low		Med	Low	-	Med
(DCE) = d4-1,	2-Dichloroethane	75-120	,	76-120	72-1		69-120
(TOL) = d8-Tc		80-122		30-120	78-1		80-120
(BFB) = Bromo	ofluorobenzene	79-120		30-120	66-1		76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-120		30-120	79-1		80-120

Log Number Range: 08-30162 to 08-30171

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-110708 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110708

LIMS ID: 08-30175 Matrix: Water

Data Release Authorized:

Reported: 11/25/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/JZ Sample Amount LCS: 20.0 mL LCSD: NT5/JZ

LCSD: 20.0 mL

Date Analyzed LCS: 11/07/08 11:36 Purge Volume LCS: 20.0 mL LCSD: 11/07/08 12:06

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	4.0	4.0	100%	4.5	4.0	112%	11.8%
Bromomethane	4.4	4.0	110%	5.1	4.0	128%	14.7%
Vinyl Chloride	3.9	4.0	97.5%	4.4	4.0	110%	12.0%
Chloroethane	4.2	4.0	105%	4.8	4.0	120%	13.3%
Methylene Chloride	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
Acetone	22.7	20.0	114%	23.0	20.0	115%	1.3%
Carbon Disulfide	4.2	4.0	105%	4.1	4.0	102%	2.4%
1,1-Dichloroethene	3.9	4.0	97.5%	4.4	4.0	110%	12.0%
1,1-Dichloroethane	3.9	4.0	97.5%	4.4	4.0	110%	12.0%
trans-1,2-Dichloroethene	3.7	4.0	92.5%	4.3	4.0	108%	15.0%
cis-1,2-Dichloroethene	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
Chloroform	3.9	4.0	97.5%	4.4	4.0	110%	12.0%
l,2-Dichloroethane	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
2-Butanone	21.9	20.0	110%	22.1	20.0	110%	0.9%
1,1,1-Trichloroethane	3.8	4.0	95.0%	4.4	4.0	110%	14.6%
Carbon Tetrachloride	3.6	4.0	90.0%	4.0	4.0	100%	10.5%
Vinyl Acetate	3.5	4.0	87.5%	3.5	4.0	87.5%	0.0%
Bromodichloromethane	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
1,2-Dichloropropane	3.5	4.0	87.5%	4.1	4.0	102%	15.8%
cis-1,3-Dichloropropene	3.5	4.0	87.5%	4.0	4.0	100%	13.3%
Trichloroethene	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
Dibromochloromethane	3.5	4.0	87.5%	4.0	4.0	100%	13.3%
1,1,2-Trichloroethane	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
Benzene	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
trans-1,3-Dichloropropene	3.8	4.0	95.0%	4.2	4.0	105%	10.0%
2-Chloroethylvinylether	3.6	4.0	90.0%	3.8	4.0	95.0%	5.4%
Bromoform	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
4-Methyl-2-Pentanone (MIBK)	22.0	20.0	110%	21.8	20.0	109%	0.9%
2-Hexanone	21.3	20.0	106%	21.0	20.0	105%	1.4%
Tetrachloroethene	3.3	4.0	82.5%	3.8	4.0	95.0%	14.1%
1,1,2,2-Tetrachloroethane	3.7	4.0	92.5%	4.2	4.0	105%	12.7%
Toluene	3.5	4.0	87.5%	4.1	4.0	102%	15.8%
Chlorobenzene	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
Ethylbenzene	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
Styrene	3.8	4.0	95.0%	4.4	4.0	110%	14.6%
Trichlorof1uoromethane	3.8	4.0	95.0%	4.2	4.0	105%	10.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	4.2	4.0	105%	4.2	4.0	105%	0.0%
m,p-Xylene	7.5	8.0	93.8%	8.6	8.0	108%	13.7%
o-Xylene	3.4	4.0	85.0%	4.1	4.0	102%	18.7%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-110708

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110708 LIMS ID: 08-30175

Matrix: Water

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Analyte	LCS	Spike Added-LC		LCS overy	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	d4-1,2-Dichloroet d8-Toluene Bromofluorobenzen	9	119% 8.8% 100%	116% 98.8% 102%				

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

QC Report No: NY44-The Boeing Company

Sample ID: LCS-111208

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111208 LIMS ID: 08-30163 Project: PHASE II Matrix: Soil

025173

Date Sampled: NA Data Release Authorized: Reported: 11/25/08 Date Received: NA

Instrument/Analyst LCS: FINN5/PAB Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt LCSD: FINN5/PAB Date Analyzed LCS: 11/12/08 10:39 Purge Volume LCS: 5.0 mL

LCSD: 11/12/08 11:13 LCSD: 5.0 mL

Moisture: NA

Vinyl Chloroted	Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	Chloromethane							
Chloroethane	Bromomethane							
Methylene Chloride 45.7 50.0 91.4% 48.8 50.0 97.6% 6.6% Acetone 202 250 80.8% 212 250 84.8% 4.8% Carbon Disulfide 57.6 50.0 115% 63.0 50.0 126% 9.0% 1,1-Dichloroethane 48.0 50.0 96.0% 52.1 50.0 109% 8.2% trans-1,2-Dichloroethane 48.0 50.0 96.6% 52.5 50.0 105% 8.3% ctis-1,2-Dichloroethane 49.0 50.0 96.6% 52.5 50.0 105% 8.3% Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 85.6% 44.8 50.0 89.6% 45.2 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 91.2% 44.8 50.0 89.6% 42.8 50.0 99.6% 6.8% 1,1-Trichlo								
Acetone Carbon Disulfide 57.6 50.0 81.8% 212 250 84.8% 4.8% Carbon Disulfide 57.6 50.0 115% 63.0 50.0 126% 9.0% 1,1-Dichloroethene 50.0 50.0 100% 54.3 50.0 109% 8.2% 1,1-Dichloroethane 48.0 50.0 96.0% 52.1 50.0 104% 8.2% trans-1,2-Dichloroethene 49.0 50.0 96.6% 52.5 50.0 105% 8.3% cis-1,2-Dichloroethene 49.0 50.0 98.0% 53.2 50.0 105% 8.2% Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 85.6% 44.8 50.0 89.6% 4.6% 2-Butanone 228 250 91.2% 244 250 97.6% 6.8% 1,1,1-Trichloroethane 44.8 50.0 93.0% 49.9 50.0 99.8% 7.1% Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 99.8% 7.7% Vinyl Acetate 50.5 50.0 101% 55.0 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethane 49.0 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 55.0 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 53.6 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 105% 55.0 50.0 110% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 105% 55.0 50.0 110% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% Trans-1,3-Dichloropropene 50.1 50.0 105% 55.0 50.0 110% 7.0% Benzene 49.3 50.0 98.6% 52.5 50.0 100% 6.4% 52.5 50.0 100% 6.4% 52.5 50.0 100% 6.4% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.6% 52.5 50.0 100% 6.								
Carbon Disulfide 57.6 50.0 115% 63.0 50.0 126% 9.0% 1,1-Dichloroethene 50.0 50.0 100% 54.3 50.0 109% 8.2% 1,1-Dichloroethane 48.0 50.0 96.0% 52.1 50.0 105% 8.3% cis-1,2-Dichloroethene 49.0 50.0 98.0% 52.5 50.0 105% 8.3% Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 85.6% 44.8 50.0 89.6% 4.6% 2-Butanone 228 250 91.2% 244 250 97.6% 6.8% 1,1-Trichloroethane 46.5 50.0 93.0% 49.9 50.0 99.8% 7.1% Vinyl Acetate 50.5 50.0 93.0% 49.9 50.0 99.8% 7.7% Vinyl Acetate 50.5 50.0 101% 54.4 50.0 99.8%	Methylene Chloride							
1,1-Dichloroethene 50.0 50.0 100% 54.3 50.0 109% 8.2% t,1-Dichloroethane 48.0 50.0 96.0% 52.1 50.0 104% 8.2% trans-1,2-Dichloroethene 49.0 50.0 96.6% 52.5 50.0 105% 8.3% cis-1,2-Dichloroethene 49.0 50.0 98.0% 53.2 50.0 106% 8.2% tchloroform 47.2 50.0 94.4% 50.0 50.0 100% 8.2% 1,2-Dichloroethane 42.8 50.0 94.4% 50.0 50.0 100% 8.6% 4.6% 2-Butanone 22.8 250 91.2% 244 250 97.6% 6.8% 1,1,1-Trichloroethane 46.5 50.0 93.0% 49.9 50.0 99.8% 7.1% Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 99.8% 7.7% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 <td< td=""><td>Acetone</td><td>202</td><td>250</td><td>80.8%</td><td></td><td></td><td>84.8%</td><td>4.8%</td></td<>	Acetone	202	250	80.8%			84.8%	4.8%
1. Dichloroethane	Carbon Disulfide	57.6	50.0	115%	63.0	50.0	126%	
trans-1,2-Dichloroethene 49.0 50.0 96.6% 52.5 50.0 106% 8.3% cis-1,2-Dichloroethene 49.0 50.0 98.0% 53.2 50.0 106% 8.2% Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 22.8 50.0 85.6% 44.8 50.0 89.6% 4.6% 2-Butanone 22.8 250 91.2% 244 250 97.6% 6.8% 1,1,1-Trichloroethane 46.5 50.0 93.0% 49.9 50.0 99.8% 7.1% Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 99.8% 7.1% Vinyl Acetate 50.5 50.0 101% 54.4 50.0 109% 7.4% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 93.4% 49.8 50.0 99.6% 6.4% cis-1,3-Dichloropropane 46.7 50.0 93.4% 49.8 50.0 99.6% 6.4% Crichloroethane 47.1 50.0 94.2% 50.2 50.0 107% 6.6% Trichloroethane 53.2 50.0 106% 56.2 50.0 107% 6.6% Trichloroethane 49.3 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 56.2 50.0 112% 5.5% 17.1,2-Trichloroethane 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 108% 8.0% 22-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 8.0% 22-Chloroethylvinylether 52.5 50.0 100% 54.3 50.0 110% 8.0% 22-Chloroethylvinylether 52.5 50.0 100% 54.3 50.0 110% 8.0% 22-Hexanone 200 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 46.9 50.0 93.8% 50.2 50.0 110% 7.5% 17.1,2,2-Tetrachloroethane 47.5 50.0 95.0% 51.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 94.0% 50.2 50.0 104% 7.2% Ethylbenzene 51.0 50.0 94.0% 50.2 50.0 104% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 96.4% 50.0 98.8% 8.4% 17.1,2-Trichloro-1,2,2-trifluoroetha 88.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	1,1-Dichloroethene	50.0	50.0	100%	54.3	50.0	109%	
cis-1,2-Dichloroethene 49.0 50.0 98.0% 53.2 50.0 106% 8.2% Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 94.4% 50.0 89.6% 4.6% 2-Butanone 228 250 91.2% 244 250 97.6% 6.8% 1,1,1-Trichloroethane 46.5 50.0 93.0% 49.9 50.0 99.8% 7.1% Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 99.8% 7.1% Vinyl Acetate 50.5 50.0 101% 54.4 50.0 109% 7.4% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 109% 7.4% 1,2-Dichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% 1,2-Dichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethane 47.1 50.0 94.2% 50.2	1,1-Dichloroethane	48.0	50.0	96.0%		50.0	104%	
Chloroform 47.2 50.0 94.4% 50.0 50.0 100% 5.8% 1,2-Dichloroethane 42.8 50.0 85.6% 44.8 50.0 89.6% 4.6% 2-Butanone 228 250 91.2% 244 250 97.6% 6.8% 1,1,1-Trichloroethane 46.5 50.0 89.6% 44.8 50.0 99.8% 7.1% Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 99.8% 7.7% Vinyl Acetate 50.5 50.0 101% 54.4 50.0 109% 7.4% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 93.4% 49.8 50.0 99.6% 6.4% cis-1,3-Dichloropropane 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 153.2 50.0 106% 56.2 50.0 100% 6.4% Dibromochloromethane 46.9 50.0 93.8% 50.3 50.0 112% 5.5% 1,1,2-Trichloroethane 46.9 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 101% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 101% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 110% 4.7% Bromoform 46.9 50.0 93.8% 50.0 50.0 110% 4.7% Bromoform 46.9 50.0 95.0% 55.0 50.0 110% 4.7% Bromoform 46.9 50.0 95.0% 55.0 50.0 110% 4.7% Bromoform 47.0 50.0 95.0% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 110% 4.7% Bromoform 47.0 50.0 95.0% 51.2 50.0 102% 7.5% 17.1,2,2-Tetrachloroethane 47.5 50.0 95.0% 50.2 50.0 102% 7.5% 17.1,2,2-Tetrachloroethane 47.5 50.0 95.0% 50.2 50.0 102% 7.5% 17.1,2,2-Tetrachloroethane 47.5 50.0 95.0% 50.2 50.0 102% 7.5% 17.1,2,2-Tetrachloroethane 47.5 50.0 95.0% 50.2 50.0 102% 7.5% 17.1,2,2-Tetrachloroethane 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17.2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 90.8% 49.4 50.0 98.8% 8.4% 17	trans-1,2-Dichloroethene	48.3	50.0	96.6%	52.5	50.0	105%	8.3%
1,2-Dichloroethane	cis-1,2-Dichloroethene	49.0	50.0	98.0%	53.2	50.0	106%	8.2%
2-Butanone	Chloroform	47.2	50.0	94.4%			100%	5.8%
1,1,1-Trichloroethane	1,2-Dichloroethane	42.8	50.0	85.6%	44.8	50.0	89.6%	4.6%
Carbon Tetrachloride 44.8 50.0 89.6% 48.4 50.0 96.8% 7.7% Vinyl Acetate 50.5 50.0 101% 54.4 50.0 109% 7.4% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 93.4% 49.8 50.0 99.6% 6.4% cis-1,3-Dichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% cis-1,3-Dichloropropene 53.2 50.0 106% 56.2 50.0 101% 6.6% 1,1,2-Trichloroethane 46.9 50.0 93.8% 50.3 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0	2-Butanone	228	250	91.2%		250	97.6%	6.8%
Vinyl Acetate 50.5 50.0 101% 54.4 50.0 109% 7.4% Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% cis-1,3-Dichloropropene 46.7 50.0 100% 53.6 50.0 107% 6.6% Trichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloropropene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 43.2 50.0 106% 56.2 50.0 100% 6.4% Dibromochloromethane 46.9 50.0 93.8% 50.3 50.0 110% 7.0% Benzene 49.3 50.0 93.8% 50.3 50.0 101% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroptylvinylether 52.5 50.0 105% 55.0 50.0	1,1,1-Trichloroethane	46.5	50.0	93.0%	49.9	50.0	99.8%	7.1%
Bromodichloromethane 49.0 50.0 98.0% 52.5 50.0 105% 6.9% 1,2-Dichloropropane 46.7 50.0 93.4% 49.8 50.0 99.6% 6.4% cis-1,3-Dichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 56.2 50.0 112% 5.5% 1,1,2-Trichloroethane 46.9 50.0 93.8% 50.3 50.0 101% 7.0% benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5	Carbon Tetrachloride	44.8	50.0	89.6%	48.4	50.0		7.7%
1,2-Dichloropropane	Vinyl Acetate	50.5	50.0	101%	54.4	50.0	109%	7.4%
cis-1,3-Dichloropropene 50.2 50.0 100% 53.6 50.0 107% 6.6% Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 56.2 50.0 112% 5.5% Dibromochloromethane 46.9 50.0 106% 56.2 50.0 112% 5.5% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 110% 4.7% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 <td< td=""><td></td><td>49.0</td><td>50.0</td><td>98.0%</td><td>52.5</td><td>50.0</td><td>105%</td><td>6.9%</td></td<>		49.0	50.0	98.0%	52.5	50.0	105%	6.9%
Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 56.2 50.0 112% 5.5% 1,1,2-Trichloroethane 46.9 50.0 93.8% 50.3 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 7.5% 10.0 10.0% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 104% 7.2% Ethylbenzene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	1,2-Dichloropropane	46.7	50.0	93.4%	49.8	50.0	99.6%	6.4%
Trichloroethene 47.1 50.0 94.2% 50.2 50.0 100% 6.4% Dibromochloromethane 53.2 50.0 106% 56.2 50.0 112% 5.5% 1,1,2-Trichloroethane 46.9 50.0 93.8% 50.3 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 7.5% 10.10ene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 104% 7.2% Ethylbenzene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	cis-1,3-Dichloropropene	50.2	50.0	100%	53.6	50.0	107%	6.6%
1,1,2-Trichloroethane 46.9 50.0 93.8% 50.3 50.0 101% 7.0% Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 7.5% 1,1,2-Trichloroethane 46.9 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 47.0 50.0 96.8% </td <td></td> <td>47.1</td> <td>50.0</td> <td>94.2%</td> <td>50.2</td> <td>50.0</td> <td>100%</td> <td>6.4%</td>		47.1	50.0	94.2%	50.2	50.0	100%	6.4%
Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 98.4% 10.7% 2-Hexanone 47.5 50.0 95.0% 51.2 50.0 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 99.4% 53.8 </td <td>Dibromochloromethane</td> <td>53.2</td> <td>50.0</td> <td>106%</td> <td>56.2</td> <td>50.0</td> <td>112%</td> <td>5.5%</td>	Dibromochloromethane	53.2	50.0	106%	56.2	50.0	112%	5.5%
Benzene 49.3 50.0 98.6% 52.9 50.0 106% 7.0% trans-1,3-Dichloropropene 50.1 50.0 100% 54.3 50.0 109% 8.0% 2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 98.4% 10.7% 2-Hexanone 47.5 50.0 95.0% 51.2 50.0 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 99.4% 53.8 </td <td>1,1,2-Trichloroethane</td> <td>46.9</td> <td>50.0</td> <td>93.8%</td> <td>50.3</td> <td>50.0</td> <td>101%</td> <td>7.0%</td>	1,1,2-Trichloroethane	46.9	50.0	93.8%	50.3	50.0	101%	7.0%
2-Chloroethylvinylether 52.5 50.0 105% 55.0 50.0 110% 4.7% Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 8.2% Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 100% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Benzene	49.3		98.6%	52.9		106%	
Bromoform 51.8 50.0 104% 57.3 50.0 115% 10.1% 4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 7.5% 10uene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% <td< td=""><td>trans-1,3-Dichloropropene</td><td>50.1</td><td>50.0</td><td>100%</td><td>54.3</td><td>50.0</td><td>109%</td><td>8.0%</td></td<>	trans-1,3-Dichloropropene	50.1	50.0	100%	54.3	50.0	109%	8.0%
4-Methyl-2-Pentanone (MIBK) 221 250 88.4% 246 250 98.4% 10.7% 2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 8.2% Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	2-Chloroethylvinylether	52.5	50.0	105%	55.0	50.0	110%	4.7%
2-Hexanone 200 250 80.0% 228 250 91.2% 13.1% Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 8.2% Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Bromoform	51.8	50.0	104%	57.3	50.0	115%	10.1%
Tetrachloroethene 47.5 50.0 95.0% 51.2 50.0 102% 7.5% 1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 8.2% Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	4-Methy1-2-Pentanone (MIBK)	221	250	88.4%	246		98.4%	10.7%
1,1,2,2-Tetrachloroethane 46.9 50.0 93.8% 50.9 50.0 102% 8.2% Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	2-Hexanone	200	250	80.0%	228	250	91.2%	13.1%
Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Tetrachloroethene	47.5	50.0	95.0%		50.0	102%	7.5%
Toluene 47.0 50.0 94.0% 50.2 50.0 100% 6.6% Chlorobenzene 48.4 50.0 96.8% 52.0 50.0 104% 7.2% Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	1,1,2,2-Tetrachloroethane	46.9	50.0	93.8%	50.9	50.0	102%	8.2%
Ethylbenzene 51.0 50.0 102% 55.0 50.0 110% 7.5% Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Toluene	47.0	50.0	94.0%	50.2	50.0	100%	6.6%
Styrene 49.7 50.0 99.4% 53.8 50.0 108% 7.9% Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Chlorobenzene	48.4	50.0	96.8%	52.0	50.0	104%	7.2%
Trichlorofluoromethane 45.4 50.0 90.8% 49.4 50.0 98.8% 8.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Ethylbenzene	51.0	50.0	102%	55.0	50.0	110%	7.5%
1,1,2-Trichloro-1,2,2-trifluoroetha 48.2 50.0 96.4% 52.0 50.0 104% 7.6% m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Styrene	49.7	50.0	99.4%	53.8	50.0	108%	7.9%
m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	Trichlorofluoromethane	45.4	50.0	90.8%	49.4	50.0	98.8%	8.4%
m,p-Xylene 99.0 100 99.0% 107 100 107% 7.8%	1,1,2-Trichloro-1,2,2-trifluoroetha	48.2	50.0	96.4%		50.0		7.6%
	m,p-Xylene		100	99.0%	107	100	107%	7.8%
	o-Xylene	47.6	50.0	95.2%	51.5	50.0	103%	7.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111208

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111208

LIMS ID: 08-30163

Matrix: Soil

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Analyte

Spike LCS

LCS

Spike

LCSD

Added-LCSD Recovery RPD

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	95.6%	94.7%
d8-Toluene	101%	99.9%
Bromofluorobenzene	99.8%	99.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: LCS-111308

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111308

LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Reported: 11/25/08

Instrument/Analyst LCS: FINN5/PAB

LCSD: FINN5/PAB

Date Analyzed LCS: 11/13/08 11:25

LCSD: 11/13/08 12:03

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	43.8	50.0	87.6%	37.8	50.0	75.6%	14.7%
Bromomethane	36.0	50.0	72.0%	30.3	50.0	60.6%	17.2%
Vinyl Chloride	47.7	50.0	95.4%	39.7	50.0	79.4%	18.3%
Chloroethane	44.4	50.0	88.8%	39.2	50.0	78.4%	12.4%
Methylene Chloride	46.7	50.0	93.4%	42.2	50.0	84.4%	10.1%
Acetone	204	250	81.6%	186	250	74.4%	9.2%
Carbon Disulfide	62.7	50.0	125%	53.2	50.0	106%	16.4%
1,1-Dichloroethene	52.3	50.0	105%	45.0	50.0	90.0%	15.0%
1,1-Dichloroethane	50.2	50.0	100%	43.6	50.0	87.2%	14.1%
trans-1,2-Dichloroethene	51.8	50.0	104%	44.6	50.0	89.2%	14.9%
cis-1,2-Dichloroethene	51.5	50.0	103%	46.1	50.0	92.2%	11.1%
Chloroform	49.0	50.0	98.0%	42.7	50.0	85.4%	13.7%
1,2-Dichloroethane	42.9	50.0	85.8%	40.7	50.0	81.4%	5.3%
2-Butanone	217	250	86.8%	221	250	88.4%	1.8%
1,1,1-Trichloroethane	49.5	50.0	99.0%	41.7	50.0	83.4%	17.1%
Carbon Tetrachloride	48.4	50.0	96.8%	40.1	50.0	80.2%	18.8%
Vinyl Acetate	48.6	50.0	97.2%	47.6	50.0	95.2%	2.1%
Bromodichloromethane	51.0	50.0	102%	45.7	50.0	91.4%	11.0%
1,2-Dichloropropane	48.4	50.0	96.8%	43.8	50.0	87.6%	10.0%
cis-1,3-Dichloropropene	52.0	50.0	104%	46.8	50.0	93.6%	10.5%
Trichloroethene	50.0	50.0	100%	43.0	50.0	86.0%	15.1%
Dibromochloromethane	53.0	50.0		49.7	50.0	99.4%	6.4%
1,1,2-Trichloroethane	46.6	50.0	93.2%	45.3	50.0	90.6%	2.8%
Benzene	53.2	50.0	106%	46.7	50.0	93.4%	13.0%
trans-1,3-Dichloropropene	51.6	50.0	103%	47.6	50.0	95.2%	8.1%
2-Chloroethylvinylether	52.0	50.0	104%	49.9	50.0	99.8%	4.1%
Bromoform	52.9	50.0	106%	50.6	50.0	101%	4.48
4-Methyl-2-Pentanone (MIBK)	214	250	85.6%	219	250	87.6%	2.3%
2-Hexanone	186	250	74.4%	192	250	76.8%	3.2%
Tetrachloroethene	53.0	50.0	106%	44.0	50.0		18.6%
1,1,2,2-Tetrachloroethane	45.9	50.0	91.8%	44.5	50.0	89.0%	3.1%
Toluene	49.9	50.0	99.8%	43.6	50.0		13.5%
Chlorobenzene	52.0	50.0	104%	45.3	50.0		13.8%
Ethylbenzene	55.2	50.0	110%	46.8	50.0		16.5%
Styrene	52.7	50.0	105%	46.7	50.0		12.1%
Trichlorofluoromethane	47.4	50.0	94.8%	37.3	50.0		23.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	56.4	50.0	113%	42.6	50.0		27.9%
m,p-Xylene	105	100	105%	92.1	100		13.1%
o-Xylene	50.7	50.0	101%	43.9	50.0		14.4%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111308

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111308

LIMS ID: 08-30162

Matrix: Soil

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Analyte

Spike LCS Added-LCS Recovery

LCS

Spike

LCSD

LCSD Added-LCSD Recovery RPD

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	91.6%	93.5%
d8-Toluene	101%	100%
Bromofluorobenzene	100%	100%

Page 1 of 2

Sample ID: TDP16-3-081105 SAMPLE

Lab Sample ID: NY44A LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Date Extracted: 11/10/08

Date Analyzed: 11/18/08 21:53

Instrument/Analyst: NT4/LJR

Reported: 11/21/08

GPC Cleanup: No

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Sample Amount: 8.07 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 27.7%

	2 - 2 - 3 - 3 - 3		
CAS Number	Analyte	RL	Result
108-95-2	Phenol	62	< 62 U
111-44-4	Bis-(2-Chloroethyl) Ether	62	< 62 U
95-57-8	2-Chlorophenol	62	< 62 U
541-73-1	1,3-Dichlorobenzene	62	< 62 U
106-46-7	1,4-Dichlorobenzene	62	< 62 U
100-51-6	Benzyl Alcohol	62	< 62 U
95-50-1	1,2-Dichlorobenzene	62	< 62 U
95-48-7	2-Methylphenol	62	< 62 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	62	< 62 U
106-44-5	4-Methylphenol	62	< 62 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	62	< 62 U
98-95-3	Nitrobenzene	62	< 62 U
78-59-1	Isophorone	62	< 62 U
88-75-5	2-Nitrophenol	62	< 62 U
105-67-9	2,4-Dimethylphenol	62	< 62 U
65-85-0	Benzoic Acid	620	< 620 U
111-91-1	bis(2-Chloroethoxy) Methane	62	< 62 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	62	< 62 U
91-20-3	Naphthalene	62	< 62 U
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	62	< 62 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	62	< 62 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	62	< 62 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	62	< 62 U
208-96-8	Acenaphthylene	62	< 62 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	62	< 62 U
51-28-5	2,4-Dinitrophenol	620	< 620 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	62	< 62 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Sample ID: TDP16-3-081105

SAMPLE

Lab Sample ID: NY44A LIMS ID: 08-30162 QC Report No: NY44-The Boeing Company

LIMS ID: 08-30

Project: PHASE II 025173

Matrix: Soil

Date Analyzed: 11/18/08 21:53

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	< 62 U
7005-72-3	4-Chlorophenyl-phenylether	62	< 62 Ŭ
86-73-7	Fluorene	62	< 62 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	620	< 620 U
86-30-6	N-Nitrosodiphenylamine	62	< 62 U
101-55-3	4-Bromophenyl-phenylether	62	< 62 Ŭ
118-74-1	Hexachlorobenzene	62	< 62 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	62	71
86-74-8	Carbazole	62	< 62 U
120-12-7	Anthracene	62	< 62 U
84-74-2	Di-n-Butylphthalate	62	< 62 U
206-44-0	Fluoranthene	62	< 62 U
129-00-0	Pyrene	62	< 62 U
85-68-7	Butylbenzylphthalate	62	< 62 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a) anthracene	62	< 62 U
117-81-7	bis(2-Ethylhexyl)phthalate	62	< 62 U
218-01-9	Chrysene	62	< 62 U
117-84-0	Di-n-Octyl phthalate	62	< 62 U
205-99-2	Benzo(b) fluoranthene	62	< 62 U
207-08-9	Benzo(k) fluoranthene	62	< 62 U
50-32-8	Benzo(a)pyrene	62	< 62 Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	62	< 62 Ŭ
53-70-3	Dibenz(a,h)anthracene	62	< 62 U
191-24-2	Benzo(g,h,i)perylene	62	< 62 U
90-12-0	1-Methylnaphthalene	62	< 62 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	73.2%	2-Fluorobiphenyl	79.6%
d14-p-Terphenyl	79.2%	d4-1,2-Dichlorobenzene	81.2%
d5-Phenol	77.1%	2-Fluorophenol	74.1%
2,4,6-Tribromophenol	91.2%	d4-2-Chlorophenol	78.7%

Sample ID: TDP18-4-081105 SAMPLE

Lab Sample ID: NY44C LIMS ID: 08-30164

Matrix: Soil

GPC Cleanup: No

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08

Date Analyzed: 11/18/08 22:28

Instrument/Analyst: NT4/LJR

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Sample Amount: 8.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.8%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	62	< 62 U
111-44-4	Bis-(2-Chloroethyl) Ether	62	< 62 U
95-57-8	2-Chlorophenol	62	< 62 U
541-73-1	1,3-Dichlorobenzene	62	< 62 U
106-46-7	1,4-Dichlorobenzene	62	< 62 U
100-51-6	Benzyl Alcohol	62	< 62 U
95-50-1	1,2-Dichlorobenzene	62	< 62 U
95-48-7	2-Methylphenol	62	< 62 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	62	< 62 U
106-44-5	4-Methylphenol	62	< 62 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	62	< 62 U
98-95-3	Nitrobenzene	62	< 62 U
7 8-59-1	Isophorone	62	< 62 U
88-75-5	2-Nitrophenol	62	< 62 U
105-67-9	2,4-Dimethylphenol	62	< 62 U
65-85-0	Benzoic Acid	620	< 620 U
111-91-1	bis(2-Chloroethoxy) Methane	62	< 62 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	62	< 62 U
91-20-3	Naphthalene	62	110
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	62	< 62 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	62	< 62 U
7 7-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	62	< 62 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	62	< 62 U
208-96-8	Acenaphthylene	62	< 62 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	62	< 62 U
51-28-5	2,4-Dinitrophenol	620	< 620 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	62	< 62 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Page 2 of 2

Sample ID: TDP18-4-081105

SAMPLE

Lab Sample ID: NY44C QC Report No: NY44-The Boeing Company

LIMS ID: 08-30164 Project: PHASE II Matrix: Soil 025173

Date Analyzed: 11/18/08 22:28

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	< 62 U
7005-72-3	4-Chlorophenyl-phenylether	62	< 62 U
86-73-7	Fluorene	62	< 62 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	620	< 620 U
86-30-6	N-Nitrosodiphenylamine	62	< 62 U
101-55-3	4-Bromophenyl-phenylether	62	< 62 U
118-74-1	Hexachlorobenzene	62	< 62 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	62	120
86-74-8	Carbazole	62	< 62 U
120-12-7	Anthracene	62	< 62 U
84-74-2	Di-n-Butylphthalate	62	< 62 U
206-44-0	Fluoranthene	62	150
129-00-0	Pyrene	62	120
85-68-7	Butylbenzylphthalate	62	< 62 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a) anthracene	62	< 62 U
117-81-7	bis(2-Ethylhexyl)phthalate	62	< 62 U
218-01-9	Chrysene	62	91
117-84-0	Di-n-Octyl phthalate	62	< 62 U
205-99-2	Benzo(b) fluoranthene	62	76
207-08-9	Benzo(k)fluoranthene	62	< 62 U
50-32-8	Benzo(a)pyrene	62	< 62 U
193-39-5	Indeno(1,2,3-cd)pyrene	62	< 62 U
53-70-3	Dibenz(a,h)anthracene	62	< 62 U
191-24-2	Benzo(g,h,i)perylene	62	< 62 U
90-12-0	1-Methylnaphthalene	62	< 62 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	84.8%	2-Fluorobiphenyl	88.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	88.0%
d5-Phenol	81.1%	2-Fluorophenol	78.1%
2,4,6-Tribromophenol	103%	d4-2-Chlorophenol	84.3%

Page 1 of 2

Lab Sample ID: NY44J LIMS ID: 08-30171

Matrix: Soil

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08 Date Analyzed: 11/20/08 20:45 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: TDP25-9-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 7.79 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.6%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U
	_,		

Page 2 of 2

Sample ID: TDP25-9-081105

SAMPLE

Lab Sample ID: NY44J

QC Report No: NY44-The Boeing Company

LIMS ID: 08-30171

Project: PHASE II

Matrix: Soil

025173

Date Analyzed: 11/20/08 20:45

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a) anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	80.0%	2-Fluorobiphenyl	92.8%
d14-p-Terphenyl	82.8%	d4-1,2-Dichlorobenzene	81.6%
d5-Phenol	77.9%	2-Fluorophenol	75.5%
2.4.6-Tribromophenol	95.2%	d4-2-Chlorophenol	82.4%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-111008	88.4%	95.6%	104%	93.2%	89.1%	84.3%	111%	90.7%	0
LCS-111008	92.0%	102%	115%	92.8%	83.7%	87.2%	122%	93.1%	0
LCSD-111008	92.0%	106%	117%	90.8%	81.6%	86.4%	125%	93.1%	0
TDP16-3-081105	73.2%	79.6%	79.2%	81.2%	77.1%	74.1%	91.2%	78.7%	0
TDP18-4-081105	84.8%	88.4%	87.6%	88.0%	81.1%	78.1%	103%	84.3%	0
TDP25-9-081105	80.0%	92.8%	82.8%	81.6%	77.9%	75.5%	95.2%	82.4%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	=	d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
(PHL)	=	d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
(TBP)	=	2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 08-30162 to 08-30171

Page 1 of 2

Lab Sample ID: LCS-111008

LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Sample Amount LCS: 7.50 g

Sample ID: LCS-111008

LCS/LCSD

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Date	Extracted	LCS/LCSD:	11/10/08

Date Analyzed LCS: 11/18/08 12:31 LCSD: 11/18/08 13:06

Instrument/Analyst LCS: NT4/LJR

LCSD: NT4/LJR

GPC Cleanup: NO

	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Analyte	псэ	Added-1C5	Kecovery	псы	Added LCDD		
Pheno1	1790	1670	107%	1810	1670	108%	1.1%
Bis-(2-Chloroethyl) Ether	1530	1670	91.6%	1550	1670	92.8%	1.3%
2-Chlorophenol	1660	1670	99.4%	1690	1670	101%	1.8%
1,3-Dichlorobenzene	1610	1670	96.4%	1650	1670	98.8%	2.5%
1,4-Dichlorobenzene	1640	1670	98.2%	1650	1670	98.8%	0.6%
Benzyl Alcohol	2960	3330	88.9%	2940	3330	88.3%	0.7%
1,2-Dichlorobenzene	1650	1670	98.8%	1680	1670	101%	1.8%
2-Methylphenol	1690	1670	101%	1690	1670	101%	0.0%
2,2'-Oxybis(1-Chloropropane)1410	1670	84.4%	1430	1670	85.6%	1.4%
4-Methylphenol	3310	3330	99.4%	3320	3330	99.7%	0.3%
N-Nitroso-Di-N-Propylamine	1500	1670	89.8%	1510	1670	90.4%	0.7%
Hexachloroethane	1590	1670	95.2%	1630	1670	97.6%	2.5%
Nitrobenzene	1410	1670	84.4%	1430	1670	85.6%	1.4%
Isophorone	1720	1670	103%	1750	1670	105%	1.7%
2-Nitrophenol	1830	1670	110%	1860	1670	111%	1.6%
2,4-Dimethylphenol	1640	1670	98.2%	1680	1670	101%	2.4%
Benzoic Acid	1400	5000	28.0%	1390	5000	27.8%	0.7%
bis(2-Chloroethoxy) Methane	1660	1670	99.4%	1680	1670	101%	1.2%
2,4-Dichlorophenol	1990	1670	119%	2070	1670	124%	3.9%
1,2,4-Trichlorobenzene	1750	1670	105%	1830	1670	110%	4.5%
Naphthalene	1780	1670	107%	1830	1670	110%	2.8%
4-Chloroaniline	7350	4000	184%	7330	4000	183%	0.3%
Hexachlorobutadiene	1820	1670	109%	1870	1670	112%	2.7%
4-Chloro-3-methylphenol	1940	1670	116%	1980	1670	119%	2.0%
2-Methylnaphthalene	1840	1670	110%	1900	1670	114%	3.2%
Hexachlorocyclopentadiene	4970	5000	99.4%	5190	5000	104%	4.3%
2,4,6-Trichlorophenol	1960	1670	117%	2010	1670	120%	2.5%
2,4,5-Trichlorophenol	1910	1670	114%	2040	1670	122%	6.6%
2-Chloronaphthalene	2000	1670	120%	2090	1670	125%	4.4%
2-Nitroaniline	1880	1670	113%	1950	1670	117%	3.7%
Dimethylphthalate	1890	1670	113%	1940	1670	116%	2.6%
Acenaphthylene	1900	1670	114%	1960	1670	117%	3.1%
3-Nitroaniline	5070	4270	119%	5090	4270	119%	0.4%
Acenaphthene	1890	1670	113%	1960	1670	117%	3.6%

Page 2 of 2

Sample ID: LCSD-111008 LCS/LCSD

Lab Sample ID: LCS-111008

QC Report No: NY44-The Boeing Company

LIMS ID: 08-30162

Project: PHASE II 0251**7**3

Matrix: Soil

Date Analyzed LCS: 11/18/08 12:31 LCSD: 11/18/08 13:06

3	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Analyte	псь	Added-DC5	Recovery	дсьь	Traded Hope		
2,4-Dinitrophenol	6520	5000	130%	6880	5000	138%	5.4%
4-Nitrophenol	2170	1670	130%	2090	1670	125%	3.8%
Dibenzofuran	1900	1670	114%	2020	1670	121%	6.1%
2,6-Dinitrotoluene	2230	1670	134%	2260	1670	135%	1.3%
2,4-Dinitrotoluene	2210	1670	132%	2340	1670	140%	5.7%
Diethylphthalate	2010	1670	120%	2080	1670	125%	3.4%
4-Chlorophenyl-phenylether	2010	1670	120%	2150	1670	129%	6.7%
Fluorene	2040	1670	122%	2170	1670	130%	6.2%
4-Nitroaniline	2040	1670	122%	2120	1670	127%	3.8%
4,6-Dinitro-2-Methylphenol	4040	5000	80.8%	4240	5000	84.8%	4.8%
N-Nitrosodiphenylamine	1880	1670	113%	1940	1670	116%	3.1%
4-Bromophenyl-phenylether	1890	1670	113%	2030	1670	122%	7.1%
Hexachlorobenzene	1980	1670	119%	2160	1670	129%	8.7%
Pentachlorophenol	2140	1670	128%	2180	1670	131%	1.9%
Phenanthrene	1900	1670	114%	1990	1670	119%	4.6%
Carbazole	1930	1670	116%	2000	1670	120%	3.6%
Anthracene	1890	1670	113%	2010	1670	120%	6.2%
Di-n-Butylphthalate	1920	1670	115%	1980	1670	119%	3.1%
Fluoranthene	1980	1670	119%	2040	1670	122%	3.0%
Pyrene	1960	1670	117%	2070	1670	124%	5 .5 %
Butylbenzylphthalate	1950	1670	117%	2000	1670	120%	2.5%
3,3'-Dichlorobenzidine	4990	4270	117%	5080	4270	119%	1.8%
Benzo(a)anthracene	1930	1670	116%	1980	1670	119%	2.6%
bis(2-Ethylhexyl)phthalate	1930	1670	116%	1970	1670	118%	2.1%
Chrysene	1970	1670	118%	2020	1670	121%	2.5%
Di-n-Octyl phthalate	1910	1670	114%	1940	1670	116%	1.6%
Benzo(b) fluoranthene	2020	1670	121%	2050	1670	123%	1.5%
Benzo(k)fluoranthene	1940	1670	116%	1990	1670	119%	2.5%
Benzo(a) pyrene	1680	1670	101%	1710	1670	102%	1.8%
Indeno(1,2,3-cd)pyrene	1830	1670	110%	1870	1670	112%	2.2%
Dibenz (a, h) anthracene	1850	1670	111%	1900	1670	114%	2.7%
Benzo(q,h,i)perylene	1650	1670	98.8%	1700	1670	102%	3.0%
1-Methylnaphthalene	1940	1670	116%	2000	1670	120%	3.0%
<u> </u>							

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	92.0%	92.0%
2-Fluorobiphenyl	102%	106%
d14-p-Terphenyl	115%	117%
d4-1,2-Dichlorobenzene	92.8%	90.8%
d5-Phenol	83.7%	81.6%
2-Fluorophenol	87.2%	86.4%
2,4,6-Tribromophenol	122%	125%
d4-2-Chlorophenol	93.1%	93.1%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Sample ID: MB-111008 METHOD BLANK

Lab Sample ID: MB-111008

LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/10/08 Date Analyzed: 11/18/08 11:56 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 Ŭ
541-73-1	1,3-Dichlorobenzene	67	< 67 Ŭ
106-46-7	1,4-Dichlorobenzene	67	< 67 Ŭ
100-51-6	Benzyl Alcohol	67	< 67 Ŭ
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 ปั
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 ปั
98-95-3	Nitrobenzene	67	< 67 ปั
78-59-1	Isophorone	67	< 67 Ŭ
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-83-2	1,2,4-Trichlorobenzene	67	< 67 ปั
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 ปั
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 Ŭ
88-74-4	2-Nitroaniline	330	< 330 U
	Dimethylphthalate	67	< 67 U
131-11-3	Acenaphthylene	67	< 67 U
208-96-8	3-Nitroaniline	330	< 330 U
99-09-2	Acenaphthene	67	< 67 U
83-32-9	2,4-Dinitrophenol	670	< 670 U
51-28-5	4-Nitrophenol	330	< 330 U
100-02-7	Dibenzofuran	67	< 67 U
132-64-9	2,6-Dinitrotoluene	330	< 330 U
606-20-2		330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	, 550 0

Page 2 of 2

Sample ID: MB-111008

METHOD BLANK

Lab Sample ID: MB-111008 QC Report No: NY44-The Boeing Company

LIMS ID: 08-30162 Project: PHASE II Matrix: Soil 025173

Date Analyzed: 11/18/08 11:56

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b) fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	88.4% 104%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	95.6% 93.2%
d5-Phenol	89.1%	2-Fluorophenol	84.3%
2.4.6-Tribromophenol	111%	d4-2-Chlorophenol	90.7%

Page 1 of 2

Matrix: Water

Lab Sample ID: NY44K

LIMS ID: 08-30172

Sample ID: TDP16-GW-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Data Release Authorized: Reported: 11/21/08

Date Extracted: 11/07/08 Sample Amount: 500 mL
Date Analyzed: 11/20/08 01:06 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT4/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	28
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP16-GW-081105

SAMPLE

Lab Sample ID: NY44K QC Report No: NY44-The Boeing Company

LIMS ID: 08-30172 Project: PHASE II
Matrix: Water 025173

Date Analyzed: 11/20/08 01:06

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	4.7
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	69.2%
d14-p-Terphenyl	80.4%	d4-1,2-Dichlorobenzene	55.2%
d5-Phenol	62.7%	2-Fluorophenol	56.8%
2.4.6-Tribromophenol	94.4%	d4-2-Chlorophenol	65.3%

Page 1 of 2

Sample ID: TDP18-GW-081105

SAMPLE

Lab Sample ID: NY44L LIMS ID: 08-30173

Matrix: Water

Data Release Authorized; Reported: 11/21/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/07/08 Sample Amount: 500 mL Date Analyzed: 11/20/08 01:41 Final Extract Volume: 0.50 mL Instrument/Analyst: NT4/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541- 7 3-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP18-GW-081105

SAMPLE

Lab Sample ID: NY44L QC Report No: NY44-The Boeing Company

LIMS ID: 08-30173 Project: PHASE II Matrix: Water 025173

Date Analyzed: 11/20/08 01:41

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.8
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	76.0%
d14-p-Terphenyl	90.4%	d4-1,2-Dichlorobenzene	44.4%
d5-Phenol	67.2%	2-Fluorophenol	53.9%
2,4,6-Tribromophenol	104%	d4-2-Chlorophenol	65.3%

Page 1 of 2

Sample ID: TDP25-GW-081105

SAMPLE

Lab Sample ID: NY44M LIMS ID: 08-30174

Matrix: Water

Data Release Authorized: Reported: 11/21/08

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/07/08 Date Analyzed: 11/20/08 21:20 Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	_10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Lab Sample ID: NY44M

LIMS ID: 08-30174

Sample ID: TDP25-GW-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Matrix: Water
Date Analyzed: 11/20/08 21:20

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55 - 3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.3
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	69.6%	2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	65.6%	d4-1,2-Dichlorobenzene	59.2%
d5-Phenol	67.2%	2-Fluorophenol	65.3%
2.4.6-Tribromophenol	84.5%	d4-2-Chlorophenol	71.5%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-110708	60.0%	58.0%	76.8%	54.0%	60.0%	56.5%	60.8%	63.5%	0
LCS-110708	69.6%	80.8%	94.0%	59.6%	69.1%	65.9%	94.7%	71.7%	0
LCSD-110708	75.6%	82.8%	96.8%	60.0%	74.9%	69.6%	96.5%	76.8%	0
TDP16-GW-081105	64.4%	69.2%	80.4%	55.2%	62.7%	56.8%	94.4%	65.3%	0
TDP18-GW-081105	64.8%	76.0%	90.4%	44.4%	67.2%	53.9%	104%	65.3%	0
TDP25-GW-081105	69.6%	72.8%	65.6%	59.2%	67.2%	65.3%	84.5%	71.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 08-30172 to 08-30174

Page 1 of 2

QC Report No: NY44-The Boeing Company

Sample ID: LCS-110708

LCS/LCSD

Lab Sample ID: LCS-110708 LIMS ID: 08-30172

Project: PHASE II 025173

Matrix: Water

Date Sampled: 11/05/08

Data Release Authorized: Reported: 11/21/08

Date Received: 11/05/08

Date Extracted LCS/LCSD: 11/07/08

Sample Amount LCS: 500 mL LCSD: 500 mL

Date Analyzed LCS: 11/19/08 16:57

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

LCSD: 11/19/08 17:32

Dilution Factor LCS: 1.00

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	18.5	25.0	74.0%	20.4	25.0	81.6%	9.8%
Phenol	17.7	25.0	70.8%	18.8	25.0	75.2%	6.0%
Bis-(2-Chloroethyl) Ether	19.4	25.0	77.6%	20.5	25.0	82.0%	5.5%
2-Chlorophenol	19.4	25.0	41.2%	13.4	25.0	53.6%	26.2%
1,3-Dichlorobenzene	-	25.0	44.0%	13.4	25.0	54.8%	21.9%
1,4-Dichlorobenzene	11.0	50.0	63.2%	34.3	50.0	68.6%	8.2%
Benzyl Alcohol	31.6	25.0	47.6%	14.6	25.0	58.4%	20.4%
1,2-Dichlorobenzene	11.9	25.0	72.8%	19.6	25.0	78.4%	7.4%
2-Methylphenol	18.2	25.0	62.8%	16.8	25.0	67.2%	6.8%
2,2'-Oxybis(1-Chloropropane			73.4%	40.1	50.0	80.2%	8.9%
4-Methylphenol	36.7	50.0	62.4%	16.9	25.0	67.6%	8.0%
N-Nitroso-Di-N-Propylamine	15.6	25.0		12.0	25.0	48.0%	50.8%
Hexachloroethane	7.1	25.0	28.4%	17.2	25.0	68.8%	6.6%
Nitrobenzene	16.1	25.0	64.4%	20.3	25.0	81.2%	1.5%
Isophorone	20.0	25.0	80.0%	20.3	25.0	90.4%	9.3%
2-Nitrophenol	20.6	25.0	82.4%			63.6%	1.9%
2,4-Dimethylphenol	15.6	25.0	62.4%	15.9	25.0		5.1%
Benzoic Acid	68.8	75.0	91.7%	72.4	75.0	96.5%	5.1%
bis(2-Chloroethoxy) Methane		25.0	76.0%	20.0	25.0	80.0%	9.6%
2,4-Dichlorophenol	20.9	25.0	83.6%	23.0	25.0	92.0%	20.5%
1,2,4-Trichlorobenzene	12.7	25.0	50.8%	15.6	25.0	62.4%	11.4%
Naphthalene	15.7	25.0	62.8%	17.6	25.0	70.4%	11.48
4-Chloroaniline	61.9	60.0	103%	71.5	60.0	119%	
Hexachlorobutadiene	8.2	25.0	32.8%	14.0	25.0	56.0%	52.5%
4-Chloro-3-methylphenol	22.3	25.0	89.2%	22.7	25.0	90.8%	1.8%
2-Methylnaphthalene	17.3	25.0	69.2%	19.0	25.0	76.0%	9.4%
Hexachlorocyclopentadiene	29.3	75.0	39.1%	38.6	75.0	51.5%	27.4%
2,4,6-Trichlorophenol	24.4	25.0	97.6%	24.6	25.0	98.4%	0.8%
2,4,5-Trichlorophenol	23.5	25.0	94.0%	23.9	25.0	95.6%	1.7%
2-Chloronaphthalene	21.5	25.0	86.0%	22.3	25.0	89.2%	3.7%
2-Nitroaniline	22.1	25.0	88.4%	22.7	25.0	90.8%	2.7%
Dimethylphthalate	22.7	25.0	90.8%	23.1	25.0	92.4%	1.7%
Acenaphthylene	21.6	25.0	86.4%	22.4	25.0	89.6%	3.6%
3-Nitroaniline	56.9	64.0	88.9%	60.7	64.0	94.8%	6.5%
Acenaphthene	21.8	25.0	87.2%	22.0	25.0	88.0%	0.9%
2,4-Dinitrophenol	105	75.0	140%	111	75.0	148%	5.6%
4-Nitrophenol	23.0	25.0	92.0%	23.9	25.0	95.6%	3.8%
Dibenzofuran	22.5	25.0	90.0%	22.8	25.0	91.2%	1.3%
2,6-Dinitrotoluene	26.7	25.0	107%	26.7	25.0	107%	0.0%
2,4-Dinitrotoluene	26.0	25.0	104%	26.9	25.0	108%	3.4%
Diethylphthalate	23.7	25.0	94.8%	24.0	25.0	96.0%	1.3%
4-Chlorophenyl-phenylether	22.7	25.0	90.8%	22.8	25.0	91.2%	0.4%
Fluorene	22.8	25.0	91.2%	22.5	25.0	90.0%	1.3%
4-Nitroaniline	21.6	25.0	86.4%	22.6	25.0	90.4%	4.5%
4,6-Dinitro-2-Methylphenol	54.0	75.0	72.0%	56.4	75.0	75.2%	4.3%
N-Nitrosodiphenylamine	21.8	25.0	87.2%	23.5	25.0	94.0%	7.5%

Page 2 of 2

Lab Sample ID: LCS-110708

LIMS ID: 08-30172

Matrix: Water

Date Analyzed: 11/19/08 16:57

Sample ID: LCS-110708 LCS/LCSD

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	24.3	25.0	97.2%	23.9	25.0	95.6%	1.7%
Hexachlorobenzene	26.0	25.0	104%	25.4	25.0	102%	2.3%
Pentachlorophenol	26.3	25.0	105%	26.0	25.0	104%	1.1%
Phenanthrene	23.4	28.0	83.6%	23.7	28.0	84.6%	1.3%
Carbazole	22.9	25.0	91.6%	23.8	25.0	95.2%	3.9%
Anthracene	21.3	25.0	85.2%	21.2	25.0	84.8%	0.5%
Di-n-Butylphthalate	23.4	25.0	93.6%	23.4	25.0	93.6%	0.0%
Fluoranthene	23.7	25.0	94.8%	23.3	25.0	93.2%	1.7%
	24.5	25.0	98.0%	24.5	25.0	98.0%	0.0%
Pyrene	24.3	25.0	97.2%	24.5	25.0	98.0%	0.8%
Butylbenzylphthalate 3,3'-Dichlorobenzidine	50.5	64.0	78.9%	54.8	64.0	85.6%	8.2%
	24.2	25.0	96.8%	24.1	25.0	96.4%	0.4%
Benzo(a) anthracene	23.6	25.0	94.4%	23.0	25.0	92.0%	2.6%
bis(2-Ethylhexyl)phthalate	24.1	28.0	86.1%	24.1	28.0	86.1%	0.0%
Chrysene	23.7	25.0	94.8%	23.3	25.0	93.2%	1.7%
Di-n-Octyl phthalate	25.3	25.0	101%	24.3	25.0	97.2%	4.0%
Benzo(b) fluoranthene		28.0	80.4%	22.1	28.0	78.9%	1.8%
Benzo(k) fluoranthene	22.5	25.0	80.0%	19.1	25.0	76.4%	4.6%
Benzo(a) pyrene	20.0		104%	25.2	25.0	101%	3.5%
Indeno(1,2,3-cd)pyrene	26.1	25.0	103%	25.2	25.0	101%	2.4%
Dibenz(a,h)anthracene	25.8	25.0		24.6	25.0	98.4%	3.2%
Benzo(g,h,i)perylene 1-Methylnaphthalene	25.4 18.5	25.0 25.0	102% 74.0%	20.1	25.0	80.4%	8.3%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	69.6%	75.6%
2-Fluorobiphenyl	80.8%	82.8%
d14-p-Terphenyl	94.0%	96.8%
d4-1,2-Dichlorobenzene	59.6%	60.0%
d5-Phenol	69.1%	74.9%
2-Fluorophenol	65.9%	69.6%
2,4,6-Tribromophenol	94.7%	96.5%
d4-2-Chlorophenol	71.7%	76.8%

Results reported in μ g/L RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: MB-110708 METHOD BLANK

Lab Sample ID: MB-110708

Date Extracted: 11/07/08 Date Analyzed: 11/19/08 16:22

LIMS ID: 08-30172

Matrix: Water Data Release Authorized:// Reported: 11/21/08

Instrument/Analyst: NT4/LJR

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0
1.0 1.0 5.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U
1.0 1.0 5.0 1.0 1.0 1.0 5.0 1.0 1.0 5.0	< 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U
1.0 5.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0	< 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U
5.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0	< 5.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U
1.0 1.0 1.0 5.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U
1.0 1.0 5.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U
1.0 1.0 5.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U
1.0 5.0 1.0 1.0 1.0	< 1.0 U < 5.0 U < 1.0 U < 1.0 U < 1.0 U
5.0 1.0 1.0 1.0	< 5.0 U < 1.0 U < 1.0 U < 1.0 U
1.0 1.0 1.0 5.0	< 1.0 U < 1.0 U < 1.0 U
1.0 1.0 5.0	< 1.0 U < 1.0 U
1.0 5.0	< 1.0 U
5.0	
1 0	< 5.0 U
1.0	< 1.0 U
10	< 10 U
1.0	< 1.0 U
5.0	< 5.0 U
1.0	< 1.0 U
1.0	< 1.0 U
5.0	< 5.0 U
1.0	< 1.0 U
5.0	< 5.0 U
1.0	< 1.0 U
5.0	< 5.0 U
5.0	< 5.0 U
5.0	< 5.0 U
1.0	< 1.0 U
5.0	< 5.0 U
1.0	< 1.0 U
1.0	< 1.0 U
5.0	< 5.0 U
1.0	< 1.0 U
10	< 10 U
5.0	< 5.0 U
1.0	< 1.0 U
5.0	< 5.0 U
5.0	< 5.0 U
1.0	< 1.0 U
	1.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5

Page 2 of 2

Sample ID: MB-110708 METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

LIMS ID: 08-30172 Matrix: Water

Date Analyzed: 11/19/08 16:22

Lab Sample ID: MB-110708

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	60.0%	2-Fluorobiphenyl	58.0%
d14-p-Terphenyl	76.8%	d4-1,2-Dichlorobenzene	54.0%
d5-Phenol	60.0%	2-Fluorophenol	56.5%
2,4,6-Tribromophenol	60.8%	d4-2-Chlorophenol	63.5%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: TDP16-GW-081105 SAMPLE

Lab Sample ID: NY44K

QC Report No: NY44-The Boeing Company

LIMS ID: 08-30172 Matrix: Water

Reported: 11/11/08

Project: PHASE II Event: 025173

Data Release Authorized:

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/07/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Date Analyzed: 11/11/08 12:08 Instrument/Analyst: NT1/VTS

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	15 E
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	2.6
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.3% d14-Dibenzo(a,h)anthracene 70.7%

ORGANICS ANALYSIS DATA SHEET PNAS by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: TDP16-GW-081105

DILUTION

Lab Sample ID: NY44K

LIMS ID: 08-30172 Matrix: Water

Data Release Authorized:

Reported: 11/11/08

QC Report No: NY44-The Boeing Company

Project: PHASE II
Event: 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/07/08
Date Analyzed: 11/11/08 14:38
Instrument/Analyst: NT1/VTS

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 3.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.30	< 0.30 U
91-57-6	2-Methylnaphthalene	0.30	< 0.30 U
90-12-0	1-Methylnaphthalene	0.30	< 0.30 U
208-96-8	Acenaphthylene	0.30	< 0.30 U
83-32-9	Acenaphthene	0.30	15
86-73-7	Fluorene	0.30	< 0.30 U
85-01-8	Phenanthrene	0.30	2.4
120-12-7	Anthracene	0.30	< 0.30 U
206-44-0	Fluoranthene	0.30	< 0.30 U
129-00-0	Pyrene	0.30	< 0.30 U
56-55-3	Benzo(a)anthracene	0.30	< 0.30 U
218-01-9	Chrysene	0.30	< 0.30 U
205-99-2	Benzo(b)fluoranthene	0.30	< 0.30 U
207-08-9	Benzo(k)fluoranthene	0.30	< 0.30 U
50-32-8	Benzo(a)pyrene	0.30	< 0.30 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.30	< 0.30 U
53-70-3	Dibenz(a,h)anthracene	0.30	< 0.30 U
191-24-2	Benzo(g,h,i)perylene	0.30	< 0.30 U
132-64-9	Dibenzofuran	0.30	< 0.30 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 55.0% d14-Dibenzo(a,h)anthracene 55.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY44L LIMS ID: 08-30173

Matrix: Water

Data Release Authorized: #9 Reported: 11/11/08

Date Extracted: 11/07/08 Date Analyzed: 11/11/08 11:18 Instrument/Analyst: NT1/VTS

Sample ID: TDP18-GW-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II Event: 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	0.64
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.3% d14-Dibenzo(a,h)anthracene 87.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY44M

LIMS ID: 08-30174 Matrix: Water

Data Release Authorized: Reported: 11/11/08

Date Extracted: 11/07/08 Date Analyzed: 11/11/08 11:43 Instrument/Analyst: NT1/VTS

Sample ID: TDP25-GW-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II Event: 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	0.13
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.3% d14-Dibenzo(a,h)anthracene 70.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY44-The Boeing Company Project: PHASE II 025173

Client ID	MNP	DBA	TOT OUT
	_	_	
MB-110708	62.7%	84.0%	0
LCS-110708	58.3%	90.3%	0
LCSD-110708	65.7%	82.3%	0
TDP16-GW-081105	59.3%	70.7%	0
TDP16-GW-081105 DL	55.0%	55.0%	0
TDP18-GW-081105	63.3%	87.3%	0
TDP25-GW-081105	58.3%	70.3%	0

		LCS/MB LIMITS	QC LIMITS
1 1	= d10-2-Methylnaphthalene	(49-113)	(44-112)
	= d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C Log Number Range: 08-30172 to 08-30174

ORGANICS ANALYSIS DATA SHEET PNAS by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-110708

LAB CONTROL SAMPLE

Lab Sample ID: LCS-110708

LIMS ID: 08-30172 Matrix: Water

Data Release Authorized:

Reported: 11/11/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

Event: 025173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/07/08

Date Extracted heb/hebb. 11/0//00

Date Analyzed LCS: 11/11/08 10:29 LCSD: 11/11/08 10:54

Instrument/Analyst LCS: NT1/VTS

LCSD: NT1/VTS

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	1.50	3.00	50.0%	1.84	3.00	61.3%	20.4%
2-Methylnaphthalene	1.61	3.00	53.7%	1.97	3.00	65.7%	20.1%
1-Methylnaphthalene	1.49	3.00	49.7%	1.85	3.00	61.7%	21.6%
Acenaphthylene	1.68	3.00	56.0%	1.99	3.00	66.3%	16.9%
Acenaphthene	1.67	3.00	55.7%	1.99	3.00	66.3%	17.5%
Fluorene	1.96	3.00	65.3%	2.13	3.00	71.0%	8.3%
Phenanthrene	2.15	3.00	71.7%	2.16	3.00	72.0%	0.5%
Anthracene	2.11	3.00	70.3%	2.19	3.00	73.0%	3.7%
Fluoranthene	2.53	3.00	84.3%	2.49	3.00	83.0%	1.6%
Pyrene	2.59	3.00	86.3%	2.63	3.00	87.7%	1.5%
Benzo(a)anthracene	2.37	3.00	79.0%	2.35	3.00	78.3%	0.8%
Chrysene	2.44	3.00	81.3%	2.41	3.00	80.3%	1.2%
Benzo(b)fluoranthene	2.59	3.00	86.3%	2.50	3.00	83.3%	3.5%
Benzo(k)fluoranthene	2.62	3.00	87.3%	2.50	3.00	83.3%	4.7%
Benzo(a)pyrene	2.46	3.00	82.0%	2.28	3.00	76.0%	7.6%
Indeno(1,2,3-cd)pyrene	2.46	3.00	82.0%	2.40	3.00	80.0%	2.5%
Dibenz(a,h)anthracene	2.48	3.00	82.7%	2.39	3.00	79.7%	3.7%
Benzo(g,h,i)perylene	2.48	3.00	82.7%	2.40	3.00	80.0%	3.3%
Dibenzofuran	1.79	3.00	59.7%	2.08	3.00	69.3%	15.0%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	58.3%	65.7%
d14-Dibenzo(a h)anthracene	90 3%	82 3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: MB-110708

LIMS ID: 08-30172

Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Date Extracted: 11/07/08 Date Analyzed: 11/11/08 10:05 Instrument/Analyst: NT1/VTS

Sample ID: MB-110708 METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II Event: 025173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.7% d14-Dibenzo(a,h)anthracene 84.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44A LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 11:57
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP16-3-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 27.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

	·
Decachlorobiphenyl	90.8%
Tetrachlorometaxylene	94.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44C LIMS ID: 08-30164

Matrix: Soil

Data Release Authorized: Reported: 11/15/08

Date Extracted: 11/10/08 Date Analyzed: 11/12/08 12:14 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP18-4-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 26.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	88.5%
Tetrachlorometaxylene	90.8%

ANALYTICAL RESOURCES INCORPORATED Sample ID: TDP20-3-081105

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44E LIMS ID: 08-30166

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 12:31
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

SAMPLE

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL
Dilution Factor: 1.00
Silica Gel: No

Percent Moisture: 24.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	96.2%
Tetrachlorometaxylene	94.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44F LIMS ID: 08-30167

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08 Date Analyzed: 11/12/08 12:48 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP21-3-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 13.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 9.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	93.8%
Tetrachlorometaxylene	88.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44G LIMS ID: 08-30168

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 13:05
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP22-3-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 10.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	93.5%
Tetrachlorometaxylene	99.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44H LIMS ID: 08-30169

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08
Date Analyzed: 11/12/08 13:22

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: TDP23-3-081105 SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Sample Amount: 12.9 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 9.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	95.5%
Tetrachlorometaxylene	95.5%

ANALYTICAL **RESOURCES** INCORPORATED Sample ID: TDP25-9-081105

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NY44J LIMS ID: 08-30171

Matrix: Soil

Reported: 11/15/08

Date Extracted: 11/10/08 Date Analyzed: 11/12/08 13:39 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Sample Amount: 12.8 g-dry-wt

SAMPLE

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 4.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	95.2%
Tetrachlorometaxyle	ne 89.2%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-111008 LCS-111008 LCSD-111008 TDP16-3-081105 TDP18-4-081105 TDP20-3-081105 TDP21-3-081105 TDP22-3-081105 TDP23-3-081105 TDP23-3-081105 TDP25-9-081105	94.2% 95.5% 98.5% 90.8% 88.5% 96.2% 93.8% 93.5% 95.5%	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	95.5% 94.5% 94.8% 94.5% 90.8% 94.5% 88.0% 99.0% 95.5%	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	0 0 0 0 0 0 0

Microwave (MARS) Control Limits

Prep Method: SW3546

Log Number Range: 08-30162 to 08-30171

Page 1 of 1

Lab Sample ID: LCS-111008

LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized: \

Reported: 11/15/08

: VTS

Date Extracted LCS/LCSD: 11/10/08

Date Analyzed LCS: 11/12/08 08:32

LCSD: 11/12/08 08:49

Instrument/Analyst LCS: ECD5/JGR

LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-111008 LCS/LCSD

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	139	167	83.4%	144	167	86.4%	3.5%
Aroclor 1260	155	167	93.0%	161	167	96.6%	3.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	95.5%	98.5%
Tetrachlorometaxylene	94.5%	94.8%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-111008

LIMS ID: 08-30162

Matrix: Soil

Data Release Authorized:

Reported: 11/15/08

Date Extracted: 11/10/08 Date Analyzed: 11/12/08 08:15 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: MB-111008 METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	94.2%
Tetrachlorometaxylene	95.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP16-GW-081105 SAMPLE

Lab Sample ID: NY44K LIMS ID: 08-30172

Matrix: Water

GPC Cleanup: No

Sulfur Cleanup: No

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Date Extracted: 11/11/08 Sample Amount: 500 mL
Date Analyzed: 11/12/08 18:12 Final Extract Volume: 5.0 mL
Instrument/Analyst: ECD5/JGR Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	70.5%
Tetrachlorometaxylene	71.8%

Page 1 of 1

Sample ID: TDP18-GW-081105 SAMPLE

Lab Sample ID: NY44L LIMS ID: 08-30173

Matrix: Water

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY44-The Boeing Company

Project: PHASE II 025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/11/08 Date Analyzed: 11/12/08 18:29 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	29.8%
Tetrachlorometaxylene	28.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP18-GW-081105 REEXTRACT

Lab Sample ID: NY44L LIMS ID: 08-30173

QC Report No: NY44-The Boeing Company Project: PHASE II

Matrix: Water

025173

Data Release Authorized: Reported: 11/18/08

Date Sampled: 11/05/08 Date Received: 11/05/08

Date Extracted: 11/15/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Date Analyzed: 11/17/08 14:49 Instrument/Analyst: ECD5/PKC

Dilution Factor: 1.00 Silica Gel: No

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	88.8%
Tetrachlorometaxylene	76.5%

Page 1 of 1

Sample ID: TDP25-GW-081105

SAMPLE

Lab Sample ID: NY44M LIMS ID: 08-30174

Matrix: Water

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173 Date Sampled: 11/05/08

Date Received: 11/05/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

Date Extracted: 11/11/08 Date Analyzed: 11/12/08 18:46 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	84.8%
Tetrachlorometaxylene	72.5%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-111108	70.2%	47-101	75.5%	61-104	0
LCS-111108	76.8%	47-101	85.8%	61-104	0
LCSD-111108	76.2%	47-101	87.2%	61-104	0
TDP16-GW-081105	70.5%	42-120	71.8%	55-102	0
MB-111508	76.2%	47-101	68.8%	61-104	0
LCS-111508	87.8%	47-101	77.8%	61-104	0
LCSD-111508	87.2%	47-101	77.0%	61-104	0
TDP18-GW-081105	29.8%*	42-120	28.2%*	55-102	2
TDP18-GW-081105 RE	88.8%	42-120	76.5%	55-102	0
TDP25-GW-081105	84.8%	42-120	72.5%	55-102	0

Prep Method: SW3510C

Log Number Range: 08-30172 to 08-30174

Page 1 of 1

Sample ID: LCS-111108 LCS/LCSD

Lab Sample ID: LCS-111108

LIMS ID: 08-30172 Matrix: Water

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/11/08

Date Analyzed LCS: 11/12/08 17:38

LCSD: 11/12/08 17:55

Instrument/Analyst LCS: ECD5/JGR

LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: No

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00 LCSD: 1.00

Silica Gel: No

Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.95	5.00	79.0%	4.16	5.00	83.2%	5.2%
Aroclor 1260	4.57	5.00	91.4%	4.58	5.00	91.6%	0.2%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	76.8%	76.2%
Tetrachlorometaxylene	85.8%	87.2%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Sample ID: LCS-111508 LCS/LCSD

Lab Sample ID: LCS-111508

QC Report No: NY44-The Boeing Company

LIMS ID: 08-30173

Project: PHASE II

Matrix: Water

025173

Data Release Authorized: ##

Date Sampled: NA

Reported: 11/18/08

Date Received: NA

Date Extracted LCS/LCSD: 11/15/08

Sample Amount LCS: 500 mL

Date Analyzed LCS: 11/17/08 12:49

LCSD: 500 mL Final Extract Volume LCS: 5.0 mL

LCSD: 11/17/08 13:07

LCSD: 5.0 mL

Instrument/Analyst LCS: ECD5/PKC

LCSD: ECD5/PKC

Dilution Factor LCS: 1.00 LCSD: 1.00

GPC Cleanup: No

Silica Gel: No

Sulfur Cleanup: Yes

Acid Cleanup: Yes

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.94	5.00	78.8%	4.14	5.00	82.8%	5.0%
Aroclor 1260	4.54	5.00	90.8%	4.46	5.00	89.2%	1.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	87.8%	87.2%
Tetrachlorometaxylene	77.8%	77.0%

Results reported in μ g/L RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-111108

LIMS ID: 08-30172

Matrix: Water

Data Release Authorized:

Reported: 11/18/08

Date Extracted: 11/11/08 Date Analyzed: 11/12/08 17:21

Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: No

Sample ID: MB-111108 METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	70.2%
Tetrachlorometaxylene	75.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: MB-111508 METHOD BLANK

Lab Sample ID: MB-111508

LIMS ID: 08-30173

Matrix: Water
Data Release Authorized:

Reported: 11/18/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173 Date Sampled: NA Date Received: NA

Date Extracted: 11/15/08

Date Analyzed: 11/17/08 12:32 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

76.2%
70.20
68.8%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 2 Matrix: Soil

Data Release Authorized: Reported: 11/12/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NY44A 08-30162	TDP16-3-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 93.1%
MB-110708 08-30163	Method Blank	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 91.1%
NY44B 08-30163	TDP17-4-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 91.9%
NY44BDP 08-30163	TDP17-4-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 93.6%
NY44C 08-30164	TDP18-4-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 95.7%
NY44D 08-30165	TDP19-4-081105 HC ID: MOTOR OIL	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100 94.4%
NY44E 08-30166	TDP20-3-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 94.4%
NY44F 08-30167	TDP21-3-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 90.7%
NY44G 08-30168	TDP22-3-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 91.4%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 2 of 2 Matrix: Soil

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Data Release Authorized: Reported: 11/12/08 Reported: 11/12/08

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NY44H 08-30169	TDP23-3-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 93.6%
NY44I 08-30170	TDP24-11-081105 HC ID:	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 89.2%
NY44J 08-30171	TDP25-9-081105 HC ID: MOTOR OIL	11/07/08	11/08/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100 91.9%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a092.d ARI ID: NY44MBS1 Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: NY44MBS1

Instrument: fid3a.i Injection: 08-NOV-2008 11:19

Operator: ms Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

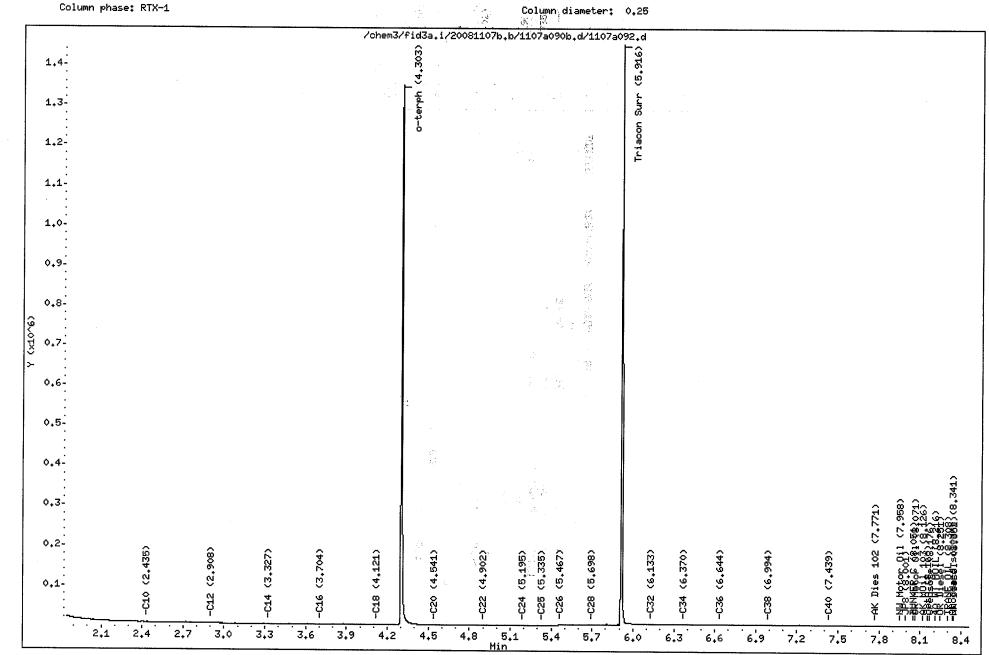
FID:3A RESULTS

Compound	RT	Shift	Height	Area	R	ange	Total .	Area	Conc
Toluene	1.784	-0.006	235937	20805	l GAS	(Tol-C12)		===== 3615	18
C8	1.887	-0.002	14760	1270	l DIESEL	(C12-C24)		7851	8
C10	2.435	0.000	4470	943	M.OIL	(C24-C38)		5547	32 /
C12	2.908	-0.001	2129	255	3 AK-102	(C10-C25)		7772	10
C14	3.327	0.005	1375	65	5 AK-103	(C25-C36)		5043	33
C16	3.704	0.003	967	34!	OR.DIES		270	6241	13
C18	4.121	-0.004	730	518	3 OR.MOIL		45	7151	49
C20	4.541	-0.003	971	51:	L JET-A	(C10-C18)	163	3359	10
C22	4.902	0.003	919	526	MIN.OIL	(C24-C38)	40!	5547	32
C24	5.195	-0.007	1326	1864	MSPIRIT	(Tol-C12)	69:	3615	44
C25	5.335	-0.002	1526	543	3 '				
C26	5.467	0.003	1929	803	3				
C28	5.698	0.000	3286	416:	L İ		a f		
C32	6.133	0.003	~ 5850	6487	7		- 32		
C34	6.370	0.003	5414	1945	5 325.00		-47		
Filter Peak	8.450	0.004	4527	1444	JP-4	(Tol-C14)	730	0892	64
C36	6.644	-0.002	5132	3170	CREOSOT	(C8-C22)	443	3781	71
C38	6.994	0.000	5021	2105	;				
C40	7.439	-0.002	4781	3054	BUNKERC	(C10-C38)	619	9992	69
	.0-C22) !2-C32)		 70234 70815 .	======== 11 27	:=== 3 m <u>b</u> ===: ~4.4	=======================================	·	=====	====

Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.7406 - 2.959) NW M.Oil(5.251 - 7.044) AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate	Area	Amount	%Rec	
o-Terphenyl	850573	41.0	91.1	/
Triacontane	797119	40.9	90.8	

No 11/12/08


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a092.d

Date : 08-NOV-2008 11:19 Client ID: NY44MBS1 Sample Info: NY44MBS1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a093.d ARI ID: NY44A

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP16-3-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 11:33

Operator: ms Dilution Factor:

Report Date: 11/12/2008 Macro: FID:3A111208

			E	FID:3A	RESUL'	TS				,	a butter
Compound	RT	Shift	Height	A	rea	Ra	ange	To	otal Area	Conc	platful
Toluene	 1.778	-0.012	====== 271383	===== 3	#=====: 47367	======== GAS	Tol-C12).	=====	1282355	32)°	ALT A
C8	1.895	0.006	14675		17385	DIESEL	•	_	213423	13	6/9
C10	2.436	0.001	4626		8858	M.OIL			780584	62	11/11/00
C12	2.909	0.000	2371		2371	AK-102	(C10-C25)		311376	14	1111/2
C14	3.320	-0.002	1741		620	AK-103	(C25-C36)		678771	74	2
C16	3.706	0.005	1380		2133	OR.DIES	(C10-C28)		433717	20	
C18	4.125	0.000	1238		1800	OR.MOIL	(C28-C40)		792324	85	
C20	4.546	0.002	1654		2174	JET-A	(C10-C18)		195675	11	
C22	4.903	0.003	1936		2099	MIN.OIL	(C24-C38)	1.0	780584	61	
C24	5.201	0.000	3927		3338	MSPIRIT	(Tol-C12)		1282355	81	
C25	5.340	0.003	8123		12154						
C26	5.463	-0.001	3718		3547			. 4			
C28	5.696	-0.002	6195		6043			•			
∴ C32	6.130	-0.001	11167		15271			-47			
C34	6.366	-0.001	23690	:	24360						
Filter Peak	8.445	-0.001	4645		2686	JP-4	(Tol-C14)		1324232	117	
C36	6.642	-0.004	7683		11220	CREOSOT	(C8-C22)		478732	77	
C38	6.992	-0.002	5674		3617						
C40	7.441	0.000	5097		4372	BUNKERC	(C10-C38)		1087117	122	
AZDIESEL (C10	====== D-C22)	== == ================================	====== 1317	15	=======================================	=======	=======		======:	====	
AZMOIL (C22	2-C32)		1709	63	ine it in the	2.13		r ar is.			ر

Range Fimes: NW Diesel(2.959 - 5.251) NW Gas (12.740 - 2.959) NW M.Oil(5.251 - 7.044)

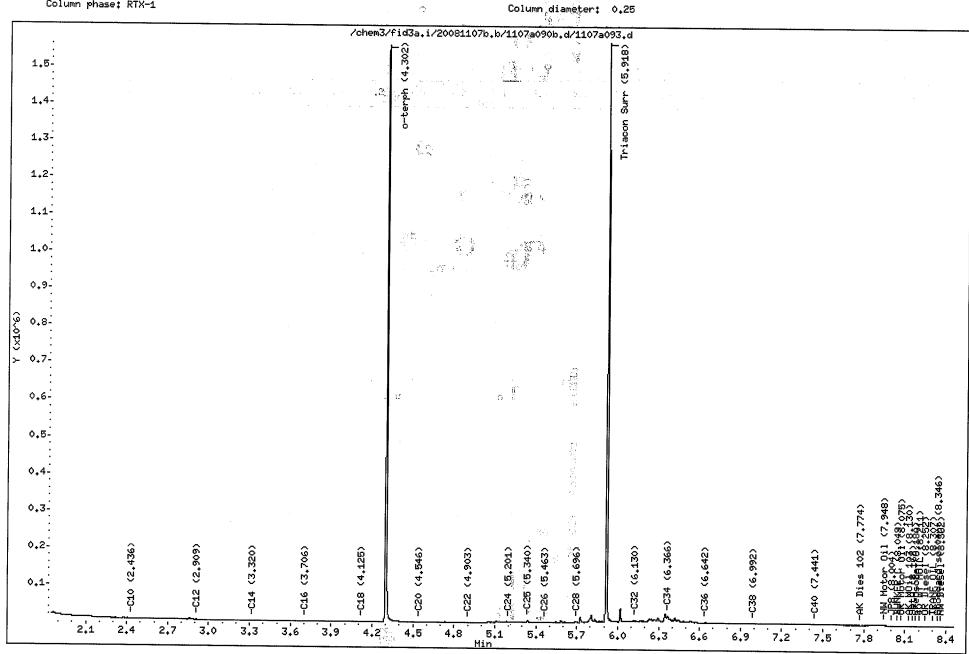
AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	869798 811933	41.9	93.1

M211/12/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
	0231.1	00 A0G-2000

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a093.d


Date : 08-NOV-2008 11:33 Client ID: TDP16-3-081105

Sample Info: NY44A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a094.d ARI ID: NY44B

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP17-4-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 11:48

Dilution Factor: Operator: ms 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
=========	======	=======	=======	=======	=======================================	=============	/
Toluene	1.798	0.007	232035	258564	GAS (Tol-C12)	937353	24
C8	1.895	0.005	14918	11606	DIESEL (C12-C24)	149625	9 /
C10	2.436	0.001	4614	10781	M.OIL (C24-C38)	490129	39 🖊
C12	2.909	0.000	2263	2767	AK-102 (C10-C25)	252908	12
C14	3.322	-0.001	1483	906	AK-103 (C25-C36)	375435	41
C16	3.701	-0.001	1074	213	OR.DIES (C10-C28)	323250	15
C18	4.124	-0.002	810	475	OR.MOIL (C28-C40)	549455	59
C20	4.548	0.004	1066	400	JET-A (C10-C18)	180664	11
C22	4.900	0.000	1122	287	MIN.OIL (C24-C38)	490129	38
C24	5.205	0.003	1860	1968	MSPIRIT (Tol-C12)	937353	59
C25	5.339	0.002	2338	3249	, , , , , , , , , , , , , , , , , , , ,		
C26	5.468	0.004	2350	2743	İ		
C28	5.700	0.001	3936	5501	i	2.7	. 2
_C32	6.136	0.005	7412	11461	1.		4
C34	6.363	-0.005	6477	8318		of the second	
Filter Peak	8.453	0.007	4.475	2676	JP-4 (Tol-C14)	973230	86
C36	6.644	-0.002	5832	4401	CREOSOT (C8-C22)	447785	7.2
C38	6.990	-0.004	5344	3516			j. ¥1
C40	7.446	0.005	4919	2352	BUNKERC (C10-C38)	738047	83 ·
AZDIESEL (C	======================================		96806	======== 12			:===== ⁻³ 8##-

AZMOIL (C22-C32) 217749 34

Range Times: NW Diesel (2.959 - 5.251) NW Gas (1.740 - 2.959) NW M.Oil (5.251 - 7.044) AK102 (2.385 - 5.287) AK103 (5.287 5 6 696) Jet A(2.385 - 4.176) 763

ñ	Surrogate	Area	Amount	%Rec	- (3.33.1 47
-	o-Terphenyl Triacontane	857931 809153	41.3	91.9 92.2	ms 11/12/08

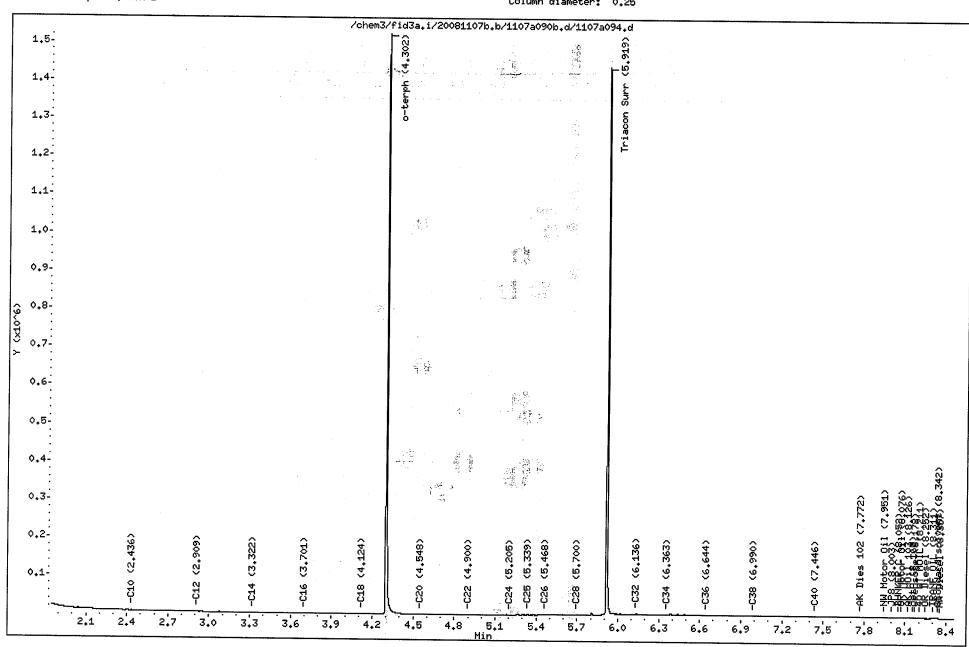
J. (4)

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 07-NOV-2008
AK103 JP4 JetA Min Oil Min Spirit	9153.0 11362.0 17141.6 12823.0 15825.3	04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil Bunker C Creosote	21174.8 9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a,i/20081107b,b/1107a090b,d/1107a094.d

Date : 08-NOV-2008 11:48 Client ID: TDP17-4-081105

Sample Info: NY44B


Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

: 2

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a095.d ARI ID: NY44BDUP

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP17-4-081105 DUP

Instrument: fid3a.i

Injection: 08-NOV-2008 12:03

Operator: ms Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

Compound	RT	Shift	Height		Area	R	ange	Tot	al Area	Conc
Toluene	1.790	0.000	237426		320103	GAS	======================================	=====	666555	_=====
C8	1.891	0.002	15015		10912	DIESEL	(C12-C24)		146197	9
C10	2.435	0.000	4650		9174	M.OIL	(C24-C38)		451405	36
C12	2.909	0.000	2242		3101	AK-102	(C10-C25)		248043	12
C14	3.321	-0.001	1463		555	AK-103	(C25-C36)		349840	38
C16	3.702	0.000	1068		169	OR.DIES	(C10-C28)		312767	15
C18	4.130	0.004	801		142	OR.MOIL	(C28-C40)		502755	54
C20	4.542	-0.002	1064		401	JET-A			179596	10
C22	4.897	-0.003	1107		394	MIN.OIL	(C24-C38)		451405	35
C24	5.205	0.004	1929		1952	MSPIRIT	(Tol-C12)	1 4	666555	42
C25	5.340	0.003	2362		3151	İ	,,		000000	12
.C26	5.468	0.004	2226		3695	İ		28.5		
C28	5.702	0.003	3740		4709	İ	-			
C32	6.144	0.013	7060		17121	i .	Telephony	* : *.		
C34	6.366	-0.001	6251		9529		,			
Filter Peak	8.444	-0.001	4447		3631	JP-4	(Tol-C14)	100	705342	62
C36	6.644	-0.002	5601		5877	CREOSOT	(C8-C22)	- 1	468478	75
C38	6.990	-0.004	5082		3551		•		-001/0	, 3
C40	7.442	0.001	4709		939	BUNKERC	(C10-C38)		695515	78
AZDIESEL (C1	0-C22)	 19:	= === == 3801	12	======	=======	=======================================	=====	=======	====
, AZMOIL (C2	2-C32)	2:02	2082	31		3.3				
		1 1			4 4					

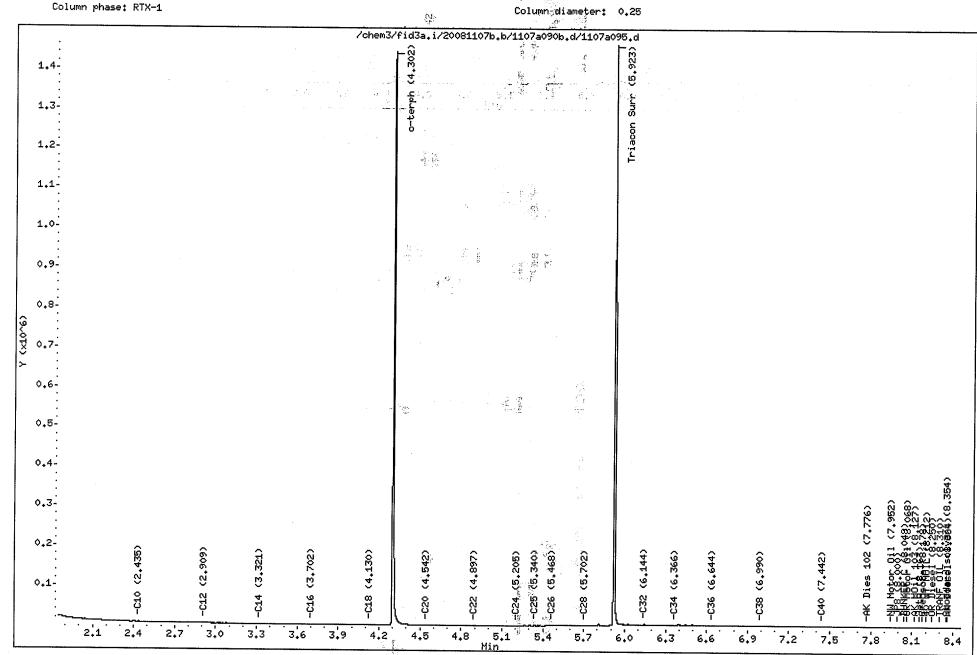
Range Times: NW Diesel(2.959 - 5.251) NW Gas (1.740 - 2.959) NW M.Oil(5) 251 - 7.044)

AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate	Area	Amount	%Rec
o-Terphenyl	873875	42.1	93.6
Triacontane	820534	42.1	93.5

Ms 11/12/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005


Bata File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a095.d

Date : 08-NOV-2008 12:03 Client ID: TDP17-4-081105 DUP

Sample Info: NY44BDUP

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a096.d ARI ID: NY44C

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP18-4-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 12:18

Operator: ms Dilution Factor:

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.792	0.001	238944	336932	======================================	-=====================================	17
C8	1.896	0.007	15057	17876	DIESEL (C12-C24)	194638	12
C10	2.435	0.000	4634	10927	M.OIL (C24-C38)	713938	57
C12	2.910	0.001	2236	2916	AK-102 (C10-C25)	298235	14
C14	3.323	0.001	1523	1222	AK-103 (C25-C36)	585340	64
C16	3.704	0.002	1188	709	OR.DIES (C10-C28)	419865	20
C18	4.124	-0.002	1092	453	OR.MOIL (C28-C40)	729184	78
C20	4.544	0.000	1604	223	JET-A (C10-C18)	183999	11
C22	4.898	-0.002	1998	822	MIN.OIL (C24-C38)	713938	56
C24	5.201	-0.001	3323	3716	MSPIRIT (Tol-C12)	655244	41
C25	5.337	-0.001	4866	7995			
C26	5.462	-0.002	4144	5192			
C28	5.694	-0.005	6482	6037	1		
C32		0.001	10181	2026	- Adjament	A STATE OF THE STA	
C34		-0.011	11982	.≓ ∴11247			
Filter Peak	8.449	0.004	4450	799	JP-4 (Tol-C14)	690555	61
C36	6.637	-0.009	10147		CREGSOT (C8-C22)	466700	75
C38	6.996	0.001	6194				
C40	7.441 	0.000	5088	263 7 ;	BUNKERC (C10-C38)	1005445	113
AZDIESEL (C10	0-C22)	21	9056	14		=======================================	:=====
AZMOIL (C22	2-C32)	484 35	9524	56			

Range Times: NW Diesel(2.959 - 5.251) NW Gas (1.740 - 2.959) NW M Oil (5.251 - 7.044)

AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

o-Terphenyl 893398 Triacontane 849769	 95.7 96.8

mo 11/12/08

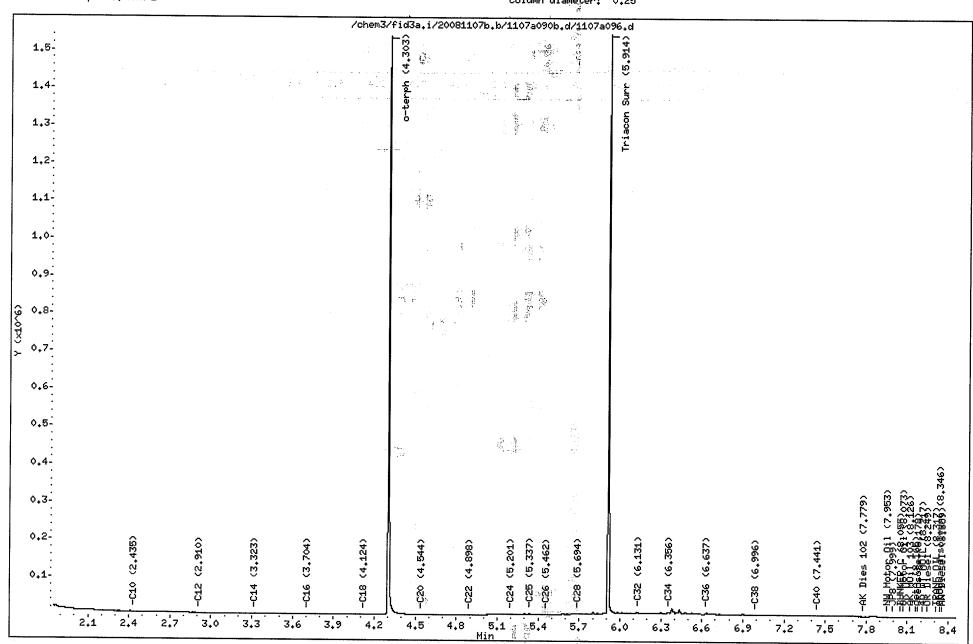
U s inter

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	39499.8	12-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a096.d

Date : 08-NOV-2008 12:18 Client ID: TDP18-4-081105

Sample Info: NY44C


Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

4

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a097.d ARI ID: NY44D

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP19-4-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 12:32

Operator: ms Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

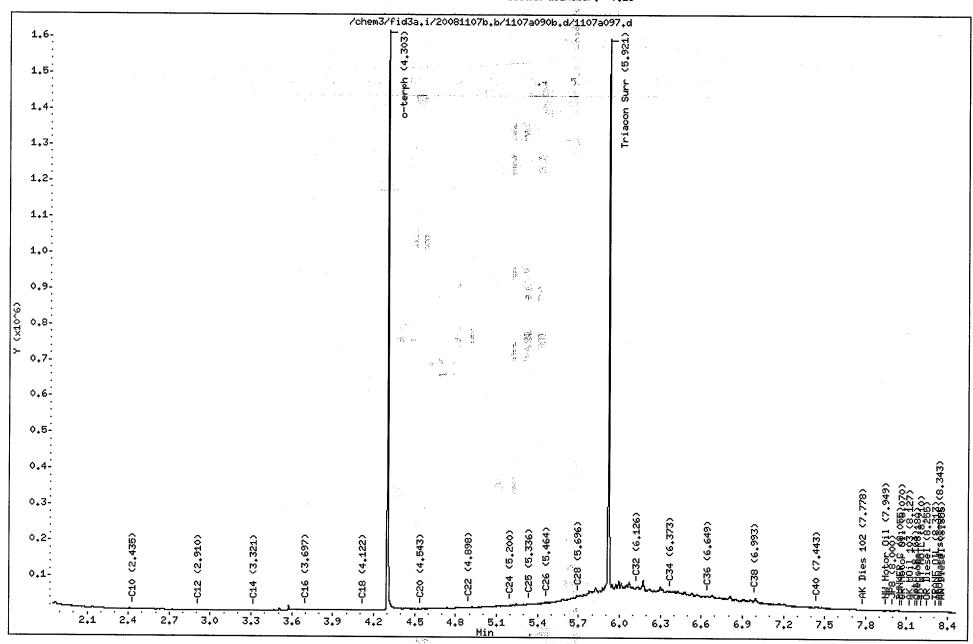
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.788	-0.003	267874	======== 396589	GAS	Tol-C12)	922509	23
C8	1.898	0.008	15690		DIESEL	(C12-C24)	953020	56.
C10	2.435	0.000	4907	7304	M.OIL	(C24-C38)	5173319	410
C12	2.910	0.000	2687	2446	AK-102	(C10-C25)	1097672	51
C14	3.321	-0.001	2318	1183	AK-103	(C25-C36)	4357986	476
C16	3.697	-0.005	4255	4340	OR.DIES	(C10-C28)	1979551	93
C18	4.122	-0.004	5275	1778	OR.MOIL	(C28-C40)	4878693	521
C20	4.543	-0.002	8549	1679	JET-A	(C10-C18)	350719	20
C22	4.898	-0.001	13619	10756	MIN.OIL	(C24-C38)	5173319	403
C24	5.200	-0.001	19890	15719	MSPIRIT	(Tol-C12)	922509	58
C25	5.336	-0.001	23990	7075	İ		*	
C26	5.464	-0.001	28253	13919	İ			
C28	5.696	-0.003	45543	23653	İ			
C32	6. . .126	-0.004	72223	51645	*****			
C34	6.373	0.005	59489	11711	İ			-6
Filter Peak	8.443	-0.003	8498	235.5	JP-4	(Tol-C14)	971709	86
C36	6.649	0.003	48752	24763	CREOSOT	(C8-C22)	990436	159
C38	6.993	-0.001	42438	37079				
C40	7.443	0.002	21370	E. 10796	BUNKERC	(C10-C38)	6234231	698
AZDIESEL (C1	:===== .0-C22)	======= 7:	==== == 22144	4 5	=======	=======	=========	=====
	2-C32)		38287	472	4			-5°C (

Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.740 - 2.959) NW M.Oil(5.251 - 7.044) AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

ms 11/12/08

Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	39499.8	12-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit OR Diesel	15825.3 21174.8	15-APR-2005
OR M.Oil Bunker C Creosote	9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a097.d


Date : 08-NOV-2008 12:32 Client ID: TDP19-4-081105

Sample Info: NY44D

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a100.d ARI ID: NY44E

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP20-3-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 13:17 /

Operator: ms Dilution Factor:

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

	Compound	RT	Shift	Height	Area	F	Range	Total Area	Conc
	Toluene	1.781	-0.010	297791	48242	!	·/	1049355	27
	C8	1.894	0.005	16370	2157		(C12-C24)	149127	9
	C10	2.435	0.000	5027	672	5 M.OII	(C24-C38)	445725	35 /
	C12	2.909	0.000	2399	265	8 AK-102	(C10-C25)	255687	12
	C14	3.326	0.004	1574	40	4 AK-103	(C25-C36)	346944	38
	C16	3.704	0.003	1110	64	1 OR.DIES	(C10-C28)	310451	15
	C18	4.123	-0.003	844	46	3 OR.MOIL	(C28-C40)	509370	54
	C20	4.550	0.006	1052	39	0 JET-A	(C10-C18)	190576	11
	C22	4.901	0.002	1043	55	1 MIN.OIL	(C24-C38)	445725	35
	C24	5.200	-0.002	1294	38	2 MSPIRIT	(Tol-C12)	1049355	66
	C25	5.341	0.004	1541	128	7			
	C26	5.465	0.001	1835	182	7			
	C28	5.698	-0.001	3171	353	8			;
	C32	<.6.136 €	0.006	14123	2.0.18	8 i			apara .
٠.	C34	6.369	0.002	5391	225	2	* Fig.	* A .	
	Filter, Peak	8.445	0.0,00	4289	358	2 JP-4		1091111	96
	C36	6.642	-0.004	4897	263	9 CREOSOT	(C8-C22)	479293	77
	C38	6.997	0.003	4783	237	7 İ			
	C40	7.437	-0.004	4656	214	2 BUNKERC	(C10-C38)	698249	78
-	AZDIESEL ((=======: C10-C22)	======= 2(= ==== ==)8830	== == ================================	=======	==========	==========	=====
		C22-C32)		2383	30 %			.2	

Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.740 - 2.959) NW M.Oil*(5.251 - 7.044)

AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate	Area	Amount	%Rec
o-Terphenyl	881215	42.5	94.4
Triacontane	831978	42.7	94.8

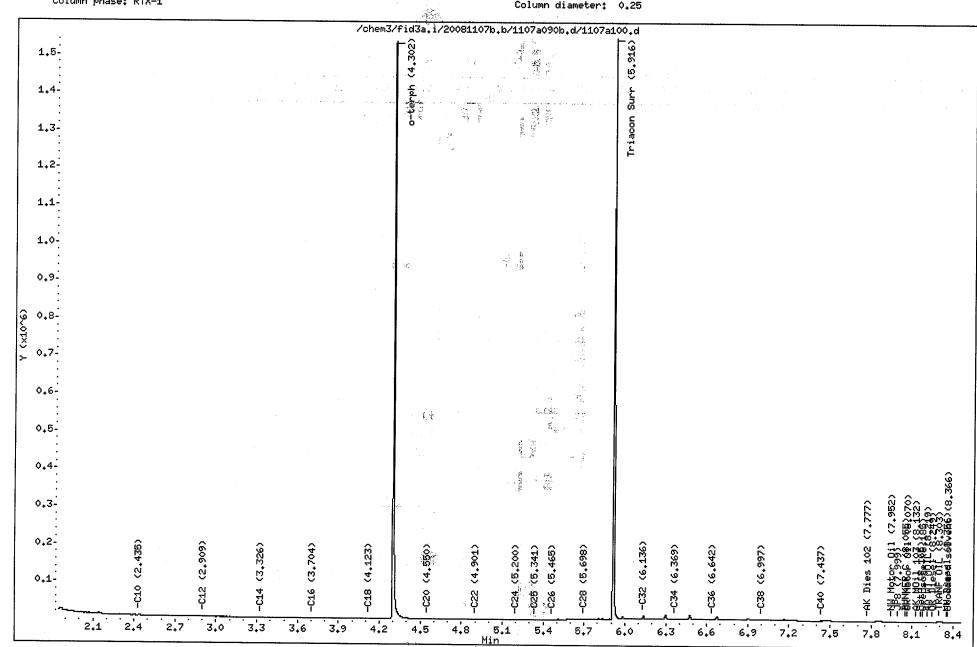
mo11/12/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil Bunker C Creosote	21174.8 9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a100.d

Date : 08-NOV-2008 13:17 Client ID: TDP20-3-081105

Sample Info: NY44E


Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

2-1

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a102.d ARI ID: NY44F

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP21-3-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 13:46 ~

Operator: ms Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

			-	±D.J	M KEDOL	110				
Compound	RT ===	Shift	Height		Area	Ra	ange	Tot	al Area	Conc
Toluene	1.793	0.002	248085		126484	GAS	(Tol-C12)	======	685922	17
C8	1.893	0.003	17020		34242	DIESEL	(C12-C24)		156863	9
C10	2.435	-0.001	5374		6535	M.OIL	(C24-C38)		405758	32 /
C12	2.909	0.000	2623		2830	AK-102	(C10-C25)		271118	13
C14	3.319	-0.003	1698		905	AK-103	(C25-C36)		314344	34
C16	3.698	-0.004	1182		352	OR.DIES	(C10-C28)		327970	15
C18	4.128	0.002	858		307	OR.MOIL	(C28-C40)		453753	48
C20	4.549	0.005	1061		499	JET-A	(C10-C18)		205629	12
C22	4.899	-0.001	1058		602	MIN.OIL	(C24-C38)		405758	32
C24	5.208	0.006	1578		1692	MSPIRIT	(Tol-C12)		685922	43
C25	5.340	0.003	1849		2460					
C26	5.467	0.002	2034		3126	İ				
C28	5.698	-0.001	3414		4185	j		***		
C32	6.139	0.009	6569	جأننه	13016				चेक असूद्र/	
C34	6.364	-0.004	5620	727	6637	İ	585\$		٠,	
Filter Peak	8.450	0.004	4121		1480	JP-4	(Tol-C14)	- Sec.	728159	64
C36	6.649	0.003	4816		2590	CREOSOT	(C8-C22)	237	536727	86
C38	6.991	-0.003	4631		2951	1 4		,		
C40	7.444	0.003	4347		1041	BUNKERC	(C10-C38)		673541	75
AZDIESEL (C1	======= L0-C22)	======: 2:	======= 15465	==== 13	======	==== = ===		======	=======	=====
	22-C32)	18	82875	28					1. No. 1	
============										

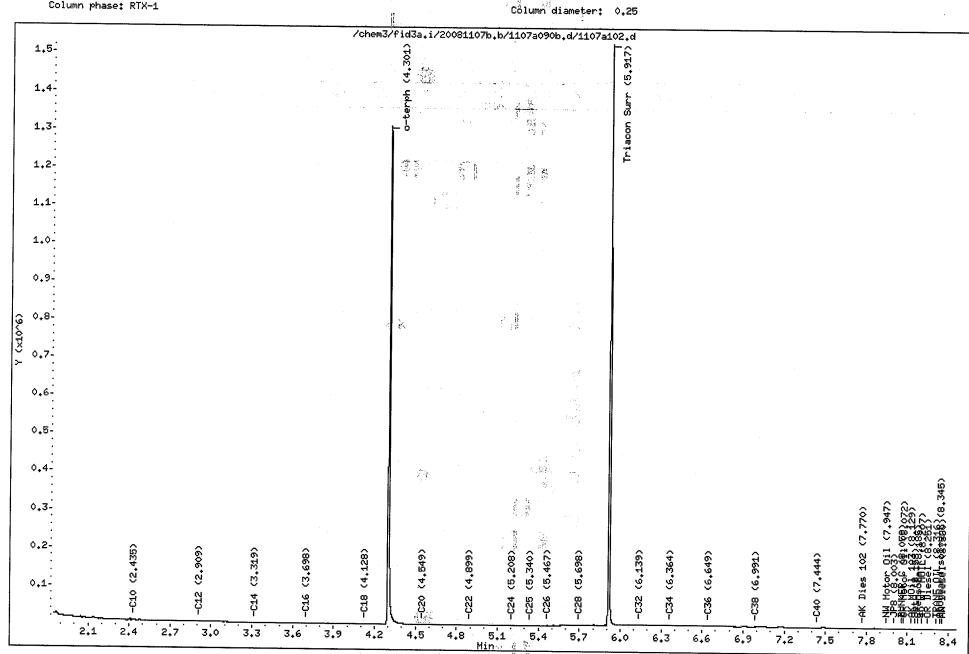
Range Times: NW Diesel (2.959 - 5.251) NW Gas (1.740 - 2.959) NW M Oil (5.251 - 7.0444) AK102 (2.385 - 5.287) AK103 (5.287 - 6.696) Jet A (2.385 - 4.176)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	846824 794905	40.8	90.7

mo 11/12/68

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
	- · -	11 1113 2000

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a102.d


Date : 08-NOV-2008 13:46 Client ID: TDP21-3-081105

Sample Info: NY44F

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a103.d ARI ID: NY44G

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP22-3-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 14:01/

Operator: ms Report Date: 11/12/2008

Dilution Factor:

Macro: FID:3A111208

FID:3A RESULTS

Compound	RT	Shift	Height		Area	. Ra	ange	Total Area	Conc
===========	======	=======	=======	====	=======	=======	==========	==========	======
Toluene	1.802	0.012	217336		202019	GAS	(Tol-C12)	1392317	35 🤇
C8	1.895	0.006	16018		1918	DIESEL	(C12-C24)	315418	19
C10	2.436	0.001	5138		10572	M.OIL	(C24-C38)	1108011	88
C12	2.910	0.001	2478		1606	AK-102	(C10-C25)	441860	21
C14	3.319	-0.003	1851		586	AK-103	(C25-C36)	937286	102
C16	3.704	0.003	1579		471	OR.DIES	(C10-C28)	693045	33
C18	4.124	-0.001	1487		441	OR.MOIL	(C28-C40)	1002918	107
C20	4.549	0.005	2391		2080	JET-A		227883	13
C22	4.901	0.002	3943		3404	MIN.OIL	(C24-C38)	1108011	86
C24	5.200	-0.001	6387		3356	MSPIRIT		1392317	88
C25	5.332	-0.005	7850		4583		(101 C12)	1392317	
C26	5.463	-0.001	8789		3122	i			
C28	5.702	0.003	11862		5131			* *	
C32	6125	-0.005	15553		21803	ì			હોં
C34	6.357	-0.010	12193		11227		2. 4		9
Filter Peak	8.449	0.004	4391		1754	JP-4	(Tol-C14)	1420700	105
C36	6.645	-0.001	9188		3631	CREOSOT	(,	1438799	127
C38	6.992	-0.002	7199		2270	CREOSOI	(C8-C22)	606781	97
C40	7.441	0.002	5658			DIBIKEDA	(010 0000)		
=========	, 		2020		3010	BONKERC	(C10-C38)	1533069	172
AZDIESEL (C	10-C22)	3.0	2656	19	=====		========	==========	=====
	22-C32)		3534	114					
	12 032,	/3	2234	114	್ರದ್ಮ			.2 %	, A. ,

Range Times: NW Diesel (2.959 - 5.251) NW Gas (1.740 - 2.959) NW M.Oil (5:251 - 7.044) AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate Area Amount %Rec o-Terphenyl 853875 41.1 91.4 Triacontane 771163 39.5 87.9

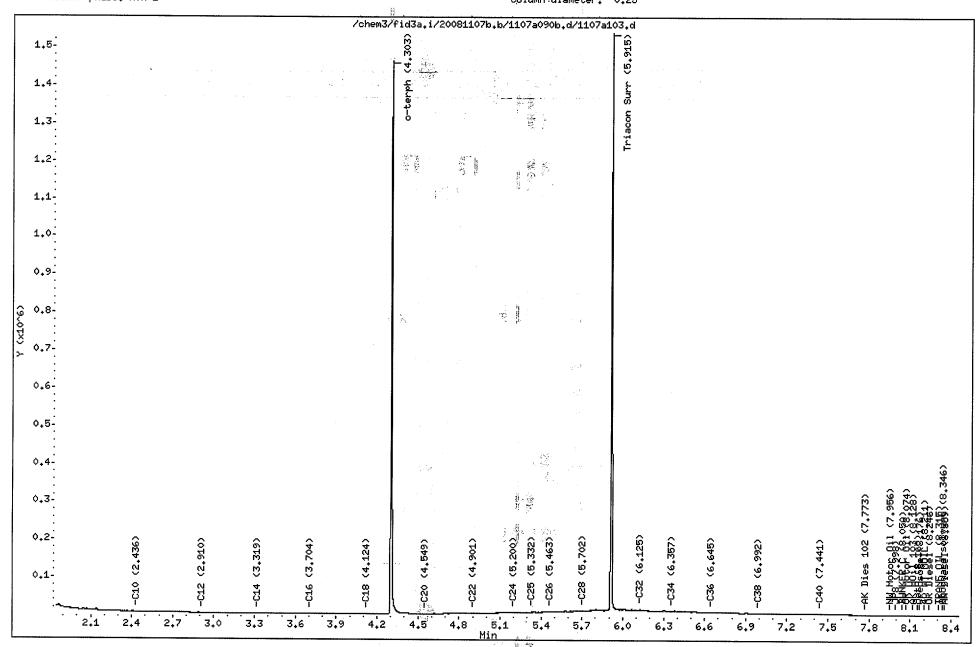
ms11/12/08

20

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a103.d

Date : 08-NOV-2008 14:01 Client ID: TDP22-3-081105


Sample Info: NY44G

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a104.d ARI ID: NY44H

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP23-3-081105

Instrument: fid3a.i Injection: 08-NOV-2008 14:16 / Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.813	0.022	203086	 158235	======================================	518134	<i>-</i> / 13 /
C8	1.865	-0.024	22227	45916	DIESEL (C12-C24)	203191	12
C10	2.436	0.000	5155	11496	M.OIL (C24-C38)	736170	58
C12	2.910	0.001	2394	1765	AK-102 (C10-C25)	313109	15
C14	3.321	-0.001	1598	1039	AK-103 (C25-C36)	595187	65
C16	3.701	-0.001	1237	245	OR.DIES (C10-C28)	437369	21
C18	4.126	0.000	1048	771	OR.MOIL (C28-C40)	751143	80
C20	4.554	0.009	1607	1333	JET-A (C10-C18)	199690	12
C22	4.901	0.001	1963	790	MIN.OIL (C24-C38)	736170	57
C24	5.200	-0.002	3052	3257	MSPIRIT (Tol-C12)	518134	33
C25	5.332	-0.006	3917	5072			
C26	5.455	-0.009	4232	4532	•		
C28	5.698	-0.001	6047	1321			
C32	6.135	0.004	8994	4094	Surface Surface		v *
C34	6.375	0.007	8690	6,31,4	\frac{1}{2}		
Filter, Peak	8.448	0.003	4329	2578	JP-4 (Tol-C14)	559801	49
C36	6.651	0.004	9280	16504	CREOSOT (C8-C22)	518593	83
C38	6.996	0.002	6080	1809		1.4.4	
C40	7.435	-0.006	5288	1154	BUNKERC (C10-C38)	1041860	117
AZDIESEL (C1	LO-C22)	23	35 41 3	15		=============	
AZMOIL (C2	22-C32)	.∂ 4(06300	63			

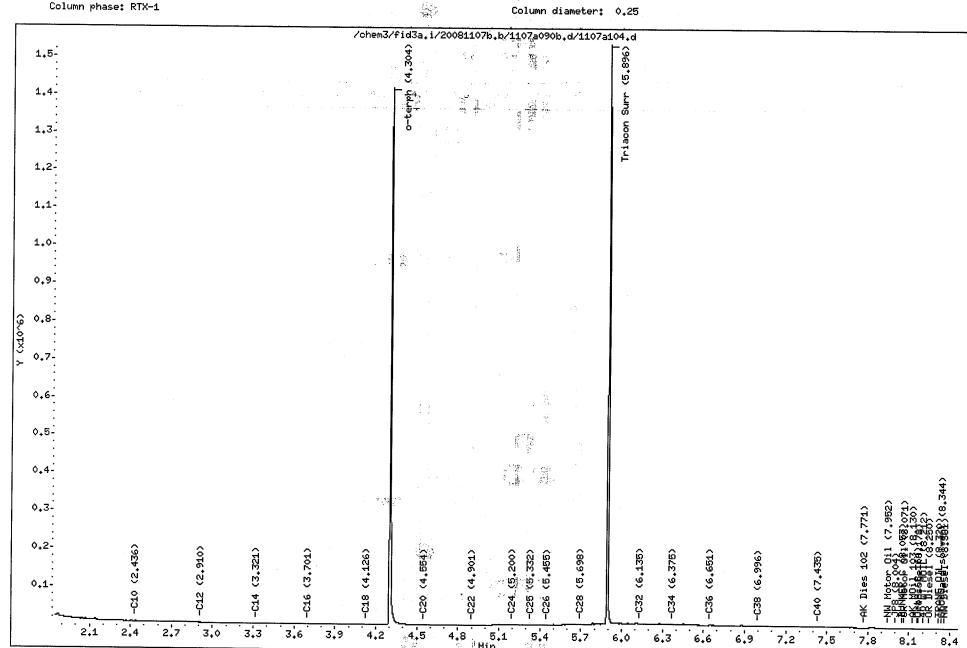
Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.740 2.959) NW M.OiTe(5.251 - 7.044)

AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

Surrogate	Area	Amount	%Rec
o-Terphenyl	874509	42.1	93.6
Triacontane	800606	41.1	91.2

ma11/2/08

 \mathfrak{A}^{r}


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008
JP4 JetA Min Oil Min Spirit	11362.0 17141.6 12823.0 15825.3	05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil Bunker C Creosote	21174.8 9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a104.d

Date : 08-NOV-2008 14:16 Client ID: TDP23-3-081105 Sample Info: NY44H

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a105.d ARI ID: NY44I

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP24-11-081105

Instrument: fid3a.i

Injection: 08-NOV-2008 14:30

Operator: ms Dilution Factor:

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

			L	TD: 2W KE201	1T 🔈			
Compound	RT	Shift	Height	Area	Ra	inge	Total Area	Conc
Toluene	1.821	0.030	183995	143435	GAS	(Tol-C12)	513921	13
C8	1.898	0.008	16537	12185	DIESEL	(C12-C24)	214256	13
C10	2.437	0.001	5289	8366	M.OIL	(C24-C38)	705378	56 -/-
C12	2.909	0.000	2747	3401	AK-102	(C10-C25)	334389	16
C14	3.315	-0.008	1738	1135	AK-103	(C25-C36)	571143	62
C16	3.702	0.000	1415	306	OR.DIES	(C10-C28)	468161	22
C18	4.127	0.001	1080	978	OR.MOIL	(C28-C40)	700759	75
C20	4.553	0.009	1639	1978	JET-A	(C10-C18)	219303	13
C22	4.903	0.003	1996	2183	MIN.OIL	(C24-C38)	705378	55
C24	5.200	-0.002	3485	4373	MSPIRIT	(Tol-C12)	513921	32
C25	5.333	-0.005	4832	5789	ľ			
C26	5.457	-0.007	5115	8198				
C28	5.700	0.001	6365	1393		4		
C32	6.133	0.003	8862	1238		- Milesian	4 () • • • • • • • • • • • • • • • • • •	
C34	6.361	-0.007	9258	3497				
Filter Peak	8.452	0.006	4180	1583		(Tol-C14)	560102	49
C36	6.641	-0.005	7217	1435	CREOSOT	(C8-C22)	541624	87
C38	7.001	0.007	5941	3295			* * * · ·	
C40	7.439	-0.002	5183	1339	BUNKERC	(C10-C38)	1032656	116
AZDIESEL (C	==== == 10-C22)	 25	= === 57305	16	=======	========	=======================================	:====
AZMOIL (C	22-C32)	38	31579	59	# 4	*** **		

Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.740 2.959) NW M.Oile(5.251 - 7.044)

AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

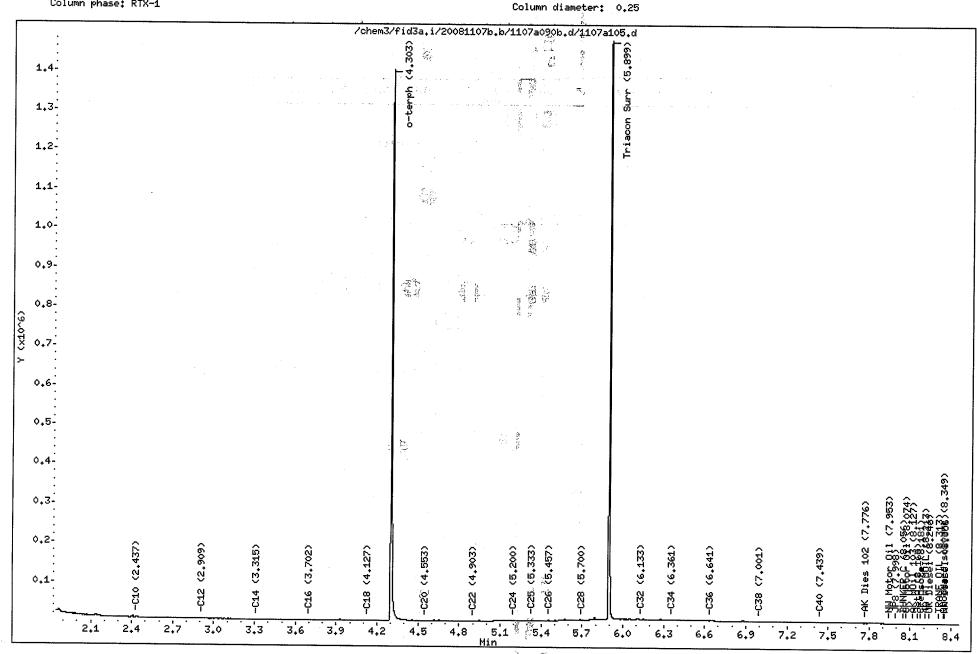
Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	832826 805648	40.1	89.2/

mo 11/12/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 39499.8 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 12-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a105.d

Date : 08-NOV-2008 14:30 Client ID: TDP24-11-081105


Sample Info: NY44I

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

10

Data file: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a107.d ARI ID: NY44J

Method: /chem3/fid3a.i/20081107b.b/1107a090b.d/ftphfid3a.mClient ID: TDP25-9-081105

Instrument: fid3a.i

Operator: ms

Injection: 08-NOV-2008 15:00

Dilution Factor: 1

Report Date: 11/12/2008 Macro: FID:3A111208

FID:3A RESULTS

			-		1 10000					
Compound	RT	Shift	Height	i	Area	Rá	ange	To	tal Area	Conc
Toluene	1.790	0.000	======= 239559	-====:	=== == 158163	GAS	Tol-C12)	====	836837	=====/
C8	1.890	0.001	16640		11794	DIESEL	(C12-C24)		1351112	21 / 80
C10	2.436	0.000	5414		12450	M.OIL	(C24-C38)		6513744	516
C12	2.909	0.000	2707		3832	AK-102	(C10-C25)		1548711	72
C14	3.325	0.003	3465		1702	AK-103	(C25-C36)		5639028	616
C16	3.705	0.003	4845		2904	OR.DIES	(C10-C28)		3040930	144
C18	4.131	0.005	5953		1890	OR.MOIL	(C28-C40)		5550093	592
C20	4.545	0.000	11479		7031	JET-A	(C10-C18)		409321	24
C22	4.897	-0.003	20687		11265	MIN.OIL	(C24-C38)		6513744	508
C24	5.198	-0.004	34152		27649	MSPIRIT	(Tol-C12)		836837	53
C25	5.335	-0.002	39837		14190					
C26	5.460	-0.004	52055		21369					
C28	5.699	0.000	76467		24225				s.	
C32	6.126	-0.005	88331		55042				e demokra	
C34	6.369	0.002	66019		10435	#\$				
Filter Peak	8.443	-0.003	8437		5164		(Tol-C14)	de la companya di sa	905258	8.0
C36	6.647	0.001	48172		8561	CREOSOT	(C8-C22)	S. Co.	1253167	201
C38	6.994	0.000	33607		7224					
C40	7.438	-0.004	19060		7754	BUNKERC	(C10-C38)		7980743	893
AZDIESEL (C	10-C22)	<u>-</u> 94	 19850	59	.====:	======================================	*=======	=====		=====
AZMOIL (C	22-C32)	436	8865	679			· 5			

Range Times: NW Diesel(2.959 - 5.251) NW Gas(1.740 - 2.959) NW M.Oil(5.251 - 7.044) AK102(2.385 - 5.287) AK103(5.287 - 6.696) Jet A(2.385 - 4.176)

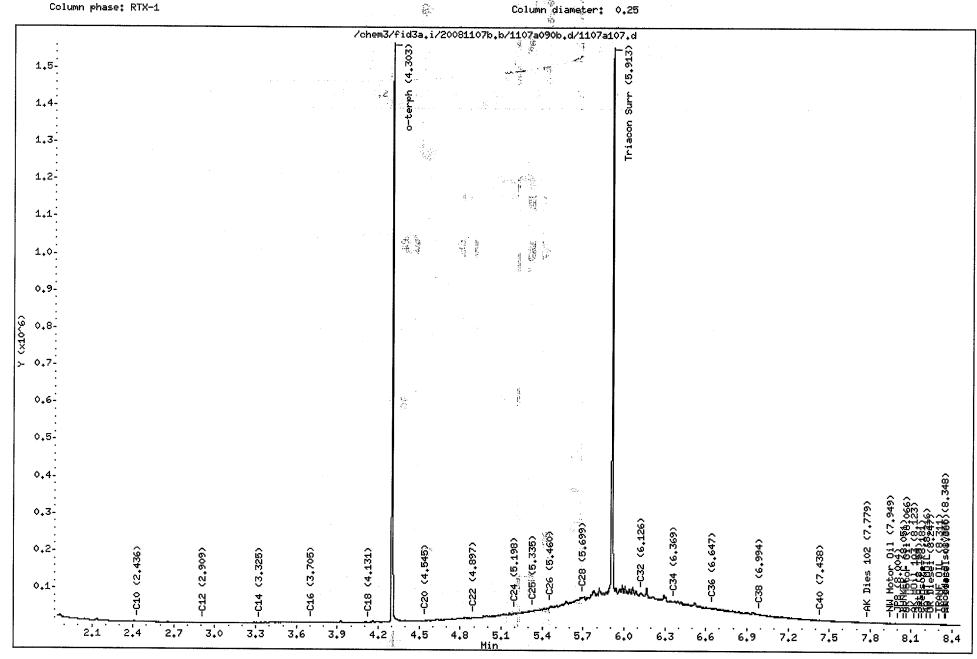
Surrogate	Area	Amount	%Rec	
o-Terphenyl	857942	41.3	91.9	•
Triacontane	784559	40.2	89.4	

ma11/2/08

λη α l τr+ α	DE	Characa Data
Analyte	RF	Curve Date
o-Terph Surr	20751.8	04-NOV-2008
Triacon Surr	19500.9	07-NOV-2008
Gas	39499.8	12-NOV-2008
Diesel	16911.5	04-NOV-2008
Motor Oil	12615.8	07-NOV-2008
AK102	21543.0	04-NOV-2008
AK103	9153.0	04-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	17141.6	04-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	21174.8	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107b.b/1107a090b.d/1107a107.d

Date : 08-NOV-2008 15:00 Client ID: TDP25-9-081105


Sample Info: NY44J

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

李瑟

HCID SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Client ID	O-TER TOT OUT
TDP16-3-081105	93.1% 0
110708MB	91.1% 0
TDP17-4-081105	91.9% 0
TDP17-4-081105 DP	93.6% 0
TDP18-4-081105	95.7% 0
TDP19-4-081105	94.4% 0
TDP20-3-081105	94.4% 0
TDP21-3-081105	90.7% 0
TDP22-3-081105	91.4% 0
TDP23-3-081105	93.6% 0
TDP24-11-081105	89.2% 0
TDP25-9-081105	91.9% 0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(68-122)

(50-150)

Prep Method: SW3550B

Log Number Range: 08-30162 to 08-30171

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY44

Matrix: Soil

Date Received: 11/05/08

Project: PHASE II

025173

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
THE 1D	CITCHE ID		VO1	DUBIE	Date
08-30162-NY44A	TDP16-3-081105	7.91 g	5.00 mL	D	11/07/08
08-30163-110708MB	Method Blank	10.0 g	5.00 mL	_	11/07/08
08-30163-NY44B	TDP17-4-081105	$7.60 \mathrm{g}$	5.00 mL	D	11/07/08
08-30163-NY44BDP	TDP17-4-081105	7.60 g	5.00 mL	D	11/07/08
08-30164-NY44C	TDP18-4-081105	7.52 g	5.00 mL	D	11/07/08
08-30165-NY44D	TDP19-4-081105	7.35 g	5.00 mL	D	11/07/08
08-30166-NY44E	TDP20-3-081105	7.63 g	5.00 mL	D	11/07/08
08-30167-NY44F	TDP21-3-081105	9.07 g	5.00 mL	D	11/07/08
08-30168-NY44G	TDP22-3-081105	9.19 g	5.00 mL	D	11/07/08
08-30169-NY44H	TDP23-3-081105	9.14 g	5.00 mL	D	11/07/08
08-30170-NY44I	TDP24-11-081105	7.29 g	5.00 mL	D	11/07/08
08-30171-NY44J	TDP25-9-081105	9.75 g	5.00 mL	D	11/07/08

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 11/11/08

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-110708 08-30172	Method Blank	11/07/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 75.5%
NY44K 08-30172	TDP16-GW-081105 HC ID:	11/07/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 84.3%
NY44L 08-30173	TDP18-GW-081105 HC ID:	11/07/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 84.9%
NY44M 08-30174	TDP25-GW-081105 HC ID:	11/07/08	11/07/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 77.2%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a012.d ARI ID: NY44MBW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 15:37

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	= 1.797	0.002	63548	 79057	======================================	======================================	
C8	1.892	0.000	24302	57176	DIESEL (C12-C24)	219767	25 · 13
C10	2.438	-0.007	6996	13734	M.OIL (C24-C38)	751629	60
C12	2.912	-0.001	3177	2647	AK-102 (C10-C25)	374193	17
C14	3.329	0.004	2093	374	AK-103 (C25-C36)	578160	63
C16	3.710	0.006	1608	849	OR.DIES (C10-C28)	484558	23
C18	4.127	-0.003	1160	367	OR.MOIL (C28-C40)	847765	90
C20	4.546	-0.001	1608	1202	JET-A (C10-C18)	263058	15
C22	4.904	0.002	1510	598	MIN.OIL (C24-C38)	751629	59
C24	5.203	-0.005	2397	1986	MSPIRIT (Tol-C12)	599695	38
C25	5.350	0.005	2904	2787			
C26	5.470	-0.005	3474	1578			
C28	5.711	-0.004	5373	4019	ļ	A. A.	
C32	6.158	0.002	9462	2812			
C34	6.395	-0.002	9485	1703	高 物	<u> </u>	
Filter Peak	8.449	0.001	7514	3151	JP-4 (Tol-C14)	653413	.58.
C36	6.683	0.004	8826	4406	CREOSOT (C8-C22)	706305	113
C38	7.030	0.000	8296	5122	j		
C40	7.485	-0.002	7904	6429	BUNKERC (C10-C38)	1118666	125
	.0-C22) :2-C32)			8 4	======================================	= = = = = = = = = = = = = = = = = = = =	======

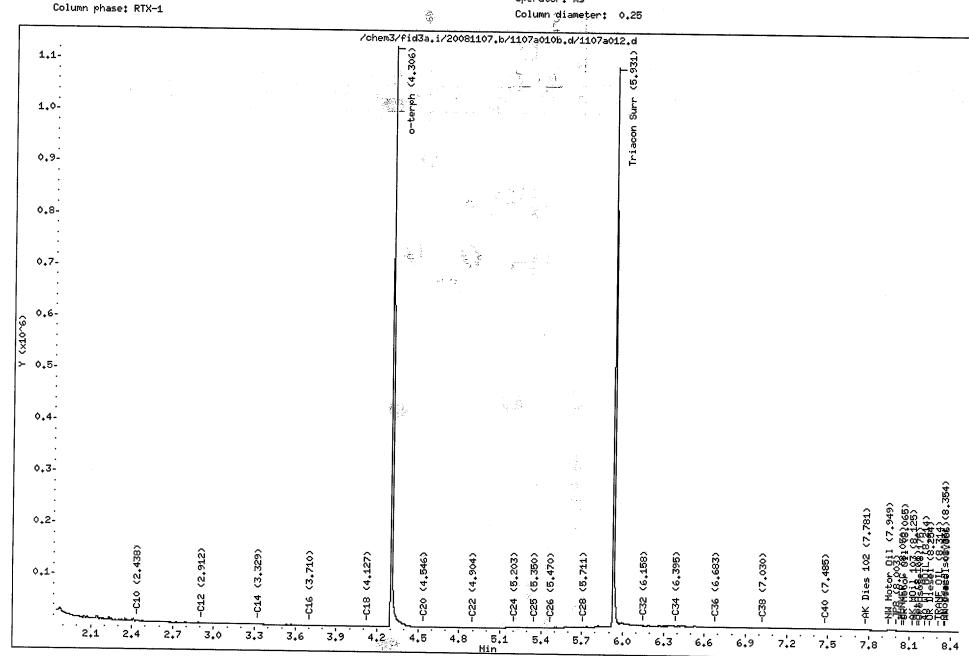
Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080)

Surrogate	Area	Amount	%Rec
o-Terphenyl	704662	34.0	75.5
Triacontane	640679	32.9	73.0

mo 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a012.d


Date : 07-NOV-2008 15:37

Client ID:

Sample Info: NY44MBW1

Instrument: fid3a.i

Operator: ms

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a015.d ARI ID: NY44K

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 16:22

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.790	-0.005	- 52478		GAS	Tol-C12)	======================================	25
C8	1.885	-0.006	20888	20017	DIESEL	(C12-C24)	1320659	78
C10	2.437	-0.007	6601	14924	M.OIL	(C24-C38)	863332	68 /
C12	2.909	-0.003	6573	4933	AK-102	(C10-C25)	1534675	71
C14	3.328	0.003	8493	3429	AK-103	(C25-C36)	705537	77
C16	3.707	0.003	12378	8759	OR.DIES	(C10-C28)	1724435	81
C18	4.135	0.005	9944	5845	OR.MOIL	(C28-C40)	856092	91
C20	4.553	0.005	7394	5177	JET-A	(C10-C18)	1103872	64
C22	4.903	0.001	6705	2780	MIN.OIL		863332	67
C24	5.208	0.000	6617	5289	MSPIRIT	(Tol-C12)	590082	37
C25	5.346	0.001	6867	3582	İ	•	1.0	
C26	5.474	-0.001	6837	5727	İ			
C28	5, 712	-0.003	8204	15611	ĺ		4	
C32	6.157	0.001	10644	15507				Super-
C34	6.400	0.003	9819	8217	İ	.4 54		Mary 21
Filter Peak	8.445	-0.003	7221	3742	JP-4	(Tol-C14)	758430	67
C36	6.682	0.003	9495	9577	CREOSOT	(C8C22)	1708820	274
C38	7.028	-0.001	8058	4655		1	* ** *	
C40	7.484	-0.004	7576	6503	BUNKERC	(C10-C38)	2382122	267
	 10-C22) 22-C32)		71246 18820	85 82	=======		:=====================================	
AZMOIL (C2	22-C32)	52	8820	82			A 3.	

Range Times: NW Diesel (2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil (5.258 - 7.080)

AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

and the second second	***			
Surrogate	Area	Amount	%Rec	
o-Terphenyl	787212	37.9	84.3	/
Triacontane	695488	35.7	79.3	

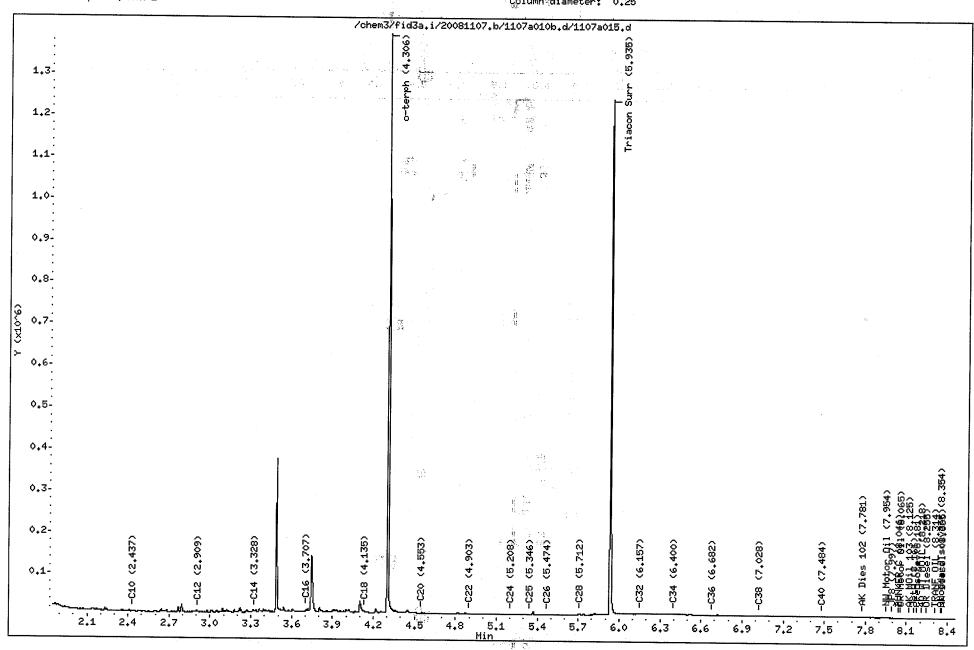
mo 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a015.d

Date : 07-NOV-2008 16:22

Client ID:


Sample Info: NY44K

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a016.d ARI ID: NY44L

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 16:37 Operator: ms

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.788	-0.007	49260	 67343	======== GAS	======================================	573073	=====/
C8	1.885	-0.006	22560	19147	DIESEL	(C12-C24)	1172700	24 / 69
C10	2.437	-0.007	7213	16289	M.OIL	(C24-C38)	1177017	93
C12	2,908	-0.004	4529	3191	AK-102	(C10-C25)	1378368	64
C14	3.324	-0.001	13352	11444	AK-103	(C25-C36)	963681	105
C16	3.704	0.000	8366	3973	OR.DIES		1698537	80
C18	4.131	0.001	8302	5327	OR.MOIL	(C28-C40)	1082859	116
C20	4.548	0.000	9115	3034	JET-A	(C10-C18)	783730	46
C22	4.903	0.001	9664	2105	MIN.OIL	(C24-C38)	1177017	92
C24	5.207	-0.001	12191	10739	MSPIRIT	(Tol-C12)	573073	36
C25	5.346	0.001	11456	13631	j		14	
C26	5.475	0.000	10956	9454	İ			
C28	5.715	0.000	12640	9151	İ			
C32	6.158	0.002	16048	27143	ن مرتب			
C34	6.395	-0.002	14258	5109	5.4		etic sé	
Filter Peak	8.450	0.003	7729	3234	JP-4	(Tol-C14)	747970	66
C36	6.679	0.000	12384	8062	CREOSOT	(C8-C22)	1497264	24079
C38	7.029	0.000	9677	1352			3 1	v=
° C40 .≫7 ₄	7.490	0.003	8711	1911	BUNKERC	(C10-C38)	2533281	283
AZDIESEL (C	:====== :10-C22)	======= 113	======= 36597	'======== 71	=======		=======================================	= = = = = =
AZMOIL (C	(22-C32)	8.0	00803	124				

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102(2.395 3.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.1180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	793137	38.2	84.9
Triacontane	729405	37.4	83.1

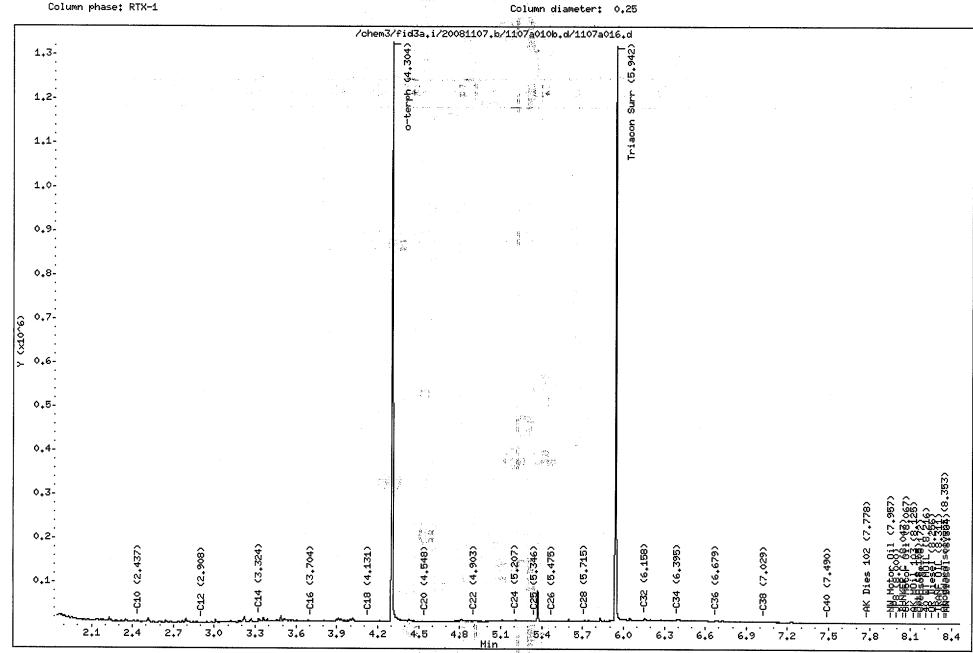
mo 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a016.d.g.

Date : 07-NOV-2008 16:37

Client ID:


Sample Info: NY44L

Instrument: fid3a.i

Operator: ms

4

ing and the

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a017.d ARI ID: NY44M

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 07-NOV-2008 16:51

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

Compound	RT	Shift	Height		Area	Ra	ange	Tot	al Area	Conc
========	======	========	=====	====	======	======:	=========	=====	=======	======
Toluene	1.789	-0.006	52483		46327	GAS	(Tol-C12)		806836	34 -
C8	1.884	-0.007	21836		15947	DIESEL	(C12-C24)		1044905	62 1
C10	2.445	0.000	7673		6305	M.OIL			1253510	99 ~
C12	2.911	-0.001	5026		2497	AK-102	(C10-C25)		1321929	61
C14	3.328	0.003	5741		4300	AK-103	(C25-C36)		1038114	113
C16	3.705	0.001	6184		2053	OR.DIES	(C10-C28)		1665667	79
C18	4.130	0.000	6769		937	OR.MOIL	(C28-C40)		1103579	118
C20	4.547	-0.001	8601		3529	JET-A			706945	41
C22	4.902	-0.001	10416		5435	MIN.OIL	(C24-C38)		1253510	98
C24	5.206	-0.002	12458		12466	MSPIRIT	(Tol-C12)		806836	51
C25	5.343	-0.002	12544		6437		(-01 011)		000000	31
C26	5.473	-0.002	12623		8464	i				
C28	5.720	0.005	12841		2286	i				
C32	6.152	-0.003	14995		14432	1	Allia			
C34	6.392	-0.005	12908		2573		and the second s		\$e.s.	•
Filter Peak	8.446	-0.002	7589		2120	JP-4	(Tol-C14)		920340	81
C36	6.678	-0.001	10906		8900	CREOSOT	(C8-C22)		1467535	235
C38	7.029	-0.001	9162		5850	CREODOI	(60 622)		1407333	233
C40	7.492	0.004	8267		5770	BUNKERC	(C10-C38)		2549807	205
=======================================	======	========				DONKERC	(CIO-C36)	·	2349607	285
AZDIESEL (C1	.0-C22)	1025	563	64				======	=========	=====
	2-C32)		216	140						5 ~
	_ 332,	701	210	740					· /r.	₹ :

Range Times: NW Diesel(2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5.258 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

Surrogate	Area	Amount	%Rec
o-Terphenyl	720920	34.7	77.2 <
Triacontane	667510	34.2	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 07-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

80/11/11 cm

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a017.d

Date : 07-NOV-2008 16:51

Client ID:

Sample Info: NY44M

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

4 y 129

2 (C) 1 (S)

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Client ID	O-TER	TOT OUT
MB-110708	75.5%	0
LCS-110708	75.2%	0
LCSD-110708	85.4%	0
TDP16-GW-081105	84.3%	0
TDP18-GW-081105	84.9%	0
TDP25-GW-081105	77.2%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C Log Number Range: 08-30172 to 08-30174

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

1 of 1 Page

Sample ID: LCS-110708

LCS/LCSD

Lab Sample ID: LCS-110708

LIMS ID: 08-30172 Matrix: Water

Data Release Authorized:

Reported: 11/11/08

Diesel

QC Report No: NY44-The Boeing Company

Project: PHASE II

2.26

025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Date Extracted LCS/LCSD: 11/07/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/07/08 15:52

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

75.3%

10.7%

LCSD: 11/07/08 16:07 Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Dilution Factor LCS: 1.00

LCSD: 1.00

3.00

LCS Spike Spike LCSD LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Range

3.00

HCID Surrogate Recovery

67.7%

LCSD LCS

o-Terphenyl

75.2% 85.4%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

2.03

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a013.d ARI ID: NY44LCSW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i

Injection: 07-NOV-2008 15:52

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

Compound	RT	Shift	Height	Area	R:	ange	Total Area	Conc
===========	=======	=======	:========	=======		=========	TOCAL ALEA	COILC
Toluene	1.789	-0.006	61229	74304	GAS	(Tol-C12)	3480497	148
C8	1.887	-0.005	29440	28198	DIESEL	(C12-C24)	17178872	
C10	2.444	-0.001	131880	92975	M.OIL	(C24-C38)	976627	1016 77
C12	2.913	0.000	482153	276441	AK-102	(C10-C25)	19826314	
C14	3.325	0.000	726285	374686	AK-103	(C25-C36)		920
C16	3.705	0.001	738340	527891	OR.DIES	(C10-C28)	756853	83
C18	4.131	0.001	505582	355928	OR.MOIL	(C28-C40)	20154128	952
C20	4.548	0.000	376643	293209	JET-A	•	795129	85
C22	4.904	0.001	152780	125392	MIN.OIL	(C10-C18) (C24-C38)	14736558	860
C24	5.207	0.000	66387	58867	MSPIRIT		976627	76
C25	5.345	0.000	38971	34661	INSPIRII	(Tol-C12)	3480497	220
C26	5.475	0.000	23903	33562				
C28	5.713	-0.002	9995	12383				
C32	6.156	0.001	8887	1242	1		** 1	.84
C34	6.393	-0.004	9327	7074				43
Filter Peak	8.452	0.004	7720	1848	TD 4	/m] (m)		
C36	6.679	0.000	8747		JP-4	(Tol-C14)	7393850	651
C38	7.026	-0.003	8193	3141	CREOSOT	(C8-C22)	19895655	3191
C40	7.485	-0.003		3434			₹*	
=======	7.405	-0.003	7979	3346	BUNKERC	(C10-C38)	20747753	2322
AZDIESEL (C1	0-022)	1884:	2007 11	======== 70	=======	=========	==========	====
	2-C32)							
		113	7770 7	79			4	

Range Times: NW Diesel (2.962 - 5.258) NW Gas(1.745 - 2.962) NW M.Oil(5:258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

east 1	1.	20 and 4 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5 and 5	33
Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	701852 647165	33.8	75.2 73.7

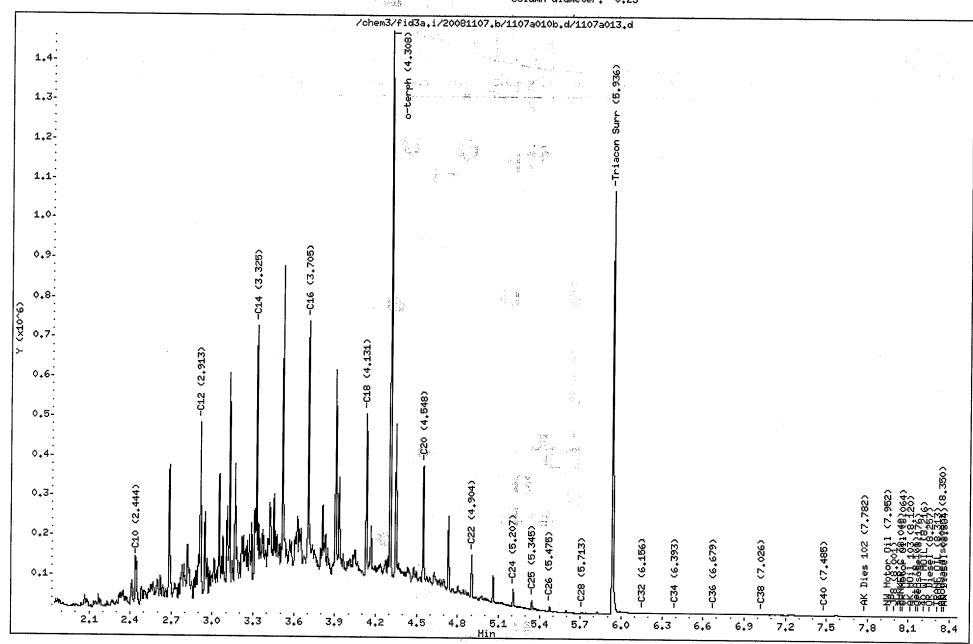
ms 11/11/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a013.d

Date : 07-NOV-2008 15:52

Client ID:


Sample Info: NY44LCSW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Data file: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a014.d ARI ID: NY44LCSDW1

Method: /chem3/fid3a.i/20081107.b/1107a010b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i

Injection: 07-NOV-2008 16:07

Dilution Factor: 1

Report Date: 11/11/2008 Macro: FID:3A111108

Operator: ms

FID:3A RESULTS

				1.7	TOOR KESON	10			
	Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
	Toluene	1.798	0.003	69173	75322	GAS	======================================	======================================	156
	C8	1.895	0.003	34406	31679	DIESEL	(C12-C24)	19096748	1129
	C10	2.446	0.001	124222	100353	M.OIL	(C24-C38)	951024	75/
	C12	2.913	0.001	482455	300522	AK-102	(C10-C25)	21885769	1016
	C14	3.326	0.001	805134	392971	AK-103	(C25-C36)	787064	86
	C16	3.706	0.002	829976	606725	OR.DIES	(C10-C28)	22226111	1050
	C18	4.133	0.003	564350	421687	OR.MOIL	(C28-C40)	762330	81
	C20	4.549	0.002	421886	348819	JET-A	(C10-C18)	16124098	941
	C22	4.903	0.000	174767	139096	MIN.OIL	(C24-C38)	951024	74
	C24	5.204	-0.004	72450	69322	MSPIRIT	(Tol-C12)	3681649	233
	C25	5.340	-0.005	43477	52897	İ	,		
	C26	5.469	-0.006	26838	33888	İ			
	C28	5.722	0.007	7670	1221	j			
,	C32	6.157	0.002	8884	2482				on die
	C34	6.398	0.001	9061	3438	İ	. Social		serie.
	Filter Peak	8.443	-0.004	7580	4384	JP-4	(Tol-C14)	7958483	700
	C36	6.686	0.006	8452	1854	CREOSOT	(C8-C22)	21967537	3524
	C38	7.031	0.002	8022	2561	į		1 +	
_	C40.	7.490	0.003	7725	2158	BUNKERC	(C10-C38)	22802249	2552
_	AZDIESEL (C1	=== = == 0-C22)	======= 2082	=== === 8380 12	======== 97	=======	=========	=========	=====
	AZMOIL (C22	2-C32)	125	3651 1	95			Y V	,

Range Times: NW Diesel (2.962 - 5.258) NW Gas (1.745 - 2.962) NW M.Oil (5.258 - 7.080) AK102(2.395 - 5.295) AK103(5.295 - 6.729) Jet A(2.395 - 4.180)

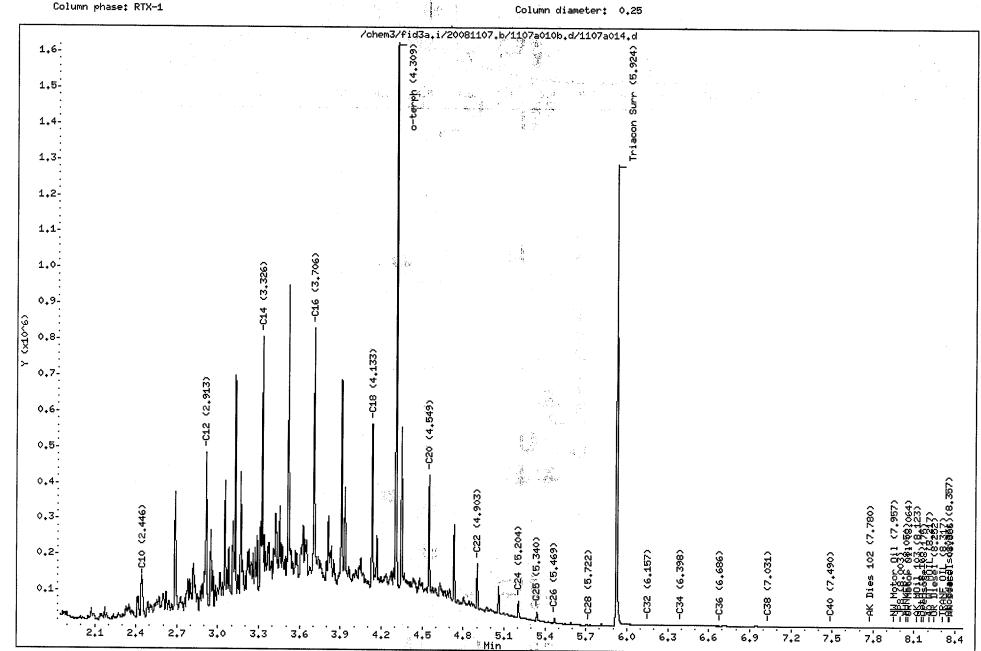
Surrogate	Area	Amount	%Rec
o-Terphenyl	797489	38.4	85.4
Triacontane	733111	37.6	83.5

mo 11/11/08

02

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	20751.8 19500.9 23556.5 16911.5 12615.8 21543.0 9153.0 11362.0 17141.6 12823.0 15825.3 21174.8 9368.4 8936.8 6234.4	04-NOV-2008 07-NOV-2008 11-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 04-NOV-2008 05-FEB-2007 04-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081107.b/1107a010b.d/1107a014.d


Date: 07-NOV-2008 16:07

Client ID:

Sample Info: NY44LCSDW1

Instrument: fid3a.i

Operator: ms

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY44

Matrix: Water

Project: PHASE II

Date Received: 11/05/08

025173

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
08-30172-110708MB	Method Blank	500 mL	1.00 mL	11/07/08
08-30172-110708LCS	Lab Control	500 mL	1.00 mL	11/07/08
08-30172-110708LCSD	Lab Control Dup	500 mL	1.00 mL	11/07/08
08-30172-NY44K	TDP16-GW-081105	500 mL	1.00 mL	11/07/08
08-30173-NY44L	TDP18-GW-081105	500 mL	1.00 mL	11/07/08
08-30174-NY44M	TDP25-GW-081105	500 mL	1.00 mL	11/07/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Page 1 of 1 Matrix: Soil

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Received: 11/05/08

Data Release Authorized: Reported: 11/21/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-111408 08-30165	Method Blank HC ID:	11/14/08	11/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 100%
NY44D 08-30165	TDP19-4-081105 HC ID: DRO/MOTOR OII	11/14/08	11/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.6 13	23 110 93.1%
NY44J 08-30171	TDP25-9-081105 HC ID: DRO/MOTOR OII	11/14/08	11/20/08 FID3A	1.00 5.0	Diesel Motor Oil o-Terphenyl	26 52	61 340 91.4%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

PC M21/08

19 TS.

Last Mark

Conc

Data file: /chem3/fid3a.i/20081119.b/1119a043.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Shift

Height

Instrument: fid3a.i

Operator: ms

Compound

Report Date: 11/20/2008 Macro: FID:3A111308

RT

ARI ID: NY44MBS1

Client ID:

Range

Injection: 20-NOV-2008 05:29

Total Area

Dilution Factor: 1

=========	=======	=======	========	=======	==			
Toluene	1.772	-0.001	75275	74570	GAS	(Tol-C12)	1154042	18
C8	1.875	0.001	28923	19667	DIESEL	(C12-C24)	179420	12
C10	2.416	-0.004	11772	13731	M.OIL	(C24-C38)	357485	30
C12	2.893	-0.002	4318	3382	AK-102	(C10-C25)	402042	21
C14	3.310	0.002	2192	1738	AK-103	(C25-C36)	289652	29
C16	3.690	0.006	1252	638	OR.DIES	(C10-C28)	467594	24
C18	4.102	0.001	598	106	OR.MOIL	(C28-C40)	367232	36
C20	4.507	-0.009	979	840	JET-A	(C10-C18)	337414	20
C22	4.887	0.014	1056	963	MIN.OIL	(C24-C38)	357485	28
C24	5.174	-0.002	1336	1026	MSPIRIT	(Tol-C12)	1154042	73
C25	5.308	-0.004	1658	1150	İ			
C26	5.437	-0.002	2082	1765	İ			

FID:3A RESULTS

Area

C28 0.006 5.680 3162 1904 C32 6.100 -0.002 4107 4801 6.333 -0.002 4256 1260 334 Filter Peak 8.441 -0.007 2399 1432 JP-4 (Tol-C14) 1221764 108 ∕C36 🦈 6.603 -0.003 3795 2319 CREOSOT (Ç8-C22) 992848 159 C38 6.937 -0.002 3232 1340 7.369 -0.003 2846 1921 | BUNKERC (C10 - @38) 756280 85 AZDIESEL (C10-C22) 318855 20 AZMOIL (C22-C32) 183327 28

Range Times: NW Diesel (2.946 - 5.226) NW Gas (1.724 - 2.946) NW M.Oil (5.226 - 6.989)

AK102 (2.370 - 5.262) AK103 (5.262 - 6.655) Jet A(2.370 - 4.150)

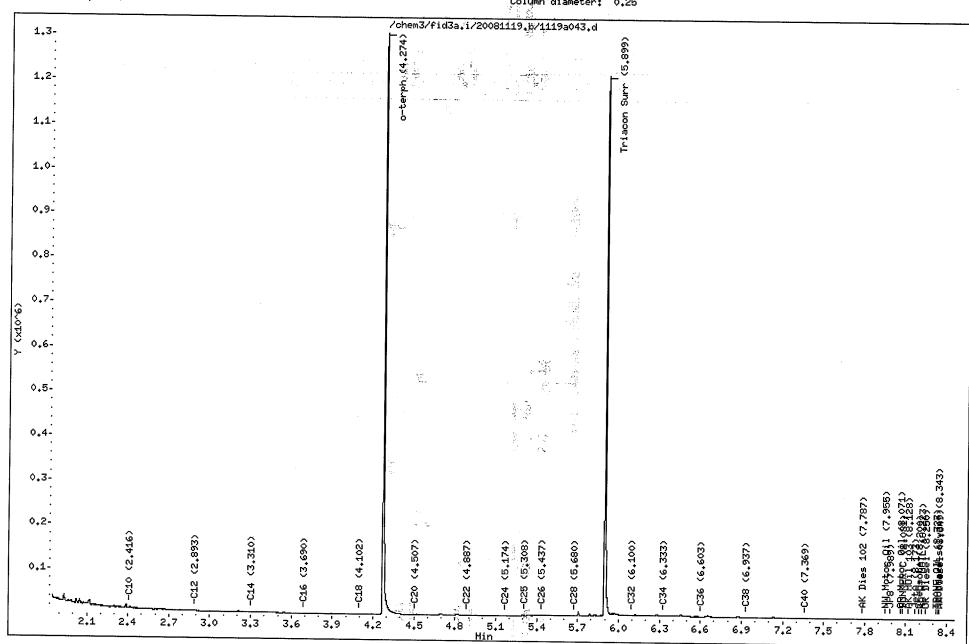
Surrogate	Area	Amount	%Rec
o-Terphenyl	779696	45.0	100.0
Triacontane	697441	41.9	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
0200000	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a043.d

Date : 20-NOV-2008 05:29

Client ID:


Sample Info: NY44MBS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

PZ 11/11/08

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081119.b/1119a075.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY44D Client ID:

Injection: 20-NOV-2008 13:15

. d. 70) (J. E.

Dilution Factor: 1

Compound	RT	Shift	FID: Height	3A RESUI Area		ange	Total Area	Conc	
Toluene	 1.771	-0.003	======== 128137	101625	GAS	========= (Tol-C12)	======================================	====== 18	
C8	1.873	-0.001	27768	27604	DIESEL	,	2629076		nho
C10	2.418	-0.002	13657	25878	M.OIL		9454485	806	Me
C12	2.893	-0.003	9959	8354	AK-102	(C10-C25)	3083003	162	/ 🗸 τ
C14	3.306	-0.002	10867	7632	AK-103	(C25-C36)	8419064	832	
C16	3.681	-0.003	12488	10316	OR.DIES	(C10-C28)	5423020	277	
C18	4.096	-0.004	14835	17794	OR.MOIL	(C28-C40)	7667306	760	
C20	4.515	-0.001	25245	23485	JET-A		957360	57	
C22	4.872	0.000	44012	53616	MIN.OIL		9454485	737	
C24	5.182	0.006	67746	68923	MSPIRIT		1180585	.75	
C25	5.321	0.008	103268	88216		,,	1100303	,,,	
C26	5.442	0.002	79428	54408	İ				
C28	5.677	0.003	109686	33919	İ				
C32	6.099	-0.003	131561	79236	İ	ფ ო			ħ.
C34	6.341	0.007	91297	28125	İ	237:			1.84. - ()
Filter Peak	8.445	-0.003	9449	4618	JP-4	(Tol-C14)	1338330	118	
C36	6.609	0.004	62349	47243	CREOSOT	(C8-C22)	2685883	431	
C38	6.935	-0.004	38405	9815	İ				
C40	7.369	-0.003	22333	9938	BUNKERC	(C10-C38)	12388037	1386	
The state of the s	0-C22) 2-C32)		25219 126 6363 1035	======	========	=========	======================================	:====	

Range Times: NW Diesel(2.946 - 5.226) NW Gas(1.724 - 2.946) NW M.OFD(5.226 - 6.989)

AK102(2.370 - 5.262) AK103(5.262 - 6.655) Jet A(2.370 - 4.150)

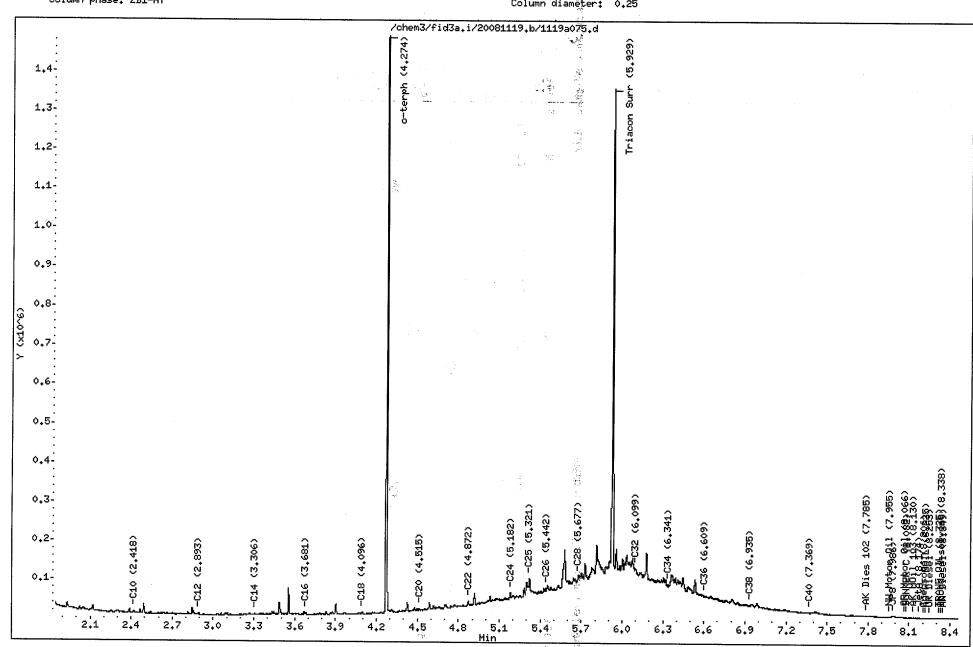
Surrogate	Area	Amount	%Rec
	 725306 664211	41.9	93.1 88.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 12-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008
Min Spirit OR Diesel OR M.Oil	15825.3 19612.0	15-APR-2005
Bunker C Creosote	10092.0 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a075.d

Date : 20-NOV-2008 13:15

Client ID:


Sample Info: NY44D

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms.

Column diameter: 0.25

PC 11/21/08

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081119.b/1119a047.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY44J Client ID:

Injection: 20-NOV-2008 06:27

Dilution Factor: 5

	1	י עדי	SA	KEO	OTIT
f+	Uniaht		7\ 1	rea	

Compound	RT	Shift	Height	Are	a	Ra	ange	To	otal Area	Conc
=========	======	=======	======	======	====					
Toluene	1.772	-0.002	70250	65	244	GAS	(Tol-C12)		1121255	17
C8	1.874	0.001	30028	26	025	DIESEL	(C12-C24)		1787128	118
C10	2.427	0.007	11301	8	625	M.OIL	(C24-C38)		7663446	653
C12	2.893	-0.003	4970	3	769	AK-102	(C10-C25)		2134720	112
C14	3.308	0.000	4683	2	732	AK-103	(C25-C36)		6722707	664
C16	3.686	0.003	6052	4	147	OR.DIES	(C10-C28)		4026612	205
C18	4.097	-0.004	7803	4	033	OR.MOIL	(C28-C40)		6352522	629
C20	4.515	-0.002	14654	10	384	JET-A	(C10-C18)		633887	38
C22	4.874	0.001	26415	8	384	MIN.OIL	(C24-C38)		7663446	598
C24	5.173	-0.003	43518	51	586	MSPIRIT	(Tol-C12)		1121255	71
C25	5.311	-0.001	49905	10	932	İ				
C26	5.437	-0.002	64503	39	851					
C28	5.672	-0.002	90572	10	810	į ·		**		
C32	6.109	0.007	107709	74	665	1970 ·				
C34	6.332	-0.002	76575	27	354	(語) (2.43)		الر	1 :	
Filter Peak	8.446	-0.002	8379	2	649	JP-4	(Tol-C14)	4)	1228749	108
C36	6.606	0.001	56109	8	924	CREOSOT	(C8-C22)	r r	2009402	322
C38	6.941	0.002	39032	7	669	Ì		1		
Ç40	7.370	-0.002	22419	6	991	BUNKERC	(C10-C38)	.41.	9691162	1084
AZDIESEL (C1	0-C22)	13:	======= 17087	82	====		:=======	=====	*=======	
	2-C32)		06607	840						

Range Times: NW Diesel(2.946 - 5.226) NW Gas(1.724 - 2.946) NW M.Oid(5.226) - 6.989)

AK102(2.370 - 5.262) AK103(5.262 - 6.655) Jet A(2.370 - 4.150)

Surrogate	Area	Amount	%Rec
o-Terphenyl	142627	8.2	91.5
Triacontane	123418	7.4	82.4

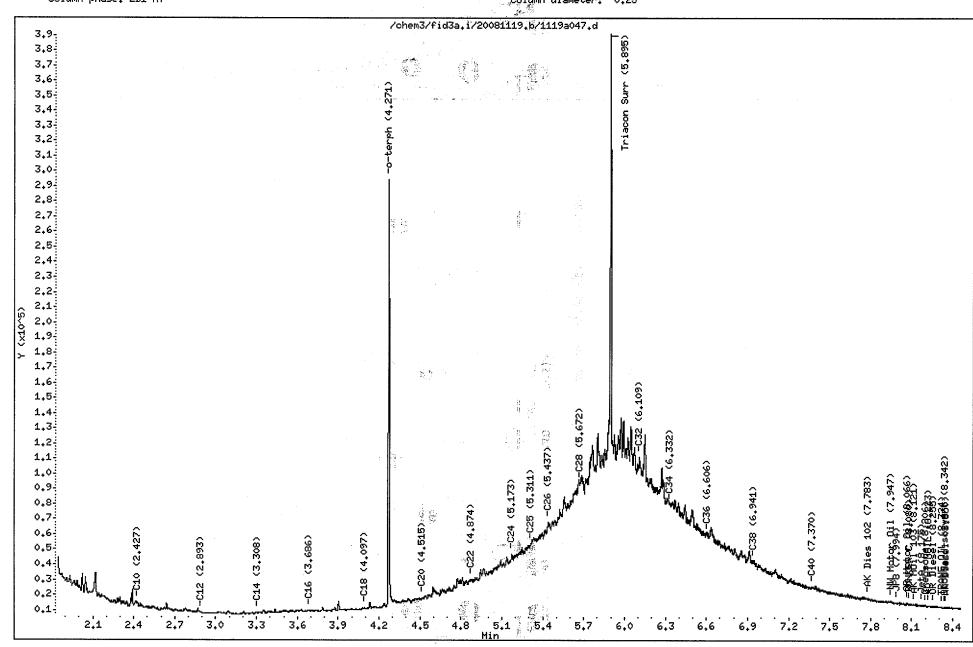
Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

3:73

Data File: /chem3/fid3a.i/20081119.b/1119a047.d

Date : 20-NOV-2008 06:27

Client ID:


Sample Info: NY44J,5

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Client ID	OTER	TOT OUT
111408MBS	100%	0
111408LCS	101%	0
111408LCSD	98.9%	0
TDP19-4-081105	93.1%	0
TDP25-9-081105	91.4%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(52-121)

(48-119)

Prep Method: SW3546

Log Number Range: 08-30165 to 08-30171

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-111408

LCS/LCSD

Lab Sample ID: LCS-111408 LIMS ID: 08-30165

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: NA

Date Received: NA

Date Extracted LCS/LCSD: 11/14/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 11/20/08 05:43

LCSD: 11/20/08 05:58

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

Instrument/Analyst LCS: FID3A/PKC

Dilution Factor LCS: 1.00

LCSD: FID3A/PKC

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	124	150	82.7%	123	150	82.0%	0.8%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

101% 98.9%

Results reported in mg/kg
RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081119.b/1119a044.d Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY44LCSS1

Client ID:

Injection: 20-NOV-2008 05:43

Dilution Factor: 1

			FI	D:3A RESUI	TS			
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
==========	=======	=======	=======	========	=======	========		======
Toluene	1.771	-0.002	115035	142231	GAS	(Tol-C12)	5173256	79
C8	1.871	-0.003	54401	52461	DIESEL	(C12-C24)	18789553	1241
C10	2.418	-0.003	315399	178563	M.OIL	(C24-C38)	592425	51
C12	2.894	-0.002	633860	336663	AK-102	(C10-C25)	22411276	1180
C14	3.307	-0.001	823639	380694	AK-103	(C25-C36)	504767	50
C16	3.683	-0.001	811872	595081	OR.DIES	(C10-C28)	22710651	1158
C18	4.102	0.002	540114	410963	OR.MOIL	(C28-C40)	326342	32
C20	4.517	0.000	420794	292179	JET-A	(C10-C18)	16964961	1008
C22	4.872	0.000	173499	126489	MIN.OIL	(C24-C38)	592425	46
C24	5.175	-0.001	74119	52215	MSPIRIT	(Tol-C12)	5173256	327
C25	5.310	-0.002	42352	46961	Ì			
C26	5.439	-0.001	23938	29534	İ		1. 4	
C28	5.673	-0.001	8102	9572	İ		1,11	
C32	-6.111	0.009	6089	10249	İ			SOF.
C34	6.338	0.004	3560	2479	İ	5.6%		
Filter Peak	8.448	0.000	2368	943	JP-4	(Tol-C14)	9584191	844
C36 ್ತ್	6.608	0.003	3170	1449	CREOSOT	(C8-C22)	22927032	3677
C38	6.938	-0.001	2868	1825	İ	į	,	30.,
C40	7.373	0.001	2717	865	BUNKERC	(C10'-C3:8:)	22969386	2570
AZDIESEL (C1	.0-C22)	======== 2103	======== 34148 132	========	=======	============	===========	=====
	(2-C32)		6874 17				2 1.	

Range Times: NW Diesel(2.946 - 5.226) NW Gas(1.724 - 2.946) NW M.O. (5.226 - 6.989).

AK102(2.370 - 5.262) AK103(5.262 - 6.655) Jet A(2.370 - 4.150)

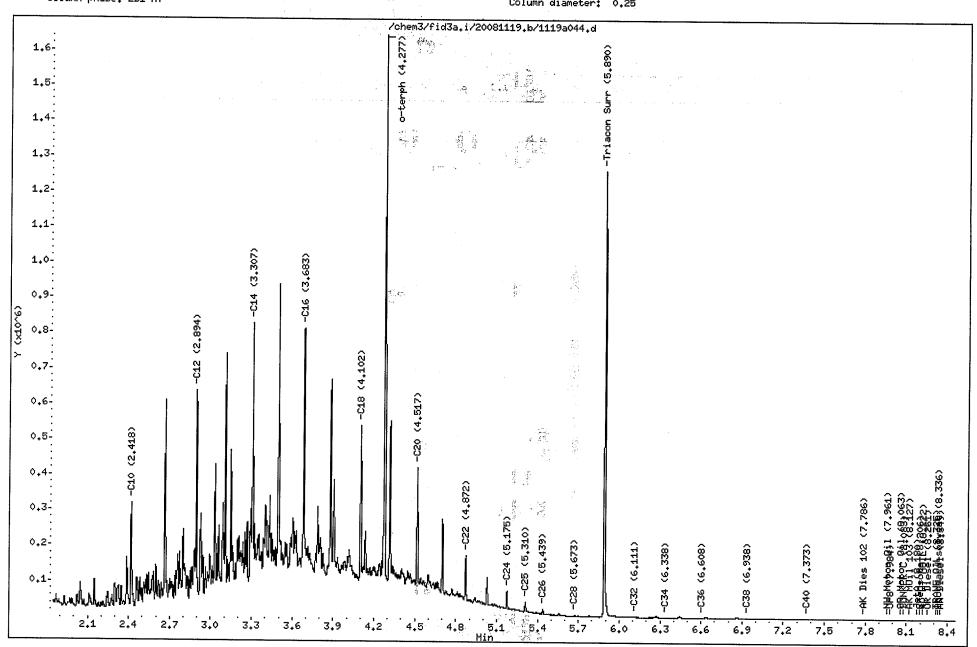
Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	787910 705946	45.5 42.4	101.1	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
OR M.Oil Bunker C Creosote	10092.0 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a044.d

Date : 20-NOV-2008 05:43

Client ID:


Sample Info: NY44LCSS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

P2 112/188

torates g.

9.0

Data file: /chem3/fid3a.i/20081119.b/1119a045.d

Method: /chem3/fid3a.i/20081119.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms Report Date: 11/20/2008 Macro: FID:3A111308 ARI ID: NY44LCSDS1

Client ID:

Injection: 20-NOV-2008 05:58

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Rai	nge	Total Area	Conc
===========	=======		==========	=======	=======	=======		=
Toluene	1.771	-0.002	157101	153367	GAS	(Tol-C12)	5112551	78
C8	1.871	-0.002	51989	51172	DIESEL	(C12-C24)	18653313	1232
C10	2.418	-0.002	309734	175482	M.OIL	(C24-C38)	607894	52
C12	2.894	-0.002	610088	332689	AK-102	(C10-C25)	22266571	1173
C14	3.307	0.000	789993	382035	AK-103	(C25-C36)	510775	50
C16	3.684	0.000	814667	575833	OR DIES	(C10-C28)	22577906	1151
C18	4.103	0.002	536354	408349	OR.MOIL	(C28-C40)	305708	30
C20	4.518	0.001	405955	313972	JET-A	(C10-C18)	16706957	993
C22	4.872	0.000	180358	137023	MIN.OIL	(C24-C38)	607894	47
C24	5.177	0.001	73782	54785	MSPIRIT	(Tol-C12)	5112551	323
C25	5.313	0.000	42907	46549			er .	
C26	5.442	0.003	24189	20845			**,	
C28	5.678	0.004	7926	9318	Ì			
C32	6.105		3543	1195	1 7₹ 1		9.30	
C3,4et	6.333	-0.001	3316	2376	1.4° .		Ar I	
Filter Peak	8447	. - 0.001	2218	704	JP-4	(Tol-C14)	679493193	-8 .8 36 .
, C36	6.604	-0.001	2977	1719	CREOSOT	(C8-C22)	22780524	3.654
C38	6.940	0.002	2680	480			1.	
C40	7.374	0.002	2518	1553	BUNKERC	(C10-C38)	22824939	2554
AZDIESEL (C1	0-C22)	211	23379 131	======== 5	========	========	=======================================	=====
	2-C32)		00559 17:					
=======================================	======	=======	========	=======	========	========	========	=====

Range Times: NW Diesel (2.946 - 5.226) NW Gas (1.724 - 2.946) NW M.Oil (5.226 6.989)

AK102 (2.370 - 5.262) AK103 (5.262 - 6.655) Jet A(2.370 - 4.150)

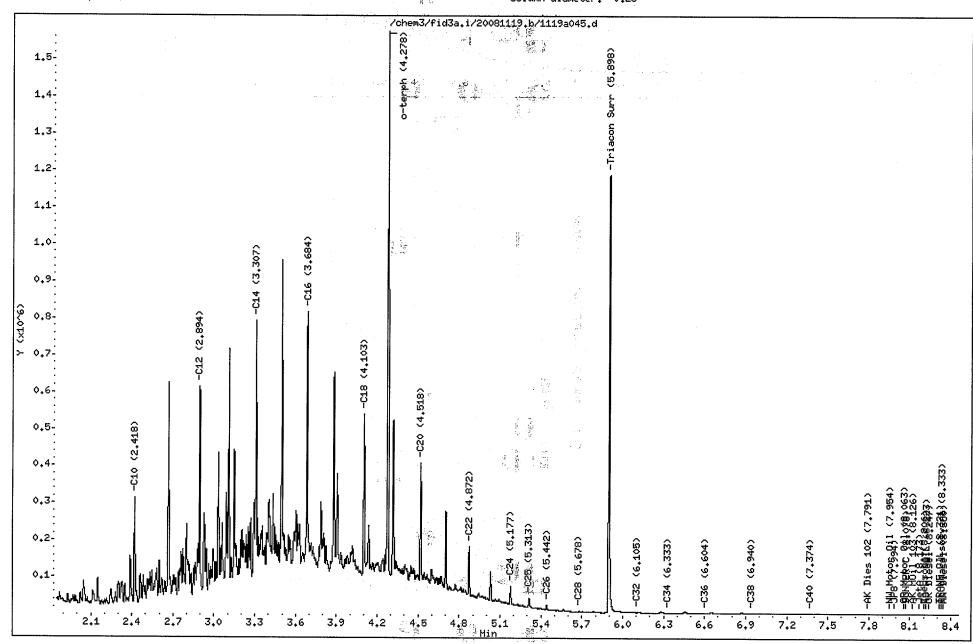
Surrogate	Area	Amount	%Rec
o-Terphenyl	771104	44.5	98.9
Triacontane	699736	42.0	93.4

. 1		
Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	16652.3	18-NOV-2008
Gas		
	65383.2	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081119.b/1119a045.d

Date : 20-NOV-2008 05:58

Client ID:


Sample Info: NY44LCSDS1

Column phase: ZB1-HT

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Soil

Date Received: 11/05/08

ARI Job: NY44 Project: PHASE II

025173

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-30165-111408MB1 08-30165-111408LCS1 08-30165-111408LCSD1 08-30165-NY44D 08-30171-NY44J	Method Blank Lab Control Lab Control Dup TDP19-4-081105 TDP25-9-081105	10.0 g 10.0 g 10.0 g 7.56 g 9.71 g	1.00 mL 1.00 mL 1.00 mL 1.00 mL	- D	11/14/08 11/14/08 11/14/08 11/14/08 11/14/08

TOTAL METALS

Page 1 of 1

Sample ID: TDP16-3-081105

SAMPLE

Lab Sample ID: NY44A LIMS ID: 08-30162 Matrix: Soil

Data Release Authorized

Reported: 11/21/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08

Date Received: 11/05/08

Percent Total Solids: 74.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	7	7	
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.3	0.3	U
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.7	18.1	
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.3.	28.8	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	3	4	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44B LIMS ID: 08-30163

Matrix: Soil

Data Release Authorized

Reported: 11/21/08

Sample ID: TDP17-4-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Percent Total Solids: 74.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	7	7	
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.3	0.3	Ü
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.7	21.3	_
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.3	34.3	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	3	5	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.11	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Sample ID: TDP18-4-081105

SAMPLE

Lab Sample ID: NY44C LIMS ID: 08-30164

Matrix: Soil

Data Release Authorized Reported: 11/21/08

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Percent Total Solids: 75.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	6	12	
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.3	0.6	
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.6	26.1	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	3	28	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.23	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44D LIMS ID: 08-30165

Matrix: Soil

Data Release Authorized Reported: 11/21/08

Percent Total Solids: 75.8%

Sample ID: TDP19-4-081105

SAMPLE

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	QQ
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	6	6	Ū
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.3	0.3	U
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.6	12.9	
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.3	16.4	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	3	30	
CLP	11/12/08	747 1 A	11/14/08	7439-97-6	Mercury	0.05	0.07	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44E

LIMS ID: 08-30166 Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NY44-The Boeing Company Project: PHASE II

Sample ID: TDP20-3-081105

SAMPLE

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Percent Total Solids: 75.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	6	6	Ū
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.3	0.3	Ū
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.6	14.5	•
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	3	3	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44F

LIMS ID: 08-30167

Matrix: Soil
Data Release Authorized

Reported: 11/21/08

Percent Total Solids: 89.7%

Sample ID: TDP21-3-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	5	5	U
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.2	0.3	
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.5	15.1	
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.2	13.3	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	2	2	IJ
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	Ŭ

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS Page 1 of 1

Lab Sample ID: NY44G LIMS ID: 08-30168

Matrix: Soil

Data Release Authorized Reported: 11/21/08

Sample ID: TDP22-3-081105

SAMPLE

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Percent Total	Solids:	89.	9%
---------------	---------	-----	----

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	5	5	U
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.2	0.2	IJ
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.5	24.0	•
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.2	15.6	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	2	4	
CLP	11/12/08	7471A	11/14/08	7439 - 97-6	Mercury	0.04	0.04	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44H

LIMS ID: 08-30169

Matrix: Soil

Data Release Authorized Reported: 11/21/08

110001000. 11721700

Sample ID: TDP23-3-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Percent Total Solids: 89.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	5	5	U
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.5	24.6	
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.2	17.7	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	2	11	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.11	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Sample ID: TDP25-9-081105

SAMPLE

Lab Sample ID: NY44J LIMS ID: 08-30171

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Percent Total Solids: 94.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	5	5	U
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.5	35.8	-
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.2	14.3	
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	2	2	
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.04	0.04	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44D

LIMS ID: 08-30165

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

Sample ID: TDP19-4-081105

DUPLICATE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	6 U	10	50.0%	+/- 6	L
Cadmium	6010B	0.3 U	0.5	50.0%	+/- 0.3	L
Chromium	6010B	12.9	19.8	42.2%	+/- 20%	*
Copper	6010B	16.4	30.6	60.4%	+/- 20%	*
Lead	6010B	30	70	80.0%	+/- 20%	*
Mercury	7471A	0.07	0.08	13.3%	+/- 0.05	L

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Sample ID: TDP19-4-081105 MATRIX SPIKE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Lab Sample ID: NY44D LIMS ID: 08-30165 Matrix: Soil

Data Release Authorized: Reported: 11/21/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Arsenic	6010B	6 U	267	260	103%	
Cadmium	6010B	0.3 U	60.9	64.9	93.8%	
Chromium	6010B	12.9	82.5	64.9	107%	
Copper	6010B	16.4	94.4	64.9	120%	
Lead	6010B	30	305	260	106%	
Mercury	7471A	0.07	0.57	0.476	105%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44LCS

LIMS ID: 08-30167

Matrix: Soil

Data Release Authorized

Reported: 11/21/08

Sample ID: LAB CONTROL

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	211	200	106%	
Cadmium	6010B	48.9	50.0	97.8%	
Chromium	6010B	50.9	50.0	102%	
Copper	.6010B	52.0	50.0	104%	
Lead	6010B	217	200	108%	
Mercury	7471A	1.07	1.00	107%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY44MB

LIMS ID: 08-30167

Matrix: Soil

Data Release Authorized:

Reported: 11/21/08

Sample ID: METHOD BLANK

QC Report No: NY44-The Boeing Company Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/12/08	6010B	11/20/08	7440-38-2	Arsenic	5	5	U
3050B	11/12/08	6010B	11/20/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/12/08	6010B	11/20/08	7440-47-3	Chromium	0.5	0.5	U
3050B	11/12/08	6010B	11/20/08	7440-50-8	Copper	0.2	0.2	U
3050B	11/12/08	6010B	11/20/08	7439-92-1	Lead	2	2	U
CLP	11/12/08	7471A	11/14/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: NY44K

LIMS ID: 08-30172

Matrix: Water

Data Release Authorized

Reported: 11/21/08

Sample ID: TDP16-GW-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	35.0	
6010B	11/10/08	6010B	11/20/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/20/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/20/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: NY44L

LIMS ID: 08-30173 Matrix: Water

Data Release Authorized:

Reported: 11/21/08

Sample ID: TDP18-GW-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	1.8	
6010B	11/10/08	6010B	11/20/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/20/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/20/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: NY44M LIMS ID: 08-30174 Matrix: Water

Data Release Authorized Reported: 11/21/08

Sample ID: TDP25-GW-081105

SAMPLE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	4.0	
6010B	11/10/08	6010B	11/20/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/20/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/20/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	Ŭ

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: NY44K LIMS ID: 08-30172 Matrix: Water

Data Release Authorized: Reported: 11/21/08

Sample ID: TDP16-GW-081105

DUPLICATE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08 Date Received: 11/05/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Arsenic	200.8	35.0	35.5	1.4%	+/- 20%		
Cadmium	6010B	2 U	2 U	0.0%	+/- 2	L	
Chromium	6010B	5 U	5 U	0.0%	+/ - 5	L	
Copper	6010B	2 U	2 U	0.0%	+/- 2	L	
Lead	200.8	1 U	1 U	0.0%	+/- 1	L	
Mercury	7470A	0.1 U	0.1 U	0.0%	+/- 0.1	${f L}$	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: NY44K

LIMS ID: 08-30172

Matrix: Water

Data Release Authorized Reported: 11/21/08

Sample ID: TDP16-GW-081105
MATRIX SPIKE

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: 11/05/08
Date Received: 11/05/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Arsenic	200.8	35.0	57.1	25.0	88.4%	
Cadmium	6010B	2.00 U	492	500	98.4%	
Chromium	6010B	5.00 U	491	500	98.2%	
Copper	6010B	2.00 U	524	500	105%	
Lead	200.8	1.00 U	23.0	25.0	92.0%	
Mercury	7470A	0.100 U	1.04	1.00	104%	

Reported in µg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: NY44LCS

LIMS ID: 08-30173

Matrix: Water

Data Release Authorized

Reported: 11/21/08

Sample ID: LAB CONTROL

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	23.3	25.0	93.2%	
Cadmium	6010B	488	500	97.6%	
Chromium	6010B	490	500	98.0%	
Copper	6010B	490	500	98.0%	
Lead	200.8	23	25	92.0%	
Mercury	7470A	2.2	2.0	110%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: NY44MB

LIMS ID: 08-30173

Matrix: Water

Data Release Authorized

Reported: 11/21/08

Sample ID: METHOD BLANK

QC Report No: NY44-The Boeing Company

Project: PHASE II

025173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/14/08	7440-38-2	Arsenic	0.2	0.2	U
6010B	11/10/08	6010B	11/20/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/20/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/20/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/14/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

 $\begin{array}{c} \mbox{U-Analyte undetected at given RL} \\ \mbox{RL-Reporting Limit} \end{array}$

November 25, 2008

Tim Syverson Landau Associates, Inc. 130 Second Ave Edmonds, WA 98020

RE: Project: Boeing Thompson Seattle/Phase II, 025173

ARI Job No.: NY64

Dear Tim:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, the analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted eight soil samples, six water samples, and a trip blank on November 6, 2008. Four coolers were received with temperatures of 3.4, 5.0, 5.4 and 8.6°C. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, NWTPH-Dx, Total, Dissolved, and TCLP Metals, as requested. Please note that the SIM PAH analysis was cancelled for all soil samples.

Volatiles Analyses: Continuing Calibrations had compounds outside of the 20% control limit for the 11/10/08, 11/12/08, and 11/13/08 volatiles analyses, but were accepted outliers under ARI SOPs. No further corrective action was taken.

The internal standard percent differences of d4-1,4-Dichlorobenzene were outside the control limits for samples **TDP28-11-081106** and **TDP31-12-081106**. The samples were reanalyzed and all internal standard percent differences were within control limits. Both sets of data have been included in this report for your review. No further corrective action was required.

The 5 mL purge LCS percent recovery of Chloroethane was outside the control limits high for LCS-111008. The LCSD percent recovery was within control limits. No further corrective action was required.

Semivolatiles Analyses: The LCS and LCSD percent recoveries of Benzoic Acid fell outside the control limits for LCS-111208. No further corrective action is required for this compound as it is a known poor performer.

Several LCSD percent recoveries were outside the control limits high for LCS-111208. All LCS percent recoveries were within control limits. No further corrective action was required.

The LCS percent recovery of 2,4-Dinitrotoluene was outside the control limits high for LCS-111108. The LCSD percent recovery was within control limits. No further corrective action was required.

There were no anomalies associated with the SIM PAH analysis.

NWTPH-HCID Analyses: Please note that all samples that were detected for Diesel or Motor Oil were re-analyzed by method NWTPH-Dx.

NWTPH-Dx Analyses: All water samples were extracted and analyzed outside the method recommended holding times per client request.

Metal Analyses: The duplicate relative percent difference lead was outside the control limit for sample **TPD26-8-081106**. All other quality control parameters were met for lead. No further corrective action was required.

Barium was present in the TCLP method blank at a level that was greater than the reporting limit. No further corrective action was required.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

Seattle (Edmonds) (425) 778-0907

☐ **Tacoma** (253) 926-2493

☐ **Spokane** (509) 327-9737

5.48.6 5.0,3.4

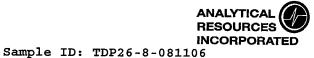
Date 11/6/08				
Pageof				

☐ **Portland (Tigard)** (503) 443-6010

Chain-of-Custody Record

Date 1	16/	80
Page	of_	

Project Name Books Thank	San Project No. 07	3173	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Testing Parameters	Turnaround Time
Project Location/Event	式.				Standard
Sampler's Name	Balo				/ Accelerated
1	Alm	· /	0/3/ /fa/		
	TSUVERSON.	N Hallacon E	TA/YM)U	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /
Send Results To K NOVFLY	1 symbol 1	No. of	AND NUS	7/2/3/3/ /	
Sample I.D. Date		Containers	5/2/4/0/4	14103//	Observations/Comments
11/11 301180-8-0580T	\$ 735 5	7 XX	XXXX		Allow water samples to settle, collect aliquot from clear portion
10PZ7. U.OBNOTO ''	815	XX	X		áliquot from clear portion
10Pz9/11.08/106	1845 1145		XXXX		NWTPH-Dx:
10P30~11.081106	1635		XXXX		run acid wash/silica gel cleanup run samples standardized to
TDP31-12-081106	0011	W X	XXXX		product
TD832-11.081100	1130 V	V XX			Analyze for EPH if no specific
LDESG CAMORIOG	0015 W	16 X	XXXX	X	product identified
10008 GMO81100	0190	1 ×	メメメメ	X	VOC/BTEX/VPH (soll):
10729.6W.0BNOE	S00		XXXX	X	non-preservedpreserved w/methanol
1731-GN. 081100	1130	<i>V</i> ×	$\times \times \times \times$	\times	preserved w/sodium bisulfate
TH. Sourp. 08400.	1300	(D ××	XXXX		Freeze upon receipt
TH. Druni 1. Soi 1.	1500 g 1345 N	アメメ	$\times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $		Dissolved metal water samples field filtered
र्या	(53) (0				Other H-SWMO:081106
					- The factor from the same
Choolel Chipment/Headling					
Special Shipment/Handling or Storage Requirements Method of Shipment					
Relinquished by Received by Relinq					Received by
Signature Sign					Signature
Mork Brinner Printed Name Printed Name Printed Name AP			Printed Name		Printed Name
Company Asso crates		Company		Company	
Date 1/6/03 Time 1636	Date 11 06 08		Date	Time	Date Time


	Analytical Resources, Incorporated Analytical Chemists and Consultants
--	--

Cooler Receipt Form

Date:

ARI Client Boeing	Project Name: Phase II
OC 100.	Delivered by: Many
assigned ARI Job No: NY (pU	Tracking No:
reliminary Examination Phase:	
Were intact, property signed and dated custody s	seals affaction to the outside of the control of th
Were custody papers included with the cooler?	sears attached to the outside of to cooler? YES (NO)
Were custody papers properly filled out (ink. sign.	red etc.)
Record cooler temperature (recommended 2.0-6	0 °C for chemistry 3,45,486,50c
	5,45,40,00
ooler Accepted by:	KR Date: 110608 Time: 1636
Complete custody forms	s and attach all shipping documents
og-In Phase:	
Vas a temperature blank included in the cooler?	
/hat kind of packing material was used?	
/as sufficient ice used (if appropriate)?	
ere all bottles sealed in individual plastic bags?	YES) NO
id all bottle arrive in good condition (unbroken)?	
ere all bottle labels complete and legible?	
d all bottle labels and tags agree with custody pa	apers? (YES) NO
ere all bottles used correct for the requested ana	
any of the analyses (bottles) require preservation	on? fattach accounts
ere all VOC years free of air bubbles?	NA VEC NO OF U
as sufficient amount of sample sent in each bottle	e?
	Date: 11/4/08 Time: 935
** Notify Project Manager	r of discrepancies or concerns **
in oject manager	r or discrepancies or concerns **
plain diagrama	
plain discrepancies or negative responses:	1 220- 0
There were 3 extra Samp	ples marked TDP26.9.681106
And TDP26.8.081106 (was missing 3, so they were
LANDER DSTDP26-8-08/16	OG. TH Driver C. 1
1099ta do 15 - Colin	OG. TH. Drum, Soil has one
extra voa. Trip blanks	, uaded to the end

Ву:

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY64A LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/12/08 16:48

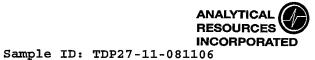
SAMPLE

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 7.00 g-dry-wt


Purge Volume: 5.0 mL Moisture: 17.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.4	< 1.4	U
67-64-1	Acetone	3.6	39	
75-15-0	Carbon Disulfide	0.7	< 0.7	U
75-35-4	1,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	< 0.7	U
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	5.1	
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.6	4.2	
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.6	< 3.6	U
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	66	
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.6	< 3.6	U
75-25-2	Bromoform	0.7	< 0.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.6	< 3.6	U
591-78-6	2-Hexanone	3.6	< 3.6	U
127-18-4	Tetrachloroethene	0.7	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	< 0.7	U
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	U
75-69-4	Trichlorofluoromethane	0.7	< 0.7	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.4	< 1.4	U
1330-20-7	m,p-Xylene	0.7	< 0.7	U
95-47-6	o-Xylene	0.7	< 0.7	U.

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	108%
d8-Toluene	100%
Bromofluorobenzene	98.9%

Page 1 of 1

Lab Sample ID: NY64B

LIMS ID: 08-30262

Matrix: Soil

Reported: 11/14/08

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 17:15

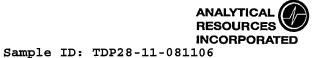
SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08


Sample Amount: 5.40 g-dry-wt

Purge Volume: 5.0 mL Moisture: 13.2%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.8	< 1.8	U
67-64-1	Acetone	4.6	25	
75-15-0	Carbon Disulfide	0.9	< 0.9	U
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.6	< 4.6	U
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.6	< 4.6	U
75-27-4	Bromodichloromethane	0.9	< 0.9	U
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	U
71-43-2	Benzene	0.9	< 0.9	U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.6	< 4.6	U
75-25-2	Bromoform	0.9	< 0.9	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.6	< 4.6	U
591-78-6	2-Hexanone	4.6	< 4.6	U
127-18-4	Tetrachloroethene	0.9	< 0.9 1	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9 (U
108-90-7	Chlorobenzene	0.9	< 0.9 (U
100-41-4	Ethylbenzene	0.9	< 0.9 (U
100-42-5	Styrene	0.9	< 0.9 T	Ū
75-69-4	Trichlorofluoromethane	0.9		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.8 T	U
1330-20-7	m,p-Xylene	0.9		IJ
95-47-6	o-Xylene	0.9	< 0.9 t	IJ

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	109%
d8-Toluene	99.7%
Bromofluorobenzene	97.6%

Page 1 of 1

Lab Sample ID: NY64C

LIMS ID: 08-30263 Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 11/12/08 17:42

QC Report No: NY64-The Boeing Company

SAMPLE

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 5.25 g-dry-wt

Purge Volume: 5.0 mL Moisture: 22.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	1.9	< 1.9	U
67-64-1	Acetone	4.8	72	
75-15-0	Carbon Disulfide	1.0	14	
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	5.4	
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	4.8	14	
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	4.8	< 4.8	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	4.8	< 4.8	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.8	< 4.8	U
591-78-6	2-Hexanone	4.8	< 4.8	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	1.4	
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.9	< 1.9	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	95.1%
Bromofluorobenzene	78.4%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TDP28-11-081106 Page 1 of 1

Lab Sample ID: NY64C LIMS ID: 08-30263

Matrix: Soil

Data Release Authorized; Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

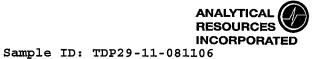
Date Analyzed: 11/13/08 14:36

REANALYSIS

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON 023173

Date Sampled: 11/06/08 Date Received: 11/06/08


Sample Amount: 6.40 g-dry-wt

Purge Volume: 5.0 mL Moisture: 22.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	U
74-83-9	Bromomethane	0.8	< 0.8	Ū
75-01-4	Vinyl Chloride	0.8	< 0.8	Ū
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.6	< 1.6	Ū
67-64-1	Acetone	3.9	48	
75-15-0	Carbon Disulfide	0.8	14	
75-35-4	1,1-Dichloroethene	0.8	< 0.8	U
75-34-3	1,1-Dichloroethane	0.8	4.4	
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	Ū
67-66-3	Chloroform	0.8	< 0.8	Ū
107-06-2	1,2-Dichloroethane	0.8	< 0.8	Ū
78-93-3	2-Butanone	3.9	8.8	
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	U
56-23-5	Carbon Tetrachloride	0.8	< 0.8	U
108-05-4	Vinyl Acetate	3.9	< 3.9	U
75-27-4	Bromodichloromethane	0.8	< 0.8	U
78-87-5	1,2-Dichloropropane	0.8	< 0.8	U
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	U
79-01-6	Trichloroethene	0.8	< 0.8	U
124-48-1	Dibromochloromethane	0.8	< 0.8	U
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	< 0.8	U
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	3.9	< 3.9	U
75-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.9	< 3.9	U
591-78-6	2-Hexanone	3.9	< 3.9	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	1.2	
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.6	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	95.2%
d8-Toluene	94.9%
Bromofluorobenzene	82.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 1

Lab Sample ID: NY64D LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 11/12/08 18:09 QC Report No: NY64-The Boeing Company

SAMPLE

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 7.11 g-dry-wt

Purge Volume: 5.0 mL Moisture: 17.3%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.4	< 1.4	U
67-64-1	Acetone	3.5	95	
75-15-0	Carbon Disulfide	0.7	22	
75-35-4	1,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	0.7	
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	< 0.7	U
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.5	20	
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.5	< 3.5	U
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	< 0.7	U
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.5	< 3.5	U
75-25-2	Bromoform	0.7	< 0.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.5	< 3.5	U
591-78-6	2-Hexanone	3.5	< 3.5	U
127-18-4	Tetrachloroethene	0.7	< 0.7	U
79-34-5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	0.9	
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	U
75-69-4 76-13-1	Trichlorofluoromethane	0.7	< 0.7	U
	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.4	U
1330-20-7 95-47-6	m,p-Xylene o-Xylene	0.7	< 0.7	U
JJ-4/-6	O-vàrene	0.7	< 0.7	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	97.8%
d8-Toluene	95.6%
Bromofluorobenzene	82.8%

Sample ID: TDP30-11-081106

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

SAMPLE

Lab Sample ID: NY64E

LIMS ID: 08-30265

Matrix: Soil

Data Release Authorized:

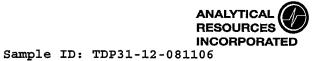
Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 18:36

Reported: 11/14/08

023173

Date Sampled: 11/06/08 Date Received: 11/06/08


Sample Amount: 4.64 g-dry-wt

Purge Volume: 5.0 mL Moisture: 34.5%

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	1.1	< 1.1 U
74-83-9	Bromomethane	1.1	< 1.1 U
75-01-4	Vinyl Chloride	1.1	< 1.1 U
75-00-3	Chloroethane	1.1	< 1.1 U
75-09-2	Methylene Chloride	2.2	< 2.2 U
67-64-1	Acetone	5.4	83
75-15-0	Carbon Disulfide	1.1	22
75-35-4	1,1-Dichloroethene	1.1	< 1.1 U
75-34-3	1,1-Dichloroethane	1.1	1.4
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1 U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1 U
67-66-3	Chloroform	1.1	< 1.1 U
107-06-2	1,2-Dichloroethane	1.1	< 1.1 U
78-93-3	2-Butanone	5.4	16
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1 U
56-23-5	Carbon Tetrachloride	1.1	< 1.1 U
108-05-4	Vinyl Acetate	5.4	< 5.4 U
75-27-4	Bromodichloromethane	1.1	< 1.1 U
78-87-5	1,2-Dichloropropane	1.1	< 1.1 U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1 U
79-01-6	Trichloroethene	1.1	< 1.1 U
124-48-1	Dibromochloromethane	1.1	< 1.1 U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1 U
71-43-2	Benzene	1.1	< 1.1 U
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1 U
110-75-8	2-Chloroethylvinylether	5.4	< 5.4 U
75-25-2	Bromoform	1.1	< 1.1 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.4	< 5.4 U
591-78-6	2-Hexanone	5.4	< 5.4 U
127-18-4	Tetrachloroethene	1.1	< 1.1 U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1 U
108-88-3	Toluene	1.1	< 1.1 U
108-90-7	Chlorobenzene	1.1	< 1.1 U
100-41-4	Ethylbenzene	1.1	< 1.1 U
100-42-5	Styrene	1.1	< 1.1 U
75-69-4	Trichlorofluoromethane	1.1	< 1.1 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.2	< 2.2 U
1330-20-7	m,p-Xylene	1.1	< 1.1 U
95-47-6	o-Xylene	1.1	< 1.1 U
95-47-6	o-Xylene	1.1	< 1.1 U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	97.1%
d8-Toluene	97.3%
Bromofluorobenzene	86.2%

Page 1 of 1

Lab Sample ID: NY64F LIMS ID: 08-30266

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 19:02

QC Report No: NY64-The Boeing Company

SAMPLE

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 5.76 g-dry-wt

Purge Volume: 5.0 mL Moisture: 22.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.7	< 1.7	U
67-64-1	Acetone	4.3	47	
75-15-0	Carbon Disulfide	0.9	4.8	
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.3	7.3	
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.3	< 4.3	U
75-27-4	Bromodichloromethane	0.9	< 0.9	U
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	Ū
71-43-2	Benzene	0.9	< 0.9	U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.3	< 4.3	U
75-25-2	Bromoform	0.9	< 0.9	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.3	< 4.3	U
591-78-6	2-Hexanone	4.3	< 4.3	U
127-18-4	Tetrachloroethene	0.9	< 0.9	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	6.0	
108-90-7	Chlorobenzene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	U
100-42-5	Styrene	0.9	< 0.9	U
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		16	
1330-20-7	m,p-Xylene	0.9	1.6	
95-47-6	o-Xylene	0.9	3.0	

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	111%
d8-Toluene	85.5%
Bromofluorobenzene	84.5%

Sample ID: TDP31-12-081106 REANALYSIS

Lab Sample ID: NY64F LIMS ID: 08-30266

LIMS ID: 08-30266 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

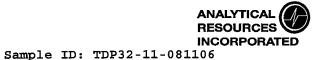
Date Analyzed: 11/13/08 15:03

Reported: 11/14/08

Project: BOEING THOMPSON
023173
Pate Sampled: 11/06/08

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 5.42 g-dry-wt


QC Report No: NY64-The Boeing Company

Purge Volume: 5.0 mL Moisture: 22.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.8	< 1.8	U
67-64-1	Acetone	4.6	29	
7 5-15-0	Carbon Disulfide	0.9	2.7	
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.6	< 4.6	U
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.6	< 4.6	U
75-27-4	Bromodichloromethane	0.9	< 0.9	U
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	U
71-43-2	Benzene	0.9	< 0.9	U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.6	< 4.6	U
75-25-2	Bromoform	0.9	< 0.9	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.6	< 4.6	U
591-78-6	2-Hexanone	4.6	< 4.6	U
127-18-4	Tetrachloroethene	0.9	< 0.9	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
108-90-7	Chlorobenzene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	U
100-42-5	Styrene	0.9	< 0.9	U
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.8	2.6	
1330-20-7	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	98.5%
d8-Toluene	98.5%
Bromofluorobenzene	87.7%

Page 1 of 1

SAMPLE

Lab Sample ID: NY64G

LIMS ID: 08-30267 Matrix: Soil

Data Release Authorized: Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 19:29

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 7.32 g-dry-wt

Purge Volume: 5.0 mL Moisture: 9.9%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.7	< 0.7	U
74-83-9	Bromomethane	0.7	< 0.7	U
75-01-4	Vinyl Chloride	0.7	< 0.7	U
75-00-3	Chloroethane	0.7	< 0.7	U
75-09-2	Methylene Chloride	1.4	< 1.4	U
67-64-1	Acetone	3.4	15	
75-15-0	Carbon Disulfide	0.7	0.9	
75-35-4	1,1-Dichloroethene	0.7	< 0.7	U
75-34-3	1,1-Dichloroethane	0.7	< 0.7	U
156-60-5	trans-1,2-Dichloroethene	0.7	< 0.7	U
156-59-2	cis-1,2-Dichloroethene	0.7	< 0.7	U
67-66-3	Chloroform	0.7	< 0.7	U
107-06-2	1,2-Dichloroethane	0.7	< 0.7	U
78-93-3	2-Butanone	3.4	< 3.4	U
71-55-6	1,1,1-Trichloroethane	0.7	< 0.7	U
56-23-5	Carbon Tetrachloride	0.7	< 0.7	U
108-05-4	Vinyl Acetate	3.4	< 3.4	U
75-27-4	Bromodichloromethane	0.7	< 0.7	U
78-87-5	1,2-Dichloropropane	0.7	< 0.7	U
10061-01-5	cis-1,3-Dichloropropene	0.7	< 0.7	U
79-01-6	Trichloroethene	0.7	< 0.7	U
124-48-1	Dibromochloromethane	0.7	< 0.7	U
79-00-5	1,1,2-Trichloroethane	0.7	< 0.7	U
71-43-2	Benzene	0.7	< 0.7	U
10061-02-6	trans-1,3-Dichloropropene	0.7	< 0.7	U
110-75-8	2-Chloroethylvinylether	3.4	< 3.4	U
75-25-2	Bromoform	0.7	< 0.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.4	< 3.4	U
591-78-6	2-Hexanone	3.4	< 3.4	U
127-18-4	Tetrachloroethene	0.7	< 0.7	U
79-34-5	1,1,2,2-Tetrachloroethane	0.7	< 0.7	U
108-88-3	Toluene	0.7	< 0.7	U
108-90-7	Chlorobenzene	0.7	< 0.7	U
100-41-4	Ethylbenzene	0.7	< 0.7	U
100-42-5	Styrene	0.7	< 0.7	U
75-69-4	Trichlorofluoromethane	0.7	< 0.7	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.4	< 1.4	U
1330-20-7	m,p-Xylene	0.7	< 0.7	U
95-47-6	o-Xylene	0.7	< 0.7	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	99.3%
Bromofluorobenzene	99.8%

Sample ID: TH-DRUM1-SOIL SAMPLE

Lab Sample ID: NY64M

LIMS ID: 08-30273

Matrix: Soil
Data Release Authorized:
Reported: 11/14/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 5.48 g-dry-wt

Purge Volume: 5.0 mL Moisture: 13.1%

Instrument/Analyst: FINN5/PAB
Date Analyzed: 11/12/08 19:56

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.8	< 1.8	U
67-64-1	Acetone	4.6	45	
75-15-0	Carbon Disulfide	0.9	4.3	
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.6	7.1	
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.6	< 4.6	U
75-27-4	Bromodichloromethane	0.9	< 0.9	U
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	U
71-43-2	Benzene	0.9	< 0.9	U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.6	< 4.6	U
75-25-2	Bromoform	0.9	< 0.9	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.6	< 4.6	U
591-78-6	2-Hexanone	4.6	< 4.6	U
127-18-4	Tetrachloroethene	0.9	< 0.9	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
108-90-7	Chlorobenzene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	U
100-42-5	Styrene	0.9	< 0.9	U
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.8	< 1.8	U
1330-20-7	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	97.8%
d8-Toluene	98.5%
Bromofluorobenzene	92.1%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-111208	Method Blank	Low	100%	101%	98.3%	NA	0
LCS-111208	Lab Control	Low	95.6%	101%	99.8%	NA	0
LCSD-111208	Lab Control Dup	Low	94.7%	99.9%	99.8%	NA	0
NY64A	TDP26-8-081106	Low	108%	100%	98.9%	NA	0
NY64B	TDP27-11-081106	Low	109%	99.7%	97.6%	NA	0
NY64C	TDP28-11-081106	Low	102%	95.1%	78.4%	NA	0
NY64CRE	TDP28-11-081106	Low	95.2%	94.9%	82.9%	NA	0
NY64D	TDP29-11-081106	Low	97.8%	95.6%	82.8%	NA	0
NY64E	TDP30-11-081106	Low	97.1%	97.3%	86.2%	NA	0
MB-111308	Method Blank	Low	90.6%	101%	97.5%	NA	0
LCS-111308	Lab Control	Low	91.6%	101%	100%	NA	0
LCSD-111308	Lab Control Dup	Low	93.5%	100%	100%	NA	0
NY64F	TDP31-12-081106	Low	111%	85.5%	84.5%	NA	0
NY64FRE	TDP31-12-081106	Low	98.5%	98.5%	87.7%	NA	0
NY64G	TDP32-11-081106	Low	102%	99.3%	99.8%	NA	0
NY64M	TH-DRUM1-SOIL	Low	97.8%	98.5%	92.1%	NA	0
		LCS	MB LIM	IITS	(QC LIMI	TS
SW8260B		Low		Med	Low	_	Med
(DCE) = d4-1,	2-Dichloroethane	75-120)	76-120	72-1	34	69-120
(TOL) = d8-To	luene	80-122	2	80-120	78-1	24	80-120
(BFB) = Bromo	fluorobenzene	79-120)	80-120	66-1	20	76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-120)	80-120	79-1		80-120

Log Number Range: 08-30261 to 08-30273

LIMS ID: 08-30261

Reported: 11/14/08

Data Release Authorized:

Matrix: Soil

Sample ID: LCS-111208 Page 1 of 2 LAB CONTROL SAMPLE

QC Report No: NY64-The Boeing Company Lab Sample ID: LCS-111208

Project: BOEING THOMPSON 023173

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: FINN5/PAB Sample Amount LCS: 5.00 g-dry-wt LCSD: FINN5/PAB

LCSD: 5.00 g-dry-wt Date Analyzed LCS: 11/12/08 10:39 Purge Volume LCS: 5.0 mL

LCSD: 11/12/08 11:13 LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
						-	
Chloromethane	44.0	50.0	88.0%	47.4	50.0	94.8%	7.4%
Bromomethane	35.6	50.0	71.2%	38.5	50.0	77.0%	7.8%
Vinyl Chloride	45.4	50.0	90.8%	49.9	50.0	99.8%	9.4%
Chloroethane	42.7	50.0	85.4%	47.8	50.0	95.6%	11.3%
Methylene Chloride	45.7	50.0	91.4%	48.8	50.0	97.6%	6.6%
Acetone	202	250	80.8%	212	250	84.8%	4.8%
Carbon Disulfide	57.6	50.0	115%	63.0	50.0	126%	9.0%
1,1-Dichloroethene	50.0	50.0	100%	54.3	50.0	109%	8.2%
1,1-Dichloroethane	48.0	50.0	96.0%	52.1	50.0	104%	8.2%
trans-1,2-Dichloroethene	48.3	50.0	96.6%	52.5	50.0	105%	8.3%
cis-1,2-Dichloroethene	49.0	50.0	98.0%	53.2	50.0	106%	8.2%
Chloroform	47.2	50.0	94.4%	50.0	50.0	100%	5.8%
1,2-Dichloroethane	42.8	50.0	85.6%	44.8	50.0	89.6%	4.6%
2-Butanone	228	250	91.2%	244	250	97.6%	6.8%
1,1,1-Trichloroethane	46.5	50.0	93.0%	49.9	50.0	99.8%	7.1%
Carbon Tetrachloride	44.8	50.0	89.6%	48.4	50.0	96.8%	7.7%
Vinyl Acetate	50.5	50.0	101%	54.4	50.0	109%	7.4%
Bromodichloromethane	49.0	50.0	98.0%	52.5	50.0	105%	6.9%
1,2-Dichloropropane	46.7	50.0	93.4%	49.8	50.0	99.6%	6.4%
cis-1,3-Dichloropropene	50.2	50.0	100%	53.6	50.0	107%	6.6%
Trichloroethene	47.1	50.0	94.2%	50.2	50.0	100%	6.4%
Dibromochloromethane	53.2	50.0	106%	56.2	50.0	112%	5.5%
1,1,2-Trichloroethane	46.9	50.0	93.8%	50.3	50.0	101%	7.0%
Benzene	49.3	50.0	98.6%	52.9	50.0	106%	7.0%
trans-1,3-Dichloropropene	50.1	50.0	100%	54.3	50.0	109%	8.0%
2-Chloroethylvinylether	52.5	50.0	105%	55.0	50.0	110%	4.7%
Bromoform	51.8	50.0	104%	57.3	50.0	115%	10.1%
4-Methyl-2-Pentanone (MIBK)	221	250	88.4%	246	250	98.4%	10.7%
2-Hexanone	200	250	80.0%	228	250	91.2%	13.1%
Tetrachloroethene	47.5	50.0	95.0%	51.2	50.0	102%	7.5%
1,1,2,2-Tetrachloroethane	46.9	50.0	93.8%	50.9	50.0	102%	8.2%
Toluene	47.0	50.0	94.0%	50.2	50.0	100%	6.6%
Chlorobenzene	48.4	50.0	96.8%	52.0	50.0	104%	7.2%
Ethylbenzene	51.0	50.0	102%	55.0	50.0	110%	7.5%
Styrene	49.7	50.0	99.4%	53.8	50.0	108%	7.9%
Trichlorofluoromethane	45.4	50.0	90.8%	49.4	50.0	98.8%	8.4%
1,1,2-Trichloro-1,2,2-trifluoroetha	48.2	50.0	96.4%	52.0	50.0	104%	7.6%
m,p-Xylene	99.0	100	99.0%	107	100	107%	7.8%
o-Xylene	47.6	50.0	95.2%	51.5	50.0	103%	7.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111208

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111208

LIMS ID: 08-30261 Matrix: Soil

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Analyte

Spike

LCS

Spike

LCSD

LCS Added-LCS Recovery

LCSD Added-LCSD Recovery RPD

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	95.6%	94.7%
d8-Toluene	101%	99.9%
Bromofluorobenzene	99.8%	99.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-111308 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111308

LIMS ID: 08-30266 Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst LCS: FINN5/PAB

LCSD: FINN5/PAB

Date Analyzed LCS: 11/13/08 11:25

LCSD: 11/13/08 12:03

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	43.8	50.0	87.6%	37.8	50.0	75.6%	14.7%
Bromomethane	36.0	50.0	72.0%	30.3	50.0	60.6%	17.2%
Vinyl Chloride	47.7	50.0	95.4%	39.7	50.0	79.4%	18.3%
Chloroethane	44.4	50.0	88.8%	39.2	50.0	78.4%	12.4%
Methylene Chloride	46.7	50.0	93.4%	42.2	50.0	84.4%	10.1%
Acetone	204	250	81.6%	186	250	74.4%	9.2%
Carbon Disulfide	62.7	50.0	125%	53.2	50.0	106%	16.4%
1,1-Dichloroethene	52.3	50.0	105%	45.0	50.0	90.0%	15.0%
1,1-Dichloroethane	50.2	50.0	100%	43.6	50.0	87.2%	14.1%
trans-1,2-Dichloroethene	51.8	50.0	104%	44.6	50.0	89.2%	14.9%
cis-1,2-Dichloroethene	51.5	50.0	103%	46.1	50.0	92.2%	11.1%
Chloroform	49.0	50.0	98.0%	42.7	50.0	85.4%	13.7%
1,2-Dichloroethane	42.9	50.0	85.8%	40.7	50.0	81.4%	5.3%
2-Butanone	217	250	86.8%	221	250	88.4%	1.8%
1,1,1-Trichloroethane	49.5	50.0	99.0%	41.7	50.0	83.4%	17.1%
Carbon Tetrachloride	48.4	50.0	96.8%	40.1	50.0	80.2%	18.8%
Vinyl Acetate	48.6	50.0	97.2%	47.6	50.0	95.2%	2.1%
Bromodichloromethane	51.0	50.0	102%	45.7	50.0	91.4%	11.0%
1,2-Dichloropropane	48.4	50.0	96.8%	43.8	50.0	87.6%	10.0%
cis-1,3-Dichloropropene	52.0	50.0	104%	46.8	50.0	93.6%	10.5%
Trichloroethene	50.0	50.0	100%	43.0	50.0	86.0%	15.1%
Dibromochloromethane	53.0	50.0	106%	49.7	50.0	99.4%	6.4%
1,1,2-Trichloroethane	46.6	50.0	93.2%	45.3	50.0	90.6%	2.8%
Benzene	53.2	50.0	106%	46.7	50.0	93.4%	13.0%
trans-1,3-Dichloropropene	51.6	50.0	103%	47.6	50.0	95.2%	8.1%
2-Chloroethylvinylether	52.0	50.0	104%	49.9	50.0	99.8%	4.1%
Bromoform	52.9	50.0	106%	50.6	50.0	101%	4.4%
4-Methyl-2-Pentanone (MIBK)	214	250	85.6%	219	250	87.6%	2.3%
2-Hexanone	186	250	74.4%	192	250	76.8%	3.2%
Tetrachloroethene	53.0	50.0	106%	44.0	50.0	88.0%	18.6%
1,1,2,2-Tetrachloroethane	45.9	50.0	91.8%	44.5	50.0	89.0%	3.1%
Toluene	49.9	50.0	99.8%	43.6	50.0	87.2%	13.5%
Chlorobenzene	52.0	50.0	104%	45.3	50.0	90.6%	13.8%
Ethylbenzene	55.2	50.0	110%	46.8	50.0	93.6%	16.5%
Styrene	52.7	50.0	105%	46.7	50.0	93.4%	12.1%
Trichlorofluoromethane	47.4	50.0	94.8%	37.3	50.0	74.6%	23.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	56.4	50.0	113%	42.6	50.0	85.2%	27.9%
m,p-Xylene	105	100	105%	92.1	100	92.1%	13.1%
o-Xylene	50.7	50.0	101%	43.9	50.0	87.8%	14.4%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Matrix: Soil

Sample ID: LCS-111308

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111308

LIMS ID: 08-30266

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Spike

LCS

Spike

LCSD

Analyte

LCS Added-LCS Recovery

LCSD Added-LCSD Recovery RPD

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	91.6%	93.5%
d8-Toluene	101%	100%
Bromofluorobenzene	100%	100%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-111208 Page 1 of 1

Lab Sample ID: MB-111208

LIMS ID: 08-30261

Matrix: Soil Data Release Authorized:

Reported: 11/14/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 11/12/08 11:40

QC Report No: NY64-The Boeing Company

METHOD BLANK

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	101%
Bromofluorobenzene	98.3%

Sample ID: MB-111308 METHOD BLANK

Lab Sample ID: MB-111308

LIMS ID: 08-30266

Matrix: Soil

Data Release Authorized:

Reported: 11/14/08

Date Analyzed: 11/13/08 12:29

Instrument/Analyst: FINN5/PAB

023173 Date Sampled: NA

Date Received: NA

Sample Amount: 5.00 g-dry-wt

OC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in μ g/kg (ppb)

d4-1,2-Dichloroethane	90.6%
d8-Toluene	101%
Bromofluorobenzene	97.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

1 of 1 Page

Sample ID: TDP26-GW-081106 SAMPLE

Lab Sample ID: NY64H LIMS ID: 08-30268

Matrix: Water

Data Release Authorized: Reported: 11/12/08

Instrument/Analyst: NT3/JZ Date Analyzed: 11/10/08 14:39 QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	140	
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	1.0	
75-34-3	1,1-Dichloroethane	1.0	4.0	
156-60-5	trans-1,2-Dichloroethene	1.0	7.6	
156-59-2	cis-1,2-Dichloroethene	1.0	480	E
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	1.2	
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	240	E
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	1.9	
7 9-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	Ŭ
108-90-7	Chlorobenzene	1.0	< 1.0	Ŭ
100-41-4	Ethylbenzene	1.0	< 1.0	Ŭ
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
1330-20-7	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	105%
d8-Toluene	92.3%
Bromofluorobenzene	92. 7 %

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: TDP26-GW-081106 DILUTION

Lab Sample ID: NY64H LIMS ID: 08-30268

Matrix: Water

Data Release Authorized: WW

Reported: 11/12/08

Instrument/Analyst: NT3/JZ Date Analyzed: 11/10/08 17:00 QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 0.500 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	10	< 10	U
74-83-9	Bromomethane	10	< 10	U
75-01-4	Vinyl Chloride	10	140	
75-00-3	Chloroethane	10	< 10	U
75-09-2	Methylene Chloride	20	< 20	U
67-64-1	Acetone	50	< 50	U
75-15-0	Carbon Disulfide	10	< 10	U
75-35-4	1,1-Dichloroethene	10	< 10	U
75-34-3	1,1-Dichloroethane	10	< 10	U
156-60-5	trans-1,2-Dichloroethene	10	< 10	U
156-59-2	cis-1,2-Dichloroethene	10	460	
67-66-3	Chloroform	10	< 10	U
107-06-2	1,2-Dichloroethane	10	< 10	U
78-93-3	2-Butanone	50	< 50	U
71-55-6	1,1,1-Trichloroethane	10	< 10	U
56-23-5	Carbon Tetrachloride	10	< 10	U
108-05-4	Vinyl Acetate	50	< 50	U
75-27-4	Bromodichloromethane	10	< 10	U
78-87-5	1,2-Dichloropropane	10	< 10	U
10061-01-5	cis-1,3-Dichloropropene	10	< 10	U
79-01-6	Trichloroethene	10	240	
124-48-1	Dibromochloromethane	10	< 10	U
79-00-5	1,1,2-Trichloroethane	10	< 10	U
71-43-2	Benzene	10	< 10	U
10061-02-6	trans-1,3-Dichloropropene	10	< 10	U
110-75-8	2-Chloroethylvinylether	50	< 50	U
75-25-2	Bromoform	10	< 10	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	50	< 50	U
591-78-6	2-Hexanone	50	< 50	U
127-18-4	Tetrachloroethene	10	< 10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	< 10	U
108-88-3	Toluene	10	< 10	U
108-90-7	Chlorobenzene	10	< 10	U
100-41-4	Ethylbenzene	10	< 10	U
100-42-5	Styrene	10	< 10	· U
75-69-4	Trichlorofluoromethane	10	< 10	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	20	< 20	U
1330-20-7	m,p-Xylene	20	< 20	U
95-47-6	o-Xylene	10	< 10	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	104%
d8-Toluene	95.3%
Bromofluorobenzene	92.1%

Sample ID: TDP28-GW-081106 SAMPLE

Lab Sample ID: NY64I LIMS ID: 08-30269

Matrix: Water Data Release Authorized: \text{WW}

Reported: 11/12/08

Project: BOEING THOMPSON 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

QC Report No: NY64-The Boeing Company

Instrument/Analyst: NT5/JZ Date Analyzed: 11/10/08 20:37 Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	1.0	
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00 - 5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	130%
d8-Toluene	99.5%
Bromofluorobenzene	89.5%

Sample ID: TDP29-GW-081106 SAMPLE

Lab Sample ID: NY64J LIMS ID: 08-30270

Matrix: Water

Instrument/Analyst: NT5/JZ

Date Analyzed: 11/10/08 19:15

Data Release Authorized:

Reported: 11/12/08

.

023173
Date Sampled: 11/06/08
Date Received: 11/06/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	0.4	
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	Ū
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	Ū
	-			

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	133%
d8-Toluene	98.2%
Bromofluorobenzene	87.2%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: TDP31-GW-081106 SAMPLE

Lab Sample ID: NY64K LIMS ID: 08-30271

Matrix: Water Data Release Authorized:

Reported: 11/12/08

Instrument/Analyst: NT5/JZ Date Analyzed: 11/10/08 19:43 QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	Ū
75-01-4	Vinyl Chloride	0.2	< 0.2	Ū
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	0.4	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	0.3	
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	Ū
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		0.4	
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ū

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	134%
d8-Toluene	92.8%
Bromofluorobenzene	86.2%

Sample ID: TH-SUMP-081106 SAMPLE

Lab Sample ID: NY64L LIMS ID: 08-30272

Matrix: Water

Data Release Authorized: Www

Date Analyzed: 11/10/08 16:36

Instrument/Analyst: NT3/JZ

Reported: 11/12/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 0.500 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	10	< 10	
74-83-9	Bromomethane	10	< 10	Ŭ
75-01-4	Vinyl Chloride	10	< 10	Ŭ
75-00-3	Chloroethane	10	< 10	Ü
75-09-2	Methylene Chloride	20	42	Ŭ
67-64-1	Acetone	50	< 50	U
75-15-0	Carbon Disulfide	10	< 10	U
75-35-4	1,1-Dichloroethene	10	< 10	Ū
75-34-3	1,1-Dichloroethane	10	< 10	Ū
156-60-5	trans-1,2-Dichloroethene	10	< 10	Ŭ
156-59-2	cis-1,2-Dichloroethene	10	< 10	Ü
67-66-3	Chloroform	10	< 10	Ū
107-06-2	1,2-Dichloroethane	10	< 10	U
78-93-3	2-Butanone	50	< 50	Ū
71-55-6	1,1,1-Trichloroethane	10	< 10	Ū
56-23-5	Carbon Tetrachloride	10	< 10	U
108-05-4	Vinyl Acetate	50	< 50	U
75-27-4	Bromodichloromethane	10	< 10	U
78-87-5	1,2-Dichloropropane	10	< 10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	< 10	Ū
79-01-6	Trichloroethene	10	< 10	U
124-48-1	Dibromochloromethane	10	< 10	Ü
79-00-5	1,1,2-Trichloroethane	10	< 10	Ū
71-43-2	Benzene	10	< 10	U
10061-02-6	trans-1,3-Dichloropropene	10	< 10	U
110-75-8	2-Chloroethylvinylether	50	< 50	Ū
75-25-2	Bromoform	10	< 10	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	50	< 50	Ŭ
591-78-6	2-Hexanone	50	< 50	Ŭ
127-18-4	Tetrachloroethene	10	< 10	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	10	< 10	Ū
108-88-3	Toluene	10	29	Ü
108-90-7	Chlorobenzene	10	< 10	U
100-41-4	Ethylbenzene	10	< 10	U
100-42-5	Styrene	10	11	O
75-69-4	Trichlorofluoromethane	10	< 10	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	20	< 20	U
1330-20-7	m,p-Xylene	20	< 20	U
95-47-6	o-Xylene	10	< 10	U
	-		/ 10	J

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	97.4%
Bromofluorobenzene	95.3%

Sample ID: TH-DRUM2-WATER SAMPLE

Lab Sample ID: NY64N LIMS ID: 08-30274

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Matrix: Water

023173

Data Release Authorized: Reported: 11/12/08

Date Sampled: 11/06/08 Date Received: 11/06/08

Instrument/Analyst: NT5/JZ Date Analyzed: 11/10/08 20:10

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	0.6	
67-64-1	Acetone	3.0	40	
75-15-0	Carbon Disulfide	0.2	0.6	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	2.3	
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	0.3	
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	0.2	
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	138%
d8-Toluene	98.5%
Bromofluorobenzene	85.2%

Sample ID: TRIP BLANKS SAMPLE

Lab Sample ID: XXXO

QC Report No: XXX-The Boeing Company

LIMS ID: 08-30275

Project: BOEING THOMPSON

Matrix: Water

023173

Data Release Authorized: Reported: 11/12/08

Date Sampled: 11/06/08 Date Received: 11/06/08

Instrument/Analyst: NT5/JZ

Sample Amount: 20.0 mL

Date Analyzed: 11/10/08 18:21 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	127%
d8-Toluene	102%
Bromofluorobenzene	87.2%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON 023173

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-111008	Method Blank	5	103%	97.6%	94.1%	NA	0
LCS-111008	Lab Control	5	98.4%	98.3%	96.3%	NA	0
LCSD-111008	Lab Control Dup	5	97.2%	98.2%	97.2%	NA	0
NY64H	TDP26-GW-081106	5	105%	92.3%	92.7%	NA	0
NY64HDL	TDP26-GW-081106	5	104%	95.3%	92.1%	NA	0
NY64L	TH-SUMP-081106	5	103%	97.4%	95.3%	NA	0
		LCS	/MB LIM	ITS		QC LIMI	TS
SW8260B							
(DCE) = d4-1,	2-Dichloroethane		79-120			80-12	0
(TOL) = d8-Toluene			80-120		80-120		
(BFB) = Bromc	ofluorobenzene	80-120			72-12	0	
(DCB) = d4-1,	2-Dichlorobenzene		80-120			80-12	4

Prep Method: SW5030B

Log Number Range: 08-30268 to 08-30274

ANALYTICAL RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-111008	Method Blank	20	118%	102%	91.8%	NA	0
LCS-111008	Lab Control	20	111%	99.8%	98.0%	NA	0
LCSD-111008	Lab Control Dup	20	113%	99.5%	100%	NA	0
NY64I	TDP28-GW-081106	20	130%	99.5%	89.5%	NA	0
NY64J	TDP29-GW-081106	20	133%	98.2%	87.2%	NA	0
NY64K	TDP31-GW-081106	20	134%	92.8%	86.2%	NA	0
NY64N	TH-DRUM2-WATER	20	138%	98.5%	85.2%	NA	0
		LCS	/MB LIM	ITS		QC LIMI	TS
SW8260B							
(DCE) = d4-1	,2-Dichloroethane		70-131			64-14	6
(TOL) = d8-T	oluene		80-120			78-12	5
(BFB) = Brom	ofluorobenzene	74-121			71-12	0	
(DCB) = d4-1	,2-Dichlorobenzene		80-120			80-12	1

Prep Method: SW5030B

Log Number Range: 08-30268 to 08-30274

ANALYTICAL RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: XXX-The Boeing Company Project: BOEING THOMPSON

023173

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
XXXO	TRIP BLANKS	20	127%	102%	87.2%	NA	0
		LCS	/MB LIMI	TS		QC LIMI	TS
(TOL) = (BFB) =	d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene d4-1,2-Dichlorobenzene		70-131 80-120 74-121 80-120			64-14 78-12 71-12 80-12	5 0

Prep Method: SW5030B

Log Number Range: 08-30275 to 08-30275

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-111008 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111008

LIMS ID: 08-30268

Matrix: Water

Data Release Authorized:

Reported: 11/12/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT3/JZ

LCSD: NT3/JZ

Date Analyzed LCS: 11/10/08 11:24

LCSD: 11/10/08 11:54

Sample Amount LCS: 5.00 mL

LCSD: 5.00 mL

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	48.4	50.0	96.8%	44.3	50.0	88.6%	8.8%
Bromomethane	48.3	50.0	96.6%	46.4	50.0	92.8%	4.0%
Vinyl Chloride	50.5	50.0	101%	45.8	50.0	91.6%	9.8%
Chloroethane	69.0	50.0	138%	63.7	50.0	127%	8.0%
Methylene Chloride	38.4	50.0	76.8%	38.1	50.0	76.2%	0.8%
Acetone	255	250	102%	258	250	103%	1.2%
Carbon Disulfide	40.7	50.0	81.4%	41.1	50.0	82.2%	1.0%
1,1-Dichloroethene	39.0	50.0	78.0%	39.6	50.0	79.2%	1.5%
1,1-Dichloroethane	48.3	50.0	96.6%	45.4	50.0	90.8%	6.2%
trans-1,2-Dichloroethene	45.5	50.0	91.0%	43.9	50.0	87.8%	3.6%
cis-1,2-Dichloroethene	49.8	50.0	99.6%	47.8	50.0	95.6%	4.1%
Chloroform	46.8	50.0	93.6%	44.3	50.0	88.6%	5.5%
1,2-Dichloroethane	46.0	50.0	92.0%	44.5	50.0	89.0%	3.3%
2-Butanone	291	250	116%	279	250	112%	4.2%
1,1,1-Trichloroethane	49.7	50.0	99.4%	46.2	50.0	92.4%	7.3%
Carbon Tetrachloride	50.2	50.0	100%	46.9	50.0	93.8%	6.8%
Vinyl Acetate	44.4	50.0	88.8%	43.5	50.0	87.0%	2.0%
Bromodichloromethane	44.7	50.0	89.4%	42.8	50.0	85.6%	4.3%
1,2-Dichloropropane	46.4	50.0	92.8%	44.6	50.0	89.2%	4.0%
cis-1,3-Dichloropropene	50.0	50.0	100%	48.2	50.0	96.4%	3.7%
Trichloroethene	48.6	50.0	97.2%	46.6	50.0	93.2%	4.2%
Dibromochloromethane	45.0	50.0	90.0%	43.4	50.0	86.8%	3.6%
1,1,2-Trichloroethane	46.3	50.0	92.6%	45.2	50.0	90.4%	2.4%
Benzene	49.7	50.0	99.4%	47.5	50.0	95.0%	4.5%
trans-1,3-Dichloropropene	48.3	50.0	96.6%	46.9	50.0	93.8%	2.9%
2-Chloroethylvinylether	43.3	50.0	86.6%	43.2	50.0	86.4%	0.2%
Bromoform	42.2	50.0	84.4%	41.6	50.0	83.2%	1.4%
4-Methyl-2-Pentanone (MIBK)	234	250	93.6%	230	250	92.0%	1.7%
2-Hexanone	232	250	92.8%	229	250	91.6%	1.3%
Tetrachloroethene	47.9	50.0	95.8%	45.1	50.0	90.2%	6.0%
1,1,2,2-Tetrachloroethane	44.6	50.0	89.2%	44.4	50.0	88.8%	0.4%
Toluene	46.8	50.0	93.6%	44.1	50.0	88.2%	5.9%
Chlorobenzene	47.9	50.0	95.8%	45.9	50.0	91.8%	4.3%
Ethylbenzene	46.4	50.0	92.8%	44.7	50.0	89.4%	3.7%
Styrene	44.0	50.0	88.0%	42.0	50.0	84.0%	4.7%
Trichlorofluoromethane	64.0	50.0	128%	56.0	50.0	112%	13.3%
1,1,2-Trichloro-1,2,2-trifluoroetha	43.2	50.0	86.4%	45.1	50.0	90.2%	4.3%
m,p-Xylene	98.9	100	98.9%	92.8	100	92.8%	6.4%
o-Xylene	50.4	50.0	101%	48.1	50.0	96.2%	4.7%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111008

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111008

LIMS ID: 08-30268

Matrix: Water

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Spike LCS Spike LCSD
Analyte LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD

 d4-1,2-Dichloroethane
 98.4%
 97.2%

 d8-Toluene
 98.3%
 98.2%

 Bromofluorobenzene
 96.3%
 97.2%

Volatiles by Purge & Trap GC/MS-Method SW8260B

LCSD: NT5/JZ

LCSD: 11/10/08 13:49

Page 1 of 2

Sample ID: LCS-111008

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111008

LIMS ID: 08-30269 Matrix: Water

Data Release Authorized: WW

Instrument/Analyst LCS: NT5/JZ

Date Analyzed LCS: 11/10/08 12:58

Reported: 11/12/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	4.0	4.0	100%	4.2	4.0		
Bromomethane	4.6	4.0	115%	4.2	4.0	105%	4.9%
Vinyl Chloride	4.0	4.0	100%	$\frac{4.9}{4.1}$	4.0	122%	6.3%
Chloroethane	4.2	4.0	105%	4.1	4.0	102%	2.5%
Methylene Chloride	3.6	4.0	90.0%	3.9	4.0	112%	6.9%
Acetone	20.6	20.0	103%	20.2	4.0	97.5%	8.0%
Carbon Disulfide	3.8	4.0	95.0%		20.0	101%	2.0%
1,1-Dichloroethene	3.9	4.0	97.5%	3.8	4.0	95.0%	0.0%
1,1-Dichloroethane	4.0	4.0	100%	4.1	4.0	102%	5.0%
trans-1,2-Dichloroethene	3.9	4.0	97.5%	4.1	4.0	102%	2.5%
cis-1,2-Dichloroethene	3.8	4.0	95.0%	4.0	4.0	100%	2.5%
Chloroform	3.9	4.0	97.5%	4.0	4.0	100%	5.1%
1,2-Dichloroethane	3.6	4.0	90.0%	4.1	4.0	102%	5.0%
2-Butanone	19.6	20.0	98.0%	3.8	4.0	95.0%	5.4%
1,1,1-Trichloroethane	3.8	4.0	95.0%	20.3	20.0	102%	3.5%
Carbon Tetrachloride	3.6	4.0	90.0%	4.0	4.0	100%	5.1%
Vinyl Acetate	3.4	4.0	85.0%	3.7	4.0	92.5%	2.7%
Bromodichloromethane	3.7	4.0	92.5%	3.3	4.0	82.5%	3.0%
1,2-Dichloropropane	3.6	4.0	90.0%	3.8	4.0	95.0%	2.7%
cis-1,3-Dichloropropene	3.7	4.0	90.0%	3.8	4.0	95.0%	5.4%
Trichloroethene	3.7	4.0		3.8	4.0	95.0%	2.7%
Dibromochloromethane	3.5	4.0	92.5%	3.8	4.0	95.0%	2.7%
1,1,2-Trichloroethane	3.6		87.5%	3.6	4.0	90.0%	2.8%
Benzene	3.7	4.0 4.0	90.0%	3.8	4.0	95.0%	5.4%
trans-1,3-Dichloropropene	3.7		92.5%	3.9	4.0	97.5%	5.3%
2-Chloroethylvinylether	3.9	4.0	97.5%	4.0	4.0	100%	2.5%
Bromoform	3.8	4.0	90.0%	3.5	4.0	87.5%	2.8%
4-Methyl-2-Pentanone (MIBK)	20.2	4.0	95.0%	3.9	4.0	97.5%	2.6%
2-Hexanone	19.5	20.0	101%	19.9	20.0	99.5%	1,5%
Tetrachloroethene	3.4	20.0	97.5%	18.9	20.0	94.5%	3.1%
1,1,2,2-Tetrachloroethane	3.4	4.0	85.0%	3.5	4.0	87.5%	2.9%
Toluene	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
Chlorobenzene		4.0	92.5%	3.8	4.0	95.0%	2.7%
Ethylbenzene	3.7 3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
Styrene		4.0	92.5%	3.8	4.0	95.0%	2.7%
Trichlorofluoromethane	3.8	4.0	95.0%	4.0	4.0	100%	5.1%
1,1,2-Trichloro-1,2,2-trifluoroetha	3.7	4.0	92.5%	3.9	4.0	97.5%	5.3%
m,p-Xylene	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
o-Xylene	7.7	8.0	96.2%	7.9	8.0	98.8%	2.6%
- My world	3.6	4.0	90.0%	3.8	4.0	95.0%	5.4%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111008

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111008

LIMS ID: 08-30269

Matrix: Water

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Spike LCS Spike LCSD
Analyte LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD

 d4-1,2-Dichloroethane
 111%
 113%

 d8-Toluene
 99.8%
 99.5%

 Bromofluorobenzene
 98.0%
 100%

Sample ID: MB-111008 METHOD BLANK

Lab Sample ID: MB-111008

LIMS ID: 08-30268

Matrix: Water

Data Release Authorized: Reported: 11/12/08

Instrument/Analyst: NT3/JZ Date Analyzed: 11/10/08 12:19 QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	1.0	< 1.0 U
74-83-9	Bromomethane	1.0	< 1.0 U
75-01-4	Vinyl Chloride	1.0	< 1.0 U
75-00-3	Chloroethane	1.0	< 1.0 U
75-09-2	Methylene Chloride	2.0	< 2.0 U
67-64-1	Acetone	5.0	< 5.0 U
75-15-0	Carbon Disulfide	1.0	< 1.0 U
75-35-4	1,1-Dichloroethene	1.0	< 1.0 U
75-34-3	1,1-Dichloroethane	1.0	< 1.0 U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0 U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0 U
67-66-3	Chloroform	1.0	< 1.0 U
107-06-2	1,2-Dichloroethane	1.0	< 1.0 U
78-93-3	2-Butanone	5.0	< 5.0 U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0 U
56-23-5	Carbon Tetrachloride	1.0	< 1.0 U
108-05-4	Vinyl Acetate	5.0	< 5.0 U
75-27-4	Bromodichloromethane	1.0	< 1.0 U
78-87-5	1,2-Dichloropropane	1.0	< 1.0 U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0 U
79-01-6	Trichloroethene	1.0	< 1.0 U
124-48-1	Dibromochloromethane	1.0	< 1.0 U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0 U
71-43-2	Benzene	1.0	< 1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0 U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0 U
75-25-2	Bromoform	1.0	< 1.0 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0 U
591-78-6	2-Hexanone	5.0	< 5.0 U
127-18-4	Tetrachloroethene	1.0	< 1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
108-90-7	Chlorobenzene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
100-42-5	Styrene	1.0	< 1.0 U
75-69-4	Trichlorofluoromethane	1.0	< 1.0 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0 U
1330-20-7	m,p-Xylene	2.0	< 2.0 U
95-47-6	o-Xylene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	97.6%
Bromofluorobenzene	94.1%

Sample ID: MB-111008 METHOD BLANK

Lab Sample ID: MB-111008

mbre in: MP-III000

LIMS ID: 08-30269 Matrix: Water

Data Release Authorized:

Date Analyzed: 11/10/08 14:16

Instrument/Analyst: NT5/JZ

Reported: 11/12/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	118%
d8-Toluene	102%
Bromofluorobenzene	91.8%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: TDP26-8-081106 SAMPLE

Lab Sample ID: NY64A LIMS ID: 08-30261

LIMS ID: 08-30261 Matrix: Soil

Data Release Authorized: $\mathcal{W}_{\mathcal{W}}$

Reported: 11/17/08

Date Extracted: 11/12/08
Date Analyzed: 11/14/08 15:01
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 8.48 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
111-44-4	Bis-(2-Chloroethyl) Ether	59	< 59 U
95-57-8	2-Chlorophenol	59	< 59 U
541-73-1	1,3-Dichlorobenzene	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 U
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	59	< 59 U
106-44-5	4-Methylphenol	59	< 59 U
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	59	< 59 U
98-95-3	Nitrobenzene	59	< 59 U
78-59-1	Isophorone	59	< 59 U
88-75-5	2-Nitrophenol	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
111-91-1	bis(2-Chloroethoxy) Methane	59	< 59 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	< 59 U
106-4 7 -8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	59	< 59 U
59-50 -7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	59	< 59 U
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	59	< 59 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	< 59 U
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	59	< 59 U
51-28-5	2,4-Dinitrophenol	590	< 590 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	59	< 59 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TDP26-8-081106 SAMPLE

Lab Sample ID: NY64A LIMS ID: 08-30261

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed: 11/14/08 15:01

CAS Number	Analyte	RĹ	Result
84-66-2	Diethylphthalate	59	< 59 U
7005-72-3	4-Chlorophenyl-phenylether	59	< 59 Ŭ
86-73-7	Fluorene	59	< 59 Ŭ
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	590	< 590 Ŭ
86-30-6	N-Nitrosodiphenylamine	59	< 59 Ŭ
101-55-3	4-Bromophenyl-phenylether	59	< 59 U
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	59	< 59 U
86-74-8	Carbazole	59	< 59 U
120-12-7	Anthracene	59	< 59 U
84-74-2	Di-n-Butylphthalate	59	< 59 U
206-44-0	Fluoranthene	59	< 59 U
129-00-0	Pyrene	59	< 59 U
85-68-7	Butylbenzylphthalate	59	< 59 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a)anthracene	59	< 59 U
117-81-7	bis(2-Ethylhexyl)phthalate	59	< 59 U
218-01-9	Chrysene	59	< 59 U
117-84-0	Di-n-Octyl phthalate	59	< 59 U
205-99-2	Benzo(b)fluoranthene	59	< 59 U
207-08-9	Benzo(k)fluoranthene	59	< 59 U
50-32-8	Benzo(a)pyrene	59	< 59 U
193-39-5	Indeno(1,2,3-cd)pyrene	59	< 59 U
53-70-3	Dibenz(a,h)anthracene	59	< 59 U
191-24-2	Benzo(g,h,i)perylene	59	< 59 U
90-12-0	1-Methylnaphthalene	59	< 59 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	74.4%	d4-1,2-Dichlorobenzene	68.8%
d5-Phenol	69.6%	2-Fluorophenol	72.5%
2.4.6-Tribromophenol	73.3%	d4-2-Chlorophenol	71.5%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: TDP28-11-081106 SAMPLE

Lab Sample ID: NY64C LIMS ID: 08-30263

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Soil

023173

Data Release Authorized: WWW

Date Sampled: 11/06/08

Reported: 11/17/08

Date Received: 11/06/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 15:34 Instrument/Analyst: NT6/LJR

Sample Amount: 8.18 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: No

Dilution Factor: 1.00 Percent Moisture: 22.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	61	< 61 U
111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
95-57-8	2-Chlorophenol	61	< 61 U
541-73-1	1,3-Dichlorobenzene	61	< 61 U
106-46-7	1,4-Dichlorobenzene	61	< 61 U
100-51-6	Benzyl Alcohol	61	< 61 U
95-50-1	1,2-Dichlorobenzene	61	< 61 U
95-48-7	2-Methylphenol	61	< 61 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
106-44-5	4-Methylphenol	61	< 61 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	61	< 61 U
98-95-3	Nitrobenzene	61	< 61 U
78-59-1	Isophorone	61	< 61 U
88-75-5	2-Nitrophenol	61	< 61 U
105-67-9	2,4-Dimethylphenol	61	< 61 T
65-85-0	Benzoic Acid	610	< 610 l
111-91-1	bis(2-Chloroethoxy) Methane	61	< 61 T
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	61	< 61 t
91-20-3	Naphthalene	61	< 61 T
106-47-8	4-Chloroaniline	310	< 310 T
87-68-3	Hexachlorobutadiene	61	< 61 T
59-50-7	4-Chloro-3-methylphenol	310	< 310 T
91-57-6	2-Methylnaphthalene	61	< 61 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 T
88-06-2	2,4,6-Trichlorophenol	310	< 310 T
95-95-4	2,4,5-Trichlorophenol	310	< 310 T
91-58-7	2-Chloronaphthalene	61	< 61 J
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	61	< 61 (
208-96-8	Acenaphthylene	61	< 61 1
99-09-2	3-Nitroaniline	310	< 310 T
83-32-9	Acenaphthene	61	< 61 %
51-28-5	2,4-Dinitrophenol	610	< 610 1
100-02-7	4-Nitrophenol	310	< 310
132-64-9	Dibenzofuran	61	< 61
606-20-2	2,6-Dinitrotoluene	310	< 310
121-14-2	2,4-Dinitrotoluene	310	< 310

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TDP28-11-081106

SAMPLE

Lab Sample ID: NY64C LIMS ID: 08-30263

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed: 11/14/08 15:34

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.4%	2-Fluorobiphenyl	61.6%
d14-p-Terphenyl	78.0%	d4-1,2-Dichlorobenzene	61.6%
d5-Phenol	63.5%	2-Fluorophenol	65.3%
2,4,6-Tribromophenol	65.9%	d4-2-Chlorophenol	62.4%

Page 1 of 2

Lab Sample ID: NY64D LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized: MW/ Reported: 11/17/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 16:08 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: TDP29-11-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 8.29 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
111-44-4	Bis-(2-Chloroethyl) Ether	60	< 60 U
95-57-8	2-Chlorophenol	60	< 60 U
541-73-1	1,3-Dichlorobenzene	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	60	< 60 U
98-95-3	Nitrobenzene	60	< 60 U
78-59-1	Isophorone	60	< 60 U
88-75-5	2-Nitrophenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
111-91-1	bis(2-Chloroethoxy) Methane	60	< 60 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	< 60 U
106-47-8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	60	< 60 U
59-50-7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	60	< 60 U
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	60	< 60 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	60	< 60 U
51-28-5	2,4-Dinitrophenol	600	< 600 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	60	< 60 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

ANALYTICAL RESOURCES V INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Lab Sample ID: NY64D

LIMS ID: 08-30264

Sample ID: TDP29-11-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Matrix: Soil Date Analyzed: 11/14/08 16:08

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	60	< 60 U
7005-72-3	4-Chlorophenyl-phenylether	60	< 60 U
86-73-7	Fluorene	60	< 60 U
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	600	< 600 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
101-55-3	4-Bromophenyl-phenylether	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	< 60 U
86-74-8	Carbazole	60	< 60 U
120-12-7	Anthracene	60	< 60 U
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	< 60 U
129-00-0	Pyrene	60	< 60 U
85-68-7	Butylbenzylphthalate	60	< 60 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a)anthracene	60	< 60 U
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	< 60 U
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo(b)fluoranthene	60	< 60 U
207-08-9	Benzo(k)fluoranthene	60	< 60 U
50-32-8	Benzo(a)pyrene	60	< 60 U
193-39-5	Indeno $(1,2,3-cd)$ pyrene	60	< 60 U
53-70-3	Dibenz(a,h)anthracene	60	< 60 U
191-24-2	Benzo(g,h,i)perylene	60	< 60 U
90-12-0	1-Methylnaphthalene	60	< 60 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	59.6%	2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	76.0%	d4-1,2-Dichlorobenzene	55.6%
d5-Phenol	66.7%	2-Fluorophenol	62.4%
2,4,6-Tribromophenol	72.5%	d4-2-Chlorophenol	64.8%

Sample ID: TDP31-12-081106 SAMPLE

Lab Sample ID: NY64F LIMS ID: 08-30266

Matrix: Soil

Data Release Authorized:

Reported: 11/17/08

Date Sampled: 11/06/08 Date Received: 11/06/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 17:50 Instrument/Analyst: NT6/LJR

Sample Amount: 7.86 g-dry-wt

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.5%

GPC Cleanup: No

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: TDP31-12-081106 SAMPLE

Lab Sample ID: NY64F

QC Report No: NY64-The Boeing Company

LIMS ID: 08-30266

Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed: 11/14/08 17:50

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a) anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	61.2%	2 Elyanabánbanyal	CO 00
d3-Nicrobelizelle	01.25	2-Fluorobiphenyl	69.2%
d14-p-Terphenyl	78.8%	d4-1,2-Dichlorobenzene	65.2%
d5-Phenol	65.9%	2-Fluorophenol	66.9%
2,4,6-Tribromophenol	72.0%	d4-2-Chlorophenol	64.8%

Sample ID: TH-DRUM1-SOIL SAMPLE

Lab Sample ID: NY64M LIMS ID: 08-30273 Matrix: Soil

Data Release Authorized: WW Reported: 11/17/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 18:24 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 8.17 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	61	< 61 U
111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
95-57-8	2-Chlorophenol	61	< 61 U
541-73-1	1,3-Dichlorobenzene	61	< 61 U
106-46-7	1,4-Dichlorobenzene	61	< 61 U
100-51-6	Benzyl Alcohol	61	< 61 U
95-50-1	1,2-Dichlorobenzene	61	< 61 U
95-48-7	2-Methylphenol	61	< 61 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
106-44-5	4-Methylphenol	61	< 61 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	61	< 61 U
98-95-3	Nitrobenzene	61	< 61 U
78-59-1	Isophorone	61	< 61 U
88-75-5	2-Nitrophenol	61	< 61 U
105-67-9	2,4-Dimethylphenol	61	< 61 U
65-85-0	Benzoic Acid	610	< 610 U
111-91-1	bis(2-Chloroethoxy) Methane	61	< 61 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	61	< 61 U
91-20-3	Naphthalene	61	< 61 U
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	61	< 61 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	61	< 61 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	61	< 61 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	61	< 61 U
208-96-8	Acenaphthylene	61	< 61 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	61	< 61 U
51-28-5	2,4-Dinitrophenol	610	< 610 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	61	< 61 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TH-DRUM1-SOIL SAMPLE

Lab Sample ID: NY64M LIMS ID: 08-30273

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed: 11/14/08 18:24

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.4%	2-Fluorobiphenyl	68.8%
		- 11401021pii011/1	.00.00
d14-p-Terphenyl	78.4%	d4-1,2-Dichlorobenzene	55.6%
_ ~ ~ ~		di 1,2 Dichiolobenzene	22.00
d5-Phenol	67.5%	2-Fluorophenol	65.1%
	07.50	z Fidolophenoi	02.12
2,4,6-Tribromophenol	72.5%	d4-2-Chlorophenol	65 9 8
Z, I, O II IDIOMODICHOI	14.50	u4-2-CIIIOLODHEHOI	nn 98

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP TO	TUO TC
TDP26-8-081106	C4 40	60.00	5 4 40				_		
	64.4%	68.8%	74.4%	68.8%	69.6%	72.5%	73.3%	71.5%	0
TDP28-11-081106	58.4%	61.6%	78.0%	61.6%	63.5%	65.3%	65.9%	62.4%	0
MB-111208	62.4%	66.0%	80.0%	66.0%	69.1%	71.5%	68.0%	67.2%	0
LCS-111208	60.0%	71.6%	81.6%	61.6%	68.5%	68.5%	71.2%	66.9%	0
LCSD-111208	64.0%	74.4%	86.8%	64.4%	73.1%	72.8%	73.1%	70.9%	0
TDP29-11-081106	59.6%	68.8%	76.0%	55.6%	66.7%	62.4%	72.5%	64.8%	0 .
TDP29-11-081106 MS	53.2%	67.2%	75.6%	52.0%	66.7%	57.1%	71.7%	60.0%	0
TDP29-11-081106 MSD	60.8%	67.6%	74.0%	64.0%	68.0%	67.7%	71.2%	66.7%	0
TDP31-12-081106	61.2%	69.2%	78.8%	65.2%	65.9%	66.9%	72.0%	64.8%	0
TH-DRUM1-SOIL	58.4%	68.8%	78.4%	55.6%	67.5%	65.1%	72.5%	65.9%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
		d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
		d5-Phenol	(30-160)	(30-160)
		2-Fluorophenol	(30-160)	(30-160)
(TBP)	=	2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 08-30261 to 08-30273

Sample ID: TDP29-11-081106 MS/MSD

Lab Sample ID: NY64D LIMS ID: 08-30264

8-30264 Project: BOEING THOMPSON

Matrix: Soil

023173
Date Sampled: 11/06/0

Data Release Authorized: WW Reported: 11/17/08

Date Sampled: 11/06/08
Date Received: 11/06/08

Date Extracted MS/MSD: 11/12/08

Sample Amount MS: 8.52 g-dry-wt MSD: 8.53 g-dry-wt

Date Analyzed MS: 11/14/08 16:42

Final Extract Volume MS: 0.5 mL

MSD: 11/14/08 17:16

MSD: 0.5 mL

QC Report No: NY64-The Boeing Company

Instrument/Analyst MS: NT6/LJR MSD: NT6/LJR

Dilution Factor MS: 1.00 MSD: 1.00

GPC Cleanup: NO

Percent Moisture: 17.3 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
analy ce	Dumpie	110	naaca-mb	Recovery		nadea MDD		
Phenol	< 60.3	996	1470	67.8%	1070	1470	72.8%	7.2%
Bis-(2-Chloroethyl) Ether	< 60.3	1150	1470	78.2%	1180	1470	80.3%	2.6%
2-Chlorophenol	< 60.3	1010	1470	68.7%	1120	1470	76.2%	10.3%
1,3-Dichlorobenzene	< 60.3	854	1470	58.1%	1050	1470	71.4%	20.6%
1,4-Dichlorobenzene	< 60.3	842	1470	57.3%	1040	1470	70.7%	21.0%
Benzyl Alcohol	< 60.3	1260	2930	43.0%	1330	2930	45.4%	5.4%
1,2-Dichlorobenzene	< 60.3	868	1470	59.0%	1050	1470	71.4%	19.0%
2-Methylphenol	< 60.3	1070	1470	72.8%	1130	1470	76.9%	5.5%
2,2'-Oxybis(1-Chloropropan	e< 60.3	882	1470	60.0%	1050	1470	71.4%	17.4%
4-Methylphenol	< 60.3	2250	2930	76.8%	2290	2930	78.2%	1.8%
N-Nitroso-Di-N-Propylamine	< 302	972	1470	66.1%	1100	1470	74.8%	12.4%
Hexachloroethane	< 60.3	758	1470	51.6%	918	1470	62.4%	19.1%
Nitrobenzene	< 60.3	903	1470	61.4%	1020	1470	69.4%	12.2%
Isophorone	< 60.3	1130	1470	76.9%	1210	1470	82.3%	6.8%
2-Nitrophenol	< 60.3	1080	1470	73.5%	1190	1470	81.0%	9.7%
2,4-Dimethylphenol	< 60.3	1150	1470	78.2%	1150	1470	78.2%	0.0%
Benzoic Acid	< 603	3570	4400	81.1%	3650	4400	83.0%	2.2%
bis(2-Chloroethoxy) Methan	e< 60.3	1070	1470	72.8%	1170	1470	79.6%	8.9%
2,4-Dichlorophenol	< 302	1270	1470	86.4%	1270	1470	86.4%	0.0%
1,2,4-Trichlorobenzene	< 60.3	1030	1470	70.1%	1150	1470	78.2%	11.0%
Naphthalene	< 60.3	1040	1470	70.7%	1150	1470	78.2%	10.0%
4-Chloroaniline	< 302	2860	3520	81.2%	2750	3520	78.1%	3.9%
Hexachlorobutadiene	< 60.3	988	1470	67.2%	1130	1470	76.9%	13.4%
4-Chloro-3-methylphenol	< 302	1290	1470	87.8%	1260	1470	85.7%	2.4%
2-Methylnaphthalene	< 60.3	1090	1470	74.1%	1130	1470	76.9%	3.6%
Hexachlorocyclopentadiene	< 302	1290	4400	29.3%	1160	4400	26.4%	10.6%
2,4,6-Trichlorophenol	< 302	1260	1470	85.7%	1240	1470	84.4%	1.6%
2,4,5-Trichlorophenol	< 302	1280	1470	87.1%	1240	1470	84.4%	3.2%
2-Chloronaphthalene	< 60.3	1190	1470	81.0%	1190	1470	81.0%	0.0%
2-Nitroaniline	< 302	1190	1470	81.0%	1150	1470	78.2%	3.4%
Dimethylphthalate	< 60.3	1290	1470	87.8%	1250	1470	85.0%	3.1%
Acenaphthylene	< 60.3	1260	1470	85.7%	1230	1470	83.7%	2.4%
3-Nitroaniline	< 302	3490	3760	92.8%	3270	3750	87.2%	6.5%
Acenaphthene	< 60.3	1260	1470	85.7%	1210	1470	82.3%	4.0%
2,4-Dinitrophenol	< 603	2490	4400	56.6%	2080	4400	47.3%	17.9%
4-Nitrophenol	< 302	1110	1470	75.5%	1070	1470	72.8%	3.7%
Dibenzofuran	< 60.3	1220	1470	83.0%	1160	1470	78.9%	5.0%
2,6-Dinitrotoluene	< 302	1310	1470	89.1%	1290	1470	87.8%	1.5%
2,4-Dinitrotoluene	< 302	1380	1470	93.9%	1340	1470	91.2%	2.9%
Diethylphthalate	< 60.3	1240	1470	84.4%	1190	1470	81.0%	4.1%
4-Chlorophenyl-phenylether		1250	1470	85.0%	1220	1470	83.0%	2.4%
Fluorene	< 60.3	1310	1470	89.1%	1260	1470	85.7%	3.9%
4-Nitroaniline	< 302	1250	1470	85.0%	1220	1470	83.0%	2.4%
4,6-Dinitro-2-Methylphenol		1780	4400	40.5%	1350	4400	30.7%	27.5%
N-Nitrosodiphenylamine	< 60.3	1330	1470	90.5%	1280	1470	87.1%	3.8%

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TDP29-11-081106 MS/MSD

Lab Sample ID: NY64D LIMS ID: 08-30264

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed MS: 11/14/08 16:42 MSD: 11/14/08 17:16

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
4-Bromophenyl-phenylether	< 60.3	1290	1470	87.8%	1250	1470	85.0%	3.1%
Hexachlorobenzene	< 60.3	1330	1470	90.5%	1290	1470	87.8%	3.1%
Pentachlorophenol	< 302	1070	1470	72.8%	1040	1470	70.7%	2.8%
Phenanthrene	< 60.3	1350	1470	91.8%	1310	1470	89.1%	3.0%
Carbazole	< 60.3	1370	1470	93.2%	1340	1470	91.2%	2.2%
Anthracene	< 60.3	1340	1470	91.2%	1300	1470	88.4%	3.0%
Di-n-Butylphthalate	< 60.3	1320	1470	89.8%	1280	1470	87.1%	3.1%
Fluoranthene	< 60.3	1390	1470	94.6%	1380	1470	93.9%	0.7%
Pyrene	< 60.3	1320	1470	89.8%	1280	1470	87.1%	3.1%
Butylbenzylphthalate	< 60.3	1380	1470	93.9%	1330	1470	90.5%	3.7%
3,3'-Dichlorobenzidine	< 302	3080	3760	81.9%	3210	3750	85.6%	4.1%
Benzo(a)anthracene	< 60.3	1380	1470	93.9%	1340	1470	91.2%	2.9%
bis(2-Ethylhexyl)phthalate	< 60.3	1480	1470	101%	1460	1470	99.3%	1.4%
Chrysene	< 60.3	1350	1470	91.8%	1330	1470	90.5%	1.5%
Di-n-Octyl phthalate	< 60.3	1310	1470	89.1%	1290	1470	87.8%	1.5%
Benzo(b)fluoranthene	< 60.3	1410	1470	95.9%	1490	1470	101%	5.5%
Benzo(k)fluoranthene	< 60.3	1520	1470	103%	1390	1470	94.6%	8.9%
Benzo(a)pyrene	< 60.3	1190	1470	81.0%	1170	1470	79.6%	1.7%
Indeno(1,2,3-cd)pyrene	< 60.3	975	1470	66.3%	936	1470	63.7%	4.1%
Dibenz(a,h)anthracene	< 60.3	1020	1470	69.4%	965	1470	65.6%	5.5%
Benzo(g,h,i)perylene	< 60.3	852	1470	58.0%	791	1470	53.8%	7.4%
1-Methylnaphthalene	< 60.3	1250	1470	85.0%	1290	1470	87.8%	3.1%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Sample ID: TDP29-11-081106 MATRIX SPIKE

Lab Sample ID: NY64D LIMS ID: 08-30264

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Matrix: Soil Data Release Authorized: NW 023173

Reported: 11/17/08

Date Sampled: 11/06/08 Date Received: 11/06/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 16:42 Instrument/Analyst: NT6/LJR

Sample Amount: 8.52 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: No

Dilution Factor: 1.00

Percent Moisture: 17.3%

Result
-
*** *** ***
Many May May
*** *** ***

·

ANALYTICAL RESOURCES \ **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: TDP29-11-081106 MATRIX SPIKE

Lab Sample ID: NY64D LIMS ID: 08-30264

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Matrix: Soil

023173

Date Analyzed: 11/14/08 16:42

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	59	w- w
7 005-72-3	4-Chlorophenyl-phenylether	59	
86-73-7	Fluorene	59	
100-01-6	4-Nitroaniline	290	
534-52-1	4,6-Dinitro-2-Methylphenol	590	
86-30-6	N-Nitrosodiphenylamine	59	
101-55-3	4-Bromophenyl-phenylether	59	
118-74-1	Hexachlorobenzene	59	
87-86-5	Pentachlorophenol	290	
85-01-8	Phenanthrene	59	
86-74-8	Carbazole	59	
120-12-7	Anthracene	59	
84-74-2	Di-n-Butylphthalate	59	
206-44-0	Fluoranthene	59	
129-00-0	Pyrene	59	
85-68-7	Butylbenzylphthalate	59	
91-94-1	3,3'-Dichlorobenzidine	290	
56-55-3	Benzo(a)anthracene	59	
117-81-7	bis(2-Ethylhexyl)phthalate	59	
218-01-9	Chrysene	59	
117-84-0	Di-n-Octyl phthalate	59	
205-99-2	Benzo(b) fluoranthene	59	
207-08-9	Benzo(k)fluoranthene	59	
50-32-8	Benzo(a)pyrene	59	
193-39-5	Indeno(1,2,3-cd)pyrene	59	
53-70-3	Dibenz (a, h) anthracene	59	
191-24-2	Benzo(g,h,i)perylene	59	
90-12-0	1-Methylnaphthalene	59	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	53.2%	2-Fluorobiphenyl	67.2%
d14-p-Terphenyl	75.6%	d4-1,2-Dichlorobenzene	52.0%
d5-Phenol	66.7%	2-Fluorophenol	57.1%
2.4.6-Tribromophenol	71.7%	d4-2-Chlorophenol	60.0%

Sample ID: TDP29-11-081106 MATRIX SPIKE DUPLICATE

Lab Sample ID: NY64D LIMS ID: 08-30264

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Soil

023173

Data Release Authorized:

Date Sampled: 11/06/08

Reported: 11/17/08

Date Received: 11/06/08

Date Extracted: 11/12/08 Date Analyzed: 11/14/08 17:16 Instrument/Analyst: NT6/LJR

Sample Amount: 8.53 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: No

Dilution Factor: 1.00 Percent Moisture: 17.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	
111-44-4	Bis-(2-Chloroethyl) Ether	59	
95-57-8	2-Chlorophenol	59	
541-73-1	1,3-Dichlorobenzene	59	
106-46-7	1,4-Dichlorobenzene	59	
100-51-6	Benzyl Alcohol	59	
95-50-1	1,2-Dichlorobenzene	59	
95-48-7	2-Methylphenol	59	
108-60-1	2,2'-Oxybis(1-Chloropropane)	59	
106-44-5	4-Methylphenol	59	
621-64-7	N-Nitroso-Di-N-Propylamine	290	
67-72-1	Hexachloroethane	59	
98-95-3	Nitrobenzene	59	
78-59-1	Isophorone	59	
88-75-5	2-Nitrophenol	59	
105-67-9	2,4-Dimethylphenol	59	
65-85-0	Benzoic Acid	590	
111-91-1	bis(2-Chloroethoxy) Methane	59	
120-83-2	2,4-Dichlorophenol	290	
120-82-1	1,2,4-Trichlorobenzene	59	
91-20-3	Naphthalene	59	
106-47-8	4-Chloroaniline	290	
87-68-3	Hexachlorobutadiene	59	
59-50-7	4-Chloro-3-methylphenol	290	
91-57-6	2-Methylnaphthalene	59	
77-47-4	Hexachlorocyclopentadiene	290	
88-06-2	2,4,6-Trichlorophenol	290	
95-95-4	2,4,5-Trichlorophenol	290	
91-58-7	2-Chloronaphthalene	59	
88-74-4	2-Nitroaniline	290	
131-11-3	Dimethylphthalate	59	
208-96-8	Acenaphthylene	59	
99-09-2	3-Nitroaniline	290	
83-32-9	Acenaphthene	59	
51-28-5	2,4-Dinitrophenol	590	
100-02-7	4-Nitrophenol	290	
132-64-9	Dibenzofuran	59	
606-20-2	2,6-Dinitrotoluene	290	
121-14-2	2,4-Dinitrotoluene	290	

ANALYTICAL RESOURCES ' INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: TDP29-11-081106

MATRIX SPIKE DUPLICATE

Lab Sample ID: NY64D LIMS ID: 08-30264

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Soil

Date Analyzed: 11/14/08 17:16

023173

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	59	
7005-72-3	4-Chlorophenyl-phenylether	59	
86-73-7	Fluorene	59	
100-01-6	4-Nitroaniline	290	
534-52-1	4,6-Dinitro-2-Methylphenol	590	
86-30-6	N-Nitrosodiphenylamine	59	
101-55-3	4-Bromophenyl-phenylether	59	
118-74-1	Hexachlorobenzene	59	
87-86-5	Pentachlorophenol	290	
85-01-8	Phenanthrene	. 59	
86-74-8	Carbazole	59	
120-12-7	Anthracene	59	
84-74-2	Di-n-Butylphthalate	59	
206-44-0	Fluoranthene	59	
129-00-0	Pyrene	59	
85-68-7	Butylbenzylphthalate	59	
91-94-1	3,3'-Dichlorobenzidine	290	
56-55-3	Benzo(a) anthracene	59	
117-81-7	bis(2-Ethylhexyl)phthalate	59	
218-01-9	Chrysene	59	
117-84-0	Di-n-Octyl phthalate	59	
205-99-2	Benzo(b) fluoranthene	59	
207-08-9	Benzo(k)fluoranthene	59	
50-32-8	Benzo(a)pyrene	59	
193-39-5	Indeno(1,2,3-cd)pyrene	59	
53-70-3	Dibenz(a,h)anthracene	59	
191-24-2	Benzo(g,h,i)perylene	59	
90-12-0	1-Methylnaphthalene	59	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	60.8%	2-Fluorobiphenyl	67.6%
d14-p-Terphenyl	74.0%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	68.0%	2-Fluorophenol	67.7%
2,4,6-Tribromopher	nol 71.2%	d4-2-Chlorophenol	66.7%

Page 1 of 2

Sample ID: LCS-111208 LCS/LCSD

Lab Sample ID: LCS-111208

LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized: MW

Reported: 11/17/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Date Extracted LCS/LCSD: 11/12/08

Date Analyzed LCS: 11/14/08 13:19

LCSD: 11/14/08 13:53

Instrument/Analyst LCS: NT6/LJR LCSD: NT6/LJR

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	1220	1670	73.1%	1330	1670	79.6%	8.6%
Bis-(2-Chloroethyl) Ether	1250	1670	74.9%	1350	1670	80.8%	7.7%
2-Chlorophenol	1270	1670	76.0%	1370	1670	82.0%	7.6%
1,3-Dichlorobenzene	1160	1670	69.5%	1200	1670	71.9%	3.4%
1,4-Dichlorobenzene	1160	1670	69.5%	1190	1670	71.3%	2.6%
Benzyl Alcohol	1330	3330	39.9%	1530	3330	45.9%	14.0%
1,2-Dichlorobenzene	1160	1670	69.5%	1240	1670	74.3%	6.7%
2-Methylphenol	1260	1670	75.4%	1370	1670	82.0%	8.4%
2,2'-Oxybis(1-Chloropropane)1180	1670	70.7%	1270	1670	76.0%	7.3%
4-Methylphenol	2650	3330	79.6%	2860	3330	85.9%	7.6%
N-Nitroso-Di-N-Propylamine	1270	1670	76.0%	1370	1670	82.0%	7.6%
Hexachloroethane	1090	1670	65.3%	1140	1670	68.3%	4.5%
Nitrobenzene	1170	1670	70.1%	1240	1670	74.3%	5.8%
Isophorone	1380	1670	82.6%	1500	1670	89.8%	8.3%
2-Nitrophenol	1370	1670	82.0%	1460	1670	87.4%	6.4%
2,4-Dimethylphenol	1300	1670	77.8%	1350	1670	80.8%	3.8%
Benzoic Acid	1650	5000	33.0%	< 667	5000	NA	NA
bis(2-Chloroethoxy) Methane	1340	1670	80.2%	1450	1670	86.8%	7.9%
2,4-Dichlorophenol	1450	1670	86.8%	1490	1670	89.2%	2.7%
1,2,4-Trichlorobenzene	1270	1670	76.0%	1360	1670	81.4%	6.8%
Naphthalene	1280	1670	76.6%	1370	1670	82.0%	6.8%
4-Chloroaniline	3440	4000	86.0%	3850	4000	96.2%	11.2%
Hexachlorobutadiene	1280	1670	76.6%	1310	1670	78.4%	2.3%
4-Chloro-3-methylphenol	1410	1670	84.4%	1470	1670	88.0%	4.2%
2-Methylnaphthalene	1260	1670	75.4%	1330	1670	79.6%	5.4%
Hexachlorocyclopentadiene	3860	5000	77.2%	3940	5000	78.8%	2.1%
2,4,6-Trichlorophenol	1480	1670	88.6%	1450	1670	86.8%	2.0%
2,4,5-Trichlorophenol	1470	1670	88.0%	1370	1670	82.0%	7.0%
2-Chloronaphthalene	1430	1670	85.6%	1470	1670	88.0%	2.8%
2-Nitroaniline	1360	1670	81.4%	1410	1670	84.4%	3.6%
Dimethylphthalate	1510	1670	90.4%	1560	1670	93.4%	3.3%
Acenaphthylene	1480	1670	88.6%	1510	1670	90.4%	2.0%
3-Nitroaniline	4240	4270	99.3%	4610	4270	108%	8.4%
Acenaphthene	1460	1670	87.4%	1480	1670	88.6%	1.4%

Page 2 of 2

Sample ID: LCSD-111208

LCS/LCSD

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Lab Sample ID: LCS-111208

LIMS ID: 08-30264

Matrix: Soil

Date Analyzed LCS: 11/14/08 13:19

LCSD: 11/14/08 13:53

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	4430	5000	88.6%	3260	5000	65.2%	30.4%
4-Nitrophenol	906	1670	54.3%	987	1670	59.1%	8.6%
Dibenzofuran	1400	1670	83.8%	1440	1670	86.2%	2.8%
2,6-Dinitrotoluene	1560	1670	93.4%	1580	1670	94.6%	1.3%
2,4-Dinitrotoluene	1590	1670	95.2%	1650	1670	98.8%	3.7%
Diethylphthalate	1480	1670	88.6%	1520	1670	91.0%	2.7%
4-Chlorophenyl-phenylether	1480	1670	88.6%	1520	1670	91.0%	2.7%
Fluorene	1510	1670	90.4%	1550	1670	92.8%	2.6%
4-Nitroaniline	1500	1670	89.8%	1610	1670	96.4%	7.1%
4,6-Dinitro-2-Methylphenol	3270	5000	65.4%	3230	5000	64.6%	1.2%
N-Nitrosodiphenylamine	1570	1670	94.0%	1600	1670	95.8%	1.9%
4-Bromophenyl-phenylether	1510	1670	90.4%	1590	1670	95.2%	5.2%
Hexachlorobenzene	1600	1670	95.8%	1630	1670	97.6%	1.9%
Pentachlorophenol	1140	1670	68.3%	1110	1670	66.5%	2.7%
Phenanthrene	1580	1670	94.6%	1600	1670	95.8%	1.3%
Carbazole	1670	1670	100%	1690	1670	101%	1.2%
Anthracene	1570	1670	94.0%	1600	1670	95.8%	1.9%
Di-n-Butylphthalate	1680	1670	101%	1680	1670	101%	0.0%
Fluoranthene	1730	1670	104%	1710	1670	102%	1.2%
Pyrene	1600	1670	95.8%	1660	1670	99.4%	3.7%
Butylbenzylphthalate	1670	1670	100%	1730	1670	104%	3.5%
3,3'-Dichlorobenzidine	4150	4270	97.2%	4420	4270	104%	6.3%
Benzo(a) anthracene	1640	1670	98.2%	1700	1670	102%	3.6%
bis(2-Ethylhexyl)phthalate	1790	1670	107%	1850	1670	111%	3.3%
Chrysene	1620	1670	97.0%	1660	1670	99.4%	2.4%
Di-n-Octyl phthalate	1570	1670	94.0%	1630	1670	97.6%	3.8%
Benzo(b) fluoranthene	1720	1670	103%	1620	1670	97.0%	6.0%
Benzo(k) fluoranthene	1680	1670	101%	1880	1670	113%	11.2%
Benzo (a) pyrene	1440	1670	86.2%	1500	1670	89.8%	4.1%
Indeno(1,2,3-cd)pyrene	1640	1670	98.2%	1730	1670	104%	5.3%
Dibenz(a,h)anthracene	1600	1670	95.8%	1690	1670	101%	5.5%
Benzo(q,h,i)perylene	1560	1670	93.4%	1700	1670	102%	8.6%
1-Methylnaphthalene	1430	1670	85.6%	1510	1670	90.4%	5.4%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	60.0%	64.0%
2-Fluorobiphenyl	71.6%	74.4%
d14-p-Terphenyl	81.6%	86.8%
d4-1,2-Dichlorobenzene	61.6%	64.4%
d5-Phenol	68.5%	73.1%
2-Fluorophenol	68.5%	72.8%
2,4,6-Tribromophenol	71.2%	73.1%
d4-2-Chlorophenol	66.9%	70.9%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Sample ID: MB-111208 METHOD BLANK

Lab Sample ID: MB-111208

LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized: WW

Reported: 11/17/08

Date Extracted: 11/12/08
Date Analyzed: 11/14/08 12:45
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 Ü
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 Ŭ
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 Ü
91-20-3	Naphthalene	67	< 67 Ŭ
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 ปั
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 Ü
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: MB-111208 METHOD BLANK

Lab Sample ID: MB-111208

LIMS ID: 08-30264

Matrix: Soil

Date Analyzed: 11/14/08 12:45

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b)fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	CC 08
d14-p-Terphenyl	80.0%	d4-1,2-Dichlorobenzene	66.0%
d5-Phenol	69.1%		66.0%
2,4,6-Tribromophenol		2-Fluorophenol	71.5%
2/1/0 IIIDIOMODHEMOI	68.0%	d4-2-Chlorophenol	67.2%

Page 1 of 2

Matrix: Water

Lab Sample ID: NY64H

Data Release Authorized:

LIMS ID: 08-30268

Reported: 11/20/08

Sample ID: TDP26-GW-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Date Extracted: 11/11/08 Final Extract Volume: 0.50 mL Date Analyzed: 11/18/08 15:26 Dilution Factor: 1.00 Instrument/Analyst: NT4/LJR

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP26-GW-081106

SAMPLE

Lab Sample ID: NY64H QC Report No: NY64-The Boeing Company LIMS ID: 08-30268

Project: BOEING THOMPSON

023173

Matrix: Water

Date Analyzed: 11/18/08 15:26

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	66.0%
d14-p-Terphenyl	70.0%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	60.0%	2-Fluorophenol	54.9%
2,4,6-Tribromophenol	88.5%	d4-2-Chlorophenol	61.9%

Page 1 of 2

Lab Sample ID: NY64I LIMS ID: 08-30269

Matrix: Water

Data Release Authorized:

Reported: 11/20/08

Date Extracted: 11/11/08 Date Analyzed: 11/18/08 16:01 Instrument/Analyst: NT4/LJR

Sample ID: TDP28-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP28-GW-081106

SAMPLE

Lab Sample ID: NY64I QC Report No: NY64-The Boeing Company LIMS ID: 08-30269

Project: BOEING THOMPSON

023173

Matrix: Water

Date Analyzed: 11/18/08 16:01

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	3.8
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	79.6%	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	83.2%	d4-1,2-Dichlorobenzene	76.0%
d5-Phenol	76.8%	2-Fluorophenol	70.9%
2,4,6-Tribromophenol	97.6%	d4-2-Chlorophenol	78.7%

Page 1 of 2

Lab Sample ID: NY64J LIMS ID: 08-30270

Matrix: Water

Data Release Authorized: Reported: 11/20/08

Date Extracted: 11/11/08 Date Analyzed: 11/18/08 16:36 Instrument/Analyst: NT4/LJR

Sample ID: TDP29-GW-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	9.1
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	1.0
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	3.9
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	24
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 Ü
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP29-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company Lab Sample ID: NY64J LIMS ID: 08-30270

Project: BOEING THOMPSON

023173

Matrix: Water

Date Analyzed: 11/18/08 16:36

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	70.0%	2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	41.2%	d4-1,2-Dichlorobenzene	61.6%
d5-Phenol	66.9%	2-Fluorophenol	64.3%
2.4.6-Tribromophenol	93.3%	d4-2-Chlorophenol	71.2%

Page 1 of 2

Sample ID: TDP31-GW-081106

SAMPLE

Lab Sample ID: NY64K LIMS ID: 08-30271

Matrix: Water

Data Release Authorized:

Date Extracted: 11/11/08

Date Analyzed: 11/18/08 17:11

Instrument/Analyst: NT4/LJR

Reported: 11/20/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75 - 5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TDP31-GW-081106

SAMPLE

Lab Sample ID: NY64K QC Report No: NY64-The Boeing Company LIMS ID: 08-30271

Project: BOEING THOMPSON

023173

Matrix: Water Date Analyzed: 11/18/08 17:11

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	3.0
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno $(1,2,3-cd)$ pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	80.8%	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	90.4%	d4-1,2-Dichlorobenzene	72.0%
d5-Phenol	78.1%	2-Fluorophenol	72.8%
2,4,6-Tribromophenol	105%	d4-2-Chlorophenol	81.6%

Page 1 of 2

Lab Sample ID: NY64N LIMS ID: 08-30274

Matrix: Water

Data Release Authorized: // Reported: 11/20/08

Date Extracted: 11/11/08
Date Analyzed: 11/18/08 17:46
Instrument/Analyst: NT4/LJR

Sample ID: TH-DRUM2-WATER SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 Ŭ
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 Ŭ
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	36
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 Ŭ
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	1.8
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 Ŭ
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: TH-DRUM2-WATER

SAMPLE

QC Report No: NY64-The Boeing Company Lab Sample ID: NY64N LIMS ID: 08-30274

Project: BOEING THOMPSON

023173

Matrix: Water Date Analyzed: 11/18/08 17:46

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56 - 55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	3.1
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	68.4%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	44.0%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	66.7%	2-Fluorophenol	61.6%
2.4.6-Tribromophenol	98.9%	d4-2-Chlorophenol	70.1%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON Matrix: Water

023173

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-111108	70.0%	68.0%	83.2%	60.4%	66.1%	62.7%	79.2%	70.4%	0
LCS-111108	82.4%	86.8%	92.4%	75.6%	81.3%	77.1%	103%	83.2%	0
LCSD-111108	73.6%	80.4%	87.2%	60.8%	74.1%	64.3%	99.5%	73.9%	0
TDP26-GW-081106	62.4%	66.0%	70.0%	54.8%	60.0%	54.9%	88.5%	61.9%	0
TDP28-GW-081106	79.6%	79.2%	83.2%	76.0%	76.8%	70.9%	97.6%	78.7%	0
TDP29-GW-081106	70.0%	65.2%	41.2%	61.6%	66.9%	64.3%	93.3%	71.2%	0
TDP31-GW-081106	80.8%	79.2%	90.4%	72.0%	78.1%	72.8%	105%	81.6%	0
TH-DRUM2-WATER	68.4%	68.0%	44.0%	64.0%	66.7%	61.6%	98.9%	70.1%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 08-30268 to 08-30274

Page 1 of 2

Sample ID: LCS-111108

LCS/LCSD

Lab Sample ID: LCS-111108

LIMS ID: 08-30268

Matrix: Water

Data Release Authorized: //

Reported: 11/20/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount LCS: 500 mL Date Extracted LCS/LCSD: 11/11/08

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 11/18/08 14:16 LCSD: 0.50 mL LCSD: 11/18/08 14:51

Instrument/Analyst LCS: NT4/LJR Dilution Factor LCS: 1.00 LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	22.1	25.0	88.4%	20.4	25.0	81.6%	8.0%
Bis-(2-Chloroethyl) Ether	21.7	25.0	86.8%	18.6	25.0	74.4%	15.4%
2-Chlorophenol	23.1	25.0	92.4%	20.3	25.0	81.2%	12.9%
1,3-Dichlorobenzene	16.7	25.0	66.8%	13.2	25.0	52.8%	23.4%
1,4-Dichlorobenzene	17.5	25.0	70.0%	13.7	25.0	54.8%	24.48
Benzyl Alcohol	39.2	50.0	78.4%	36.8	50.0	73.6%	6.3%
1,2-Dichlorobenzene	18.0	25.0	72.0%	14.9	25.0	59.6%	18.8%
2-Methylphenol	22.9	25.0	91.6%	21.2	25.0	84.8%	7.7%
2,2'-Oxybis(1-Chloropropane		25.0	77.6%	17.1	25.0	68.4%	12.6%
4-Methylphenol	44.9	50.0	89.8%	42.5	50.0	85.0%	5.5%
N-Nitroso-Di-N-Propylamine	19.6	25.0	78.4%	18.5	25.0	74.0%	5.8%
Hexachloroethane	14.4	25.0	57.6%	11.6	25.0	46.4%	21.5%
Nitrobenzene	19.6	25.0	78.4%	17.6	25.0	70.4%	10.8%
Isophorone	22.6	25.0	90.4%	21.3	25.0	85.2%	5.9%
2-Nitrophenol	25.1	25.0	100%	23.1	25.0	92.4%	8.3%
2,4-Dimethylphenol	20.5	25.0	82.0%	18.9	25.0	75.6%	8.1%
Benzoic Acid	81.1	75.0	108%	73.4	75.0	97.9%	10.0%
bis(2-Chloroethoxy) Methane	22.3	25.0	89.2%	20.4	25.0	81.6%	8.9%
2,4-Dichlorophenol	26.1	25.0	104%	23.7	25.0	94.8%	9.6%
1,2,4-Trichlorobenzene	19.5	25.0	78.0%	16.8	25.0	67.2%	14.9%
Naphthalene	21.5	25.0	86.0%	18.8	25.0	75.2%	13.4%
4-Chloroaniline	72.8	60.0	121%	72.1	60.0	120%	1.0%
Hexachlorobutadiene	16.5	25.0	66.0%	13.9	25.0	55.6%	17.1%
4-Chloro-3-methylphenol	25.5	25.0	102%	24.0	25.0	96.0%	6.1%
2-Methylnaphthalene	22.1	25.0	88.4%	21.0	25.0	84.0%	5.1%
Hexachlorocyclopentadiene	42.9	75.0	57.2%	38.2	75.0	50.9%	11.6%
2,4,6-Trichlorophenol	26.2	25.0	105%	24.6	25.0	98.4%	6.3%
2,4,5-Trichlorophenol	25.9	25.0	104%	24.8	25.0	99.2%	4.3%
2-Chloronaphthalene	24.9	25.0	99.6%	23.3	25.0	93.2%	6.6%
2-Nitroaniline	25.4	25.0	102%	24.1	25.0	96.4%	5.3%
Dimethylphthalate	25.1	25.0	100%	24.1	25.0	96.4%	4.1%
Acenaphthylene	24.2	25.0	96.8%	23.2	25.0	92.8%	4.2%
3-Nitroaniline	66.2	64.0	103%	64.8	64.0	101%	2.1%
Acenaphthene	24.5	25.0	98.0%	23.1	25.0	92.4%	5.9%
2,4-Dinitrophenol	108	75.0	144%	108	75.0	144%	0.0%
4-Nitrophenol	27.9	25.0	112%	27.6	25.0	110%	1.1%
Dibenzofuran	25.2	25.0	101%	23.6	25.0	94.4%	6.6%
2,6-Dinitrotoluene	29.6	25.0	118%	28.3	25.0	113%	4.5%
2,4-Dinitrotoluene	30.0	25.0	120%	28.0	25.0	112%	6.9%
Diethylphthalate	26.8	25.0	107%	25.5	25.0	102%	5.0%
4-Chlorophenyl-phenylether	25.2	25.0	101%	23.7	25.0	94.8%	6.1%
Fluorene	25.8	25.0	103%	24.4	25.0	97.6%	5.6%
4-Nitroaniline	25.2	25.0	101%	24.4	25.0	97.6%	3.2%
4,6-Dinitro-2-Methylphenol	55.2	75.0	73.6%	55.0	75.0	73.3%	0.4%
N-Nitrosodiphenylamine	24.4	25.0	97.6%	23.4	25.0	93.6%	4.2%

Page 2 of 2

Sample ID: LCS-111108

LCS/LCSD

Lab Sample ID: LCS-111108

QC Report No: NY64-The Boeing Company

LIMS ID: 08-30268

Project: BOEING THOMPSON

Matrix: Water

023173

Date Analyzed: 11/18/08 14:16

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	25.0	25.0	100%	23.8	25.0	95.2%	4.9%
Hexachlorobenzene	26.3	25.0	105%	25.4	25.0	102%	3.5%
Pentachlorophenol	27.7	25.0	111%	27.9	25.0	112%	0.7%
Phenanthrene	25.3	28.0	90.4%	24.0	28.0	85.7%	5.3%
Carbazole	25.3	25.0	101%	25.0	25.0	100%	1.2%
Anthracene	23.1	25.0	92.4%	22.3	25.0	89.2%	3.5%
Di-n-Butylphthalate	25.5	25.0	102%	24.7	25.0	98.8%	3.2%
Fluoranthene	25.6	25.0	102%	25.9	25.0	104%	1.2%
Pyrene	25.7	25.0	103%	23.7	25.0	94.8%	8.1%
Butylbenzylphthalate	25.6	25.0	102%	24.0	25.0	96.0%	6.5%
3,3'-Dichlorobenzidine	57.1	64.0	89.2%	56.3	64.0	88.0%	1.4%
Benzo(a)anthracene	24.9	25.0	99.6%	24.0	25.0	96.0%	3.7%
bis(2-Ethylhexyl)phthalate	25.3	25.0	101%	24.6	25.0	98.4%	2.8%
Chrysene	24.9	28.0	88.9%	23.9	28.0	85.4%	4.1%
Di-n-Octyl phthalate	24.6	25.0	98.4%	23.8	25.0	95.2%	3.3%
Benzo(b)fluoranthene	25.1	25.0	100%	24.8	25.0	99.2%	1.2%
Benzo(k)fluoranthene	25.1	28.0	89.6%	23.8	28.0	85.0%	5.3%
Benzo(a)pyrene	20.5	25.0	82.0%	20.2	25.0	80.8%	1.5%
Indeno(1,2,3-cd)pyrene	23.4	25.0	93.6%	21.8	25.0	87.2%	7.1%
Dibenz(a,h)anthracene	24.0	25.0	96.0%	22.5	25.0	90.0%	6.5%
Benzo(g,h,i)perylene	21.2	25.0	84.8%	19.7	25.0	78.8%	7.3%
1-Methylnaphthalene	24.0	25.0	96.0%	22.2	25.0	88.8%	7.8%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	82.4%	73.6%
2-Fluorobiphenyl	86.8%	80.4%
d14-p-Terphenyl	92.4%	87.2%
d4-1,2-Dichlorobenzene	75.6%	60.8%
d5-Phenol	81.3%	74.1%
2-Fluorophenol	77.1%	64.3%
2,4,6-Tribromophenol	103%	99.5%
d4-2-Chlorophenol	83.2%	73.9%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: MB-111108 METHOD BLANK

Lab Sample ID: MB-111108

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized:

Date Extracted: 11/11/08

Date Analyzed: 11/18/08 13:41

Instrument/Analyst: NT4/LJR

Reported: 11/20/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-111108

METHOD BLANK

Lab Sample ID: MB-111108

QC Report No: NY64-The Boeing Company

LIMS ID: 08-30268

Project: BOEING THOMPSON

Matrix: Water

023173

Date Analyzed: 11/18/08 13:41

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	70.0%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	83.2%	d4-1,2-Dichlorobenzene	60.4%
d5-Phenol	66.1%	2-Fluorophenol	62.7%
2 4 6-Tribromophenol	79.2%	d4-2-Chlorophenol	70.4%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: TDP26-GW-081106 SAMPLE

Lab Sample ID: NY64H LIMS ID: 08-30268

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized: Reported: 11/17/08

QC Report No: NY64-The Boeing Company
Project: BOEING THOMPSON
Event: 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Date Extracted: 11/11/08
Date Analyzed: 11/15/08 16:38
Instrument/Analyst: NT1/YZ

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

d10-2-Methylnaphthalene	66.0%
d14-Dibenzo(a,h)anthracene	52.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY64I LIMS ID: 08-30269

Matrix: Water

Data Release Authorized:// Reported: 11/17/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 17:03 Instrument/Analyst: NT1/YZ

Sample ID: TDP28-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON Event: 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	0.13
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	0.39
129-00-0	Pyrene	0.10	0.36
56-55-3	Benzo(a) anthracene	0.10	0.14
218-01-9	Chrysene	0.10	0.10
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	0.10
50-32-8	Benzo (a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

d10-2-Methylnaphthalene	58.3%
d14-Dibenzo(a,h)anthracene	67.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY64J LIMS ID: 08-30270

Matrix: Water

Data Release Authorized: Reported: 11/17/08

Date Extracted: 11/11/08
Date Analyzed: 11/15/08 17:27
Instrument/Analyst: NT1/YZ

Sample ID: TDP29-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Event: 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	\mathbf{RL}	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	0.11
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	0.11
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k) fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

d10-2-Methylnaphthalene	63.0%
d14-Dibenzo(a,h)anthracene	29.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: NY64K LIMS ID: 08-30271

Matrix: Water

Data Release Authorized:

Reported: 11/17/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 17:52 Instrument/Analyst: NT1/YZ

Sample ID: TDP31-GW-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Event: 023173 Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	0.11
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	0.10
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.7% d14-Dibenzo(a,h)anthracene 55.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: TH-DRUM2-WATER SAMPLE

Lab Sample ID: NY64N LIMS ID: 08-30274

LIMS ID: 08-30274 Matrix: Water

Data Release Authorized: Reported: 11/17/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Event: 023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Date Extracted: 11/11/08 Sample Amount: 500 mL
Date Analyzed: 11/15/08 18:17 Final Extract Volume: 0.5 mL
Instrument/Analyst: NT1/YZ Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	0.13
91-57-6	2-Methylnaphthalene	0.10	0.10
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	0.31
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	0.17
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	0.12
129-00-0	Pyrene	0.10	0.12
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.3% d14-Dibenzo(a,h)anthracene 32.7%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Client ID	MNP	DBA	TOT OUT
MB-111108	66.7%	76.0%	0
LCS-111108	58.7%	76.7%	0
LCSD-111108	62.0%	70.7%	0
TDP26-GW-081106	66.0%	52.3%	0
TDP28-GW-081106	58.3%	67.7%	0
TDP29-GW-081106	63.0%	29.0%	0
TDP31-GW-081106	63.7%	55.3%	0
TH-DRUM2-WATER	63.3%	32.7%	0

		LCS/MB LIMITS	QC LIMITS
1	d10-2-Methylnaphthalene	(49-113)	(44-112)
	d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C Log Number Range: 08-30268 to 08-30274

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-111108

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111108

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized:

Reported: 11/17/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

Event: 023173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/11/08

Date Analyzed LCS: 11/15/08 15:48

LCSD: 11/15/08 16:13

Instrument/Analyst LCS: NT1/YZ

LCSD: NT1/YZ

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	1.80	3.00	60.0%	1.84	3.00	61.3%	2.2%
2-Methylnaphthalene	1.79	3.00	59.7%	1.87	3.00	62.3%	4.4%
1-Methylnaphthalene	1.65	3.00	55.0%	1.79	3.00	59.7%	8.1%
Acenaphthylene	1.85	3.00	61.7%	1.97	3.00	65.7%	6.3%
Acenaphthene	1.92	3.00	64.0%	1.94	3.00	64.7%	1.0%
Fluorene	2.00	3.00	66.7%	2.06	3.00	68.7%	3.0%
Phenanthrene	2.10	3.00	70.0%	2.13	3.00	71.0%	1.4%
Anthracene	2.20	3.00	73.3%	2.15	3.00	71.7%	2.3%
Fluoranthene	2.45	3.00	81.7%	2.37	3.00	79.0%	3.3%
Pyrene	2.43	3.00	81.0%	2.37	3.00	79.0%	2.5%
Benzo(a)anthracene	2.21	3.00	73.7%	2.19	3.00	73.0%	0.9%
Chrysene	2.21	3.00	73.7%	2.26	3.00	75.3%	2.2%
Benzo(b)fluoranthene	2.06	3.00	68.7%	1.99	3.00	66.3%	3.5%
Benzo(k)fluoranthene	2.47	3.00	82.3%	2,32	3.00	77.3%	6.3%
Benzo(a)pyrene	2.36	3.00	78.7%	2.18	3.00	72.7%	7.9%
Indeno(1,2,3-cd)pyrene	1.95	3.00	65.0%	1.83	3.00	61.0%	6.3%
Dibenz(a,h)anthracene	2.01	3.00	67.0%	1.93	3.00	64.3%	4.1%
Benzo(g,h,i)perylene	1.96	3.00	65.3%	1.82	3.00	60.7%	7.4%
Dibenzofuran	1.91	3.00	63.7%	1.97	3.00	65.7%	3.1%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	58.7%	62.0%
d14-Dibenzo(a,h)anthracene	76.7%	70.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: MB-111108

LIMS ID: 08-30268

Matrix: Water Data Release Authorized:

Date Extracted: 11/11/08

Date Analyzed: 11/15/08 15:24

Instrument/Analyst: NT1/YZ

Reported: 11/17/08

QC Report No: NY64-The Boeing Company

Sample ID: MB-111108

METHOD BLANK

Project: BOEING THOMPSON

Event: 023173

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
-50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 66.7% d14-Dibenzo(a,h)anthracene 76.0%

Page 1 of 1

Lab Sample ID: NY64A LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 21:11 Instrument/Analyst: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP26-8-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 17.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 Ü
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.0%
Tetrachlorometaxylene	79.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP28-11-081106

SAMPLE

Lab Sample ID: NY64C

LIMS ID: 08-30263 Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 13.2 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 21:28 Instrument/Analyst: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Percent Moisture: 22.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	30	< 30 U
53469-21-9	Aroclor 1242	30	< 30 U
12672-29-6	Aroclor 1248	30	< 30 U
11097-69-1	Aroclor 1254	30	< 30 U
11096-82-5	Aroclor 1260	30	< 30 U
11104-28-2	Aroclor 1221	30	< 30 U
11141-16-5	Aroclor 1232	30	< 30 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	75.8%
Tetrachlorometaxylene	74.0%

Page 1 of 1

Lab Sample ID: NY64D LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 21:45 Instrument/Analyst: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP29-11-081106 SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 17.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in μ g/kg (ppb)

Decachlorobiphenyl	79.8%
Tetrachlorometaxylene	76.8%

Page 1 of 1

Lab Sample ID: NY64F LIMS ID: 08-30266

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 22:02 Instrument/Analyst: ECD5/PK

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TDP31-12-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 22.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	80.0%
Tetrachlorometaxylene	75.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: NY64M

LIMS ID: 08-30273 Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08
Date Analyzed: 11/15/08 22:19
Instrument/Analyst: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TH-DRUM1-SOIL SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.2 g-dry-wt

Final Extract Volume: 4.0 mL
Dilution Factor: 1.00
Silica Gel: No

Percent Moisture: 13.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.2%
Tetrachlorometaxylene	80.2%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
TDP26-8-081106	84.0%	40-139	79.0%	49-120	0
TDP28-11-081106	75.8%	40-139	74.0%	49-120	0
TDP29-11-081106	79.8%	40-139	76.8%	49-120	0
TDP31-12-081106	80.0%	40-139	75.2%	49-120	0
MB-111108	84.2%	59-122	74.8%	61-118	0
LCS-111108	87.5%	59-122	78.8%	61-118	0
LCSD-111108	82.2%	59-122	77.5%	61-118	0
TH-DRUM1-SOIL	83.2%	40-139	80.2%	49-120	0
TH-DRUM1-SOIL MS	80.2%	40-139	78.8%	49-120	0
TH-DRUM1-SOIL MSD	83.2%	40-139	83.0%	49-120	0

Standard Sonication Control Limits Prep Method: SW3550B Log Number Range: 08-30261 to 08-30273

Page 1 of 1

Lab Sample ID: NY64M LIMS ID: 08-30273

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted MS/MSD: 11/11/08

Date Analyzed MS: 11/15/08 22:36 MSD: 11/15/08 22:53

Instrument/Analyst MS: ECD5/PK MSD: ECD5/PK

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: TH-DRUM1-SOIL

MS/MSD

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount MS: 12.3 g-dry-wt

MSD: 12.3 g-dry-wt

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel: No

Percent Moisture: 13.1%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 32.8 U	100	163	61.3%	104	162	64.2%	3.9%
Aroclor 1260	< 32.8 U	119	163	73.0%	124	162	76.5%	4.1%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: NY64M LIMS ID: 08-30273

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 22:36 Instrument/Analyst: ECD5/PK

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: TH-DRUM1-SOIL MATRIX SPIKE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL

Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	80.2%
Tetrachlorometaxylene	78.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TH-DRUM1-SOIL MATRIX SPIKE DUP

Lab Sample ID: NY64M

LIMS ID: 08-30273

Matrix: Soil Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 22:53 Instrument/Analyst: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 .U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.2%
Tetrachlorometaxylene	83.0%

Page 1 of 1

Lab Sample ID: LCS-111108

LIMS ID: 08-30273

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted LCS/LCSD: 11/11/08

Date Analyzed LCS: 11/15/08 20:37

LCSD: 11/15/08 20:54

Instrument/Analyst LCS: ECD5/PK LCSD: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-111108

LCS/LCSD

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00 LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	119	167	71.4%	103	167	61.8%	14.4%
Aroclor 1260	142	167	85.2%	127	167	76.2%	11.2%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	87.5%	82.2%
Tetrachlorometaxylene	78.8%	77.5%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-111108

LIMS ID: 08-30273

Matrix: Soil

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/11/08 Date Analyzed: 11/15/08 20:20

Instrument/Analyst: ECD5/PK

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: MB-111108 METHOD BLANK

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g Final Extract Volume: 4.0 mL

> Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	74.8%

Sample ID: TDP26-GW-081106 Page 1 of 1 SAMPLE

Lab Sample ID: NY64H LIMS ID: 08-30268

Matrix: Water

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/12/08 Date Analyzed: 11/15/08 17:46 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: Yes QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	82.5%
Tetrachlorometaxylene	81.0%

Page 1 of 1

Lab Sample ID: NY64I LIMS ID: 08-30269

Matrix: Water

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/12/08 Date Analyzed: 11/15/08 18:03 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: Yes Sample ID: TDP28-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	80.5%
Tetrachlorometaxylene	81.0%

Page 1 of 1

Lab Sample ID: NY64J LIMS ID: 08-30270

Matrix: Water

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/12/08

Date Analyzed: 11/15/08 18:20 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample ID: TDP29-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	80.0%
Tetrachlorometaxylene	78.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: TDP31-GW-081106

SAMPLE

Lab Sample ID: NY64K LIMS ID: 08-30271

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

Matrix: Water Data Release Authorized: 023173

Reported: 11/19/08

Date Sampled: 11/06/08 Date Received: 11/06/08

Date Extracted: 11/12/08 Date Analyzed: 11/15/08 18:37

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Instrument/Analyst: ECD5/PKC GPC Cleanup: No

Silica Gel: No Acid Cleanup: Yes

Sulfur Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	82.0%
Tetrachlorometaxylene	90.0%

Page 1 of 1

Lab Sample ID: NY64N LIMS ID: 08-30274

Matrix: Water

Data Release Authorized:

Reported: 11/19/08

Date Extracted: 11/12/08 Date Analyzed: 11/15/08 18:54 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample ID: TH-DRUM2-WATER SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	51.0%
Tetrachlorometaxylene	78.5%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-111208	54.8%	47-101	77.8%	61-104	0
LCS-111208	78.2%	47-101	77.5%	61-104	0
LCSD-111208	72.5%	47-101	81.0%	61-104	0
TDP26-GW-081106	82.5%	42-120	81.0%	55-102	0
TDP28-GW-081106	80.5%	42-120	81.0%	55-102	0
TDP29-GW-081106	80.0%	42-120	78.2%	55-102	0
TDP31-GW-081106	82.0%	42-120	90.0%	55-102	0
TH-DRUM2-WATER	51.0%	42-120	78.5%	55-102	0

Prep Method: SW3510C

Log Number Range: 08-30268 to 08-30274

Page 1 of 1

Sample ID: LCS-111208

LCS/LCSD

Lab Sample ID: LCS-111208

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized:

Reported: 11/19/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 11/12/08

Date Analyzed LCS: 11/15/08 17:12

LCSD: 11/15/08 17:29

Instrument/Analyst LCS: ECD5/PKC LCSD: ECD5/PKC

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00 Silica Gel: No

Acid Cleanup: Yes

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.56	5.00	71.2%	3.62	5.00	72.4%	1.7%
Aroclor 1260	4.15	5.00	83.0%	4.14	5.00	82.8%	

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	78.2%	72.5%
Tetrachlorometaxylene	77.5%	81.0%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: MB-111208 METHOD BLANK

Lab Sample ID: MB-111208

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized:

Reported: 11/19/08

Project: BOEING THOMPSON

Date Sampled: NA Date Received: NA

Date Extracted: 11/12/08 Date Analyzed: 11/15/08 16:55 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: Yes

QC Report No: NY64-The Boeing Company

023173

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	54.8%
Tetrachlorometaxylene	77.8%

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 2 Matrix: Soil

Data Release Authorized: Reported: 11/25/08

keported:	11/25/08					
ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NY64A 08-30261	TDP26-8-081106 HC ID: MOTOR OIL	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100
NY64B 08-30262	TDP27-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 110%
NY64C 08-30263	TDP28-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 115%
NY64D 08-30264	TDP29-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 112%
NY64E 08-30265	TDP30-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 109%
NY64F 08-30266	TDP31-12-081106 HC ID: DRO/MOTOR O	11/10/08 IL	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U > 50 > 100 115%
MB-111008 08-30267	Method Blank	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 106%
NY64G 08-30267	TDP32-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 117%
NY64GDP 08-30267	TDP32-11-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 110%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 2 of 2 Matrix: Soil QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Data Release Authorized: Reported: 11/25/08

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
NY64M 08-30273	TH-DRUM1-SOIL HC ID: DRO/MOTOR	11/10/08 OIL	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 20 U > 50 > 100 54.9%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

33

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a105.d ARI ID: NY64MBS1

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 17:55

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A RESULTS

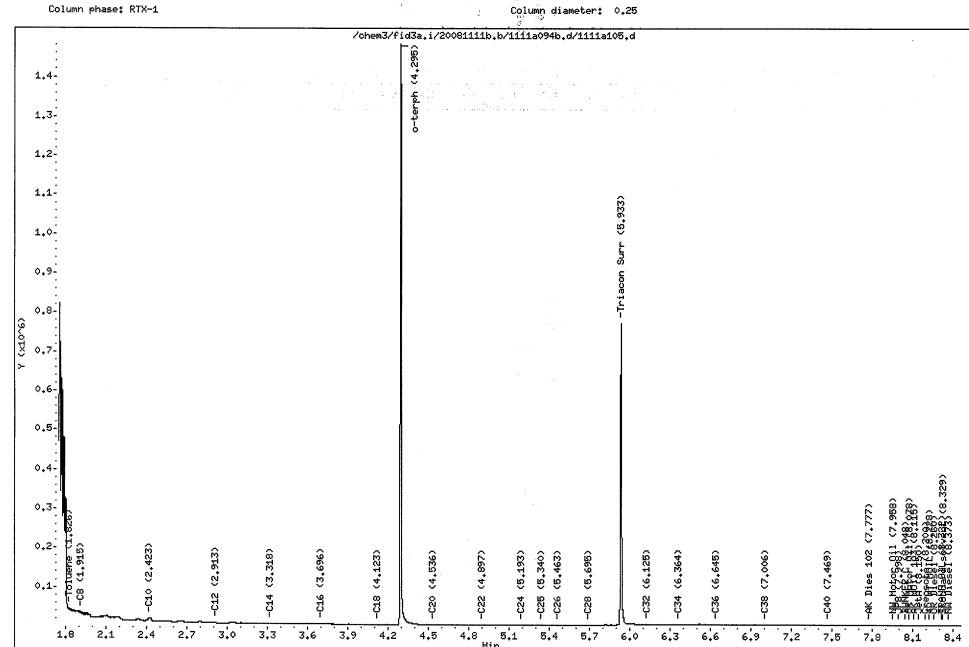
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
	======		=======	=========	========	=========	=======================================	=====
Toluene	1.826	0.010	39899	27200	!	(Tol-C12)	1852862	28
C8	1.915	0.005	31530	21228	DIESEL	(C12-C24)	295054	19
C10	2.423	-0.014	16460	33754	M.OIL	(C24-C38)	281865	40
C12	2.913	0.007	5100	5267	AK-102	(C10-C25)	508349	27
C14	3.318	0.000	3850	2889	AK-103	(C25-C36)	217134	40
C16	3.696	-0.001	2723	652	OR.DIES	(C10-C28)	554983	28
C18	4.123	0.002	1877	1003	OR.MOIL	(C28-C40)	307617	3.3
C20	4.536	-0.003	1707	1592	JET-A	(C10-C18)	421005	25
C22	4.897	0.003	1383	1178	MIN.OIL	(C24-C38)	281865	22
C24	5.193	-0.003	1419	1587	MSPIRIT	(Tol-C12)	1852862	117
C25	5.340	0.008	1433	775	Ì	•	4.4	
C26	5.463	0.003	1523	393	İ			
C28	5.695	-0.001	2278	2482	j			
C32	6.125	-0.002	3629	2524	İ			
C34	6.364	0.001	3729	2078		74° 444°		6
Filter Peak	8.441	0.001	3146	874	JP-4	(Tol-C14)	1946816	4171
C36	6.645	0.003	3598	3150	CREOSOT	(C8-C22)	1072745	172
C38	7.006	0.004	3394	1486		(,		
C40	7.469	0.004	3267	2020	BUNKERC	(C10-C38)	787822	/ 88
=======================================	======	=======		==========	= = = = = = = = = = = = = = = = = = =			
AZDIESEL (C	10-C22)	42	20703	26				
	22-C32)		14433	22				
-1							-1	

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.051) (5.247 - 7.051) (5.247 - 7.051)

Surrogate	Area	Amount	%Rec
o-Terphenyl	825784	47.7	106.0
Triacontane	437306	40.3	89.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8	11-NOV-2008 12-NOV-2008 213-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a105.d


Date : 12-NOV-2008 17:55

Client ID:

Sample Info: NY64MBS1

Instrument: fid3a.i

Operator: ms

51 (2)

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a106.d ARI ID: NY64A

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 18:10

Operator: ms Report Date: 11/14/2008

Dilution Factor: 1 Macro: FID:3A111308

FID:3A RESULTS

Compound	RT	Shift	Height	A	rea	Ra	ange	\mathbf{T} C	tal Area	Conc	
=========	======	========	=====	=====	======	========	=======	=====		. = = = = = :	=
Toluene	1.817	0.000	41352		20724	GAS	(Tol-C12)		1784457	27	
C8	1.905	-0.005	32884		23533	DIESEL	(C12-C24)		914692	60	DRO
C10	2.427	-0.010	16134		23080	M.OIL	(C24-C38)		2240800	319	1410
C12	2.915	0.009	5246		5046	AK-102	(C10-C25)		1196904	63	
C14	3.318	0.000	4259		593	AK-103	(C25-C36)		1991393	366	
C16	3.696	-0.001	3875		1462	OR.DIES	(C10-C28)		1880171	96	
C18	4.123	0.002	4379		781	OR.MOIL	(C28-C40)		1701598	182	
C20	4.538	-0.001	7250		2834	JET-A	(C10-C18)		538427	32	
C22	4.893	-0.002	12482		5141	MIN.OIL	(C24-C38)		2240800	175	
C24	5.193	-0.004	19146		19835	MSPIRIT	(Tol-C12)		1784457	113	
C25	5.330	-0.002	21017		11174			-			
C26	5.461	0.001	25076		20845	1					
C28	5.691	-0.005	31939		29112	1					
C32	6.127	-0.001	25650	6	4054	İ					
C34	6.365	0.002	18038	. .	4677		turingto (te s		ან.	
Filter Peak	8.442	0.002	4150		2220	JP-4	(Tol-C14)		1896190	167	-
C36	6.642	0.001	12777		2514	CREOSOT	(C8-C22)	¥	1457217	234	
C38	6.998	-0.003	8935		3502	ĺ				4.4	
C40	7.465	0.000	6008		3656	BUNKERC	(C10-C38)		3401331	381	
AZDIESEL (C1	LO-C22)	814:	== === : 800	51		=======	=======	=====	=======	=====	
AZMOIL (C2	22-C32)	1810	526	281							

Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.28228 6.691) Jet A(2.387 - 4.171)

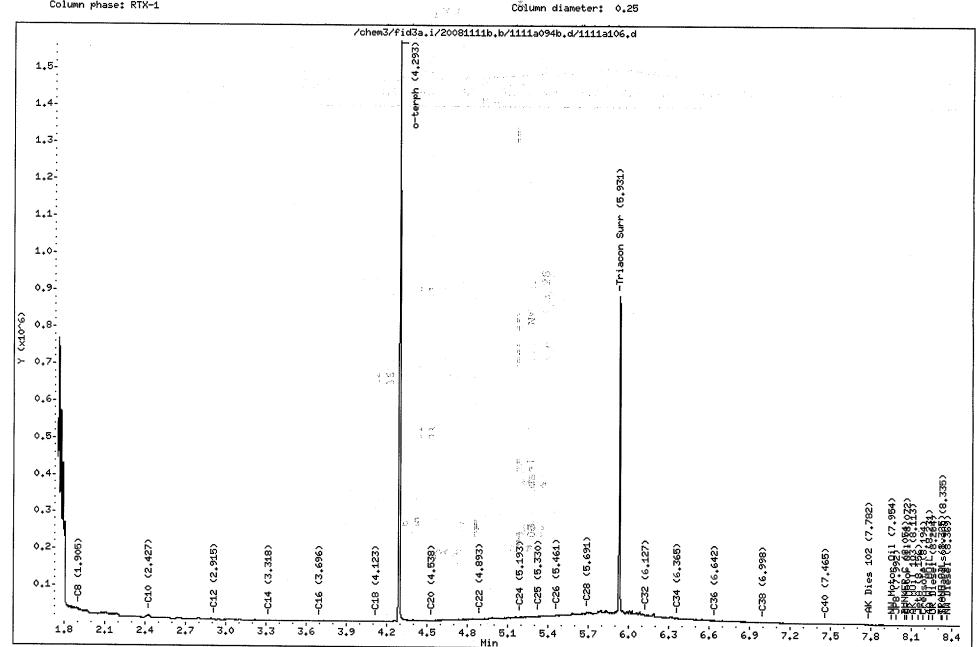
Surrogate	Area	Amount	%Rec
o-Terphenyl	838245	48.4	107.6
Triacontane	403258	37.1	82.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a106.d

Date : 12-NOV-2008 18:10

Client ID:


Sample Info: NY64A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

1 JTD 1 C7

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a107.d ARI ID: NY64B

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 18:25

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A RESULTS

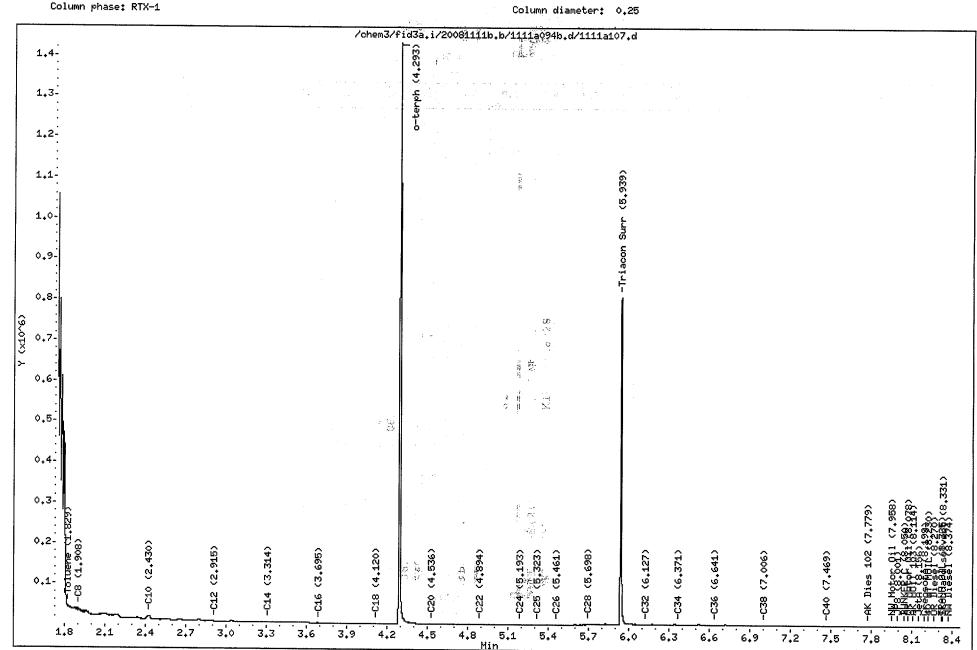
Compound	RT	Shift	Height	1	Area	Ra	ange	To	otal Area	Conc
=========	=======	=======	======	=====	======	=======	========	=====	=======	
Toluene	1.829	0.013	40294		35546	GAS	(Tol-C12)		1765726	27
C8	1.908	-0.002	33330		22776	DIESEL	(C12-C24)		339509	22
C10	2.430	-0.007	15653		18510	M.OIL	(C24-C38)		396020	56
C12	2.915	0.009	5045		3880	AK-102	(C10-C25)		597586	31
C14	3.314	-0.004	3835		1293	AK-103	(C25-C36)		303537	56
C16	3.695	-0.002	2836		564	OR.DIES	(C10-C28)		669612	34
C18	4.120	-0.001	2059		1015	OR.MOIL	(C28-C40)		420600	45
C20	4.536	-0.004	1992		433	JET-A	(C10-C18)		475987	28
C22	4.894	0.000	1865		962	MIN.OIL	(C24-C38)		396020	31
C24	5.193	-0.004	2075		453	MSPIRIT	(Tol-C12)		1765726	112
C25	5.323	-0.009	2508		2282	Ì				
C26	5.461	0.002	2528		1997	İ				
C28	5.698	0.002	3410		3096	į				. *.
C32	6.127	0.000	4829		3706	İ				
C34	6.371	0.007	4642	*.	1018		PHELIPHIS.		### ##################################	
Filter Peak	8.440	0.000	3495		1882	JP-4	(Tol-C14)		1865575	164
C36	6.641	-0.001	4468	77	3897	CREOSOT	(C8-C22)		1117780	179
C38	7.006	0.005	3994		1274	į		1.	1 4 L	
C40 🦟	7.469	0.004	3780		3597	BUNKERC	(C10-C38)		988558	111
AZDIESEL (C	====== 10-C22)	480	:=====)531	30		=======	========	====	========	=====
1.	22-C32)		971	33						

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

	Surrogate	Area	Amount	%Rec
_	o-Terphenyl	854179	49.3	109.6
	Triacontane	455965	42.0	93.3

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 10861.8 65383.2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a107.d


Date : 12-NOV-2008 18:25

Client ID:

Sample Info: NY64B

Instrument: fid3a.i

Operator: ms

4/14/08

1/4/

- jan 121**5**

10.2

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a108.d ARI ID: NY64C

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 18:40

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

CIT	• 3 D	RESULTS
111		KEROTTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
===========	=======	=======	=======	=========	=======	=========	==========	=====
Toluene	1.826	0.009	39525	26248	GAS	(Tol-C12)	1867659	29
C8	1.915	0.005	31435	23253	DIESEL	(C12-C24)	348988	23
C10	2.432	-0.005	15622	18096	M.OIL	(C24-C38)	373322	53
C12	2.890	-0.016	7339	10386	AK-102	(C10-C25)	600269	32
C14	3.314	-0.004	3962	1966	AK-103	(C25-C36)	287055	53
C16	3.699	0.002	2974	3204	OR.DIES	(C10-C28)	675986	34
C18	4.118	-0.003	2124	1839	OR.MOIL	(C28-C40)	389535	42
C20	4.550	0.011	2134	2374	JET-A	(C10-C18)	468990	28
C22	4.891	-0.004	2019	362	MIN.OIL	(C24-C38)	373322	29
C24	5.192	-0.005	2212	349	MSPIRIT	(Tol-C12)	1867659	118
C25	5.340	0.008	3122	3545	İ			
C26	5.468	0.008	2901	3604	İ			
C28	5.693	-0.003	3508	4012	İ		er.	
C32	6.132	0.005	4433	1146	j			4.1
C34	6.361	-0.002	4382	875	İ	4.5.		ಅವಿಚಾ
Filter Peak	8.442	0.002	3295	1116	JP-4	(Tol-C14)	1964192	173
C36	6.645	0.003	4106	2213	CREOSOT	(C8-C22)	1111019	178
C38	6.999	-0.003	3759	2547	İ		* 1 - 1	
C40,	7.465	0.000	3526	1055	BUNKERC	(C10-C38)	968984	108
AZDIESEL (C1	== == == 0-C22)	48	== === === 37289	30	========		·========	
AZMOIL (C2	2-C32)	20	9856	33			Y 7	

Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051)

AK102 (2.387 - 5.282) AK103 (5.282 - 6.691) Jet A (2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	892614	51.5	114.5
Triacontane	471622	43.4	96 5

Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	10861.8	12-NOV-2008
Gas	65383.2 /	2_13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	7029.0	12-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	5439.0	12-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a108.d

Date : 12-NOV-2008 18:40

Client ID:

Sample Info: NY64C

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

RC 11/14/08

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a109.d ARI ID: NY64D

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 18:54

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FILE	• Z Z	RESULTS	

	Compound	RT	Shift	Height		y woo			_		_
	=========	======	211116	neignt	.====	Area ======		ange	TC	tal Area	Conc
	Toluene	1.816	0.000	41277		19595	GAS	(Tol-C12)		1838621	== == ===
	C8	1.904	-0.006	33650		22441	DIESEL	(C12-C24)		404728	27
	C10	2.449	0.011	9320		6585	M.OIL	(C24-C38)		527196	75
	C12	2.916	0.010	5121		3120	AK-102	(C10-C25)		646754	34
	C14	3.318	0.000	4074		1050	AK-103	(C25-C36)		420157	77
٠	C16	3.699	0.001	3068		1827	OR.DIES	(C10-C28)		770197	39
	C18	4.117	-0.004	2381		2602	OR.MOIL	(C28-C40)		504367	54
	C20	4.542	0.003	2615		2653	JET-A	(C10-C18)		463343	28
	C22	4.895	0.001	3108		1406	MIN.OIL	(C24-C38)		527196	41
	C24	5.198	0.001	3921		4140	MSPIRIT	(Tol-C12)		1838621	116
	C25	5.336	0.003	4955		5295	į				
	C26	5.463	0.003	4647		2259	İ				
	C28	5.699	0.004	5765		3670	ĺ				
	C32	6.128	0.001	6347	2.6	2377				\$ 1.54	
	C34	6.369	0.006	6098	,	4422		1. 198 - 1. 195 - Ess		-C foreign	
	Filter Peak	8.442.	0.002	3354		1539	JP-4	(Tol-C14)	المرابقين والمرابق	1939084	171
	C36	6.641	0.000	5018		1098	CREOSOT	(C8-C22)	3.	1161962	186
	C38	7.002	0.001	4337		1982					
	C40	7.464	-0.001	3787		2493	BUNKERC	(C10-C38)	100	1163233	130
=	======================================	======	=======		=====	======		=======	=====	==== = ===	=====
	*	0-C22)		2451	33			٠.			
	AZMOIL (C22	2-C32)	32	8719	51					n naga	
=		=======		=======	=====	======					

Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M Oil (5.247 - 7.051)

AK102 (2.387 - 5.282) AK103 (5.282 - 6.691) Jet A (2.387 - 4.171)

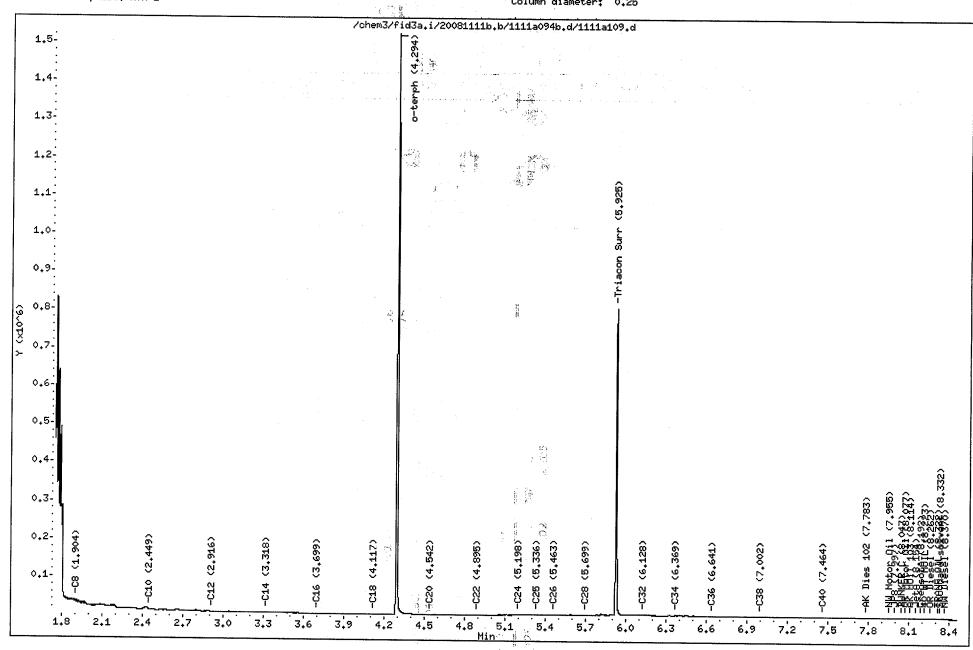
Surrogate	Area	Amount	%Rec
o-Terphenyl	871101	50.3	111.8
Triacontane	461885	42.5	94.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 10861.8 65383.2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a109.d

Date : 12-NOV-2008 18:54

Client ID:


Sample Info: NY64D

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

P 6 41/2208

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a110.d ARI ID: NY64E

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 19:09

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

CIR	· 3 🏻	RESULTS	

Compound	RT	Shift	Height	. 10.3	Area	Rá	ange	To	tal Area	Conc
	=======	========		=====	======	======:	=================================	=====	======	======
Toluene	1.816	-0.001	40790		18792	GAS	(Tol-C12)		1807819	28
C8	1.904	-0.006	32580		22479	DIESEL	(C12-C24)		370398	24
C10	2.427	-0.010	15706		22421	M.OIL	(C24-C38)		474886	68
C12	2.911	0.005	5054		906	AK-102	(C10-C25)		617733	33
C14	3.315	-0.003	3976		3612	AK-103	(C25-C36)		374264	69
C16	3.700	0.002	3009		2438	OR.DIES	(C10-C28)		727380	37
C18	4.120	-0.001	2231		1700	OR.MOIL	(C28-C40)		451179	48
C20	4.537	-0.002	2191		610	JET-A	(C10-C18)		463255	28
C22	4.897	0.002	2371		1460	MIN.OIL	(C24-C38)		474886	37
C24	5.197	0.001	3753		3577	MSPIRIT	(Tol-C12)		1807819	114
C25	5.333	0.001	5884		8263	ĺ				
C26	5.457	-0.003	3522		2364	İ		100		
C28	5.691	-0.004	4673		6064			11.		
C32	6.131	0.004	5136		4363					ادلمان
C34	6.371	0.008	7676	- T.	12941	1	الرائي المرائية	***		Nap.
Filter Peak	8.441	0.001	3360	1753	1672	JP-4	(Tol-C14)		1908604	168
C36	6.645	0.004	4451		621	CREOSOT	(C8-C22)	100	1135446	182
C38	7.005	0.003	3955		1573					
C40	7.472	0.007	3644	or Fr	799	BUNKERC	(C10-C38)	•	1081830	121
AZDIESEL (C	======= L0-C22)	≖==== 48	= ==== 36625	30	=====	=======	========	====		=====
AZMOIL (C2	22-C32)	27	76633	43	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		V gr			<u>.</u>

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.051)

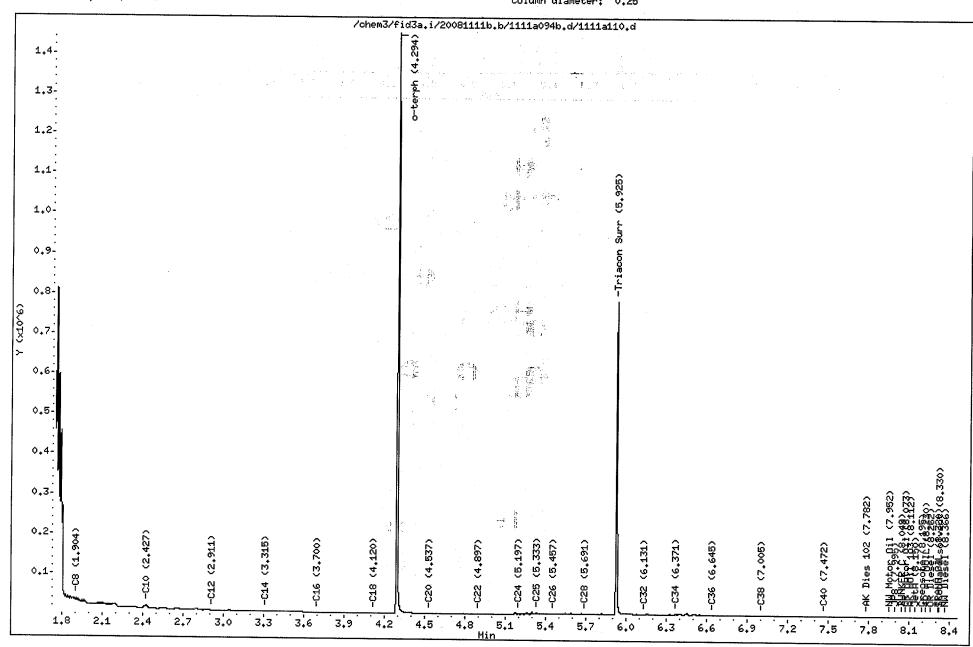
AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	" Area	Amount	%Rec
o-Terphenyl	846280	48.9	108.6
Triacontane	449321	41.4	91.9

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil	17319.9 10861.8 65383.2 / 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008
Min Spirit OR Diesel	15825.3 19612.0	15-APR-2005
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a110.d

Date : 12-NOV-2008 19:09


Client ID:

Sample Info: NY64E

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a111.d ARI ID: NY64F

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 19:24

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A R	DOTTE DO

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.827	0.011	39019	25348	GAS	(Tol-C12)	======================================	====== 28
C8	1.905	-0.005	31941	22322	DIESEL	(C12-C24)	1798340	119 ppc
C10	2.427	-0.010	15494	4562	M.OIL	(C24-C38)	5315490	756 M
C12	2.915	0.009	5346	3764	AK-102	(C10-C25)	2152577	113
C14	3.320	0.002	4534	3410	AK-103	(C25-C36)	4914746	904
C16	3.693	-0.004	5540	5718	OR.DIES	(C10-C28)	4099172	209
C18	4.119	-0.002	3691	1958	OR.MOIL	(C28-C40)	3446974	368
C20	4.541	0.002	12156	10780	JET-A		527123	31
C22	4.894	-0.001	32070	10611	MIN.OIL	(C24-C38)	5315490	415
C24	5.191	-0.006	51717	28310	MSPIRIT	(Tol-C12)	1856135	117
C25	5.331	-0.002	61063	12005	į.	,		
C26	5.458	-0.002	70173	31163				
C28	5.695	0.000	81583	12940	İ			
C32	6.129	.0.002	60066	8364	İ	1 - 5. 12.		
C34	6.364	0.000	39046	6960	į ·	- trains		\$ Single
Filter Peak	8.437	-0.003	3685	*** 807	JP-4	(Tol-C14)	1971205	173
C36	6.642	0.000	22828 🛴	9365	CREOSOT	(C8-C22)	1771038	284
C38	7.000	-0.002	10461 🤼 🕏	6991	ĺ			
C40	7.464	-0.001	5367 ***	3 th 747	BUNKERC	(C10-C38)	7360878	824
	0-C22) 2-C32)		1363 72 3970 745					===== , : , :

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.051)
AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

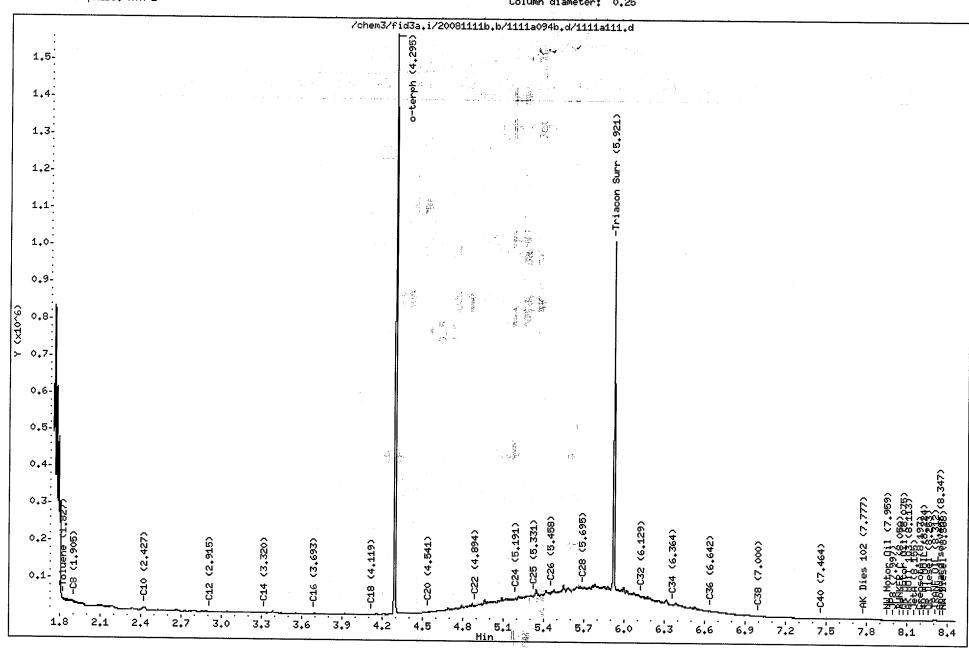
Surrogate	Area	Amount	%Rec
o-Terphenyl	899312	51.9	115.4
Triacontane	438963	40.4	89.8

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil	17319.9 10861.8	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008
Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15825.3 19612.0 9368.4 8936.8 6234.4	15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a111

Date : 12-NOV-2008 19:24

Client ID:


Sample Info: NY64F

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

马鹿

N #2 dd.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a112.d ARI ID: NY64G

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 19:39

Operator: ms Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.827	0.010	38084	26041	GAS (Tol-C12)	1804319	===== 28
C8	1.916	0.006	29822	21752	DIESEL (C12-C24)	393780	26
C10	2.425	-0.013	14862	31756	M.OIL (C24-C38)	664026	94
C12	2.914	0.008	4741	4371	AK-102 (C10-C25)	618049	33
C14	3.318	0.000	3532	1195	AK-103 (C25-C36)	548658	101
C16	3.697	0.000	2838	1342	OR.DIES (C10-C28)	781237	40
C18	4.121	-0.001	2101	1496	OR.MOIL (C28-C40)	603808	64
C20	4.540	0.001	2284	716	JET-A (C10-C18)	427873	25
C22	4.894	-0.001	3102	2024	MIN.OIL (C24-C38)	664026	52
C24	5.196	-0.001	4379	2650	MSPIRIT (Tol-C12)	1804319	114
C25	5.334	0.002	4984	1978	•		
C26	5.458	-0.002	5560	2739		•	•
C28	5.699	0.004	7708	2130			
C32	6.128	0.000	8352	2820		, with	
C34	6.362	-0.002	7284	5289		- 6312-65	
Filter Peak	8.439	-0.001	3460	1723	JP-4 (Tol-C14)	1901229	167
C36	6.639	-0.002	5669 🚟	1243	CREOSOT (C8-C22)	1076040	173
. C38	6.999	-0.002	4787	2567			1. 1.
C40	7.467	0.002	3985	872	BUNKERC (C10-C38)	1270777	142
AZDIESEL (C1	====== L0-C22)		35858 3	==== == O		! = = = = = = = = = = = = = = = = = = =	====
AZMOIL (C2	22-C32)		15958 6			فيلي .	

Dilution Factor: 1

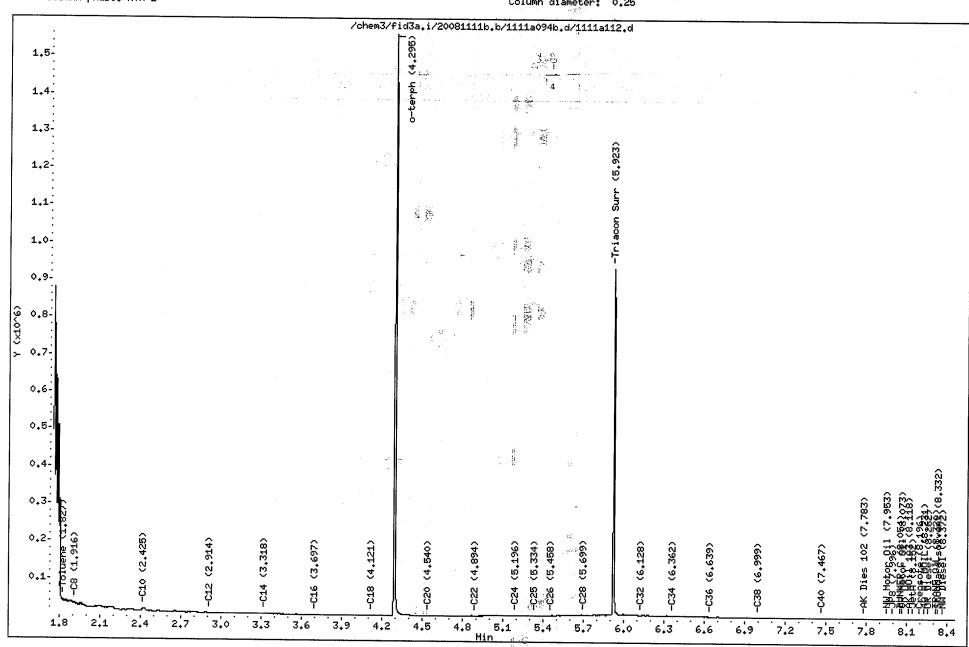
Range Times: NW Diesel (2956 35.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

 Surrogate	Area	Amount	%Rec
 o-Terphenyl	914825	52.8	117.4
Triacontane	495492	45.6	101.4

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 10861.8 65383.2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4	11-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a,i/20081111b,b/1111a094b,d/1111a112,d

Date : 12-NOV-2008 19:39


Client ID:

Sample Info: NY64G

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

TE

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a113.d ARI ID: NY64GDUP

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 19:53

Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Rá	ange	Total Area	Conc
Toluene	 1.827	0.010	38483	27027	GAS	Tol-C12)		======= 27
C8	1.916	0.006	29719	19497	DIESEL	(C12-C24)	318669	21
C10	2.425	-0.012	14837	49718	M.OIL	(C24-C38)	427018	61
C12	2.916	0.010	4724	4606	AK-102	(C10-C25)	529959	28
C14	3.317	-0.001	3461	2484	AK-103	(C25-C36)	345719	64
C16	3.698	0.001	2632	1405	OR.DIES	(C10-C28)	619938	32
C18	4.125	0.004	1814	649	OR.MOIL	(C28-C40)	426050	45
C20	4.536	-0.003	1847	774	JET-A	(C10-C18)	408863	24
C22	4.898	0.004	1948	580	MIN.OIL	(C24-C38)	427018	33
C24	5.199	0.002	2409	2008	MSPIRIT	(Tol-C12)	1743250	110
C25	5.331	-0.002	2679	742	İ	,		
C26	5.463	0.003	3082	3527	İ			
C28	5.698	0.002	4270	3978				
C32	6.129	0.002	5160	1957		يَ شين		
C34	6.364	0.001	5027	2299	1	ng mi yes		15
Filter Peak	8.439	-0.001	3222	1093	JP-4	(Tol-C14)	1834452	161
C36	6.643	0.001	4282	^{i.} 769	CREOSOT	(C8-C22)	1002729	161
C38	7.001	0.000	3905	1241	İ	,,		
C40	7.465	0.000	3532	1197	BUNKERC	(C10-C38)	951859	-1107
· ·	10-C22)	_	======== 21055	26	=======	========	=======================================	

247198

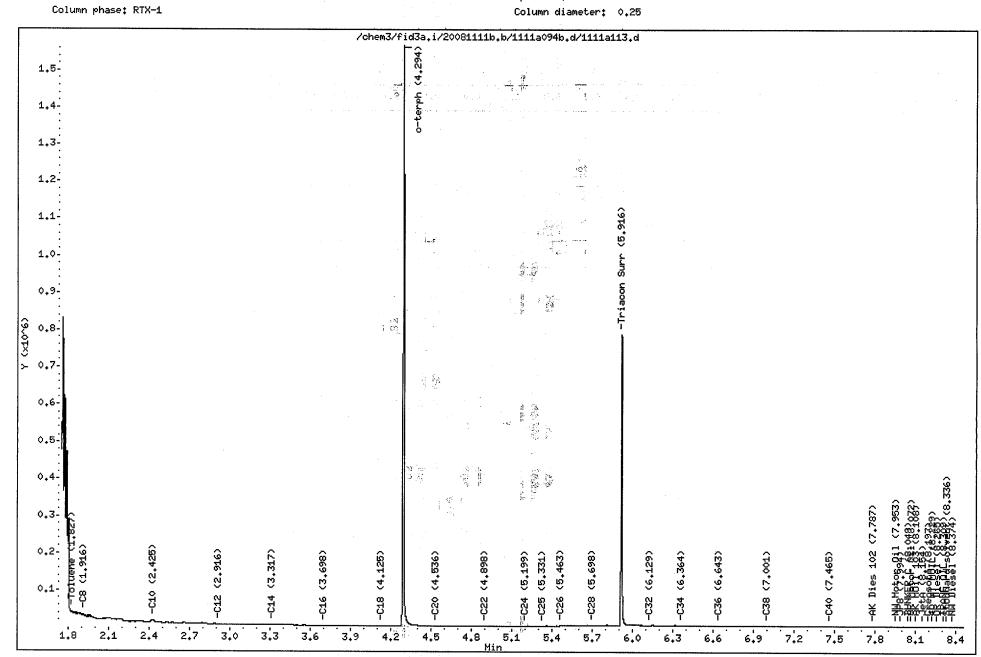
Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

1 3

Surrogate	Area	Amount	%Rec
o-Terphenyl	859533	49.6	110.3
Triacontane	455583	41.9	93.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 10861.8 65383.2/2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
	5251.1	00 1100 2000

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a113.d


Date : 12-NOV-2008 19:53

Client ID:

Sample Info: NY64GDUP

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a114.d ARI ID: NY64M

Method: /chem3/fid3a.i/20081111b.b/1111a094b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 20:08 Operator: ms Dilution Factor: 1

Report Date: 11/14/2008 Macro: FID:3A111308

FID:3A RESULTS

			T	TO: 2K KESOF	11.0				
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.825	0.009	36089	22066	GAS	(Tol-C12)		==== = 20	
C8	1.913	0.003	29556	20053	DIESEL	(C12-C24)	1383188	91 pp	0
C10	2.425	-0.012	15015	26970	M.OIL	(C24-C38)	4470598	636 MO	
C12	2.914	0.008	5060	2986	AK-102	(C10-C25)	1663390	88	
C14	3.321	0.003	4974	5977	AK-103	(C25-C36)	3969650	730	
C16	3.699	0.001	5203	2958	OR.DIES	(C10-C28)	2968161	151	
C18	4.123	0.002	6117	2971	OR.MOIL	(C28-C40)	3449669	368	
C20	4.536	-0.003	10747	8725	JET-A	(C10-C18)	577720	34	
C22	4.897	0.002	19910	10778	MIN.OIL	(C24-C38)	4470598	349	
C24	5.200	0.003	30925	4298	MSPIRIT	(Tol-C12)	1337754	85	
C25	5.328	-0.004	37441	15580					
C26	5.456	-0.003	47096	48554					
C28	5.697	0.002	60432	21132				•	
C32	6.125	-0.002	54564	30185	3-1 (************************************			And the second	5
C34	6.362	-0.001	39557	4725	15/4 /š	•	14.5 ₄		14: K
Filter Peak	8.440	0.000	7169	2795	JP-4	(Tol-C14)	1457504	128	
C36	6.640	-0.001	27591	14063	CREOSOT	(C8-C22)	1632699	262	
C38	7.002	0.001	17413	11584			C. F		
C40	7.466	0.001	10887	3010	BUNKERC	(C10-C38)	6071428	679	
AZDIESEL (C1	0-C22)	==== === 104	 10657	65	======	:===== = =	=======================================	=====	,
AZMOIL (C2	2-C32)	346	4033	538	1.1.			5 .	

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5:247 - 7.051)

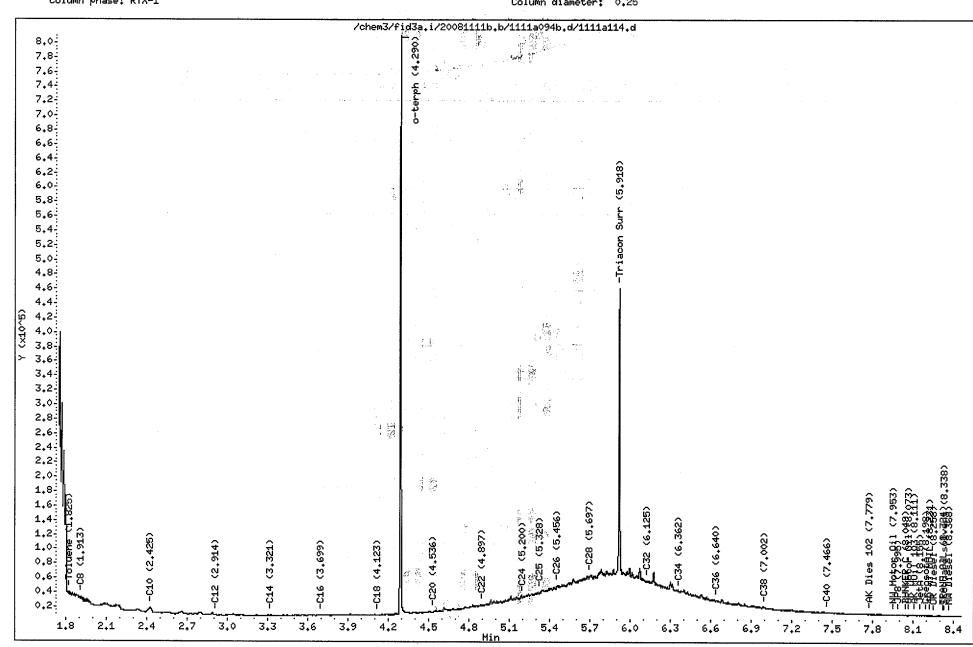
AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	427952	24.7	54.9
Triacontane	186888	17.2	38.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 10861.8 65383.2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	11-NOV-2008 12-NOV-2008 13-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20081111b.b/1111a094b.d/1111a114.d

Date : 12-NOV-2008 20:08


Client ID:

Sample Info: NY64M

Column phase: RTX-1

Instrument: fid3a.i

11 14 Operator: ms

HCID SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

O-TER TOT O	UT
108% 0	
110% 0	
115% 0	
112% 0	
109% 0	
115% 0	
106% 0	
117% 0	
110% 0	
54.9% 0	
	108% 0 110% 0 115% 0 112% 0 109% 0 115% 0 106% 0 117% 0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(68-122)

(50-150)

Prep Method: SW3550B

Log Number Range: 08-30261 to 08-30273

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY64

Matrix: Soil

Project: BOEING THOMPSON

Date Received: 11/06/08

023173

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
08-30261-NY64A 08-30262-NY64B 08-30263-NY64C 08-30264-NY64D 08-30265-NY64E 08-30266-NY64F 08-30267-111008MB 08-30267-NY64G 08-30267-NY64GDP 08-30273-NY64M	TDP26-8-081106 TDP27-11-081106 TDP28-11-081106 TDP29-11-081106 TDP30-11-081106 TDP31-12-081106 Method Blank TDP32-11-081106 TDP32-11-081106 TDP32-11-081106	8.61 g 9.32 g 8.02 g 8.41 g 6.58 g 8.39 g 10.0 g 9.57 g 9.60 g 8.70 g	5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL	D D D	11/10/08 11/10/08 11/10/08 11/10/08 11/10/08 11/10/08 11/10/08 11/10/08 11/10/08

Basis: D=Dry Weight W=As Received HCID Extraction Report

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 11/14/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-111008 08-30268	Method Blank	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 77.7%
NY64H 08-30268	TDP26-GW-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 95.3%
NY64I 08-30269	TDP28-GW-081106 HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 85.4%
NY64J 08-30270	TDP29-GW-081106 HC ID: DRO/RRO	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U > 0.63 > 0.63 75.8%
NY64K 08-30271	TDP31-GW-081106 HC ID: MOTOR OIL	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U > 0.63 83.1%
NY64L 08-30272	TH-SUMP-081106 HC ID: DRO/RRO	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 1.0 U > 2.5 > 2.5 NR
NY64N 08-30274	TH-DRUM2-WATER HC ID:	11/10/08	11/12/08	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 87.1%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

PC 11/14/08

39 70

....

24

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a120.d ARI ID: NY64MBW1

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 21:37 Operator: ms

Report Date: 11/13/2008 Macro: FID:3A111308

FID:3A RESULTS

Dilution Factor: 1

a 1					W KESOT	112					
Compound	RT	Shift 	Height	1	Area	Ra	ange	To	tal Area	Conc	
Toluene	1.814	-0.002	34594	====	====== 23578	GAS	======== (Tol-C12)	=====	982327	 کھلہ	27
C8	1.913		28961		20707	DIESEL			283643	19	5 /
C10	2.430		14041		17889	M.OIL			334465	48	
C12	2.912	0.006	4558		5058	AK-102	(C10-C25)		493341	26	
C14	3.319	0.001	3506		977	AK-103	(C25-C36)		247492	46	
C16	3.700	0.003	2542		3038	OR.DIES	(C10-C28)		551368	28	
C18	4.123	0.002	1683		1884	OR.MOIL			363820	39	
C20	4.541	0.002	1528		779	JET-A			402442	24	
C22	4.905	0.010	1970		1950	MIN.OIL			334465	26	
C24	5.188	-0.009	1594		1534	MSPIRIT			982327	62	
C25	5.340	0.008	1812		1429	İ	·			-	
C26	5.461	0.001	1839		474	İ					
C28	5.691	-0.005	2763		3065						
C32	6.129	0.002	3789	h hadp	1738	j .		πa a.	•		•
C34		<i>∴</i> −0.003	4284		2299			-G.O -			405
Filter Peak	8.444	0.004	3.289		2347	JP-4	(Tol-C14)		1073993	95	Die.
C36	6.635	-0.007	3798		1209	CREOSOT	(C8-C22)		1005962	161	
C38	7.009	0.008	3865		2136					୍ ୂର	
C40	7.464	-0.001	3476		623	BUNKERC	(C10-C38)		824778	92	y silve
AZDIESEL (C1	.0-C22)	 4	05737	25	======	======	=======	======	========	=====	teand)
AZMOIL (C2	2-C32)		64957	26				غاد خ			
	1-1			_ •				å. 4. m			

Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	605873 320892	35.0	77.7

Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	10861.8	12-NOV-2008
Gas 26501.	1 -65383.2 -1	243-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	7029.0	12-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	5439.0	12-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a120.d

Date : 12-NOV-2008 21:37


Client ID:

Sample Info: NY64MBW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

FID:3A RESULTS

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a123.d ARI ID: NY64H

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

3556

3751

1103392

Instrument: fid3a.i Injection: 12-NOV-2008 22:21

Operator: ms Dilution Factor: 1

Report Date: 11/13/2008 Macro: FID:3A111308

C38

Compound	RT	Shift	Height	Area		ange	Total Area	Conc
Toluene	 1.815	-0.002	======= 35567	======= 22096	GAS	======================================	1072873	:===== 40 1e
C8	1.913	0.003	30217	20559	DIESEL	(C12-C24)	1098427	73 ppd
C10	2.447	0.010	8965	2319	M.OIL	,	566692	81
C12	2.902	-0.004	6279	4843	AK-102	(C10-C25)	1377924	73
C14	3.318	0.000	5770	2088	AK-103	(C25-C36)	484267	73 89
C16	3.695	-0.002	7025	7328	OR.DIES	(C10-C28)	1598655	82
C18	4.119	-0.003	7964	8492	OR MOIL	(C28-C40)	412598	44
C20	4.536	-0.003	9749	4410	JET-A	(C10-C18)	754665	45
C22	4.896	0.002	10998	2173	MIN.OIL	(C24-C38)	566692	44
C24	5.192	-0.005	11053	13144	MSPIRIT	(Tol-C12)	1072873	68
C25	5.334	0.002	9639	4668	INDIENTE	(IOI CIZ)	1072073	00
C26	5.455	-0.005	8685	5624	1			•
C28	5.692	-0.003	7207	7656				
C32	6.140		5981	11536	i	مان خان مان خان		•
C34	6.376	0.013	6936	17960	·	200	, see	
Filter Peak	8.445	.0.005	3019	601	JP-4	(Tol-C14)	್ಟ್ 1211222	107
C36	6.645	0.003	4660	6921	CREOSOT	(C8-C22)	1211332 1759994	107 282
C38	6 995	-0.005	3556	700	CKEOSOI	(CO-CZZ)	1/59994	282

7170 | BUNKERC (C10-C38)

AZMOIL (C22-C32) 537041 83 Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 + 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

69

709

Surrogate	urrogate Area		%Rec	
o-Terphenyl	742968	42.9	95.3	
Triacontane	360894	33.2	73.8	

-0.006

0.010

6.995

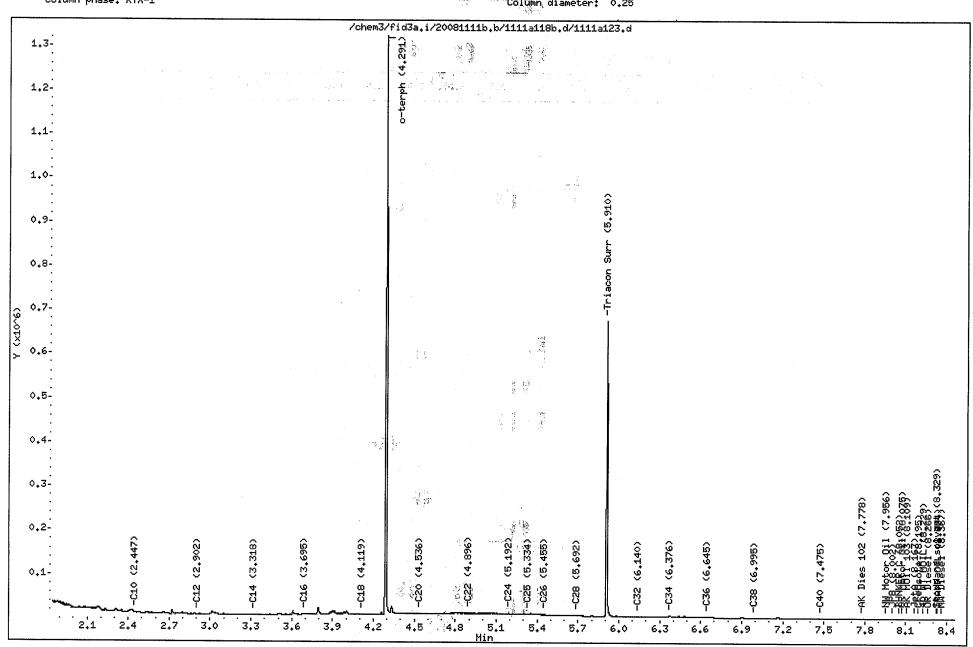
C40 7.475

AZDIESEL (C10-C22)

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 10861.8 65383.2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a123.d

Date : 12-NOV-2008 22:21


Client ID:

Sample Info: NY64H

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

11/4/08

:) ?

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a124.d ARI ID: NY64I

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 22:35 Operator: ms

Report Date: 11/13/2008

Dilution Factor: 1

Macro: FID:3A111308

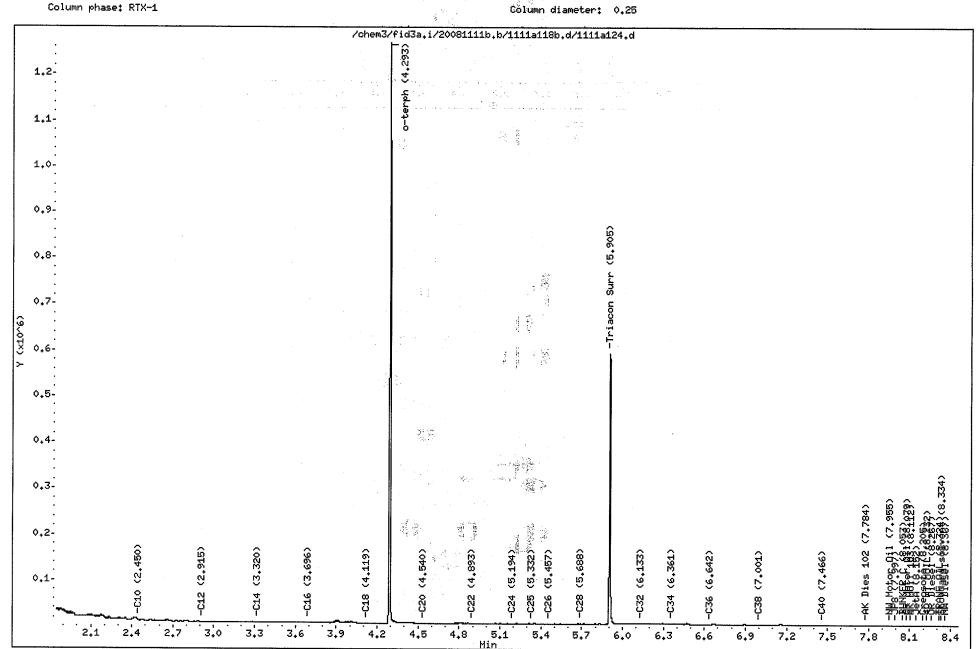
				D:3A RESUL	TS			
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=======================================	=======	=======	========	========	=======	========	==========	======
Toluene	1.813	-0.004	34858	19597	GAS	(Tol-C12)	981380	2537
C8	1.912	0.002	29039	19123	DIESEL	(C12-C24)	570392	38
C10	2.450	0.013	8615	4422	M.OIL	(C24-C38)	393154	56
C12	2.915	0.009	5025	3815	AK-102	(C10-C25)	806730	42
C14	3.320	0.002	4405	1137	AK-103	(C25-C36)	319186	59
C16	3.696	-0.002	4545	3759	OR.DIES	(C10-C28)	911140	46
C18	4.119	-0.002	4093	2646	OR.MOIL	(C28-C40)	370952	40
C20	4.540	0.000	4021	2932	JET-A	•	557014	33
C22	4.893	-0.002	4045	2400	MIN.OIL	(C24-C38)	393154	31
C24	5.194	-0.003	4031	2383	MSPIRIT	(Tol-C12)	981380	62
C25	5.332	-0.001	3902	2332		(IOI CIZ)	201300	02
C26	5.457	-0.003	3855	2501				
C28	5.688	-0.007	4115	4748	1			
C32	6.133	0.005	5999	8647	İ			
C34	∴6.361	-0.002	4556	2001	1	1000		
Filter Peak	8.437	-0.003	3083	1227	JP-4	(Tol-C14)	1094865	96
C36	6.642	0.000	3899	1242	CREOSOT	(C8-C22)		
C38	7.001	-0.001	3554	707	CKEOSOI	(C0-C22)	1291061	207
	7.466		4061	14476	BUNKERC	(010 020)	1100-01	
=========	======		4001	144/0	BONKERC	(C10-C38)	1193524	
AZDIESEL (C	10-C22)		69559 <i>(</i>			:=======	=======================================	====
· ·	22-C32)			43				
(C.	052/	_	70700 mag. 4	4.0		1.		4 +

Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

_	Surrogate	Area	Amount	%Rec
	o-Terphenyl	666000	38.5	85.5
	Triacontane	333498	30.7	68.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas 263-01. Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	17319.9 10861.8	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a124.d


Date : 12-NOV-2008 22:35

Client ID:

Sample Info: NY64I

Instrument: fid3a.i

Operator: ms

PC 11/14/08

Analytical Resources Inc. TPH Quantitation Report

Dilution Factor: 1

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a125.d ARI ID: NY64J

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 22:50

Operator: ms Report Date: 11/13/2008 Macro: FID:3A111308

			F	ID:3A RESUL	TS			
Compound	RT	Shift 	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.817	0.001	37225	25678	======= GAS	 (Tol-C12)	 1472652	 23-55
C8	1.908	-0.002	30137	18455	DIESEL	(C12-C24)	8566076	566 BK
C10	2.427	-0.010	21943	21908	M.OIL	(C24-C38)	5129055	730 RM
C12	2.890	-0.016	21051	33718	AK-102	(C10-C25)	9238248	487
C14	3.317	-0.001	33236	26704	AK-103	(C25-C36)	4787975	880
C16	3.694	-0.004	139169	107248	OR.DIES	(C10-C28)	11559742	589
C18	4.118	-0.003	324206	232750	OR.MOIL	(C28-C40)	2956728	316
C20	4.536	-0.004	370293	281587	JET-A	(C10-C18)	3634003	216
C22	4.891	-0.003	223785	182067	MIN.OIL	(C24-C38)	5129055	400
C24	5.193	-0.004	157357	116992	MSPIRIT	(Tol-C12)	1472652	93
C25	5.329	-0.003	132331	143437	İ			
C26	5.456	-0.003	122640	130796	İ			
C28	5.692	-0.004	121358	153404				
C32	6.121	-0.006	62418-	82152		~ 772, 5**		
C34	6.371	0.008	35602	52287		1		574
Filter Peak	8.441	0.001	4780	761	JP-4	(Tol-C14)	2076506	18'3 ^{;;;}
C36	6.645	0.004	18670	9998	CREOSOT	(C8-C22)	8386403	1345
C38	7.001	-0.001	10657	2544	ŀ			Sec. 1
C40	7.463	-0002	7231	2421	BUNKERC	(C10-C38)	14299491	160:0
	======= 10-C22)	76	==== === 09892	======== 474	=======	=======	#========	: = = = = = = = = = = = = = = = = = = =
AZMOIL (C	22-C32)	54	31200	844				

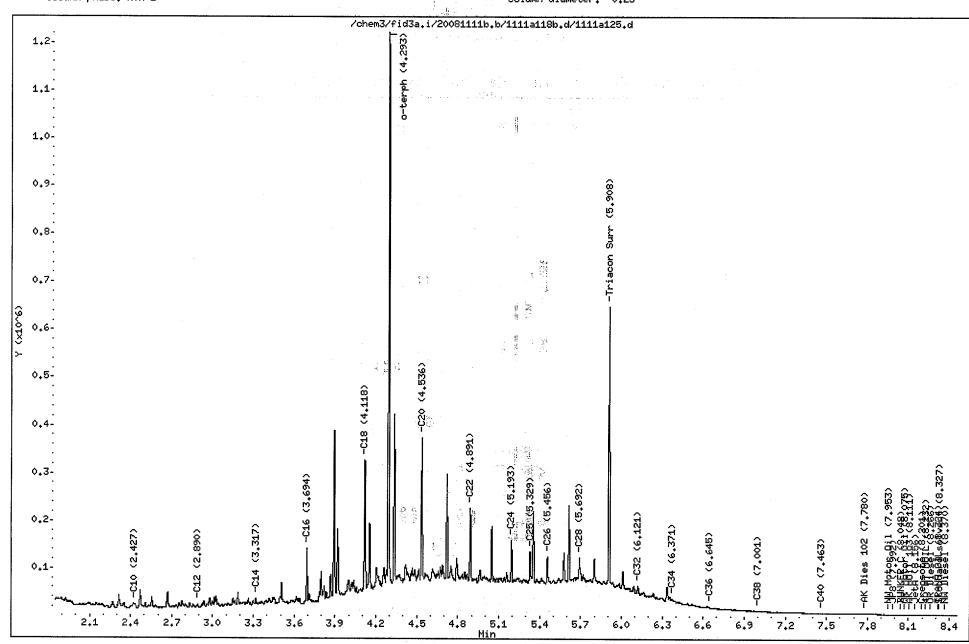
Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102(2.387 - 5.282) AK103(5.282 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	591168	34.1	75.8
Triacontane	281439	25.9	57.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas 26501. Diesel Motor Oil AK102 AK103 JP4	15141.0 7029.0 18985.0 5439.0 11362.0	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007
JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	12-NOV-2008 27-JUN-2008 15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a125.d

Date : 12-NOV-2008 22:50


Client ID:

Sample Info: NY64J

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

PC 4/14/08

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a126.d ARI ID: NY64K

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 23:05

Operator: ms
Report Date: 11/13/2008
Macro: FID:3A111308

FID:3A RESULTS

Dilution Factor: 1

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.814	-0.002	33446	12518	GAS (Tol-C1	======================================	1639
C8	1.914	0.004	27988	18150	DIESEL (C12-C2	4) 3963253	262 pp
C10	2.432	-0.005	14085	17037	M.OIL (C24-C3	8) 10751945	1530 Ml
C12	2.922	0.016	8312	10935	AK-102 (C10-C2	5) 4524559	238
C14	3.316	-0.002	12594	11500	AK-103 (C25-C3	6) 10040186	1846
C16	3.690	-0.007	17271	17188	OR.DIES (C10-C2	8) 8787301	448
C18	4.119	-0.002	11197	13556	OR.MOIL (C28-C4	0) 6452279	689
C20	4.539	0.000	25336	29646	JET-A (C10-C1	8) 1096251	65
C22	4.895	0.001	64528	15213	MIN.OIL (C24-C3	8) 10751945	838
C24	5.198	0.002	104310	12449	MSPIRIT (Tol-C1	2) 1036806	66
C25	5.326	-0.006	129733	46121			
C26	5.458	-0.002	153686	51427			
C28	5.696	0.000	180978	89324		•	
C32	6.127	-0.001	120997	86378		ence.	
C34	6.364	0.001	82811	14694		• •	.95 A.
Filter Peak	8.442	0.002	4220	2348	JP-4 (Tol-C1	4) 1277157	୍ଥ112
C36	6.641	0.000	37046	14546	CREOSOT (C8-C2	2) 3082987	495
C38	7.003	0.001	15065	4981			
C40	7.470	0.005	7270	6057	BUNKERC (C10-C3	8) 14995042	1/678
AZDIESEL (C10-C22) 2464269 153 AZMOIL (C22-C32) 10168584 1579							

AZDIESEL (C10-C22) 2464269 153
AZMOIL (C22-C32) 10168584 1579

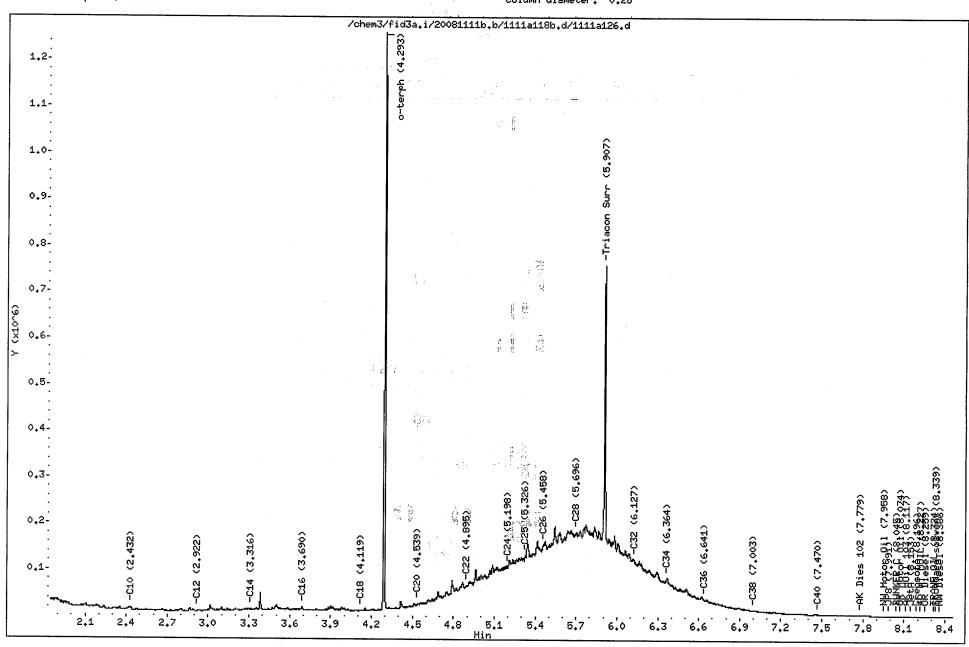
Range Times: NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102 (2.387 - 5.282) AK103 (5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	647557	37.4	83.1
Triacontane	285922	26.3	58.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas 26501, Diesel	17319.9 10861.8 1-65383.2/2	11-NOV-2008 12-NOV-2008 2-13-NOV-2008 12-NOV-2008
Motor Oil AK102 AK103	7029.0 18985.0 5439.0	12-NOV-2008 12-NOV-2008 12-NOV-2008
JP4 JetA Min Oil Min Spirit	11362.0 16829.6 12823.0 15825.3	05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil Bunker C Creosote	19612.0 9368.4 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a,i/20081111b,b/1111a118b,d/1111a126.d

Date : 12-NOV-2008 23:05


Client ID:

Sample Info: NY64K

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

PC 4/14/08

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a127.d ARI ID: NY64L

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 23:20

Operator: ms Dilution Factor: 1

Report Date: 11/13/2008 Macro: FID:3A111308

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.819	0.003	33938	20310	GAS	(Tol-C12)	1760086		66
C8	1.908	-0.002	29849	21048	DIESEL	(C12-C24)	61429865	4057	DRO
C10	2.434	-0.003	37825	38603	M.OIL	(C24-C38)	52354605	7448	nro
C12	2.916	0.010	42469	57973	AK-102	(C10-C25)	62300468	3282	
C14	3.313	-0.005	166985	169311	AK-103	(C25-C36)	51422682	9454	
C16	3.695	-0.003	145202	81808	OR.DIES	(C10-C28)	96654112	4928	
C18	4.119	-0.002	114549	101342	OR.MOIL	(C28-C40)	19210111	2051	
C20	4.539	-0.001	2555047	2453320	JET-A	(C10-C18)	11650390	692	
C22	4.905	0.010	623767	683950	MIN.OIL	(C24-C38)	52354605	4083	
C24	5.195	-0.002	248074	116074	MSPIRIT	(Tol-C12)	1760086	111	
C25	5.318	-0.015	587160	104473					
C26	5.463	0.003	2130905	2424066	İ				
C28	5.715	0.019	2394831	4411101	1				
C32	6.125	-0.003	₩ 93207	102017		subjects and a	4.0		
C34	6.352	-0.012	345450	403749	Ì		the way		
Filter Peak	8.441	0.001	13054	<u> </u>	JP-4	(Tol-C14)	3503932	308	
C36	6.640	-0.002	308766	54598	CREOSOT	(C8-C22)	39355076	6313	
C38	7.005	0.004	38056	20021	1		1 Jan 14		
C40	7.465	-0.001	15901	9463	BUNKERC	(C10-C38)	114655072	12830	
	====== 0-C22) 2-C32)			399				=====	

AZMOIL (C22-C32) 69708968 10828

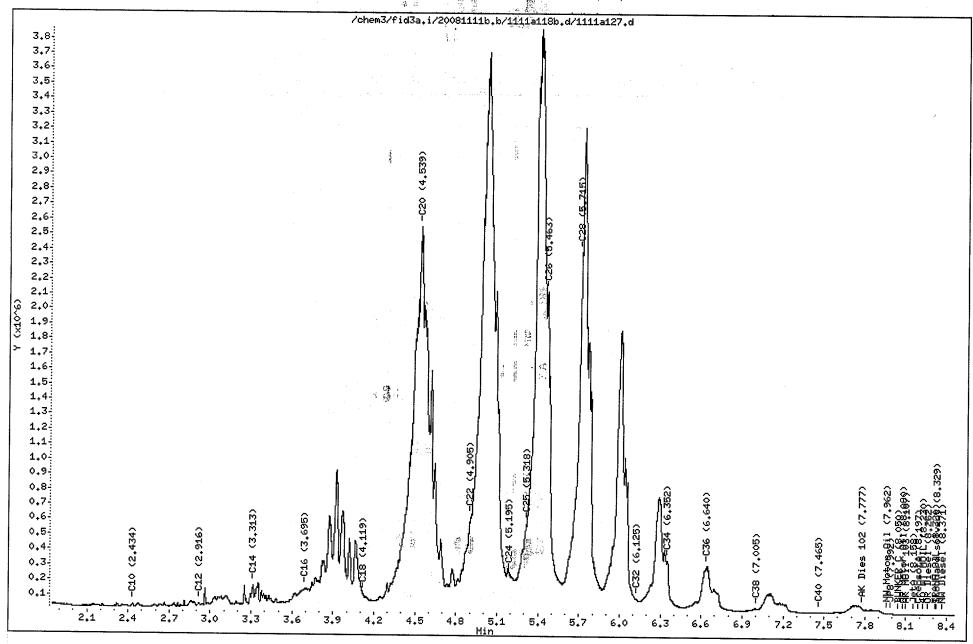
Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 7.054) 1 AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	0	0.0	0.0 NR
Triacontane	0	0.0	0.0

Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	10861.8	12-NOV-2008
Gas 26501.	/ 65383 . 2 72	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	7029.0	12-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	5439.0	12-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	9368.4	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a127.d

Date : 12-NOV-2008 23:20


Client ID:

Sample Info: NY64L

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

PC 11/14/08

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a129.d ARI ID: NY64N

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 23:49

Operator: ms Report Date: 11/13/2008 Macro: FID:3A111308

AZMOIL

FID:3A RESULTS

Dilution Factor: 1

Compound	RT	Shift	Height	Area	R	ange	Total Area	Conc	
Toluene	1.815	-0.002	24411	24022	========			======	-
C8	1.914		34411	24032	!	(Tol-C12)	1738137	27	nr.c
		0.003	28662	19177	!		3788152	250	ope
C10	2.451	0.014	11274	6768			1888091	269	pro
C12	2.903	-0.003	20681	15324	AK-102	(C10-C25)	4769368	251	
C14	3.316	-0.002	49624	36939	AK-103	(C25-C36)	1667259	307	
C16	3.694	-0.004	55873	43447	OR.DIES	(C10-C28)	5592688	285	
C18	4.118	-0.004	36529	36497	OR.MOIL	(C28-C40)	1175349	125	
C20	4.534	-0.005	23290	15188		(C10-C18)	3044327	181	
C22	4.897	0.002	23672	4667			1888091	147	
C24	5.192	-0.005	26885	26307	!	, ,			
C25	5.328	-			!	(101-C12)	1738137	110	
		-0.005	29653	36490					
C26	5.455	-0.005	31469		ļ		•		
C28	5.689	-0.007	36206	44416			. *		
C32	6.118	-0.009	21890	28628		· Westernal			
C34 :	6.364	0.001	14234	3111	İ			.b	
Filter Peak	8.441	0.001	5558	2433	.TP-4	(Tol-C14)	2345275	206	
C36	6.650	0.009	9576	1899		(C8-C22)	4870098	781	
C38	7.001	-0.001	7650	2591	!	(C0-C22)	40/0030	1,01	
C40						(~~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
C40	₂ 7.478	0.013	6103	2542	BUNKERC	(C10-C38)	6607032	∴:⁄7.39	.7
	==##====	=======	=======	=======	========	=======	=======================================	=====	•
AZDIESEL (C	10-C22)	. 399	0123 2	248					

Range Times: NW Diesel (2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 - 7.050)

AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

1821008 ...283

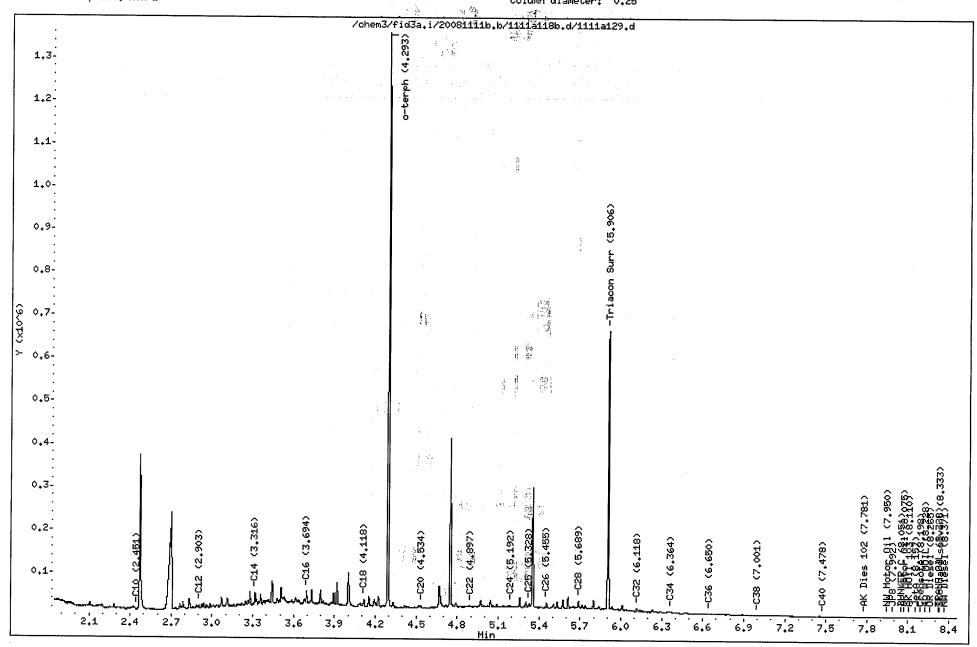
Surrogate	Area	Amount	%Rec
o-Terphenyl	679038	39.2	87.1
Triacontane	314691	29.0	64.4

(C22-C32)

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas 26500 Diesel Motor Oil AK102 AK103 JP4	17319.9 10861.8 2 /65383.2 /2 15141.0 7029.0 18985.0 5439.0 11362.0	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007
JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	16829.6 12823.0 15825.3 19612.0 9368.4 8936.8 6234.4	12-NOV-2008 27-JUN-2008 15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a129.d

Date : 12-NOV-2008 23:49


Client ID:

Sample Info: NY64N

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Client ID	O-TER	TOT OUT
		_
MB-111008	77.7%	0
LCS-111008	96.1%	0
LCSD-111008	92.6%	0
TDP26-GW-081106	95.3%	0
TDP28-GW-081106	85.4%	0
TDP29-GW-081106	75.8%	0
TDP31-GW-081106	83.1%	0
TH-SUMP-081106	NR	0
TH-DRUM2-WATER	87.1%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C Log Number Range: 08-30268 to 08-30274

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-111008

LCS/LCSD

Lab Sample ID: LCS-111008

LIMS ID: 08-30268 Matrix: Water

Data Release Authorized:

Reported: 11/14/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08

Date Received: 11/06/08

Date Extracted LCS/LCSD: 11/10/08 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/12/08 21:51 Final Extract Volume LCS: 1.0 mL LCSD: 11/12/08 22:06

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/PKC Dilution Factor LCS: 1.00 LCSD: FID/PKC

LCSD: 1.00

LCS Spike Spike LCSD Added-LCS LCSD Added-LCSD Recovery LCS RPD Recovery Range Diesel 2.30 3.00 76.7% 2.29 3.00 76.3% 0.4%

HCID Surrogate Recovery

LCSD LCS

o-Terphenyl

96.1% 92.6%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a121.d ARI ID: NY64LCSW1

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 21:51 Operator: ms Dilution Factor: 1

Report Date: 11/13/2008 Macro: FID:3A111308

FID:3A RESULTS

					JII KUUUUL	110			
Compound	RT	Shift	Height		Area		ange	Total Area	Conc
Toluene	1.815	-0.001	46130		28937		(Tol-C12)	3892678	147-60
C8	1.910	0.000	36224		32157	DIESEL	(C12-C24)	17410551	1150
C10	2.436	-0.002	189491		144877	M.OIL	(C24-C38)	596449	85
C12	2.905	-0.001	412031		262191	AK-102	(C10-C25)	20115861	1060
C14	3.316	-0.002	734173		356271	AK-103	(C25-C36)	489485	90
C16	3.695	-0.002	770179		573275	OR.DIES	(C10-C28)	20396602	1040
C18	4.121	0.000	570623		404605	OR.MOIL	(C28-C40)	383612	41
C20	4.536	-0.003	386165		302806	JET-A	(C10-C18)	14911705	886
C22	4.891	-0.003	166867		125616	MIN.OIL	(C24-C38)	596449	47
C24	5.194	-0.002	66479		48478	MSPIRIT	(Tol-C12)	3892678	246
C25	5.332	0.000	36436		40544				
C26	5.461	0.001	20232		23486	İ			
C28	5.697	0.002	6677		7234	İ		<i>,</i> *	
C32	6.123	-0.004	4124		2218	İ	Aures.		
C34	6.366	0.003	4500		2151	İ	V		
Filter Peak	8.445	0.005	3208	- 4	1345	JP-4	(Tol-C14)	7692592	677
C36	6.642	0.000	3804	· i · ·	1215	CREOSOT	(C8-C22)	20420645	3275
C38	7.001	0.000	3792		1208	į			
C40	7.480	0.015	4856		9269	BUNKERC	(C10-C38)	20694596	2316
	======	========	=======	====	======	=======	========	:======================================	=====
	0-C22)	19126		.191					
AZMOIL (C2:	2-C32)	1023	3608	159			200		

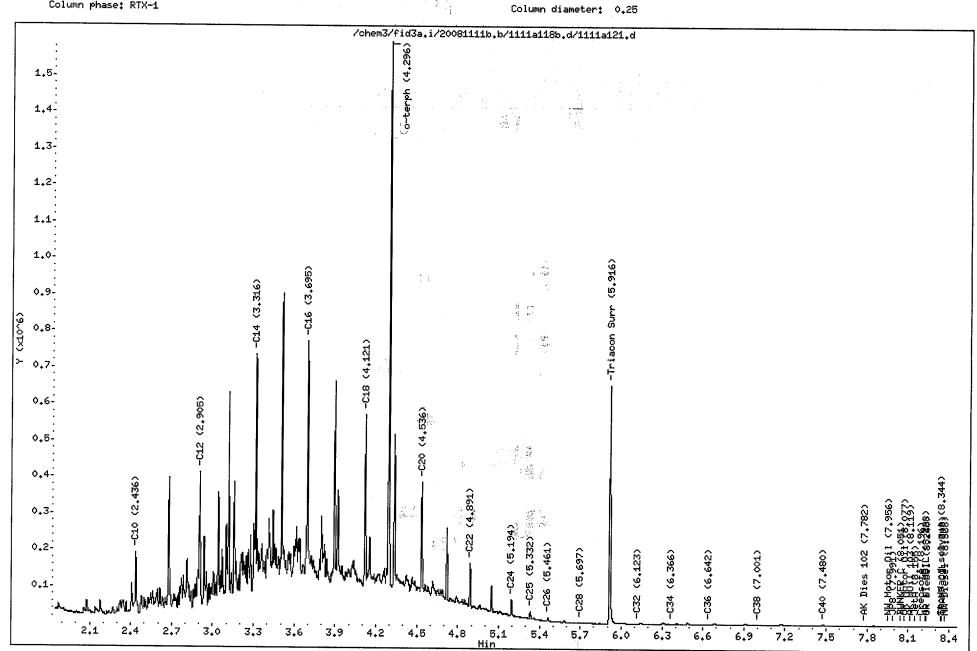
Range Times: NW Diesel(2.956 - 5.247) NW Gas(1.766 - 2.956) NW M.Oil(5.247 7.051) AK102(2.387 - 5.282) AK103(5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	749232	43.3	96.1
Triacontane	378009	34.8	77.3

RF	Curve Date
17319.9 10861.8 65383.2 /2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 12-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
8936.8 6234.4	22-SEP-2008 08-AUG-2008
	17319.9 10861.8 65383.2 /2 15141.0 7029.0 18985.0 5439.0 11362.0 16829.6 12823.0 15825.3 19612.0 9368.4 8936.8

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a121.d

Date : 12-NOV-2008 21:51


Client ID:

Sample Info: NY64LCSW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a122.d ARI ID: NY64LCSDW1

Method: /chem3/fid3a.i/20081111b.b/1111a118b.d/ftphfid3a.mClient ID:

Instrument: fid3a.i Injection: 12-NOV-2008 22:06

Operator: ms Dilution Factor: 1

Report Date: 11/13/2008 Macro: FID:3A111308

וויא	• '\ \ \	RESULTS	

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.816	0.000	46660	29445	l gas	(Tol-C12)	3906023 /	47-60
C8	1.911	0.001	36406	30204	DIESEL	(C12-C24)	17355329	1146
C10	2.436	-0.002	188123	114386	M.OIL	(C24-C38)	567207	81
C12	2.904	-0.002	470891	259563	AK-102	(C10-C25)	20075765	1057
C14	3.316	-0.002	758610	338549	AK-103	(C25-C36)	478065	. 88
C16	3.696	-0.002	775510	651950	OR.DIES	(C10-C28)	20339128	1037
C18	4.120	-0.001	514423	411994	OR.MOIL	(C28-C40)	375825	40
C20	4.535	-0.004	374475	307347	JET-A	(C10-C18)	14842139	882
C22	4.889	-0.005	165934	122000	MIN.OIL	(C24-C38)	567207	44
C24	5.192	-0.005	63570	54248	MSPIRIT	(Tol-C12)	3906023	247
C25	5.328	-0.004	35390	38980	į.			
C26	5.457	-0.003	19729	20493	ĺ			
C28	5.692	-0.003	6903	7271				
C32	6.126	-0.002	3981	635	e militari			2.0
C34 (4)	6.358	-0.005	4516	4839	(4,⊊'		i dika	
Filter Peak	8.437	-0.003	3201	1337	JP-4	(Tol-C14)	7627306	671
C36	6.643	0.001	3790	831	CREOSOT	(C8-C22)	20420334	3275
C38	7.002	0.000	3656	1017	İ		2.3	
C40	7.474	0.009	4355	16613	BUNKERC	(C10-C38)	20623203	2308
	 0-C22)	191	 12226 119	0	========	========	=======================================	
AZMOIL (C2	2-C32)	9'	74023 15	1	# 1	,		

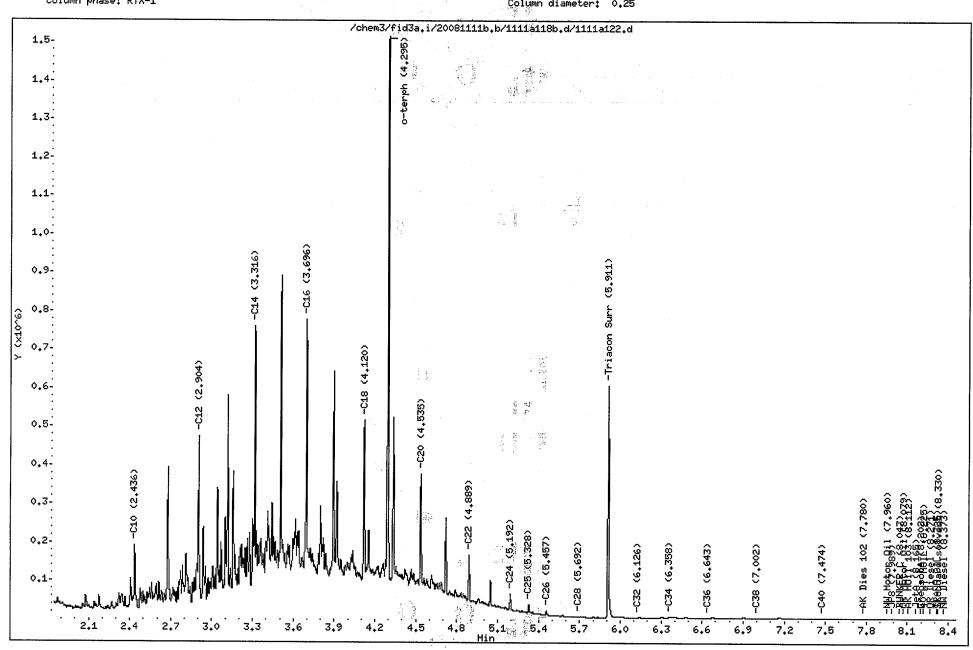
Range Times NW Diesel (2.956 - 5.247) NW Gas (1.766 - 2.956) NW M.Oil (5.247 - 7.051) AK102 (2.387 - 5.282) AK103 (5.282 - 6.691) Jet A(2.387 - 4.171)

Surrogate	Area	Amount	%Rec
o-Terphenyl	721628	41.7	92.6
Triacontane	357861	32.9	73.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas	17319.9 10861.8	11-NOV-2008 12-NOV-2008 213-NOV-2008
Diesel Motor Oil AK102	15141.0 7029.0 18985.0	12-NOV-2008 12-NOV-2008 12-NOV-2008
AK103 JP4 JetA Min Oil	5439.0 11362.0 16829.6	12-NOV-2008 05-FEB-2007 12-NOV-2008
Min Spirit OR Diesel OR M.Oil	12823.0 15825.3 19612.0 9368.4	27-JUN-2008 15-APR-2005
Bunker C Creosote	8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081111b.b/1111a118b.d/1111a122.d

Date : 12-NOV-2008 22:06


Client ID:

Sample Info: NY64LCSDW1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY64

Matrix: Water Project: BOEING THOMPSON

Date Received: 11/06/08

023173

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
08-30268-111008MB	Method Blank	500 mL	1.00 mL	11/10/08
08-30268-111008LCS	Lab Control	500 mL	1.00 mL	11/10/08
08-30268-111008LCSD	Lab Control Dup	500 mL	1.00 mL	11/10/08
08-30268-NY64H	TDP26-GW-081106	500 mL	1.00 mL	11/10/08
08-30269-NY64I	TDP28-GW-081106	500 mL	1.00 mL	11/10/08
08-30270-NY64J	TDP29-GW-081106	500 mL	1.00 mL	11/10/08
08-30271-NY64K	TDP31-GW-081106	500 mL	1.00 mL	11/10/08
08-30272-NY64L	TH-SUMP-081106	500 mL	5.00 mL	11/10/08
08-30274-NY64N	TH-DRUM2-WATER	500 mL	1.00 mL	11/10/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Matrix: Soil

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Data Release Authorized:

Reported: 11/18/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-111708 08-30261	Method Blank HC ID:	11/17/08	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 97.8%
NY64A 08-30261	TDP26-8-081106 HC ID: DRO/MOTOR OII	11/17/08	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.0 12	6.5 24 94.2%
NY64F 08-30266	TDP31-12-081106 HC ID: DRO/MOTOR OIL	11/17/08	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.4 13	58 400 96.2%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis.

RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Analytical Resources Inc. TPH Quantitation Report

AR 11/18/08

195 Tal

Data file: /chem3/fid3a.i/20081117.b/1117a074.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64MBS1 Client ID: NY64MBS1

Injection: 18-NOV-2008 07:36

Dilution Factor: 1

DID	~ T	DECLIE MO	
TTD	: 3A	RESULTS	

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=======================================	=======	=======	========	======	========	=========	=============	=====
Toluene	1.773	-0.001	84878	73749	GAS	(Tol-C12)	1470280	22
C8	1.874	-0.001	31427	35509	DIESEL	(C12-C24)	390465	26 LDC
C10	2.415	-0.006	18425	22201	M.OIL	(C24-C38)	528789	45 —
C12	2.895	0.000	9157	10776	AK-102	(C10-C25)	743958	39
C14	3.312	0.005	4494	5312	AK-103	(C25-C36)	429926	42
C16	3.687	0.003	3162	4694	OR.DIES	(C10-C28)	852187	43
C18	4.105	0.001	2793	4017	OR.MOIL	(C28-C40)	530393	53
C20	4.527	0.007	2533	2155	JET-A	(C10-C18)	603710	36
C22	4.878	0.003	3024	2313	MIN.OIL	(C24-C38)	528789	41
C24	5.184	0.006	3209	4031	MSPIRIT	(Tol-C12)	1470280	93
C25	5.313	0.000	3656	3224	Ì			
C26	5.435	-0.003	3569	1964	İ			
C28	5.678	0.006	5115	6514	İ			
C32	6.094	-0.003	6988	4845	İ	et vier		
C34	6.324	-0.003	6236	3571	İ	**************************************		d:7.°
Filter Peak	8.431	-0.003	3605	4137	JP-4	(Tol-C14)	1595283	°140
C36	6.597	0.000	5750	3919	CREOSOT	(C8-C22)	1512944	243
C38	6.929	-0.003	4826	4642	İ			
C40	7:364	-0.001	4292	2480	BUNKERC	(C10-C38)	1265983	A42
AZDIESEL (C1	 LO-C22)		:======: :7933 37	=======	=======	========	=======================================	=====
· •	22-C32)		2159 45			2 Pro-		

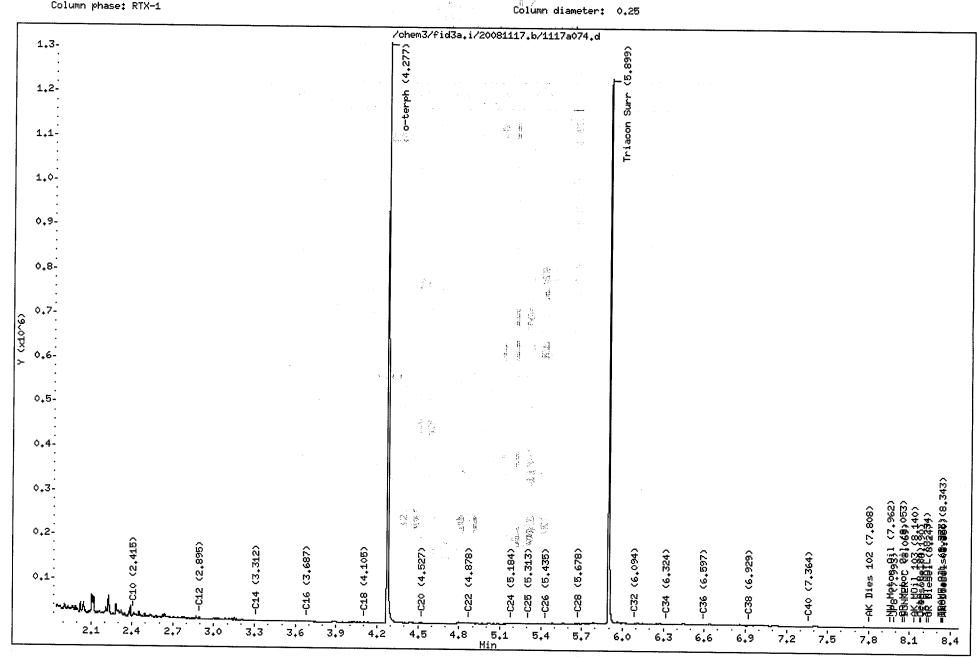
Range Times: NW Diesel (2.945 - 5.228) NW Gas (1.724 - 2.945) NW M.Oil (5.228 - 6.982)

AK102 (2.371 - 5.263) AK103 (5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec
o-Terphenyl	762753	44.0	97.9
Triacontane	688079	41.3	91.8

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a074.d


Date : 18-NOV-2008 07:36 Client ID: NY64MBS1 Sample Info: NY64MBS1

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

ij

Analytical Resources Inc. TPH Quantitation Report

No 18/11 SA

Data file: /chem3/fid3a.i/20081117.b/1117a077.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64A

Client ID: TDP26-8-081106 Injection: 18-NOV-2008 08:19

Dilution Factor: 1

ETD.	27	RESULTS
111111111111111111111111111111111111111	3 A	RESULTS

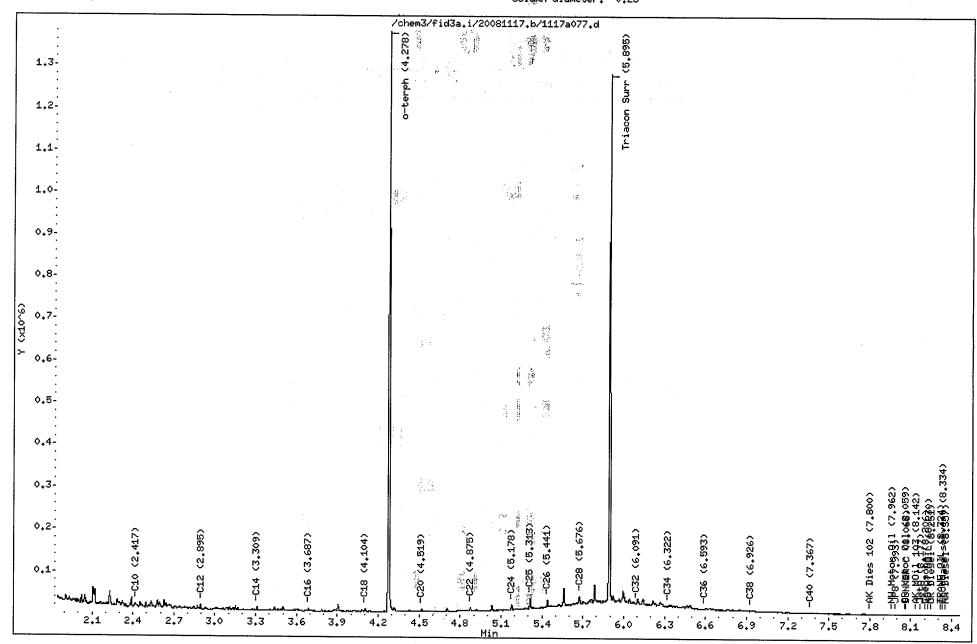
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.774	-0.001	 79619	 69627	GAS	======== (Tol-C12)	1400704	=====
C8	1.874	-0.001	30591	34008	DIESEL	(C12-C24)	1483724 820407	23 54 52°
C10	2.417	-0.003	19919	24943	M.OIL	(C24-C38)	2298291	196 MO
C12	2.895	0.001	16937	15017	AK-102	(C10-C25)	1261928	66
C14	3.309	0.002	13041	13307	AK-103	(C25-C36)	2049260	202
C16	3.687	0.003	10104	11117	OR.DIES	(C10-C28)	1860815	95
C18	4.104	0.000	10010	10217	OR.MOIL	(C28-C40)	1904220	189
C20	4.519	-0.001	10586	10520	JET-A		836875	50
C22	4.875	0.000	15198	11705	MIN.OIL	(C24-C38)	2298291	179
C24	5.178	0.000	21999	17035	MSPIRIT	(Tol-C12)	1483724	94
C25	5.313	0.000	36774	33023				-
C26	5.441	0.002	33963	33639	İ			
C28	5.676	0.005	42832	53601	į .			
C32	6.091	-0.006	26522	7879	make .		and gray of gr	•
C34	6.322	-0.005	<i></i> ≥20809	8172	i ·			
Filter Peak	8.434	0.000	4555	2706	JP-4	(Tol-C14)	1650992	145
C36	6.593	-0.004	14890	3554	CREOSOT	(C8-C22)	1849542	297
C38	6.926	-0.006	11358	2469				
C40	7.367	0.002	ACR 8033	6304	BUNKERC	(C10-C38)	3547198	397
	===== L0-C22) 22-C32)	_	73343 48588	-=====================================	=======	=========	:-====================================	=====

Range Times: NW Diesel(2.945% 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 - 6.982)

AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec
o-Terphenyl	733507	42.4	94.1 /
Triacontane	610038	36.6	81.4

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8 6234.4	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 12-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 27-JUN-2008 15-APR-2005
		2000


Data File: /chem3/fid3a.i/20081117.b/1117a077.d

Date : 18-NOV-2008 08:19 Client ID: TDP26-8-081106 Sample Info: NY64A

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081117.b/1117a078.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64F

Client ID: TDP31-12-081106 Injection: 18-NOV-2008 08:34

Dilution Factor: 1

FID	• 3 A	RESIT	.ΤС

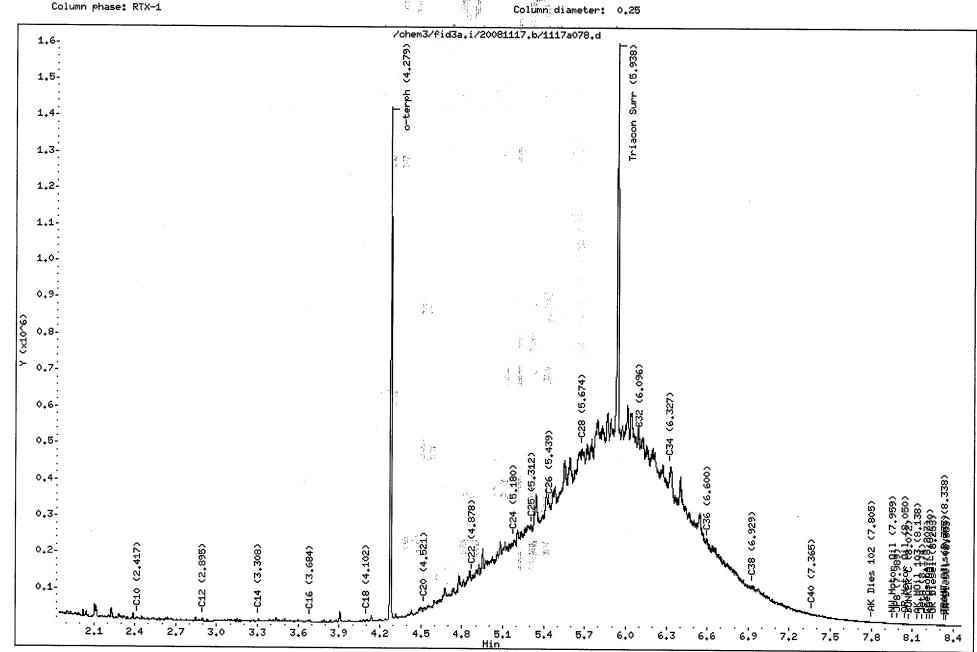
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=========	=======	=======	========	=======	=======	========	==========	======
Toluene	1.771	-0.003	71073	64490	GAS	(Tol-C12)	1284401	20
C8	1.872	-0.002	28300	28087	DIESEL	(C12-C24)	6799255	449 DRO
C10	2.417	-0.003	16446	21241	M.OIL	(C24-C38)	35873918	3058 MOIL
C12	2.895	0.000	13114	12162	AK-102	(C10-C25)	7707286	406
C14	3.308	0.001	12066	9681	AK-103	(C25-C36)	32370087	3199
C16	3.684	0.000	10999	8438	OR.DIES	(C10-C28)	17683854	902
C18	4.102	-0.001	13298	14199	OR.MOIL	(C28-C40)	26811437	2657
C20	4.521	0.001	47141	25420	JET-A	(C10-C18)	903594	54
C22	4.878	0.003	138244	88283	MIN.OIL	(C24-C38)	35873918	2798
C24	5.180	0.002	233539	87106	MSPIRIT	(Tol-C12)	1284401	81
C25	5.312	-0.001	270058	53283	İ			
C26	5.439	0.000	330468	202434				
C28	5.674	0.002	485324	205927	į			
C32	6.096	0.000	515284	161186	ĺ		13/2 .	
C34	6.327	0.000	438318	204653	1.5%		· m	
Filter Peak	8.433	-0.001	8232	2905	JP-4	(Tol-C14.)	1465620	129
C36	6.600	0.003	234584	118728	CREOSOT	(C8-C22)	4349243	698
C38	6.929	-0.003	112711	48268	j4			
C40	7.365	0.001	36612	18846	BUNKERC	(C10-C38)	43009426	4813
AZDIESEL (C	======= 10-C22)	======= 357		====== ?	=========	=========	=========	:=====
·	22-C32)		55457 4142		i	7. 7 3. 7 3. 8	2 N. 1976	

Range Times: NW Diesel (2.945 - 5.228) NW Gas (1.724 - 2.945) NW M.Oil (5.228 6.982)

AK102 (2.371 - 5.263) AK103 (5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate Area Amount %Rec
o-Terphenyl 750621 43.3 96.3
Triacontane 642042 38.6 85.7

		_
Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr Gas	16652.3 65383.2	18-NOV-2008 13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008


Data File: /chem3/fid3a.i/20081117.b/1117a078.d

Date : 18-NOV-2008 08:34 Client ID: TDP31-12-081106

Sample Info: NY64F

Instrument: fid3a.i

Operator: ms Column diameter: 0.25

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Client ID	OTER	TOT OUT
MB-111708	97.8%	0
LCS-111708	98.9%	0
LCSD-111708	101%	0
TDP26-8-081106	94.2%	0
TDP31-12-081106	96.2%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(62-118)

(49-125)

Prep Method: SW3546

Log Number Range: 08-30261 to 08-30266

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-111708

LCS/LCSD

Lab Sample ID: LCS-111708

LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08

Date Received: 11/06/08

Date Extracted LCS/LCSD: 11/17/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g Final Extract Volume LCS: 1.0 mL

Date Analyzed LCS: 11/18/08 07:50

LCSD: 11/18/08 08:05

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/AAR

Dilution Factor LCS: 1.0

LCSD: FID/AAR

LCSD: 1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	122	150	81.3%	128	150	85.3%	4.8%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

98.9% 101%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

11/18/08

Data file: /chem3/fid3a.i/20081117.b/1117a075.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64LCSS1 Client ID: NY64LCSS1

Injection: 18-NOV-2008 07:50

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
========	=======	======	===========		=======================================	==========	======
Toluene	1.772	-0.002	100445	85208	GAS (Tol-C12)	5087338	78
C8	1.872	-0.002	47017	52286	DIESEL (C12-C24)	18456355	1219 %1.3%
C10	2.419	-0.001	312443	175115	M.OIL (C24-C38)	715386	61
C12	2.895	0.001	606548	287266	AK-102 (C10-C25)	22079562	1163
C14	3.308	0.001	817660	368795	AK-103 (C25-C36)	592769	59
C16	3.684	0.001	820653	668790	OR.DIES (C10-C28)	22399645	1142
C18	4.104	0.001	526711	393541	OR.MOIL (C28-C40)	446882	44
C20	4.519	-0.001	410113	325130	JET-A (C10-C18)	16632109	988
C22	4.874	-0.001	171830	120277	MIN.OIL (C24-C38)	715386	56
C24	5.175	-0.003	73645	54318	MSPIRIT (Tol-C12)	5087338	321
C25	5.310	-0.003	43345	46881			
C26	5.437	-0.001	27206	30044			
C28	5.671	0.000	10216	13385			
C32	6.103	0.006	7747	13116	ske s		e to
C34	6.326	-0.001	5143	1128	***		32
Filter Peak	8.439	0.005	3460	1583	JP-4 (Tol-C14)	9428461	830
C36	6.595	-0.002	4624	1198	CREOSOT (C8-C22)	22558845	3618
C38	6.931	-0.001	4134	1814			
C40	7.363	-0.001	3841	919	BUNKERC (C10-C38)	22754523	2546
The second secon	10-C22) 22-C32)		05713 1302 50062 180				

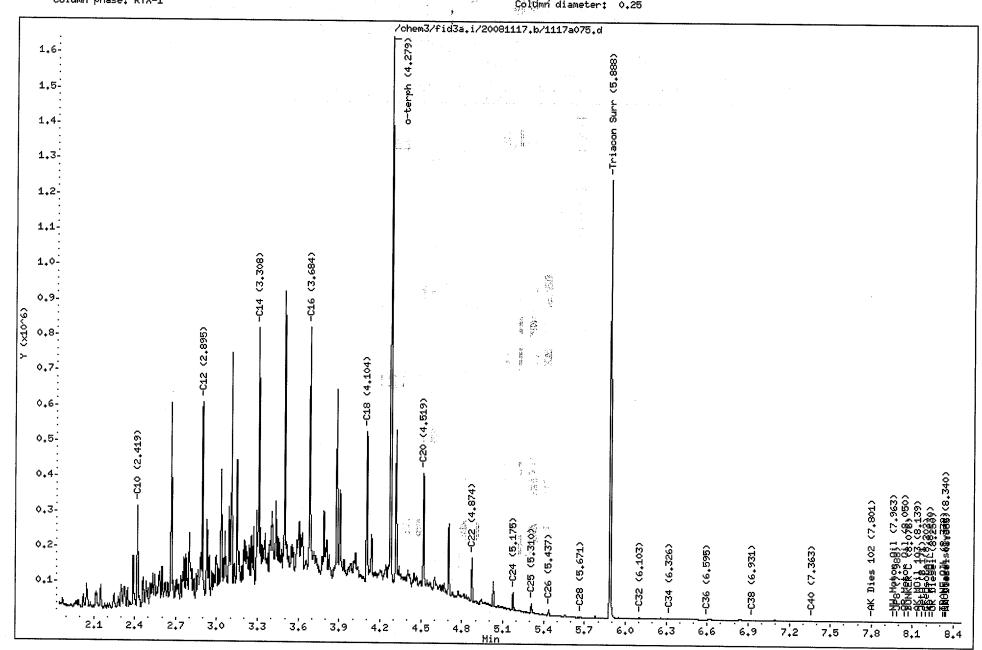
Range Times: NW Diesel(2.945 - 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 - 6.982)

AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec
o-Terphenyl	770968	44.5	98.9
Triacontane	705505	42.4	94 1

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	17319.9 16652.3	11-NOV-2008 18-NOV-2008
Gas	65383.2	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a075.d


Date : 18-NOV-2008 07:50 Client ID: NY64LCSS1 Sample Info: NY64LCSS1

Column phase: RTX-1

Instrument: fid3a.i

Openator: ms

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081117.b/1117a076.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 b/1117a076.d ARI ID: NY64LCSDS1

Client ID: NY64LCSDS1

Injection: 18-NOV-2008 08:05

Dilution Factor: 1

TT TO	D - 2 A	REST	TTTC

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.772	-0.002	====== 98530	======== 86300	GAS	Tol-C12)	======================================	====== 78	:
C8	1.872	-0.002	47208	50336	DIESEL	(C12-C24)	19336797		85.18
C10	2.419	-0.002	344321	181564	M.OIL	(C24-C38)	743888	63	
C12	2.895	0.001	648684		AK-102	(C10-C25)	22997951	1211	
C14	3.308	0.000	877728	376843	AK-103	(C25-C36)	616462	61	
C16	3.685	0.001	804213	666845	OR.DIES	(C10-C28)	23338787	1190	
C18	4.104	0.001	555023	397797	OR MOIL	(C28-C40)	458819	45	
C20	4.519	-0.001	417849	292625	JET-A	(C10-C18)	17247137	1025	
C22	4.873	-0.002	168643	132082	MIN.OIL	(C24-C38)	743888	58	
C24	5.176	-0.002	73165	61176	MSPIRIT	(Tol-C12)	5131591	324	
C25	5.311	-0.002	45132	51628					
C26	5.438	0.000	27364	29368					
C28	5.672	0.001	10289	11770			4		
C32	6.089	-0.008		1245	1	****** ********			
C34	6.328	0.001	5294	1795		757	+ I ₁ + 1 + 2		
Filter Peak	8.439	0.004	3427	1091	JP-4	(Tol-C14)	9763253	859	(4), 5
C36	6.591	-0.007	4597	2742	CREOSOT	(C8-C22)	23459674	3763	4.
C38	6.935	0.002	4202	3424			to the		
C40	7.363	-0.002	3669	1171	BUNKERC	(C10-C38)	23695488	2651	
AZDIESEL (C1	0-C22)	21780)137 1	======= L356	=======	:========	=======================================	:====	
	2-C32)	1207		188				7, 5	

Range Times: NW Diesel(2.945 - 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 6.982) AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate Area Amount %Rec

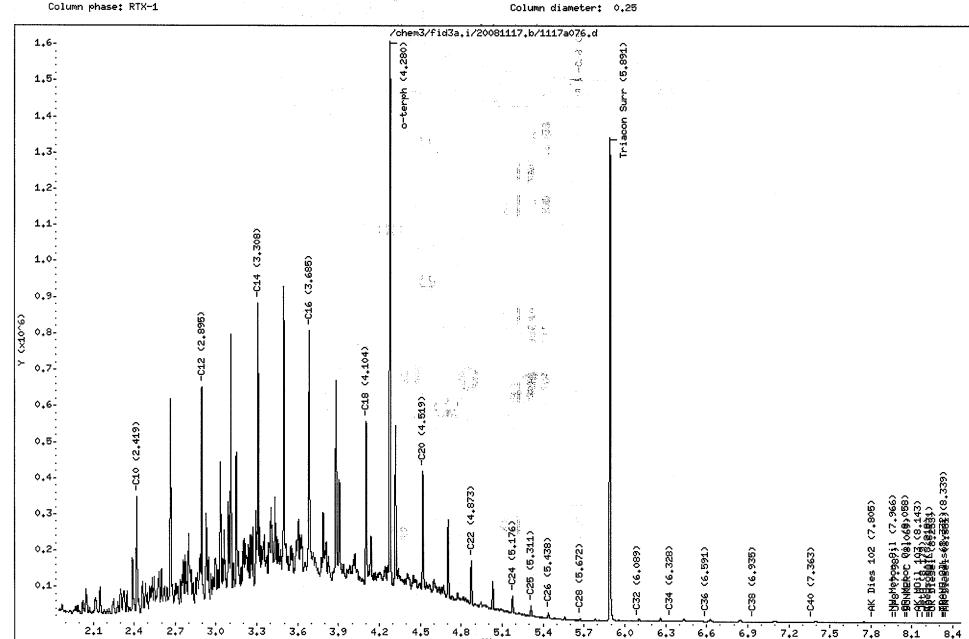
o-Terphenyl 789454 45.6 101.3

Triacontane 720962 43.3 96.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	17319.9 16652.3	11-NOV-2008 18-NOV-2008
Gas	65383.2	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV~2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

AR Infield

.


eneme SAN Data File: /chem3/fid3a,i/20081117,b/1117a076,d

Date : 18-NOV-2008 08:05 Client ID: NY64LCSDS1 Sample Info: NY64LCSDS1

Instrument: fid3a.i

Operator: ms

Column diameter: 0.25

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

023173

ARI Job: NY64 Project: BOEING THOMPSON

Matrix: Soil

Date Received: 11/06/08

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-30261-111708MB1	Method Blank Lab Control Lab Control Dup	10.0 g	1.00 mL	-	11/17/08
08-30261-111708LCS1		10.0 g	1.00 mL	-	11/17/08
08-30261-111708LCSD1		10.0 g	1.00 mL	-	11/17/08
08-30261-NY64A	TDP26-8-081106	8.28 g	1.00 mL	D	11/17/08
08-30266-NY64F	TDP31-12-081106	7.75 g	1.00 mL	D	11/17/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Matrix: Water

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Data Release Authorized: Reported: 11/18/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-111408 08-30270	Method Blank HC ID:	11/14/08	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 76.0%
NY64J 08-30270	TDP29-GW-081106 HC ID:	11/14/08	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 88.4%
NY64K 08-30271	TDP31-GW-081106 HC ID: DRO/MOTOR OI	11/14/08 L	11/18/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	0.47 3.2 92.2%
NY64L 08-30272	TH-SUMP-081106 HC ID: DRO/MOTOR OI	11/14/08 L	11/18/08 FID3A	5.00 5.0	Diesel Motor Oil o-Terphenyl	2.5 5.0	25 62 D

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081117.b/1117a065.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64MBW1

Client ID: NY64MBW1

Injection: 18-NOV-2008 05:25

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.772	-0.002	73713	64028	GAS	 (Tol-C12)	1182515	===== 18
C8	1.873	-0.001	29649	21882	DIESEL	(C12-C24)	235234	16
C10	2.415	-0.005	38888	37735	M.OIL	(C24-C38)	546180	47 5
C12	2.893	-0.001	6077	7243	AK-102	(C10-C25)	511162	27
C14	3.313	0.005	3087	955	AK-103	(C25-C36)	431080	43
C16	3.688	0.004	1752	1369	OR.DIES	(C10-C28)	604581	31
C18	4.104	0.001	880	122	OR.MOIL	(C28-C40)	584987	58
C20	4.516	-0.004	1033	489	JET-A	(C10-C18)	428308	25
C22	4.885	0.010	1680	2033	MIN.OIL	(C24-C38)	546180	43
C24	5.174	-0.003	1984	1218	MSPIRIT	(Tol-C12)	1182515	75
C25	5.318	0.005	2518	1309	1			
C26	5.435	-0.003	3161	1510	1			
C28	5.701	0.030	4333	1687				
C32	6.140	0.043	6301	1494	4444			ric .
C34	6.325	-0.001	6657	2104	, ,			í ^z
Filter Peak	8.437	0.002	3709	1698	JP-4	(Tol-C14)	1270756	112
C36	6.655	0.058	5544	4676	CREOSOT	(C8-C22)	1133008	182
C38	6.942	0.010	5609	6798				*
C40	7.404	0.040	7629	11623	BUNKERC	(C10-C38)	1053021	118
AZDIESEL (CI		39	7486 1875	25 41	· · · · · · · · · · · · · · · · · · ·			===== ::::
			12.1	7.3				

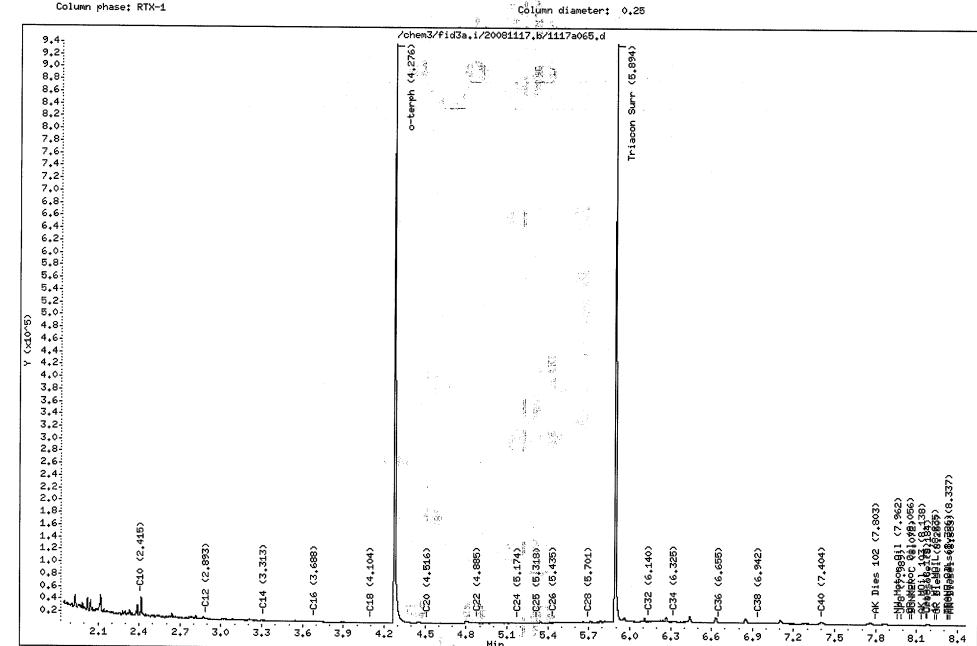
Range Times: NW Diesel(2.945 - 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 - 6.982) AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec
o-Terphenyl	591979	34.2	76.0
Triacontane	546004	32.8	72.9

Analyte	RF	Curve Date
o-Terph Surr	17319.9	11-NOV-2008
Triacon Surr	16652.3	18-NOV-2008
Gas	65383.2	13-NOV-2008
Diesel	15141.0	12-NOV-2008
Motor Oil	11731.0	17-NOV-2008
AK102	18985.0	12-NOV-2008
AK103	10120.0	17-NOV-2008
JP4	11362.0	05-FEB-2007
JetA	16829.6	12-NOV-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	19612.0	
OR M.Oil	10092.0	
Bunker C	8936.8	22-SEP-2008
Creosote	6234.4	08-AUG-2008

AR 11/18/04

Data File: /chem3/fid3a,i/20081117,b/1117a065.d


Date : 18-NOV-2008 05:25 Client ID: NY64MBW1 Sample Info: NY64MBW1

Instrument: fid3a.i

Operator: ms

7 49. 13

17. 4 17. 4 18. 4 18. 4

Analytical Resources Inc. TPH Quantitation Report

AR 11/18/08

Data file: /chem3/fid3a.i/20081117.b/1117a068.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64J

Client ID: TDP29-GW-081106 Injection: 18-NOV-2008 06:09

Dilution Factor: 1

FTD 37	A RESULTS	3

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
=======================================		======	=======	=======	=======================================	=======================================	=====
Toluene	1.770	-0.005	78258	6837	8 GAS (Tol-C12) 1194584	18
C8	1.871	-0.004	30330	3316	1 DIESEL (C12-C24) 262700	17 LDC
C10	2.415	-0.005	21497	3125	3 M.OIL (C24-C38) 369375	31
C12	2.895	0.000	7799	821	4 AK-102 (C10-C25) 551342	29
C14	3.312	0.005	5262	749	6 AK-103 (C25-C36) 291640	29
C16	3.690	0.006	2822	323	3 OR.DIES (C10-C28	609133	31
C18	4.105	0.001	1605	256	7 OR.MOIL (C28-C40) 411975	41
C20	4.512	-0.008	1170	83	6 JET-A (C10-C18) 472300	28
C22	4.869	-0.006	1598	80	3 MIN.OIL (C24-C38)) 369375	29
C24	5.184	0.006	1486	149	1 MSPIRIT (Tol-C12)) 1194584	75
C25	5.318	0.005	1666	162	4		
C26	5.447	0.008	1924	275	8		
C28	5.707	0.035	3732	558	1		
C32	6.150	0.053	4539	550	2		
C34 #5	6.329	0.002	4412	289		() () () () () () () () () ()	
Filter Peak	8.433	-0.002	3316	119	1 JP-4 (Tol-C14)) 1294677	114
C36	6.636	0.038	8533	1907	4 CREOSOT (C8-C22)) 1166740	187
C38	6.928	-0.004	3891	69	9	y 5, € .	
C40	7.407	0.043	4619	1546	8 BUNKERC (C10-C38)	918046	103
AZDIESEL (C1	-==== .0-C22)	4	 45669	28		=======================================	===
	22-C32)		68368	26	100 V =		1 2

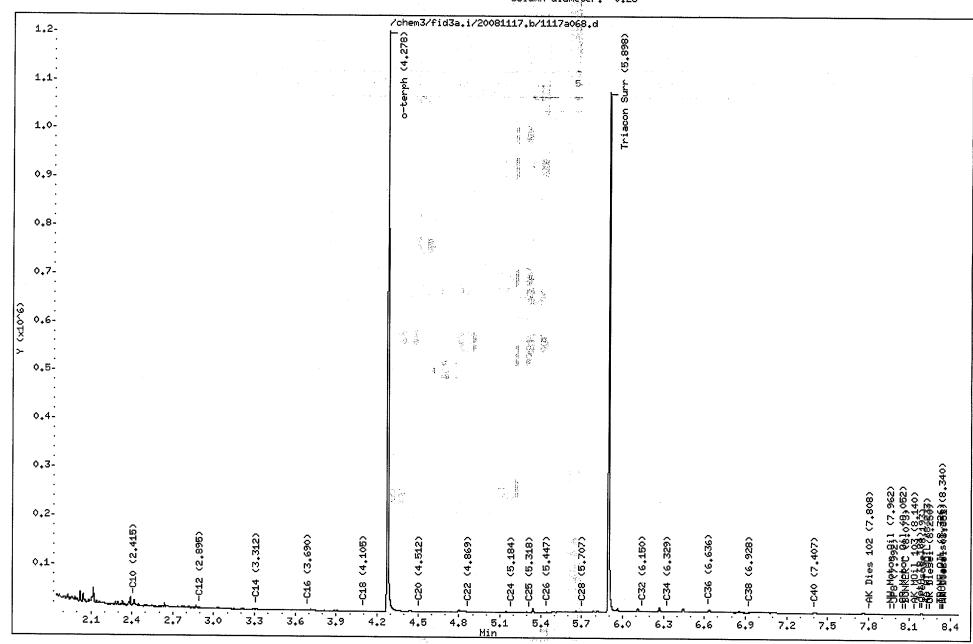
Range Times: NW Diresel (2.945 - 5.228) NW Gas (1.724 - 2.945) NW M.Oil (5.228 - 6.982) AKT02 (2.371 - 5.263) AK103 (5.263 - 6.647) Jet A(2.371 - 4.154)

L. A. D. Ver

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	689446 617045	39.8	88.5

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a068.d


Date : 18-NOV-2008 06:09 Client ID: TDP29-GW-081106

Sample Info: NY64J

Column phase: RTX-1

. Instrument: fid3a.i

Operator: ms Column diameter: 0.25

1

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20081117.b/1117a069.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64K

Client ID: TDP31-GW-081106 Injection: 18-NOV-2008 06:23

AR 11/18/08

51 **4** 166

Dilution Factor: 1

יתדק.	. 27	DECIT	TC

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.770	-0.004	81231	====================================	========			=====
C8	1.872	-0.004	30531	69755	GAS		1272742	19
C10	2.415	-0.003		31446	DIESEL	,	3530901	233 DRO
C12	2.415	0.000	22175	36898	M.OIL	,	19034747	1623 MOIL
C12 C14	3.309	0.000	8594	9098	AK-102	(C10-C25)	4086037	215
C14 C16			7045	8716	AK-103	(C25-C36)	17327163	1712
C18	3.686	0.002	4223	4287	OR.DIES		9443244	482
	4.102	-0.002	4808	4718	OR.MOIL	,	14205028	1408
C20	4.519	-0.001	21060	11348		(C10-C18)	613963	36
C22	4.876	0.001	65930	25838	MIN.OIL	(C24-C38)	19034747	1484
C24	5.174	-0.004	118562	81140	MSPIRIT	(Tol-C12)	1272742	80
C25	5.313	0.000	153352	82376				•
C26	5.441	0.002	178814	93707				
C28	5.674	0.003	248320	53875	į			
C32	6.099	0.002	260022	51481	Ī			
C34	6.329	0.002	202195	117943	İ			Sec.
Filter Peak	8.436	0.002	5578	1869	JP-4	(Tol-C14)	1404823	124
C36	6.600	0.003	127108	41984	CREOSOT	(C8-C22)	2648251	425
C38	6.933	0.001	57764	40661		(50 022)	2010251	423
C40	7.369	0.004	20577	17609	BUNKERC	(C10-C38)	22882696	2561
-	===== 0-C22) 2-C32)	189 1430	======================================	======:	=======			=====

KAN LUMBER AND

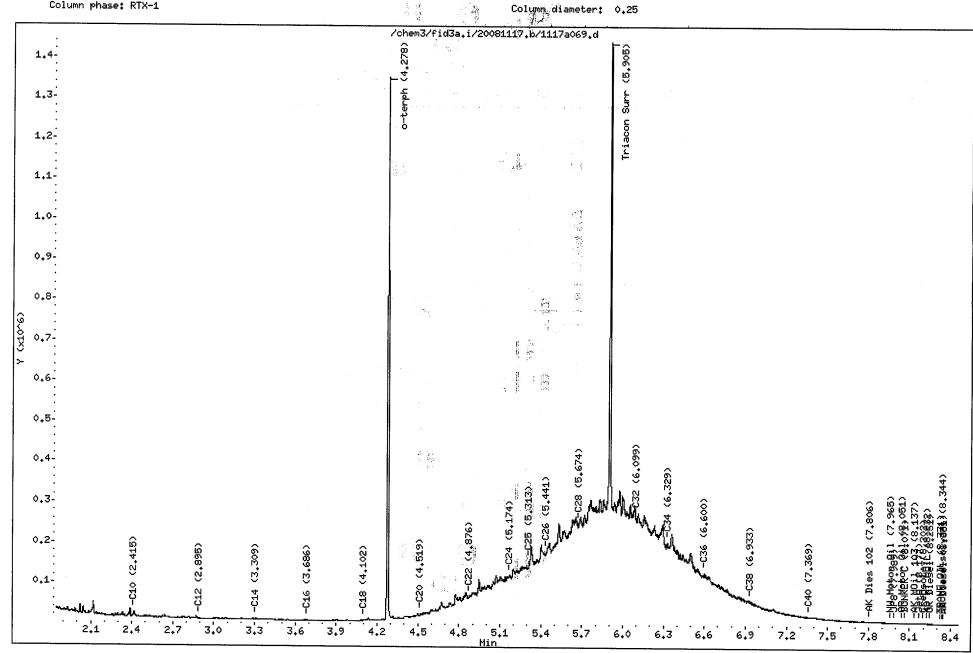
Range Times: NW Diesel (2.945 - 5.228) NW Gas (1.724 - 2.945) NW M.Oil (5.228 - 6.982)

AK102 (2.371 - 5.263) AK103 (5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec
o-Terphenyl	718132	41.5	92.1
Triacontane	627478	37 7	92 7

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 12-NOV-2008 17-NOV-2008
JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8 6234.4	05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005 22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a069.d


Date : 18-NOV-2008 06:23 Client ID: TDP31-GW-081106

Sample Info: NY64K

Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

Analytical Resources Inc. TPH Quantitation Report

AR 11/18/01

Data file: /chem3/fid3a.i/20081117.b/1117a071.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64L

Client ID: TH-SUMP-081106 Injection: 18-NOV-2008 06:52

Dilution Factor: 15

 rn.	¬¬¬¬	RESILT	\sim

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
===========	=======	=======	======	=========	=======	=======:		=======
Toluene	1.770	-0.004	72853	62311	GAS	(Tol-C12)	1975774	30
C8	1.871	-0.003	30185	33137	DIESEL	(C12-C24)	7584172	501 PRO
C10	2.416	-0.005	37526	40568	M.OIL	(C24-C38)	14565823	1242 MOIL
C12	2.891	-0.003	31687	20189	AK-102	(C10-C25)	8431560	444
C14	3.302	-0.005	46118	37860	AK-103	(C25-C36)	12995393	1284
C16	3.683	-0.001	11561	9077	OR.DIES	(C10-C28)	13498932	688
C18	4.100	-0.003	13318	5672	OR.MOIL	(C28-C40)	10145560	1005
C20	4.518	-0.002	787105	492225	JET-A	(C10-C18)	1861179	111
C22	4.873	-0.003	92958	73227	MIN.OIL	(C24-C38)	14565823	1136
C24	5.178	0.000	148166	158523	MSPIRIT	(Tol-C12)	1975774	125
C25	5.315	0.002	144776	39969	İ			
C26	5.442	0.003	239853	217936	İ			
C28	5.672	0.000	183145	61169	j			
C32	6.096	-0.001	155940	71286	Ì		(\$42	
C34	6.331	0.004	164586	244716	İ	4		
Filter Peak	8.438	0.003	11368	2931	JP-4	(Tol-C14)	2416529	213
C36	6.598	0.000	81921	32441	CREOSOT	(C8-C22)	7348408	1179
C38	6.932	0.000	51283	17137	No. 1991			
C40	7.365	0.000	29684	6402	BUNKERC	(C10-C38)	22712103	2541
AZDIESEL (C1	0-C22)	== === ===== 606	====== 54530	======================================	=======	========		=====
	2-C32)			1866			Ç A	

Range Times: NW Diesel(2.945 - 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 - 6.982)

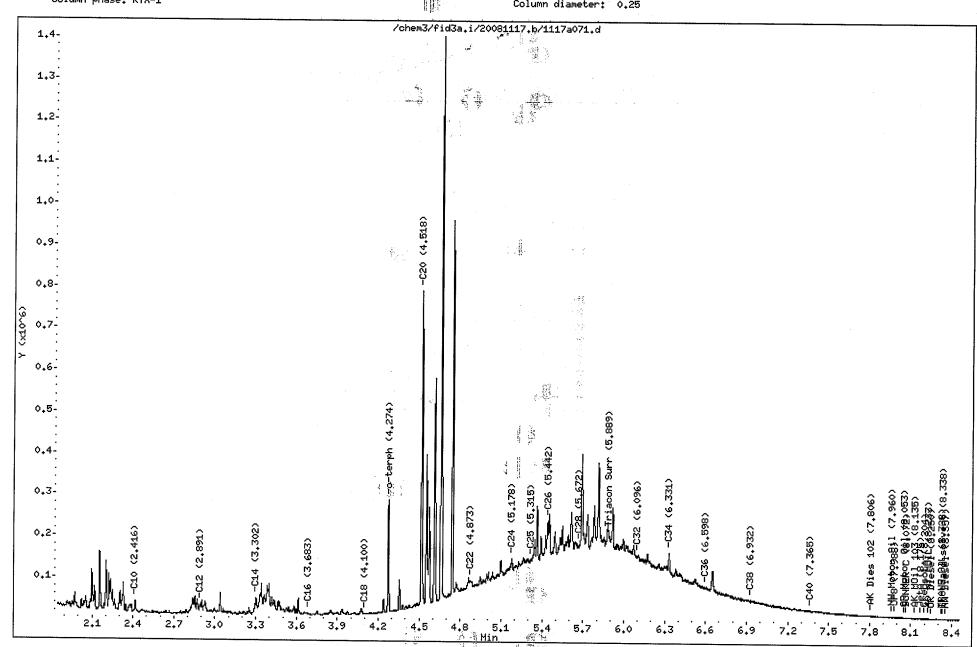
AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 - 4.154)

Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	129061 135438	7.5	82.8	?

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 12-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
OR M.Oil Bunker C Creosote	10092.0 8936.8 6234.4	22-SEP-2008 08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a071.d

Date : 18-NOV-2008 06:52 Client ID: TH-SUMP-081106 Sample Info: NY64L,5


Column phase: RTX-1

Instrument: fid3a.i

Operator: ms

(A)

Column diameter: 0.25

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Client ID	OTER	TOT OUT
MB-111408	76.0%	0
LCS-111408	91.6%	0
LCSD-111408	90.7%	0
TDP29-GW-081106	88.4%	0
TDP31-GW-081106	92.2%	0
TH-SUMP-081106	מ	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(49-118)

(45-112)

Prep Method: SW3510C

Log Number Range: 08-30270 to 08-30272

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-111408

LCS/LCSD

Lab Sample ID: LCS-111408

LIMS ID: 08-30270 Matrix: Water

Data Release Authorized:

Reported: 11/18/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08

Date Received: 11/06/08

Date Extracted LCS/LCSD: 11/14/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 11/18/08 05:40

LCSD: 11/18/08 05:54

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/AAR

Dilution Factor LCS: 1.00

Final Extract Volume LCS: 1.0 mL

LCSD: FID/AAR

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.29	3.00	76.3%	1.94	3.00	64.7%	16.5%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

91.6% 90.7%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

AS 11/18/01

Data file: /chem3/fid3a.i/20081117.b/1117a066.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 11/18/2008 Macro: FID:3A111308 ARI ID: NY64LCSW1 Client ID: NY64LCSW1

Injection: 18-NOV-2008 05:40

Markey all

Dilution Factor: 1

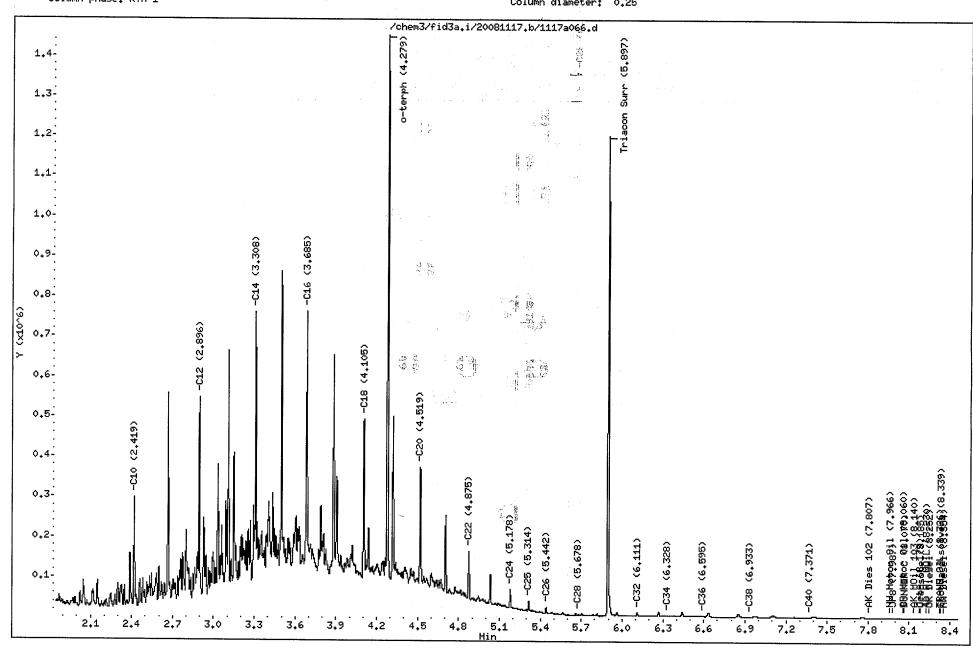
FID:3A RESULTS									
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.772	-0.002	107272	 88225	1 020			======	:
C8	1.872	-0.002	49590	54874	GAS DIESEL		4565872	70	
C10	2.419	-0.002	294337	152643	M.OIL	/	17323032 750406		76.32
C12	2.896	0.001	543987	289365	AK-102	(C10-C25)	20450840	64 1077	
C14	3.308	0.001	758097	351205	AK-103	(C25-C36)	617406	61	
C16	3.685	0.001	759706	636027	OR.DIES	(C10-C28)	20773111	1059	
C18	4.105	0.002	491792	370883	OR.MOIL	(C28-C40)	480633	48	
C20	4.519	-0.001	372203	306820	JET-A	(C10-C18)	15394226	915	
C22	4.875	0.000	164398	129427	MIN.OIL	(C24-C38)	750406	5.9	
C24	5.178	0.000	69545	54661	MSPIRIT	(Tol-C12)	4565872	289	
C25	5.314	0.001	39958	34913	İ				
C26	5.442	0.003	24418	22688					
C28	5.678	0.006	8827	10378					
C32	6.111		13121	17152		content of		A	20°
C34	6.328	0.001	4992	<i>5</i> 5 994				3	astrica Parenty Response
Filter Peak	8.438	0.003	3497	418	JP-4	(Tol-C14)	8514316	749	
°C36	6.595	-0.003	4737	3956	CREOSOT	(C8-C22)	20950833	3361	
C38	6.933	0.000	4481	1160					
C40	7.371	0.007	4070	2584	BUNKERC	(C10-C38)	21153255	2367	
AZDIESEL (C1	:====: .0-C22)	193	====== 80974 1	======== 207	=======	========	=======================================	======	
	2-C32)	ء 11(172					
	1 ax 1			= 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1.5			

Range Times: NW Diesel (2.945 - 5.228) NW Gas (1.724 - 2.945) NW M.Oil (5.228 - 6.982)

AK102(2.371 - 5.263) AK103(5.263 - 6.647) Jet A(2.371 4.154)

Surrogat	e Area	Amount	%Rec
o-Terpher	_	41.2	91.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8 6234.4	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 27-JUN-2008 27-JUN-2008
	0234.4	08-AUG-2008


Data File: /chem3/fid3a.i/20081117.b/1117a066.d

Date : 18-NOV-2008 05:40 Client ID: NY64LCSW1 Sample Info: NY64LCSW1

Column phase: RTX-1

Instrument: fid3a.i

Column diameter: 0.25

Analytical Resources Inc. TPH Quantitation Report

FID: 3A RESULTS

AR Illialor

Data file: /chem3/fid3a.i/20081117.b/1117a067.d Method: /chem3/fid3a.i/20081117.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

C38

C40

Report Date: 11/18/2008 Macro: FID:3A111308

ARI ID: NY64LCSDW1 Client ID: NY64LCSDW1

Injection: 18-NOV-2008 05:54

生命:如:公園園 意味

Dilution Factor: 1

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.773	-0.002	92418	83417	GAS (Tol-C12)	4175632	====== 64
C8	1.873	-0.001	46870	51710	DIESEL (C12-C24)	14660016	968 64.5 2
C10	2.420	-0.001	290119	151407	M.OIL (C24-C38)	609010	52
C12	2.896	0.001	581558	249513	AK-102 (C10-C25)	17475385	920
C14	3.309	0.001	783362	337413	AK-103 (C25-C36)	501103	50
C16	3.685	0.001	733767	503594	OR.DIES (C10-C28)	17741817	905
C18	4.104	0.001	483554	348565	OR.MOIL (C28-C40)	401639	40
C20	4.521	0.001	369307	271834	JET-A (C10-C18)	13171766	783
C22	4.875	0.000	144733	112779	MIN.OIL (C24-C38)	609010	47
C24	5.179	0.001	63754	45647	MSPIRIT (Tol-C12)	4175632	264
C25	5.315	0.002	36074	36247	İ		
C26	5.443	0.005	21869	19292	İ		
C28	5.679	0.008	7801	10931			
C32	6.098	0.001	4393	700	purclaque		423
C34	6.331	0.004	4518 👫	2072	İ		\$134 \$137
Filter Peak	8.432	-0.002	3436	2257	JP-4 (Tol-C14)	7663827	675
C36	6.590	-0.007	4277	2043	CREOSOT (C8-C22)	18029459	2892
~~ ~					! (,		

1625

1410 | BUNKERC (C10-C38)

AZDIESEL (C10-C22) 16566306 1031 AZMOIL (C22-C32) 901564 140

6.933

7.367

Range Times: NW Diesel(2.945 - 5.228) NW Gas(1.724 - 2.945) NW M.Oil(5.228 - 6.982) AK102(2.371 - 5.263) %AK103(5.263 - 6.647) **Jet A(2.371 - 4.154)

3725

4085

Surrogate	Area	Amount	%Rec
o-Terphenyl	706375	40.8	90.6 86.4
Triacontane	647196	38.9	

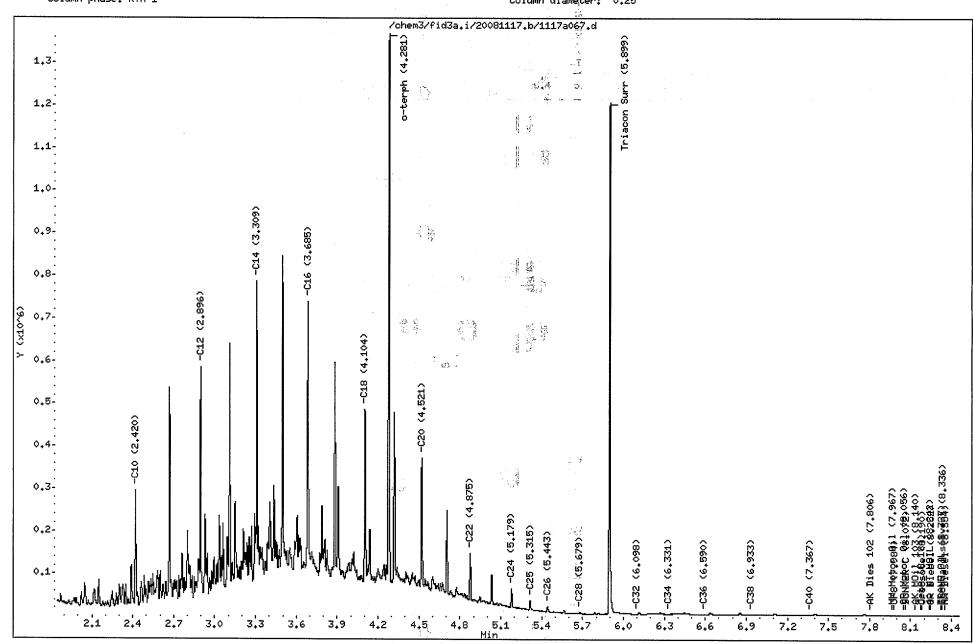
0.001

0.003

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	17319.9 16652.3 65383.2 15141.0 11731.0 18985.0 10120.0 11362.0 16829.6 12823.0 15825.3 19612.0 10092.0 8936.8	11-NOV-2008 18-NOV-2008 13-NOV-2008 12-NOV-2008 17-NOV-2008 17-NOV-2008 17-NOV-2008 05-FEB-2007 12-NOV-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20081117.b/1117a067.d

Date : 18-NOV-2008 05:54 Client ID: NY64LCSDW1 Sample Info: NY64LCSDW1


Column phase: RTX-1

િ. | Instrument: fid3a.i

Operator: ms.

43

Column diameter: 0.25

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NY64

Matrix: Water Date Received: 11/06/08 Project: BOEING THOMPSON

023173

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
08-30270-111408MB1	Method Blank	500 mL	1.00 mL	11/14/08
08-30270-111408LCS1	Lab Control	500 mL	1.00 mL	11/14/08
08-30270-111408LCSD1	Lab Control Dup	500 mL	1.00 mL	11/14/08
08-30270-NY64J	TDP29-GW-081106	500 mL	1.00 mL	11/14/08
08-30271-NY64K	TDP31-GW-081106	500 mL	1.00 mL	11/14/08
08-30272-NY64L	TH-SUMP-081106	500 mL	5.00 mL	11/14/08

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64A

LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized:

Reported: 11/24/08

Percent Total Solids: 79.2%

Sample ID: TDP26-8-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	6	7	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.4	
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.6	20.8	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	36.6	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	12	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.06	0.06	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64B

LIMS ID: 08-30262

Matrix: Soil

Data Release Authorized

Reported: 11/24/08

Sample ID: TDP27-11-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Percent Total Solids: 86.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	5	6	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.5	16.4	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	13.7	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	2	U
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64C LIMS ID: 08-30263

Matrix: Soil

Data Release Authorized:

Reported: 11/24/08

Percent Total Solids: 77.7%

Sample ID: TDP28-11-081106

SAMPLE

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	6	6	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.3	
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.6	17.8	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	20.5	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	4	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.06	0.06	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64D LIMS ID: 08-30264

Matrix: Soil

Data Release Authorized:

Reported: 11/24/08

Percent Total Solids: 74.3%

Sample ID: TDP29-11-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	6	8	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.7	
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.6	20.4	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	26.2	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	7	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.06	0.10	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64E

LIMS ID: 08-30265

Matrix: Soil
Data Release Authorized

Reported: 11/24/08

ized.

Percent Total Solids: 69.1%

Sample ID: TDP30-11-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	7	13	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.3	0.8	
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.7	24.8	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.3	35.9	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	3	15	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.05	0.17	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Sample ID: TDP31-12-081106

SAMPLE

Lab Sample ID: NY64F LIMS ID: 08-30266

Matrix: Soil Data Release Authorized

Reported: 11/24/08

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Percent Total Solids: 79.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	6	9	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.6	14.7	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	15.9	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	2	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.05	0.05	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64G

LIMS ID: 08-30267

Matrix: Soil Data Release Authorized

Reported: 11/24/08

Percent Total Solids: 89.6%

Sample ID: TDP32-11-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050В	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	5	5	U
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.5	29.4	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	20.5	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	2	U
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.05	0.05	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64M

LIMS ID: 08-30273

Matrix: Soil

Data Release Authorized Reported: 11/24/08

Percent Total Solids: 88.0%

Sample ID: TH-DRUM1-SOIL

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	5	9	
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.5	23.0	
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	22.0	
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	3	
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.04	0.08	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64A

LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized Reported: 11/24/08

Sample ID: TDP26-8-081106

DUPLICATE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	7	6	15.4%	+/- 6	L
Cadmium	6010B	0.4	0.4	0.0%	+/- 0.2	L
Chromium	6010B	20.8	21.9	5.2%	+/- 20%	
Copper	6010B	36.6	35.3	3.6%	+/- 20%	
Lead	6010B	12	19	45.2%	+/- 20%	*
Mercury	7471A	0.06 U	0.06 U	0.0%	+/- 0.06	L

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64A LIMS ID: 08-30261

Matrix: Soil

Data Release Authorized

Reported: 11/24/08

Sample ID: TDP26-8-081106

MATRIX SPIKE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	۶ Recovery	Q
Arsenic	6010B	7	224	238	91.2%	
Cadmium	6010B	0.4	55.7	59.4	93.1%	
Chromium	6010B	20.8	72.6	59.4	87.2%	
Copper	6010B	36.6	94.9	59.4	98.1%	
Lead	6010B	12	211	238	83.6%	
Mercury	7471A	0.06 U	0.68	0.587	116%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64LCS

LIMS ID: 08-30262

Matrix: Soil

Data Release Authorized:

Reported: 11/24/08

Sample ID: LAB CONTROL

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	201	200	100%	
Cadmium	6010B	50.5	50.0	101%	
Chromium	6010B	48.7	50.0	97.4%	
Copper	6010B	48.6	50.0	97.2%	
Lead	6010B	192	200	96.0%	
Mercury	7471A	1.08	1.00	108%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64MB

LIMS ID: 08-30262 Matrix: Soil

Data Release Authorized Reported: 11/24/08

...

Sample ID: METHOD BLANK

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Percent	Total	Solids:	NA
---------	-------	---------	----

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	11/14/08	6010B	11/21/08	7440-38-2	Arsenic	5	5	U
3050B	11/14/08	6010B	11/21/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7440-47-3	Chromium	0.5	0.5	U
3050B	11/14/08	6010B	11/21/08	7440-50-8	Copper	0.2	0.2	U
3050B	11/14/08	6010B	11/21/08	7439-92-1	Lead	2	2	U
CLP	11/14/08	7471A	11/21/08	7439-97-6	Mercury	0.05	0.05	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64H

LIMS ID: 08-30268

Matrix: Water

Data Release Authorized:

Reported: 11/24/08

Sample ID: TDP26-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.5	1.3	
6010B	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64I LIMS ID: 08-30269

Matrix: Water

Data Release Authorized: Reported: 11/24/08

Sample ID: TDP28-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173
Date Sampled: 11/06/08
Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	13.0	
6010B	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	. 2	Ū
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	Ū

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64J LIMS ID: 08-30270

Matrix: Water

Data Release Authorized:

Reported: 11/24/08

Sample ID: TDP29-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	5.2	
6010B	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64K

LIMS ID: 08-30271

Matrix: Water

Data Release Authorized

Reported: 11/24/08

Sample ID: TDP31-GW-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	<u>Q</u>
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	3.5	
6010B	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	Ŭ
6010B	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	Ü
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64H LIMS ID: 08-30268

Matrix: Water

Data Release Authorized Reported: 11/24/08

Sample ID: TDP26-GW-081106

DUPLICATE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Arsenic	200.8	1.3	1.4	7.4%	+/- 0.5	L	
Cadmium	6010B	2 U	2 U	0.0%	+/- 2	L	
Chromium	6010B	5 U	5 U	0.0%	+/- 5	L	
Copper	6010B	2 U	2 U	0.0%	+/- 2	L	•
Lead	200.8	1 U	1 U	0.0%	+/- 1	L	
Mercury	7470A	0.1 U	0.1 U	0.0%	+/- 0.1	L	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64H

LIMS ID: 08-30268

Matrix: Water Data Release Authorized Reported: 11/24/08

Sample ID: TDP26-GW-081106 MATRIX SPIKE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Ω
Arsenic	200.8	1.32	25.1	25.0	95.1%	
Cadmium	6010B	2.00 U	537	500	107%	
Chromium	6010B	5.00 U	498	500	99.6%	
Copper	6010B	2.00 U	494	500	98.8%	
Lead	200.8	1.00 U	23.7	25.0	94.8%	
Mercury	7470A	0.100 U	1.07	1.00	107%	

Reported in µg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64LCS

LIMS ID: 08-30269

Matrix: Water

Data Release Authoriz Reported: 11/24/08

Sample ID: LAB CONTROL

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	24.5	25.0	98.0%	
Cadmium	6010B	539	500	108%	
Chromium	6010B	502	500	100%	
Copper	6010B	491	500	98.2%	
Lead	200.8	. 25	25	100%	
Mercury	7470A	2.1	2.0	105%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NY64MB

LIMS ID: 08-30269

Matrix: Water

Data Release Authorized:

Reported: 11/24/08

Sample ID: METHOD BLANK

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	0.2	U
6010B	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
6010B	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	U
6010B	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	2	U
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	U
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64L

LIMS ID: 08-30272 Matrix: Water

Data Release Authorized

Reported: 11/24/08

Sample ID: TH-SUMP-081106

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	23.8	
3010A	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	4	58	
3010A	11/10/08	6010B	11/21/08	7440-47-3	Chromium	10	510	
3010A	11/10/08	6010B	11/21/08	7440-50-8	Copper	4	1,950	
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	2	6	
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	2	2	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64N

LIMS ID: 08-30274 Matrix: Water

Data Release Authorized Reported: 11/24/08

Sample ID: TH-DRUM2-WATER

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08
Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	34.5	
3010A	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
3010A	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	67	
3010A	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	58	
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	13	
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U
3010A	11/10/08	6010B	11/21/08	7440-02-0	Nickel	10	40	
3010A	11/10/08	6010B	11/21/08	7440-22-4	Silver	3	3	U.
3010A	11/10/08	6010B	11/21/08	7440-66-6	Zinc	10	140	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64LCS

LIMS ID: 08-30274

Matrix: Water

Data Release Authorized:

Reported: 11/24/08

Sample ID: LAB CONTROL

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	24.5	25.0	98.0%	
Cadmium	6010B	518	500	104%	
Chromium	6010B	505	500	101%	
Copper	6010B	500	500	100%	
Lead	200.8	24	25	96.0%	
Mercury	7470A	2.1	2.0	105%	
Nickel	6010B	510	500	102%	
Silver	6010B	491	500	98.2%	
Zinc	6010B	500	500	100%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NY64MB

LIMS ID: 08-30274

Matrix: Water

Data Release Authorized Reported: 11/24/08

Sample ID: METHOD BLANK

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	11/10/08	200.8	11/19/08	7440-38-2	Arsenic	0.2	0.2	U
3010A	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	2	2	U
3010A	11/10/08	6010B	11/21/08	7440-47-3	Chromium	5	5	U
3010A	11/10/08	6010B	11/21/08	7440-50-8	Copper	2	2	Ū
200.8	11/10/08	200.8	11/20/08	7439-92-1	Lead	1	1	Ū
7470A	11/10/08	7470A	11/17/08	7439-97-6	Mercury	0.1	0.1	U
3010A	11/10/08	6010B	11/21/08	7440-02-0	Nickel	10	10	IJ
3010A	11/10/08	6010B	11/21/08	7440-22-4	Silver	. 3	. 3	IJ
3010A	11/10/08	6010B	11/21/08	7440-66-6	Zinc	10	10	U

TCLP METALS

Page 1 of 1

Lab Sample ID: NY64P

LIMS ID: 08-30329

Matrix: Soil Data Release Authorized

Reported: 11/24/08

Sample ID: TH-DRUM-1-SOIL

SAMPLE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
1311	11/10/08	6010B	11/21/08	7440-38-2	Arsenic	0.2	0.2	U
1311	11/10/08	6010B	11/21/08	7440-39-3	Barium	0.02	0.11	
1311	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	0.01	0.01	U
1311	11/10/08	6010B	11/21/08	7440-47-3	Chromium	0.02	0.02	U
1311	11/10/08	6010B	11/21/08	7439-92-1	Lead	0.1	0.1	U
1311	11/12/08	7470A	11/17/08	7439-97-6	Mercury	0.0001	0.0001	Ū
1311	11/10/08	6010B	11/21/08	7782-49-2	Selenium	0.2	0.2	U
1311	11/10/08	6010B	11/21/08	7440-22-4	Silver	0.02	0.02	U

TCLP METALS

Page 1 of 1

Lab Sample ID: NY64P LIMS ID: 08-30329 Matrix: Soil

Data Release Authorized Reported: 11/24/08

Sample ID: TH-DRUM-1-SOIL

DUPLICATE

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	0.2 U	0.2 U	0.0%	+/- 0.2	L
Barium	6010B	0.11	0.11	0.0%	+/- 20%	
Cadmium	6010B	0.01 U	0.01 U	0.0%	+/- 0.01	L
Chromium	6010B	0.02 U	0.02 U	0.0%	+/- 0.02	L
Lead	6010B	0.1 U	0.1 U	0.0%	+/- 0.1	L
Mercury	7470A	0.0001 U	0.0001 U	0.0%	+/- 0.0001	L
Selenium	6010B	0.2 U	0.2 U	0.0%	+/- 0.2	L
Silver	6010B	0.02 U	0.02 U	0.0%	+/- 0.02	L

Reported in mg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TCLP METALS

Page 1 of 1

Sample ID: TH-DRUM-1-SOIL

MATRIX SPIKE

Lab Sample ID: NY64P LIMS ID: 08-30329

Matrix: Soil

Data Release Authorized: Reported: 11/24/08

QC Report No: NY64-The Boeing Company Project: BOEING THOMPSON

023173

Date Sampled: 11/06/08 Date Received: 11/06/08

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010B	0.2 U	10.6	10.0	106%	
Barium	6010B	0.11	9.57	10.0	94.6%	
Cadmium	6010B	0.01 U	2.58	2.50	103%	
Chromium	6010B	0.02 U	2.43	2.50	97.2%	
Lead	6010B	0.1 U	9.6	10.0	96.0%	
Mercury .	7470A	0.0001 U	0.0011	0.0010	110%	
Selenium	6010B	0.2 U	10.9	10.0	109%	
Silver	6010B	0.02 U	2.37	2.50	94.8%	

Reported in mg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TCLP METALS

Page 1 of 1

Lab Sample ID: NY64MB

LIMS ID: 08-30329

Matrix: Soil

Data Release Authorized

Reported: 11/24/08

Sample ID: METHOD BLANK

QC Report No: NY64-The Boeing Company

Project: BOEING THOMPSON

023173

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
1311	11/10/08	6010B	11/21/08	7440-38-2	Arsenic	0.2	0.2	U
1311	11/10/08	6010B	11/21/08	7440-39-3	Barium	0.02	0.03	
1311	11/10/08	6010B	11/21/08	7440-43-9	Cadmium	0.01	0.01	U
1311	11/10/08	6010B	11/21/08	7440-47-3	Chromium	0.02	0.02	U
1311	11/10/08	6010B	11/21/08	7439-92-1	Lead	0.1	0.1	U
1311	11/12/08	7470A	11/17/08	7439-97-6	Mercury	0.0001	0.0001	U
1311	11/10/08	6010B	11/21/08	7782-49-2	Selenium	0.2	0.2	U
1311	11/10/08	6010B	11/21/08	7440-22-4	Silver	0.02	0.02	U

December 3, 2008

Tim Syverson Landau Associates, Inc. 130 Second Ave Edmonds, WA 98020

RE: Project: Boeing Thompson, 025173.070.072

ARI Job No.: OB27

Dear Tim:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, the analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted thirteen wipe samples on November 21, 2008. The cooler was received with a temperature of 12.6°C. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for PCBs, as requested on the COC.

The undetected result for Aroclor 1248 for sample **COMP2-WIPE-081121** was raised and "Y" flagged due to interference from the matrix.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

☑ Seattle (Ed ☐ Tacoma (25			•										11/2.600
LANDAU Spokane (5	09) 327-97	37											Date 11/2/08
ASSOCIATES Portland (T	igard) (503)	443-6010	Ch	ain-o	f_Cu	eto	4.7	Doo	or	٦			Pageof
0327		-	- 011	all I-U	i-Cu	<u> </u>	<u>ay</u>						
Project Name Books The	y)SCM	Projec	t No. <i>025</i>	113.07	0.012	<i></i>	/ /	<u> </u>	estin	g P	aram	eters	7 7 7 7 Tarriarouria Time
Project Location/Event Seat	le 1 K	A		-	_		/ /	//	/ /			/ /	✓ ✓ ✓ ✓ Standard □ Accelerated
Sampler's Name Len Loid	- 1		1 11		_ /	/ /	/ /	/ /	/ /	/ /	/. /		/ / /
Project Contact Ken heid	· / Kaf	boxu /	tal Ha	/	_ /	//		//			/./	/ /	
Send Results To Aure Hulve	sea//	1/	u		- \dip	///	/ /	///	/ /	/ /		//	/ /
Sample I.D.	ℓ Date	Time	Matrix	No. of Containers							//		Observations/Comments
Livel-wipe-08/121	11/21/08		wipe	1	P								Allow water samples to settle, collect
Live 2-wife 081121	1/21/08	0940	wipe	1	4								aliquot from clear portion
Line 3 - wipe -08/121		0945	<i> </i>		7								NWTPH-Dx:
Live 4 - wife - 08421		0950			7								run acid wash/silica gel cleanup
Line5 - 4 - 4	4	0955	1/		7		<u> </u>						run samples standardized to product
LME6 - 1 -		1005		<u> </u>	4		-						•
Lue7-4- 4	4	1010	1		7								Analyze for EPH if no specific product identified
Live 8- 1 - 1	1	1035	1	1	P								
Line 9- 4 - 4	4	1000	4	1	<u> </u>							_	VOC/BTEX/VPH (soll):non-preserved
Lne 10 -		1053	1	<u> </u>	1								preserved w/methanol
Linell-		1110			K								preserved w/sodium bisulfate
Comp 1 -wipe -08/121		1120			>								Freeze upon receipt
Conp 2-wipe-081121		1125	4	1	1								Dissolved metal water samples field filtered
			•										Other
·													
							-					-	
									-				
Special Shipment/Handling or Storage Requirements	ne (ho Re	regi	ined)								 Metho Shipm	d of LAI drap all
Relinguished by		Received		//		Relin	quish	ed by	/			•	Received by
Signature		Signature/	WHA			Signa	Ly)	1.Hu	Ubla				Signature
Leu Leo		KATI	UN H	hiteu			Hari	in the	c+4				1. A. Volgarosen
Printed Name		Printed Nam	e				d Nam		,,,		. ,		Printed Name
Company/		Company	us	****		Comp	<i>All</i> any	(Company /
Date 1/21/08 Time 1/2	5	Date _///	1/08	_ Time / / 2	15	Date	11/21	108	Ti	ime _	120	<u>0_</u>	Date 11/21/08 Time 1200

Cooler Receipt Form

Date:

RI Client: BOCING Project Name: BOCING TOC No: Delivered by: Hand Tracking No:	<u> </u>	
reliminary Examination Phase:		*
Were intact, properly signed and dated custody seals attached to the outside of the custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry	YES NO	
poler Accepted by:		
Complete custody forms and attack all shipping do		
		<u></u>
og-In Phase:		•
Vas a temperature blank included in the cooler? /hat kind of packing material was used? /as sufficient ice used (if appropriate)? /ere all bottles sealed in individual plastic bags? id all bottle arrive in good condition (unbroken)? /ere all bottle labels complete and legible? id all bottle labels and tags agree with custody papers? ere all bottles used correct for the requested analyses? or any of the analyses (bottles) require preservation? (attach preservation checker all VOC vials free of air bubbles? as sufficient amount of sample sent in each bottle?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO Klist) YES NO XES NO XES NO XES NO	
** Notify Project Manager of discrepancies or conce		
	.(113	
plain discrepancies or negative responses:		
	ŀ	

Ву:

Page 1 of 1

Lab Sample ID: OB27A LIMS ID: 08-31710

Matrix: Wipe

Data Release Authorized: Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 13:37 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE1-WIPE-081121 SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	91.5%

Page 1 of 1

Lab Sample ID: OB27B LIMS ID: 08-31711

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 13:54 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE2-WIPE-081121

QC Report No: OB27-Landau Associates, Inc.

SAMPLE

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	91.5%
Tetrachlorometaxylene	89.2%

Page 1 of 1

Lab Sample ID: OB27C

LIMS ID: 08-31712

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 14:11 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE3-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	85.8%

Page 1 of 1

Lab Sample ID: OB27D LIMS ID: 08-31713

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 14:28 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE4-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL

> Dilution Factor: 1.00 Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	87.0%

Page 1 of 1

Lab Sample ID: OB27E LIMS ID: 08-31714

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08
Date Analyzed: 12/02/08 14:45
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Sample ID: LINE5-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL
Dilution Factor: 1.00
Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	90.8%
Tetrachlorometaxylene	85.2%

Page 1 of 1

Lab Sample ID: OB27F LIMS ID: 08-31715

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 15:02 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE6-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL

> Dilution Factor: 1.00 Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobipheny	71	85.5	웅
Tetrachlorometaxy	lene	84.5	응

Page 1 of 1

Lab Sample ID: OB27G LIMS ID: 08-31716

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 15:19 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE7-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	94.0%
Tetrachlorometaxylene	92.5%

Page 1 of 1

Lab Sample ID: OB27H LIMS ID: 08-31717

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 16:44 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE8-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	89.8%
Tetrachlorometaxylene	92.5%

Page 1 of 1

Lab Sample ID: OB27I LIMS ID: 08-31718

Matrix: Wipe

Data Release Authorized: Reported: 12/03/08

Date Extracted: 11/26/08
Date Analyzed: 12/02/08 17:01
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Sample ID: LINE9-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08
Date Received: 11/21/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	86.0%

Page 1 of 1

Lab Sample ID: OB27J LIMS ID: 08-31719

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08
Date Analyzed: 12/02/08 17:18
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Sample ID: LINE10-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08
Date Received: 11/22/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL
Dilution Factor: 1.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

Decachlorobiphenyl	94.2%
Tetrachlorometaxylene	94.8%

Page 1 of 1

Lab Sample ID: OB27K LIMS ID: 08-31720

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 17:35 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: LINE11-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/22/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL

> Dilution Factor: 1.00 Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11104-28-2	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232	1.0 1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U
11141-16-5	ALOCIOL 1232	1.0	< 1.0 0

Reported in Total μg

Decachlorobiphenyl	88.2%
Tetrachlorometaxylene	92.8%

Page 1 of 1

Lab Sample ID: OB27L LIMS ID: 08-31721

Matrix: Wipe

Data Release Authorized: Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 17:52 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: COMP1-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08 Date Received: 11/22/08

Sample Amount: 1.00 Wipe Final Extract Volume: 10 mL Dilution Factor: 5.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	5.0	< 5.0 Ü
53469-21-9	Aroclor 1242	5.0	< 5.0 U
12672-29-6	Aroclor 1248	5.0	< 5.0 U
11097-69-1	Aroclor 1254	5.0	5.5
11096-82-5	Aroclor 1260	5.0	< 5.0 U
11104-28-2	Aroclor 1221	5.0	< 5.0 Ŭ
11141-16-5	Aroclor 1232	5.0	< 5.0 Ŭ

Reported in Total μg

Decachlorobiphenyl	109%
Tetrachlorometaxylene	111%

Page 1 of 1

Lab Sample ID: OB27M LIMS ID: 08-31722

Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08
Date Analyzed: 12/02/08 18:09

Instrument/Analyst: ECD5/JGR
GPC Cleanup: No
Sulfur Cleanup: Yes
Acid Cleanup: Yes

Sample ID: COMP2-WIPE-081121

SAMPLE

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: 11/21/08
Date Received: 11/22/08

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL
Dilution Factor: 5.00

Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	5.0	< 5.0 U
53469-21-9	Aroclor 1242	5.0	< 5.0 U
12672-29-6	Aroclor 1248	5.0	< 7.5 Y
11097-69-1	Aroclor 1254	5.0	10
11096-82-5	Aroclor 1260	5.0	< 5.0 U
11104-28-2	Aroclor 1221	5 . 0	< 5.0 Ŭ
11141-16-5	Aroclor 1232	5 . 0	< 5.0 Ŭ

Reported in Total μg

Decachlorobiphenyl	102%
Tetrachlorometaxylene	101%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: MB-112608

METHOD BLANK

Lab Sample ID: MB-112608

LIMS ID: 08-31710 Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

Date Extracted: 11/26/08 Date Analyzed: 12/02/08 12:46 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON 025173.070.072

Date Sampled: NA Date Received: NA

Sample Amount: 1.00 Wipe

Final Extract Volume: 10 mL Dilution Factor: 1.00 Silica Gel: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in Total μg

PCB Surrogate Recovery

Decachlorobiphenyl	93.0%
Tetrachlorometaxylene	93.5%

SW8082/PCB WIPES SURROGATE RECOVERY SUMMARY

Matrix: Wipe

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON

025173.070.072

Client ID	DCBP	TCMX	TOT OUT
MB-112608	93.0%	93.5%	0
LCS-112608	94.2%	94.5%	0
LCSD-112608	94.5%	93.5%	0
LINE1-WIPE-081121	88.0%	91.5%	0
LINE2-WIPE-081121	91.5%	89.2%	0
LINE3-WIPE-081121	87.5%	85.8%	0
LINE4-WIPE-081121	84.2%	87.0%	0
LINE5-WIPE-081121	90.8%	85.2%	0
LINE6-WIPE-081121	85.5%	84.5%	0
LINE7-WIPE-081121	94.0%	92.5%	0
LINE8-WIPE-081121	89.8%	92.5%	0
LINE9-WIPE-081121	88.0%	86.0%	0
LINE10-WIPE-081121	94.2%	94.8%	0
LINE11-WIPE-081121	88.2%	92.8%	0
COMP1-WIPE-081121	109%	111%	0
COMP2-WIPE-081121	102%	101%	0

			LCS/MB LIMITS	QC LIMITS
(DCBP)	=	Decachlorobiphenyl	(30-160)	(30-160)
/(TCMX)	=	Tetrachlorometaxylene	(30-160)	(30-160)

Prep Method: SW3580A

Log Number Range: 08-31710 to 08-31722

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

LCS/LCSD

Lab Sample ID: LCS-112608

LIMS ID: 08-31710 Matrix: Wipe

Data Release Authorized:

Reported: 12/03/08

QC Report No: OB27-Landau Associates, Inc.

Project: BOEING THOMPSON

025173.070.072

Date Sampled: 11/21/08 Date Received: 11/21/08

Date Extracted LCS/LCSD: 11/26/08

Date Analyzed LCS: 12/02/08 13:03

LCSD: 12/02/08 13:20

Instrument/Analyst LCS: ECD5/JGR

LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample Amount LCS: 1.00 Wipe

Sample ID: LCS-112608

LCSD: 1.00 Wipe

Final Extract Volume LCS: 10 mL

LCSD: 10 mL

Dilution Factor LCS: 1.00 LCSD: 1.00

Silica Gel: No

Acid Cleanup: Yes

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.6	5.0	92.0%	4.4	5.0	88.0%	4.4%
Aroclor 1260	5.2	5.0	104%	5.2	5.0	104%	0.0%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	94.2%	94.5%
Tetrachlorometaxylene	94.5%	93.5%

Reported in Total μg RPD calculated using sample concentrations per SW846. Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Isaacson – Phase 2 025173.090

ARI Job: OK85

Dear Kathryn:

Enclosed, please find the original and revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted ten water samples, eighteen soil samples and trip blank in good condition on February 2, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM cPAHs, PCBs, NWTPH-HCID, and Total and Dissolved Metals, as requested on the COC.

Several LCS and LCSD percent recoveries were outside of the control limits both low and high for the soil and water SVOC analyses. No further corrective action was taken.

The SIM cPAHs method blank surrogate MNP is out of control low. The surrogate MNP is not associated with the cPAHs and no further corrective action was taken as all other QC is in control.

The total metals method blank contained zinc. All associated sample zinc concentrations were greater then five times the concentration found in the method blank and no further corrective action was taken.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bøttem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/co

Enclosures

Seattle (Edmonds) (425) 778 ☐ Tacoma (253) 926-2493	3-0907		7/2/29
LANDAU Spokane (509) 327-9737 ASSOCIATES Portland (Tigard) (503) 443-60	010		Date 701
Associates [Chain-of-Cu	stody Record	Pageof
Project Name Boeing Book 690 F	Project No. 075173, 090	Testing Para	ameters Turnaround Time
Project Location/Event Tukwika Mas			Standard
Sampler's Name Elitabeth Role	Hark Benner		☐ Accelerated
Project Contact KANNYN HOVEL	/ VA 1.3 Attack decays		
Send Results To Kharbur K Hannel	son A Hollerman M		# / / / /
0'	No. of $\Lambda \mathcal{O}/\Lambda$	TO STATE	
2-7 202	me Matrix Containers		/ Observations/Comments
I-104-090C0Z 1 115			Allow water samples to settle, collect
PZ-1-090207 14	30	×××××	aliquot from clear portion
	50 V + XX	×××× k	NWTPH-Dx: ✓ run acid wash/silica gel cleanup
5P 5050PO-4-1-90I	5 5 1		run samples standardized to
IDP-1A-9-090000 95		×.	product
IDP-14-14-090000 100		X	Analyze for EPH if no specific
	35	X	product identified
	45		VOC/BTEX/VPH (soll):non-preserved
TDP-2-11-090002 100	25	×	preserved w/methanol
TDP-3-4-090coz 112			preserved w/sodium bisulfate
	30		Freese upon receipt
	35 70		Dissolved metal water samples field filtered
IDP-4-81-090202 17		<u> </u>	oper Notab: AS Cadium
51 505010-11-6-94T			U, W, tb, Hg, cine
IDP-5-4-090202 13			
IDP-5-8-090707- 1 135			
Special Shipment/Handling or Storage Requirements			Method of Shipment
Refinquished by Beceiv	/ed _v by ₁	Relinquished by	Received by
Skonature Signatur	m fayes	Signature	·
	Land Albert Co	Ü	Signature
Printed Name Printed	Name (Printed Name	Printed Name
Company Company Company	ny , and a second second second second second second second second second second second second second second se	Company	Company
Date Z	12108 Time 1635	Date Time	Date Time

•	Seattle (Edmond	6-2493							77 lag
LANDAU ASSOCIATES	☐ Spokane (509) 32☐ Portland (Tigard)☐		Chair	of Cu	ıotodı	v Doo	ء ما		Date 2/2/09 Page 2 of 2
				-of-Cu	<u>istoa</u>	y Kec	ora		
TDP: 6.8'00 TDP: 6.8'00 TDP-1A-GW TDP-3-GW	ent Tulmila Poole Po	I Phase I I Brunns Y Hending	Matrix Cont	o. of ainers	75 y y y y y y y y y y y y y y y y y y y	Te	sting Pa	rameters	Turnaround Time Standard Accelerated Accelerated Allow water samples to settle, collect aliquot from clear portion NWTPH-Dx: run acid wash/silica gel cleanup run samples standardized to product Analyze for EPH if no specific product identified VOC/BTEX/VPH (soll): non-preserved preserved w/methanol preserved w/sodium bisulfate Freese upon receipt Dissolved metal water samples field filtered Other
Special Shipment/Ha	ndling		L					Method	Lof
or Storage Requirem	ents							Shipme	
Relinguished by		Received by	Hayes		Relinqui	shed by			Received by
	ΩI_{α}	Signature	1/1/		Signature				Signature

WHITE COPY - Project File

1625

Company

Date

YELLOW COPY - Laboratory

1628

Printed Name

Company

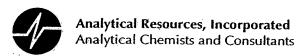
Date

PINK COPY - Client Representative

Time

Signature

Company


Date

Printed Name

Time

Seattle (Edmonds) ☐ Tacoma (253) 926-2 ☐ Spokane (509) 327-9	493	en en en en en en en en en en en en en e			Date 2/2/09
LANDAU Spokane (509) 327-3 ASSOCIATES: Portland (Tigard) (50	03) 443-6010	الأجراب الساسط	er i e		Page of 3
	C	hain-of-Cu	stody Rec	ord	Vin Statement and the statemen
Project Name Boung Books	Project No.	35173.090	Te	esting Parameter	Total and the same
Project Location/Event TUCWIA	Mar W_		16/11		Standard Accelerated
Sampler's Name CUTAOUN 10	de Hove b	MUNICK MA		*\T&/ /\$# .	
Project Contact KANNYN HOVE	du Katie	Lewis 1191		i√\$6 /\$€ /	ff
Send Results To R HOVELIN, K W	Mincheon A	Holoson M		7.117 / 1 1/ / .	1/201/10/09
Sample I.D. Date	Time Matr	No. of XXX			Observations/Comments
12-7-090202 000	Proceedings of Michigan Agency, and Philipping				Allow water samples to settle, collect
1-104-090C0Z	1130	1 2 ×	XXXX		all quot from clear portion
505070-1-57	1430	N X X	*XXXX		NWTPH-Dx:
I-1044-090505	1950 V		\times \times \times \times \times		K run acid wash/silica gel cleanup
IDP-1-4-070C02	925 S			X	run samples standardized toproduct
IDP-1A-9-090000	950 1			*	
1DP-14-1901	1000			$ \mathbf{x} $	Analyze for EPH if no specific product identified
IDS-2-31 040005	1035			X	
TDX-2-8: 0100C	11042			×	VOC/BTEX/VPH (soil):non-preserved
IPP-S-11-090005	1,055			X	preserved w/methanol
[Pr-3-4-90coz]	1/125				preserved w/sodlum bisulfate Preese upon receipt
1D7-3-8-040205	1130				
IDP-3-11-090202	1135				Dissolved metal water samples field filtered
20 0000 1	1270			\times	Other Natrup: As Cadjum
2050PO-18-P-90II	17730				1 1 1 1 1 19, 79, 2WE
	1235				
108-5-4-090202 1 108-5-8-090202 1	1350	 		X	22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Special Shipment/Handling or Storage Requirements				Methi Shipi	
Belinquished by	Received by Jan	1 U S	Relinquished by	n y na taonaista a ta ann an an ann an an Aireann an Aireann an Aireann an Aireann an Aireann an Aireann an Ai	Received by
Signature 7/1/2014 Son Co	Signature 1	L. in	Signature	c.	Signature
Printed Name	Printed Name	May =	Printed Name		Printed Name
Company _1-169.7	Gompany Gompany		Company		Company
Date 279 11625	Date 2/2/08	Time <u> 1035</u>	Date	Time	DateTime

Seattle (Edmonds). (425) 7 ☐ Tacoma (253) 926-2493 ☐ Spokane (509) 327-9737 ☐ LANDAU		addelog by "	Date 2/2/09
ASSOCIATES Portland (Tigard) (503) 443-	-6010 Chain-of-Cus		Page Z_of
Project Contact V Have No.	Project No. OCO LAP. 040 WE II UNNIVE Katie Lewis William Undickson, A Howay	resting Parameters	Turnaround Time Standard Accelerated
O	No, of Time Matrix Containers	19 J J J J J J J J J J J J J J J J J J J	Observations/Comments
	165 S 1 K		Allow water samples to settle, collect aliquot from clear portion
505070-8-0 901 1 505070-8-0 901 11 505070 WD-A1-807	202 X	X	NWTPH-Dx:run acid wash/silica gel clearuprun samples standardized toproduct
I SOUPO WA P. ROY	10 X 370 X 374 X		Analyze for EPH if no specific product identified
	430 X 5 70 X		VOC/BTEX/VPH (soil):non-preservedpreserved w/methanolpreserved w/sodium bisulfateFreese upon receipt:
			Other ** M2+Q15 = Ars. Col. Cr. 2/3/6
Special Shipment/Handling or Storage Requirements		Method Shipme	ont
Signature Signature Dado Signature	ceived by Hayes Hami Hayes Atture Dame Leujes	Relinquished by Signature	Received by Signature
	mpany at 212109 Time 1625	Printed Name Company	Printed Name Company
Date Time Dat	te <u>2/2/05</u> Time 1625	DateTime	Date

Cooler Receipt Form

ARI Client: BOXING ISACCSON COC No: Assigned ARI Job No:	Project Name: Delivered by: Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody s Were custody papers included with the cooler? Were custody papers properly filled out (ink, signe Record cooler temperature (recommended 2.0-6. Cooler Accepted by: Complete custody forms	YES NO YES NO O °C for chemistry 7.4 (1, 2) °C
Log-In Phase:	
	ES NO ES NO Apers? All Selection (attach preservation checklist) NA NO ES NO NA NO NA NO
Explain discrepancies or negative responses: Coc reads I Trip Blank, found in cooler. Pluised COC Si	but 2 Trip Blanks were
	Bu MIM Bu 2-3-00

Sample ID: PZ-7-090202 SAMPLE

Lab Sample ID: OK85A LIMS ID: 09-3269

QC Report No: OK85-The Boeing Company

Matrix: Water

Project: BOEING ISAACSON 025173.090

Data Release Authorized: Reported: 02/10/09

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 15:08 Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Dilution Factor: 1.00

108-95-2 Phenol 1.0 < 1.0 U 111-44-4 Bis-(2-Chloroethyl) Ether 1.0 < 1.0 U 95-57-8 2-Chlorophenol 1.0 < 1.0 U 541-73-1 1,3-Dichlorobenzene 1.0 < 1.0 U 106-46-7 1,4-Dichlorobenzene 1.0 < 1.0 U 100-51-6 Benzyl Alcohol 5.0 < 5.0 U 95-50-1 1,2-Dichlorobenzene 1.0 < 1.0 U 95-48-7 2-Methylphenol 1.0 < 1.0 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0 U 106-44-5 4-Methylphenol 1.0 < 1.0 U 621-64-7 N-Nitroso-Di-N-Propylamine 5.0 < 5.0 U 67-72-1 Hexachloroethane 1.0 < 1.0 U 98-95-3 Nitrobenzene 1.0 < 1.0 U 78-59-1 Isophorone 1.0 < 1.0 V	t
95-57-8 2-Chlorophenol 1.0 < 1.0	J
541-73-1 1,3-Dichlorobenzene 1.0 < 1.0	J
106-46-7 1,4-Dichlorobenzene 1.0 < 1.0	J
100-51-6 Benzyl Alcohol 5.0 < 5.0	J
95-50-1 1,2-Dichlorobenzene 1.0 < 1.0	J
95-48-7 2-Methylphenol 1.0 < 1.0	J
108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0 U	J
106-44-5 4-Methylphenol 1.0 < 1.0	J
106-44-5 4-Methylphenol 1.0 < 1.0	J
67-72-1 Hexachloroethane 1.0 < 1.0 U	J
98-95-3 Nitrobenzene 1.0 < 1.0 U	J
78-59-1 Isophorone 1.0 < 1.0 U	J
· · · · · · · · · · · · · · · · · · ·	J
00.75.5	J
88-75-5 2-Nitrophenol 5.0 < 5.0 U	J
105-67-9 2,4-Dimethylphenol 1.0 < 1.0 U	J
65-85-0 Benzoic Acid 10 < 10 U	J
111-91-1 bis(2-Chloroethoxy) Methane 1.0 < 1.0 U	J
120-83-2 2,4-Dichlorophenol 5.0 < 5.0 U	J
120-82-1 1,2,4-Trichlorobenzene 1.0 < 1.0 U	J
91-20-3 Naphthalene 1.0 < 1.0 U	J
106-47-8 4-Chloroaniline 5.0 < 5.0 U	J
87-68-3 Hexachlorobutadiene 1.0 < 1.0 U	J
59-50-7 4-Chloro-3-methylphenol 5.0 < 5.0 U	J
91-57-6 2-Methylnaphthalene 1.0 < 1.0 U	J
77-47-4 Hexachlorocyclopentadiene 5.0 < 5.0 U	J
88-06-2 2,4,6-Trichlorophenol 5.0 < 5.0 U	J
95-95-4 2,4,5-Trichlorophenol 5.0 < 5.0 U	J
91-58-7 2-Chloronaphthalene 1.0 < 1.0 U	J
88-74-4 2-Nitroaniline 5.0 < 5.0 U	J
131-11-3 Dimethylphthalate 1.0 < 1.0 U	J
208-96-8 Acenaphthylene 1.0 < 1.0 U	J
99-09-2 3-Nitroaniline 5.0 < 5.0 U	J
83-32-9 Acenaphthene 1.0 < 1.0 U	J
51-28-5 2,4-Dinitrophenol 10 < 10 U	J
100-02-7 4-Nitrophenol 5.0 < 5.0 U	J
132-64-9 Dibenzofuran 1.0 < 1.0 U	ſ
606-20-2 2,6-Dinitrotoluene 5.0 < 5.0 U	ſ
121-14-2 2,4-Dinitrotoluene 5.0 < 5.0 U	ſ
84-66-2 Diethylphthalate 1.0 < 1.0 U	ſ

Page 2 of 2

Sample ID: PZ-7-090202

SAMPLE

Lab Sample ID: OK85A

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3269

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 15:08

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	70.8%	2-Fluorobiphenyl	72.4%
d14-p-Terphenyl	84.4%	d4-1,2-Dichlorobenzene	67.2%
d5-Phenol	37.9%	2-Fluorophenol	51.7%
2 4 6-Tribromophenol	74.7%	d4-2-Chlorophenol	72.3%

Page 1 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Reported: 02/10/09

Project: BOEING ISAACSON 025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 15:43 Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

QC Report No: OK85-The Boeing Company

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-4 7 -4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3270

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02,	06/09	15:43
--------------------	-------	-------

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	68.4%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	75.2%	d4-1,2-Dichlorobenzene	62.8%
d5-Phenol 2,4,6-Tribromophenol	35.7%	2-Fluorophenol	49.9%
	76.5%	d4-2-Chlorophenol	68.5%

Page 1 of 2

Lab Sample ID: OK85C

LIMS ID: 09-3271 Matrix: Water

Data Release Authorized:

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:17 Instrument/Analyst: NT4/LJR

Sample ID: PZ-1-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75 - 5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3271

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 16:17

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	70.0%	2-Fluorobiphenyl	73.6%
d14-p-Terphenyl	87.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	37.1%	2-Fluorophenol	51.2%
2,4,6-Tribromophenol	80.5%	d4-2-Chlorophenol	72.0%

Page 1 of 2

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: /

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:52 Instrument/Analyst: NT4/LJR

Sample ID: I-1044-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95 - 3	Nitrobenzene	1.0	< 1.0 U
78-59 - 1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
1 31-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
	· · · · · · · · · · · · · · · · · · ·		

Page 2 of 2

Matrix: Water

Lab Sample ID: OK85D

LIMS ID: 09-3272

Sample ID: I-1044-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 16:52

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
1 1 7-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	76.8%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	35.7%	2-Fluorophenol	49.3%
2.4.6-Tribromophenol	73.1%	d4-2-Chlorophenol	67 7%

Sample ID: MB-020409 METHOD BLANK

Lab Sample ID: MB-020409

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized:

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 12:51 Instrument/Analyst: NT4/LJR

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U.
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-020409

METHOD BLANK

Lab Sample ID: MB-020409

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3269

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 12:51

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	69.2% 88.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	71.2% 69.6%
d5-Phenol	41.9%	2-Fluorophenol	56.0%
2,4,6-Tribromophenol	73.6%	d4-2-Chlorophenol	73.3%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON Matrix: Water

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-020409	69.2%	71.2%	88.8%	69.6%	41.9%	56.0%	73.6%	73.3%	0
LCS-020409	70.8%	71.2%	83.6%	74.0%	42.9%	58.9%	75.2%	77.6%	0
LCSD-020409	73.6%	74.8%	86.0%	75.2%	43.5%	60.0%	80.0%	79.5%	0
PZ-7-090202	70.8%	72.4%	84.4%	67.2%	37.9%	51.7%	74.7%	72.3%	0
I-104-090202	68.4%	70.0%	75.2%	62.8%	35.7%	49.9%	76.5%	68.5%	0
PZ-1-090202	70.0%	73.6%	87.2%	65.6%	37.1%	51.2%	80.5%	72.0%	0
I-1044-090202	66.0%	68.0%	76.8%	62.0%	35.7%	49.3%	73.1%	67.7%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
(TPH)	=	d14-p-Terphenyl	(48-120)	(46-119)
(DCB)	=	d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C Log Number Range: 09-3269 to 09-3272

Data Release Authorized://

Page 1 of 2

Matrix: Water

Reported: 02/10/09

Sample ID: LCS-020409 LCS/LCSD

Lab Sample ID: LCS-020409 QC Report No: OK85-The Boeing Company LIMS ID: 09-3269

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/04/09 Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 02/06/09 13:25 LCSD: 02/06/09 14:00 LCSD: 0.50 mL

Instrument/Analyst LCS: NT4/LJR Dilution Factor LCS: 1.00 LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	10.4	25.0	41.6%	10.8	25.0	43.2%	3.8%
Bis-(2-Chloroethyl) Ether	20.3	25.0	81.2%	21.6	25.0	86.4%	6.2%
2-Chlorophenol	20.0	25.0	80.0%	21.0	25.0	84.0%	4.9%
1,3-Dichlorobenzene	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
1,4-Dichlorobenzene	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
Benzyl Alcohol	26.8	50.0	53.6%	28.7	50.0	57.4%	6.8%
1,2-Dichlorobenzene	20.0	25.0	80.0%	21.5	25.0	86.0%	7.2%
2-Methylphenol	19.5	25.0	78.0%	20.7	25.0	82.8%	6.0%
2,2'-Oxybis(1-Chloropropane)16.5	25.0	66.0%	17.4	25.0	69.6%	5.3%
4-Methylphenol	38.6	50.0	77.2%	40.9	50.0	81.8%	5.8%
N-Nitroso-Di-N-Propylamine	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
Hexachloroethane	19.7	25.0	78.8%	20.9	25.0	83.6%	5.9%
Nitrobenzene	18.6	25.0	74.4%	20.1	25.0	80.4%	7.8%
Isophorone	20.6	25.0	82.4%	22.1	25.0	88.4%	7.0%
2-Nitrophenol	19.7	25.0	78.8%	21.6	25.0	86.4%	9.2%
2,4-Dimethylphenol	17.6	25.0	70.4%	18.8	25.0	75.2%	6.6%
Benzoic Acid	30.9	75.0	41.2%	33.9	75.0	45.2%	9.3%
bis(2-Chloroethoxy) Methane		25.0	80.0%	21.9	25.0	87.6%	9.1%
2,4-Dichlorophenol	20.2	25.0	80.8%	22.0	25.0	88.0%	8.5%
1,2,4-Trichlorobenzene	18.8	25.0	75.2%	20.3	25.0	81.2%	7.7%
Naphthalene	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
4-Chloroaniline	3.8	60.0	6.3%	4.2	60.0	7.0%	10.6%
Hexachlorobutadiene	18.9	25.0	75.6%	20.3	25.0	81.2%	7.1%
4-Chloro-3-methylphenol	20.3	25.0	81.2%	21.8	25.0	87.2%	7.1%
2-Methylnaphthalene	19.8	25.0	79.2%	21.2	25.0	84.8%	6.8%
Hexachlorocyclopentadiene	78.8	75.0	105%	84.3	75.0	112%	6.7%
2,4,6-Trichlorophenol	20.2	25.0	80.8%	21.6	25.0	86.4%	6.7%
2,4,5-Trichlorophenol	20.4	25.0	81.6%	21.0	25.0	84.0%	2.9%
2-Chloronaphthalene	20.4	25.0	81.6%	21.8	25.0	87.2%	6.6%
2-Nitroaniline	19.3	25.0	77.2%	20.6	25.0	82.4%	6.5%
Dimethylphthalate	21.0	25.0	84.0%	22.5	25.0	90.0%	6.9%
Acenaphthylene	20.9	25.0	83.6%	22.6	25.0	90.4%	7.8%
3-Nitroaniline	40.3	64.0	63.0%	42.7	64.0	66.7%	5.8%
Acenaphthene	20.3	25.0	81.2%	21.9	25.0	87.6%	7.6%
2,4-Dinitrophenol	64.5	75.0	86.0%	71.5	75.0	95.3%	10.3%
4-Nitrophenol	10.6	25.0	42.4%	11.5	25.0	46.0%	8.1%
Dibenzofuran	20.5	25.0	82.0%	22.0	25.0	88.0%	7.1%
2,6-Dinitrotoluene	20.6	25.0	82.4%	21.5	25.0	86.0%	4.3%
2,4-Dinitrotoluene	20.4	25.0	81.6%	21.9	25.0	87.6%	7.1%
Diethylphthalate	21.0	25.0	84.0%	22.3	25.0	89.2%	6.0%
4-Chlorophenyl-phenylether	19.9	25.0	79.6%	21.3	25.0	85.2%	6.8%
Fluorene	21.1	25.0	84.4%	22.4	25.0	89.6%	6.0%
4-Nitroaniline	19.1	25.0	76.4%	20.6	25.0	82.4%	7.6%
4,6-Dinitro-2-Methylphenol	67.0	75.0	89.3%	72.6	75.0	96.8%	7.0% 8.0%
N-Nitrosodiphenylamine	21.3	25.0	85.2%	22.8	25.0	96.85 91.28	6.8%

Page 2 of 2

Sample ID: LCS-020409

LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269

Matrix: Water

Date Analyzed: 02/06/09 13:25

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

3	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	псэ	Added-1C5	Recovery	1000	naded Lebb	necovery	
4-Bromophenyl-phenylether	20.4	25.0	81.6%	21.6	25.0	86.4%	5.7%
Hexachlorobenzene	21.0	25.0	84.0%	22.4	25.0	89.6%	6.5%
Pentachlorophenol	20.8	25.0	83.2%	21.6	25.0	86.4%	3.8%
Phenanthrene	21.8	28.0	77.9%	23.2	28.0	82.9%	6.2%
Carbazole	21.6	25.0	86.4%	23.2	25.0	92.8%	7.1%
Anthracene	21.7	25.0	86.8%	22.9	25.0	91.6%	5.4%
Di-n-Butylphthalate	21.6	25.0	86.4%	23.1	25.0	92.4%	6.7%
Fluoranthene	20.3	25.0	81.2%	21.8	25.0	87.2%	7.1%
Pyrene	24.9	25.0	99.6%	25.7	25.0	103%	3.2%
Butylbenzylphthalate	23.3	25.0	93.2%	25.2	25.0	101%	7.8%
3,3'-Dichlorobenzidine	53.5	64.0	83.6%	59.1	64.0	92.3%	9.9%
Benzo(a)anthracene	21.7	25.0	86.8%	23.0	25.0	92.0%	5.8%
bis(2-Ethylhexyl)phthalate	21.8	25.0	87.2%	23.4	25.0	93.6%	7.1%
Chrysene	21.9	28.0	78.2%	23.6	28.0	84.3%	7.5%
Di-n-Octyl phthalate	21.2	25.0	84.8%	23.2	25.0	92.8%	9.0%
Benzo(b)fluoranthene	20.8	25.0	83.2%	21.4	25.0	85.6%	2.8%
Benzo(k)fluoranthene	22.0	28.0	78.6%	24.2	28.0	86.4%	9.5%
Benzo(a)pyrene	18.7	25.0	74.8%	20.1	25.0	80.4%	7.2%
Indeno(1,2,3-cd)pyrene	27.8	25.0	111%	29.5	25.0	118%	5.9%
Dibenz(a,h)anthracene	27.5	25.0	110%	29.3	25.0	117%	6.3%
Benzo(q,h,i)perylene	27.5	25.0	110%	29.0	25.0	116%	5.3%
1-Methylnaphthalene	21.1	25.0	84.4%	22.8	25.0	91.2%	7.7%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	70.8%	73.6%
2-Fluorobiphenyl	71.2%	74.8%
d14-p-Terphenyl	83.6%	86.0%
d4-1,2-Dichlorobenzene	74.0%	75.2%
d5-Phenol	42.9%	43.5%
2-Fluorophenol	58.9%	60.0%
2,4,6-Tribromophenol	75.2%	80.0%
d4-2-Chlorophenol	77.6%	79.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: OK85AB

LIMS ID: 09-3296 Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/06/09 19:41 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-6-8'-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 8.18 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.0%

	CAS Number	Analyte	RL	Result
	108-95-2	Phenol	61	< 61 U
	111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
	95-57-8	2-Chlorophenol	61	< 61 U
	541-73-1	1,3-Dichlorobenzene	61	< 61 U
	106-46-7	1,4-Dichlorobenzene	61	< 61 U
	100-51-6	Benzyl Alcohol	61	< 61 U
	95-50-1	1,2-Dichlorobenzene	61	< 61 U
	95-48-7	2-Methylphenol	61	< 61 U
	108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
	106-44-5	4-Methylphenol	61	< 61 U
	621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
	67-72-1	Hexachloroethane	61	< 61 U
	98-95-3	Nitrobenzene	61	< 61 Ū
	78-59-1	Isophorone	61	< 61 U
	88-75-5	2-Nitrophenol	61	< 61 U
	105-67-9	2,4-Dimethylphenol	61	< 61 U
	65-85-0	Benzoic Acid	610	< 610 U
	111-91- 1	bis(2-Chloroethoxy) Methane	61	< 61 U
	120-83-2	2,4-Dichlorophenol	310	< 310 U
	120-82-1	1,2,4-Trichlorobenzene	61	< 61 U
	91-20-3	Naphthalene	61	< 61 U
	106-47-8	4-Chloroaniline	310	< 310 U
	87-68-3	Hexachlorobutadiene	61	< 61 U
	59-50-7	4-Chloro-3-methylphenol	310	< 310 U
	91-57-6	2-Methylnaphthalene	61	< 61 U
	77-47-4	Hexachlorocyclopentadiene	310	< 310 U
	88-06-2	2,4,6-Trichlorophenol	310	< 310 U
	95-95-4	2,4,5-Trichlorophenol	310	< 310 U
	91-58-7	2-Chloronaphthalene	61	< 61 U
	88-74-4	2-Nitroaniline	310	< 310 U
	131-11-3	Dimethylphthalate	61	< 61 U
	208-96-8	Acenaphthylene	61	< 61 U
	99-09-2	3-Nitroaniline	310	< 310 U
	83-32-9	Acenaphthene	61	< 61 U
	51-28-5	2,4-Dinitrophenol	610	< 610 U
	100-02-7	4-Nitrophenol	310	< 310 U
	132-64-9	Dibenzofuran	61	< 61 U
	606-20-2	2,6-Dinitrotoluene	310	< 310 U
-	121-14-2	2,4-Dinitrotoluene	310	< 310 U

ANALYTICAL RESOURCES \ INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-8'-090202

SAMPLE

Lab Sample ID: OK85AB

LIMS ID: 09-3296 Matrix: Soil

Date Analyzed: 02/06/09 19:41

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U
			- 52 0

Reported in µg/kg (ppb)

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	72.0%
d14-p-Terphenyl	81.6%	d4-1,2-Dichlorobenzene	88.4%
d5-Phenol	62.4%	2-Fluorophenol	69.3%
2,4,6-Tribromophenol	93.6%	d4-2-Chlorophenol	74.4%

Sample ID: IDP-6-12'-090202 SAMPLE

Lab Sample ID: OK85AC

LIMS ID: 09-3297 Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09
Date Analyzed: 02/06/09 20:16
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 7.66 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	< 65 U
111-44-4	Bis-(2-Chloroethyl) Ether	65	< 65 U
95-57-8	2-Chlorophenol	65	< 65 U
541-73-1	1,3-Dichlorobenzene	65	< 65 U
106-46-7	1,4-Dichlorobenzene	65	< 65 U
100-51-6	Benzyl Alcohol	65	< 65 U
95-50-1	1,2-Dichlorobenzene	65	< 65 U
95-48-7	2-Methylphenol	65	< 65 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	< 65 U
106-44-5	4-Methylphenol	65	< 65 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	65	< 65 U
98-95-3	Nitrobenzene	65	< 65 U
78-59-1	Isophorone	65	< 65 U
88-75-5	2-Nitrophenol	65	< 65 U
105-67-9	2,4-Dimethylphenol	65	< 65 U
65-85-0	Benzoic Acid	650	< 650 U
111-91-1	bis(2-Chloroethoxy) Methane	65	< 65 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	65	< 65 U
91-20-3	Naphthalene	65	< 65 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	65	< 65 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	65	< 65 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	65	< 65 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	65	< 65 U
208-96-8	Acenaphthylene	65	< 65 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	65	< 65 U
51-28-5	2,4-Dinitrophenol	650	< 650 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	65	< 65 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U
		220	< 220 O

ANALYTICAL RESOURCES \ INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 20:16

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	< 65 Ŭ
7005-72-3	4-Chlorophenyl-phenylether	65	< 65 Ü
86-73-7	Fluorene	65	< 65 Ŭ
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	650	< 650 U
86-30-6	N-Nitrosodiphenylamine	65	< 65 U
101-55-3	4-Bromophenyl-phenylether	65	< 65 U
118-74-1	Hexachlorobenzene	65	< 65 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	65	< 65 U
86-74-8	Carbazole	65	< 65 Ü
120-12-7	Anthracene	65	< 65 U
84-74-2	Di-n-Butylphthalate	65	< 65 U
206-44-0	Fluoranthene	65	< 65 U
129-00-0	Pyrene	65	< 65 U
85-68-7	Butylbenzylphthalate	65	< 65 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	65	< 65 U
117-81-7	bis(2-Ethylhexyl)phthalate	65	< 65 U
218-01-9	Chrysene	65	< 65 U
117-84-0	Di-n-Octyl phthalate	65	< 65 U
205-99-2	Benzo(b) fluoranthene	65	< 65 U
207-08-9	Benzo(k)fluoranthene	65	
50-32-8	Benzo(a) pyrene	65	< 65 U
193-39-5	Indeno(1,2,3-cd)pyrene	65	< 65 U
53-70-3	Dibenz(a,h)anthracene		< 65 Ŭ
191-24-2	Benzo(g,h,i)perylene	65 65	< 65 Ŭ
90-12-0	1-Methylnaphthalene	65 65	< 65 Ŭ
	o\ inabitcharene	65	< 65 Ŭ

Reported in µg/kg (ppb)

d5-Nitrobenzene	76.4%	2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	78.0%	d4-1,2-Dichlorobenzene	
d5-Phenol	55.7%	_	86.8%
2,4,6-Tribromophenol		2-Fluorophenol	67.2%
2,1,0 111DIOMODITETIOI	88.8%	d4-2-Chlorophenol	72.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: IDP-6-12'-090202 MATRIX SPIKE

Lab Sample ID: OK85AC

Date Extracted: 02/05/09

LIMS ID: 09-3297 Matrix: Soil

GPC Cleanup: No

Data Release Authorized:

Date Analyzed: 02/06/09 20:50

Instrument/Analyst: NT6/LJR

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 7.71 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	
111-44-4	Bis-(2-Chloroethyl) Ether	65	
95-57-8	2-Chlorophenol	65	-
541-73-1	1,3-Dichlorobenzene	65	
106-46-7	1,4-Dichlorobenzene	65	
100-51-6	Benzyl Alcohol	65	
95-50 -1	1,2-Dichlorobenzene	65	
95-48-7	2-Methylphenol	65	
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	
106-44-5	4-Methylphenol	65	
621 - 64-7	N-Nitroso-Di-N-Propylamine	320	
67-72-1	Hexachloroethane	65	
98-95-3	Nitrobenzene	65	
78-59-1	Isophorone	65	
88-75-5	2-Nitrophenol	65	
105-67-9	2,4-Dimethylphenol	65	
65-85-0	Benzoic Acid	650	
111-91-1	bis(2-Chloroethoxy) Methane	65	
120-83-2	2,4-Dichlorophenol	320	
120-82-1	1,2,4-Trichlorobenzene	65	
91-20-3	Naphthalene	65	
106-47-8	4-Chloroaniline	320	
87-68 - 3	Hexachlorobutadiene	65	
59-50-7	4-Chloro-3-methylphenol	320	
91-57-6	2-Methylnaphthalene	65	
77-47-4	Hexachlorocyclopentadiene	320	
38-06-2	2,4,6-Trichlorophenol	320	
95-95-4	2,4,5-Trichlorophenol	320	
91-58-7	2-Chloronaphthalene	65	
38-74 - 4	2-Nitroaniline	320	
L31-11-3	Dimethylphthalate	65	
208-96-8	Acenaphthylene	65	
99-09-2	3-Nitroaniline	320	
33-32-9	Acenaphthene		
51-28-5	2,4-Dinitrophenol	65 65	
L00-02-7	4-Nitrophenol	650	
L32-64-9	Dibenzofuran	320	
506-20-2	2,6-Dinitrotoluene	65	
L21-14-2		320	
77T-74-7	2,4-Dinitrotoluene	320	

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: IDP-6-12'-090202 MATRIX SPIKE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 20:50

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	
7005-72-3	4-Chlorophenyl-phenylether	65	
86-73-7	Fluorene	65	
100-01-6	4-Nitroaniline	320	
534-52-1	4,6-Dinitro-2-Methylphenol	650	
86-30-6	N-Nitrosodiphenylamine	65	=
101-55-3	4-Bromophenyl-phenylether	65	
118-74-1	Hexachlorobenzene	65	
87-86-5	Pentachlorophenol	320	
85-01-8	Phenanthrene	65	
86-74-8	Carbazole	65	
120-12-7	Anthracene	65	
84-74-2	Di-n-Butylphthalate	65	
206-44-0	Fluoranthene	65	
129-00-0	Pyrene	65	
85-68-7	Butylbenzylphthalate	65 65	
91-94-1	3,3'-Dichlorobenzidine	320	- - -
56-55-3	Benzo(a) anthracene	65	
117-81-7	bis(2-Ethylhexyl)phthalate	65	
218-01-9	Chrysene	65	
117-84-0	Di-n-Octyl phthalate	65	
205-99-2	Benzo(b) fluoranthene		
207-08-9	Benzo(k) fluoranthene	65 65	
50-32-8	Benzo(a) pyrene	65	
193-39-5	Indepo(1 2 2 ad) pressure	65	
53-70-3	Indeno(1,2,3-cd)pyrene	65	
191-24-2	Dibenz(a,h)anthracene	65	
90-12-0	Benzo(g,h,i)perylene	65	
JU 12-U	1-Methylnaphthalene	65	

Reported in µg/kg (ppb)

d5-Nitrobenzene	76.4%	2-Fluorobiphenyl	79.6%
d14-p-Terphenyl	83.6%	d4-1,2-Dichlorobenzene	86.0%
d5-Phenol	67.7%	2-Fluorophenol	67.7%
2,4,6-Tribromophenol	94.9%	d4-2-Chlorophenol	67.7% 74.9%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Data Release Authorized: WW

Page 1 of 2

Matrix: Soil

LIMS ID: 09-3297

Reported: 02/11/09

Sample ID: IDP-6-12'-090202 MATRIX SPIKE DUPLICATE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/05/09

Lab Sample ID: OK85AC

Date Analyzed: 02/06/09 21:25 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample Amount: 7.71 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

		Result
Phenol	65	
Bis-(2-Chloroethyl) Ether	65	
2-Chlorophenol	65	
1,3-Dichlorobenzene	65	
1,4-Dichlorobenzene	65	
Benzyl Alcohol	65	
1,2-Dichlorobenzene	65	
2-Methylphenol	65	
2,2'-Oxybis(1-Chloropropane)	65	
	320	
Hexachloroethane		
Nitrobenzene		
Isophorone		
2-Nitrophenol		
-		
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
_		
-		
· · · · · · · · · · · · · · · · · · ·		
	Bis-(2-Chloroethyl) Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-Di-N-Propylamine Hexachloroethane Nitrobenzene	Bis-(2-Chloroethyl) Ether 65 2-Chlorophenol 65 1,3-Dichlorobenzene 65 1,4-Dichlorobenzene 65 Benzyl Alcohol 65 1,2-Dichlorobenzene 65 2-Methylphenol 65 2,2'-Oxybis(1-Chloropropane) 65 4-Methylphenol 65 N-Nitroso-Di-N-Propylamine 320 Hexachloroethane 65 Nitrobenzene 65 Isophorone 65 2-Nitrophenol 65 2,4-Dimethylphenol 65 2,4-Dimethylphenol 320 2,4-Dichlorophenol 320 1,2,4-Trichlorophenol 320 1,2,4-Trichlorophenol 320 2-Methylnaphthalene 65 4-Chloro-3-methylphenol 320 2-Methylnaphthalene 65 Hexachlorocyclopentadiene 320 2,4,6-Trichlorophenol 320 2,4,5-Trichlorophenol 320 2-Chloronaphthalene 65 2,Nitroaniline 320 <

ANALYTICAL RESOURCES \ INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202

MATRIX SPIKE DUPLICATE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 21:25

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	
7005-72-3	4-Chlorophenyl-phenylether	65	
86-73-7	Fluorene	65	
100-01-6	4-Nitroaniline	320	
534-52-1	4,6-Dinitro-2-Methylphenol	650	
86-30-6	N-Nitrosodiphenylamine	65	
101-55-3	4-Bromophenyl-phenylether	65	
118-74-1	Hexachlorobenzene	65	
87-86-5	Pentachlorophenol	320	
85-01-8	Phenanthrene	65	
86-74-8	Carbazole	65	
120-12-7	Anthracene	65	
84-74-2	Di-n-Butylphthalate	65	
206-44-0	Fluoranthene	65	
129-00-0	Pyrene	65	
85-68-7	Butylbenzylphthalate	65	
91-94-1	3,3'-Dichlorobenzidine	320	
56-55-3	Benzo(a)anthracene	65	
117-81-7	bis(2-Ethylhexyl)phthalate	65	
218-01-9	Chrysene	65	
117-84-0	Di-n-Octyl phthalate	65	
205-99-2	Benzo (b) fluoranthene	65	
207-08-9	Benzo(k)fluoranthene	65	
50-32-8	Benzo(a) pyrene	65	
193-39-5	Indeno(1,2,3-cd)pyrene	65	
53-70-3	Dibenz (a, h) anthracene	65	
191-24-2	Benzo(g,h,i)perylene	65	
90-12-0	1-Methylnaphthalene	65	

Reported in µg/kg (ppb)

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	77.2%	d4-1,2-Dichlorobenzene	73.2%
d5-Phenol	60.5%	2-Fluorophenol	59.5%
2,4,6-Tribromophenol	87.7%	d4-2-Chlorophenol	66.9%

Page 1 of 2

Lab Sample ID: MB-020509

LIMS ID: 09-3297 Matrix: Soil

Data Release Authorized: WW

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/06/09 13:22 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: MB-020509 METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2 Sample ID: MB-020509 METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 13:22

117-81-7

218-01-9

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

90-12-0

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

67

67

67

67

67

67

67

67

67

67

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	
534-52-1	4,6-Dinitro-2-Methylphenol	530 670	< 330 U
86-30-6	N-Nitrosodiphenylamine	-	< 670 U
101-55-3		67 67	< 67 U
118-74-1	4-Bromophenyl-phenylether	67	< 67 U
	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a) anthracene	67	< 67 U

Reported in µg/kg (ppb)

bis(2-Ethylhexyl)phthalate

Di-n-Octyl phthalate

Benzo(b) fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

1-Methylnaphthalene

Benzo(a)pyrene

Chrysene

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	86.8%
d5-Phenol	74.1%	2-Fluorophenol	72.3%
2,4,6-Tribromophenol	80.5%	d4-2-Chlorophenol	78.4%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
IDP-6-8'-090202 MB-020509 LCS-020509 LCSD-020509 IDP-6-12'-090202 IDP-6-12'-090202 MS IDP-6-12'-090202 MSD	77.6% 77.6% 76.0% 75.6% 76.4% 76.4% 66.0%	72.0% 76.4% 78.0% 78.4% 68.8% 79.6% 72.8%	81.6% 87.6% 91.2% 90.4% 78.0% 83.6% 77.2%	88.4% 86.8% 86.0% 86.4% 86.8% 86.0% 73.2%	62.4% 74.1% 73.9% 73.6% 55.7% 67.7% 60.5%	69.3% 72.3% 73.9% 72.8% 67.2% 67.7% 59.5%	93.6% 80.5% 88.0% 88.3% 88.8% 94.9% 87.7%	74.4% 78.4% 77.3% 76.8% 72.5% 74.9% 66.9%	0 0 0 0 0 0

			LCS/MB LIMITS	QC LIMITS
		d5-Nitrobenzene	(30-160)	(30-160)
		2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	=	d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
		d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
		2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)
			(30 100)	(20-100)

Prep Method: SW3546

Log Number Range: 09-3296 to 09-3297

Page 1 of 2

Sample ID: LCS-020509 LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/05/09

Date Analyzed LCS: 02/06/09 13:56

LCSD: 02/06/09 14:31

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: NO

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	1310	1670	78.4%	1330	1670	79.6%	1.5%
Bis-(2-Chloroethyl) Ether	1360	1670	81.4%	1380	1670	82.6%	1.5%
2-Chlorophenol	1440	1670	86.2%	1460	1670	87.4%	1.4%
1,3-Dichlorobenzene	1440	1670	86.2%	1480	1670	88.6%	2.7%
1,4-Dichlorobenzene	1450	1670	86.8%	1460	1670	87.4%	0.7%
Benzyl Alcohol	2250	3330	67.6%	2310	3330	69.4%	2.6%
1,2-Dichlorobenzene	1440	1670	86.2%	1470	1670	88.0%	2.1%
2-Methylphenol	1380	1670	82.6%	1380	1670	82.6%	0.0%
2,2'-Oxybis(1-Chloropropane)1400	1670	83.8%	1430	1670	85.6%	2.1%
4-Methylphenol	2820	3330	84.7%	2840	3330	85.3%	
N-Nitroso-Di-N-Propylamine	1430	1670	85.6%	1450	1670	86.8%	0.7% 1.4%
Hexachloroethane	1400	1670	83.8%	1430	1670	85.6%	
Nitrobenzene	1360	1670	81.4%	1370	1670	82.0%	2.1% 0.7%
Isophorone	1430	1670	85.6%	1450	1670	86.8%	0.78 1.4%
2-Nitrophenol	1590	1670	95.2%	1610	1670	96.4%	
2,4-Dimethylphenol	1330	1670	79.6%	1340	1670	90.4° 80.2%	1.2%
Benzoic Acid	1590	5000	31.8%	1910	5000	38.2%	0.7% 18.3%
bis(2-Chloroethoxy) Methane	1420	1670	85.0%	1440	1670	86.2%	
2,4-Dichlorophenol	1510	1670	90.4%	1540	1670	92.2%	1.4%
1,2,4-Trichlorobenzene	1460	1670	87.4%	1520	1670	91.0%	2.0%
Naphthalene	1520	1670	91.0%	1550	1670	92.8%	4.0%
4-Chloroaniline	3270	4000	81.8%	3030	4000	75.8%	2.0%
Hexachlorobutadiene	1500	1670	89.8%	1560	1670	93.4%	7.6%
4-Chloro-3-methylphenol	1450	1670	86.8%	1510	1670	90.4%	3.9%
2-Methylnaphthalene	1510	1670	90.4%	1530	1670	91.6%	4.1%
Hexachlorocyclopentadiene	7380	5000	148%	7540	5000	91.66 151%	1.3%
2,4,6-Trichlorophenol	1620	1670	97.0%	1610	1670	96.4%	2.1%
2,4,5-Trichlorophenol	1580	1670	94.6%	1670	1670	96.45 100%	0.6%
2-Chloronaphthalene	1760	1670	105%	1770	1670	106%	5.5%
2-Nitroaniline	1560	1670	93.4%	1600	1670		0.6%
Dimethylphthalate	1520	1670	91.0%	1540	1670	95.8%	2.5%
Acenaphthylene	1490	1670	89.2%	1500	1670	92.2%	1.3%
3-Nitroaniline	4070	4270	95.3%	3860	4270	89.8%	0.7%
Acenaphthene	1500	1670	89.8%	1510	1670	90.4%	5.3%
			-5.00	1310	1070	90.4%	0.7%

Page 2 of 2 Sample ID: LCSD-020509

LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3297 Matrix: Soil

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed LCS: 02/06/09 13:56

LCSD: 02/06/09 14:31

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	5790	5000	116%	6230	5000	125%	7.3%
4-Nitrophenol	1670	1670	100%	1610	1670	96.4%	3.7%
Dibenzofuran	1540	1670	92.2%	1540	1670	92.2%	0.0왕
2,6-Dinitrotoluene	1680	1670	101%	1690	1670	101%	0.6%
2,4-Dinitrotoluene	1700	1670	102%	1740	1670	104%	2.3%
Diethylphthalate	1550	1670	92.8%	1580	1670	94.6%	1.9%
4-Chlorophenyl-phenylether	1620	1670	97.0%	1640	1670	98.2%	1.2%
Fluorene	1620	1670	97.0%	1620	1670	97.0%	0.0%
1-Nitroaniline	1620	1670	97.0%	1640	1670	98.2%	1.2%
1,6-Dinitro-2-Methylphenol	6990	5000	140%	7150	5000	143%	2.3%
N-Nitrosodiphenylamine	1610	1670	96.4%	1620	1670	97.0%	0.6%
1-Bromophenyl-phenylether	1600	1670	95.8%	1610	1670	96.4%	0.6%
Hexachlorobenzene	1580	1670	94.6%	1560	1670	93.4%	1.3%
Pentachlorophenol	1000	1670	59.9%	1010	1670	60.5%	1.0%
Phenanthrene	1640	1670	98.2%	1660	1670	99.4%	1.2%
Carbazole	1710	1670	102%	1710	1670	102%	0.0%
Anthracene	1660	1670	99.4%	1660	1670	99.4%	0.0%
Di-n-Butylphthalate	1790	1670	107%	1810	1670	108%	1.1%
Fluoranthene	1820	1670	109%	1850	1670	111%	1.6%
Pyrene	1670	1670	100%	1680	1670	101%	0.6%
Butylbenzylphthalate	1840	1670	110%	1840	1670	110%	0.0%
3,3'-Dichlorobenzidine	4370	4270	102%	4210	4270	98.6%	3.7%
Benzo(a)anthracene	1640	1670	98.2%	1630	1670	97.6%	0.6%
ois(2-Ethylhexyl)phthalate	1850	1670	111%	1880	1670	113%	1.6%
Chrysene	1480	1670	88.6%	1490	1670	89.2%	0.7%
Di-n-Octyl phthalate	1620	1670	97.0%	1610	1670	96.4%	0.6%
Benzo(b)fluoranthene	1830	1670	110%	1860	1670	111%	1.6%
Benzo(k)fluoranthene	1940	1670	116%	1950	1670	117%	0.5%
enzo(a)pyrene	1550	1670	92.8%	1560	1670	93.4%	0.6%
indeno(1,2,3-cd)pyrene	1880	1670	113%	1870	1670	112%	0.5%
ibenz(a,h)anthracene	1820	1670	109%	1820	1670	109%	0.0%
senzo(g,h,i)perylene	1780	1670	107%	1770	1670	106%	0.6%
-Methylnaphthalene	1630	1670	97.6%	1670	1670	100%	2.4%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	75.6%
2-Fluorobiphenyl	78.0%	78.4%
d14-p-Terphenyl	91.2%	90.4%
d4-1,2-Dichlorobenzene	86.0%	86.4%
d5-Phenol	73.9%	73.6%
2-Fluorophenol	73.9%	72.8%
2,4,6-Tribromophenol	88.0%	88.3%
d4-2-Chlorophenol	77.3%	76.8%

Results reported in µg/kg RPD calculated using sample concentrations per SW846.

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2 Sample ID: IDP-6-12'-090202

MS/MSD

Lab Sample ID: OK85AC

LIMS ID: 09-3297 Matrix: Soil

Data Release Authorized: W

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount MS: 7.71 g-dry-wt MSD: 7.71 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 15.1 %

Date Extracted MS/MSD: 02/05/09

Date Analyzed MS: 02/06/09 20:50 MSD: 02/06/09 21:25

Instrument/Analyst MS: NT6/LJR

MSD: NT6/LJR

GPC Cleanup: NO

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 65.3	1200	1620	74.1%	1090			
Bis-(2-Chloroethyl) Ether	< 65.3	1410	1620	87.0%	1200	1620 1620	67.3%	9.6%
2-Chlorophenol	< 65.3	1370	1620	84.6%	1200	1620	74.1%	16.1%
1,3-Dichlorobenzene	< 65.3	1390	1620	85.8%	1240		75.3%	11.6%
1,4-Dichlorobenzene	< 65.3	1410	1620	87.0%	1240	1620	76.5%	11.4%
Benzyl Alcohol	< 65.3	< 64.9 U	3240	NA		1620	76.5%	12.8%
1,2-Dichlorobenzene	< 65.3	1470	1620	NA 90.7%	< 64.9 U 1270		NA	NA
2-Methylphenol	< 65.3	1300	1620	90.78 80.2%		1620	78.4%	14.6%
2,2'-Oxybis(1-Chloropropan		1410	1620		1190	1620	73.5%	8.8%
4-Methylphenol	< 65.3	2660	3240	87.0%	1250	1620	77.2%	12.0%
N-Nitroso-Di-N-Propylamine		1390		82.1%	2420	3240	74.7%	9.4%
Hexachloroethane	< 65.3	1250	1620	85.8%	1250	1620	77.2%	10.6%
Nitrobenzene	< 65.3	1300	1620 1620	77.2%	1120	1620	69.1%	11.0%
Isophorone	< 65.3		-	80.2%	1200	1620	74.1%	8.0%
2-Nitrophenol	< 65.3	1450	1620	89.5%	1310	1620	80.9%	10.1%
2,4-Dimethylphenol		1530	1620	94.4%	1370	1620	84.6%	11.0%
Benzoic Acid	< 65.3	1240	1620	76.5%	1160	1620	71.6%	6.7%
bis(2-Chloroethoxy) Methan	< 653	2910	4860	59.9%	2580	4860	53.1%	12.0%
		1400	1620	86.4%	1260	1620	77.8%	10.5%
2,4-Dichlorophenol	< 326	1430	1620	88.3%	1300	1620	80.2%	9.5%
1,2,4-Trichlorobenzene Naphthalene	< 65.3	1450	1620	89.5%	1290	1620	79.6%	11.7%
4-Chloroaniline	< 65.3	1530	1620	94.4%	1330	1620	82.1%	14.0%
	< 326	2820	3890	72.5%	2500	3890	64.3%	12.0%
Hexachlorobutadiene	< 65.3	1500	1620	92.6%	1320	1620	81.5%	12.8%
4-Chloro-3-methylphenol	< 326	1500	1620	92.6%	1360	1620	84.0%	9.8%
2-Methylnaphthalene	< 65.3	1460	1620	90.1%	1340	1620	82.7%	8.6%
Hexachlorocyclopentadiene	< 326	3830	4860	78.8%	3460	4860	71.2%	10.2%
2,4,6-Trichlorophenol	< 326	1360	1620	84.0%	1200	1620	74.1%	12.5%
2,4,5-Trichlorophenol	< 326	1700	1620	105%	1680	1620	104%	1.2%
2-Chloronaphthalene	< 65.3	1730	1620	107%	1560	1620	96.3%	10.3%
2-Nitroaniline	< 326	1560	1620	96.3%	1450	1620	89.5%	7.3%
Dimethylphthalate	< 65.3	1540	1620	95.1%	1460	1620	90.1%	5.3%
Acenaphthylene	< 65.3	1460	1620	90.1%	1380	1620	85.2%	5.6%
3-Nitroaniline	< 326	3660	4150	88.2%	3560	4150	85.8%	2.8%
Acenaphthene	< 65.3	1470	1620	90.7%	1380	1620	85.2%	6.3%
2,4-Dinitrophenol	< 653	4280	4860	88.1%	4290	4860	88.3%	0.2%
4-Nitrophenol	< 326	527	1620	32.5%	431	1620	26.6%	20.0%
Dibenzofuran	< 65.3	1510	1620	93.2%	1420	1620	87.7%	6.1%
2,6-Dinitrotoluene	< 326	1650	1620	102%	1580	1620	97.5%	4.3%
2,4-Dinitrotoluene	< 326	1670	1620	103%	1610	1620	99.4%	3.7%
Diethylphthalate	< 65.3	1560	1620	96.3%	1480	1620	91.4%	5.3%
4-Chlorophenyl-phenylether	< 65.3	1600	1620	98.8%	1500	1620	92.6%	6.5%
Fluorene	< 65.3	1580	1620	97.5%	1490	1620	92.0%	5.9%
4-Nitroaniline	< 326	1420	1620	87.7%	1370	1620	84.6%	3.6%
4,6-Dinitro-2-Methylphenol	< 653	5500	4860	113%	5240	4860	108%	4.8%
N-Nitrosodiphenylamine	< 65.3	1610	1620	99.4%	1480	1620	91.4%	8.4%
						— -	· - ·	

ANALYTICAL **RESOURCES INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202 MS/MSD

Lab Sample ID: OK85AC QC Report No: OK85-The Boeing Company LIMS ID: 09-3297

Project: BOEING ISAACSON

025173.090

Matrix: Soil

Date Analyzed MS: 02/06/09 20:50

MSD: 02/06/09 21:25

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
4-Bromophenyl-phenylether	< 65.3	1580	1620	97.5%	1470	1620	90.7%	7.2%
Hexachlorobenzene	< 65.3	1560	1620	96.3%	1450	1620	89.5%	7.3%
Pentachlorophenol	< 326	2080	1620	128%	1900	1620	117%	9.0%
Phenanthrene	< 65.3	1670	1620	103%	1540	1620	95.1%	8.1%
Carbazole	< 65.3	1730	1620	107%	1620	1620	100%	6.6%
Anthracene	< 65.3	1690	1620	104%	1540	1620	95.1%	9.3%
Di-n-Butylphthalate	< 65.3	1840	1620	114%	1690	1620	104%	8.5%
Fluoranthene	< 65.3	1930	1620	119%	1830	1620	113%	5.3%
Pyrene	< 65.3	1570	1620	96.9%	1470	1620	90.7%	6.6%
Butylbenzylphthalate	< 65.3	1650	1620	102%	1550	1620	95.7%	6,2%
3,3'-Dichlorobenzidine	< 326	3290	4150	79.3%	3140	4150	75.7%	4.7%
Benzo(a)anthracene	< 65.3	1590	1620	98.1%	1490	1620	92.0%	6.5%
bis(2-Ethylhexyl)phthalate	< 65.3	1790	1620	110%	1690	1620	104%	5.7%
Chrysene	< 65.3	1470	1620	90.7%	1350	1620	83.3%	8.5%
Di-n-Octyl phthalate	< 65.3	1600	1620	98.8%	1490	1620	92.0%	7.1%
Benzo(b)fluoranthene	< 65.3	1790	1620	110%	1630	1620	101%	9.4%
Benzo(k)fluoranthene	< 65.3	2050	1620	127%	1950	1620	120%	5.0%
Benzo(a)pyrene	< 65.3	1550	1620	95.7%	1440	1620	88.9%	7.4%
Indeno(1,2,3-cd)pyrene	< 65.3	1710	1620	106%	1560	1620	96.3%	9.2%
Dibenz(a,h)anthracene	< 65.3	1670	1620	103%	1540	1620	95.1%	8.1%
Benzo(g,h,i)perylene	< 65.3	1500	1620	92.6%	1340	1620	82.7%	11.3%
1-Methylnaphthalene	< 65.3	1630	1620	101%	1460	1620	90.1%	11.0%

Results reported in µg/kg

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OK85A

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: \www.

Reported: 02/10/09

Instrument/Analyst: NT7/PKC
Date Analyzed: 02/06/09 19:02

Sample ID: PZ-7-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74-83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	4.8
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34 - 3	1,1-Dichloroethane	0.2	< 0.2 U
156-60 - 5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59 - 2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55 - 6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79 - 01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
591-78-6	2-Hexanone	2.5	< 2.5 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U
108-88-3	Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.4 U
95-47-6	o-Xylene	0.2	< 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2 U
107-02-8	Acrolein	5.0	< 5.0 U
74-88-4	Methyl Iodide	1.0	< 1.0 Ü
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563 - 58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-7-090202

SAMPLE

Lab Sample ID: OK85A

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3269

Project: BOEING ISAACSON

025173.090

Matrix: Water

Date Analyzed: 02/06/09 19:02

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	106%
d8-Toluene	100%
Bromofluorobenzene	102%
d4-1.2-Dichlorobenzene	103%

Page 1 of 2

Lab Sample ID: OK85B QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

SAMPLE

Date Sampled: 02/02/09 Date Received: 02/02/09

LIMS ID: 09-3270 Matrix: Water Data Release Authorized: \www.

Reported: 02/10/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

Instrument/Analyst: NT7/PKC Date Analyzed: 02/06/09 19:28

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74-83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	0.2
75-00-3	Chloroethane	0.2	< 0.2 Ü
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	3.7
75-15-0	Carbon Disulfide	0.2	< 0.2 Ü
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93 - 3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 Ü
591-78-6	2-Hexanone	2.5	< 2.5 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U
108-88-3	Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.4 U
95-47 - 6	o-Xylene	0.2	< 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2 U
107-02-8	Acrolein	5.0	< 5.0 Ü
74-88-4	Methyl Iodide	1.0	< 1.0 U
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20 - 6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U
	-		-

Page 2 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Date Analyzed: 02/06/09 19:28

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL '	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	Ū
106-93-4	Ethylene Dibromide	0.2	< 0.3	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2		-
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene		< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.2	< 0.2	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6		0.5	< 0.5	U
0, 01-0	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	99.0%
d8-Toluene	98.8%
Bromofluorobenzene	104%
d4-1,2-Dichlorobenzene	102%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C QC Report No: OK85-The Boeing Company LIMS ID: 09-3271 Project: BOEING ISAACSON

Project: BOEING ISAACSON 025173.090

Matrix: Water 025173.090
Data Release Authorized: Date Sampled: 02/02/09
Reported: 02/10/09 Date Received: 02/02/09

Instrument/Analyst: NT7/PKC Sample Amount: 20.0 mL Date Analyzed: 02/06/09 19:53 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59 - 2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23 - 5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87 - 5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01 - 6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00 - 5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	Ü
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ŭ
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ŭ
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Page 2 of 2

Sample ID: PZ-1-090202

SAMPLE

Lab Sample ID: OK85C

LIMS ID: 09-3271 Matrix: Water

9-3271 Proje

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 19:53

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ū
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ū
98-06-6	tert-Butylbenzene	0.2	< 0.2	Ū
135-98-8	sec-Butylbenzene	0.2	< 0.2	Ū
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ū
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	102%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	101%

Sample ID: I-1044-090202 SAMPLE

Lab Sample ID: OK85D LIMS ID: 09-3272

QC Report No: OK85-The Boeing Company

Matrix: Water

Reported: 02/10/09

Project: BOEING ISAACSON

Data Release Authorized:

025173.090
Date Sampled: 02/02/09
Date Received: 02/02/09

Instrument/Analyst: NT7/PKC
Date Analyzed: 02/06/09 20:18

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74-83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	3.4
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
591-78-6	2-Hexanone	2.5	< 2.5 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U
108-88-3	Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5 75-69-4	Styrene	0.2	< 0.2 U
	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1 1330-20-7	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2 U
95-47-6	m,p-Xylene o-Xylene	0.4	< 0.4 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U
106-46-7		0.2	< 0.2 U
107-02-8	1,4-Dichlorobenzene Acrolein	0.2	< 0.2 U
74-88-4	-	5.0	< 5.0 U
74-96-4	Methyl Iodide Bromoethane	1.0	< 1.0 U
107-13-1	Acrylonitrile	0.2	< 0.2 U
563-58-6	1,1-Dichloropropene	1.0	< 1.0 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.2	< 0.2 U
96-18-4	1,2,3-Trichloropropane	0.5 0.5	< 0.5 U
	-,-, o resource operatie	0.5	< 0.5 U

Page 2 of 2

Sample ID: I-1044-090202

SAMPLE

Lab Sample ID: OK85D

LIMS ID: 09-3272

Matrix: Water

Date Analyzed: 02/06/09 20:18

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	บ
106-93-4	Ethylene Dibromide	0.2	< 0.3	บ
74-97-5	Bromochloromethane	0.2	< 0.2	_
594-20-7	2,2-Dichloropropane	0.2		Ŭ
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ü
98-82-8	Isopropylbenzene		< 0.2	Ŭ
103-65-1	n-Propylbenzene	0.2	< 0.2	Ū
1 08-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4		0.2	< 0.2	Ü
98-06-6	4-Chlorotoluene	0.2	< 0.2	U
_	tert-Butylbenzene	0.2	< 0.2	Ū
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ü

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	99.8%
Bromofluorobenzene	103%
d4-1,2-Dichlorobenzene	102%

Page 1 of 2

Sample ID: TB SAMPLE

Lab Sample ID: OK85K

LIMS ID: 09-3279

Matrix: Water
Data Release Authorized:

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/06/09 12:44

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74 - 83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	< 3.0 U
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1 591-78-6	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
127-18-4	2-Hexanone	2.5	< 2.5 U
79-34-5	Tetrachloroethene	0.2	< 0.2 U
108-88-3	1,1,2,2-Tetrachloroethane Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.2 U
95-47-6	o-Xylene	0.4	< 0.4 U < 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U < 0.2 U
541-73-1	1,3-Dichlorobenzene		_
106-46-7	1,4-Dichlorobenzene	0.2	
107-02-8	Acrolein	5.0	< 0.2 U
74-88-4	Methyl Iodide	1.0	< 5.0 U < 1.0 U
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U
	. 	-	

Page 2 of 2

Sample ID: TB SAMPLE

Lab Sample ID: OK85K

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3279

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 12:44

CAS Number	Analyte	RL	Result	Q
1 10-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	Ū
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ū
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	Ū
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	Ū
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	91.2%
d8-Toluene	99.5%
Bromofluorobenzene	95.0%
d4-1.2-Dichlorobenzene	1025

Page 1 of 2 Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: \text{TWW}

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst: NT7/PKC Sample Amount: 20.0 mL Date Analyzed: 02/06/09 11:40 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74-83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	< 3.0 U
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
591-78-6	2-Hexanone	2.5	< 2.5 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U
108-88-3	Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.4 U
95-47-6	o-Xylene	0.2	< 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2 U
107-02-8	Acrolein	5.0	< 5.0 U
74-88-4	Methyl Iodide	1.0	< 1.0 U
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U

Page 2 of 2

Sample ID: MB-020609

METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3269

Matrix: Water

Date Analyzed: 02/06/09 11:40

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	Ū
74-97-5	Bromochloromethane	0.2	< 0.2	Ü
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	IJ
1,03-65-1	n-Propylbenzene	0.2	< 0.2	Ū
108-86-1	Bromobenzene	0.2	< 0.2	Ū
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ü
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ü
98-06-6	tert-Butylbenzene	0.2	< 0.2	IJ
135-98-8	sec-Butylbenzene	0.2	< 0.2	IJ
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ū
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	93.2%
d8-Toluene	100%
Bromofluorobenzene	98.5%
d4-1.2-Dichlorohenzene	1025

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-020609 LCS-020609 LCSD-020609 OK85A OK85B OK85C OK85D OK85K	Method Blank Lab Control Lab Control Dup PZ-7-090202 I-104-090202 PZ-1-090202 I-1044-090202 TB	20 20 20 20 20 20 20 20	93.2% 91.8% 94.0% 106% 99.0% 102% 105% 91.2%	100% 100% 99.2% 100% 98.8% 100% 99.8% 99.5%	98.5% 97.0% 100% 102% 104% 101% 103% 95.0%	102% 99.2% 98.8% 103% 102% 101% 102% 103%	0 0 0 0 0 0 0
(TOL) = d8-Total (BFB) = Brown	,2-Dichloroethane oluene ofluorobenzene ,2-Dichlorobenzene	LCS	70-131 80-120 74-121 80-120	ITS		QC LIMIT 64-146 78-125 71-120 80-121	5 5)

Prep Method: SW5030B

Log Number Range: 09-3269 to 09-3279

Page 1 of 2

Sample ID: LCS-020609

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020609

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/06/09 10:49

LCSD: 02/06/09 11:15

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	T 66	Spike	LCS		Spike	LCSD	
	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	2.8	4.0	70.0%	2.7	4.0	67.5%	3.6%
Bromomethane	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
Vinyl Chloride	3.5	4.0	87.5%	3.5	4.0	87.5%	0.0%
Chloroethane	4.4	4.0	110%	4.4	4.0	110%	0.0%
Methylene Chloride	4.6	4.0	115%	4.5	4.0	112%	2.2%
Acetone	18.6	20.0	93.0%	18.4	20.0	92.0%	1.1%
Carbon Disulfide	4.1	4.0	102%	4.0	4.0	100%	2.5%
1,1-Dichloroethene	4.4	4.0	110%	4.4	4.0	110%	0.0%
1,1-Dichloroethane	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
trans-1,2-Dichloroethene	4.4	4.0	110%	4.2	4.0	105%	4.7%
cis-1,2-Dichloroethene	4.4	4.0	110%	4.2	4.0	105%	4.7%
Chloroform	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,2-Dichloroethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
2-Butanone	20.0	20.0	100%	19.1	20.0	95.5%	4.6%
1,1,1-Trichloroethane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Carbon Tetrachloride	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Vinyl Acetate	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Bromodichloromethane	4.3	4.0	108%	4.2	4.0	105%	2.4%
1,2-Dichloropropane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
cis-1,3-Dichloropropene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Trichloroethene	4.0	4.0	100%	4.0	4.0	100%	0.0%
Dibromochloromethane	4.5	4.0	112%	4.3	4.0	108%	4.5%
1,1,2-Trichloroethane	4.2	4.0	105%	4.2	4.0	105%	0.0%
Benzene	4.1	4.0	102%	4.0	4.0	100%	2.5%
trans-1,3-Dichloropropene	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
2-Chloroethylvinylether	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Bromoform	4.5	4.0	112%	4.0	4.0	100%	11.8%
4-Methyl-2-Pentanone (MIBK)	21.2	20.0	106%	20.0	20.0	100%	5.8%
2-Hexanone	16.6	20.0	83.0%	15.5	20.0	77.5%	6.9%
Tetrachloroethene	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,1,2,2-Tetrachloroethane	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
Toluene	4.2	4.0	105%	4.0	4.0	100%	4.9%
Chlorobenzene	4.2	4.0	105%	4.1	4.0	102%	2.4%
Ethylbenzene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Styrene	4.3	4.0	108%	4.3	4.0	108%	0.0%
Trichlorofluoromethane	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,1,2-Trichloro-1,2,2-trifluoroetha	4.2	4.0	105%	4.1	4.0	102%	2.4%
m,p-Xylene	8.4	8.0	105%	8.3	8.0	104%	1.2%
o-Xylene	4.2	4.0	105%	4.1	4.0	102%	2.4%
1,2-Dichlorobenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
1,3-Dichlorobenzene	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,4-Dichlorobenzene	4.1	4.0	102%	3.8	4.0	95.0%	7.6%
Acrolein	20.6	20.0	103%	21.1	20.0	106%	2.4%
Methyl Iodide	4.5	4.0	112%	4.5	4.0	112%	0.0%
Bromoethane	4.2	4.0	105%	4.1	4.0	102%	2.4%

Page 2 of 2

Sample ID: LCS-020609

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020609

LIMS ID: 09-3269 Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Acrylonitrile	3.9	4.0	97.5%	3,6	4.0	90.0%	0.00
1,1-Dichloropropene	4.1	4.0	102%	4.0	4.0	100%	8.0%
Dibromomethane	4.2	4.0	105%	4.0	4.0	100%	2.5%
1,1,1,2-Tetrachloroethane	4.2	4.0	105%	4.1	4.0	100%	4.9%
1,2-Dibromo-3-chloropropane	3.8	4.0	95.0%	3.6	4.0	90.0%	2.4%
1,2,3-Trichloropropane	4.7	4.0	118%	4.3	4.0	108%	5.4%
trans-1,4-Dichloro-2-butene	3.5	4.0	87.5%	3.2	4.0	108%	8.9%
1,3,5-Trimethylbenzene	4.2	4.0	105%	4.0	4.0	100%	9.0%
1,2,4-Trimethylbenzene	4.2	4.0	105%	4.0	4.0		4.9%
Hexachlorobutadiene	3.9	4.0	97.5%	3.6	4.0	100%	4.9%
Ethylene Dibromide	4.3	4.0	108%	4.2	4.0	90.0%	8.0%
Bromochloromethane	4.2	4.0	105%	4.1		105%	2.4%
2,2-Dichloropropane	4.2	4.0	105%	3.9	4.0 4.0	102%	2.4%
1,3-Dichloropropane	4.2	4.0	105%	4.1		97.5%	7.4%
Isopropylbenzene	4.1	4.0	102%	3.8	4.0	102%	2.4%
n-Propylbenzene	4.2	4.0	105%	4.0	4.0	95.0%	7.6%
Bromobenzene	4.3	4.0	108%	4.0	4.0	100%	4.9%
2-Chlorotoluene	4.1	4.0	102%	3.9	4.0	100%	7.2%
4-Chlorotoluene	4.2	4.0	105%	4.0	4.0	97.5%	5.0%
tert-Butylbenzene	4.2	4.0	105%		4.0	100%	4.9%
sec-Butylbenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
4-Isopropyltoluene	4.3	4.0	105%	4.0	4.0	100%	4.9%
n-Butylbenzene	4.2	4.0	108%	4.0	4.0	100%	7.2%
1,2,4-Trichlorobenzene	4.2	4.0		4.0	4.0	100%	4.9%
Naphthalene	4.1		105%	3.9	4.0	97.5%	7.4%
1,2,3-Trichlorobenzene	$\frac{4.1}{4.1}$	4.0	102%	4.1	4.0	102%	0.0%
	4.1	4.0	102%	4.0	4.0	100%	2.5%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	91.8%	94.0%
d8-Toluene	100%	99.2%
Bromofluorobenzene	97.0%	100%
d4-1,2-Dichlorobenzene	99 28	ବର ରହ

< 0.63 U

84.8%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Oil

o-Terphenyl

025173.090

Data Release Authorized: Reported: 02/06/09

Extraction Analysis Date DLResult ARI ID Sample ID Date Range < 0.25 U MB-020409 Method Blank 02/04/09 02/06/09 1.0 Gas < 0.63 U 09-3269 Diesel < 0.63 U Oil o-Terphenyl 79.6% < 0.25 U OK85A PZ-7-090202 02/04/09 02/06/09 1.0 Gas < 0.63 U Diesel 09-3269 HC ID: ---< 0.63 U Oil 84.1% o-Terphenyl < 0.25 U OK85B I-104-090202 02/04/09 02/06/09 1.0 Gas < 0.63 U Diesel 09-3270 HC ID: ---Oil < 0.63 U 86.5% o-Terphenyl < 0.25 U OK85C PZ-1-090202 02/04/09 02/06/09 1.0 Gas Diesel < 0.63 U 09-3271 HC ID: ---< 0.63 U Oil 72.9% o-Terphenyl < 0.25 U I-1044-090202 02/04/09 02/06/09 1.0 Gas OK85D < 0.63 U Diesel 09-3272 HC ID: ---

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	O-TER	TOT OUT
MB-020409	79.6%	0
LCS-020409	85.4%	0
LCSD-020409	84.8%	0
PZ-7-090202	84.1%	0
I-104-090202	86.5%	0
PZ-1-090202	72.9%	0
T-1044-090202	84.8%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C

Log Number Range: 09-3269 to 09-3272

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-020409 LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized:

Reported: 02/06/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09

Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/04/09

Date Analyzed LCS: 02/06/09 01:52

LCSD: 02/06/09 02:11

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	_
Diesel	2.37	3.00	79.0%	2.34	3.00	78.0%	1.3%	

HCID Surrogate Recovery

LCS LCSD

o-Terphenyl

85.4% 84.8%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OK85

Matrix: Water

Project: BOEING ISAACSON

Date Received: 02/02/09

025173.090

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
09-3269-020409MB 09-3269-020409LCS 09-3269-020409LCSD 09-3269-0K85A 09-3270-0K85B 09-3271-0K85C 09-3272-0K85D	Method Blank Lab Control Lab Control Dup PZ-7-090202 I-104-090202 PZ-1-090202 I-1044-090202	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: PZ-7-090202 SAMPLE

Lab Sample ID: OK85A LIMS ID: 09-3269

Matrix: Water

Data Release Authorized:

Reported: 02/09/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 13:33 Instrument/Analyst: NT1/VTS

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 57.0% d14-Dibenzo(a,h)anthracene 71.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/07/09 13:56

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo (a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz (a, h) anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 60.7% d14-Dibenzo(a,h)anthracene 80.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/07/09 14:18

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 49.7% d14-Dibenzo(a,h)anthracene 75.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: I-1044-090202 SAMPLE

Lab Sample ID: OK85D

LIMS ID: 09-3272 Matrix: Water

Data Release Authorized: W

Date Analyzed: 02/07/09 14:41

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09

Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k) fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a h)anthracene	0.10	< 0.10 II

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.7% d14-Dibenzo(a,h)anthracene 79.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: MB-020509 METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3269

Matrix: Water Data Release Authorized: MW

Reported: 02/09/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 12:25 Instrument/Analyst: NT1/VTS

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	. 0 10 11
218-01-9	Chrysene		< 0.10 U
205-99-2		0.10	< 0.10 U
	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	. — -	·
53-70-3	Thecho(1,2,3-cd)pyrene	0.10	< 0.10 U
55-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 11

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 45.0% d14-Dibenzo(a,h)anthracene 83.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	MNP	DBA	TOT OUT
MB-020509	45.0%*	83.3%	1
LCS-020509	55.0%	82.7%	0
LCSD-020509	58.7%	87.3%	0
PZ-7-090202	57.0%	71.7%	0
I-104-090202	60.7%	80.0%	0
PZ-1-090202	49.7%	75.0%	0
I-1044-090202	59.7%	79.7%	0

	LCS/MB LIMITS	QC LIMITS
(MNP) = d10-2-Methylnaphthalene	(49-113)	(44-112)
(DBA) = d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C Log Number Range: 09-3269 to 09-3272

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-020509

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020509

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: Www. Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 02/05/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/07/09 12:48

Instrument/Analyst LCS: NT1/VTS

LCSD: 02/07/09 13:11

LCSD: NT1/VTS

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a)anthracene	2.40	3.00	80.0%	2.64	3.00	88.0%	9.5%
Chrysene	2.44	3.00	81.3%	2.63	3.00	87.7%	7.5%
Benzo(b)fluoranthene	2.63	3.00	87.7%	2.83	3.00	94.3%	7.3%
Benzo(k)fluoranthene	2.68	3.00	89.3%	3.00	3.00	100%	11.3%
Benzo(a)pyrene	2.47	3.00	82.3%	2.84	3.00	94.7%	13.9%
Indeno(1,2,3-cd)pyrene	2.36	3.00	78.7%	2.54	3.00	84.7%	7.3%
Dibenz(a,h)anthracene	2.41	3.00	80.3%	2.67	3.00	89.0%	10.2%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	55.0%	58.7%
d14-Dibenzo(a,h)anthracene	82.7%	87.3%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1 Sample ID: IDP-6-8'-090202

SAMPLE

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: WW

Reported: 02/10/09

Date Extracted: 02/05/09

Date Analyzed: 02/07/09 16:57 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 26.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	89.2%
Tetrachlorometaxylene	86.5%

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Matrix: Soil

Sample ID: IDP-6-8'-090202 MATRIX SPIKE

Lab Sample ID: OK85AB QC Report No: OK85-The Boeing Company LIMS ID: 09-3296

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:15 Instrument/Analyst: ECD5/JGR

Data Release Authorized: \\W

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Reported: 02/10/09

Percent Moisture: 26.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	85.2%

ANALYTICAL RESOURCES ' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: IDP-6-8'-090202 MATRIX SPIKE DUP

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/10/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:32

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 26.0%

CAS Number Analyte		RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.5%
Tetrachlorometaxylene	86.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized: YWW

Reported: 02/10/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:49

Instrument/Analyst: ECD5/JGR GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in µg/kg (ppb)

Decachlorobiphenyl		86.2%
Tetrachlorometaxylene		77.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: MB-020509

METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3296 Matrix: Soil

Data Release Authorized: WWW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA

Date Received: NA

Sample Amount: 12.0 g

Final Extract Volume: 4.0 mL

Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 16:06 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 3.3 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	82.8%
Tetrachlorometaxylene	79.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020509	82.8%	59-122	79.0%	61-118	0
LCS-020509	89.0%	59-122	85.0%	61-118	Ō
LCSD-020509	91.0%	59-122	88.0%	61-118	0
IDP-6-8'-090202	89.2%	40-139	86.5%	49-120	0
IDP-6-8'-090202 MS	88.0%	40-139	85.2%	49-120	0
IDP-6-8'-090202 MSD	88.5%	40-139	86.0%	49-120	0
IDP-6-12'-090202	86.2%	40-139	77.2%	49-120	0

Standard Sonication Control Limits Prep Method: SW3550B Log Number Range: 09-3296 to 09-3297

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: IDP-6-8'-090202

MS/MSD

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: WW

Reported: 02/10/09

Date Extracted MS/MSD: 02/05/09

Date Analyzed MS: 02/07/09 17:15

MSD: 02/07/09 17:32 Instrument/Analyst MS: ECD5/JGR

CDC Classin, No

Aroclor 1260

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount MS: 12.6 g-dry-wt

MSD: 12.6 g-dry-wt

159

97.5%

6.0%

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00 MSD: 1.00

Silica Gel: No

155

Percent Moisture: 26.0%

91.8%

Spike Spike MSD MS Added-MS Recovery MSD Added-MSD Recovery RPD Analyte Sample MS 159 92.5% 5.6% Aroclor 1016 < 31.8 U 139 159 87.4% 147

159

Results reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

< 31.8 U

146

MSD: ECD5/JGR

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: LCS-020509

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/10/09

Date Extracted LCS/LCSD: 02/05/09

Date Analyzed LCS: 02/07/09 16:23

LCSD: 02/07/09 16:40

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-020509 LCS/LCSD

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	148	167	88.8%	153	167	91.8%	3.3%
Aroclor 1260	163	167	97.8%	167	167	100%	2.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	89.0%	91.0%
Tetrachlorometaxylene	85.0%	88.0%

Results reported in µg/kg (ppb) RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: PZ-7-090202 SAMPLE

Lab Sample ID: OK85A LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: 7

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	97.0%
Tetrachlorometaxylene	76.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/04/09
Date Analyzed: 02/06/09 16:40
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	82.8%
Tetrachlorometaxylene	73.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: PZ-1-090202

SAMPLE

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:57 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11104-28-2 11141-16-5	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232	1.0 1.0 1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	98.2%
Tetrachlorometaxylene	88.0%

ANALYTICAL **RESOURCES INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: I-1044-090202 SAMPLE

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: Www

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 17:14 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	69.8%
Tetrachlorometaxylene	72.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: MB-020409

METHOD BLANK

Lab Sample ID: MB-020409

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

De 1	
Decachlorobiphenyl	95.0%
Tetrachlorometaxylene	64.0%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020409	95.0%	47-101	64.0%	61-104	0
LCS-020409	95.2%	47-101	73.5%	61-104	0
LCSD-020409	96.5%	47-101	72.2%	61-104	0
PZ-7-090202	97.0%	42-120	76.8%	55-102	0
I-104-090202	82.8%	42-120	73.8%	55-102	0
PZ-1-090202	98.2%	42-120	88.0%	55-102	0
I-1044-090202	69.8%	42-120	72.8%	55-102	0

Prep Method: SW3510C

Log Number Range: 09-3269 to 09-3272

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: LCS-020409

LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: Www

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA

Date Received: NA

Date Extracted LCS/LCSD: 02/04/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/06/09 15:48

Final Extract Volume LCS: 5.0 mL

LCSD: 02/06/09 16:05

LCSD: 5.0 mL

Instrument/Analyst LCS: ECD5/JGR

Dilution Factor LCS: 1.00

LCSD: ECD5/JGR

LCSD: 1.00

GPC Cleanup: No Sulfur Cleanup: No

Silica Gel: No

Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.50	5.00	90.0%	4.49	5.00	89.8%	0.2%
Aroclor 1260	5.13	5.00	103%	5.06	5.00	101%	1.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	95.2%	96.5%
Tetrachlorometaxylene	73.5%	72.2%

Results reported in µg/L RPD calculated using sample concentrations per SW846.

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85L LIMS ID: 09-3280

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 80.6%

Sample ID: IDP-1-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	30	60	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85M

LIMS ID: 09-3281

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 76.4%

Sample ID: IDP-1A-9'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	186	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85N

LIMS ID: 09-3282

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 80.1%

Sample ID: IDP-1A-14'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK850

LIMS ID: 09-3283

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 80.0%

Sample ID: IDP-2-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	10	180	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85P

LIMS ID: 09-3284 Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 80.5%

Sample ID: IDP-2-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON 025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	Ü

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Q

LIMS ID: 09-3285

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 77.6%

Sample ID: IDP-2-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85R LIMS ID: 09-3286

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 79.1%

Sample ID: IDP-3-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Prep Analysis Analysis mg/kg-dry RLQ Analyte Meth Date Method Date CAS Number 6 34 02/12/09 **7440-38-2** 02/09/09 6010B Arsenic 3050B

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85S

LIMS ID: 09-3287

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 74.9%

Sample ID: IDP-3-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	48	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85T

LIMS ID: 09-3288 Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-3-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 78.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85U

LIMS ID: 09-3289

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

QC Report No: OK85-The Boeing Company

Sample ID: IDP-4-4'-090202

SAMPLE

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Percent Total Solids: 81.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	15	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85V

LIMS ID: 09-3290

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 74.6%

Sample ID: IDP-4-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	7	17	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85W LIMS ID: 09-3291

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 77.5%

Sample ID: IDP-4-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	Ü

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85X LIMS ID: 09-3292

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Sample ID: IDP-5-4'-090202

SAMPLE

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 84.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	60	60	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Y

LIMS ID: 09-3293 Matrix: Soil

Data Release Authorized: ()

Reported: 02/23/09

02/23/09

Percent Total Solids: 76.8%

Sample ID: IDP-5-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	333	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Z

LIMS ID: 09-3294

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-5-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 88.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U

TOTAL METALS

Page 1 of 1

Sample ID: IDP-6-4'-090202 SAMPLE

Lab Sample ID: OK85AA LIMS ID: 09-3295

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 86.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	10	10	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 76.0%

Sample ID: IDP-6-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	71	
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.3	0.3	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.6	19.2	
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.3	26.9	
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	3	3	
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.06	
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	153	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85AC LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-6-12'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 85.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.5	9.0	
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.2	9.1	
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	2	2	U
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	20	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85MB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20500	00/00/00	60100	00/10/00	7440 00 0			_	
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.5	0.5	U
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	. 2	. 2	U
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	3	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85LCS

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

•	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	6010B	198	200	99.0%	
Cadmium	6010B	49.5	50.0	99.0%	
Chromium	6010B	48.9	50.0	97.8%	
Copper	6010B	49.6	50.0	99.2%	
Lead	6010B	197	200	98.5%	
Mercury	7471A	1.12	1.00	112%	
Zinc	6010B	50	50	100%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: OK85A

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: PZ-7-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
	0.0.10.0.10.0							
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.5	5.0	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	2	U
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97 - 6	Mercury	0.1	0.1	Ū
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: I-104-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
					· · · · · · · · · · · · · · · · · · ·			
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,130	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	13	
200.8	02/09/09	200,8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	20	

Page 1 of 1

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water Data Release Authorized Reported: 02/23/09

Sample ID: PZ-1-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	7.1	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	17	
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	240	

Page 1 of 1

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: I-1044-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,270	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	. 2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	7	
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OK85E

LIMS ID: 09-3273 Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-1A-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	77.7	

Page 1 of 1

Lab Sample ID: OK85F

LIMS ID: 09-3274 Matrix: Water

Data Release Authorized Reported: 02/23/09 Sample ID: IDP-2-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	24.4	

Page 1 of 1

Lab Sample ID: OK85G

LIMS ID: 09-3275

Matrix: Water Data Release Authorized Reported: 02/23/09

Sample ID: IDP-3-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	12.0	

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OK85H

LIMS ID: 09-3276

Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-4-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,360	

Page 1 of 1

Lab Sample ID: OK85I

LIMS ID: 09-3277

Matrix: Water

Data Release Authorized Reported: 02/23/09

Sample ID: IDP-5-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	1,610	

Page 1 of 1

Lab Sample ID: OK85J

LIMS ID: 09-3278

Matrix: Water

Data Release Authorized Reported: 02/23/09

Sample ID: IDP-6-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	1	346	

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OK85MB

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	<u>Q</u>
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	0.2	U
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	2	U
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OK85LCS

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON


025173.090
Date Sampled: NA
Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	26.8	25.0	107%	
Cadmium	6010B	532	500	106%	
Chromium	6010B	501	500	100%	
Copper	6010B	495	500	99.0%	
Lead	200.8	28	25	112%	
Mercury	7470A	1.9	2.0	95.0%	
Zinc	6010B	510	500	102%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

February 19, 2009

Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Thompson 025173.100

ARI Job: OL19

Dear Kathryn:

Enclosed, please find e-mail documentation and the original and a revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted seven water samples and a trip blank in good condition on February 4, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Dissolved Metals, VOCs, SIM cPAHs, PCBs, SVOCs and HCID as requested on the COC.

The VOCs method blanks for 2/13/09 contained naphthalene. All associated samples were non-detect for naphthalene, therefore no further corrective action was taken.

The 2/13/09 VOCs LCSD is out of control high for 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. The LCS was in control and no further corrective action was taken.

All associated SVOCs were originally analyzed within the method recommended holding time. The samples were re-extracted and re-analyzed outside of the method recommended holding time due to low surrogate and LCSD spike recoveries. Both sets of data have been included for your review.

The PCB surrogate TCMX is out of control low for the LCS and LCSD. TCMX is not a required surrogate for the PCBs analysis and all other surrogate and spike recoveries were in control, therefore no further corrective action was taken.

The dissolved metals method blank contained arsenic. All associated sample arsenic concentrations were greater then ten times the method blank concentration with the exception of sample PZ-8-090204. No further corrective action was taken pending client final review.

There were no other anomalies associated with the analysis of these samples.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/kb

Enclosures

LANDAU Spokane (509) 327-9 ASSOCIATES Portland (Tigard) (50	193 1737 3) 443-6010	of-Custody Recor	d	Date 2 4 09 Page of
Sampler's Name Eurobeth Not	Project No. 025173 MACTI Se Name Brunnle No. of Time Matrix Container M 1402 W 13 1245 1 1170 1200 910 1233 1200 4		Allov aliquot from the product in the present the pres	cid wash/silica gel cleanup amples standardized to product ze for EPH if no specific
or Storage Requirements Relinguished by Signature Printed Name Company 7	Received by Signature Printed Name Company	Relinquished by Signature Printed Name Company	Shipment Receive Signatur Printed I	e Name
Date 2/2109 Time 12215		halls	me Date	

Seattle (Edmonds) ☐ Tacoma (253) 926-2 ☐ Spokane (509) 327-4 ASSOCIATES ☐ Portland (Tigard) (50	493 9737 33) 443-6010	ain-of-Cu	stody Record		Date Z 4 09 Pageof
Project Location/Event TARNIVA Sampler's Name EU CAZON TO Project Contact RANNIN	Project No. GC Projec	nner /	Testing Testing Testing	alique Average	Turnaround Time Standard Accelerated Accelerated Accelerated Allow water samples to settle, collect of from clear portion PH-Dx: un acid wash/silica gel cleanup un samples standardized to product Analyze for EPH if no specific uct identified /BTEX/VPH (soll): non-preserved preserved w/methanol preserved w/sodium bisulfate freeze upon receipt Dissolved metal water samples field filtered
Special Shipment/Handling or Storage Requirements Retinguished by	Received by	1.0	Relinquished by	Method of Shipment Rec	ceived by
Signature EU as Defa Rollo Printed Name Company Date Z 2409 Time 12,245	Signature 1	Time 1694X	Signature Printed Name Company DateTim	Prin	nature ted Name npany

Eric Branson

```
"Kelly Bottem" <kellyb@arilabs.com>
 From:
         "Kathryn Hartley" <khartley@landauinc.com>; "Eric Branson" <eric@arilabs.com>
 To:
         Monday, February 09, 2009 2:21 PM
 Sent:
         Re: Sample acknowledgement forms for Boeing Isaacson - OL19
 Subject:
Got it. Eric please change ASAP.
K
Kathryn Hartley wrote:
> Kelly,
>
>
>
 On data package OL19, please make the following changes:
>
            change sample P2-8-090204 to PZ-8-090204
>
>
            change sample P2-4-090204 to PZ-4-090204
>
>
            change sample P2-2-090204 to PZ-2-090204
>
>
            add Thompson to the project name
>
>
>
> Please confirm that you received this message and let me know if
you
> have any questions.
>
>
>
 Thanks,
>
>
> Kathryn F. Hartley
>
 Project Scientist
 Landau Associates
\geq
> 130 2nd Avenue South
> Edmonds, WA 98020
 (425) 329-0268.
```

	Analytical Resources, Incorporated Analytical Chemists and Consultants
--	--

Cooler Receipt Form

ARI Client: Lender DOLOG Project Name:	
COC No: Delivered by:	v.
Assigned ARI Job No: Tracking No:	
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES NO	3
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.)	
Record cooler temperature (recommended 2.0-6.0 °C for chemistry 8.4 1001.4 °C	
Cooler Accepted by:	,
Complete custody forms and attach all shipping documents	
Log-In Phase:	
Was a temperature blank included in the cooler?	"
What kind of packing material was used?	
Was sufficient ice used (if appropriate)?	•
Were all bottles sealed in individual plastic bags?) .
Did all bottle arrive in good condition (unbroken)?	•
Were all bottle labels complete and legible?	
Did all bottle labels and tags agree with custody papers?)
Were all bottles used correct for the requested analyses?	-
Do any of the analyses (bottles) require preservation? (attach preservation checklist)	
Were all VOC vials free of air bubbles? NA YES NO	
Was sufficient amount of sample sent in each bottle?	
Samples Logged by:	
** Notify Project Manager of discrepancies or concerns **	
Explain discrepancies or negative responses:	1
I-205-090204 COC, labels read I-205-090203, time was used t	s match
I-2055-090204 COC, labels read I-205-090205, time & date used to m	atch
	: · · ·
By: てい Date: 24/05	· ·

Page 1 of 2

Lab Sample ID: OL19A

LIMS ID: 09-3526

Matrix: Water Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 16:51 Instrument/Analyst: NT4/LJR

Sample ID: PZ-8-090204 SAMPLE

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Lab Sample ID: OL19A LIMS ID: 09-3526

Matrix: Water

Date Analyzed: 02/10/09 16:51

Sample ID: PZ-8-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55 - 3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
5 0- 32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene d14-p-Terphenyl	64.0% 81.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	62.8% 65.6%
d5-Phenol	27.5%	2-Fluorophenol	42.9%
2,4,6-Tribromophenol	76.5%	d4-2-Chlorophenol	67.5%

Sample ID: P2-8-090204 SAMPLE

Lab Sample ID: OL19A LIMS ID: 09-4566

Matrix: Water

Data Release Authorized: VVS Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 15:04 Instrument/Analyst: NT4/LJR

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100 Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 Ü
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: P2-8-090204

SAMPLE

Lab Sample ID: OL19A

QC Report No: OL19-The Boeing Company

LIMS ID: 09-4566

Project: TUKWILA/ PHASE 2

Matrix: Water

025173.100

Date Analyzed: 02/14/09 15:04

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
1 01 -55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	52.8%	2-Fluorobiphenyl	60.0%
d14-p-Terphenyl	68.0%	d4-1,2-Dichlorobenzene	46.0%
d5-Phenol	50.9%	2-Fluorophenol	46.7%
2,4,6-Tribromophenol	70.4%	d4-2-Chlorophenol	49.6%
2,4,6-Tribromophenol	70.46	d4-2-Chiotophenoi	40.00

Sample ID: PZ-4-090204 SAMPLE

Lab Sample ID: OL19B

LIMS ID: 09-3527

Matrix: Water Data Release Authorized:/

Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 17:26 Instrument/Analyst: NT4/LJR

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95 - 5 7 -8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106- 4 6- 7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50- 7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 Ŭ
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-4-090204

SAMPLE

Lab Sample ID: OL19B LIMS ID: 09-3527

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/10/09 17:26

Chlorophenyl-phenylether uorene Nitroaniline 6-Dinitro-2-Methylphenol Nitrosodiphenylamine Bromophenyl-phenylether	1.0 1.0 5.0 10 1.0	< 1.0 U < 1.0 U < 5.0 U < 10 U
Nitroaniline 6-Dinitro-2-Methylphenol Nitrosodiphenylamine	5.0 10	< 5.0 U < 10 U
6-Dinitro-2-Methylphenol Nitrosodiphenylamine	10	< 10 U
Nitrosodiphenylamine	- -	
	1.0	4 0
Promonhenyl-nhenylether		< 1.0 U
Dromopheny phenyteener	1.0	< 1.0 U
exachlorobenzene	1.0	< 1.0 U
entachlorophenol	5.0	< 5.0 U
nenanthrene	1.0	< 1.0 U
ırbazole	1.0	< 1.0 U
nthracene	1.0	< 1.0 U
-n-Butylphthalate	1.0	< 1.0 U
uoranthene	1.0	< 1.0 U
rene	1.0	< 1.0 U
ıtylbenzylphthalate	1.0	< 1.0 U
	5.0	< 5.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
	1.0	< 1.0 U
Methylnaphthalene	1.0	< 1.0 U
	exachlorobenzene entachlorophenol enanthrene erbazole ethracene en-n-Butylphthalate uoranthene erene etylbenzylphthalate 3'-Dichlorobenzidine enzo(a) anthracene s(2-Ethylhexyl) phthalate erysene en-Octyl phthalate enzo(b) fluoranthene enzo(b) fluoranthene enzo(a) pyrene deno(1,2,3-cd) pyrene benz(a,h) anthracene enzo(g,h,i) perylene	exachlorobenzene 1.0 entachlorophenol 5.0 enanthrene 1.0 erbazole 1.0 entachlorophenol 1.0 erbazole 1.0 entachlorobenzide 1.0 erbazole 1.0 entachlorobenzidine 1.0 erene 1.0 erene 1.0 erene 1.0 erene 1.0 erene 1.0 erene 1.0 erene 1.0 erzo(a) anthracene 1.0 erysene 1.0 erysene 1.0 enzo(b) fluoranthene 1.0 enzo(b) fluoranthene 1.0 enzo(a) pyrene 1.0 enzo(a) pyrene 1.0 enzo(a, h) anthracene 1.0 enzo(g, h, i) perylene 1.0

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	42.0%	2-Fluorobiphenyl	47.2%
d14-p-Terphenyl	76.4%	d4-1,2-Dichlorobenzene	39.6%
d14-p-leiphenyi d5-Phenol	17.5%	2-Fluorophenol	26.2%
2.4.6-Tribromophenol	73.9%	d4-2-Chlorophenol	44.0%

Page 1 of 2

Lab Sample ID: OL19B LIMS ID: 09-4567

Matrix: Water

Data Release Authorized: \

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 15:39 Instrument/Analyst: NT4/LJR

Sample ID: P2-4-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: P2-4-090204

SAMPLE

Lab Sample ID: OL19B

QC Report No: OL19-The Boeing Company Project: TUKWILA/ PHASE 2

LIMS ID: 09-4567

025173.100

Matrix: Water

Date Analyzed: 02/14/09 15:39

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	76.4% 74.4%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	76.4% 67.2%
d14-p-lerpheny1 d5-Phenol	68.8%	2-Fluorophenol	70.4%
2,4,6-Tribromophenol	82.1%	d4-2-Chlorophenol	72.8%

Sample ID: PZ-2-090204 SAMPLE

Lab Sample ID: OL19C LIMS ID: 09-3528

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100
Date Sampled: 02/04/09
Date Received: 02/04/09

Data Release Authorized: DR Reported: 02/12/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

Date Extracted: 02/06/09
Date Analyzed: 02/10/09 18:00
Instrument/Analyst: NT4/LJR

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-2-090204

SAMPLE

Lab Sample ID: OL19C LIMS ID: 09-3528

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/10/09 18:00

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo (a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	59.6%	2-Fluorobiphenyl	58.0%
		± -	
d14-p-Terphenyl	86.4%	d4-1,2-Dichlorobenzene	60.4%
d5-Phenol	24.1%	2-Fluorophenol	39.2%
2.4.6-Tribromophenol	84.0%	d4-2-Chlorophenol	62.7%

Page 1 of 2

Lab Sample ID: OL19C LIMS ID: 09-4568

Matrix: Water

Data Release Authorized:

Reported: 02/17/09

VIS

Date Extracted: 02/12/09
Date Analyzed: 02/14/09 16:14
Instrument/Analyst: NT4/LJR

Sample ID: P2-2-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	\mathtt{RL}	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: P2-2-090204

SAMPLE

Lab Sample ID: OL19C

QC Report No: OL19-The Boeing Company

LIMS ID: 09-4568

Project: TUKWILA/ PHASE 2

Matrix: Water

025173.100

Date Analyzed: 02/14/09 16:14

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 Ŭ
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 Ŭ
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.8
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	76.0%	2-Fluorobiphenyl	73.28
d14-p-Terphenyl	64.8%	d4-1,2-Dichlorobenzene	67.68
d5-Phenol	66.9%	2-Fluorophenol	70.18
2,4,6-Tribromophenol	75.7%	d4-2-Chlorophenol	72.58
2,4,6-Tribromophenoi	15.16	d4-2-cirrorophenor	,2.50

Page 1 of 2

Lab Sample ID: OL19D LIMS ID: 09-3529

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 18:35

Instrument/Analyst: NT4/LJR

Sample ID: I-206-090204 SAMPLE

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number Analyte	RL	Result
108-95-2 Phenol	1.0	< 1.0 U
111-44-4 Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8 2-Chlorophenol	1.0	< 1.0 U
541-73-1 1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7 1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6 Benzyl Alcohol	5.0	< 5.0 U
95-50-1 1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7 2-Methylphenol	1.0	< 1.0 U
108-60-1 2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5 4-Methylphenol	1.0	< 1.0 U
621-64-7 N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1 Hexachloroethane	1.0	< 1.0 U
98-95-3 Nitrobenzene	1.0	< 1.0 U
78-59-1 Isophorone	1.0	< 1.0 U
88-75-5 2-Nitrophenol	5.0	< 5.0 U
105-67-9 2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0 Benzoic Acid	10	< 10 U
111-91-1 bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2 2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1 1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3 Naphthalene	1.0	< 1.0 U
106-47-8 4-Chloroaniline	5.0	< 5.0 U
87-68-3 Hexachlorobutadiene	1.0	< 1.0 U
59-50-7 4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6 2-Methylnaphthalene	1.0	< 1.0 U
77-47-4 Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2 2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4 2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7 2-Chloronaphthalene	1.0	< 1.0 U
88-74-4 2-Nitroaniline	5.0	< 5.0 U
131-11-3 Dimethylphthalate	1.0	< 1.0 U
208-96-8 Acenaphthylene	1.0	< 1.0 U
99-09-2 3-Nitroaniline	5.0	< 5.0 U
83-32-9 Acenaphthene	1.0	< 1.0 U
51-28-5 2,4-Dinitrophenol	10	< 10 U
100-02-7 4-Nitrophenol	5.0	< 5.0 U
132-64-9 Dibenzofuran	1.0	< 1.0 U
606-20-2 2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2 2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2 Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-206-090204

SAMPLE

Lab Sample ID: OL19D LIMS ID: 09-3529

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

Date Analyzed: 02/10/09 18:35

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	61.2%	2-Fluorobiphenyl	60.8%
	88.0%	d4-1,2-Dichlorobenzene	60.4%
d14-p-Terphenyl		2-Fluorophenol	40.0%
d5-Phenol	25.1%	±	
2 4 6-Tribromophenol	86.7%	d4-2-Chlorophenol	65.1%

Page 1 of 2

Lab Sample ID: OL19D LIMS ID: 09-4569

Matrix: Water

Data Release Authorized:

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 16:49 Instrument/Analyst: NT4/LJR

Sample ID: I-206-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: I-206-090204

SAMPLE

QC Report No: OL19-The Boeing Company Lab Sample ID: OL19D LIMS ID: 09-4569

Project: TUKWILA/ PHASE 2

025173.100

Matrix: Water Date Analyzed: 02/14/09 16:49

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56 - 55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	4.2
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	75.2%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	77.2%	d4-1,2-Dichlorobenzene	66.0%
d5-Phenol	68.3%	2-Fluorophenol	68.8%
2,4,6-Tribromophenol	84.8%	d4-2-Chlorophenol	70.1%

Sample ID: I-205-090204

Lab Sample ID: OL19E

SAMPLE

LIMS ID: 09-3530

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water Data Release Authorized: Reported: 02/12/09

025173.100 Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 19:10 Instrument/Analyst: NT4/LJR

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 Ŭ
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-205-090204

SAMPLE

Lab Sample ID: OL19E LIMS ID: 09-3530

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/10/09 19:10

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	38.6%	2-Fluorobiphenyl	42.8%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	38.6%
d5-Phenol	14.5%	2-Fluorophenol	22.5%
2.4.6-Tribromophenol	72.5%	d4-2-Chlorophenol	39.2%

Page 1 of 2

Lab Sample ID: OL19E LIMS ID: 09-4570

Matrix: Water

Data Release Authorized: \\

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 17:23 Instrument/Analyst: NT4/LJR

Sample ID: I-205-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

CAS Number	Analyte	\mathtt{RL}	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 Ŭ
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: I-205-090204

SAMPLE

QC Report No: OL19-The Boeing Company Lab Sample ID: OL19E LIMS ID: 09-4570

Project: TUKWILA/ PHASE 2

025173.100

Matrix: Water Date Analyzed: 02/14/09 17:23

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86 - 5	Pentachlorophenol	5.0	< 5.0 Ŭ
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 Ü
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 Ŭ
56-55 - 3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	62.8%	2-Fluorobiphenyl	66.0%
d14-p-Terphenyl	65.6%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	58.4%	2-Fluorophenol	57.9%
2,4,6-Tribromophenol	77.9%	d4-2-Chlorophenol	60.0%

Sample ID: I-203-090204

SAMPLE

Lab Sample ID: OL19F LIMS ID: 09-3531

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100 Date Sampled: 02/04/09

Data Release Authorized: Reported: 02/12/09

Date Received: 02/04/09 Sample Amount: 500 mL

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 19:45 Instrument/Analyst: NT4/LJR

Final Extract Volume: 0.50 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-203-090204

SAMPLE

Lab Sample ID: OL19F LIMS ID: 09-3531

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/10/09 19:45

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 Ŭ
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
11 7 -81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno (1,2,3-cd) pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	59.2%	2-Fluorobiphenyl	58.8%
d14-p-Terphenyl	88.4%	d4-1,2-Dichlorobenzene	58.8%
d5-Phenol	25.4%	2-Fluorophenol	40.0%
2 4 6-Tribromophenol	86 1%	d4-2-Chlorophenol	63 7%

Sample ID: I-203-090204

SAMPLE

Lab Sample ID: OL19F LIMS ID: 09-4571 QC Report No: OL19-The Boeing Company Project: TUKWILA/ PHASE 2

Matrix: Water

Project: TUKWILA/ PHASE 2 025173.100

Data Release Authorized: V
Reported: 02/17/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/12/09
Date Analyzed: 02/14/09 17:58
Instrument/Analyst: NT4/LJR

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-6 4 -7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Lab Sample ID: OL19F

LIMS ID: 09-4571 Matrix: Water

Date Analyzed: 02/14/09 17:58

Sample ID: I-203-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo (a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol	70.0% 75.6% 63.5%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	72.0% 63.2% 65.9% 68.0%
2,4,6-Tribromopheno	ol 78.1%	d4-2-Chlorophenol	68.0%

Page 1 of 2

Sample ID: I-2055-090204

SAMPLE

Lab Sample ID: OL19G LIMS ID: 09-3532

Matrix: Water

Data Release Authorized: Reported: 02/12/09

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 20:19 Instrument/Analyst: NT4/LJR

CAS Number	Analyte	\mathtt{RL}	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-2055-090204

SAMPLE

Lab Sample ID: OL19G LIMS ID: 09-3532 QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/10/09 20:19

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene d14-p-Terphenyl	61.6% 79.2%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	59.6% 62.4%
d5-Phenol	24.0%	2-Fluorophenol	38.9%
2,4,6-Tribromophenol	76.5%	d4-2-Chlorophenol	63.7%

Sample ID: I-2055-090204

SAMPLE

Lab Sample ID: OL19G LIMS ID: 09-4572

QC Report No: OL19-The Boeing Company

Matrix: Water

Project: TUKWILA/ PHASE 2

Data Release Authorized:

025173.100

Reported: 02/17/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 18:33

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Instrument/Analyst: NT4/LJR

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Matrix: Water

Sample ID: I-2055-090204

SAMPLE

QC Report No: OL19-The Boeing Company Lab Sample ID: OL19G LIMS ID: 09-4572

Project: TUKWILA/ PHASE 2

025173.100

Date Analyzed: 02/14/09 18:33

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 Ŭ
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 Ŭ
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	52.4%	2-Fluorobiphenyl	55.6%
d14-p-Terphenyl	66.0%	d4-1,2-Dichlorobenzene	47.6%
d5-Phenol	49.1%	2-Fluorophenol	47.5%
2,4,6-Tribromophenol	82.7%	d4-2-Chlorophenol	49.6%

Sample ID: MB-020609 METHOD BLANK

Project: Thompson - Tukwila Phase II

QC Report No: OL19-The Boeing Company

025173.100

Lab Sample ID: MB-020609

LIMS ID: 09-3526

Matrix: Water Data Release Authorized: Reported: 02/12/09

Date Sampled: NA Date Received: NA

Date Extracted: 02/06/09 Sample Amount: 500 mL Final Extract Volume: 0.50 mL Date Analyzed: 02/10/09 12:49 Dilution Factor: 1.00 Instrument/Analyst: NT4/LJR

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57 - 8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Matrix: Water

Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609 QC Report No: OL19-The Boeing Company
LIMS ID: 09-3526 Project: Thompson - Tukwila Phase II

025173.100

Date Analyzed: 02/10/09 12:49

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	62.8%	2-Fluorobiphenyl	58.4%
d14-p-Terphenyl	83.6%	d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	30.7%	2-Fluorophenol	45.6%
2.4.6-Tribromophenol	70.9%	d4-2-Chlorophenol	69.1%

Lab Sample ID: MB-021209

LIMS ID: 09-4566 Matrix: Water

Data Release Authorized: VT

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 11:35 Instrument/Analyst: NT4/LJR

Sample ID: MB-021209 METHOD BLANK

QC Report No: OL19-The Boeing Company Project: TUKWILA/ PHASE 2

025173.100

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-5 7- 8	2-Chlorophenol	1.0	< 1.0 U
5 41 -73 - 1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 Ü
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75 - 5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85 - 0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: MB-021209

METHOD BLANK

Lab Sample ID: MB-021209

QC Report No: OL19-The Boeing Company

LIMS ID: 09-4566

Project: TUKWILA/ PHASE 2

Matrix: Water

025173.100

Date Analyzed: 02/14/09 11:35

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	70.4%
d14-p-Terphenyl	82.4%	d4-1,2-Dichlorobenzene	61.2%
d5-Phenol	72.0%	2-Fluorophenol	70.9%
2.4.6-Tribromophenol	74.9%	d4-2-Chlorophenol	74.1%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II Matrix: Water

025173.100

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP TO	T OUT
MB-020609	62.8%	58.4%	83.6%	64.4%	30.7%	45.6%	70.9%	69.1%	0 .
LCS-020609	67.2%	67.6%	78.4%	69.2%	33.3%	48.5%	80.3%	75.2%	0
LCSD-020609	63.2%	69.6%	84.4%	65.2%	32.0%	45.6%	85.9%	69.9%	0
PZ-8-090204	64.0%	62.8%	81.6%	65.6%	27.5%	42.9%	76.5%	67.5%	0
PZ-4-090204	42.0%*	47.2%*	76.4%	39.6%*	17.5%	26.2%	73.9%	44.0%	3
PZ-2-090204	59.6%	58.0%	86.4%	60.4%	24.1%	39.2%	84.0%	62.7%	0
I-206-090204	61.2%	60.8%	88.0%	60.4%	25.1%	40.0%	86.7%	65.1%	0
I-205-090204	38.6%*	42.8%*	74.8%	38.6%*	14.5%	22.5%*	72.5%	39.2%*	5
I-203-090204	59.2%	58.8%	88.4%	58.8%	25.4%	40.0%	86.1%	63.7%	0
I-2055-090204	61.6%	59.6%	79.2%	62.4%	24.0%	38.9%	76.5%	63.7%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
(TPH)	=	d14-p-Terphenyl	(48-120)	(46-119)
		d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C

Log Number Range: 09-3526 to 09-3532

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL19-The Boeing Company Project: TUKWILA/ PHASE 2 025173.100

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-021209	74.8%	70.4%	82.4%	61.2%	72.0%	70.9%	74.9%	74.1%	0
LCS-021209	76.0%	71.2%	90.0%	65.6%	79.2%	72.5%	93.1%	75.5%	0
LCSD-021209	70.0%	75.2%	82.0%	59.2%	67.7%	63.7%	90.9%	65.6%	0
P2-8-090204	52.8%	60.0%	68.0%	46.0%	50.9%	46.7%	70.4%	49.6%	0
P2-4-090204	76.4%	76.4%	74.4%	67.2%	68.8%	70.4%	82.1%	72.8%	0
P2-2-090204	76.0%	73.2%	64.8%	67.6%	66.9%	70.1%	75.7%	72.5%	0
I-206-090204	75.2%	77.2%	77.2%	66.0%	68.3%	68.8%	84.8%	70.1%	0
I-205-090204	62.8%	66.0%	65.6%	54.8%	58.4%	57.9%	77.9%	60.0%	0
I-203-090204	70.0%	72.0%	75.6%	63.2%	63.5%	65.9%	78.1%	68.0%	0
I-2055-090204	52.4%	55.6%	66.0%	47.6%	49.1%	47.5%	82.7%	49.6%	0.

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
, ,		d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 09-4566 to 09-4572

Page 1 of 2

Lab Sample ID: LCS-020609

LIMS ID: 09-3526

Matrix: Water Data Release Authorized:

Reported: 02/12/09

Date Extracted LCS/LCSD: 02/06/09

Date Analyzed LCS: 02/10/09 13:24

LCSD: 02/10/09 13:59

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

GPC Cleanup: NO

Sample ID: LCS-020609 LCS/LCSD

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	7.5	25.0	30.0%	7.2	25.0	28.8%	3.0%
Bis-(2-Chloroethyl) Ether	18.7	25.0	74.8%	17.9	25.0	71.6%	4.4%
2-Chlorophenol	18.1	25.0	72.4%	16.9	25.0	67.6%	6.9%
1.3-Dichlorobenzene	16.7	25.0	66.8%	16.1	25.0	64.4%	3.7%
1,4-Dichlorobenzene	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Benzyl Alcohol	18.2	50.0	36.4%	18.3	50.0	36.6%	0.5%
1,2-Dichlorobenzene	17.6	25.0	70.4%	17.0	25.0	68.0%	3.5%
•	16.1	25.0	64.4%	15.6	25.0	62.4%	3.2%
2-Methylphenol		25.0	57.2%	13.8	25.0	55.2%	3.6%
2,2'-Oxybis(1-Chloropropane	30.9	50.0	61.8%	30.7	50.0	61.4%	0.6%
4-Methylphenol	16.5	25.0	66.0%	16.4	25.0	65.6%	0.6%
N-Nitroso-Di-N-Propylamine	16.5	25.0	66.4%	16.2	25.0	64.8%	2.4%
Hexachloroethane	16.2	25.0	64.8%	15.7	25.0	62.8%	3.1%
Nitrobenzene		25.0	71.2%	18.1	25.0	72.4%	1.7%
Isophorone	17.8		73.6%	17.8	25.0	71.2%	3.3%
2-Nitrophenol	18.4	25.0		12.5	25.0	50.0%	3.1%
2,4-Dimethylphenol	12.9	25.0	51.6%	29.6	75.0	39.5%	4.8%
Benzoic Acid	28.2	75.0	37.6%		25.0	70.4%	0.6%
bis(2-Chloroethoxy) Methane		25.0	70.8%	17.6		70.4%	2.2%
2,4-Dichlorophenol	18.4	25.0	73.6%	18.0	25.0	64.0%	2.5%
1,2,4-Trichlorobenzene	16.4	25.0	65.6%	16.0	25.0		2.8%
Naphthalene	17.8	25.0	71.2%	17.3	25.0	69.2% NA%	NA
• • • • • • • • • • • • • • • • • • • •	< 5.0	60.0	NA%	< 5.0	60.0	NA 5 62.0%	NA 3.8%
Hexachlorobutadiene	16.1	25.0	64.48	15.5	25.0	62.08 76.48	3.88 3.2%
4-Chloro-3-methylphenol	18.5	25.0	74.0%	19.1	25.0		
2-Methylnaphthalene	18.3	25.0	73.2%	18.1	25.0	72.48	1.1%
Hexachlorocyclopentadiene	45.9	75.0	61.2%	45.8	75.0	61.1%	0.2%
2,4,6-Trichlorophenol	17.3	25.0	69.2%	18.1	25.0	72.4%	4.5%
2,4,5-Trichlorophenol	18.2	25.0	72.8%	18.4	25.0	73.6%	1.1%
2-Chloronaphthalene	17.5	25.0	70.0%	17.9	25.0	71.6%	2.3%
2-Nitroaniline	16.7	25.0	66.8%	17.6	25.0	70.4%	5.2%
Dimethylphthalate	19.1	25.0	76.4%	20.4	25.0	81.6%	6.6%
Acenaphthylene	18.3	25.0	73.2%	19.0	25.0	76.0%	3.8%
3-Nitroaniline	17.7	64.0	27.7%	19.7	64.0	30.8%	10.7%
Acenaphthene	17.9	25.0	71.6%	18.4	25.0	73.6%	2.8%
2,4-Dinitrophenol	75.8	75.0	101%	85.7	75.0	114%	12.3%
4-Nitrophenol	9.6	25.0	38.4%	10.2	25.0	40.8%	6.3%
Dibenzofuran	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
2,6-Dinitrotoluene	18.6	25.0	74.4%	19.8	25.0	79.2%	6.2%
2,4-Dinitrotoluene	19.7	25.0	78.8%	21.1	25.0	84.4%	6.9%
Diethylphthalate	19.1	25.0	76.4%	20.7	25.0	82.8%	8.0%
4-Chlorophenyl-phenylether	18.0	25.0	72.0%	19.0	25.0	76.0%	5.4%
Fluorene	19.2	25.0	76.8%	20.1	25.0	80.4%	4.6%
4-Nitroaniline	17.6	25.0	70.4%	18.7	25.0	74.8%	6.1%
4,6-Dinitro-2-Methylphenol	68.3	75.0	91.1%	76.8	75.0	102%	11.7%
N-Nitrosodiphenylamine	16.9	25.0	67.6%	18.1	25.0	72.4%	6.9%
M-MICTOROGIATETTA TRUTTLE	10.7	20.0	5				

Page 2 of 2

Lab Sample ID: LCS-020609

LIMS ID: 09-3526

Matrix: Water

Date Analyzed: 02/10/09 13:24

Sample ID: LCS-020609

LCS/LCSD

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	16.8	25.0	67.2%	18.1	25.0	72.4%	7.4%
Hexachlorobenzene	17.2	25.0	68.8%	18.4	25.0	73.6%	6.7%
Pentachlorophenol	18.7	25.0	74.8%	20.5	25.0	82.0%	9.2%
Phenanthrene	18.8	28.0	67.1%	20.0	28.0	71.4%	6.2%
Carbazole	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
Anthracene	18.3	25.0	73.2%	19.5	25.0	78.0%	6.3%
Di-n-Butylphthalate	19.3	25.0	77.2%	20.8	25.0	83.2%	7.5%
Fluoranthene	19.0	25.0	76.0%	20.3	25.0	81.2%	6.6%
Pyrene	19.7	25.0	78.8%	21.4	25.0	85.6%	8.3%
Butylbenzylphthalate	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
3,3'-Dichlorobenzidine	34.0	64.0	53.1%	41.0	64.0	64.1%	18.7%
Benzo(a)anthracene	18.5	25.0	74.0%	20.2	25.0	80.8%	8.8%
bis(2-Ethylhexyl)phthalate	19.8	25.0	79.2%	22.0	25.0	88.0%	10.5%
Chrysene	18.6	28.0	66.4%	19.8	28.0	70.7%	6.2%
Di-n-Octyl phthalate	18.4	25.0	73.6%	19.9	25.0	79.6%	7.8%
Benzo(b) fluoranthene	20.1	25.0	80.4%	22.5	25.0	90.0%	11.3%
Benzo(k)fluoranthene	19.9	28.0	71.1%	21.2	28.0	75 .7 %	6.3%
Benzo(a)pyrene	15.5	25.0	62.0%	17.3	25.0	69.2%	11.0%
Indeno(1,2,3-cd)pyrene	17.6	25.0	70.4%	19.4	25.0	77.6%	9.7%
Dibenz(a,h)anthracene	17.7	25.0	70.8%	19.4	25.0	77.6%	9.2%
Benzo(g,h,i)perylene	16.9	25.0	67.6%	18.5	25.0	74.0%	9.0%
1-Methylnaphthalene	19.5	25.0	78.0%	19.8	25.0	79.2%	1.5%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	67.2%	63.2%
2-Fluorobiphenyl	67.6%	69.6%
d14-p-Terphenyl	78.4%	84.4%
d4-1,2-Dichlorobenzene	69.2%	65.2%
d5-Phenol	33.3%	32.0%
2-Fluorophenol	48.5%	45.6%
2,4,6-Tribromophenol	80.3%	85.9%
d4-2-Chlorophenol	75.2%	69.9%

Results reported in μ g/L RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: LCS-021209

LCS/LCSD

Lab Sample ID: LCS-021209

LIMS ID: 09-4566

Project: TUKWILA/ PHASE 2

025173.100

QC Report No: OL19-The Boeing Company

Matrix: Water Data Release Authorized: \\'

Date Sampled: 02/04/09

Reported: 02/17/09

Date Received: 02/04/09

Date Extracted LCS/LCSD: 02/12/09

Sample Amount LCS: 500 mL

Date Analyzed LCS: 02/14/09 12:09

LCSD: 500 mL Final Extract Volume LCS: 0.50 mL

LCSD: 02/14/09 12:44

LCSD: 0.50 mL

Instrument/Analyst LCS: NT4/LJR

Dilution Factor LCS: 1.00

LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	19.5	25.0	78.0%	16.5	25.0	66.0%	16.7%
Bis-(2-Chloroethyl) Ether	18.2	25.0	72.8%	16.1	25.0	64.4%	12.2%
2-Chlorophenol	18.5	25.0	74.0%	16.2	25.0	64.8%	13.3%
1,3-Dichlorobenzene	12.6	25.0	50.4%	11.6	25.0	46.4%	8.3%
1,4-Dichlorobenzene	13.0	25.0	52.0%	12.0	25.0	48.0%	8.0%
Benzyl Alcohol	35.1	50.0	70.2%	31.2	50.0	62.4%	11.8%
1,2-Dichlorobenzene	13.6	25.0	54.4%	12.4	25.0	49.6%	9.2%
2-Methylphenol	18.8	25.0	75.2%	16.2	25.0	64.8%	14.9%
2,2'-Oxybis(1-Chloropropane)19.0	25.0	76.0%	16.8	25.0	67.2%	12.3%
4-Methylphenol	38.9	50.0	77.8%	34.1	50.0	68.2%	13.2%
N-Nitroso-Di-N-Propylamine	18.9	25.0	75.6%	17.0	25.0	68.0%	10.6%
Hexachloroethane	11.4	25.0	45.6%	10.6	25.0	42.4%	7.3%
Nitrobenzene	18.7	25.0	74.8%	17.6	25.0	70.4%	6.1%
Isophorone	20.1	25.0	80.4%	19.6	25.0	78.4%	2.5%
2-Nitrophenol	18.4	25.0	73.6%	17.6	25.0	70.4%	4.4%
2,4-Dimethylphenol	18.0	25.0	72.0%	16.7	25.0	66.8%	7.5%
Benzoic Acid	64.1	75.0	85.5%	59.9	75.0	79.9%	6.8%
bis(2-Chloroethoxy) Methane	18.3	25.0	73.2%	17.8	25.0	71.2%	2.8%
2,4-Dichlorophenol	19.1	25.0	76.4%	18.6	25.0	74.4%	2.7%
1,2,4-Trichlorobenzene	13.8	25.0	55.2%	14.0	25.0	56.0%	1.4%
Naphthalene	16.4	25.0	65.6%	15.7	25.0	62.8%	4.4%
4-Chloroaniline	56.2	60.0	93.7%	52.5	60.0	87.5%	6.8%
Hexachlorobutadiene	11.9	25.0	47.6%	12.7	25.0	50.8%	6.5%
4-Chloro-3-methylphenol	20.9	25.0	83.6%	20.1	25.0	80.4%	3.9%
2-Methylnaphthalene	17.0	25.0	68.0%	16.8	25.0	67.2%	1.2%
Hexachlorocyclopentadiene	31.3	75.0	41.7%	38.6	75.0	51.5%	20.9%
2,4,6-Trichlorophenol	18.9	25.0	75.6%	20.4	25.0	81.6%	7.6%
2,4,5-Trichlorophenol	19.6	25.0	78.4%	20.7	25.0	82.8%	5.5%
2-Chloronaphthalene	16.2	25.0	64.8%	17.8	25.0	71.2%	9.4%
2-Nitroaniline	21.8	25.0	87.2%	22.0	25.0	88.0%	0.9%
Dimethylphthalate	21.0	25.0	84.0%	21.2	25.0	84.8%	0.9%
Acenaphthylene	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
3-Nitroaniline	65.7	64.0	103%	63.6	64.0	99.4%	3.2%
Acenaphthene	18.4	25.0	73.6%	19.8	25.0	79.2%	7.3%
2,4-Dinitrophenol	93.0	75.0	124%	93.8	75.0	125%	0.9%
4-Nitrophenol	22.4	25.0	89.6%	21.8	25.0	87.2%	2.7%
Dibenzofuran	19.3	25.0	77.2%	20.2	25.0	80.8%	4.6%
2,6-Dinitrotoluene	21.2	25.0	84.8%	21.2	25.0	84.8%	0.0%

Page 2 of 2

Lab Sample ID: LCS-021209

LIMS ID: 09-4566

Matrix: Water

Date Analyzed: 02/14/09 12:09

Sample ID: LCS-021209 LCS/LCSD

QC Report No: OL19-The Boeing Company

Project: TUKWILA/ PHASE 2

025173.100

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
2,4-Dinitrotoluene	22.0	25.0	88.0%	21.6	25.0	86.4%	1.8%
Diethylphthalate	20.4	25.0	81.6%	20.2	25.0	80.8%	1.0%
4-Chlorophenyl-phenylether	19.7	25.0	78.8%	20.2	25.0	80.8%	2.5%
Fluorene	20.4	25.0	81.6%	20.8	25.0	83.2%	1.9%
4-Nitroaniline	21.4	25.0	85.6%	20.4	25.0	81.6%	4.8%
4,6-Dinitro-2-Methylphenol	76.5	75.0	102%	80.2	75.0	107%	4.7%
N-Nitrosodiphenylamine	19.2	25.0	76.8%	20.2	25.0	80.8%	5.1%
4-Bromophenyl-phenylether	18.9	25.0	75.6%	20.7	25.0	82.8%	9.1%
Hexachlorobenzene	19.6	25.0	78.4%	21.6	25.0	86.4%	9.7%
Pentachlorophenol	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
Phenanthrene	20.5	25.0	82.0%	21.6	25.0	86.4%	5.2%
Carbazole	20.8	25.0	83.2%	21.2	25.0	84.8%	1.9%
Anthracene	19.8	25.0	79.2%	21.0	25.0	84.0%	5.9%
Di-n-Butylphthalate	20.4	25.0	81.6%	21.3	25.0	85.2%	4.3%
Fluoranthene	20.2	25.0	80.8%	21.9	25.0	87.6%	8.1%
Pyrene	21.1	25.0	84.4%	19.6	25.0	78.4%	7.4%
Butylbenzylphthalate	20.9	25.0	83.6%	20.2	25.0	80.8%	3.4%
3,3'-Dichlorobenzidine	52.2	64.0	81.6%	57.5	64.0	89.8%	9.7%
Benzo(a)anthracene	20.4	25.0	81.6%	21.4	25.0	85.6%	4.8%
bis(2-Ethylhexyl)phthalate	21.0	25.0	84.0%	20.8	25.0	83.2%	1.0%
Chrysene	19.9	25.0	79.6%	20.9	25.0	83.6%	4.9%
Di-n-Octyl phthalate	20.2	25.0	80.8%	21.8	25.0	87.2%	7.6%
Benzo(b) fluoranthene	19.6	25.0	78.4%	22.0	25.0	88.0%	11.5%
Benzo(k)fluoranthene	22.6	25.0	90.4%	21.1	25.0	84.4%	6.9%
Benzo(a) pyrene	16.6	25.0	66.4%	17.8	25.0	71.2%	7.0%
Indeno(1,2,3-cd)pyrene	19.4	25.0	77.6%	22.0	25.0	88.0%	12.6%
Dibenz (a, h) anthracene	18.9	25.0	75.6%	21.5	25.0	86.0%	12.9%
Benzo(g,h,i)perylene	18.4	25.0	73.6%	20.7	25.0	82.8%	11.8%
1-Methylnaphthalene	18.0	25.0	72.0%	17.8	25.0	71.2%	1.1%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	70.0%
2-Fluorobiphenyl	71.2%	75.2%
d14-p-Terphenyl	90.0%	82.0%
d4-1,2-Dichlorobenzene	65.6%	59.2%
d5-Phenol	79.2%	67.7%
2-Fluorophenol	72.5%	63.7%
2,4,6-Tribromophenol	93.1%	90.9%
d4-2-Chlorophenol	75.5%	65.6%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

QC Report No: OL19-The Boeing Company

025173.100

Project: Thompson - Tukwila Phase II

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 02/09/09

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-020609 09-3526	Method Blank	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 76.8%
OL19A 09-3526	PZ-8-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 81.6%
OL19B 09-3527	PZ-4-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 85.8%
OL19C 09-3528	PZ-2-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 85.9%
OL19D 09-3529	I-206-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 86.0%
OL19E 09-3530	I-205-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 76.7%
OL19F 09-3531	I-203-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 82.7%
OL19G 09-3532	I-2055-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 88.0%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL19-The Boeing Company
Project: Thompson - Tukwila Phase II
025173.100

Client ID	O-TER	TOT OUT
		-
MB-020609	76.8%	0
LCS-020609	89.6%	0
LCSD-020609	88.1%	0
PZ-8-090204	81.6%	0
PZ-4-090204	85.8%	0
PZ-2-090204	85.9%	0
I-206-090204	86.0%	0
I-205-090204	76.7%	0
I-203-090204	82.7%	0
I-2055-090204	88.0%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C

Log Number Range: 09-3526 to 09-3532

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

1 of 1 Page

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

LIMS ID: 09-3526

Matrix: Water

Data Release Authorized:

Reported: 02/09/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09

Date Received: 02/04/09

Date Extracted LCS/LCSD: 02/06/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/07/09 02:17

Final Extract Volume LCS: 1.0 mL

LCSD: 02/07/09 02:35 Instrument/Analyst LCS: FID/MS

LCSD: 1.0 mL

LCSD: FID/MS

Dilution Factor LCS: 1.00

LCSD: 1.00

LCS Spike Spike LCSD LCS Recovery Range Added-LCS LCSD Added-LCSD Recovery RPD Diesel 2.45 3.00 81.7% 3.00 2.41 80.3% 1.6%

HCID Surrogate Recovery

LCS LCSD

o-Terphenyl

89.6% 88.1%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OL19

Matrix: Water Project: Thompson - Tukwila Phase II

Date Received: 02/04/09 025173.100

		Sample	Final	Prep
ARI ID	Client ID	Amt	Vol	Date
09-3526-020609MB	Method Blank	500 mL	1.00 mL	02/06/09
09-3526-020609LCS	Lab Control	500 mL	1.00 mL	02/06/09
09-3526-020609LCSD	Lab Control Dup	500 mL	1.00 mL	02/06/09
09-3526-OL19A	PZ-8-090204	500 mL	1.00 mL	02/06/09
09-3527-OL19B	PZ-4-090204	500 mL	1.00 mL	02/06/09
09-3528-OL19C	PZ-2-090204	500 mL	1.00 mL	02/06/09
09-3529-OL19D	I-206-090204	500 mL	1.00 mL	02/06/09
09-3530-OL19E	I-205-090204	500 mL	1.00 mL	02/06/09
09-3531-OL19F	I-203-090204	500 mL	1.00 mL	02/06/09
09-3532-OL19G	I-2055-090204	500 mL	1.00 mL	02/06/09

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: PZ-8-090204 Page 1 of 2 SAMPLE

Lab Sample ID: OL19A

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized: Reported: 02/18/09

Instrument/Analyst: NT5/JZ

Date Analyzed: 02/13/09 15:38

zed:

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	Ŭ
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ŭ
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	2.5	< 2.5	Ŭ
127-18-4	Tetrachloroethene	0.2	< 0.2	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	Ŭ
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1330-20-7	m,p-Xylene	0.4	< 0.4	Ŭ
95-47-6	o-Xylene	0.2	< 0.2	Ŭ
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide Bromoethane	1.0	< 1.0 < 0.2	U
74-96-4 107-13-1		0.2	< 1.0	Ŭ
563-58-6	Acrylonitrile 1,1-Dichloropropene	1.0	< 0.2	U U
74-95-3	Dibromomethane	0.2	< 0.2	Ü
63 0 -20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	ΰ
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.2	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	ΰ
20 TO T	1,2,3 IIIomioropiopane	v.J	- 0.5	_

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-8-090204

SAMPLE

Lab Sample ID: OL19A LIMS ID: 09-3526

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/13/09 15:38

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	υ
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	99.6%
Bromofluorobenzene	96.7%
d4-1 2-Dichlorobenzene	1028

Page 1 of 2

Sample ID: PZ-4-090204

SAMPLE

Lab Sample ID: OL19B LIMS ID: 09-3527

Matrix: Water
Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 02/14/09 00:04

Reported: 02/18/09

d: //

QC Report No: OL19-The Boeing Company
Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	3.0	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Matrix: Water

Sample ID: PZ-4-090204

SAMPLE

Lab Sample ID: OL19B LIMS ID: 09-3527 QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Analyzed: 02/14/09 00:04

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	103%
d8-Toluene	99.0%
Bromofluorobenzene	95.9%
d4-1 2-Dichlorobenzene	102%

Page 1 of 2

Lab Sample ID: OL19C

LIMS ID: 09-3528 Matrix: Water

Data Release Authorized: Reported: 02/18/09

Instrument/Analyst: NT5/JZ
Date Analyzed: 02/13/09 21:49

Sample ID: PZ-2-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

	CAS Number	Analyte	RL	Result	Q
Vinyl Chloride	74-87-3	Chloromethane	0.2	< 0.2	U
Chioroethane	74-83-9	Bromomethane	0.5	< 0.5	U
Methylene Chloride	75-01-4	Vinyl Chloride	0.2	< 0.2	U
	75-00-3	Chloroethane	0.2	< 0.2	U
	75-09-2	Methylene Chloride	0.5	< 0.5	U
	67-64-1	Acetone	2.5	2.6	
1, -Dichloroethane	75-15-0	Carbon Disulfide	0.2	< 0.2	U
1,1-Dichloroethane		1,1-Dichloroethene	0.2	< 0.2	U
156-60-5			0.2	< 0.2	U
	156-60-5		0.2	< 0.2	U
Company Comp			0.2	0.5	
1,2-Dichloroethane				< 0.2	U
2-Butanome 2.5					U
1,1,1-Trichloroethane		•			Ū
Carbon Tetrachloride 0.2 < 0.2					
Ninyl Acetate		• •			
1,2-Dichloropropane					
10061-01-5					•
Trichloroethene 0.2 < 0.2 U 124-48-1 Dibromochloromethane 0.2 < 0.2 U 179-00-5 1,1,2-Trichloroethane 0.2 < 0.2 U 170-00-5 1,1,2-Trichloroethane 0.2 < 0.2 U 170-00-5 1,1,2-Trichloroethane 0.2 < 0.2 U 170-01-6 trans-1,3-Dichloropropene 0.2 < 0.2 U 170-17-8 Benzene 0.2 < 0.2 U 170-17-8 2-Chloroethylvinylether 1.0 < 1.0 U 170-25-8 2-Chloroethylvinylether 1.0 < 1.0 U 170-25-8 Bromoform 0.2 < 0.2 U 170-18-4 Tetrachloroethene 0.2 < 0.2 U 170-18-4 Tetrachloroethene 0.2 < 0.2 U 170-34-5 1,1,2,2-Tetrachloroethane 0.2 < 0.2 U 170-34-5 1,1,2,2-Tetrachloroethane 0.2 < 0.2 U 170-41-4 Ethylbenzene 0.2 < 0.2 U 170-42-5 Styrene 0.2 < 0.2 U 170-42-5 Styrene 0.2 < 0.2 U 170-42-5 Styrene 0.2 < 0.2 U 170-47-6 0-Xylene 0.2 < 0.2 U 170-47-6 0-Xylene 0.2 < 0.2 U 170-47-6 0-Xylene 0.2 < 0.2 U 170-5-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 170-02-8 Acrolein 5.0 < 5.0 U 170-02-8 Acrolein 5.0 < 5.0 U 170-02-8 Acrolein 5.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Acrolein 0.2 < 0.2 U 170-13-1 Acrylonitrile 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-8 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iodide 1.0 < 1.0 U 170-03-9 Hethyl Iod					ΤT
124-48-1 Dibromochloromethane 0.2 < 0.2 U 1,1,2-Trichloroethane 0.2 < 0.2 U 1,1,2-Trichloroethane 0.2 < 0.2 U 1,1,2-Trichloroethane 0.2 < 0.2 U 1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,1,2-Trichloropropene 0.2 < 0.2 U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1					
1,1,2-Trichloroethane					
### Benzene					
10061-02-6 trans-1,3-Dichloropropene					
1.0 - 75 - 8 2 - Chloroethylvinylether 1.0					
### Brownform 0.2 0.2 U ### Understand					
108-10-1					
591-78-6 2-Hexanone 2.5 < 2.5					
127-18-4 Tetrachloroethene 0.2 < 0.2					
79-34-5					-
Toluene 0.2 < 0.2 U 108-90-7 Chlorobenzene 0.2 < 0.2 U 100-41-4 Ethylbenzene 0.2 < 0.2 U 100-42-5 Styrene 0.2 < 0.2 U 15-69-4 Trichlorofluoromethane 0.2 < 0.2 U 1330-20-7 m,p-Xylene 0.4 < 0.4 U 15-47-6 0-Xylene 0.2 < 0.2 U 15-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,3-Dichlorobenzene 0.2 < 0.2 U 107-02-8 Acrolein 5.0 < 5.0 U 14-88-4 Methyl Iodide 1.0 < 1.0 U 14-96-4 Bromoethane 0.2 < 0.2 U 15-53-58-6 1,1-Dichloropropene 0.2 < 0.2 U 15-63-58-6 1,1-Dichloropropene 0.2 < 0.2 U 15-63-58-6 1,1,1-Z-Tetrachloroethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2 U 15-50-1 Coloromomethane 0.2 < 0.2					
108-90-7 Chlorobenzene 0.2 < 0.2					
100-41-4 Ethylbenzene 0.2 < 0.2					
Styrene		¥			
Trichlorofluoromethane 0.2 < 0.2 U 76-13-1		-			
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 < 0.2					
1330-20-7 m,p-Xylene 0.4 < 0.4		- -			
0.2 < 0.2 U 0.5-47-6					
1,2-Dichlorobenzene					
541-73-1 1,3-Dichlorobenzene 0.2 < 0.2					-
1,4-Dichlorobenzene 0.2 < 0.2					
Acrolein 5.0 < 5.0 U 74-88-4 Methyl Iodide 1.0 < 1.0 U 74-96-4 Bromoethane 0.2 < 0.2 U 107-13-1 Acrylonitrile 1.0 < 1.0 U 663-58-6 1,1-Dichloropropene 0.2 < 0.2 U 74-95-3 Dibromomethane 0.2 < 0.2 U 6530-20-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 66-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U		•			
74-88-4 Methyl Iodide 1.0 < 1.0					
74-96-4 Bromoethane 0.2 < 0.2					
1.07-13-1 Acrylonitrile 1.0 < 1.0		_			
563-58-6 1,1-Dichloropropene 0.2 < 0.2					
74-95-3 Dibromomethane 0.2 < 0.2	107-13-1				
530-20-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U	563-58-6				
96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U	74-95-3				
	630-20-6				
96-18-4	96-12-8				
, , , <u>+</u> <u>+</u>	96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ú

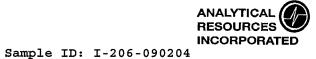
ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-2-090204 SAMPLE

Lab Sample ID: OL19C QC Report No: OL19-The Boeing Company
LIMS ID: 09-3528 Project: Thompson - Tukwila Phase II


Matrix: Water 025173.100

Date Analyzed: 02/13/09 21:49

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	97.7%
Bromofluorobenzene	95.1%
d4-1,2-Dichlorobenzene	101%

Data Release Authorized:

Reported: 02/18/09

Page 1 of 2 SAMPLE

Lab Sample ID: OL19D QC Report No: OL19-The Boeing Company

LIMS ID: 09-3529 Project: Thompson - Tukwila Phase II Matrix: Water 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 02/13/09 22:16 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	Ū
75-01-4	Vinyl Chloride	0.2	1.8	
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	2.5	4.2	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	0.3	
156-60-5	trans-1,2-Dichloroethene	0.2	0.4	
156-59-2	cis-1,2-Dichloroethene	0.2	0.7	
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ŭ
78-93-3	2-Butanone	2.5	< 2.5	Ū
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ū
56-23-5	Carbon Tetrachloride	0.2	< 0.2	Ū
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	Ū
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2 Sample ID: I-206-090204

SAMPLE

Lab Sample ID: OL19D

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3529

Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/13/09 22:16

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	97.1%
Bromofluorobenzene	97.0%
d4-1 2-Dichlorobenzene	101%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: I-205-090204

Page 1 of 2 SAMPLE

Lab Sample ID: OL19E LIMS ID: 09-3530

Matrix: Water Data Release Authorized:

Reported: 02/18/09

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 02/13/09 22:43 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U
	_ _			

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: I-205-090204

SAMPLE

Lab Sample ID: OL19E

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3530 Matrix: Water

Project: Thompson - Tukwila Phase II

025173.100

Date Analyzed: 02/13/09 22:43

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	99.1%
Bromofluorobenzene	95.9%
d4-1,2-Dichlorobenzene	101%

Sample ID: I-203-090204 SAMPLE

Lab Sample ID: OL19F LIMS ID: 09-3531

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

Data Release Authorized: Reported: 02/18/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Instrument/Analyst: NT5/JZ Date Analyzed: 02/13/09 23:10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	3.1	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	1.3	
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95- 4 7-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	Ŭ
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Sample ID: I-203-090204 Page 2 of 2 SAMPLE

Lab Sample ID: OL19F

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3531

Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

Date Analyzed: 02/13/09 23:10

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93- 4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	101%
Bromofluorobenzene	95.8%
d4-1,2-Dichlorobenzene	100%

Sample ID: I-2055-090204

SAMPLE

Lab Sample ID: OL19G

LIMS ID: 09-3532 Matrix: Water

Page 1 of 2

Data Release Authorized: Reported: 02/18/09

Instrument/Analyst: NT5/JZ Date Analyzed: 02/13/09 23:37 QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
57-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23 - 5	Carbon Tetrachloride	0.2	< 0.2	Ū
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79 - 01-6	Trichloroethene	0.2	< 0.2	Ū
	Dibromochloromethane	0.2	< 0.2	Ū
124-48-1 79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
		0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	U
75-25-2	Bromoform (MTRK)		< 2.5	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5		
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
L08-88 - 3	Toluene	0.2	< 0.2	U
L08-90-7	Chlorobenzene	0.2	< 0.2	U
L00-41 - 4	Ethylbenzene	0.2	< 0.2	U
L00-42 - 5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
L330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
530-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: I-2055-090204

SAMPLE

Lab Sample ID: OL19G LIMS ID: 09-3532

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water

Date Analyzed: 02/13/09 23:37

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	104%
d8-Toluene	97.4%
Bromofluorobenzene	95.3%
d4-1.2-Dichlorobenzene	101%

Page 1 of 2

Lab Sample ID: OL19H

LIMS ID: 09-3533

Matrix: Water Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 02/13/09 15:11

Reported: 02/18/09

: *A*

QC Report No: OL19-The Boeing Company

Sample ID: TB

Project: Thompson - Tukwila Phase II

SAMPLE

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result
74-87-3	Chloromethane	0.2	0.2
74-83 - 9	Bromomethane	0.5	< 0.5
75-01-4	Vinyl Chloride	0.2	< 0.2
75-00-3	Chloroethane	0.2	< 0.2
75-09-2	Methylene Chloride	0.5	< 0.5
67-64-1	Acetone	2.5	< 2.5
75-15-0	Carbon Disulfide	0.2	< 0.2
75-35-4	1,1-Dichloroethene	0.2	< 0.2
75-34-3	1,1-Dichloroethane	0.2	< 0.2
L56-60-5	trans-1,2-Dichloroethene	0.2	< 0.2
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2
67-66-3	Chloroform	0.2	< 0.2
107-06-2	1,2-Dichloroethane	0.2	< 0.2
78-93-3	2-Butanone	2.5	< 2.5
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2
56-23-5	Carbon Tetrachloride	0.2	< 0.2
108-05-4	Vinyl Acetate	1.0	< 1.0
75-27-4	Bromodichloromethane	0.2	< 0.2
78-27-4 78-87-5	1,2-Dichloropropane	0.2	< 0.2
	cis-1,3-Dichloropropene	0.2	< 0.2
10061-01-5		0.2	< 0.2
79-01-6	Trichloroethene Dibromochloromethane	0.2	< 0.2
124-48-1		0.2	< 0.2
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2
71-43-2	Benzene		< 0.2
10061-02-6	trans-1,3-Dichloropropene	0.2	< 1.0
110-75-8	2-Chloroethylvinylether	1.0	
75-25-2	Bromoform	0.2	< 0.2
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5
591-78-6	2-Hexanone	2.5	< 2.5
127-18-4	Tetrachloroethene	0.2	< 0.2
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2
108-88-3	Toluene	0.2	< 0.2
108-90-7	Chlorobenzene	0.2	< 0.2
100-41-4	Ethylbenzene	0.2	< 0.2
100-42-5	Styrene	0.2	< 0.2
75-69-4	Trichlorofluoromethane	0.2	< 0.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2
1330-20-7	m,p-Xylene	0.4	< 0.4
95-47-6	o-Xylene	0.2	< 0.2
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2
5 4 1-73 - 1	1,3-Dichlorobenzene	0.2	< 0.2
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2
107-02-8	Acrolein	5.0	< 5.0
74-88-4	Methyl Iodide	1.0	< 1.0
74-96-4	Bromoethane	0.2	< 0.2
107-13-1	Acrylonitrile	1.0	< 1.0
563-58-6	1,1-Dichloropropene	0.2	< 0.2
74-95-3	Dibromomethane	0.2	< 0.2
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5
J 12 U	1,2,3-Trichloropropane	0.5	< 0.5

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

LIMS ID: 09-3533

Lab Sample ID: OL19H

Sample ID: TB SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Matrix: Water Date Analyzed: 02/13/09 15:11

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

The state of the s	
d4-1,2-Dichloroethane	102%
d8-Toluene	99.7%
Bromofluorobenzene	97.0%
d4-1,2-Dichlorobenzene	100%

Sample ID: MB-021309 METHOD BLANK Page 1 of 2

Lab Sample ID: MB-021309

LIMS ID: 09-3527 Matrix: Water

Data Release Authorized: Reported: 02/18/09

Instrument/Analyst: NT5/JZ Date Analyzed: 02/13/09 20:01 QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ŭ
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2 < 0.2	U U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 1.0	U
110-75-8	2-Chloroethylvinylether	1.0	< 0.2	Ŭ
75-25-2	Bromoform (MIRK)	2.5	< 2.5	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	0.2	< 0.2	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ŭ
108-88-3	Toluene Chlorobenzene	0.2	< 0.2	Ŭ
108-90-7	Ethylbenzene	0.2	< 0.2	Ŭ
100-41-4	Styrene	0.2	< 0.2	Ū
100-42-5	Trichlorofluoromethane	0.2	< 0.2	Ū
75-69-4 76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: MB-021309 METHOD BLANK

Lab Sample ID: MB-021309

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3527

Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

Date Analyzed: 02/13/09 20:01

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	0.5	
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.8%
d8-Toluene	100%
Bromofluorobenzene	97.5%
d4-1,2-Dichlorobenzene	98.6%

Sample ID: MB-021309

Project: Thompson - Tukwila Phase II

QC Report No: OL19-The Boeing Company

025173.100

Date Sampled: NA

Date Received: NA

METHOD BLANK

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: MB-021309

LIMS ID: 09-3526

Matrix: Water

Data Release Authorized: Reported: 02/18/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Purge Volume: 10.0 mL Date Analyzed: 02/13/09 12:02

Name	CAS Number	Analyte	RL	Result	Q
75-01-4	74-87-3	Chloromethane	0.2	< 0.2	U
Total Chloroethane	74-83-9	Bromomethane	0.5	< 0.5	U
Methylene Chloride	75-01-4	Vinyl Chloride	0.2	< 0.2	U
Acetone	75-00-3	Chloroethane	0.2	< 0.2	U
TS-15-0	75-09-2	Methylene Chloride	0.5	< 0.5	U
1,1-Dichloroethene	67-64-1		2.5	< 2.5	U
1,1-Dichloroethane	75-15-0	Carbon Disulfide	0.2	< 0.2	U
156-60-5 trans-1,2-Dichloroethene 0.2 < 0.2	75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-59-2 cis-1,2-Dichloroethene 0.2 < 0.2	75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
67-66-3 Chloroform 0.2 < 0.2	156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
107-06-2	156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
78-93-3 2-Butanone 2.5 < 2.5	67-66-3	Chloroform	0.2	< 0.2	U
1,1,1-Trichloroethane	107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
56-23-5 Carbon Tetrachloride 0.2 < 0.2	78-93-3		2.5	< 2.5	U
56-23-5 Carbon Tetrachloride 0.2 < 0.2	71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
None				< 0.2	U
					Ū
1,2-Dichloropropane					Ū
10061-01-5					Ū
Trichloroethene					Ū
124-48-1 Dibromochloromethane					
1,1,2-Trichloroethane					
Reference Refe					-
10061-02-6 trans-1,3-Dichloropropene 0.2 < 0.2					
110-75-8 2-Chloroethylvinylether 1.0 < 1.0 U 175-25-2 Bromoform 0.2 < 0.2 U 108-10-1 4-Methyl-2-Pentanone (MIBK) 2.5 < 2.5 U 1591-78-6 2-Hexanone 2.5 < 2.5 U 127-18-4 Tetrachloroethene 0.2 < 0.2 U 179-34-5 1,1,2,2-Tetrachloroethane 0.2 < 0.2 U 108-88-3 Toluene 0.2 < 0.2 U 100-41-4 Ethylbenzene 0.2 < 0.2 U 100-41-4 Ethylbenzene 0.2 < 0.2 U 100-42-5 Styrene 0.2 < 0.2 U 176-69-4 Trichlorofluoromethane 0.2 < 0.2 U 1330-20-7 m,p-Xylene 0.4 < 0.4 U 155-47-6 o-Xylene 0.2 < 0.2 U 155-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 166-46-7 1,4-Dichlorobenzene 0.2 < 0.2 U 107-02-8 Acrolein 5.0 < 5.0 U 107-02-8 Acrolein 5.0 < 5.0 U 107-13-1 Acrylonitrile 1.0 < 1.0 U 107-13-1 Acrylonitrile 1.0 < 1.0 U 107-52-3 Dibromomethane 0.2 < 0.2 U 107-02-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 107-03-8 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 108-04-05-05-05-05-05-05-05-05-05-05-05-05-05-					
Bromoform					
108-10-1					
591-78-6 2-Hexanone 2.5 < 2.5					
Tetrachloroethene					
79-34-5 1,1,2,2-Tetrachloroethane 0.2 < 0.2				_	
Toluene 0.2 < 0.2 U 108-88-3 Toluene 0.2 < 0.2 U 109-90-7 Chlorobenzene 0.2 < 0.2 U 100-41-4 Ethylbenzene 0.2 < 0.2 U 100-42-5 Styrene 0.2 < 0.2 U 175-69-4 Trichlorofluoromethane 0.2 < 0.2 U 178-69-4 Trichloro-1,2,2-trifluoroe 0.2 < 0.2 U 18330-20-7 m,p-Xylene 0.4 < 0.4 U 185-47-6 O-Xylene 0.2 < 0.2 U 185-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 186-173-1 1,3-Dichlorobenzene 0.2 < 0.2 U 186-46-7 1,4-Dichlorobenzene 0.2 < 0.2 U 187-02-8 Acrolein 5.0 < 5.0 U 187-96-4 Bromoethane 0.2 < 0.2 U 187-96-4 Bromoethane 0.2 < 0.2 U 187-96-4 Bromoethane 0.2 < 0.2 U 187-96-5 Dibromomethane 0.2 < 0.2 U 187-95-3 Dibromomethane 0.2 < 0.2 U 188-96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U					
108-90-7 Chlorobenzene 0.2 < 0.2					
100-41-4 Ethylbenzene 0.2 < 0.2					
100-42-5 Styrene 0.2 < 0.2					
Trichlorofluoromethane 0.2 < 0.2 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 < 0.2 U 1330-20-7 m,p-Xylene 0.4 < 0.4 U 95-47-6 o-Xylene 0.2 < 0.2 U 95-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 141-73-1 1,3-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,4-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,4-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,4-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,4-Dichlorobenzene 0.2 < 0.2 U 1541-73-1 1,4-Dichlorobenzene 0.2 < 0.2 U 155-50-1 1,4-Dichloropene 0.2 < 0.2 U 156-13-1 Acrylonitrile 1.0 < 1.0 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 0.2 U 1563-58-6 0.3 U 1563-58-					
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 < 0.2					
1330-20-7 m,p-Xylene 0.4 < 0.4					
05-47-6 0-Xylene 0.2 < 0.2					
95-50-1 1,2-Dichlorobenzene 0.2 < 0.2					
541-73-1 1,3-Dichlorobenzene 0.2 < 0.2					U
106-46-7 1,4-Dichlorobenzene 0.2 < 0.2	95-50-1				U
107-02-8 Acrolein 5.0 < 5.0	541-73-1		0.2		Ū
74-88-4 Methyl Iodide 1.0 < 1.0	106-46-7	•			U
74-96-4 Bromoethane 0.2 < 0.2	107-02-8	Acrolein	5.0	< 5.0	U
107-13-1 Acrylonitrile 1.0 < 1.0	74-88-4	Methyl Iodide	1.0	< 1.0	U
563-58-6 1,1-Dichloropropene 0.2 < 0.2	74-96-4		0.2	< 0.2	U
74-95-3 Dibromomethane 0.2 < 0.2 U 530-20-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 66-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U	107-13-1		1.0	< 1.0	U
74-95-3 Dibromomethane 0.2 < 0.2 U 530-20-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 66-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U	563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
530-20-6	74-95-3		0.2	< 0.2	U
96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U	630-20-6		0.2	< 0.2	U
	96-12-8		0.5	< 0.5	U
	96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: MB-021309

METHOD BLANK

Lab Sample ID: MB-021309

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3526

Project: Thompson - Tukwila Phase II

Matrix: Water 025173.100

Date Analyzed: 02/13/09 12:02

CAS Number	Analyte	\mathtt{RL}	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	υ
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	0.5	
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.0%
d8-Toluene	99.0%
Bromofluorobenzene	94.6%
d4-1,2-Dichlorobenzene	100%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL19-The Boeing Company
Project: Thompson - Tukwila Phase II
025173.100

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT	
MB-021309	Method Blank	10	98.0%	99.0%	94.6%	100%	0	
LCS-021309	Lab Control	10	99.5%	100%	100%	101%	0	
LCSD-021309	Lab Control Dup	10	99.8%	100%	101%	101%	0	
OL19A	PZ-8-090204	10	101%	99.6%	96.7%	102%	0	
MB-021309	Method Blank	10	98.8%	100%	97.5%	98.6%	0.	
LCS-021309	Lab Control	10	98.8%	101%	99.8%	98.1%	0	
LCSD-021309	Lab Control Dup	10	101%	99.3%	97.1%	101%	0	
OL19B	PZ-4-090204	10	103%	99.0%	95.9%	102%	0	
OL19C	PZ-2-090204	10	102%	97.7%	95.1%	101%	0	
OL19D	I-206-090204	10	101%	97.1%	97.0%	101%	0	
OL19E	I-205-090204	10	102%	99.1%	95.9%	101%	0	
OL19F	I-203-090204	10	101%	101%	95.8%	100%	0	
OL19G	I-2055-090204	10	104%	97.4%	95.3%	101%	0	
OL19H	TB	10	102%	99.7%	97.0%	100%	0	
		LCS/MB LIMITS			QC LIMITS			
SW8260B								
(DCE) = d4-1, 2-Dichloroethane		70-130			70-130			
(TOL) = d8-Toluene		70-130			70-130			
•	ofluorobenzene	70-130			70-130			
· /	,2-Dichlorobenzene	70-130			70-130			

Prep Method: SW5030B Log Number Range: 09-3526 to 09-3533

Page 1 of 2

Sample ID: LCS-021309

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized:

Reported: 02/18/09

B

Instrument/Analyst LCS: NT5/JZ

LCSD: NT5/JZ

Date Analyzed LCS: 02/13/09 11:05 LCSD: 02/13/09 11:35 QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

,							
		Spike	LCS		Spike	LCSD	RPD
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
	18.2	20.0	91.0%	18.6	20.0	93.0%	2.2%
Chloromethane	21.7	20.0	108%	22.6	20.0	113%	4.1%
Bromomethane	19.2	20.0	96.0%	19.8	20.0	99.0%	3.1%
Vinyl Chloride	18.6	20.0	93.0%	19.4	20.0	97.0%	4.2%
Chloroethane	20.6	20.0	103%	20.9	20.0	104%	1.4%
Methylene Chloride	108	100	108%	103	100	103%	4.7%
Acetone	16.7	20.0	83.5%	21.9	20.0	110%	26.9%
Carbon Disulfide	18.9	20.0	94.5%	19.6	20.0	98.0%	3.6%
1,1-Dichloroethene		20.0	95.5%	19.7	20.0	98.5%	3.1%
1,1-Dichloroethane	19.1	20.0	94.0%	19.5	20.0	97.5%	3.7%
trans-1,2-Dichloroethene	18.8		95.5%	19.9	20.0	99.5%	4.1%
cis-1,2-Dichloroethene	19.1	20.0	94.5%	19.4	20.0	97.0%	2.6%
Chloroform	18.9	20.0	96.5%	19.4	20.0	99.0%	2.6%
1,2-Dichloroethane	19.3	20.0	109%	104	100	104%	4.7%
2-Butanone	109	100	93.5%	19.4	20.0	97.0%	3.7%
1,1,1-Trichloroethane	18.7	20.0		19.4	20.0	97.5%	2.1%
Carbon Tetrachloride	19.1	20.0	95.5%	21.2	20.0	106%	0.5%
Vinyl Acetate	21.3	20.0	106%	19.5	20.0	97.5%	1.6%
Bromodichloromethane	19.2	20.0	96.0%	19.5	20.0	99.0%	2.0%
1,2-Dichloropropane	19.4	20.0	97.0%		20.0	101%	1.5%
cis-1,3-Dichloropropene	19.9	20.0	99.5%	20.2	20.0	99.0%	3.1%
Trichloroethene	19.2	20.0	96.0%	19.8	20.0	100%	0.5%
Dibromochloromethane	20.0	20.0	100%	20.1	20.0	98.5%	0.0%
1,1,2-Trichloroethane	19.7	20.0	98.5%	19.7		99.5%	3.6%
Benzene	19.2	20.0	96.0%	19.9	20.0	100%	0.5%
trans-1,3-Dichloropropene	19.9	20.0	99.5%	20.0	20.0		0.9%
2-Chloroethylvinylether	22.1	20.0	110%	22.3	20.0	112%	1.5%
Bromoform	19.9	20.0	99.5%	19.6	20.0	98.0%	2.7%
4-Methyl-2-Pentanone (MIBK)	113	100	113%	110	100	110%	
2-Hexanone	116	100	116%	109	100	109%	6.2%
Tetrachloroethene	18.7	20.0	93.5%	19.1	20.0	95.5%	2.1%
1,1,2,2-Tetrachloroethane	20.3	20.0	102%	19.6	20.0	98.0%	3.5%
Toluene	19.3	20.0	96.5%	20.0	20.0	100%	3.6%
Chlorobenzene	19.8	20.0	99.0%	20.2	20.0	101%	2.0%
Ethylbenzene	20.0	20.0	100%	20.4	20.0	102%	2.0%
Styrene	20.3	20.0	102%	20.7	20.0	104%	2.0%
Trichlorofluoromethane	18.9	20.0	94.5%	21.0	20.0	105%	10.5%
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.0	100%	20.4	20.0	102%	2.0%
m,p-Xylene	39.4	40.0	98.5%	40.3	40.0	101%	2.3%
o-Xylene	20.0	20.0	100%	20.5	20.0	102%	2.5%
1,2-Dichlorobenzene	19.7	20.0	98.5%	19.9	20.0	99.5%	1.0%
1,3-Dichlorobenzene	19.7	20.0	98.5%	19.9	20.0	99.5%	1.0%
1,4-Dichlorobenzene	19.8	20.0	99.0%	19.9	20.0	99.5%	0.5%
Acrolein	120	100	120%	119	100	119%	0.8%
Methyl Iodide	20.5	20.0	102%	24.3	20.0	122%	17.0%
Bromoethane	15.3	20.0	76.5%	20.4	20.0	102%	28.6%
DIOMOGEMANE							

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021309

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3526 Matrix: Water

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Acrylonitrile	22.0	20.0	110%	21.2	20.0	106%	3.7%
1,1-Dichloropropene	19.4	20.0	97.0%	19.9	20.0	99.5%	2.5%
Dibromomethane	19.7	20.0	98.5%	19.6	20.0	98.0%	0.5%
1,1,1,2-Tetrachloroethane	19.5	20.0	97.5%	19.6	20.0	98.0%	0.5%
1,2-Dibromo-3-chloropropane	19.8	20.0	99.0%	18.4	20.0	92.0%	7.3%
1,2,3-Trichloropropane	20.0	20.0	100%	19.8	20.0	99.0%	1.0%
trans-1,4-Dichloro-2-butene	20.6	20.0	103%	20.1	20.0	100%	2.5%
1,3,5-Trimethylbenzene	19.7	20.0	98.5%	20.0	20.0	100%	1.5%
1,2,4-Trimethylbenzene	19.7	20.0	98.5%	20.1	20.0	100%	2.0%
Hexachlorobutadiene	20.6	20.0	103%	19.9	20.0	99.5%	3.5%
Ethylene Dibromide	20.3	20.0	102%	20.4	20.0	102%	0.5%
Bromochloromethane	18.3	20.0	91.5%	19.8	20.0	99.0%	7.9%
2,2-Dichloropropane	19.0	20.0	95.0%	19.3	20.0	96.5%	1.6%
1,3-Dichloropropane	20.2	20.0	101%	20.2	20.0	101%	0.0%
Isopropylbenzene	19.5	20.0	97.5%	19.9	20.0	99.5%	2.0%
n-Propylbenzene	19.7	20.0	98.5%	20.0	20.0	100%	1.5%
Bromobenzene	20.0	20.0	100%	20.0	20.0	100%	0.0%
2-Chlorotoluene	19.6	20.0	98.0%	20.0	20.0	100%	2.0%
4-Chlorotoluene	19.5	20.0	97.5%	19.7	20.0	98.5%	1.0%
tert-Butylbenzene	19.6	20.0	98.0%	19.8	20.0	99.0%	1.0%
sec-Butylbenzene	20.0	20.0	100%	20.1	20.0	100%	0.5%
4-Isopropyltoluene	20.0	20.0	100%	20.2	20.0	101%	1.0%
n-Butylbenzene	20.5	20.0	102%	20.6	20.0	103%	0.5%
1,2,4-Trichlorobenzene	20.4	20.0	102%	20.3	20.0	102%	0.5%
Naphthalene	21.5	20.0	108%	20.8	20.0	104%	3.3%
1,2,3-Trichlorobenzene	20.7	20.0	104%	20.4	20.0	102%	1.5%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	99.5%	99.8%
d8-Toluene	100%	100%
Bromofluorobenzene	100%	101%
d4-1.2-Dichlorobenzene	101%	101%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021309

Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3527

Matrix: Water Data Release Authorized:

Reported: 02/18/09

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/JZ

LCSD: NT5/JZ
Date Analyzed LCS: 02/13/09 19:07
LCSD: 02/13/09 19:34

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL LCSD: 10.0 mL

Analyte LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPI Chloromethane 18.0 20.0 90.0% 20.8 20.0 104% 14.4 Bromomethane 22.4 20.0 112% 25.5 20.0 128% 12.9	જ જ
Bromomethane 22.4 20.0 112% 25.5 20.0 128% 12.9	90 90
Bromomethane	용
Vinyl Chloride	-0
Chloroethane 18.9 20.0 11.6% 11.4	٥.
Methylene Chloride 20.0 1050	
Acetone	
Carbon Distille	
1,1-Dichioroethene	
1,1-Dichioroethane	
trans-1,2-Dichioroethene	
Cis-1,2-Dichioroethene	
Chloroform 17.8 20.0 05.00 20.1	
1,2-Dichioroethane	
2-Butanone 103 100 1330 1450 1050 1050	
1,1,1-Trichioroethale	
Carbon Tetrachloride 19.0 20.0 95.0% 20.9 20.0 104% 9.5	
Vinyl Acetate 20.1 20.0 1000 22.1	
Bromodichloromethane 18.9 20.0 94.5% 20.6 20.0 103% 8.6	
1,2-Dichloropropane 19.5 20.0 97.5% 21.1 20.0 106% 7.5	
cis-1,3-Dichloropropene 19.8 20.0 99.0% 21.3 20.0 106% 7.3	
Trichloroethene 19.2 20.0 96.0% 21.1 20.0 106% 9.4	
Dibromochloromethane 19.7 20.0 98.5% 21.5 20.0 108% 8.5	
1,1,2-Trichloroethane 19.5 20.0 97.5% 20.8 20.0 104% 6.5	
Benzene 19.3 20.0 96.5% 21.2 20.0 106% 9.4	
trans-1,3-Dichloropropene 20.1 20.0 100% 21.0 20.0 105% 4.4	
2-Chloroethylvinylether 21.4 20.0 107% 23.3 20.0 116% 8.5	
Bromoform 19.2 20.0 96.0% 21.7 20.0 108% 12.2	
4-Methyl-2-Pentanone (MIBK) 109 100 109% 113 100 113% 3.6	
2-Hexanone 110 100 110% 114 100 114% 3.6	
Tetrachloroethene 18.7 20.0 93.5% 20.8 20.0 104% 10.6	
1.1.2.2-Tetrachloroethane 19.5 20.0 97.5% 22.0 20.0 110% 12.0	
Toluene 19.4 20.0 97.0% 21.4 20.0 107% 9.8	
Chlorobenzene 19.9 20.0 99.5% 21.9 20.0 110% 9.6	
Ethylbenzene 13.7 20.0 68.5% 16.2 20.0 81.0% 16.3	
Styrene 20.0 20.0 100% 22.2 20.0 111% 10.4	
Trichlorofluoromethane 18.4 20.0 92.0 % 21.2 20.0 106 % 14	
1.1.2-Trichloro-1.2.2-trifluoroetha 19.5 20.0 97.5% 21.9 20.0 110% 11.6	
m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p-Xy} are m_{p-Xy} and m_{p	
0-Xvlene 19.9 20.0 99.5% 22.0 20.0 110% 10.0	
1.2-Dichlorobenzene 19.0 20.0 95.0% 22.2 20.0 111% 15.0	
1 3-Dichlorobenzene 19.3 20.0 96.5% 22.5 20.0 112% 15.0	
1.4-Dichlorobenzene 19.4 20.0 97.0% 22.2 20.0 111% 13.5	
Acrolein 115 100 115% 123 100 123% 6.	
Methyl Todide 20.7 20.0 104% 23.6 20.0 118% 13.3	
Bromoethane 14.9 20.0 74.5% 16.8 20.0 84.0% 12.0)용

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021309

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3527 Matrix: Water

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Acrylonitrile	20.4	20.0	102%	21.5	20.0	108%	5.3%
1,1-Dichloropropene	19.4	20.0	97.0%	21.5	20.0	108%	10.3%
Dibromomethane	19.4	20.0	97.0%	20.8	20.0	104%	7.0%
1,1,1,2-Tetrachloroethane	19.3	20.0	96.5%	21.4	20.0	107%	10.3%
1,2-Dibromo-3-chloropropane	18.2	20.0	91.0%	20.6	20.0	103%	12.4%
1,2,3-Trichloropropane	19.7	20.0	98.5%	22.1	20.0	110%	11.5%
trans-1,4-Dichloro-2-butene	19.9	20.0	99.5%	22.5	20.0	112%	12.3%
1,3,5-Trimethylbenzene	22.7	20.0	114%	26.7	20.0	134%	16.2%
1,2,4-Trimethylbenzene	22.4	20.0	112%	26.4	20.0	132%	16.4%
Hexachlorobutadiene	19.9	20.0	99.5%	22.6	20.0	113%	12.7%
Ethylene Dibromide	20.3	20.0	102%	21.5	20.0	108%	5.7%
Bromochloromethane	18.6	20.0	93.0%	20.9	20.0	104%	11.6%
2,2-Dichloropropane	18.7	20.0	93.5%	21.2	20.0	106%	12.5%
1,3-Dichloropropane	20.0	20.0	100%	21.6	20.0	108%	7.7%
Isopropylbenzene	19.2	20.0	96.0%	22.6	20.0	113%	16.3%
n-Propylbenzene	19.5	20.0	97.5%	22.7	20.0	114%	15.2%
Bromobenzene	19.2	20.0	96.0%	22.5	20.0	112%	15.8%
2-Chlorotoluene	19.2	20.0	96.0%	22.6	20.0	113%	16.3%
4-Chlorotoluene	19.2	20.0	96.0%	22.3	20.0	112%	14.9%
tert-Butylbenzene	19.1	20.0	95.5%	22.5	20.0	112%	16.3%
sec-Butylbenzene	19.5	20.0	97.5%	23.1	20.0	116%	16.9%
4-Isopropyltoluene	19.5	20.0	97.5%	22.9	20.0	114%	16.0%
n-Butylbenzene	20.1	20.0	100%	23.5	20.0	118%	15.6%
1,2,4-Trichlorobenzene	19.8	20.0	99.0%	22.8	20.0	114%	14.1%
Naphthalene	20.6	20.0	103%	23.2	20.0	116%	11.9%
1,2,3-Trichlorobenzene	19.9	20.0	99.5%	22.7	20.0	114%	13.1%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	98.8%	101%
d8-Toluene	101%	99.3%
Bromofluorobenzene	99.8%	97.1%
d4-1 2-Dichlorobenzene	98.18	101%

Sample ID: PZ-8-090204 SAMPLE

Lab Sample ID: OL19A

LIMS ID: 09-3526

Matrix: Water
Data Release Authorized:

Date Analyzed: 02/11/09 14:52

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 56.0% d14-Dibenzo(a,h)anthracene 51.0%

Page 1 of 1

Sample ID: PZ-4-090204

SAMPLE

Lab Sample ID: OL19B LIMS ID: 09-3527

Matrix: Water

Data Release Authorized NW

Date Analyzed: 02/11/09 15:15

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100 Date Sampled: 02/04/09

Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene 50.3%

Page 1 of 1

Sample ID: PZ-2-090204

SAMPLE

Lab Sample ID: OL19C LIMS ID: 09-3528

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 15:38

Instrument/Analyst: NT1/PK

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100 Date Sampled: 02/04/09

Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 55.3% d14-Dibenzo(a,h)anthracene 81.0%

Page 1 of 1

Sample ID: I-206-090204

SAMPLE

Lab Sample ID: OL19D LIMS ID: 09-3529

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 16:00

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100 Date Sampled: 02/04/09

Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 56.0% d14-Dibenzo(a,h)anthracene 70.3%

Page 1 of 1

Sample ID: I-205-090204

SAMPLE

Lab Sample ID: OL19E LIMS ID: 09-3530

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 16:23

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100 Date Sampled: 02/04/09

Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 60.0% d14-Dibenzo(a,h)anthracene 81.0%

Page 1 of 1

Sample ID: I-203-090204

SAMPLE

Lab Sample ID: OL19F LIMS ID: 09-3531

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/11/09 16:45

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100 Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 57.3% d14-Dibenzo(a,h)anthracene 60.7%

Page 1 of 1

Sample ID: I-2055-090204 SAMPLE

Lab Sample ID: OL19G LIMS ID: 09-3532

Matrix: Water

Date Extracted: 02/09/09

Date Analyzed: 02/11/09 17:08

Instrument/Analyst: NT1/PK

Data Release Authorized: WW Reported: 02/12/09

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II Event: 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene 76.0%

Sample ID: MB-020909 METHOD BLANK

Lab Sample ID: MB-020909

LIMS ID: 09-3526

Matrix: Water

Data Release Authorized: \(\sqrt{1} \rightarrow \)

Reported: 02/19/09

Date Extracted: 02/09/09 Date Analyzed: 02/11/09 12:14 Instrument/Analyst: NT1/PK

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.3% d14-Dibenzo(a,h)anthracene 80.0%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II 025173.100

Client ID	MNP	DBA	TOT OUT
MB-020909	63.3%	80.0%	0
LCS-020909	63.7%	81.3%	0
LCSD-020909	58.7%	79.7%	0
PZ-8-090204	56.0%	51.0%	0
PZ-4-090204	56.0%	50.3%	0
PZ-2-090204	55.3%	81.0%	0
I-206-090204	56.0%	70.3%	0
I-205-090204	60.0%	81.0%	0
I-203-090204	57.3%	60.7%	0
I-2055-090204	58.3%	76.0%	0

		LCS/MB LIMITS	QC LIMITS
	d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene	(49-113) (49-132)	(44-112) (10-138)

Prep Method: SW3520C

Log Number Range: 09-3526 to 09-3532

Page 1 of 1

Lab Sample ID: LCS-020909

LIMS ID: 09-3526

Matrix: Water

Data Release Authorized: \

Reported: 02/19/09

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/11/09 12:37

LCSD: 02/11/09 12:59

Instrument/Analyst LCS: NT1/PK

LCSD: NT1/PK

Sample ID: LCS-020909

LAB CONTROL SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

Event: 025173.100

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a)anthracene	2.27	3.00	75.7%	2.38	3.00	79.3%	4.7%
Chrysene	2.43	3.00	81.0%	2.45	3.00	81.7%	0.8%
Benzo(b) fluoranthene	2.53	3.00	84.3%	2.41	3.00	80.3%	4.9%
Benzo(k) fluoranthene	2.94	3.00	98.0%	3.04	3.00	101%	3.3%
Benzo(a) pyrene	2.57	3.00	85.7%	2.49	3.00	83.0%	3.2%
Indeno(1,2,3-cd)pyrene	2.41	3.00	80.3%	2.47	3.00	82.3%	2.5%
Dibenz (a, h) anthracene	2.52	3.00	84.0%	2.50	3.00	83.3%	0.8%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	63.7%	58.7%
d14-Dibenzo(a,h)anthracene	81.3%	79.7%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL19A LIMS ID: 09-3526

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 12:05 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-8-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	89.2%
	67.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL19B

LIMS ID: 09-3527 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 12:22 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-4-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	86.0%
Tetrachlorometaxylene	58.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: OL19C LIMS ID: 09-3528

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 12:40 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-2-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	83.2%
Tetrachlorometaxylene	62.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL19D

LIMS ID: 09-3529 Matrix: Water

Data Release Authorized:
Reported: 02/12/09

Date Extracted: 02/09/09
Date Analyzed: 02/10/09 12:57
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

Sample ID: I-206-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	78.0%
Tetrachlorometaxylene	60.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL19E LIMS ID: 09-3530

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 13:14 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: I-205-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	83.0%
Tetrachlorometaxylene	57.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: I-203-090204 SAMPLE

Lab Sample ID: OL19F

QC Report No: OL19-The Boeing Company

LIMS ID: 09-3531

Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

Data Release Authorized: Reported: 02/12/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 13:31

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Instrument/Analyst: ECD5/JGR

Dilution Factor: 1.00 Silica Gel: No

GPC Cleanup: No Sulfur Cleanup: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	88.5%
Tetrachlorometaxylene	60.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL19G LIMS ID: 09-3532

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 13:48 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: I-2055-090204 SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

> Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	85.8%
Tetrachlorometaxylene	60.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: MB-020909

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 10:39 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-020909 METHOD BLANK

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	88.8%
Tetrachlorometaxylene	65.8%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL19-The Boeing Company
Project: Thompson - Tukwila Phase II
025173.100

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020909	88.8%	47-101	65.8%	61-104	0
LCS-020909	81.8%	47-101	57.2%*	61-104	1
LCSD-020909	83.8%	47-101	59.5%*	61-104	1
PZ-8-090204	89.2%	42-120	67.0%	55-102	0
PZ-4-090204	86.0%	42-120	58.0%	55-102	0
PZ-2-090204	83.2%	42-120	62.2%	55-102	0
T-206-090204	78.0%	42-120	60.2%	55-102	0
T-205-090204	83.0%	42-120	57.5%	55-102	0
T-203-090204	88.5%	42-120	60.0%	55-102	0
I-2055-090204	85.8%	42-120	60.8%	55-102	0

Prep Method: SW3510C Log Number Range: 09-3526 to 09-3532

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: LCS-020909

Lab Sample ID: LCS-020909

LCS/LCSD

LIMS ID: 09-3526

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

Matrix: Water

025173.100

4.52

Data Release Authorized: Reported: 02/12/09

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 02/09/09

Sample Amount LCS: 500 mL

Date Analyzed LCS: 02/10/09 10:57

LCSD: 500 mL

LCSD: 02/10/09 11:14

Final Extract Volume LCS: 5.0 mL

Instrument/Analyst LCS: ECD5/JGR

LCSD: 5.0 mL

LCSD: ECD5/JGR

LCS

3.98

4.50

Dilution Factor LCS: 1.00 LCSD: 1.00

GPC Cleanup: No

Analyte

Aroclor 1016

Aroclor 1260

Silica Gel: No Acid Cleanup: No

5.00

Sulfur	Cleanup:	No

Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
5.00	79.6%	4.25	5.00	85.0%	6.6%	

90.4%

0.4%

PCB Surrogate Recovery

90.0%

5.00

5.00 .

	LCS	LCSD
Decachlorobiphenyl	81.8%	83.8%
Tetrachlorometaxylene	57.2%	59.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OL19A

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized

Reported: 02/16/09

Sample ID: PZ-8-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL .	μg/L	Q
02/10/00	200	00/11/00	5.440 00 0				
02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.5	1.0	
02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U
	Date 02/10/09 02/10/09 02/10/09 02/10/09 02/10/09 02/10/09	Date Method 02/10/09 200.8 02/10/09 6010B 02/10/09 6010B 02/10/09 6010B 02/10/09 200.8 02/10/09 7470A	Date Method Date 02/10/09 200.8 02/11/09 02/10/09 6010B 02/10/09 02/10/09 6010B 02/10/09 02/10/09 6010B 02/10/09 02/10/09 6010B 02/10/09 02/10/09 200.8 02/11/09 02/10/09 7470A 02/12/09	Date Method Date CAS Number 02/10/09 200.8 02/11/09 7440-38-2 02/10/09 6010B 02/10/09 7440-43-9 02/10/09 6010B 02/10/09 7440-47-3 02/10/09 6010B 02/10/09 7440-50-8 02/10/09 200.8 02/11/09 7439-92-1 02/10/09 7470A 02/12/09 7439-97-6	Date Method Date CAS Number Analyte 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 02/10/09 6010B 02/10/09 7440-47-3 Chromium 02/10/09 6010B 02/10/09 7440-50-8 Copper 02/10/09 200.8 02/11/09 7439-92-1 Lead 02/10/09 7470A 02/12/09 7439-97-6 Mercury	Date Method Date CAS Number Analyte RL 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 0.5 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 2 02/10/09 6010B 02/10/09 7440-47-3 Chromium 5 02/10/09 6010B 02/10/09 7440-50-8 Copper 2 02/10/09 200.8 02/11/09 7439-92-1 Lead 1 02/10/09 7470A 02/12/09 7439-97-6 Mercury 0.1	Date Method Date CAS Number Analyte RL μg/L 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 0.5 1.0 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 2 2 02/10/09 6010B 02/10/09 7440-47-3 Chromium 5 5 02/10/09 6010B 02/10/09 7440-50-8 Copper 2 2 02/10/09 200.8 02/11/09 7439-92-1 Lead 1 1 02/10/09 7470A 02/12/09 7439-97-6 Mercury 0.1 0.1

Page 1 of 1

Lab Sample ID: OL19B

LIMS ID: 09-3527

Matrix: Water Data Release Authorized:

Reported: 02/16/09

Sample ID: PZ-4-090204

SAMPLE

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	29.2	
6010B	02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL19C LIMS ID: 09-3528 Matrix: Water

Data Release Authorized:

Reported: 02/16/09

Sample ID: PZ-2-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	11.3	
02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U
	Date 02/10/09 02/10/09 02/10/09 02/10/09 02/10/09 02/10/09	Date Method 02/10/09 200.8 02/10/09 6010B 02/10/09 6010B 02/10/09 6010B 02/10/09 200.8 02/10/09 7470A	Date Method Date 02/10/09 200.8 02/11/09 02/10/09 6010B 02/10/09 02/10/09 6010B 02/10/09 02/10/09 6010B 02/10/09 02/10/09 200.8 02/11/09 02/10/09 7470A 02/12/09	Date Method Date CAS Number 02/10/09 200.8 02/11/09 7440-38-2 02/10/09 6010B 02/10/09 7440-43-9 02/10/09 6010B 02/10/09 7440-47-3 02/10/09 6010B 02/10/09 7440-50-8 02/10/09 200.8 02/11/09 7439-92-1 02/10/09 7470A 02/12/09 7439-97-6	Date Method Date CAS Number Analyte 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 02/10/09 6010B 02/10/09 7440-47-3 Chromium 02/10/09 6010B 02/10/09 7440-50-8 Copper 02/10/09 200.8 02/11/09 7439-92-1 Lead 02/10/09 7470A 02/12/09 7439-97-6 Mercury	Date Method Date CAS Number Analyte RL 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 0.2 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 2 02/10/09 6010B 02/10/09 7440-47-3 Chromium 5 02/10/09 6010B 02/10/09 7440-50-8 Copper 2 02/10/09 200.8 02/11/09 7439-92-1 Lead 1 02/10/09 7470A 02/12/09 7439-97-6 Mercury 0.1	Date Method Date CAS Number Analyte RL μg/L 02/10/09 200.8 02/11/09 7440-38-2 Arsenic 0.2 11.3 02/10/09 6010B 02/10/09 7440-43-9 Cadmium 2 2 02/10/09 6010B 02/10/09 7440-47-3 Chromium 5 5 02/10/09 6010B 02/10/09 7440-50-8 Copper 2 2 02/10/09 200.8 02/11/09 7439-92-1 Lead 1 1 02/10/09 7470A 02/12/09 7439-97-6 Mercury 0.1 0.1

Page 1 of 1

Lab Sample ID: OL19D LIMS ID: 09-3529

Matrix: Water

Data Release Authorized: Reported: 02/16/09

Sample ID: I-206-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Q
U
U
U
U
U
Ū

Page 1 of 1

Lab Sample ID: OL19E

LIMS ID: 09-3530

Matrix: Water

Data Release Authorized Reported: 02/16/09

Sample ID: I-205-090204

SAMPLE

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	28.1	
6010B	02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/10/09	7440-50-8	Copper	. 2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL19F

LIMS ID: 09-3531

Matrix: Water

Data Release Authorized Reported: 02/16/09

Sample ID: I-203-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II 025173.100
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
							F3/ -	
200.8	02/10/09	200.8	02/12/09	7440-38-2	Arsenic	. 1	122	
6010B	02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	Ū

Page 1 of 1

Lab Sample ID: OL19G

LIMS ID: 09-3532 Matrix: Water

Data Release Authorized: Reported: 02/16/09

Sample ID: I-2055-090204

SAMPLE

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II 025173.100

Date Sampled: 02/04/09 Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	27.4	
	, ,		,,					
6010B	02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/10/09	7 440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL19MB

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized

Reported: 02/16/09

Sample ID: METHOD BLANK

QC Report No: OL19-The Boeing Company

Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	0.6	
6010B	02/10/09	6010B	02/10/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/10/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/10/09	7440-50-8	Copper	2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/10/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL19LCS

LIMS ID: 09-3526 Matrix: Water

Data Release Authorized:

Reported: 02/16/09

Sample ID: LAB CONTROL

QC Report No: OL19-The Boeing Company Project: Thompson - Tukwila Phase II

025173.100

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	<u>Q</u>
Arsenic	200.8	29.1	25.0	116%	
Cadmium	6010B	511	500	102%	
Chromium	6010B	473	500	94.6%	
Copper	6010B	491	500	98.2%	
Lead	200.8	27	25	108%	
Mercury	7470A	1.9	2.0	95.0%	
Zinc	6010B	480	500	96.0%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

February 20, 2009

Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Isaacson – Phase II, 025173.090

ARI Job: OL24

Dear Kathryn:

Enclosed, please find e-mail documentation, the original and revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted three water samples and trip blank in good condition on February 4, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, and Dissolved Metals, as requested on the COC.

The LCS and LCSD percent recoveries of Acrolein and the LCS percent recoveries of 1,2,3-Trichloropropane, trans-1,4-Dichloro-2-butene, Bromobenzene, and tert-Butylbenzene were outside the control limits high for LCS-021109 for the VOCs analysis. All samples were undetected for these compounds. No further corrective action was required.

Several LCS and LCSD percent recoveries fell outside the control limits low for LCS-020609 for the SVOCs analysis. All samples and associated QC were re-extracted and re-analyzed outside the method recommended holding times. All LCS and LCSD percent recoveries were within control limits for LCS-021209. Both sets of data have been submitted in this report for your review. No further corrective action was required.

The surrogate percent recoveries of Tetrachlorometaxylene fell outside the control limits low for LCS-020909 and LCSD-020909 for the PCBs. The LCS and LCSD percent recoveries were within control limits and all other surrogate percent recoveries were within control limits. No further corrective action was required.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely.

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/co

☐ Tacoma (25								2/4/29
LANDAU Spokane (5	509) 327-9737 Figard) (503) 443-6010							Date
ASSOCIATES Portland (T		Chain-of	-Cu	stod	v Re	cord		Pageof
		***************************************	*****				Paramete	
Project Name Boens 150	Projec	ot No. 075 173.00	10				7 / /	
Project Location/Event TKW	No/ Phase	T.		//_	//	///	/ / /	Standard Accelerated
Sampler's Name 200	h Roll Mark	r Konnyler	/	5/2	' / /	'//	///	☐ Accelerated
Project Contact KATWIN	Hortley		Ĺ	737	//.	/ / /	′///	
Send Results To K HOWEU	ey Klews,	Albahurson	7	178%	n/SE	₹ / /	///	
Sample I.D. Hondin	CASON Time	No. of Matrix Containers	at	浴 浴		7 / /	·///	Observations/Comments
The Marian Control of the Control of	74/09/0903	· · · · · · · · · · · · · · · · · · ·	1	8 3	88	-	1	
PZ-3-090204	1 1003		-	XX				Allow water samples to settle, collect aliquot from clear portion
405090-005.I	V 1178				XX			NWTPH-Dx:
TB		24		X				run acid wash/silica gel cleanup
								run samples standardized to
							-	Analyze for EPH if no specific
					+-			product identified
								VOC/BTEX/VPH (soli):
								non-preserved preserved w/methanol
								preserved w/sodium bisulfate
								Freeze upon receipt
					-			
			+		++			Other Mthb:
Special Shipment/Handling							Math	
or Storage Requirements							Metr Ship	nod of ment
Refinquished by	Received b	1A		Relinqu	ished by			Received by
Signature	Signature	- 1		Signature)			Signature
Printed Name	Printed Name	Hays		Printed N	ame	•		Printed Name
Company	Company	<u></u>		Company	,			Company
Date 2/4/69 Time 16	45 Date 40	409 Time WU	u		,			
Time 10	1) Date	Time US		Date		Time		_ Date Time

Seattle (Edmonds) (425) 778-0907

Analytical Resources, Incorporated Analytical Chemists and Consultants
, and the same some same

Cooler Receipt Form

ARI Client: Landew BOLVO	Project Name:						
COC No:	Delivered by:						
Assigned ARI Job No:OL2Y	Tracking No:						
D. P. C. C. D.							
Preliminary Examination Phase:							
Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES NO							
Were custody papers included with the cooler?							
Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry 5.2, 7.4, 4,6 °C							
Cooler Accepted by:	Date: <u>2/4/29</u> Time: <u>1653</u>						
Complete custody for	ms and attach all shipping documents						
Log-In Phase:							
Was a temperature blank included in the cooler	? YES N S						
What kind of packing material was used?							
Was sufficient ice used (if appropriate)?							
Were all bottles sealed in individual plastic bags							
Did all bottle arrive in good condition (unbroken)							
Were all bottle labels complete and legible?							
Did all bottle labels and tags agree with custody papers? NO Were all bottles used correct for the requested analysis?							
Were all bottles used correct for the requested analyses? NO							
Do any of the analyses (bottles) require preservation? (attach preservation checklist)							
Were all VOC vials free of air bubbles? NA YES NO Was sufficient amount of sample sent in each bottle? NO							
	Date: <u>2/5/84</u> Time: <u>10/31</u>						
** Notify Project Mana	ger of discrepancies or concerns **						
Explain discrepancies or negative responses:							
cxplain discrepancies of negative responses.							
Only 2 trip blank	3 metuded						
Sin	7 revised COC						
•							
	By: 30 Pate:						
	. i						

LANDAU ☐ Portland (Tigard) (5	2493 -9737 03) 443-6010	in-of-Custo	ndv Recer		Date 2/4/09 Page
Send Results To Sample I.D. How here Page	Project No. 625 Phase 17. White Brunn Hey Lews, Althurs Time Matrix C	173.090 UL /		g Parameters	Turnaround Time Standard Accelerated
2-16-090ZOH 22-3-090ZOH 1700-090ZOH 178	24 SPO3 W	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	* * * * * * * * * * * * * * * * * * *	Allque NWTI Y n produ VOC/ ppi ppi pri X po	Allow water samples to settle, collect of from clear portion PH-Dx: In acid wash/silica gel cleanup In samples standardized to product Inalyze for EPH if no specific oct identified BTEX/VPH (soll): In-preserved reserved w/methanol reserved w/sodium bisulfate reserved w/sodium bisulfate reserved metal water samples field filtered
Special Shipment/Handling					
Printed Name Company Date Z 4 64 Time 1 645	Received by Signature Printed Name Company Date 21407 Tim	Sign Print		Signa Printe Comp	od Name Dany

Eric Branson

```
From:
          "Kelly Bottem" <kellyb@arilabs.com>
 To:
          "Kathryn Hartley" <khartley@landauinc.com>; "Eric Branson" <eric@arilabs.com>
 Sent:
          Monday, February 09, 2009 2:21 PM
 Subject:
          Re: Ol24 sample aka
Got it. Eric please change ASAP.
K
Kathryn Hartley wrote:
> Kelly,
>
>
> For data package OL24, please make the following changes:
            Change P2-6-090204 to PZ-6-090204
            Change P2-3-090204 to PZ-3-090204
>
            Add Phase II to the project name
>
>
>
> Please confirm that you received this message and let me know if
you
> have any questions.
>
>
  Thanks,
>
> Kathryn F. Hartley
> Project Scientist
> Landau Associates
> 130 2nd Avenue South
> Edmonds, WA 98020
  (425) 329-0268
>
>
> ----Original Message----
```


Page 1 of 2

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized: Reported: 02/12/09

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/10/09 20:04

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	3.9	
75-15-0	Carbon Disulfide	0.2	0.2	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U ·
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ū
107-02-8	Acrolein	5.0	< 5.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ū
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ū
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ŭ
JU-10-4	T, Z, J - II TOHITOLOPI OPAHO	5.5	` 0.5	_

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II 025173.090

Matrix: Water Date Analyzed: 02/10/09 20:04

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	Ũ
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ũ
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ũ
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ũ
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	117%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	101%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OL24B

LIMS ID: 09-3552 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/10/09 20:29

Reported: 02/12/09

: **/**

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Sample ID: PZ-3-090204

SAMPLE

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number Analyte	RL	Result	Q
74-87-3 Chloromethane	0.2	< 0.2	U
74-83-9 Bromomethane	0.5	< 0.5	U
75-01-4 Vinyl Chloride	0.2	< 0.2	U
75-00-3 Chloroethane	0.2	< 0.2	U
75-09-2 Methylene Chloride	0.5	< 0.5	U
57-64-1 Acetone	2.5	7.1	
75-15-0 Carbon Disulfide	0.2	< 0.2	U
75-35-4 1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3 1,1-Dichloroethane	0.2	< 0.2	Ü
	0.2	< 0.2	Ū
	0.2	< 0.2	ΰ
•	0.2	< 0.2	U
	0.2	< 0.2	U
1,2-Dichloroethane		< 2.5	Ü
78-93-3 2-Butanone	2.5		
71-55-6 1,1,1-Trichloroethane	0.2	< 0.2	U
66-23-5 Carbon Tetrachloride	0.2	< 0.2	U
108-05-4 Vinyl Acetate	1.0	< 1.0	U
75-27-4 Bromodichloromethane	0.2	< 0.2	U
78-87-5 1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5 cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6 Trichloroethene	0.2	< 0.2	U
124-48-1 Dibromochloromethane	0.2	< 0.2	U
79-00-5 1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2 Benzene	0.2	< 0.2	U
10061-02-6 trans-1,3-Dichloropropene	0.2	< 0.2	U
10-75-8 2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2 Bromoform	0.2	< 0.2	U
108-10-1 4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6 2-Hexanone	2.5	< 2.5	U
127-18-4 Tetrachloroethene	0.2	< 0.2	U
79-34-5 1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3 Toluene	0.2	< 0.2	U
108-90-7 Chlorobenzene	0.2	< 0.2	U
100-41-4 Ethylbenzene	0.2	< 0.2	U
100-42-5 Styrene	0.2	< 0.2	U
75-69-4 Trichlorofluoromethane	0.2	< 0.2	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1,1,2 lilentolo 1,2,2 cilitatolo 1,2,2 c	0.4	< 0.4	Ū
_	0.2	< 0.2	Ū
	0.2	< 0.2	ΰ
95-50-1 1,2-Dichlorobenzene	0.2	< 0.2	ΰ
1,3-Dichlorobenzene			
1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8 Acrolein	5.0	< 5.0	U
74-88-4 Methyl Iodide	1.0	< 1.0	U
74-96-4 Bromoethane	0.2	< 0.2	U
107-13-1 Acrylonitrile	1.0	< 1.0	Ū
63-58-6 1,1-Dichloropropene	0.2	< 0.2	Ŭ
74-95-3 Dibromomethane	0.2	< 0.2	Ü
20 20 6 1 1 1 2 Tetrachloroethane	0.2	< 0.2	Ŭ
330-20-6 1,1,1,2-Tetrachloroethane			
1,1,1,2-letrachioroethane 1,2-Dibromo-3-chloropropane	0.5	< 0.5 < 0.5	Ŭ

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-3-090204

SAMPLE

Lab Sample ID: OL24B

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3552

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 20:29

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	98.7%
Bromofluorobenzene	100%
d4-1,2-Dichlorobenzene	102%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: I-200-090204 SAMPLE Page 1 of 2

Lab Sample ID: OL24C

LIMS ID: 09-3553 Matrix: Water

Data Release Authorized: Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/10/09 20:54 QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
57-64-1	Acetone	2.5	11	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ū
L56-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ū
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Ū
57-66-3	Chloroform	0.2	< 0.2	Ū
.07-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
'8-93-3	2-Butanone	2.5	< 2.5	Ū
1-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ū
	Carbon Tetrachloride	0.2	< 0.2	Ū
56-23-5		1.0	< 1.0	Ū
108-05-4	Vinyl Acetate		< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2		
.0061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
9-01-6	Trichloroethene	0.2	< 0.2	U
L24-48-1	Dibromochloromethane	0.2	< 0.2	U
9-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
1-43-2	Benzene	0.2	< 0.2	U
.0061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
.10-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
5-25-2	Bromoform	0.2	< 0.2	U
.08-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
91-78-6	2-Hexanone	2.5	< 2.5	U
27-18-4	Tetrachloroethene	0.2	< 0.2	U
9-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
08-88-3	Toluene	0.2	< 0.2	U
08-90-7	Chlorobenzene	0.2	< 0.2	U
00-41-4	Ethylbenzene	0.2	< 0.2	U
00-42-5	Styrene	0.2	< 0.2	U
5-69-4	Trichlorofluoromethane	0.2	< 0.2	U
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
330-20-7	m,p-Xylene	0.4	< 0.4	U
5-47-6	o-Xylene	0.2	< 0.2	U
5-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
41-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
06-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
07-02-8	Acrolein	5.0	< 5.0	Ū
4-88-4	Methyl Iodide	1.0	< 1.0	Ū
4-86-4	Bromoethane	0.2	< 0.2	U
	Acrylonitrile	1.0	< 1.0	U
.07-13-1	1,1-Dichloropropene	0.2	< 0.2	U
663-58-6	Dibromomethane	0.2	< 0.2	U
74-95-3		0.2	< 0.2	U
30-20-6	1,1,1,2-Tetrachloroethane		< 0.2	U
96-12 - 8 96-18-4	<pre>1,2-Dibromo-3-chloropropane 1,2,3-Trichloropropane</pre>	0.5 0.5	< 0.5	U
	I / Z = "I'YI CH I OYONYONANA	11 5	< U 5	1.1

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3553

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

Date Analyzed: 02/10/09 20:54

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	100%
Bromofluorobenzene	102%
d4-1,2-Dichlorobenzene	104%

Sample ID: TRIP BLANK Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 2 SAMPLE

Lab Sample ID: OL24D LIMS ID: 09-3554

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/11/09 13:31 QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: TRIP BLANK

SAMPLE

Lab Sample ID: OL24D LIMS ID: 09-3554

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

Date Analyzed: 02/11/09 13:31

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	111%
d8-Toluene	99.1%
Bromofluorobenzene	102%
d4-1.2-Dichlorobenzene	101음

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-021009	Method Blank	10	98.3%	99.5%	97.8%	99.9%	0
LCS-021009	Lab Control	10	99.8%	98.7%	99.6%	102%	ŏ
LCSD-021009	Lab Control Dup	10	97.5%	99.5%	98.3%	100%	0
OL24A	PZ-6-090204	10	117%	100%	101%	101%	0
OL24B	PZ-3-090204	10	115%	98.7%	100%	102%	0
OL24C	I-200-090204	10	115%	100%	102%	104%	0
MB-021109	Method Blank	10	111%	102%	101%	102%	0
LCS-021109	Lab Control	10	113%	96.0%	93.9%	102%	0
LCSD-021109	Lab Control Dup	10	111%	101%	102%	102%	0
OL24D	TRIP BLANK	10	111%	99.1%	102%	101%	0
		LCS	/MB LIM	ITS		QC LIMI	rs
SW8260B							
(DCE) = d4-1,	2-Dichloroethane		70-130			70-130)
(TOL) = d8-Tc	oluene		70-130			70-130)
(BFB) = Bromo	ofluorobenzene	70-130			70-130		
(DCB) = d4-1,	2-Dichlorobenzene		70-130			70-130)

Prep Method: SW5030B Log Number Range: 09-3551 to 09-3554

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021009

Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/10/09 12:55

LCSD: 02/10/09 13:20

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD	RPD
Analyce	пса	Added-Ecs		1000			
Chloromethane	9.0	10.0	90.0%	9.3	10.0	93.0%	3.3%
Bromomethane	10.0	10.0	100%	10.8	10.0	108%	7.7%
Vinyl Chloride	9.7	10.0	97.0%	10.0	10.0	100%	3.0%
Chloroethane	10.7	10.0	107%	11.0	10.0	110%	2.8%
Methylene Chloride	9.8	10.0	98.0%	10.0	10.0	100%	2.0%
Acetone	55.6	50.0	111%	56.0	50.0	112%	0.7%
Carbon Disulfide	9.7	10.0	97.0%	10.0	10.0	100%	3.0%
1,1-Dichloroethene	9.4	10.0	94.0%	10.0	10.0	100%	6.2%
1,1-Dichloroethane	9.6	10.0	96.0%	9.6	10.0	96.0%	0.0%
trans-1,2-Dichloroethene	9.7	_ 10.0	97.0%	9.7	10.0	97.0%	0.0%
cis-1,2-Dichloroethene	9.8	10.0	98.0%	10.1	10.0	101%	3.0%
Chloroform	9.7	10.0	97.0%	9.9	10.0	99.0%	2.0%
1,2-Dichloroethane	9.8	10.0	98.0%	9.8	10.0	98.0%	0.0%
2-Butanone	52.4	50.0	105%	51.1	50.0	102%	2.5%
1,1,1-Trichloroethane	9.6	10.0	96.0%	9.8	10.0	98.0%	2.1%
Carbon Tetrachloride	9.7	10.0	97.0%	10.3	10.0	103%	6.0%
Vinyl Acetate	8.8	10.0	88.0%	8.8	10.0	88.0%	0.0%
Bromodichloromethane	9.9	10.0	99.0%	10.3	10.0	103%	4.0%
1,2-Dichloropropane	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
cis-1,3-Dichloropropene	9.8	10.0	98.0%	10.2	10.0	102%	4.0%
Trichloroethene	9.5	10.0	95.0%	9.9	10.0	99.0%	4.1%
Dibromochloromethane	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
1,1,2-Trichloroethane	9.4	10.0	94.0%	10.0	10.0	100%	6.2%
Benzene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
trans-1,3-Dichloropropene	10.0	10.0	100%	10.3	10.0	103%	3.0%
2-Chloroethylvinylether	9.9	10.0	99.0%	10.1	10.0	101%	2.0%
Bromoform	10.2	10.0	102%	10.4	10.0	104%	1.9%
4-Methyl-2-Pentanone (MIBK)	52.2	50.0	104%	50.5	50.0	101%	3.3%
2-Hexanone	50.6	50.0	101%	48.9	50.0	97.8%	3.4%
Tetrachloroethene	9.3	10.0	93.0%	10.0	10.0	100%	7.3%
1,1,2,2-Tetrachloroethane	8.7	10.0	87.0%	9.0	10.0	90.0%	3.4%
Toluene	8.9	10.0	89.0%	9.6	10.0	96.0%	7.6%
Chlorobenzene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
Ethylbenzene	9.3	10.0	93.0%	10.1	10.0	101%	8.2%
Styrene	9.7	10.0	97.0%	9.8	10.0	98.0%	1.0%
Trichlorofluoromethane	9.8	10.0	98.0%	9.9	10.0	99.0%	1.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.1	10.0	101%	10.4	10.0	104%	2.9%
m,p-Xylene	18.4	20.0	92.0%	19.4	20.0	97.0%	5.3%
o-Xylene	9.1	10.0	91.0%	9.7	10.0	97.0%	6.4%
1,2-Dichlorobenzene	9.3	10.0	93.0%	9.8	10.0	98.0%	5.2%
1,3-Dichlorobenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,4-Dichlorobenzene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
Acrolein	61.8	50.0	124%	57.1	50.0	114%	7.9%
Methyl Iodide	11.5	10.0	115%	12.3	10.0	123%	6.7%
Bromoethane	9.5	10.0	95.0%	9.6	10.0	96.0%	1.0%

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551 Matrix: Water

Project: Boeing Isaacson Phase II

025173.090

2007 100	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	тсэ	Added-11C5	Kecovery	ПСОБ	Added-1cbD	Recovery	
Acrylonitrile	10.9	10.0	109%	10.7	10.0	107%	1.9%
1,1-Dichloropropene	8.9	10.0	89.0%	9.5	10.0	95.0%	6.5%
Dibromomethane	9.8	10.0	98.0%	10.4	10.0	104%	5.9%
1,1,1,2-Tetrachloroethane	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
1,2-Dibromo-3-chloropropane	8.7	10.0	87.0%	9.3	10.0	93.0%	6.7%
1,2,3-Trichloropropane	9.9	10.0	99.0%	9.8	10.0	98.0%	1.0%
trans-1,4-Dichloro-2-butene	9.1	10.0	91.0%	9.6	10.0	96.0%	5.3%
1,3,5-Trimethylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,2,4-Trimethylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
Hexachlorobutadiene	9.3	10.0	93.0%	10.0	10.0	100%	7.3%
Ethylene Dibromide	9.8	10.0	98.0%	10.1	10.0	101%	3.0%
Bromochloromethane	10.0	10.0	100%	10.3	10.0	103%	3.0%
2,2-Dichloropropane	10.0	10.0	100%	10.0	10.0	100%	0.0%
1,3-Dichloropropane	9.7	10.0	97.0%	9.7	10.0	97.0%	0.0%
Isopropylbenzene	9.5	10.0	95.0%	10.2	10.0	102%	7.1%
n-Propylbenzene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
Bromobenzene	9.6	10.0	96.0%	9.9	10.0	99.0%	3.1%
2-Chlorotoluene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
4-Chlorotoluene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
tert-Butylbenzene	9.3	10.0	93.0%	9.8	10.0	98.0%	5.2%
sec-Butylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
4-Isopropyltoluene	9.5	10.0	95.0%	10.1	10.0	101%	6.1%
n-Butylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,2,4-Trichlorobenzene	10.3	10.0	103%	10.2	10.0	102%	1.0%
Naphthalene	10.5	10.0	105%	10.2	10.0	102%	2.9%
1,2,3-Trichlorobenzene	10.3	10.0	103%	10.2	10.0	102%	1.0%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	99.8%	97.5%
d8-Toluene	98.7%	99.5%
Bromofluorobenzene	99.6%	98.3%
d4-1.2-Dichlorobenzene	1028	100%

Page 1 of 2

Sample ID: LCS-021109

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021109

LIMS ID: 09-3554 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/11/09 11:27

LCSD: 02/11/09 11:51

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	10.8	10.0	108%	10.4	10.0	104%	3.8%
Bromomethane	9.9	10.0	99.0%	9.3	10.0	93.0%	6.2%
Vinyl Chloride	10.1	10.0	101%	10.1	10.0	101%	0.0%
Chloroethane	11.9	10.0	119%	11.3	10.0	113%	5.2%
Methylene Chloride	10.1	10.0	101%	9.7	10.0	97.0%	4.0%
Acetone	54.5	50.0	109%	56.8	50.0	114%	4.1%
Carbon Disulfide	9.8	10.0	98.0%	9.2	10.0	92.0%	6.3%
1,1-Dichloroethene	9.3	10.0	93.0%	9.2	10.0	92.0%	1.1%
1,1-Dichloroethane	10.5	10.0	105%	9.7	10.0	97.0%	7.9%
trans-1,2-Dichloroethene	9.3	10.0	93.0%	9.3	10.0	93.0%	0.0%
cis-1,2-Dichloroethene	10.0	10.0	100%	9.4	10.0	94.0%	6.2%
Chloroform	10.4	10.0	104%	10.0	10.0	100%	3.9%
1,2-Dichloroethane	11.0	10.0	110%	10.7	10.0	107%	2.8%
2-Butanone	51.0	50.0	102%	50.5	50.0	101%	1.0%
1,1,1-Trichloroethane	10.8	10.0	108%	10.2	10.0	102%	5.7%
Carbon Tetrachloride	11.2	10.0	112%	10.6	10.0	106%	5.5%
Vinvl Acetate	9.4	10.0	94.0%	9.4	10.0	94.0%	0.0%
Bromodichloromethane	11.0	10.0	110%	10.6	10.0	106%	3.7%
1,2-Dichloropropane	10.0	10.0	100%	9.9	10.0	99.0%	1.0%
cis-1,3-Dichloropropene	10.4	10.0	104%	10.0	10.0	100%	3.9%
Trichloroethene	10.1	10.0	101%	9.4	10.0	94.0%	7.2%
Dibromochloromethane	11.2	10.0	112%	9.6	10.0	96.0%	15.4%
1,1,2-Trichloroethane	9.6	10.0	96.0%	9.5	10.0	95.0%	1.0%
Benzene	9.7	10.0	97.0%	9.4	10.0	94.0%	3.1%
trans-1,3-Dichloropropene	10.6	10.0	106%	10.2	10.0	102%	3.8%
2-Chloroethylvinylether	10.0	10.0	100%	10.2	10.0	102%	2.0%
Bromoform	13.2	10.0	132%	10.1	10.0	101%	26.6%
4-Methyl-2-Pentanone (MIBK)	53.4	50.0	107%	54.4	50.0	109%	1.9%
2-Hexanone	55.5	50.0	111%	51.1	50.0	102%	8.3%
Tetrachloroethene	10.5	10.0	105%	8.9	10.0	89.0%	16.5%
1,1,2,2-Tetrachloroethane	11.4	10.0	114%	8.6	10.0	86.0%	28.0%
Toluene	9.3	10.0	93.0%	8.9	10.0	89.0%	4.4%
Chlorobenzene	10.6	10.0	106%	9.1	10.0	91.0%	15.2%
Ethylbenzene	10.7	10.0	107%	9.4	10.0	94.0%	12.9%
Styrene	11.2	10.0	112%	9.5	10.0	95.0%	16.4%
Trichlorofluoromethane	10.8	10.0	108%	10.4	10.0	104%	3.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.7	10.0	107%	9.9	10.0	99.0%	7.8%
m,p-Xylene	21.1	20.0	106%	17.7	20.0	88.5%	17.5%
o-Xylene	10.6	10.0	106%	8.9	10.0	89.0%	17.4%
1,2-Dichlorobenzene	12.0	10.0	120%	9.0	10.0	90.0%	28.6%
1,3-Dichlorobenzene	12.0	10.0	120%	9.0	10.0	90.0%	28.6%
1,4-Dichlorobenzene	11.9	10.0	119%	8.8	10.0	88.0%	30.0%
Acrolein	71.5	50.0	143%	72.3	50.0	145%	1.1%
Methyl Iodide	11.5	10.0	115%	10.3	10.0	103%	11.0%
Bromoethane	9.4	10.0	94.0%	8.6	10.0	86.0%	8.9%

Page 2 of 2

Sample ID: LCS-021109

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021109

LIMS ID: 09-3554 Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

21	LÇS	Spike	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	ПСВ	Added-103	Recovery	псэр	Added-LCSD	Recovery	
Acrylonitrile	10.5	10.0	105%	11.0	10.0	110%	4.7%
1,1-Dichloropropene	9.6	10.0	96.0%	8.8	10.0	88.0%	8.7%
Dibromomethane	10.4	10.0	104%	10.6	10.0	106%	1.9%
1,1,1,2-Tetrachloroethane	11.0	10.0	110%	9.3	10.0	93.0%	16.7%
1,2-Dibromo-3-chloropropane	12.0	10.0	120%	9.4	10.0	94.0%	24.3%
1,2,3-Trichloropropane	13.2	10.0	132%	9.4	10.0	94.0%	33.6%
trans-1,4-Dichloro-2-butene	13.5	10.0	135%	9.6	10.0	96.0%	33.8%
1,3,5-Trimethylbenzene	11.8	10.0	118%	9.0	10.0	90.0%	26.9%
1,2,4-Trimethylbenzene	11.8	10.0	118%	8.9	10.0	89.0%	28.0%
Hexachlorobutadiene	12.4	10.0	124%	9.0	10.0	90.0%	31.8%
Ethylene Dibromide	10.0	10.0	100%	9.9	10.0	99.0%	1.0%
Bromochloromethane	10.1	10.0	101%	9.8	10.0	98.0%	3.0%
2,2-Dichloropropane	11.0	10.0	110%	10.2	10.0	102%	7.5%
1,3-Dichloropropane	10.8	10.0	108%	9.5	10.0	95.0%	12.8%
Isopropylbenzene	12.3	10.0	123%	9.2	10.0	92.0%	28.8%
n-Propylbenzene	12.4	10.0	124%	9.1	10.0	91.0%	30.7%
Bromobenzene	12.1	10.0	121%	8.7	10.0	87.0%	32.7%
2-Chlorotoluene	12.5	10.0	125%	9.1	10.0	91.0%	31.5%
4-Chlorotoluene	12.5	10.0	125%	9.0	10.0	90.0%	32.6%
tert-Butylbenzene	12.1	10.0	121%	8.8	10.0	88.0%	31.6%
sec-Butylbenzene	12.0	10.0	120%	8.9	10.0	89.0%	29.7%
4-Isopropyltoluene	12.1	10.0	121%	8.9	10.0	89.0%	30.5%
n-Butylbenzene	11.7	10.0	117%	8.8	10.0	88.0%	28.3%
1,2,4-Trichlorobenzene	11.5	10.0	115%	9.1	10.0	91.0%	23.3%
Naphthalene	11.5	10.0	115%	9.3	10.0	93.0%	21.2%
1,2,3-Trichlorobenzene	11.7	10.0	117%	9.3	10.0	93.0%	22.9%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	113%	111%
d8-Toluene	96.0%	101%
Bromofluorobenzene	93.9%	102%
d4-1,2-Dichlorobenzene	102%	102%

Page 1 of 2

Matrix: Water

Reported: 02/12/09

Data Release Authorized:

METHOD BLANK

Lab Sample ID: MB-021009 QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551 Project: Boeing Isaacson Phase II

025173.090

Sample ID: MB-021009

Date Sampled: NA Date Received: NA

Instrument/Analyst: NT7/PKC Sample Amount: 10.0 mL Date Analyzed: 02/10/09 14:18 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15 - 0	Carbon Disulfide	0.2	< 0.2	U
75-35 - 4	1,1-Dichloroethene	0.2	< 0.2	U
75-34 - 3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Page 2 of 2

Sample ID: MB-021009

METHOD BLANK

Lab Sample ID: MB-021009

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 14:18

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.3%
d8-Toluene	99.5%
Bromofluorobenzene	97.8%
d4-1,2-Dichlorobenzene	99.9%

Page 1 of 2

Lab Sample ID: MB-021109

LIMS ID: 09-3554

Matrix: Water Data Release Authorized:

Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/11/09 12:47 Sample ID: MB-021109 METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	·Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75 - 35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061- 0 2-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U
JU 10 1	-/-/2	_		

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: MB-021109

METHOD BLANK

Lab Sample ID: MB-021109

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

LIMS ID: 09-3554

Date Analyzed: 02/11/09 12:47

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	111%
d8-Toluene	102%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	102%

Page 1 of 2

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09
Date Analyzed: 02/10/09 22:04
Instrument/Analyst: NT4/LJR

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95 - 95 - 4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551 Project: Boeing Isaacson Phase II

025173.090

Matrix: Water
Date Analyzed: 02/10/09 22:04

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56 - 55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	64.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	28.0%	2-Fluorophenol	42.4%
2,4,6-Tribromophenol	89.1%	d4-2-Chlorophenol	67.5%

Page 1 of 2

Lab Sample ID: OL24A LIMS ID: 09-4573

Matrix: Water

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 20:17 Instrument/Analyst: NT4/LJR

Sample ID: P2-6-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65 - 8 <u>5</u> - 0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Matrix: Water

Lab Sample ID: OL24A

LIMS ID: 09-4573

Sample ID: P2-6-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/14/09 20:17

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	28
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	85.6%	d4-1,2-Dichlorobenzene	64.8%
d5-Phenol	69.6%	2-Fluorophenol	67.7%
2,4,6-Tribromophenol	94.1%	d4-2-Chlorophenol	71.5%

Page 1 of 2

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 22:38 Instrument/Analyst: NT4/LJR

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64- 7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
1 0 0-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc. Lab Sample ID: OL24B Project: Boeing Isaacson Phase II LIMS ID: 09-3552

025173.090

Matrix: Water Date Analyzed: 02/10/09 22:38

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	89.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	27.5%	2-Fluorophenol	42.4%
2,4,6-Tribromophenol	85.1%	d4-2-Chlorophenol	68.5%

Sample ID: P2-3-090204

SAMPLE

Lab Sample ID: OL24B LIMS ID: 09-4574

QC Report No: OL24-The Boeing Company Project: BOEING ISAACSON

Matrix: Water

Project: BOEING ISAACSON 025173.090

Data Release Authorized: VTS Reported: 02/17/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/12/09
Date Analyzed: 02/14/09 20:52
Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88- 7 5-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Lab Sample ID: OL24B

LIMS ID: 09-4574 Matrix: Water Sample ID: P2-3-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/14/09 20:52

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 Ü
120-12-7	Anthracene	1.0	< 1.0 Ü
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	71.6%	2-Fluorobiphenyl	72.4%
d14-p-Terphenyl	79.2%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	66.1%	2-Fluorophenol	65.1%
2,4,6-Tribromophenol	92.0%	d4-2-Chlorophenol	66.9%

Page 1 of 2

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

zed:

Date Extracted: 02/06/09
Date Analyzed: 02/11/09 17:27
Instrument/Analyst: NT4/LJR

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

108-95-2	CAS Number	Analyte	RL	Result
95-57-8 2-Chlorophenol 1.0 < 1.0	108-95-2	Phenol	1.0	< 1.0 U
1.0 1.0 U	111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
1.0	95-57-8	2-Chlorophenol	1.0	< 1.0 U
100-51-6 Benzyl Alcohol 5.0 < 5.0 U 95-50-1 1,2-Dichlorobenzene 1.0 < 1.0 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0 U 106-44-5 4-Methylphenol 1.0 < 1.0 U 106-44-5 4-Methylphenol 1.0 < 1.0 U 621-64-7 N-Nitroso-Di-N-Propylamine 5.0 < 5.0 U 98-95-3 Nitrobenzene 1.0 < 1.0 U 98-95-3 Nitrobenzene 1.0 < 1.0 U 98-95-1 Isophorone 1.0 < 1.0 U 105-67-9 2,4-Dimethylphenol 5.0 < 5.0 U 105-67-9 2,4-Dimethylphenol 1.0 < 1.0 U 111-91-1 bis(2-Chloroethoxy) Methane 1.0 < 1.0 U 120-83-2 2,4-Dichlorophenol 5.0 < 5.0 U 120-82-1 1,2,4-Trichlorobenzene 1.0 < 1.0 U 120-82-1 1,2,4-Trichlorobenzene 1.0 < 1.0 U 106-47-8 4-Chloro-3-methylphenol 5.0 < 5.0 U 105-68-3 Hexachlorobutadiene 1.0 < 1.0 U 107-47-4 Hexachlorocyclopentadiene 1.0 < 1.0 U 107-47-4 Hexachlorocyclopentadiene 5.0 < 5.0 U 107-47-4 Hexachlorocyclopentadiene 5.0 < 5.0 U 107-47-4 2-Methylnaphthalene 1.0 < 1.0 U 107-47-4 2-Nitroaniline 5.0 < 5.0 U 107-88-7 2-Chloronaphthalene 1.0 < 1.0 U 107-88-7 2-Chloronaphthalene 1.0 < 1.0 U 107-88-7 2-Chloronaphthalene 1.0 < 1.0 U 108-96-8 Acenaphthylene 1.0 < 1.0 U 108-96-8 Acenaphthylene 1.0 < 1.0 U 108-96-8 Acenaphthylene 1.0 < 1.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol 5.0 < 5.0 U 100-02-7 4-Nitrophenol	541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
95-50-1 1,2-Dichlorobenzene 1.0 < 1.0 U 95-48-7 2-Methylphenol 1.0 < 1.0 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0 U 106-44-5 4-Methylphenol 1.0 < 1.0 U 621-64-7 N-Nitroso-Di-N-Propylamine 5.0 < 5.0 U 67-72-1 Hexachloroethane 1.0 < 1.0 U 98-95-3 Nitrobenzene 1.0 < 1.0 U 78-59-1 Isophorone 1.0 < 1.0 U 105-67-9 2,4-Dimethylphenol 1.0 < 1.0 U 105-67-9 2,4-Dimethylphenol 1.0 < 1.0 U 111-91-1 bis(2-Chloroethoxy) Methane 1.0 < 1.0 U 120-83-2 2,4-Dichlorophenol 5.0 < 5.0 U 120-83-2 1,2,4-Trichlorobenzene 1.0 < 1.0 U 120-83-3 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorocylphenol 5.0 < 5.0 U 120-83-2 2,4-Dichlorophenol 5.0 < 5.0 U 120-83-2 2,4-Trichlorobenzene 1.0 < 1.0 U 105-67-8 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorobutadiene 1.0 < 1.0 U 105-67-8 Hexachlorocylphenol 5.0 < 5.0 U 105-67-8 Hexachlorocylopentadiene 1.0 < 1.0 U 105-67-6 2-Methylnaphthalene 1.0 < 1.0 U 105-67-6 2-Methylnaphthalene 1.0 < 1.0 U 105-67-7 4 Hexachlorocylopentadiene 5.0 < 5.0 U 105-67-7 4 Chloronaphthalene 1.0 < 1.0 U 105-67-7 4 Chloronaphthalene 1.0 < 1.0 U 105-67-7 4 Chloronaphthalene 1.0 < 1.0 U 105-67-7 4 Chloronaphthalene 1.0 < 1.0 U 105-67-7 4 Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 < 1.0 U 105-68-7 2-Chloronaphthalene 1.0 <	106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
95-48-7	100-51-6	Benzyl Alcohol	5.0	< 5.0 U
108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0	95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
106-44-5 4-Methylphenol 1.0 < 1.0	95-48-7	2-Methylphenol	1.0	< 1.0 U
621-64-7 N-Nitroso-Di-N-Propylamine 5.0 < 5.0	108-60-1		1.0	< 1.0 U
67-72-1 Hexachloroethane 1.0 < 1.0	106-44-5	4-Methylphenol	1.0	< 1.0 U
98-95-3 Nitrobenzene 1.0 < 1.0	621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
78-59-1 Isophorone 1.0 < 1.0	67-72-1	Hexachloroethane	1.0	< 1.0 U
88-75-5 2-Nitrophenol 5.0 < 5.0	98-95-3	Nitrobenzene	1.0	< 1.0 U
105-67-9 2,4-Dimethylphenol 1.0 < 1.0	78-59-1	Isophorone	1.0	< 1.0 U
65-85-0 Benzoic Acid 10 < 10 U	88-75-5	2-Nitrophenol	5.0	< 5.0 U
111-91-1 bis (2-Chloroethoxy) Methane 1.0 < 1.0 U	105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
120-83-2 2,4-Dichlorophenol 5.0 < 5.0	65-85-0	Benzoic Acid	10	< 10 U
120-82-1 1,2,4-Trichlorobenzene 1.0 < 1.0	111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
91-20-3 Naphthalene 1.0 < 1.0	120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
106-47-8 4-Chloroaniline 5.0 < 5.0	120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
87-68-3 Hexachlorobutadiene 1.0 < 1.0	91-20-3	Naphthalene	1.0	< 1.0 U
59-50-7 4-Chloro-3-methylphenol 5.0 < 5.0	106-47-8	4-Chloroaniline	5.0	< 5.0 U
91-57-6 2-Methylnaphthalene 1.0 < 1.0	87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
77-47-4 Hexachlorocyclopentadiene 5.0 < 5.0	59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
88-06-2 2,4,6-Trichlorophenol 5.0 < 5.0	91-57-6	2-Methylnaphthalene		< 1.0 U
95-95-4 2,4,5-Trichlorophenol 5.0 < 5.0	77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
91-58-7 2-Chloronaphthalene 1.0 < 1.0	88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
88-74-4 2-Nitroaniline 5.0 < 5.0	95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
131-11-3 Dimethylphthalate 1.0 < 1.0	91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
208-96-8 Acenaphthylene 1.0 < 1.0	88-74-4	2-Nitroaniline	5.0	< 5.0 U
99-09-2 3-Nitroaniline 5.0 < 5.0 U	131-11-3	Dimethylphthalate	1.0	< 1.0 U
83-32-9 Acenaphthene 1.0 < 1.0	208-96-8	Acenaphthylene	1.0	< 1.0 U
51-28-5 2,4-Dinitrophenol 10 < 10 U	99-09-2	3-Nitroaniline	5.0	< 5.0 U
100-02-7 4-Nitrophenol 5.0 < 5.0	83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9 Dibenzofuran 1.0 < 1.0 U	51-28-5	2,4-Dinitrophenol	10	< 10 U
606-20-2 2,6-Dinitrotoluene 5.0 < 5.0 U 121-14-2 2,4-Dinitrotoluene 5.0 < 5.0 U	100-02-7	4-Nitrophenol	5.0	< 5.0 U
121-14-2 2,4-Dinitrotoluene 5.0 < 5.0 U	132-64-9	Dibenzofuran	1.0	
-	606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
84-66-2 Diethylphthalate 1.0 < 1.0 U	121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
	84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3553

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/11/09 17:27

CAS Number	Analyte	RL	Result
7 005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	90.8%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	27.7%	2-Fluorophenol	43.5%
2,4,6-Tribromophenol	88.0%	d4-2-Chlorophenol	68.5%

Page 1 of 2

Lab Sample ID: OL24C LIMS ID: 09-4575

Matrix: Water

Data Release Authorized: \\

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 21:27 Instrument/Analyst: NT4/LJR

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 ℧
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-The Boeing Company Lab Sample ID: OL24C LIMS ID: 09-4575

Project: BOEING ISAACSON

025173.090

Matrix: Water Date Analyzed: 02/14/09 21:27

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	70.4%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	76.0%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	60.3%	2-Fluorophenol	63.7%
2,4,6-Tribromophenol	75.5%	d4-2-Chlorophenol	66.4%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II 025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-020609	62.8%	58.4%	83.6%	64.4%	30.7%	45.6%	70.9%	69.1%	0
LCS-020609	67.2%	67.6%	78.4%	69.2%	33.3%	48.5%	80.3%	75.2%	0
LCSD-020609	63.2%	69.6%	84.4%	65.2%	32.0%	45.6%	85.9%	69.9%	0
PZ-6-090204	64.4%	64.4%	87.6%	62.4%	28.0%	42.4%	89.1%	67.5%	0
PZ-3-090204	64.8%	64.0%	89.2%	65.6%	27.5%	42.4%	85.1%	68.5%	0-
I-200-090204	64.8%	65.2%	90.8%	66.4%	27.7%	43.5%	88.0%	68.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
		d14-p-Terphenyl	(48-120)	(46-119)
(DCB)	=	d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C

Log Number Range: 09-3551 to 09-3553

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	TUO TC
MD 001000	74.0%	70 49	00.48	61.2%	70 0%	70 0%	74.9%	71 10	^
MB-021209	74.8%	70.4%							0
LCS-021209	76.0%	71.2%	90.0%	65.6%	79.2%	72.5%	93.1%	75.5%	0
LCSD-021209	70.0%	75.2%	82.0%	59.2%	67.7%	63.7%	90.9%	65.6%	0
P2-6-090204	74.8%	76.4%	85.6%	64.8%	69.6%	67.7%	94.1%	71.5%	0
P2-3-090204	71.6%	72.4%	79.2%	62.4%	66.1%	65.1%	92.0%	66.9%	0
I-200-090204	70.4%	68.0%	76.0%	64.0%	60.3%	63.7%	75.5%	66.4%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 09-4573 to 09-4575

Instrument/Analyst LCS: NT4/LJR

Data Release Authorized:

Page 1 of 2

Matrix: Water

Reported: 02/12/09

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609 QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount LCS: 500 mL Date Extracted LCS/LCSD: 02/06/09

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 02/10/09 13:24 LCSD: 02/10/09 13:59 LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

LCSD: NT4/LJR

GPC Cleanup: NO

3 m a lank a	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	ncs	Added-LC5	Recovery	БСЭБ	Added-BCSD	Recovery	KFD
Phenol	7.5	25.0	30.0%	7.2	25.0	28.8%	3.0%
Bis-(2-Chloroethyl) Ether	18.7	25.0	74.8%	17.9	25.0	71.6%	4.4%
2-Chlorophenol	18.1	25.0	72.4%	16.9	25.0	67.6%	6.9%
1,3-Dichlorobenzene	16.7	25.0	66.8%	16.1	25.0	64.4%	3.7%
1,4-Dichlorobenzene	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Benzyl Alcohol	18.2	50.0	36.4%	18.3	50.0	36.6%	0.5%
1,2-Dichlorobenzene	17.6	25.0	70.4%	17.0	25.0	68.0%	3.5%
2-Methylphenol	16.1	25.0	64.4%	15.6	25.0	62.4%	3.2%
2,2'-Oxybis(1-Chloropropane	2)14.3	25.0	57.2%	13.8	25.0	55.2%	3.6%
4-Methylphenol	30.9	50.0	61.8%	30.7	50.0	61.4%	0.6%
N-Nitroso-Di-N-Propylamine	16.5	25.0	66.0%	16.4	25.0	65.6%	0.6%
Hexachloroethane	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Nitrobenzene	16.2	25.0	64.8%	15.7	25.0	62.8%	3.1%
Isophorone	17.8	25.0	71.2%	18.1	25.0	72.4%	1.7%
2-Nitrophenol	18.4	25.0	73.6%	17.8	25.0	71.2%	3.3%
2,4-Dimethylphenol	12.9	25.0	51.6%	12.5	25.0	50.0%	3.1%
Benzoic Acid	28.2	75.0	37.6%	29.6	75.0	39.5%	4.8%
bis(2-Chloroethoxy) Methane	17.7	25.0	70.8%	17.6	25.0	70.4%	0.6%
2,4-Dichlorophenol	18.4	25.0	73.6%	18.0	25.0	72.0%	2.2%
1,2,4-Trichlorobenzene	16.4	25.0	65.6%	16.0	25.0	64.0%	2.5%
Naphthalene	17.8	25.0	71.2%	17.3	25.0	69.2%	2.8%
4-Chloroaniline	< 5.0	60.0	NA%	< 5.0	60.0	NA%	NA
Hexachlorobutadiene	16.1	25.0	64.4%	15.5	25.0	62.0%	3.8%
4-Chloro-3-methylphenol	18.5	25.0	74.0%	19.1	25.0	76.4%	3.2%
2-Methylnaphthalene	18.3	25.0	73.2%	18.1	25.0	72.4%	1.1%
Hexachlorocyclopentadiene	45.9	75.0	61.2%	45.8	75.0	61.1%	0.2%
2,4,6-Trichlorophenol	17.3	25.0	69.2%	18.1	25.0	72.4%	4.5%
2,4,5-Trichlorophenol	18.2	25.0	72.8%	18.4	25.0	73.6%	1.1%
2-Chloronaphthalene	17.5	25.0	70.0%	17.9	25.0	71.6%	2.3%
2-Nitroaniline	16.7	25.0	66.8%	17.6	25.0	70.4%	5.2%
Dimethylphthalate	19.1	25.0	76.4%	20.4	25.0	81.6%	6.6%
Acenaphthylene	18.3	25.0	73.2%	19.0	25.0	76.0%	3.8%
3-Nitroaniline	17.7	64.0	27.7%	19.7	64.0	30.8%	10.7%
Acenaphthene	17.9	25.0	71.6%	18.4	25.0	73.6%	2.8%
2,4-Dinitrophenol	75.8	75.0	101%	85.7	75.0	114%	12.3%
4-Nitrophenol	9.6	25.0	38.4%	10.2	25.0	40.8%	6.3%
Dibenzofuran	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
2,6-Dinitrotoluene	18.6	25.0	74.4%	19.8	25.0	79.2%	6.2%
2,4-Dinitrotoluene	19.7	25.0	78.8%	21.1	25.0	84.4%	6.9%
Diethylphthalate	19.1	25.0	76.4%	20.7	25.0	82.8%	8.0%
4-Chlorophenyl-phenylether	18.0	25.0	72.0%	19.0	25.0	76.0%	5.4%
Fluorene	19.2	25.0	76.8%	20.1	25.0	80.4%	4.6%
4-Nitroaniline	17.6	25.0	70.4%	18.7	25.0	74.8%	6.1%
4,6-Dinitro-2-Methylphenol	68.3	75.0	91.1%	76.8	75.0	102%	11.7%
N-Nitrosodiphenylamine	16.9	25.0	67.6%	18.1	25.0	72.4%	6.9%

Page 2 of 2

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 13:24

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
4-Bromophenyl-phenylether	16.8	25.0	67.2%	18.1	25.0	72.4%	7.4%
Hexachlorobenzene	17.2	25.0	68.8%	18.4	25.0	73.6%	6.7%
Pentachlorophenol	18.7	25.0	74.8%	20.5	25.0	82.0%	9.2%
Phenanthrene	18.8	28.0	67.1%	20.0	28.0	71.4%	6.2%
Carbazole	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
Anthracene	18.3	25.0	73.2%	19.5	25.0	78.0%	6.3%
Di-n-Butylphthalate	19.3	25.0	77.2%	20.8	25.0	83.2%	7.5%
Fluoranthene	19.0	25.0	76.0%	20.3	25.0	81.2%	6.6%
Pyrene	19.7	25.0	78.8%	21.4	25.0	85.6%	8.3%
Butylbenzylphthalate	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
3,3'-Dichlorobenzidine	34.0	64.0	53.1%	41.0	64.0	64.1%	18.7%
Benzo(a)anthracene	18.5	25.0	74.0%	20.2	25.0	80.8%	8.8%
bis(2-Ethylhexyl)phthalate	19.8	25.0	79.2%	22.0	25.0	88.0%	10.5%
Chrysene	18.6	28.0	66.4%	19.8	28.0	70.7%	6.2%
Di-n-Octyl phthalate	18.4	25.0	73.6%	19.9	25.0	79.6%	7.8%
Benzo(b)fluoranthene	20.1	25.0	80.4%	22.5	25.0	90.0%	11.3%
Benzo(k)fluoranthene	19.9	28.0	71.1%	21.2	28.0	75.7%	6.3%
Benzo(a)pyrene	15.5	25.0	62.0%	17.3	25.0	69.2%	11.0%
Indeno(1,2,3-cd)pyrene	17.6	25.0	70.4%	19.4	25.0	77.6%	9.7%
Dibenz(a,h)anthracene	17.7	25.0	70.8%	19.4	25.0	77.6%	9.2%
Benzo(g,h,i)perylene	16.9	25.0	67.6%	18.5	25.0	74.0%	9.0%
1-Methylnaphthalene	19.5	25.0	78.0%	19.8	25.0	79.2%	1.5%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	67.2%	63.2%
2-Fluorobiphenyl	67.6%	69.6%
d14-p-Terphenyl	78.4%	84.4%
d4-1,2-Dichlorobenzene	69.2%	65.2%
d5-Phenol	33.3%	32.0%
2-Fluorophenol	48.5%	45.6%
2,4,6-Tribromophenol	80.3%	85.9%
d4-2-Chlorophenol	75.2%	69.9%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: LCS-021209

LCS/LCSD

Lab Sample ID: LCS-021209

LIMS ID: 09-4573 Matrix: Water

Data Release Authorized: \

Reported: 02/17/09

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted LCS/LCSD: 02/12/09 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/14/09 12:09 Final Extract Volume LCS: 0.50 mL LCSD: 02/14/09 12:44 LCSD: 0.50 mL

Dilution Factor LCS: 1.00

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	19.5	25.0	78.0%	16.5	25.0	66.0%	16.7%
Bis-(2-Chloroethyl) Ether	18.2	25.0	72.8%	16.1	25.0	64.4%	12.2%
2-Chlorophenol	18.5	25.0	74.0%	16.2	25.0	64.8%	13.3%
1,3-Dichlorobenzene	12.6	25.0	50.4%	11.6	25.0	46.4%	8.3%
1,4-Dichlorobenzene	13.0	25.0	52.0%	12.0	25.0	48.0%	8.0%
Benzyl Alcohol	35.1	50.0	70.2%	31.2	50.0	62.4%	11.8%
1,2-Dichlorobenzene	13.6	25.0	54.4%	12.4	25.0	49.6%	9.2%
2-Methylphenol	18.8	25.0	75.2%	16.2	25.0	64.8%	14.9%
2,2'-Oxybis(1-Chloropropane		25.0	76.0%	16.8	25.0	67.2%	12.3%
4-Methylphenol	38.9	50.0	77.8%	34.1	50.0	68.2%	13.2%
N-Nitroso-Di-N-Propylamine	18.9	25.0	75.6%	17.0	25.0	68.0%	10.6%
Hexachloroethane	11.4	25.0	45.6%	10.6	25.0	42.4%	7.3%
Nitrobenzene	18.7	25.0	74.8%	17.6	25.0	70.4%	6.1%
Isophorone	20.1	25.0	80.4%	19.6	25.0	78.4%	2.5%
2-Nitrophenol	18.4	25.0	73.6%	17.6	25.0	70.4%	4.4%
2,4-Dimethylphenol	18.0	25.0	72.0%	16.7	25.0	66.8%	7.5%
Benzoic Acid	64.1	75.0	85.5%	59.9	75.0	79.9%	6.8%
bis(2-Chloroethoxy) Methane	18.3	25.0	73.2%	17.8	25.0	71.2%	2.8%
2,4-Dichlorophenol	19.1	25.0	76.4%	18.6	25.0	74.4%	2.7%
1,2,4-Trichlorobenzene	13.8	25.0	55.2%	14.0	25.0	56.0%	1.4%
Naphthalene	16.4	25.0	65.6%	15.7	25.0	62.8%	4.4%
4-Chloroaniline	56.2	60.0	93.7%	52.5	60.0	87.5%	6.8%
Hexachlorobutadiene	11.9	25.0	47.6%	12.7	25.0	50.8%	6.5%
4-Chloro-3-methylphenol	20.9	25.0	83.6%	20.1	25.0	80.4%	3.9%
2-Methylnaphthalene	17.0	25.0	68.0%	16.8	25.0	67.2%	1.2%
Hexachlorocyclopentadiene	31.3	75.0	41.7%	38.6	75.0	51.5%	20.9%
2,4,6-Trichlorophenol	18.9	25.0	75.6%	20.4	25.0	81.6%	7.6%
2,4,5-Trichlorophenol	19.6	25.0	78.4%	20.7	25.0	82.8%	5.5%
2-Chloronaphthalene	16.2	25.0	64.8%	17.8	25.0	71.2%	9.4%
2-Nitroaniline	21.8	25.0	87.2%	22.0	25.0	88 0%	0.9%
Dimethylphthalate	21.0	25.0	84.0%	21.2	25.0	84.8%	0.9%
Acenaphthylene	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
3-Nitroaniline	65.7	64.0	103%	63.6	64.0	99.4%	3.2%
Acenaphthene	18.4	25.0	73.6%	19.8	25.0	79.2%	7.3%
2,4-Dinitrophenol	93.0	75.0	124%	93.8	75.0	125%	0.9%
4-Nitrophenol	22.4	25.0	89.6%	21.8	25.0	87.2%	2.7%
Dibenzofuran	19.3	25.0	77.2%	20.2	25.0	80.8%	4.6%
2,6-Dinitrotoluene	21.2	25.0	84.8%	21.2	25.0	84.8%	0.0%

Page 2 of 2

Sample ID: LCS-021209

LCS/LCSD

Lab Sample ID: LCS-021209

QC Report No: OL24-The Boeing Company

LIMS ID: 09-4573

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/14/09 12:09

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
2,4-Dinitrotoluene	22.0	25.0	88.0%	21.6	25.0	86.4%	1.8%
Diethylphthalate	20.4	25.0	81.6%	20.2	25.0	80.8%	1.0%
4-Chlorophenyl-phenylether	19.7	25.0	78.8%	20.2	25.0	80.8%	2.5%
Fluorene	20.4	25.0	81.6%	20.8	25.0	83.2%	1.9%
4-Nitroaniline	21.4	25.0	85.6%	20.4	25.0	81.6%	4.8%
4,6-Dinitro-2-Methylphenol	76.5	75.0	102%	80.2	75.0	107%	4.7%
N-Nitrosodiphenylamine	19.2	25.0	76.8%	20.2	25.0	80.8%	5.1%
4-Bromophenyl-phenylether	18.9	25.0	75.6%	20.7	25.0	82.8%	9.1%
Hexachlorobenzene	19.6	25.0	78.4%	21.6	25.0	86.4%	9.7%
Pentachlorophenol	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
Phenanthrene	20.5	25.0	82.0%	21.6	25.0	86.4%	5.2%
Carbazole	20.8	25.0	83.2%	21.2	25.0	84.8%	1.9%
Anthracene	19.8	25.0	79.2%	21.0	25.0	84.0%	5.9%
Di-n-Butylphthalate	20.4	25.0	81.6%	21.3	25.0	85.2%	4.3%
Fluoranthene	20.2	25.0	80.8%	21.9	25.0	87.6%	8.1%
Pyrene	21.1	25.0	84.4%	19.6	25.0	78.4%	7.4%
Butylbenzylphthalate	20.9	25.0	83.6%	20.2	25.0	80.8%	3.4%
3,3'-Dichlorobenzidine	52.2	64.0	81.6%	57.5	64.0	89.8%	9.7%
Benzo(a)anthracene	20.4	25.0	81.6%	21.4	25.0	85.6%	4.8%
bis(2-Ethylhexyl)phthalate	21.0	25.0	84.0%	20.8	25.0	83.2%	1.0%
Chrysene	19.9	25.0	79.6%	20.9	25.0	83.6%	4.9%
Di-n-Octyl phthalate	20.2	25.0	80.8%	21.8	25.0	87.2%	7.6%
Benzo(b)fluoranthene	19.6	25.0	78.4%	22.0	25.0	88.0%	11.5%
Benzo(k)fluoranthene	22.6	25.0	90.4%	21.1	25.0	84.4%	6.9%
Benzo(a)pyrene	16.6	25.0	66.4%	17.8	25.0	71.2%	7.0%
Indeno(1,2,3-cd)pyrene	19.4	25.0	77.6%	22.0	25.0	88.0%	12.6%
Dibenz(a,h)anthracene	18.9	25.0	75.6%	21.5	25.0	86.0%	12.9%
Benzo(g,h,i)perylene	18.4	25.0	73.6%	20.7	25.0	82.8%	11.8%
1-Methylnaphthalene	18.0	25.0	72.0%	17.8	25.0	71.2%	1.1%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	70.0%
2-Fluorobiphenyl	71.2%	75.2%
d14-p-Terphenyl	90.0%	82.0%
d4-1,2-Dichlorobenzene	65.6%	59.2%
d5-Phenol	79.2%	67.7%
2-Fluorophenol	72.5%	63.7%
2,4,6-Tribromophenol	93.1%	90.9%
d4-2-Chlorophenol	75.5%	65.6%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2

Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Date Extracted: 02/06/09

Date Analyzed: 02/10/09 12:49

Instrument/Analyst: NT4/LJR

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
	Acenaphthylene	1.0	< 1.0 U
208-96-8	3-Nitroaniline	5.0	< 5.0 U
99-09-2		1.0	< 1.0 U
83-32-9	Acenaphthene 2,4-Dinitrophenol	1.0	< 1.0 U
51-28-5		5.0	< 5.0 U
100-02-7	4-Nitrophenol		
132-64-9	Dibenzofuran	1.0	< 1.0 U < 5.0 U
606-20-2	2,6-Dinitrotoluene	5.0	
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: MB-020609 METHOD BLANK

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

Lab Sample ID: MB-020609

LIMS ID: 09-3551 Matrix: Water

Date Analyzed: 02/10/09 12:49

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56 - 55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70 - 3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	62.8% 83.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	58.4% 64.4%
d5-Phenol	30.78	2-Fluorophenol	45.6% 69.1%
2,4,6-Tribromophenol	70.9⊱	d4-2-Chlorophenol	6

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: MB-021209 METHOD BLANK

Lab Sample ID: MB-021209

LIMS ID: 09-4573

Matrix: Water Data Release Authorized: \(\)

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 11:35 Instrument/Analyst: NT4/LJR

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: MB-021209

METHOD BLANK

Lab Sample ID: MB-021209

QC Report No: OL24-The Boeing Company

LIMS ID: 09-4573

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/14/09 11:35

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	74.8% 82.4%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	70.4% 61.2%
d5-Phenol	72.0%	2-Fluorophenol	70.9%
2,4,6-Tribromophenol	74.9%	d4-2-Chlorophenol	74.1%

Page 1 of 1

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Date Extracted: 02/09/09 Date Analyzed: 02/11/09 17:31

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090 Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL.	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k) fluoranthene	0.10	< 0.10 U
50-32-8	Benzo (a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz (a, h) anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.7% d14-Dibenzo(a,h)anthracene 35.7%

Page 1 of 1

Sample ID: PZ-3-090204

SAMPLE

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

Event: 025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/09/09 Sample Amount: 500 mL Date Analyzed: 02/11/09 17:53 Final Extract Volume: 0.5 mL Instrument/Analyst: NT1/PK Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53 - 70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 61.7% d14-Dibenzo(a,h)anthracene 71.3%

Page 1 of 1

Sample ID: I-200-090204

SAMPLE

< 0.10 U

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized: Www

Date Analyzed: 02/11/09 18:16

Instrument/Analyst: NT1/PK

53-70-3

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090 Date Sampled: 02/04/09

Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

0.10

•		2.00
Analyte	RL	Result
Benzo(a)anthracene	0.10	< 0.10 U
Chrysene	0.10	< 0.10 U
Benzo(b)fluoranthene	0.10	< 0.10 U
Benzo(k)fluoranthene	0.10	< 0.10 U
Benzo(a)pyrene	0.10	< 0.10 U
Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
	Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	Benzo(a) anthracene 0.10 Chrysene 0.10 Benzo(b) fluoranthene 0.10 Benzo(k) fluoranthene 0.10 Benzo(a) pyrene 0.10

Reported in µg/L (ppb)

Dibenz(a,h)anthracene

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.3% d14-Dibenzo(a,h)anthracene 70.7%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

Client ID	MNP	DBA	TOT OUT
MB-020909	63.3%	80.0%	0
LCS-020909	63.7%	81.3%	0
LCSD-020909	58.7%	79.7%	0
PZ-6-090204	59.7%	35.7%	0
PZ-3-090204	61.7%	71.3%	0
I-200-090204	59.3%	70.7%	0

	LCS/MB LIMITS	QC LIMITS
d10-2-Methylnaphthalene	(49-113)	(44-112)
d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C

Log Number Range: 09-3551 to 09-3553

Page 1 of 1

Sample ID: LCS-020909

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020909

LIMS ID: 09-3551

Matrix: Water Data Release Authorized:

Reported: 02/12/09

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/11/09 12:37 LCSD: 02/11/09 12:59

Instrument/Analyst LCS: NT1/PK

LCSD: NT1/PK

Date Received: NA

Event: 025173.090

Date Sampled: NA

Sample Amount LCS: 500 mL LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a) anthracene	2.27	3.00	75.7%	2.38	3.00	79.3%	4.7%
Chrysene	2.43	3.00	81.0%	2.45	3.00	81.7%	0.8%
Benzo(b)fluoranthene	2.53	3.00	84.3%	2.41	3.00	80.3%	4.9%
Benzo(k)fluoranthene	2.94	3.00	98.0%	3.04	3.00	101%	3.3%
Benzo(a)pyrene	2.57	3.00	85.7%	2.49	3.00	83.0%	3.2%
Indeno(1,2,3-cd)pyrene	2.41	3.00	80.3%	2.47	3.00	82.3%	2.5%
Dibenz(a,h)anthracene	2.52	3.00	84.0%	2.50	3.00	83.3%	0.8%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	63.7%	58.7%
d14-Dibenzo(a,h)anthracene	81.3%	79.7%

Page 1 of 1

Sample ID: MB-020909

METHOD BLANK

Lab Sample ID: MB-020909

LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Date Analyzed: 02/11/09 12:14

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.3% d14-Dibenzo(a,h)anthracene 80.0%

Page 1 of 1

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:05

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	55.5%

Page 1 of 1

Lab Sample ID: OL24B

LIMS ID: 09-3552 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	60.8%

Page 1 of 1

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized:/ Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:40

Instrument/Analyst: ECD5/JGR

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	78.2%
Tetrachlorometaxylene	62.0%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II 025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
	00.09	47 101	CE 0%	61 104	0
MB-020909	88.8%	47-101		61-104	-
LCS-020909	81.8%	47-101	57.2%*	61-104	1
LCSD-020909	83.8%	47-101	59.5%*	61-104	1
PZ-6-090204	87.5%	42-120	55.5%	55-102	0
PZ-3-090204	84.2%	42-120	60.8%	55-102	0
I-200-090204	78.2%	42-120	62.0%	55-102	0

Prep Method: SW3510C Log Number Range: 09-3551 to 09-3553

Page 1 of 1

Lab Sample ID: LCS-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/10/09 10:57

LCSD: 02/10/09 11:14

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: LCS-020909

LCS/LCSD

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.98	5.00	79.6%	4.25	5.00	85.0%	6.6%
Aroclor 1260	4.50	5.00	90.0%	4.52	5.00	90.4%	0.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	81.8%	83.8%
Tetrachlorometaxylene	57.2%	59.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 10:39 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-020909

METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	88.88
Tetrachlorometaxylene	65.8%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 02/09/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-020609 09-3551	Method Blank	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 76.8%
OL24A 09-3551	PZ-6-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 83.2%
OL24B 09-3552	PZ-3-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 83.1%
OL24C 09-3553	I-200-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 69.0%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II 025173.090

Client ID	O-TER	TOT OUT
MB-020609	76.8%	0
LCS-020609	89.6%	0
LCSD-020609	88.1%	0
PZ-6-090204	83.2%	0
PZ-3-090204	83.1%	0
I-200-090204	69.0%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C Log Number Range: 09-3551 to 09-3553

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

1 of 1 Page

Lab Sample ID: LCS-020609

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/09/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Sample ID: LCS-020609

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount LCS: 500 mL Date Extracted LCS/LCSD: 02/06/09

LCSD: 500 mL

LCS/LCSD

Final Extract Volume LCS: 1.0 mL Date Analyzed LCS: 02/07/09 02:17 LCSD: 02/07/09 02:35

LCSD: 1.0 mL

Dilution Factor LCS: 1.00 Instrument/Analyst LCS: FID/MS LCSD: FID/MS

LCSD: 1.00

LCSD LCS Spike Spike RPD LCSD Added-LCSD Recovery LCS Added-LCS Recovery Range 3.00 80.3% 1.6% 3.00 81.7% 2.41 2.45 Diesel

HCID Surrogate Recovery

LCSD LCS

o-Terphenyl

89.6% 88.1%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OL24

Matrix: Water

Date Received: 02/04/09

Project: Boeing Isaacson Phase II 025173.090

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
09-3551-020609MB 09-3551-020609LCS 09-3551-020609LCSD 09-3551-0L24A 09-3552-0L24B 09-3553-0L24C	Method Blank Lab Control Lab Control Dup PZ-6-090204 PZ-3-090204 I-200-090204	500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	02/06/09 02/06/09 02/06/09 02/06/09 02/06/09

Page 1 of 1

Lab Sample ID: OL24A LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	2	505	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	5	5	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	Ū
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	Ū

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water Data Release Authorized: Reported: 02/20/09

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.
Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	11.7	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized

Reported: 02/20/09

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	0.8	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	- 2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24LCS LIMS ID: 09-3551

Matrix: Water

Data Release Authorized Reported: 02/20/09

Sample ID: LAB CONTROL

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	0
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	26.2	25.0	105%	
Cadmium	6010B	498	500	99.6%	
Chromium	6010B	465	500	93.0%	
Copper	6010B	465	500	93.0%	
Lead	200.8	28	25	112%	
Mercury	7470A	2.1	2.0	105%	
Zinc	6010B	480	500	96.0%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: OL24MB

LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Sample ID: METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	0.2	U
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

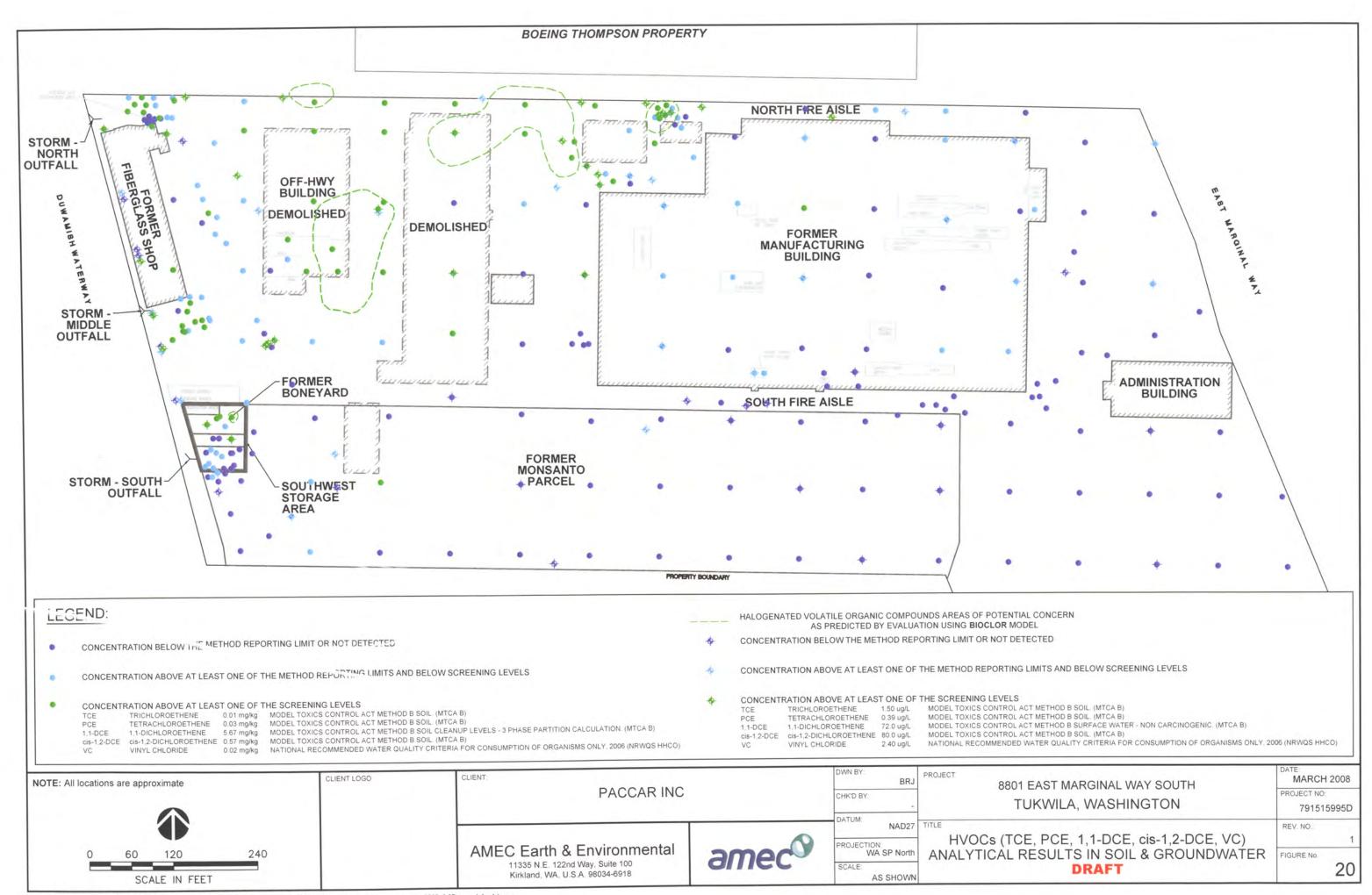
U-Analyte undetected at given RL RL-Reporting Limit

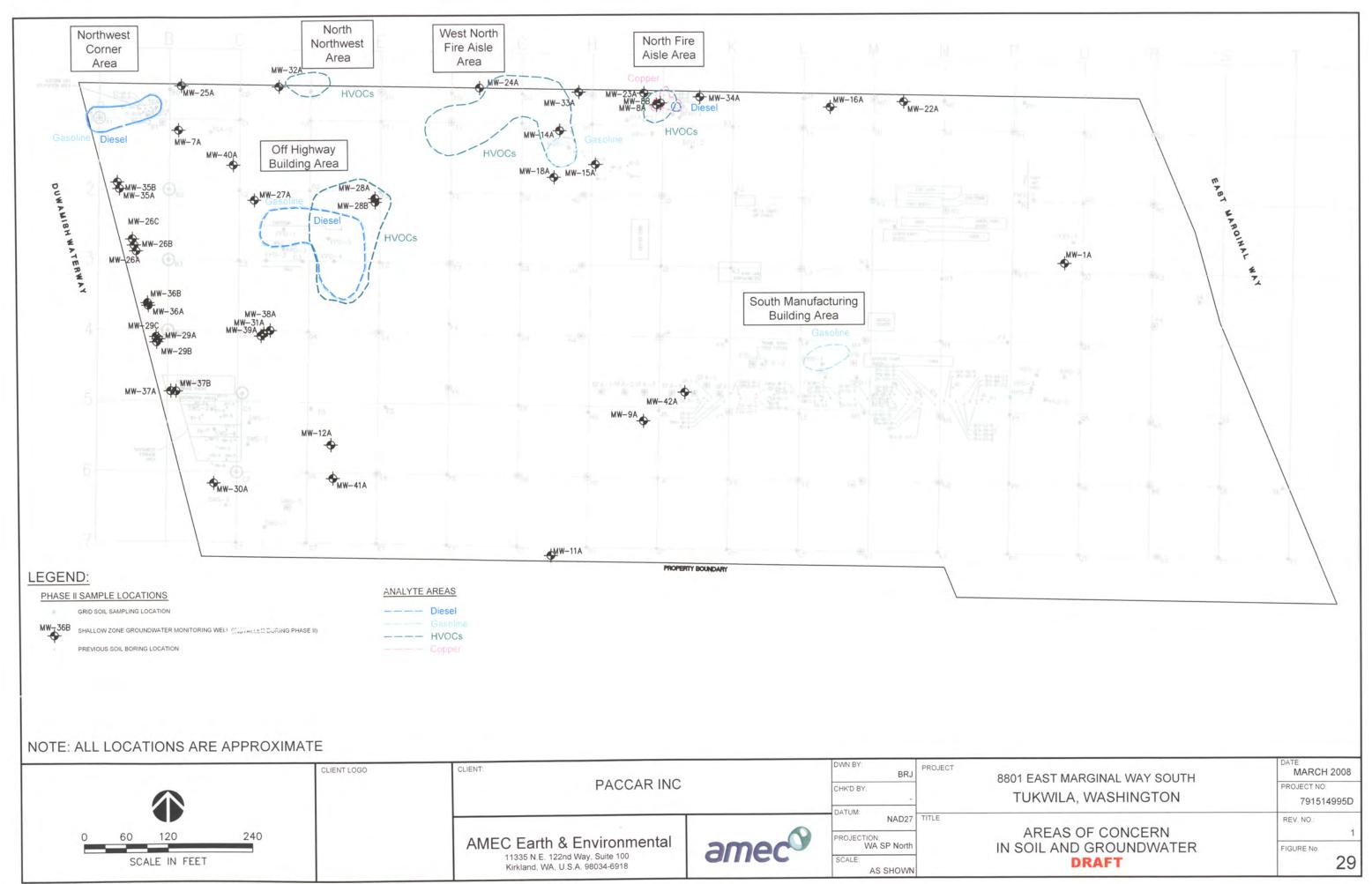
Selected Data Tables and Figures for Former PACCAR Property

DRAFT INTERIM ACTION WORK PLAN WITH REMEDIAL INVESTIGATION AND FEASIBILITY STUDY FOR THE UPLAND PORTION FOR SOIL AND GROUNDWATER CLEANUP AT 8801 EAST MARGINAL WAY SOUTH SITE AND FORMER PACCAR KENWORTH TRUCK COMPANY SITE TUKWILA, WASHINGTON

Prepared for:

PACCAR Inc


777-106th Avenue N.E. Bellevue, Washington 98004


Submitted by:

AMEC Earth & Environmental, Inc. 1335 NE 122nd Way, Suite 100 Kirkland, Washington 98034

May 16, 2008

7-915-14995-D

TABLE 17

Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South

Tukwila, Washington

				,		,	,	· · · · · · · · · · · · · · · · · · ·				IUN	Wila, W	asimi	LOII													
	Chemical Name:	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
		NL	7,200 ^a	0.2188 ^b	480,000°	0.7675 ^b	800°	72ª	NL	NL	NL	NL	NL	NL	5.19 ^c	0.4808 ^b	0.6434 ^a	400 ^a	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
Sample Location	Sample Date	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
A1	4/19/2004	0.224 U	0.266 U	0.255 U	NT	0.253 U	0.285 U	13.2	0.309 U	0.274 U	0.294 U	0.285 U	268	0.275 Ü	0.850 J	0.324 U	0.186 U	105	0.234 U	0.262 U	0.249 U	NT	0.182 U	15.1	NT	0.225 U	1.17 U	0.286 U
B1	3/25/2004				NT	0.253 U		0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT	0.225 U	1.17 U	0.286 U
BY-5	2/22/2002					<u> </u>	4	0.600 U			1.50 U	1.50 U	0.800				0.600 U				0.600 U		0.600 U		1.50 U	0.600 U		
CPB-1	4/12/2004			+	NT		0.285 U	•									+	0.213 U			 		0.182 U		NT	0.225 U		0.286 U
DS-2	2/22/2002		1.00 U	1.00 U	2.00 U	1.00 U	4.40	1.00 U		5.00 U		5.00 U					1.00 U			1.00 U		NT	1.00 U	···		1.00 U		1.00 U
F1	3/19/2004			·	NT	0.253 U												0.213 U						1.39 U	NT	0.225 U		
F3	3/17/2004	~			NT	+	0.720 J											0.213 U					0.182 U	1.39 U	NT	0.225 U		
F5 FTF-1	4/7/2004		•	0.255 U 0.255 U	NT		0.285 U 0.540 J											0.213 U					0.182 U	1.39 U	NT	0.225 U		
G6	3/18/2004			-	NT NT		0.340 J											0.213 U 0.213 U					0.182 U 0.182 U	1.39 U 1.39 U		0.225 U		0.286 U
H3	3/17/2004		106 U	102 U	NT	101 U	114 U	115 U	124 U	110 U	118 U		91.2 U	110 U		130 U				105 U	99.6 U	NT	72.8 U	556 U	NT NT	0.225 U 90.0 U		114 U
HM-6	2/22/2002									0.500 U								0.200 U					0.200 U			0.200 U		0.200 U
J2	4/19/2004				NT	0.253 U					0.294 U	0.285 U			0.274 U			0.600 J			•		0.182 U	1.39 U		0.225 U		
J4	3/18/2004			<u> </u>	NT		0.285 U				0.294 U	0.285 U						0.213 U					0.182 U	1.39 U		0.225 U		
K5	4/1/2004			1	NT		0.285 U	0.287 U			0.294 U							0.213 U					0.182 U	1.39 U		0.225 U		
L1	4/20/2004	0.224 U	0.266 U		NT	0.253 U	·	0.287 U			0.294 U							0.213 U						1.39 U		0.225 U		
L3	3/19/2004	0.224 U	0.266 U	0.255 U	NT	0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U							0.213 U								0.225 U		
L6	4/1/2004	0.224 U	0.266 U	0.255 U	NT	0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT		1.39 U	NT	0.225 U	1.17 U	0.286 U
М7	4/5/2004				NT		0.285 U											0.213 U				NT	0.182 U	1.39 U	NT	0.225 U	1.17 U	0.286 U
MW-11A	3/27/2002			+			0.200 U											0.200 U				NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-11A	3/3/2006						0.200 U											0.200 U					0.200 U			0.200 U		
MW-11A	8/11/2006				4		0.200 U	•——•										0.200 U					0.200 U			0.200 U	 	
MW-12A	3/26/2002				0.200 U				0.200 U									0.200 U								0.200 U		
MW-14A	3/27/2002			0.200 U			13.0											0.200 U					0.200 U					
MW-14A MW-14A	8/11/2006			1.00 U														1.00 U										
MW-15A	3/27/2002																	0.200 U 0.200 U										
MW-16A	3/28/2002							0.200 0	0.200 0	0.500 U	0.500 U	0.500 U	0.200 0	1.00 0	0.200 0	0.200 0	0.200 0	0.300	0.200 U	0.200 0	0.200 U	NIT	0.200 U	1.00 0	0.500 U	0.200 0	1.00 0	0.200 U
MW-16A				0.200 U				0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.300	2 00 11	0.200 0	0.200 0	0.200 0	0.200 U	0.200 0	0.200 0	0.200 0	NT	0.200 0	1.00 0	0.500 U	0.200 0	1.00 0	0.200 0
MW-16A	8/14/2006							0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	2.80	2.00 U	0.200 U	0.200 U	0.200 U	0.200 0	0.200 U	0.200 U	0.200 U	NT	0.200 U					
MW-18A	3/27/2002						2.40	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U					
MW-19B	3/27/2002	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT						
MW-1A	3/28/2002	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U					
MW-1A	3/6/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT						
MW-1A	8/14/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-22A	3/28/2002	0.200 U	1.20	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-23A	3/27/2002	0.200 U	29.0	0.200 U	0.200 U	0.200 U	4.20	0.400	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U							
MW-24A	3/27/2002																						0.200 U					
MW-25A	3/27/2002																						0.200 U					
MW-25A	3/2/2006																						0.200 U					
MW-25A	8/10/2006	0.200 U	J 0.200 U	[0.200 U	[0.200 U	0.200 U	0.200 U	J 0.200 U	0.200 U	0.500 U	0.500 U	[0.500 U	J 0.200 U	2.00 U	J 0.200 U	J 0.200 U	J 0.200 U	0.200 U	0.200 U	J 0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U

TABLE 17

Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South

Tukwila, Washington

	1	
Chemical Name: 4-Isopropyltoluene 4-Methyl-2-pentanone 4-Methyl-2-pentanone 4-Methyl-2-pentanone 4-Methyl-2-pentanone 4-Methyl-2-pentanone 6-MiBK) Acetone Bromochloromethane Bromochloromethane Bromochloromethane Chlorobenzene Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chloromethane Dibromochloromethane Dibromomethane Dibromomethane Chichlorodifluoromethane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane Chlorothane	Ethylene Dibromide Hexachlorobutadiene	Hexane
18.18 NL NL 800 ^a NL NL 0.7955 ^a NL NL 0.7056 ^b NL 5.538 ^b NL 800 ^a NL 160 ^a NL 7.172 ^b 3.365 ^b 80 ^a NL NL NL NL 800 ^a	NL 0.5609 ^b	NL
Sample Sample Location Date ug/l u	ug/l ug/l	ug/l
	0.268 U 0.360 U	NT
	0.268 U 0.360 U	NT
BY-5 2/22/2002 0.600 U NT 3.00 U 3.00 U 15.0 U 3.00 U 0.600 U	0.600 U 1.50 U	NT
CPB-1 4/12/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U 0.24	0.268 U 0.360 U	NT
	1.00 U 5.00 U	NT
F1 3/19/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 992 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U		
F3 3/17/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 4.76 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U		
F5 4/7/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U		
FTF-1 4/7/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.950 J 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U		
G6 3/18/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U	0.268 U 0.360 U	NT
H3 3/17/2004 110 U 456 U NT 588 U NT NT 90.4 U 92.8 U 128 U 86.0 U NT 80.0 U 116 U 122 U 106 U 94.4 U 122 U 104 U 138 U 120 U 82.0 U 103 U 87.2 U 93.2 U 96.4 U	107 U 144 U	NT
	0.200 U 0.500 U	
J2 4/19/2004 0.274 U 1.14 U NT 1.47 U NT NT 1.86 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 12.3 0.260 U 0.346 U 0.530 J 0.205 U 0.258 U 0.218 U 0.233 U 5.97	0.268 U 0.360 U	NT
J4 3/18/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U	0.268 U 0.360 U	NT
	0.268 U 0.360 U	NT
L1 4/20/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 1.76 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U	0.268 U 0.360 U	NT
L3 3/19/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U	0.268 U 0.360 U	NT
	0.268 U 0.360 U	NT
M7 4/5/2004 0.274 U 1.14 U NT 1.47 U NT NT 0.226 U 0.232 U 0.319 U 0.215 U NT 0.200 U 0.291 U 0.304 U 0.264 U 0.236 U 0.305 U 0.260 U 0.346 U 0.299 U 0.205 U 0.258 U 0.218 U 0.233 U 0.241 U	0.268 U 0.360 U	NT
	0.200 U 0.500 U	NT
MW-11A 3/3/2006 0.200 U NT 1.00 U 1.60 5.00 U 1.00 U 0.200 U 0	0.200 U 0.500 U	NT
MW-11A 8/11/2006 0.200 U NT 1.00 U 1.40 5.00 U 1.00 U 0.200 U	0.200 U 0.500 U	NT
MW-12A 3/26/2002 0.200 U NT 1.00 U 1.40 5.00 U 1.00 U 0.200 U	0.200 U 0.500 U	NT
	0.200 U 0.500 U	NT
MW-14A 3/3/2006 1.00 U NT 5.00 U 6.60 25.0 U 5.00 U 1.00 U	1.00 U 2.50 U	NT
MW-14A 8/11/2006 0.200 U NT 1.00 U 1.60 5.00 U 1.00 U 0.200 U	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
MW-19B 3/27/2002 0.200 U NT 1.00 U 1.00 U 5.00 U 1.00 U 0.200	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 U 0.500 U	
	0.200 11 0.500 11	
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 5.00 U 1.00 U 0.200		
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 5.00 U 1.00 U 0.200	0.200 U 0.500 U	
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 5.00 U 1.00 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U NT 1.00 U 1.00 U 0.200	0.200 U 0.500 U 0.200 U 0.500 U	NT
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 1.00 U 0.200	0.200 U 0.500 U 0.200 U 0.500 U 0.200 U 0.500 U	NT NT
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 1.00 U 0.200	0.200 U 0.500 U 0.200 U 0.500 U 0.200 U 0.500 U 0.200 U 0.500 U	NT NT NT
MW-22A 3/28/2002 0.200 U NT 1.00 U 1.00 U 5.00 U 1.00 U 0.200	0.200 U 0.500 U 0.200 U 0.500 U 0.200 U 0.500 U	NT NT NT

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xls

TABLE 17 Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South

Tukwila, Washington

	· · · · · · · · · · · · · · · · · · ·					_				<u> [ukwila</u>	<u>, wasn</u>	ington											
	Chemical Name:	Isopropylbenzene	m,p-Xylenes	Methyl Iodide	Methyl tert-Butyl Ether	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2- butene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate	Vinyl Chloride
Commis	Commis	NL	16,000°	NL	NL	5.833 ^b	53.8°	NL	NL	16,000°	NL	1.458 ^b	NL	0.39 ^d	1,400 ^e	16,000 ^a	160ª	NL	NL	0.11 ^b	NL	NL	0.029 ^b
Sample Location	Sample Date	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l
A1	4/19/2004	25.9	826	NT		0.252 U	26.2	3.17	48.1	409	0.290 U	0.219 U	0.278 U	0.250 U	1,310	NT	18.7	0.181 U	NT	0.223 U	0.181 U	NT	1,360
B1	3/25/2004	0.252 U	0.460 U	NT		0.252 U	0.271 U	0.278 U		0.223 U						NT	1.50	0.181 U	NT	0.223 U	0.181 U	NT	93.3
BY-5	2/22/2002			0.600 U	NT	0.900 U	0.00150 U			0.600 U						NT	0.600 U	0.600 U	3.00 U	0.600 U	0.600 U	0.600 U	17.0
CPB-1	4/12/2004					0.252 U	0.271 U	0.278 U		0.223 U		0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
DS-2	2/22/2002		1.00 U	1.00 U	NT	2.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	5.00 U	49.0
F1	3/19/2004					0.252 U	0.271 U			0.223 U						NT	35.4	0.181 U	NT	58.9	0.181 U	NT	2,590
F3	3/17/2004					0.252 U	0.271 U			0.223 U						NT	0.540 J	0.181 U	NT	9.11	0.181 U	NT	1.79
F5	4/7/2004			NT		0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
FTF-1	4/7/2004			NT		0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
G6		0.252 U		NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
H3	3/17/2004	101 U	184 U	NT	103 U	101 U	108 U	111 U	110 U	89.2 U	116 U	87.6 U	111 U	100 U	80.8 U	NT	121 U	72.4 U	NT	89.2 U	72.4 U	NT	1,020
HM-6	2/22/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000600	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	1.30
J2	4/19/2004	0.252 U	28.8	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	6.37	0.290 U	0.219 U	0.278 U	0.250 U	6.46	NT	0.302 U	0.181 U	NT	0.570 J	0.181 U	NT	0:910 J
J4	3/18/2004			NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.530 J
K5	4/1/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
L1	4/20/2004			NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.810 J
L3	3/19/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.510 J
L6	4/1/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
M7	4/5/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
MW-11A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U
MW-11A	3/3/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT		0.200 U		0.200 U			0.200 U
MW-11A	8/11/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U				NT	0.200 U		• 			0.200 U	
MW-12A	3/26/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U					NT						0.200 U	
MW-14A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U						32.0 J						0.200 U		
MW-14A	3/3/2006	1.00 U	2.00 U	1.00 U	NT	2.00	0.00250 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00	1.00 U	NT	1.00 U	1.00 U			1.00 U	1.00 U	
MW-14A	8/11/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U	NT		0.200 U				0.200 U	
MW-15A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U		0.200 U					0.200 U	NT		0.200 U			-	0.200 U	
MW-16A	3/28/2002	0.500	5.60	0.200 U	NT	0.300 U	0.000500 U	0.200 U	1.10			0.200 U			0.200 U	NT	0.200 U	0.200 U	1.00 U	1.60		0.200 U	
MW-16A	3/6/2006	0.800	1.00	0.200 U	NT	0.300 U	0.000500 U	0.200	1.50	0.200 U	0.300	0.200 U		+	0.200 U	NT			+	1.00			0.200 U
MW-16A	8/14/2006	6.90	0.800	0.200 U	NT		0.000500 U	1.80	11.0	0.200 U	2.10		0.200 U		0.500	NT				1.00		0.200 U	
MW-18A	3/27/2002	0.200 U	0.400 U	0.200 U	NT		0.000500 U			0.200 U						NT				 	0.200 U		
MW-19B	3/27/2002	0.200 U	0.400 U	0.200 U	NT		0.000500 U									NT		•			0.200 U		
MW-1A	3/28/2002	0.200 U	0.400 U	0.200 U	NT		0.000500 U									NT					0.200 U		
MW-1A	3/6/2006				NT		0.000500 U									NT	-				0.200 U		
MW-1A	8/14/2006				NT		0.000500 U									NT			-		0.200 U		
MW-22A	3/28/2002		$\overline{}$		NT		0.000500 U								0.200 U	NT		0.200 U			0.200 U		
MW-23A	3/27/2002				NT		0.000500 U								0.200 U	NT		0.200 U	-		0.200 U		
MW-24A	3/27/2002	_			NT		0.000500 U				į			0.200 U		NT		0.200 U	+	-	0.200 U		1.00
MW-25A	3/27/2002			-	NT		0.000500 U									NT		0.200 U			0.200 U		2.60
MW-25A	3/2/2006				NT		0.000500 U									NT			-		0.200 U		
MW-25A	8/10/2006				NT		0.000500 U									NT		0.200 U			0.200 U		
				<u> </u>				,	,	1	3.2300	, 5.255	1 0.200	1 0.200 0	J.2000		1 3.200 0	1 3.230 0	1	0.200	10.2000	_ 3.230 0	2.00

TABLE 17 Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South

Tukwila, Washington

	Tukwia, Washington																											
	Chemical Name:	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
		NI	7,200 ^a	0.2188 ^b	480,000°	0.7675 ^b	800ª	72ª	NL	NL	NL	NL	NL	NL	5.19 ^c	0.4808 ^b	0.6434 ^a	400 ^a	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
MW-26A	3/29/2002	0.20011	0.200 U	0.200 U		-			0.200 U	0.500 U		0.500 U						0.200 U					0.200 U		0.500 U		1.00 U	0.200 U
MW-26A	1/31/2005		2.00 U	2.00 U	NT	2.00 U	51.0	2.00 U	2.00 U		2.00 U	2.00 U	2.00 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U			20.0 U		2.00 U		2.00 U
MW-26A	4/4/2005		1.00 U	1.00 U	NT	1.00 U	29.8	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U		1.00 U		1.00 U
MW-26A	7/12/2005		1.00 U	1.00 U	NT	1.00 U	9.34	1.00 U			1.00 U	1.00 U	1.00 U	5.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U		1.00 U		1.00 U
MW-26A	9/27/2005	+	1.00 U	1.00 U	NT	1.00 U	5.39	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	10.0 U				1.00 U
MW-26A	12/27/2005	_	1.00 U	1.00 U	NT	1.00 U	4.35	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	10.0 U				1.00 U
MW-26A	2/27/2006			<u> </u>			3.80			0.500 U								0.200 U					0.200 U		0.500 U			
MW-26A	2/27/2006					0.200 U		0.200 U		0.500 U								0.200 U					0.200 U		0.500 U			
MW-26A	 				+	1.00 U	•	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U		1.00 U	!		1.00 U	1.00 U			1.00 U	10.0 U	\vdash		+	1.00 U
	4/11/2006		1.00 U	1.00 U	NT	+	2.21			5.00 U		5.00 U		5.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	10.0 U			10.0 U	
MW-26A	6/26/2006		1.00 U	1.00 U	NT	1.00 U	1.78	1.00 U							<u> </u>			0.200 U							0.500 U			
MW-26A	8/7/2006			· · · · · · · · · · · · · · · · · · ·	0.200 U		-	0.200 U							•				1.00 U	1.00 U		1.00 U		10.0 U	NT		10.0 U	
MW-26A	10/3/2006		1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U		-	1.00 U		1.00 U	\longrightarrow				1.00 U				10.0 U	
MW-26A	1/12/2007		1.00 U	1.00 U	NT NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U			1.00 U		·	1.00 U		1.00 U	1.00 U	1.00 U	····			10.0 U			-	
MW-26A	4/13/2007		1.00 U	1.00 U	NT	1.00 U		1.00 U	1.00 U	5.00 U	1.00 U	5.00 U		5.00 U		1.00 U			1.00 U	1.00 U		1.00 U		10.0 U				1.00 U
MW-26B	3/28/2002	+			0.200 U					0.500 U								0.200 U			0.200 U				0.500 U			
MW-26B	2/27/2006	+	!		0.200 U		+											0.200 U							0.500 U			
MW-26B	2/27/2006	+		+	0.200 U	+				0.500 U								0.200 U							0.500 U			
MW-26B		0.200 U			0.200 U		+			0.500 U								0.200 U							0.500 U			
MW-26C	3/29/2002	+		+	0.200 U	•				0.500 U								0.200 U							0.500 U			
MW-26C	2/27/2006			+	0.200 U					0.500 U							4	0.200 U							0.500 U			
MW-26C	2/27/2006	0.200 U	0.200 U	0.200 U			0.200 U			0.500 U								0.200 U		0.200 U			0.200 U		0.500 U			
MW-26C	8/7/2006	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U			0.500 U													0.200 U		0.500 U			-
MW-27A	3/26/2002	0.200 U	0.200 U	0.200 U	0.200 U		4	0.200 U		0.500 U								0.200 U	$\overline{}$				0.200 U		0.500 ∪			
MW-28A	3/28/2002	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	6.30	3.10		0.500 U								0.200 U					0.200 U		0.500 U	.		-
MW-28A	3/3/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	5.80	1.90													0.200 U		0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-28A	8/11/2006					1		1.30													0.200 U				0.500 U			
MW-28B	3/28/2002	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-28B	3/3/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-28B	8/11/2006	0.200 U	0.200 ∪	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U													0.200 U							
MW-29A	3/26/2002	0.200 U	0.200 ∪	0.200 U	0.200 U	0.200 U	8.00	0.600	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-29A	1/31/2005	1.00 U	1.00 U	1.00 U	NT	1.00 U	16.4	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-29A		1.00 U			NT	1.00 U	23.2	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-29A	7/12/2005				NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-29A	9/29/2005				NT	1.00 U		1.00 U		1.00 U		1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-29A	12/27/2005				NT	1.00 U		1.00 U		1.00 U		1.00 U		5.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-29A	2/27/2006																		0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-29A	4/11/2006				NT	1.00 U	7.80			1.00 U						1.00 U			1.00 U		1.00 U			10.0 U			10.0 U	
MW-29A	6/26/2006	+		<u> </u>	NT	1.00 U	7.87								1.00 U				1.00 U					10.0 U			10.0 U	
MW-29A		0.200 U		_																	0.200 U							
MW-29A	10/3/2006	<u> </u>			NT	1.00 U	3.96											1.00 U			1.00 U			10.0 U			10.0 U	
MW-29A	1/12/2007				NT	1.00 U				5.00 U								1.00 U						10.0 U			10.0 U	
MW-29A	4/13/2007				NT	1.00 U				5.00 U								1.00 U			•			10.0 U			10.0 U	
MW-29B	· · · · · · · · · · · · · · · · · · · ·					_															0.200 U							
	1 0,20,2002	., 0.2000	1 0.200 0	1 0.200 0	10.2000	1 0.200 0	10	, 5.255	1 2.200 0	1 0.000	1 2.200 0	,			1	,	,	,										

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xIs

TABLE 17 Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South

Tukwila, Washington

	Tukwila, Washington																											
One Menical Manager	4-Isopropyltoluene	4-Methyl-2-pentanone	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene Dibromide	Hexachlorobutadiene	Hexane
	18.18	NL	NL	800ª	NL	NL	0.7955a	NL	NL	0.7056 ^b	NL	5.538 ^b	NL	800 ^a	NL	160ª	NL	7.172 ^b	3.365 ^b	80ª	NL	NL	NL	NL	800ª	NL	0.5609 ^b	NL
MW-26A 3/29/200	2 0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.400	0.200 U		0.200 U		0.200 U					0.200 U				0.200 U		0.200 U	NT			0.500 U	NT
MW-26A 1/31/200	5 2.00 U	NT	20.0 U	40.0 U	NT	NT	2.00 U	2.00 U		2.00 U	NT			2.00 U	2.00 U	2.00 U	80.1	2.00 U	10.0 U	13.0	2.00 U		2.00 U	2.00 U	2.00 U		2.00 U	NT
MW-26A 4/4/200	5 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	9.50	1.00 U	5.00 U	13.4	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-26A 7/12/200	5 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.91	1.00 U	5.00 U	19.9	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-26A 9/27/200	5 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.9	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-26A 12/27/200	5 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	11.7	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-26A 2/27/200	6 0.200 U	NT	1.00 U	2.10	5.00 U	1.00 U	0.300	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	12.0	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.400	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 ∪	0.200 U	0.200 U	0.200 U	0.200 U	13.0	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-26A 4/11/200	6 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.69	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-26A 6/26/200	6 1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	11.6	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
	6 0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	10.0	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-26A 10/3/200		NT		20.0 U		NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	9.06	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-26A 1/12/200		NT		20.0 U		NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.09	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-26A 4/13/200		NT		20.0 U		NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	6.24	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
	2 0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U						0.200 U							0.200 U			NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U																NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT						0.200 U																NT	0.200 U	0.200 U	0.500 U	NT
	2 0.200 U	NT	1.00 U					0.200 U																NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U											0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U		1.00 U	_				0.200 U											0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U										0.500	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	2 0.200 U	NT	1.00 U		5.00 U	1.00 U	0.200	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.900	0.200 U	0.200 U	0.800	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	2 0.200 U	NT	1.00 U					0.200 U										0.200 U	0.200 U	480	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U													0.200 U			NT	0.200 U	0.200 U	0.500 U	NT
	6 0.200 U	NT	1.00 U					0.200 U																NT	0.200 U	0.200 U	0.500 U	NT
	2 0.200 U							0.200 U													0.200 U				0.200 U			
	6 0.200 U							0.200 U																	0.200 U			
	6 0.200 U							0.200 U													0.200 U				0.200 U			
	2 0.200 U		1.00 U	1.00 U	5.00 U			0.200 U													0.200 U				0.200 U			
	5 1.00 U			20.0 U				1.00 U						1.00 U							1.00 U				1.00 U			
	5 1.00 U	- 		20.0 U				1.00 U						1.00 U								1.00 U			1.00 U			
MW-29A 7/12/200				20.0 U				1.00 U						1.00 U							1.00 U				1.00 U	-		
MW-29A 9/29/200				20.0 U				1.00 U						1.00 U											1.00 U			
MW-29A 12/27/200				20.0 U				1.00 U				1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	28.0		1.00 U			1.00 U			
MW-29A 2/27/200						1.00 U		0.200 U													0.200 U				0.200 U			
	1.00 U	+		20.0 U				1.00 U						1.00 U						20.7		1.00 U			1.00 U			
	6 1.00 U			20.0 U				1.00 U						1.00 U						19.5		1.00 U			1.00 U			
	0.200 U	+	1.00 U	1.20	5.00 U			0.200 U										<u> </u>			0.200 U				0.200 U			
	3 1.00 U			20.0 U				1.00 U						1.00 U						11.0		1.00 U			1.00 U			
	7 1.00 U			20.0 U				1.00 U						1.00 U						6.30		1.00 U			1.00 U			
	7 1.00 U	NT		20.0 U				1.00 U						1.00 U						6.30		1.00 U			1.00 U			
MW-29B 3/26/2002	<u>2] 0.200 U</u>	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	J 0.200 U	0.200 U	0.200 U	5.20	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xls

TABLE 17

Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South Tukwila, Washington

	Tukwila, Washington																						
	Chemical Name:	Isopropylbenzene	m,p-Xylenes	Methyl Iodide	Methyl tert-Butyl Ether	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2- butene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate	Vinyl Chloride
		NL	16,000°	NL	NL	5.833 ^b	53.8°	NL	NL	16,000°	NL	1.458 ^b	NL	0.39 ^d	1,400 ^e	16,000°	160ª	NL	NL	0.11 ^b	NL	NL	0.029°
MW-26A	3/29/2002		0.400 U	0.200 U	NT	0.300	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	2.40	0.200 U	1.00 U	4.50	0.200 U	0.200 U	48.0
MW-26A	1/31/2005	2.00 U	4.00 U	NT	4.00 U	10.0 U	0.00200 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	NT	2.00 U	2.00 U	NT	2.02	2.00 U	NT	14.2
MW-26A	4/4/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	4.87	1.00 U	NT	3.13
MW-26A	7/12/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	2.10	1.00 U	NT	4.60	1.00 U	NT	3.12
MW-26A	9/27/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.77	1.00 U	NT	3.08	1.00 U	NT	1.68
MW-26A	12/27/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	4.47	1.00 U	NT	1.00 U
MW-26A			0.400 U		NT	0.300 U	0.000500 U		0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		NT	1.30	0.200 U	1.00 U	5.70	0.200 U	0.200 U	1.60
MW-26A		0.200 U		0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	4	NT	1.70	0.200 U	1.00 U	5.80	0.200 U	0.200 U	2.40
MW-26A	4/11/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	5.59	1.00 U	NT	1.00 U
MW-26A	6/26/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	3.50	1.00 U	NT	1.00 U
MW-26A	8/7/2006				NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	1.40		1.00 U	2.70		0.200 U	0.400
MW-26A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.26	1.00 U	NT	2.20	1.00 U	NT	1.00 U
MW-26A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.61	1.00 U	NT	1.00 U
MW-26A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	3.31	1.00 U	NT	1.00 U
MW-26B	3/28/2002				NT		0.000500 U	0.200 U							<u> </u>	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U		0.200 U
MW-26B	2/27/2006				NT		0.000500 U					0.200 U		•		NT	0.200 U	0.200 U	1.00 U	0.200 U			0.200 U
MW-26B	2/27/2006				NT		0.000500 U				<u> </u>	0.200 U			+	NT	0.200 U	0.200 U	1.00 U	0.200 U			
MW-26B	8/7/2006				NT		0.000500 U					0.200 U				NT	0.200 U					0.200 U	
MW-26C	3/29/2002				NT	0.300	0.000500 U	<u> </u>				0.200 U				NT	0.200 U				<u> </u>	0.200 U	
MW-26C	2/27/2006				NT		0.000500 U	0.200 U				0.200 U		4		NT	0.200 U	0.200 U				0.200 U	
MW-26C	2/27/2006				NT	0.300 U		+				0.200 U				NT	0.200 U	0.200 U				0.200 U	
MW-26C	<u> </u>		0.400 U		NT	0.300 U	0.000500 U					0.200 U			0.200	NT	0.200 U	0.200 U		0.200 U		0.200 U	
MW-27A	3/26/2002				NT	0.300 U		0.200 U	4			0.200 U			<u> </u>	NT	0.200 U	0.200 U		0.200	0.200 U		1.00
MW-28A	3/28/2002				NT	0.300 U	0.000500 U	0.200 U				0.200 U				NT	7.80	0.200 U		0.400	0.200 U		69.0
MW-28A			0.400 U		NT	0.300 U	0.000500 U	0.200 U				0.200 U		0.200 U		NT	8.70	0.200 U		0.300		0.200 U	
MW-28A	8/11/2006				NT							0.200 U				NT	3.70	0.200 U		0.200	•	0.200 U	
MW-28B	3/28/2002						0.000500 U															0.200 U	
MW-28B	3/3/2006				NT		0.000500 U										0.200 U					0.200 U	
MW-28B	8/11/2006				`		0.000500 U									NT		0.200 U				0.200 U	
MW-29A	3/26/2002				*****	•	0.000500 U								+	NT	2.00	0.200 U		8.90		0.200 U	33.0
MW-29A	1/31/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U				1.00 U				1.00 U	NT	1.26	1.00 U	NT	2.19	1.00 U	NT	11.4
MW-29A	4/4/2005		2.00 U	NT_	2.00 U	5.00 U	0.00100 U		+		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.18	1.00 U	NT	1.93	1.00 U	NT	8.25
MW-29A	7/12/2005			NT	2.00 U	5.00 U	0.00100 U	· -		+	1.00 U	+			1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-29A	9/29/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U				1.00 U		1.00 U			NT	1.00 U	1.00 U	NT	1.20	1.00 U	NT	2.96
MW-29A	12/27/2005			NT	2.00 U	5.00 U	0.00100 U				1.00 U			1.00 U		NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	8.57
MW-29A	2/27/2006				NT		0.000500 U	+		+	+			7			1.00	0.200 U		1.40		0.200 U	4.40
MW-29A	4/11/2006		2.00 U	NT	2.00 U	5.00 U	0.00100 U				1.00 U		1.00 U				1.00 U	1.00 U	NT	4.30	1.00 U	NT	1.48
MW-29A	6/26/2006		2.00 U	NT	2.00 U	5.00 U	0.00500 U	+			1.00 U		1.00 U	·			1.00 U	1.00 U	NT 1 00 II	4.17	1.00 U	NT	1.00 U
MW-29A	†		0.400 U		NT	0.300 U			•	· -		0.200 U	+		÷		0.800	0.200 U		1.50	-	0.200 U	0.900
MW-29A	10/3/2006		2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U		+	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		•	1.00 U	NT	7.77	1.00 U	NT	1.00 U
MW-29A	1/12/2007			NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	NT	12.5	1.00 U	NT	1.00 U
MW-29A	4/13/2007			NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U			1.00 U	1.00 U	1.00 U	+			1.00 U	NT	3.16	1.00 U	NT	1.00 U
MW-29B	3/26/2002	J 0.200 U	10.400 U	0.200 U	NT	10.300 U	0.000500 U	U.200 U	J 0.200 U	0.200 U	[0.200 U	[0.200 U	J 0.200 U	0.200 U	1 0.200 U	NT	U.200 U	Į 0.200 U	1.00 U	J 0.200 U	0.200 U	U.200 U	1.00

TABLE 17 Volatile Organic Compound Groundwater Analytical Results 8801 East Marginal Way South Tukwila, Washington

							· · · · · · · · · · · · · · · · · · ·	,			IUK	<u>wila, W</u>	<u>asnınç</u>	gton													
	Chemical Name: 1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
	NL	7,200 ^a	0.2188 ^b	480,000ª	0.7675 ^b	800ª	72ª	NL	NL	NL	NL	NL	NL	5.19 ^c	0.4808 ^b	0.6434ª	400°	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
MW-29B 2/28/20	0.200	U 0.200 U	0.200 U	0.200 U									2.00 U	0.200 U			0.200 U					0.200 U					0.200 U
MW-29B 8/10/20	0.200	U 0.200 U	0.200 U														0.200 U							0.500 U			
MW-29C 4/2/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U				0.200 U					0.200 U					0.200 U
MW-29C 2/27/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-29C 8/7/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U				0.200 U							0.500 U			0.200 U
MW-30A 3/26/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	2.40	0.500	0.200 U	0.500 U	0.500 U	0.500 U		1.00 U				0.200 U				NT	0.200 U	1.00 U	0.500 U		\longrightarrow	0.200 U
MW-30A 1/31/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 4/4/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 7/12/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 9/29/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 12/27/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 2/28/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.300	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-30A 2/28/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.300	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-30A 4/11/20	006 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 6/26/20	006 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 8/10/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-30A 10/3/20	006 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 1/12/20	007 1.00	ا 1.00 ل	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-30A 4/13/20	007 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-31A 3/26/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	15.0	0.500	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-31A 5/15/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	13.0	0.400	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-32A 3/27/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.700	0.200 U	0.500 U	0.500 U	0.500 U	0.200	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-33A 3/27/20	0.200	U 1.20	0.200 U	0.200 U	0.200 U	1.40	0.200	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-34A 3/28/20	0.200	U 13.0	0.200 U	0.200 U	0.200 U	2.50	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-35A 3/29/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	8.20	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-35A 1/31/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	9.50	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 4/4/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	4.28	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 7/12/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	2.97	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 9/27/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	4.11	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 12/27/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	3.08	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 2/28/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	1.90	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-35A 4/11/20			1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 6/26/20	006 1.00	J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U		5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 8/8/20	0.200	U 0.200 U	0.200 U	0.200 U	0.200 U	0.600	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-35A 10/3/20		J 1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 1/12/20		\rightarrow	+	NT	1.00 U	1.00 U	1.00 U				5.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-35A 4/13/20			·	NT	1.00 U	1.00 U	1.00 U				5.00 U		5.00 U		1.00 U		1.00 U					1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
		U 0.200 U		0.200 U																		0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
		U 0.200 U		0.200 U									2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
		U 0.200 U					0.200 U		}	}	• 			· ·	+		0.200 U			+	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
		U 0.200 U		0.200 U	0.200 U	2.30	0.300	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
		J 1.00 U		NT	1.00 U	9.24	1.03	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-36A 4/4/20	005 1.00	J 1.00 U	1.00 U	NT	1.00 U	7.95	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xis

Page 7 of 18 5/14/2008

Tukwila, Washington

		- 1					T	,			,	- Т	IUN	wiia, v	vasning	31011			1	1					r			——-г	
	Chemical Name:	4-Isopropyltoluene	4-Methyl-2-pentanone	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene Dibromide	Hexachlorobutadiene	Hexane
		18.18	NL	NL	800ª	NL	NL	0.7955a	NL	NL	0.7056 ^b	NL	5.538 ^b	NL	800ª	NL	160 ^a	NL	7.172 ^b	3.365 ^b	80ª	NL	NL	NL	NL	800°	NL	0.5609 ^b	NL
MW-29B	2/28/2006	0.200 U	NT	1.00 U	2.30	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-29B	8/10/2006	0.200 U	NT	1.00 U	2.10	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-29C	4/2/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-29C	2/27/2006	0.200 U	NT	1.00 U	1.30	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-29C	8/7/2006	0.200 U	NT	1.00 U		5.00 U			0.200 U									0.200 U	1.40	0.200 U	0.200 U		0.200 U		NT	0.200 U	0.200 U	0.500 U	NT
MW-30A	3/26/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U		0.200 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U		NT	0.200 U	0.200 U	0.500 U	NT
MW-30A	1/31/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-30A	4/4/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-30A	7/12/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-30A	9/29/2005	1.00 U	NT	10.0 U	20.0 U		NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-30A	12/27/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-30A	2/28/2006		NT	1.00 U		5.00 U		0.200 U			0.200 U		0.200 U		0.200 U								0.200 U		NT	0.200 U	0.200 U		
MW-30A	2/28/2006	<u></u>	NT	1.00 U		5.00 U	1.00 U	0.200 U	0.200 U			0.200 U	0.200 U	0.200 U	0.200 U			0.200 U	}				0.200 U		NT	0.200 U	0.200 U	0.500 U	NT
MW-30A	4/11/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-30A	6/26/2006	1.00 U	NT	10.0 U	20.0 U	-	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-30A	8/10/2006	0.200 U	NT	1.00 U	5.70	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-30A	10/3/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-30A	1/12/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		2.00 U
MW-30A	4/13/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			2.00 U
MW-31A	3/26/2002		NT	1.00 U	1.00 U	5.00 U	1.00 U	0.400	0.200 U	0.200 U	0.200 U	· · · · · · · · · · · · · · · · · · ·	0.200 U	0.200 U	0.200	0.200 U	0.200 U			0.200 U			0.200 U		NT		0.200 U		NT
MW-31A	5/15/2002		NT		1.00 U	5.00 U	1.00 U	0.400	0.200 U		0.200 U		0.200 U	0.200 U	+	0.200 U	-		0.200 U	 	48.0		0.200 U		NT		0.200 U		NT
MW-32A	3/27/2002		NT		1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		11.0		0.200 U		NT		0.200 U		NT
MW-33A	3/27/2002		NT		1.00 U	5.00 U	1.00 U	0.200 U	-	0.200 U			0.200 U			+ · · · · · ·	0.200 U		0.200 U				0.200 U		NT	, 	0.200 U		NT
MW-34A	3/28/2002		NT		1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U		<u> </u>	<u> </u>	4	0.200 U	0.200		0.200 U		NT		0.200 U		NT
MW-35A	3/29/2002		NT	+	1.00 U	+		+	0.200 U		0.200 U		0.200 U	+	+		+	0.200 U	}	†	21.0	t	0.200 U		NT	+	0.200 U		NT
MW-35A	1/31/2005	1.00 U	NT		20.0 U		NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U			1.00 U			5.00 U	1.92	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-35A									1.00 U									1.00 U					1.00 U						
MW-35A	7/12/2005			10.0 U			NT		1.00 U									1.00 U					1.00 U			1.00 U		1.00 U	
MW-35A	9/27/2005			10.0 U			NT		1.00 U									1.00 U			6.94		1.00 U			1.00 U		1.00 U	
MW-35A	12/27/2005			10.0 U			NT		1.00 U									1.00 U			5.37		1.00 U			1.00 U			
MW-35A	2/28/2006								0.200 U														0.200 U			1.00 U	0.200 U		
MW-35A	4/11/2006			10.0 U	-		NT	<u> </u>	-		1.00 U							1.00 U					1.00 U						
MW-35A	6/26/2006		NT		20.0 U		NT				1.00 U							1.00 U					1.00 U			1.00 U 0.200 U			
MW-35A	8/8/2006								0.200 U									0.200 U					0.200 U						
MW-35A	10/3/2006		NT		20.0 U			<u>. </u>			1.00 U							1.00 U			3.19		1.00 U			1.00 U		5.00 U	
MW-35A MW-35A	1/12/2007 4/13/2007		NT		20.0 U 20.0 U		NT NT				1.00 U							1.00 U			4.83 3.53		1.00 U 1.00 U						
MW-35A	3/29/2002		NT NT						0.200 U														0.200 U			0.200 U			
MW-35B	2/28/2006																						0.200 U			0.200 U			
MW-35B	8/8/2006																						0.200 U			0.200 U			
MW-36A	3/26/2002								0.200 U											0.200 U			0.200 U				0.200 U		
	1/31/2005						1.00 U	+			1.00 U							1.00 U			33.3		1.00 U				1.00 U		
MW-36A			NT		20.0 U		+																						
MW-36A		1.00 0	NT	110.00	20.0 U	NT	NT	1.00 U	1.00 0	1.000	1.00 U	NT	1.00 0	j 2.00 U	1.000	1.000	1.000	1.00 U	1.000	1 5.00 0	29.8	1.000	1.00 U	1.00 0	1.00 U	1.00 U	1.00 0	1.00 0	2.000

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xis

f 18

5/14/2008

TABLE 17 Volatile Organic Compound Groundwater Analytical Results

8801 East Marginal Way South

MW-35A					· · · · · · · · · · · · · · · · · · ·					1	<u> Tukwila</u>	, Wash	ington											
New York 1,000 New York		Chemical Name:	Isopropylbenzene	m.p-Xylenes	Methyl Iodide		ethylene	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	-Dichlor	_	ns-1,4-Dichloro- ene	Trichloroethene	Trichlorofluoromethane		
MAY-926			NL	16,000 ^a	NL	NL	5.833 ^b	53.8°	NL	NL	16,000 ^a	NL		NL	0.39 ^d	1,400 ^e	16,000°	160ª	NL	NL	0.11 ^b	NL	NL	0.029 ^b
MAY-SQC 422000 C.200 J. C		2/28/2006					0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.300
MAY-926 22772006 2290 U		8/10/2006		0.400 U	0.200 U		0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200
MAY-SOC 6770006 C200 U 0.400 U 0.200 U T. 0.300 U 0.00000 U 0.200 U		4/2/2002					0.400	0.000500 U		0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U
MAY-949 3266002 2000		2/27/2006					0.300 U	0.000500 U			0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U
MAY-SAA 131/2005 100 1 200 1 7								 			0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U
MAY-930 444/2005 10.00 2.00 NT 2.00 5.00 0.00100 1.00 0.001 1.00					0.200 U					0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	3.90
MAY-90A 7/12/2005 10.0 U 2.0 U NT 2.0 U 5.0 U 0.0 0 0.0 0 0.0 0 0.0 U 0.0 U 1.0 U					NT				1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.27
MM-9364 928/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.0010 U 1.00 U			1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.08
MM-93A 12/27/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00050 U 2.00 U 0.00050 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 0.00050 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 0.00050 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 0.00050 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 0.00050 U 2.00 U 2	~	7/12/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MM-93A 278/2006 2020 1 0.400 1 0.200 NT 0.300 0.20050 0.200		9/29/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MM-930A A	MW-30A	12/27/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MM-930A 4/11/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00100 U 1.00 U	MW-30A	2/28/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.700
MW-30A 67682006 100 2.00 NT 2.00 5.00 0.00500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NT 1.00 0.200	MW-30A	2/28/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.700
MW-30A G/6/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U	MW-30A	4/11/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	
MM-930A 301/22006 2.00 U 0.40 U 0.20 U NT 0.30 U 0.00500 U 0.20 U	MW-30A	6/26/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U								NT				
MW-39A 10/8/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U 1	MW-30A	8/10/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U								<u>. </u>	<u> </u>			
MW-39A 1/12/2007 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U	MW-30A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U				 									
MW-35A 4/13/2007 1.00	MW-30A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U											 			-	$\overline{}$
MW-31A 3/26/2002 0.200 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200	MW-30A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U											† 				
MW-34A 5/15/2002 2.00 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200	MW-31A	3/26/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U			-												
MW-32A 3/27/2002 0.200 0.400 0.200 NT 0.300 0.000500 0.200	MW-31A	5/15/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U										1	+			
MW-35A 3/27/2002 0.200 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200	MW-32A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U											· · · · · · · · · · · · · · · · · · ·			-
MW-35A 3/28/2002 0.200 U 0.400 U 0.200 U NT 0.300 U 0.00500 U 0.200	MW-33A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	•				+									
MW-35A 3/29/2002 0.200 0.400 0.200 NT 0.300 0.000500 0.200	MW-34A	3/28/2002	0.200 U	0. 4 00 U	0.200 U	NT	0.300 U														 			
MW-35A 1/31/2005 1.00 2.00 NT 2.00 5.00 0.00100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NT 1.54 1.00 NT 1.00 1.00 NT 1.00 1.00 NT 1.00 NT 1.00 NT 1.00 1.00 NT 1.00 1.00 NT 1.00 1.00 NT 1.00 NT 1.00 1.00 NT 1.00 1.00 NT 1.00 1.00 NT 1.00 NT 1.00 NT 1.00 1.00 NT 1.00	MW-35A	3/29/2002	0.200 U	0.400 U	0.200 U	NT															-			
MW-35A 4/4/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00100 U 1.00 U	MW-35A	1/31/2005	1.00 U	2.00 U	NT	2.00 U									4									
MW-35A 7/12/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.0010 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U NT 1.00 U	MW-35A													1		• • • • • • • • • • • • • • • • • • • 				†			_	
MW-35A 9/27/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.0010 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U NT 2.39 1.00 U NT 1.00 U 1.00 U NT 1.00 U NT 1.92 MW-35A 12/27/2005 1.00 U 2.00 U NT 2.00 U NT 2.00 U 0.0010 U 0.0010 U 0.00 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U NT 2.00 U NT 2.00 U NT 2.00 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U NT 2.00 U NT 2.00 U NT 2.00 U NT 2.00 U 0.200 U 0	MW-35A	7/12/2005		+					-	<u> </u>					† 					+		 		
MW-35A 12/27/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00100 U 1.00 U	MW-35A				NT							-								_			_	
MW-35A 2/28/2006 0.200 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 1.00 U	MW-35A			1												•	•			}		†		
MW-35A 4/11/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00100 U 1.00 U																+				•				
MW-35A 6/26/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U														•	1	•				† 	†	-		
MW-35A 8/8/2006 0.200 U 0.400 U 0.200 0.200 U 0.200											•			+		+								
MW-35A 10/3/2006 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U																							-	
MW-35A 1/12/2007 1.00 U 2.00 U NT 2.00 U 5.00 U 0.0500 U 1.00 U	MW-35A							-				•			+				_				•	
MW-35A 4/13/2007 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00500 U 1.00 U	MW-35A			•	_						•				† 				_		†			
MW-35B 3/29/2002 0.200 U 0.400 U 0.200 U NT 0.300 U 0.200 U 0.	MW-35A														+		•				·		_	
MW-35B 2/28/2006 0.200 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200 U	MW-35B			•							 			4							-			
MW-35B 8/8/2006 0.200 U 0.400 U 0.200 U NT 0.300 U 0.2	MW-35B			-				7																
MW-36A 3/26/2002 0.200 U 0.400 U 0.200 U NT 0.300 U 0.000500 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U 0.200 U NT 0.600 0.200 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U NT 1.00 U NT 1.00 U NT 1.15																÷								
MW-36A 1/31/2005 1.00 U 2.00 U NT 2.00 U 5.00 U 0.00100 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U NT 1.00 U 1.00 U NT 31.3 1.00 U NT 1.15														-	<u> </u>					}				
								+							-	-					+			-
	MW-36A				\vdash									•	÷	+					+			

Tukwila, Washington

											IUK	wila, W	asimig	lon										1			
	Chemical Name: 1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
	NL	7,200ª	0.2188 ^b	480,000°	0.7675 ^b	800ª	72 ^a	NL	NL	NL NL	NL	NL	NL	5.19 ^c	0.4808 ^b	0.6434 ^a	400 ^a	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
MW-36A 7/12/	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	4.35	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	2.27	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-36A 12/27/		1.00 U	1.00 U	NT	1.00 U	3.47	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2006 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	4.10	1.40	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	2.55	1.26	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2006 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.10	0.200	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-36A 1/12/	/2007 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2007 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
		0.200 U	0.200 U		0.200 U	0.300	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2006 0.200 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2006 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2002 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.400	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	//2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	3/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	3/2006 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	2/2007 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	3/2007 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	5/2002 0.200 U						0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	2/2002 0.200 U						0.200 U	.	0.500 U			 	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.40 Y	0.500 U	0.200 U	1.00 U	0.200 U
	2/2002 0.200 U							0.200 U	0.500 U	0.500 U	0.500 U			0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.50 Y	0.500 U	0.200 U	1.00 U	0.200 U
	5/2002 0.200 U						0.700	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	5/2002 0.200 U						0.500	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	2/2006 0.200 U					1.50	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	1/2006 0.200 U																0.200 U					0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
	7/2004 1.00 U					1.00 U											1.00 U				NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	7/2004 1.00 U				1.00 U							1.00 U					1.00 U				NT	1.00 U			1.00 U	10.0 U	1.00 U
	1/2005 1.00 U		+			1.00 U						1.00 U					1.00 U		-		NT	1.00 U			1.00 U		
	4/2005 1.00 U					1.00 U						1.00 U					1.00 U				NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	2/2005 1.00 U	+				1.00 U						1.00 U					1.00 U			1.00 U					1.00 U	10.0 U	1.00 U
	7/2005 1.00 U					1.00 U						1.00 U					1.00 U								1.00 U		
MW-41A 12/27	7/2005 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-41A 3/2	2/2006 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.700	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U			
	1/2006 1.00 U				1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
	5/2006 1.00 U											1.00 U					1.00 U								1.00 U		
	1/2006 0.200 U						0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U				0.200 U										
	3/2006 1.00 U				1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT			1.00 U
							•	·		•	•		•	•		-		-									

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xis

5/14/2008

Tukwila, Washington

				·			r	,				iuk	wila, W	<u>/ashing</u>	gton													
Chemical Name:	4-Isopropyltoluene	4-Methyl-2-pentanone	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene Dibromide	Hexachlorobutadiene	Hexane
	18.18	NL	NL	800ª	NL	NL	0.7955 ^a	NL	NL	0.7056 ^b	NL	5.538 ^b	NL	800ª	NL	160ª	NL	7.172 ^b	3.365 ^b	80ª	NL	NL	NL	NL	800 ^a		0.5609 ^b	NL
MW-36A 7/12/2005	1.00 U	NT	10.0 U		NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	14.7	1.00 U	1.00 U		1.00 U			1.00 U	
MW-36A 9/29/2005	1.00 U	NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	8.69	1.00 U	1.00 U		1.00 U			1.00 U	
MW-36A 12/27/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U		1.00 U	5.00 U	9.20	1.00 U	1.00 U		1.00 U	1.00 U			
MW-36A 2/28/2006	0.200 U	NT	1.00 U	2.30	5.00 U	1.00 U	0.200 ∪	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 ∪	0.200 U	0.200 U	0.200 U	0.200 U	•	0.200 U		0.200 U				0.200 U (NT
MW-36A 4/11/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	11.4	1.00 U	1.00 U		1.00 U			1.00 U	2.00 U
MW-36A 6/26/2006	1.00 U	NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U				1.00 U	5.00 U	4.20	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-36A 8/10/2006		NT			5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.300	0.200 U	6:40	0.200 U	0.200 U	0.200 U	NT	0.200 U (0.200 U	0.500 U	NT
MW-36A 10/3/2006		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 ∪	NT		2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	9.08	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-36A 1/12/2007		NT		20.0 U	NT	NT	1.00 U		1.00 U	1.00 ∪	NT		2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	6.37	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		2.00 U
MW-36A 4/13/2007		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 ∪	NT		2.00 U	1.00 U		1.00 U	1.00 U		5.00 U	10.7	1.00 U	1.00 U		1.00 U		1.00 U		2.00 U
MW-36B 3/26/2002		NT	1.00 U					0.200 U										0.200 U			0.200 Ú				0.200 U			NT
MW-36B 2/28/2006		NT	1.00 U		5.00 U			0.200 U													0.200 U				0.200 U			NT
MW-36B 8/8/2006		NT	1.00 U					0.200 U													0.200 U				0.200 U			NT
MW-37A 3/26/2002		NT														+	+	0.200 U			0.200 U			\longrightarrow	0.200 U			NT
MW-37A 1/31/2005 MW-37A 4/4/2005		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT		2.00 U	1.00 U						1.00 U	1.00 U	1.00 U		1.00 U		1.00 U		NT
MW-37A 4/4/2005 MW-37A 7/14/2005		NT NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT		2.00 U	1.00 U	+	1.00 U			5.00 U	1.00 U	1.00 U	1.00 U		1.00 U			\longrightarrow	2.00 U
MW-37A 7/14/2005		NT	10.0 U		NT	NT	1.00 U 1.00 U	$\overline{}$	1.00 U	1.00 U	NT		2.00 U	1.00 U		1.00 U			5.00 U	1.00 U	1.00 U	1.00 U		1.00 U				2.00 U
MW-37A 12/27/2005		NT	10.0 U		NT NT	NT NT	1.00 U		1.00 U	1.00 U 1.00 U	NT NT	1.00 U	2.00 U 2.00 U	1.00 U		1.00 U	-		5.00 U	1.00 U	1.00 U	1.00 U		1.00 U		-	-	2.00 U
MW-37A 4/11/2006		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U 1.00 U		1.00 U	1.00 U 1.00 U	1.00 U	5.00 U 5.00 U	1.00 U 1.00 U	1.00 U	1.00 U		1.00 U	1.00 U			2.00 U
MW-37A 6/26/2006		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U 1.00 U		1.00 U 1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	
MW-37A 10/3/2006		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		5.00 U 5.00 U	
MW-37A 1/12/2007		NT	10.0 U		NT	NT	1.00 U	$\overline{}$	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		5.00 U	
MW-37A 4/13/2007		NT	10.0 U		NT	NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U		5.00 U	
MW-37B 3/26/2002		NT	1.00 U		5.00 U		}	0.200 U			0.200 U				0.200 U					0.500			0.200 U		0.200 U			NT
	0.200 U	NT		5.30 Y				0.200 U													0.200 U				0.200 U			
	0.200 U	NT	1.00 U	5.80 Y	5.00 U	1.00 U		0.200 U													0.200 U				0.200 U			NT
MW-38A 5/15/2002								0.200 U													0.200 U				0.200 U			NT
MW-39A 5/15/2002	0.200 U	NT	1.00 U	1.50 Y	5.00 U	1.00 U		0.200 U													0.200 U				0.200 U			NT
MW-39A 3/2/2006	0.200 U	NT	1.00 U	1.70	5.00 U	1.00 U		0.200 U													0.200 U				0.200 U			NT
MW-39A 8/11/2006	0.200 U	NT	1.00 U	1.70	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.10	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.500 U	NT
MW-40A 2/17/2004		NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	6.47	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-41A 2/17/2004		NT		20.0 U		NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-41A 1/31/2005		NT		20.0 U		NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-41A 4/4/2005		NT		20.0 U		NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U		1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-41A 7/12/2005		NT		20.0 U		NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U		1.00 U	1.00 U			5.00 U	1.00 U		1.00 U		1.00 U				$\overline{}$
MW-41A 9/27/2005		NT	10.0 U			NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U						1.00 U		1.00 U	† 	1.00 U			1.00 U	
MW-41A 12/27/2005		NT	10.0 U			NT	1.00 U		1.00 U	1.00 U	NT	1.00 U	2.00 U		1.00 U									1.00 U			1.00 U	
MW-41A 3/2/2006		NT	1.00 U					0.200 U										0.200 U			0.200 U				0.200 U			
MW-41A 4/11/2006		NT	10.0 U			NT	1.00 U			1.00 U	NT				1.00 U				5.00 U	-				1.00 U			1.00 U	
MW-41A 6/26/2006		NT		20.0 U		NT	1.00 U			1.00 U	NT				1.00 U				5.00 U			1.00 U		1.00 U			5.00 U	
MW-41A 8/11/2006		NT	1.00 U					0.200 U													0.200 U				0.200 U			
MW-41A 10/3/2006 CAP-RI Tables	1.00 U	NI	10.0 U	20.0 U	ΝI	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	J 1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xis

										ukwila	<u>, Wash</u>	<u>ington</u>								· · · · · · · · · · · · · · · · · · ·			
	Chemical Name:	Isopropylbenzene	m,p-Xylenes	Methyl Iodide	Methyl tert-Butyl Ether	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2- butene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate	Vinyl Chloride
		NL	16,000 ^a	NL	NL	5.833 ^b	53.8°	NL	NL	16,000 ^a	NL	1.458 ^b	NL	0.39 ^d	1,400 ^e	16,000 ^a	160ª	NL	NL	0.11 ^b	NL	NL	0.029 ^b
MW-36A	7/12/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	27.7	1.00 U	NT	1.00 U
MW-36A	9/29/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	26.7	1.00 U	NT	1.00 U
MW-36A	12/27/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	24.1	1.00 U	NT	1.00 U
MW-36A	2/28/2006		0.400 U	0.200 U		0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200	0.200 U	1.00 U	21.0	0.200 U	0.200 U	0.200 U
MW-36A	4/11/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		3.00 U	1.00 U	1.00 U	NT	23.0	1.00 U	NT	1.00 U
MW-36A	6/26/2006		2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		3.00 U	1.00 U	1.00 U	NT	20.6	1.00 U	NT	1.00 U
MW-36A	8/10/2006		0.400 U	0.200 U			0.000500 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200	0.200 U	1.00 U	15.0	0.200 U	0.200 U	0.300
MW-36A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		3.00 U	1.00 U	1.00 U	NT	26.3	1.00 U	NT	1.00 U
MW-36A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		3.00 U		1.00 U	NT	26.0	1.00 U	NT	1.00 U
MW-36A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		\vdash		1.00 U	NT	23.4	1.00 U	NT	1.00 U
MW-36B	3/26/2002			0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U	0.200	NT	0.200 U	0.200 U	1.00 U	0.500		0.200 U	0.600
MW-36B	2/28/2006	<u> </u>		0.200 U	NT		0.000500 U		0.200 U	0.200 U					0.200 U		0.200 U			0.200 U		0.200 U	0.200 U
MW-36B	8/8/2006			0.200 U	NT	0.300 U	0.000500 U							0.200 U	0.200 U	1	0.200 U	0.200 U		0.200 U		0.200 U	0.200 U
MW-37A	3/26/2002			0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U		0.200 U			0.200 U	0.200 U	NT	0.200 U	0.200 U		1.40		0.200 U	0.600
MW-37A	1/31/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	4/4/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	7/14/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	9/29/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	12/27/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	2.24	1.00 U	NT	1.00 U
MW-37A	4/11/2006		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	6/26/2006		2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.27	1.00 U	NT	1.00 U
MW-37A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-37B	3/26/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	1		0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200	0.200 U	0.200 U	1.00
MW-38A		0.200 U		0.200 U	NT	0.300 U	0.000500 U		-						-	NT	0.400	0.200 U	1.00 U	0.500	0.200 U	0.200 U	6.40
MW-38A	1	!	0.400 U		NT	0.300 U	0.000500 U			0.200	+		0.200 U	-		NT	0.400	0.200 U	-	0.400	0.200 U		9.40
MW-38A	5/15/2002				NT	0.300 U	0.000500 U						0.200 U			NT	1.00	 		0.500	0.200 U		28.0
MW-39A	5/15/2002				NT	0.300 U	0.000500 U			0.200 U						NT	0.700		•		0.200 U		22.0
MW-39A		0.200 U		0.200 U	NT	0.300 U	0.000500 U	0.200 U			0.200 U			0.200 U	-	NT				0.200 U			0.200 U
MW-39A	8/11/2006		0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U					0.200 U	+	NT		0.200 U	_			0.200 U	0.200 U
MW-40A	2/17/2004		2.00 U	NT	NT	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	27.5
MW-41A	2/17/2004	. 	2.00 U	NT	NT	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.94
MW-41A	1/31/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	4/4/2005	+	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	7/12/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	9/27/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	12/27/2005		2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A		0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U			0.200 U	0.200 U	0.200 U	0.200 U	-	•	NT		0.200 U		0.200 U		0.200 U	0.300
MW-41A	4/11/2006	+	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	6/26/2006		2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			3.00 U			NT	1.00 U	1.00 U	NT	1.00 U
MW-41A	8/11/2006	+			NT	0.300 U	0.000500 U	+		+			0.200 U		0.200 U			0.200 U		0.200 U			0.500
MW-41A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U

Tukwila, Washington

												IUN	wiia, w	asınıng	LOII													
	Chemical Name:	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
		NL	7,200 ^a	0.2188 ^b	480,000°	0.7675 ^b	800a	72 ^a	NL	NL	NL	NL	NL	NL	5.19 ^c	0.4808 ^b	0.6434ª	400 ^a	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
MW-41A	1/12/2007	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U		5.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		10.0 U		1.00 U	10.0 U	
MW-41A	4/13/2007	1.00 U	1.00 U	1.00 U	NT	1.00 U		1.00 U		5.00 U		5.00 U			1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		10.0 U	-	1.00 U	10.0 U	
MW-42A	3/6/2006							0.200 U															0.200 U		0.500 U			
MW-42A	8/14/2006		0.200	0.200 U				0.200 U															0.200 U		0.500 U			
MW-4A	3/28/2002							0.200 U														NT	0.200 U		0.500 U			
MW-6A	3/28/2002							0.200 U						···			0.200 U			0.200 U			0.200 U		0.500 U			
MW-7A	3/27/2002							0.200 U										0.200 U			+							
MW-7A	2/20/2004		1.00 U	1.00 U	NT	1.00 U	1	1.00 U		1.00 U	1.00 U	1.00 U					-	 					0.200 U		0.500 U			
MW-7A	1/31/2005		1.00 U	1.00 U	NT	1.00 U	+	1.00 U						5.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-7A	4/4/2005		1.00 U	1.00 U	+	;			1.00 U	1.00 U		1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT		10.0 U	1.00 U
MW-7A	7/12/2005				NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-7A	-		1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-7A	9/27/2005		1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		10.0 U	NT	1.00 U	10.0 U	1.00 U
	12/27/2005		1.00 U	1.00 U	NT	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		10.0 U	NT	1.00 U	10.0 U	
MW-7A	3/2/2006		0.200 U		0.200 U		0.200 U						0.200 U			0.200 U		0.200 U		0.200 U	-		0.200 U	-	-			0.200 U
MW-7A	4/11/2006		1.00 U	1.00 U	NT	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		10.0 U	NT	1.00 U		
MW-7A	6/26/2006		1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	4	1.00 U	1.00 U	10.0 U	NT			
MW-7A	8/10/2006				0.200 U		4	0.200 U					0.200 U					0.200 U		0.200 U	+	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-7A	10/3/2006		1.00 U	1.00 U	NT	1.00 U	 	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-7A			1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-7A	4/13/2007		1.00 U	1.00 U	NT	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	5.00 U		5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	NT	1.00 U	10.0 U	1.00 U
MW-8A	3/28/2002		6.60	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-8A	3/3/2006	0.200 U	12.0	0.200 U	0.200 U	0.200 U	8.20	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-8A	8/14/2006	0.200 U	4.40	0.200 U	0.200 U	0.200 U	7.10	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-8B	3/28/2002	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.00	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200	0.200 U			0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-8B	3/6/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.400	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U		0.200 U							0.500 U			
MW-8B	8/14/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U										0.200 U						<u> </u>	0.500 U			
MW-9A	3/27/2002	0.200 U	2.00	0.200 U	0.200 U	0.200 U	0.900	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1 00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-9A	3/3/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.300	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1 00 U	0.500 U	0.200 U	1.00 U	0.200 U
MW-9A	8/14/2006	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1 00 U	0.500 U	0.200 U	1.00 U	0.200 U
N2	4/20/2004	0.224 U	0.266 U	0.255 U	NT	0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1 39 11	NT	0.225 U	1 17 11	0.286 11
N5	3/23/2004			0.255 U		0.253 U	1.02	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 11	0.324 U	0.18611	0.21311	0.234 11	0.262 11	0.24911	NT	0.102 U	1 39 11	NT	0.225 11	1 17 11	0.286 11
N6	3/23/2004				NT	0.253 U	0.285 U	0.287 U	0.309 U	0.27411	0.2010	0.285 11	0.228 11	0.275 11	0.274 11	0.024 0	0.100 0	0.21311	0.234 11	0.202 U	0.240 11	NIT	0.102 0	1.30 11	NT NT	0.225 U	1.17 0	0.200 0
NA-6	2/20/2002				0.200 U	0.200 U	0.200 U	0.20011	0.000 U	0.500 11	0.204 0	0.200 0	0.220 0	1.00.11	0.274 0	0.324 0	0.100 0	0.210 0	0.204 0	0.202 0	0.248 0	NIT	0.102 0	1.00 11	0.500.11	0.223 0	1.17 0	0.200 U
NA-6	2/20/2002				0.200 U	0.200 U	10.0	0.200 U	0.200 U	0.500 U	0.500 0	0.500 U	0.200 0	1.00 0	0.200 U	0.200 U	0.200 U	0.200 0	0.200 U	0.200 U	0.200 0	NIT	0.200 0	1.00 0	0.500 0	0.200 U	1.00 0	0.200 0
NA-6	2/20/2002			0.200 0	0.200 0	0.200 0	1 10	0.200 0	0.200 0	0.500 U	0.500 U	0.500 U	0.200	1.00 0	0.200 0	0.200 0	0.200 U	0.200	0.200 U	0.200 U	0.200 0	NI	0.200 0	1.70	0.500 0	0.200 0	1.00 0	0.200 0
NA-7	2/21/2002	0.200 0	24.0	0.200 0	0.200 U	0.200 0	5.10	0.200 0	0.200 U	0.500 U	0.500 0	0.500 0	14050	1.00 0	0.200 0	0.200 0	0.200 0	0.200 0	0.200 0	0.200 0	0.200 0	NI	0.200 0	1.00 0	0.500 0	0.200 0	1.00 0	0.200 U
NA-7	2/21/2002	0.200 0	0 200 11	0.200 0	0.200 0	0.200 0	0.10	0.000	0.200 0	0.500 0	0.500 0	0.500 U	0.20011	1.00 0	0.400	0.300	0.200 0	0.000	0.200 U	0.200 0	0.200 0	NI NT	0.200 0	1.60	0.500 U	2.60	1.00 U	0.200 U
NA-7	2/21/2002	0.200 U	0.200 0	0.200 0	0.200 0	0.200 0	0.200 0	0.200 0	0.200 U	0.500 0	0.500 U	0.500 U	0.200 0	1.00 0	0.200 0	0.200 0	0.200 0	0.200 U	0.200 U	0.200 U	0.200 U	NI NI	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
P1	2/21/2002 4/15/2004	0.200 0	0.200 0	0.200 0	0.200 U	0.200 0	0.200 0	0.200 0	0.200 U	0.500 0	0.500 0	0.500 0	0.200 0	1.00 0	0.200 0	0.200 0	0.200 0	0.200 U	0.200 U	0.200 U	0.200 U	NI NI	0.200 U	1.00 U	0.500 U			
P3						0.253 U	0.285 U	0.287 U	0.309 U	0.2/4 U	0.294 U	0.285 U	0.228 U	0.2/5 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT NT			0.286 U
	4/12/2004	0.224 U	U.266 U	0.255 U		0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT			0.286 U
R1	4/2/2004					0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT			0.286 U
R3	4/2/2004	0.224 U	0.266 U	0.255 U		0.253 U	0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT			0.286 U
R5		0.224 U	0.266 U	0.255 U	NT	0.253 U	J 0.285 U	0.287 U	0.309 U	0.274 U	0.294 U	0.285 U	0.228 U	0.275 U	0.274 U	0.324 U	0.186 U	0.213 U	0.234 U	0.262 U	0.249 U	NT	0.182 U	1.39 U	NT	0.225 U	1.17 U	0.286 U

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xIs

Tukwila, Washington

		······································					-						IUN	Wila, V	vasning	gton	· · · · · · · · · · · · · · · · · · ·				T		1				Т		
	Chemical Name:	4-Isopropyltoluene	4-Methyl-2-pentanone	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene Dibromide	Hexachlorobutadiene	Hexane
		18.18	NL	NL	800 ^a	NL	NL	0.7955a	NL	NL	0.7056 ^b	NL	5.538 ^b	NL	800 ^a	NL	160 ^a	NL	7.172 ^b	3.365 ^b	80ª	NL	NL	NL	NL	800ª	NL]	0.5609 ^b	NL
MW-41A	1/12/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-41A	4/13/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-42A	3/6/2006	0.200 U	NT	1.00 U	3.40	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-42A	8/14/2006	0.200 U	NT	1.00 U	1.50	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-4A	3/28/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.700	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-6A	3/28/2002	3.70	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.500	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	2.40	0.200 U	0.500 U	NT
MW-7A	3/27/2002	0.200 U	NT	1.00 U	2.30	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-7A	2/20/2004	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-7A	1/31/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT
MW-7A	4/4/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT _	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-7A	7/12/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-7A	9/27/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-7A	12/27/2005	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-7A	3/2/2006	0.200 U	NT	1.00 U	3.30	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U		0.500 U	NT
MW-7A	4/11/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
MW-7A	6/26/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			2.00 U
MW-7A	8/10/2006	0.200 U	NT	1.00 U	2.40	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-7A	10/3/2006	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-7A	1/12/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	4.04	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
MW-7A	4/13/2007	1.00 U	NT	10.0 U	20.0 U	NT	NT	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U
A8-WM	3/28/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U		NT	0.200 U			NT
MW-8A	3/3/2006	0.200 U	NT	1.00 U	1.90	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		2.90	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-8A	8/14/2006	0.200 U	NT	1.00 U	3.00	5.00 U	1.00 U	0.200	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	2.10	0.200 U	0.200 U	0.200 U	NT	0.200 U			NT
MW-8B	3/28/2002	0.200 U	NT	1.00 U	1.20	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	2.00		0.200 U	2.80		0.200 U	-	NT	0.200 U		0.500 U	NT
MW-8B	3/6/2006	0.200 U	NT	1.00 U				0.200 U		0.200 U			0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.70		0.200 U	<u> </u>	0.200 U	0.200 U	0.200 U	NT	0.200 U		0.500 U	NT
MW-8B	8/14/2006		NT	1.00 U					0.200 U				0.200 U			0.200 U				0.200 U			0.200 U		NT	0.200 U		0.500 U	NT
MW-9A	3/27/2002			1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.400	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
MW-9A		0.200 U							0.200 U																				
MW-9A	8/14/2006								0.200 U																				
N2	4/20/2004	0.274 U	1.14 U	NT	1.47 U	NT	NT	0.226 U	0.232 U	0.319 U	0.215 U															0.241 U			
N5	3/23/2004	0.274 U	1.14 U	NT	1.47 U	NT_	NT	0.226 U	0.232 U	0.319 U	0.215 U	NT	0.200 U	0.291 U	0.304 U	0.264 U	0.236 U	0.305 U	0.260 U	0.346 U	0.299 U	0.205 U	0.258 U	0.218 U	0.233 U	0.241 U	0.268 U	0.360 U	NT
N6	3/23/2004			NT	1.47 U	NT	NT	0.226 U	0.232 U	0.319 U	0.215 U	NT	0.200 U	0.291 U	0.304 U	0.264 U	0.236 U	0.305 U	0.260 U	0.346 U	0.299 U	0.205 U	0.258 U	0.218 U	0.233 U	0.241 U	0.268 U	0.360 U	NT
NA-6	2/20/2002		NT	1.00 U	12.0	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.600	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U			
NA-6	2/20/2002	0.200 U	NT	1.00 U	6.10	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	10.0	0.200 U	0.200 U	1.80	0.200 U	0.200 U	0.200 U	NT	0.200 U			
NA-6	2/20/2002	0.200 U	NT	1.00 U	2.80 Y	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200	0.200 U	0.200 U	0.200 U	0.200 U	0.300 M	1.10	0.200 U	0.200 U	0.200 U	NT	0.200 U			
NA-7	2/21/2002	0.600	NT	1.00 U	3.10	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.600	0.200 U	0.200 U	0.200 U	NT			0.500 U	
NA-7	2/21/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U			
NA-7	2/21/2002																											0.500 U	
P1		0.274 U																								0.241 U			
P3	4/12/2004																									0.241 U			
R1		0.274 U																								0.241 U			
R3		0.274 U																								0.241 U			
R5	4/6/2004	0.274 U	1.14 U	NT	1.47 U	NT	NT	0.226 U	0.232 U	0.319 U	0.215 U	NT	0.200 U	0.291 U	0.304 U	0.264 U	0.236 U	0.305 U	0.260 U	0.346 U	0.299 U	0.205 U	0.258 U	0.218 U	0.233 U	0.241 U	0.268 U	0.360 U	NT

CAP-RI Tables 791514995-D TABLE 17 GW VOCs.xis

										ukwila	<u>, Wash</u>	ington											
	Chemical Name:	Isopropylbenzene	m,p-Xylenes	Methyl lodide	Methyl tert-Butyl Ether	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2- butene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate	Vinyl Chloride
		NL	16,000°	NL	NL	5.833 ^b	53.8 ^c	NL	NL	16,000 ^a	NL	1.458 ^b	NL	0.39 ^d	1,400 ^e	16,000 ^a	160ª	NL	NL	0.11 ^b	NL	NL	0.029 ^b
MW-41A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.02
MW-41A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-42A	3/6/2006			0.200 U	NT	0.300 U			0.200 U		0.200 U	0.200 U				NT		0.200 U		0.200 U		0.200 U	0.200 U
MW-42A	8/14/2006			0.200 U	NT	0.300 U	0.000500 U		0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			NT		0.200 U		0.200 U		0.200 U	0.200 U
MW-4A	3/28/2002		0.400 U		NT	0.300 U	0.000500 U		0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			NT		0.200 U		0.200 U			0.200 U
MW-6A	3/28/2002	3.40	19.0	0.200 U	NT	0.300 U	0.0120	7.10 M	6.20	3.60	3.30	0.200 U	0.200 U		0.200	NT	0.200 U		1.00 U	0.200 U		0.200 U	0.200 U
MW-7A MW-7A	3/27/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U			0.200 U	NT	0.200 U		1.00 U	0.200 U		0.200 U	0.500
MW-7A	2/20/2004 1/31/2005	1.00 U 1.00 U	2.00 U	NT	NT	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	4/4/2005	1.00 U	2.00 U 2.00 U	NT NT	2.00 U 2.00 U	5.00 U 5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	7/12/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U 0.00100 U	1.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	9/27/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	12/27/2005	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00100 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	3/2/2006	0.200 U	0.400 U		2.00 U	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.00 U 0.200 U	1.00 U 0.200 U	NT NT	1.00 U 0.200 U	1.00 U 0.200 U	NT	1.00 U 0.200 U	1.00 U 0.200 U	NT 0.200 U	1.00 U
MW-7A	4/11/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.000300 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	1.00 U NT	1.00 U	1.00 U	NT	0.200 U 1.00 U
MW-7A	6/26/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A				0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U		NT	0.200 U	0.200 U	1.00 U		0.200 U	0.200 U	0.200 U
MW-7A	10/3/2006	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-7A	1/12/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	13.0
MW-7A	4/13/2007	1.00 U	2.00 U	NT	2.00 U	5.00 U	0.00500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U	NT	1.00 U	1.00 U	NT	1.00 U
MW-8A	3/28/2002	0.200 U		0.200 U	NT	0.300 U	0.000500 U		0.200 U		0.200 U	0.200 U	0.200 U	8.20	0.200 U	NT		0.200 U	1.00 U	2.30		0.200 U	0.400
MW-8A	3/3/2006	0.200 U		0.200 U			0.000500 U		0.200 U			0.200 U		19.0	0.200 U	NT	0.200 U		1.00 U	4.20		-	0.200 U
MW-8A	8/14/2006	0.200 U		0.200 U		0.300 U	0.000500 U		0.200 U					8.30	0.200 U	NT	0.200 U		1.00 U	3.20		0.200 U	0.200
MW-8B	3/28/2002	0.200 U		0.200 U	NT	0.300 U	0.000500 U	-	0.200 U	0.200 U			0.200 U			NT	0.200	0.200 U	1.00 U	0.800	0.200 U		2.40
MW-8B	3/6/2006		0.400 U			0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U				0.200 U		NT	0.200				0.200 U	1	2.60
MW-8B	8/14/2006	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U							NT							
MW-9A	3/27/2002				NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U							0.200 U	
MW-9A	3/3/2006						0.000500 U										0.200 U	0.200 U	1.00 U	0.400	0.200 U	0.200 U	0.200 U
MW-9A	8/14/2006				NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.300	0.200 U	0.200 U	0.200
N2	4/20/2004			NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	1.13
N5	3/23/2004						0.271 U										0.302 U						0.490 U
N6	3/23/2004						0.271 U										0.302 U						0.490 U
NA-6	2/20/2002						0.000500 U															0.200 U	
NA-6	2/20/2002					0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.10	0.300	NT						0.200 U	
NA-6	2/20/2002				NT NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U								0.200 U	
NA-7	2/21/2002		-			0.300 U	0.00580	0.200 U	7.00	47.0 ES	0.200 U	0.200 U	0.200 U	11.0	2.10	NT						0.200 U	
NA-7	2/21/2002				NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U							0.200 U	
NA-7	2/21/2002						0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.300	NT						0.200 U	
P1	4/15/2004				0.258 U												0.302 U						0.490 U
P3	4/12/2004				0.258 U												0.302 U						0.490 U
R1	4/2/2004				0.258 U												0.302 U						0.490 U
R3	4/2/2004				0.258 U												0.302 U						0.490 U
R5	4/6/2004	U.252 U	U.40U U	NT	0.258 U	U.252 U	0.271 U	U.278 U	U.2/6 U	U.223 U	U.290 U	U.219 U	J 0.278 U	U.250 U	U.202 U	NT	0.302 U	J 0.181 U	_ NT	[0.223 U	լ Ս.181 Ս	NT	0.490 U

Tukwila, Washington

	Chemical Name:	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2- irifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1-Chlorohexane	2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone)	2-Chloroethylvinylether	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene
		NL	7,200 ^a	0.2188 ^b				72ª	NL	NL	NL	NL	NL	NL			0.6434 ^a	-	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
R7	4/5/2004	0.224 U	0.266 U	0.255 U																	0.249 U		0.182 U			0.225 U		
SWS-5	4/8/2004	0.224 U	0.266 U	0.255 U	NT	0.253 U															0.249 U					0.225 U		
WP-2	2/21/2002	0.200 U	1.90	0.200 U	0.200 U	0.200 U	5.40	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT				0.200 U		
WP-3	2/21/2002	0.200 U	0.900	0.200 U	0.200 U	0.200 U	0.200	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U
WP-5	2/26/2002	0.200 U	1.30	0.200 U	0.200 U	0.200 U	0.600	0.200 U	0.200 U	0.500 U	0.500 U	0.500 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	1.00 U	0.500 U	0.200 U	1.00 U	0.200 U

	Chemical Name:	4-Isopropyltoluene	4-Methyl-2-pentanone	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene Dibromide	Hexachlorobutadiene	Hexane
		18.18	NL	NL	800°	NL	+	0.7955 ^a	NL	NL	0.7056 ^b	NL	5.538 ^b	NL	800ª	NL	160°	NL	7.172 ^b	3.365 ^b	80ª	NL	NL	NL	NL	800ª	NL	0.5609 ^b	NL
R7	4/5/2004				1.47 U	NT		0.226 U					0.200 U	0.291 U	0.304 U	0.264 U	0.236 U	0.305 U	0.260 U	0.346 U	0.299 U	0.205 U	0.258 U	0.218 U	0.233 U	0.241 U	0.268 U	0.360 U	NT
SWS-5		0.274 U			1.47 U			0.226 U					0.200 U	0.291 U	0.304 U	0.264 U	0.236 U	0.305 U	0.260 U	0.346 U	3.69	0.205 U	0.258 U	0.218 U	0.233 U	0.241 U	0.268 U	0.360 U	NT
WP-2	2/21/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	1.10	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	0.500 U	NT
WP-3	2/21/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	J 0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT			0.500 U	
WP-5	2/26/2002	0.200 U	NT	1.00 U	1.00 U	5.00 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200	0.200 U	0.200 U	0.200 U	NT			0.500 U	

Tukwila, Washington

											,	mg.on									,		
	Chemical Name:	Isopropylbenzene	m.p-Xylenes	Methyl lodide	Methyl tert-Butyl Ether	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	Total Xylenes	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2- butene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate	Vinyl Chloride
ł		NL	16,000 ^a	NL	NL	5.833 ^b	53.8°	NL	NL	16,000 ^a	NL	1.458 ^b	NL	0.39 ^d	1,400 ^e	16,000 ^a	160ª	NL	NL	0.11 ^b	NL	NL	0.029 ^b
R7	4/5/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 U	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.490 U
SWS-5	4/8/2004	0.252 U	0.460 U	NT	0.258 U	0.252 U	0.271 ∪	0.278 U	0.276 U	0.223 U	0.290 U	0.219 U	0.278 U	0.250 U	0.202 U	NT	0.302 U	0.181 U	NT	0.223 U	0.181 U	NT	0.850 J
WP-2	2/21/2002	0.200 ∪	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	3.20	0.200 U	0.200 U	0.200
WP-3	2/21/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 ∪	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.500	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200	0.200 U	0.200 U	0.200 U
WP-5	2/26/2002	0.200 U	0.400 U	0.200 U	NT	0.300 U	0.000500 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	NT	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U

Notes:

mg/l = miligrams per liter

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

ug/l = micrograms per liter

U = Compound not detected above reporting detection limit.

BOLD = Result exceeds listed screening level.

> = Greater than reported value

B = Compound also detected in method blank.

J = Estimated concentration when the value is less than the laboratory reporting limit

M = Estimated value of analyte found and confirmed by analyst but with low spectral match.

Y = Raised laboratory reporting limit due to matrix interference.

E = Estimated concentration greater than the calibration range.

D = Sample analysis performed on a diluted aliquot due to high initial concentration of target analyte.

^aMTCA Method B for Groundwater - Noncarcinogenic

^bMTCA Method B for Groundwater - Carcinogenic

^cEcology Groundwater Screening Levels (Based on SQS)

^dMTCA Method B Surface Water Values - Carcinogenic

^eMTCA Method C for Groundwater - Noncarcinogenic

NT = Not Tested

Report Phase II Environmental Site Assessment Boeing Isaacson Property 8625 East Marginal Way South Tukwila, Washington

April 2, 2009

Prepared for

The Boeing Company Seattle, Washington

TABLE OF CONTENTS

				<u>Page</u>
1.0	INTI	RODUC	CTION	1-1
	1.1		PERTY DESCRIPTION	1-1
	1.2	BACK	KGROUND	1-2
2.0	FIEL	D INV	ESTIGATION	2-1
	2.1	SOIL	AND GROUNDWATER INVESTIGATION	2-1
		2.1.1	Area Near Monitoring Well I-104 (Source Investigation)	2-1
		2.1.2	Northern Boundary of Former Slip 5 (Mineralized Cell Wood	
			Preserving Company)	2-2
		2.1.3	Northern Property Boundary	2-2
		2.1.4	Groundwater Samples From Existing Monitoring Wells	2-2
3.0	INV	ESTIGA	ATION RESULTS	3-1
	3.1	PHYS	SICAL OBSERVATIONS AND FIELD-SCREENING RESULTS	3-1
		3.1.1	Soil Lithology and Depth to Groundwater	3-1
		3.1.2	Presence of Sheen, Odor, and/or Staining	3-2
		3.1.3	Field-Screening Results	3-2
	3.2	ANAI	LYTICAL RESULTS	3-2
		3.2.1	Area Near Monitoring Well I-104	3-2
		3.2.2	Northern Boundary of Former Slip 5 (Mineralized Cell Wood	
			Preserving Company)	3-3
		3.2.3	Northern Property Boundary	3-4
		3.2.4	Groundwater Samples From Existing Monitoring Wells	3-4
4.0	SUM	IMARY	AND CONCLUSIONS	4-1
5.0	USE	OF TH	IIS REPORT	5-1
6.0	REF	ERENC	CES	6-1

LIST OF FIGURES

<u>Title</u>
Vicinity Map
Site and Sample Location Plan
Detected Concentrations of Arsenic in Groundwater

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Summary of Arsenic Concentrations in Soil Near Monitoring Well I-104
2	Summary of Constituents Detected in Soil
3	Summary of Arsenic Concentrations in Groundwater Near Monitoring Well I-104
4	Summary of Constituents Detected in Groundwater – Direct Push Borings
5	Summary of Constituents Detected in Groundwater – Existing Monitoring Wells

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Focused Phase II Soil and Groundwater Investigation Work Plan
В	Soil Boring Logs
C	Laboratory Analytical Reports

1.0 INTRODUCTION

This report documents the results of a Phase II soil and groundwater investigation conducted for The Boeing Company (Boeing) at the Isaacson property (subject property) located at 8625 East Marginal Way South in Tukwila, Washington (Figure 1). The purpose of this investigation was to evaluate and document the soil and groundwater quality at the subject property as part of Boeing's risk management and due diligence activities. The areas of potential concern were identified as part of Boeing's Environment, Health, and Safety (EHS) property assessment process in the Phase I environmental site assessment (ESA) previously conducted for the subject property (Landau Associates 2008). The Phase I ESA identified environmental conditions at the subject property that, based on historical operations, previous investigations, or observations of site conditions, are considered to pose a potential liability to Boeing as owner of the property. In addition, Boeing requested that Landau Associates complete a round of groundwater sampling from existing wells on the subject property and the adjacent Boeing Thompson property; the results of sampling of seven wells on or near the subject property are included in this report. The results of this Phase II investigation will be used to evaluate potential impacts to soil or groundwater at the subject property and the need for additional action, if appropriate.

1.1 PROPERTY DESCRIPTION

The subject property consists of a 9.84-acre, asphalt-paved parcel of land that is currently owned by Boeing. There are no buildings present on the subject property and the property is currently used for storage by Boeing. The subject property is bounded by Port of Seattle-owned land on the west, followed by the Duwamish Waterway; the Boeing Thompson facility to the south; East Marginal Way South to the east, followed by Boeing Field; and by the Jorgensen Forge Corporation site to the north. A site plan is provided as Figure 2.

Slip 5 of the Duwamish River was previously located along the southern property boundary and extended east across approximately two-thirds of the subject property (Figure 2). Slip 5 was filled between the 1940s and the 1960s. Three buildings associated with the former Isaacson Steel operations were previously located on the subject property. Building 14-05 was a large industrial building that covered most of the subject property. Building 14-07 was located south of Building 14-05, and Building 14-08 was located along the eastern property boundary. These structures were removed from the subject property in approximately 1990. In December 2008, Boeing completed a grading project to remove an asphalt-paved mound in the north-central portion of the subject property that resulted from a soil stabilization project completed at the subject property in 1991.

1.2 BACKGROUND

Landau Associates conducted a Phase I ESA at the subject property for Boeing. The Phase I ESA included a review of historical environmental documentation for the subject property and observations of current conditions at the subject property on January 31, 2008 and April 21, 2008. The Phase I ESA identified the following *recognized environmental conditions* at the subject property that were considered to pose a potential liability to Boeing:

- Arsenic was detected in soil and groundwater at the subject property at concentrations greater than the Washington State Model Toxics Control Act (MTCA) cleanup levels during previous investigations. Arsenic was detected in groundwater at the subject property at concentrations ranging from 0.7 micrograms per liter (μg/L) to 3,640 μg/L during the most recently sampling event in 2008, with the highest concentration detected in the northwestern portion of the subject property. The highest detected concentration of arsenic in soil at the subject property (outside of the areas where excavations have subsequently occurred) is 3,500 milligrams per kilogram (mg/kg), which was detected in a sample collected in 1988 from along the northern boundary of the stabilized soil excavation. The presence of arsenic in soil and groundwater at the subject property at concentrations greater than MTCA cleanup levels is a recognized environmental condition.
- Based on previous subsurface investigations at the subject property, fill material within the former Slip 5 area includes bricks, wood debris, and slag material. Debris within the fill material is a potential source of impact to subsurface soil and groundwater at the subject property. Metals have been detected in the fill material at concentrations greater than the MTCA Method A cleanup levels. The presence of metals at concentrations greater than the MTCA cleanup levels is a *recognized environmental condition*.
- Four diesel underground storage tanks (USTs), three sumps, and one heating oil UST were formerly in operation on the subject property. The tanks were reportedly located on the northern and southern sides of the former 14-05 building and the sumps were located in the vicinity of the former 14-08 building, in the eastern portion of the subject property. Available records indicate that the tanks and sumps have been removed; however, there is no available information regarding the condition of the tanks or the surrounding subsurface soils. Due to the lack of data for confirmation soil samples, the former presence of petroleum USTs on the subject property is a recognized environmental condition.
- Historical records indicate that the Mineralized Cell Wood Preserving Company formerly operated on or in the vicinity of the subject property, north of the former location of Slip 5. The operations of this company involved heating a solution of arsenic and sulfate salts of copper and zinc and applying the solution under pressure to the base of logs. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were drained directly to the ground surface. The release of arsenic and other metals to the ground surface and the potential for impact to the subject property is a *recognized environmental condition*.

The Phase I ESA identified the following significant data gap:

• The condition of soil and groundwater at Jorgensen Forge Corporation site is considered a significant data gap for the subject property. Contaminants of concern have been identified in

soil and groundwater at the Jorgensen Forge site, located adjacent to the north of the subject property. The current status of cleanup at this site is not known. Given that there is the potential for contaminants of concern at the Jorgensen site to migrate to the subject property via groundwater, this data gap is considered to be significant in evaluating current conditions at the subject property.

Landau Associates conducted a Phase II ESA in accordance with the work plan (Landau Associates 2009) to document current conditions at the subject property and further assess the potential for conditions of environmental concern. The sampling locations and test parameters for the Phase II ESA were selected based on the findings of the Phase I ESA. At the request of Boeing, in addition to the proposed test parameters, selected soil and groundwater samples were analyzed for semivolatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs), which were identified as chemicals of concern by the Washington State Department of Ecology (Ecology) in the Source Control Action Plan (SCAP) for Early Action Area-6 (EAA-6), which includes the subject property (Ecology 2008). The following sections describe the field investigation and present the investigation results.

2.0 FIELD INVESTIGATION

The soil and groundwater investigation was conducted at the subject property February 2 through February 4, 2009. The following sections summarize field activities associated with soil and groundwater sampling. Specific information regarding field procedures and sampling methodology is presented in the work plan, which is included as Appendix A.

2.1 SOIL AND GROUNDWATER INVESTIGATION

The soil and groundwater investigation included 15 direct-push borings located in areas of potential concern identified in the Phase I ESA. The sampling locations are shown on Figure 2. Twenty-eight (28) soil and 10 groundwater samples were collected from the subject property for analysis by Analytical Resources, Inc. laboratory in Tukwila, Washington. The sampling areas are described in the following sections. Laboratory analytical methods are listed in Tables 1 through 5, along with the analytical data for soil and groundwater.

Boeing requested that Landau Associates complete a round of groundwater sampling from existing wells on the subject property and the adjacent Boeing Thompson property. The sampling was completed in February 2009 as described in Section 2.1.4.

2.1.1 AREA NEAR MONITORING WELL I-104 (SOURCE INVESTIGATION)

Six soil borings were advanced in the area of existing monitoring well I-104 (IDP-1/IDP-1A to IDP-6/IDP-6A). In accordance with the work plan, soil borings in this area were advanced to a depth of approximately 15 ft below ground surface (BGS).

Three soil samples and one groundwater sample were collected from each of the six direct-push borings in this area. An additional soil sample was collected from location IDP-6/IDP-6A as described below. Indications of impact were not observed during field screening; therefore, in accordance with the work plan, soil samples were collected from the 0 ft to 5 ft BGS interval, from the 6 ft to 10 ft BGS interval, and from the 11 ft to 15 ft BGS interval.

Refusal was encountered at several locations in this area; however, the driller was able to step out and complete a second boring to the planned depth. At locations where refusal was encountered at a depth of less than 4 ft BGS, no samples were collected and the boring was relocated. Refusal was encountered at boring IDP-1 at a depth of 7 ft BGS; therefore, the driller stepped out approximately 1 ft and completed boring IDP-1A to the planned depth of 15 ft BGS. At boring IDP-6, a sufficient quantity of soil was not collected from the 0 ft to 5 ft depth interval for analysis of the EAA-6 parameters;

therefore, boring IDP-6A was advanced within 2 ft of IDP-6 to a depth of 4 ft BGS in order to collect an additional soil sample from within the 0 ft to 5 ft interval.

All soil and groundwater samples collected from borings in this area were analyzed for arsenic. In addition, soil samples collected from boring IDP-6/IDP-6A were analyzed for metals, SVOCs, and PCBs.

2.1.2 NORTHERN BOUNDARY OF FORMER SLIP 5 (MINERALIZED CELL WOOD PRESERVING COMPANY)

Four soil borings (IDP-7 to IDP-10) were advanced along the estimated northern boundary of former Slip 5. Soil samples were collected from each of the direct-push borings in this area and groundwater samples were collected from IDP-8 and IDP-9. Soil borings in this area were advanced to a depth of approximately 16 ft BGS. Indications of impact were not observed during field screening; therefore, in accordance with the work plan, soil samples were collected from the 0 ft to 4 ft BGS interval.

Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from IDP-8 and IDP-9 were analyzed for SVOCs, cPAHs (groundwater samples only), and PCBs.

2.1.3 NORTHERN PROPERTY BOUNDARY

Five soil borings (IDP-11 to IDP-15) were advanced along the northern boundary of the subject property. Soil samples were collected from each of the direct-push borings in this area and groundwater samples were collected from IDP-12 and IDP-14. Soil borings in this area were advanced to a depth of approximately 16 ft BGS. Indications of impact were not observed during field screening, therefore, in accordance with the work plan, soil samples were collected from the capillary fringe zone, approximately 6 inches above the top of the water table.

Soil and groundwater samples collected from borings in this area were analyzed for VOCs, TPH, and metals. In addition, the soil and groundwater samples collected from IDP-12 and IDP-14 were analyzed for SVOCs, cPAHs (groundwater samples only), and PCBs.

2.1.4 GROUNDWATER SAMPLES FROM EXISTING MONITORING WELLS

Groundwater samples were collected from seven existing monitoring wells on or near the subject property (I-104, I-200, I-203, PZ-1, PZ-3, PZ-6, and PZ-7). Samples were collected in accordance with the work plan using low-flow sampling methodologies. Groundwater samples collected from existing monitoring wells were analyzed for VOCs, TPH, metals, SVOCs, cPAHs, and PCBs.

3.0 INVESTIGATION RESULTS

In order to evaluate soil and groundwater quality at the subject property, physical observations of the soil and groundwater encountered during exploration were documented and soil from each exploration was screened for VOCs using a photoionization detector (PID). In addition, soil samples from each direct-push boring location and groundwater samples from selected locations were submitted to Analytical Resources, Inc. laboratory for chemical analysis. This section presents the results of the physical observations and chemical analyses.

3.1 PHYSICAL OBSERVATIONS AND FIELD-SCREENING RESULTS

Physical observations were documented by Landau Associates personnel during the soil and groundwater investigation. Observations included soil lithology, depth to groundwater, presence of sheen on the soil or at the water table, odor, and visible soil staining. In addition, soil samples were screened for VOCs using a PID. These observations are documented in the soil boring logs presented in Appendix B and summarized below.

3.1.1 SOIL LITHOLOGY AND DEPTH TO GROUNDWATER

The 15 soil borings advanced at the subject property generally encountered brown fine to coarse sand, underlain by brown, silty fine sand, underlain by gray fine to medium sand with silt. Generally, fill material (including debris in some locations) was encountered from the surface to depths ranging from 4 ft to 12 ft BGS and was underlain by native material, which was generally characterized by smaller grain-sized sand and a higher silt content than the fill material. The following observations were made during the soil and groundwater investigation:

- One or more layers of crushed rock were observed in each of the soil borings (except IDP-11 and IDP-14) at depths ranging from 1.5 ft to 12 ft BGS. The layers were approximately 6 inches or less in thickness.
- Wood debris was encountered at depths ranging from 7 ft to 9 ft BGS in borings IDP-3, -4, -7, -14, and -15.
- Metal slag material was observed in boring IDP-2 at a depth of 3 ft BGS.
- A layer of organic matter was encountered at depths ranging from 5.5 ft to 7 ft BGS in borings IDP-8 and IDP-14.
- Groundwater was encountered during drilling at depths ranging between 11 ft and 14 ft BGS.

3.1.2 Presence of Sheen, Odor, and/or Staining

Visual or olfactory evidence of contamination was not observed in any of the samples retrieved from the 15 soil borings. An odor of decomposing organic material was noted in soil samples retrieved from IDP-3 (5 ft to 13 ft BGS).

3.1.3 FIELD-SCREENING RESULTS

Soil from each 5-ft sample interval from each boring was screened using a PID. PID readings were 1 part per million (ppm) or less and did not indicate the presence of significant volatile organic material.

3.2 ANALYTICAL RESULTS

Laboratory analytical reports are provided in Appendix C. The laboratory data were validated in accordance with the work plan (Landau Associates 2009) and were determined to be acceptable for use. The soil and groundwater analytical results for detected compounds are presented in Tables 1 through 5. Cleanup levels have not been developed for the Isaacson property. To provide context for evaluation of the analytical results, the results were compared to standard Washington State Model Toxics Control Act (MTCA) Method C formula values for direct human contact (soil only); MTCA Method B (groundwater) and Method C (soil) levels for protection of fresh surface water and for protection of marine surface water; and PACCAR Potential Cleanup Standards proposed by PACCAR in its Interim Action Work Plan (AMEC 2008), for the adjacent property to the south of the Thompson property. The most stringent of these values for the constituents detected at the Isaacson property, usually those for protection of fresh surface water, are used as screening levels for comparison with the analytical results. The results of the soil and groundwater investigation are discussed by area in the following sections.

3.2.1 AREA NEAR MONITORING WELL I-104

Soil analytical results for this area are presented in Tables 1 (arsenic) and 2 (other chemicals of concern). Groundwater analytical results for this area are presented in Table 3 (arsenic) and Table 4 (other chemicals of concern). Analytical results for this area are summarized as follows:

Arsenic was detected at concentrations greater than the screening level [7 milligrams per kilogram (mg/kg)] in 11 of the 19 soil samples collected from the area of monitoring well I-104. The detected concentrations range from 9 mg/kg to 333 mg/kg. The highest concentrations of arsenic were detected in the 8 ft to 9 ft BGS interval at all locations except IDP-2, where the highest concentration was detected at a depth of 4 ft BGS. Arsenic was not

detected in any of the 11 ft to 14 ft BGS interval samples except at IDP-1/IDP-1A, where arsenic was detected at a concentration of 9 mg/kg in the sample collected from 14 ft BGS.

- Dissolved arsenic was detected at concentrations greater than the screening level [8 micrograms per liter (μg/L)] in each of the six groundwater samples collected from the area of monitoring well I-104 (Figure 3). The detected concentrations ranged from 12.0 μg/L to 2,360 μg/L. The highest concentrations were detected in samples collected from IDP-4 (2,360 μg/L) and IDP-5 (1,610 μg/L) located to the northeast and southeast of I-104, respectively, which indicates a source located generally to the east of this area.
- Zinc was detected at concentrations greater than the screening level (86 mg/kg) in soil samples collected from IDP-6/IDP-6A at a depth of 8 ft BGS (153 mg/kg). Zinc was detected at concentrations of 20 mg/kg and 68 mg/kg, which are below the screening level, in the samples collected from 12 ft BGS and 3 ft BGS at this location.
- Chromium, copper, lead, and mercury were detected in soil at concentrations above the reporting limits but below the screening level in one or more samples from IDP-6/IDP-6A.
- No other chemicals of concern (SVOCs and PCBs) were detected at concentrations greater than the laboratory reporting limits in soil samples collected from IDP-6/IDP-6A.
- Analytical results for the groundwater sample collected from I-104 are discussed in Section 3.2.4.

3.2.2 NORTHERN BOUNDARY OF FORMER SLIP 5 (MINERALIZED CELL WOOD PRESERVING COMPANY)

Analytical results for this area are summarized as follows:

- Arsenic (23 mg/kg to 32 mg/kg), copper (55.6 mg/kg to an estimated 177 mg/kg), lead (112 mg/kg to 420 mg/kg), mercury (0.15 mg/kg to an estimated 0.52 mg/kg), and zinc (89 mg/kg to an estimated 1,390 mg/kg) were detected in soil samples collected from this area at concentrations greater than the screening levels. The highest concentrations of metals were detected in the soil sample collected from IDP-7 and concentrations generally show a decreasing pattern toward the east. Note that the detected concentrations of lead and mercury are less than the MTCA Method A cleanup levels for industrial properties. Cadmium and chromium were detected in soil samples from this area at concentrations below the screening levels.
- Arsenic was detected in one of the two groundwater samples collected from this area (IDP-8) at a concentration of 13,600 µg/L, which is greater than the screening level (8 µg/L). Arsenic was not detected at a concentration greater than the laboratory reporting limit in the sample collected from IDP-9, located east of IDP-8. No other metals were detected at concentrations greater than the screening levels (or the laboratory reporting limits in most cases) in groundwater samples collected from this area.
- The VOC benzene [9.8 micrograms per kilogram (μ g/kg)] was detected in the soil sample collected from IDP-9 at a concentration greater than the screening level (6.8 μ g/kg).

- SVOCs and PCBs were not detected at concentrations greater than the laboratory reporting limits and petroleum hydrocarbons were not detected at concentrations greater than the screening levels in soil samples collected from this area.
- Vinyl chloride (0.2 µg/L) was detected at a concentration greater than the screening level (0.025 µg/L) in the groundwater sample collected from IDP-8. Vinyl chloride was not detected at a concentration greater than the laboratory reporting limits in the sample collected from IDP-9. No other VOCs were detected at concentrations greater than the screening levels in groundwater samples collected from this area.
- SVOCs (including cPAHs), PCBs, and petroleum hydrocarbons were not detected at concentrations greater than the laboratory reporting limits in groundwater samples collected from this area.

3.2.3 NORTHERN PROPERTY BOUNDARY

Analytical results for this area are summarized as follows:

- Arsenic (18 mg/kg to 274 mg/mg), copper (47.2 mg/kg to 624 mg/kg), and zinc (96 mg/kg to 354 mg/kg) were detected in soil samples collected from along the northern property boundary at concentrations greater than the screening levels. Mercury was detected in one soil sample collected from IDP-14 at a concentration of 0.21 mg/kg, which is greater than the screening level (0.1 mg/kg), but less than the MTCA Method A cleanup level for unrestricted land use and industrial properties (2 mg/kg).
- Arsenic was detected in the groundwater samples collected from IDP-12 (13.0 μg/L) and IDP-14 (16,600 μg/L) at concentrations greater than the screening level (8 μg/L). No other metals were detected in groundwater samples collected from this area at concentrations greater than the screening levels, or, in most cases, the laboratory detection limits.
- VOCs were detected in soil at concentrations greater than the laboratory reporting limits, but less than the screening levels. VOCs were not detected in groundwater samples collected from this area at concentrations greater than the laboratory reporting limits.
- SVOCs (including cPAHs), PCBs, and petroleum hydrocarbons were not detected in soil or groundwater samples collected from this area at concentrations greater than the laboratory reporting limits.

3.2.4 GROUNDWATER SAMPLES FROM EXISTING MONITORING WELLS

Analytical results for groundwater samples collected from existing monitoring wells on or near the subject property are summarized as follows:

• Arsenic was detected in samples collected from each of the seven existing monitoring wells at concentrations ranging from 0.8 μg/L to 2,270 μg/L (Figure 3). Arsenic was detected at concentrations less than the screening levels in the samples collected from I-200 (0.8 μg/L), PZ-1 (7.1 μg/L), and PZ-7 (5.0 μg/L). The highest concentration of arsenic was detected in the sample collected from I-104 (2,270 μg/L), followed by the concentration in the sample collected from PZ-6 (505 μg/L). The wells are located near the western property boundary at the northern end of the Isaacson property and along the southern property boundary in the

western one-third of the subject property, respectively. Arsenic concentrations in groundwater are generally higher in the western half of the subject property than the eastern half.

- Zinc was detected in the sample collected from PZ-1 at a concentration of 240 μ g/L, which is greater than the screening level (160 μ g/L).
- Vinyl chloride was detected in the sample collected from I-104 at a concentration of 0.2 μ g/L, which is greater than the screening level (0.025 μ g/L). No other VOCs were detected at concentrations greater than the screening levels.
- SVOCs (including cPAHs), PCBs, and petroleum hydrocarbons were not detected in the groundwater samples collected from existing monitoring wells at concentrations greater than the laboratory reporting limits.

4.0 SUMMARY AND CONCLUSIONS

The objective of the Phase II investigation was to evaluate and document the soil and groundwater quality at the subject property as part of Boeing's risk management and due diligence activities. The sampling locations for the Phase II ESA were selected based on the findings of the Phase I ESA and a request from Boeing to collect groundwater samples from existing monitoring wells on the subject property and at the adjacent property to the south (Thompson property).

Fifteen soil borings were advanced at the subject property. Soil samples were collected from each of the soil borings and groundwater samples were collected from 10 of the 15 soil borings. Groundwater samples were also collected from seven existing monitoring wells at the subject property or near the southern boundary of the subject property. The results of the soil and groundwater investigation are summarized below by area:

• Area Near Monitoring Well I-104: An investigation was conducted in this area in an attempt to identify the source of the arsenic in groundwater. The highest concentrations of arsenic in soil and groundwater in this investigation were detected in samples collected northeast and southeast of well I-104. The results of the investigation completed in the area immediately surrounding well I-104, combined with the analytical results for groundwater samples collected from I-104, IDP-8, and IDP-14, indicate the potential existence of an arsenic source east of monitoring well I-104, in the northwestern portion of the Isaacson site.

Zinc was detected in one soil sample collected from this area at a concentration greater than the screening level and was the only chemical of concern other than arsenic detected in soil at concentrations greater than the screening levels in this area. Groundwater samples collected from direct-push borings in this area were not analyzed for zinc; however, zinc was not detected at a concentration greater than the screening level in the groundwater sample collected from I-104.

• Northern Boundary of Former Slip 5 (Mineralized Cell Wood Preserving Company): Metals (arsenic, copper, lead, mercury, and zinc) were detected in soil samples collected from this area at concentrations greater than the screening levels. The highest concentrations of metals were detected in the soil sample collected from IDP-7 and concentrations generally show a decreasing pattern toward the east. Arsenic was the only metal detected in groundwater in this area at a concentration greater than the screening level. The detected concentrations of lead and mercury are less than the MTCA Method A cleanup levels for industrial properties. The presence of metals in soil and groundwater in this area may be the result of former operations of the Mineralized Cell Wood Preserving Company, which reportedly operated north of former Slip 5 and used arsenic, copper, and zinc in its wood treatment process.

The VOC benzene was detected in the soil in this area at a concentration greater than the screening level. Benzene was not detected in groundwater at concentrations greater than the laboratory reporting limits. The presence of benzene in soil may be the result of releases from historical underground storage tanks.

Vinyl chloride was detected in groundwater at a concentration greater than the screening level in one groundwater sample collected from this area. Vinyl chloride was not detected in soil samples collected from this area at a concentration greater than the laboratory reporting limit. The source of vinyl chloride in groundwater is not known.

- Northern Property Boundary: Metals (arsenic, copper, zinc, and mercury) were detected in soil samples collected from along the northern property boundary at concentrations greater than the screening levels. Only arsenic was detected in groundwater in this area at concentrations greater than the screening level. The detected concentrations of mercury are less than the MTCA Method A cleanup levels for unrestricted land use and industrial properties. The source of the metals impact is not known; however, as discussed previously, the presence of metals in soil and groundwater may be related to the former operations of the Mineralized Cell Wood Preserving Company.
- Groundwater Samples from Existing Monitoring Wells: Arsenic was detected in four of seven groundwater samples collected from existing monitoring wells at concentrations greater than the screening levels. The highest concentration of arsenic was detected in wells located near the western property boundary at the northern portion of the Isaacson property (I-104) and along the southern boundary in the western one third of the subject property (PZ-6), respectively. Arsenic concentrations in groundwater are generally higher in the western half of the subject property than in the eastern half.

Zinc was detected in one groundwater sample (PZ-1) and vinyl chloride was detected in one groundwater sample (I-104) at concentrations greater than the screening levels. The source of these constituents in groundwater is not known.

• **Property-Wide Groundwater:** The results of the groundwater sampling from existing monitoring wells, combined with the results of sampling from direct-push locations on the subject property (specifically, samples collected from IDP-8 and IDP-14), suggest a source of arsenic to groundwater may exist in the northwestern portion of the subject property.

Zinc was detected in one groundwater sample (PZ-1) at a concentration greater than the screening level. Zinc was detected at a concentration less than the screening level in the groundwater sample collected from IDP-12 and was not detected at concentrations greater than the laboratory reporting limits in groundwater samples collected from the remaining direct-push locations. A zinc source has not been identified at the subject property. Zinc was detected in each of the soil samples collected during this investigation (except IDP-11); however, the highest concentration of zinc was detected in the soil sample collected from IDP-7, located nearly 1,000 ft west of PZ-1.

Vinyl chloride was detected at concentrations greater than the screening levels in samples collected from monitoring well I-104 and IDP-8, both located in the western portion of the subject property. Vinyl chloride was not detected in soil at concentrations greater the laboratory reporting limits. The source of vinyl chloride in groundwater is not known.

Impacts to soil by metals have been identified at the subject property. Metals (arsenic, copper, and zinc) were detected at concentrations greater than the screening levels at locations throughout the subject property. Detected concentrations were generally higher in the western half of the subject property than the eastern half. The detected concentrations of arsenic, copper, and zinc may be related to

the former operations of the Mineralized Cell Wood Preserving Company, which is believed to have operated on the subject property and reportedly used these metals in its wood treatment process. Lead and mercury were detected at concentrations greater than the screening levels in soil samples collected from along the estimated northern boundary of former Slip 5. The detected concentrations of lead and mercury are below the MTCA Method A cleanup levels for industrial properties. Benzene was detected at a concentration greater than the screening level in one soil sample collected from near the northern boundary of the former location of Slip 5. Benzene was not detected in groundwater at concentrations greater than the laboratory reporting limits. No other chemicals of concern (SVOCs, PCBs, petroleum hydrocarbons) were detected in soil at concentrations greater than the screening levels, or, in most cases, the laboratory reporting limits.

Impact to groundwater was identified at the subject property. Arsenic was detected in water samples collected from 9 of the 15 direct push borings and four of the seven existing monitoring wells at concentrations greater than the screening levels. Detected concentrations of arsenic in groundwater in the western portion of the subject property (north and south of the former stabilized soil mound) are more than 1,000 times greater than concentrations detected in samples collected from locations in the eastern half of the subject property, which indicates a potential source of arsenic in the western half of the subject property. Vinyl chloride was detected at a concentration greater than the screening level in one groundwater sample collected from a direct-push boring along the northern boundary of the former location of Slip 5, and in the sample collected from one existing groundwater monitoring well located in the northwestern portion of the subject property. Vinyl chloride was not detected in soil at concentrations greater than the laboratory reporting limits. Zinc was detected at a concentration greater than the screening level in one sample collected from the northeastern portion of the subject property (PZ-1). The source of the zinc is not known; however, zinc was detected in soil in this area at concentrations greater than the screening levels. No other chemicals of concern [SVOCs (including cPAHs), PCBs, petroleum hydrocarbons] were detected in groundwater samples from direct-push borings or existing monitoring wells at concentrations greater than the screening levels, or in most cases, the laboratory reporting limit.

5.0 USE OF THIS REPORT

This Phase II ESA Report has been prepared for the exclusive use of Boeing for specific application to the Isaacson property in Tukwila, Washington. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Kathryn F. Hartley Project Scientist

Kristy J. Hendrickson, P.E.

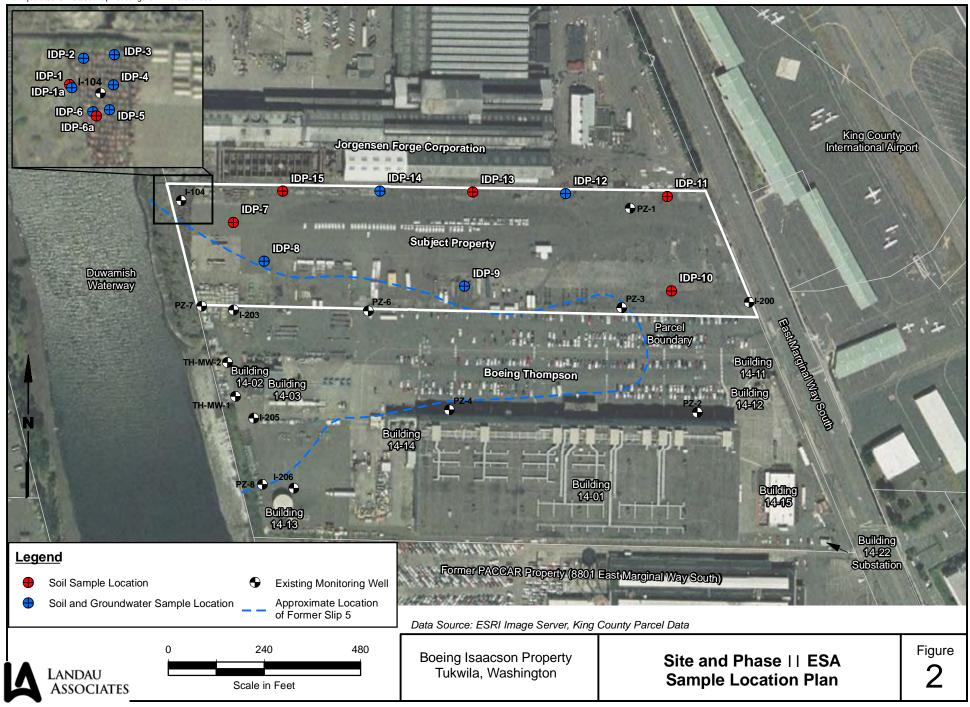
Principal

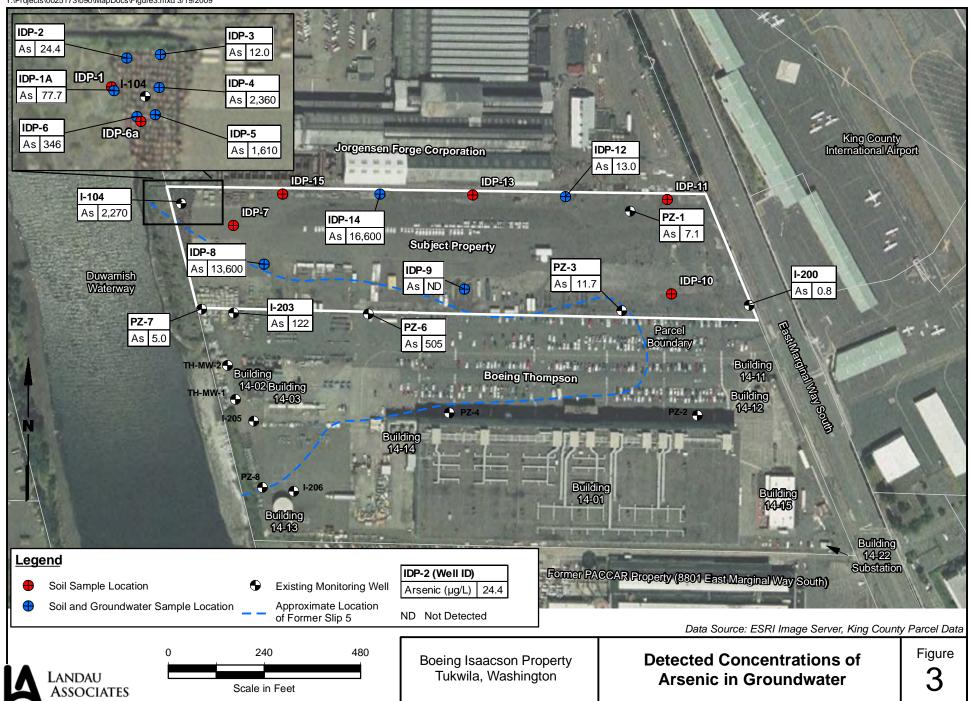
KFH/KJH/ccy

6.0 REFERENCES

AMEC Earth & Environmental, Inc. 2008. Report: Draft Interim Action Work Plan with Remedial Investigation and Feasibility Study for the Upland Portion for Soil and Groundwater Cleanup at the 8801 East Marginal Way South Site and Former PACCAR Kenworth Truck Company Site, Tukwila, Washington. Prepared for PACCAR Inc. May 16.

Ecology. 2008. Draft 2: Source Control Action Plan, Lower Duwamish Waterway, RM 3.7-3.9 East (Early Action Area 6). Publication No. 08-09-002. Washington State Department of Ecology. October.


Ecology. 1994. *Natural Background Soil Metals Concentrations in Washington State*. Publication No. 94-115. Washington State Department of Ecology, Toxics Cleanup Program. October.


Landau Associates. 2009. Work Plan: Focused Phase II Soil and Groundwater Investigation, Boeing Isaacson Property, Tukwila, Washington. Prepared for The Boeing Company. January 23.

Landau Associates. 2008. Report: Environment, Health, and Safety Assessment / Phase I Environmental Site Assessment, Boeing Isaacson Property, Tukwila, Washington. Prepared for the Boeing Company. September 15.

PTI. 1989. Draft Report Sections 1-7: Background Concentrations of Selected Chemicals in Water, Soil, Sediments, and Air of Washington State. PTI Environmental Services. Prepared for Washington State Department of Ecology. April.

TABLE 1

SUMMARY OF ARSENIC CONCENTRATIONS IN SOIL NEAR MONITORING WELL I-104 BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

Preliminary Screening Levels

PACCAR Interim Action
Work Plan Cleanup Levels (a)

Method C Direct Contact

88

Method C Protection of
Marine Surface Water

7 (b)

Method C Protection of
Fresh Surface Water

7 (b)

TOTAL METALS Method SW6000/7000 series

Laboratory ID	Data Package	Date	Arsenic (mg/kg)
IDP-1-4'	OK85L	2/2/2009	60
IDP-1A-9'	OK85M	2/2/2009	186
IDP-1A-14'	OK85N	2/2/2009	9
IDP-2-4'	OK85O	2/2/2009	180
IDP-2-8'	OK85P	2/2/2009	6 U
IDP-2-11'	OK85Q	2/2/2009	6 U
IDP-3-4'	OK85R	2/2/2009	34
IDP-3-8'	OK85S	2/2/2009	48
IDP-3-11'	OK85T	2/2/2009	6 U
IDP-4-4'	OK85U	2/2/2009	15
IDP-4-8'	OK85V	2/2/2009	17
IDP-4-11'	OK85W	2/2/2009	6 U
IDP-5-4'	OK85X	2/2/2009	60 U
IDP-5-8'	OK85Y	2/2/2009	333
IDP-5-11'	OK85Z	2/2/2009	5 U
IDP-6-4'	OK85AA	2/2/2009	10 U
IDP-6-8'	OK85AB	2/2/2009	71
IDP-6-12'	OK85AC	2/2/2009	5 U
IDP-6A-3	OL03J	2/2/2009	14

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

- (a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008).
- (b) = Statewide background concentration (Ecology 1994).

U = Indicates the compound was undetected at the reported concentration.

TABLE 2 SUMMARY OF CONSTITUENTS DETECTED IN SOIL BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

	Preliminary Screening Levels			Locations Near Monitoring Well I-104			Locations Near Estimated Northern Boundary of Former Slip 5				Locations Along Northern Property Boundary					
	PACCAR Interim Action Work Plan	Method C Direct Contact	Method C Protection of Marine	Method C Protection of Fresh	IDP-6-8' OK85AB	IDP-6-12' OK85AC	IDP-6A-3 OL03J	IDP-7-3 OL03A	IDP-8-3	IDP-9-3	IDP-10-2 OL03D/OL61A	IDP-11-11 OL03E	IDP-12-12 OL03F	IDP-13-12 OL03G	IDP-14-11	IDP-15-12 OL03I
	Cleanup Levels (a)		Surface Water	Surface Water	2/2/2009	2/2/2009	2/3/2009	2/3/2009	OL03B 2/3/2009	OL03C 2/3/2009	2/3/2009	2/3/2009	2/3/2009	2/3/2009	OL03H 2/3/2009	2/3/2009
TOTAL METALS (mg/kg) Method SW6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	129,500 / 19.6 1,000 / 812	88 3,500 1,000,000 (c) (e) 130,000 1,000 (a) 1100 1,000,000 (e)	7 (b) 1.2 1,000,000 (e) 36 (b) 1,600 0.1 (b) 100	7 (b) 1 (b) 2,000 36 (b) 110 0.1 (b) 86 (b)	71 0.3 U 19.2 26.9 3 0.06 153	5 U 0.2 U 9.0 9.1 2 U 0.05 U 20	14 0.2 U 52.0 20.8 27 0.05 U 68	50 U 4 262 177 J 420 0.52 J 1,390 J	32 0.4 36.9 27.4 27 0.08	30 0.6 58 93.2 112 0.18 267	23 0.6 16.2 55.6 59 0.15 220	6 U 0.2 U 11.8 13.5 2 U 0.05 U	204 0.3 U 16.3 163 4 0.06	18 0.3 U 23.5 131 4 0.08 97	220 0.2 U 15.4 624 6 0.21	274 0.3 U 17.3 47.2 5 0.06
VOLATILES (µg/kg) Method SW8260B Methylene Chloride Acetone Carbon Disulfide 2-Butanone Trichloroethene Benzene Toluene Total Xylenes Methyl lodide		18,000,000 350,000,000 350,000,000 1,000,000,000 (e) 1,100,000 2,400,000 280,000,000 700,000,000	2,600 - - - 200 290 109,000 -	20 3,200 5,600 19,600 16 6.8 4,600				4.3 150 2.2 13 1.6 2.7 1.7 ND 1.1 U	1.3 U 15 0.6 U 3.2 U 0.6 U 0.6 U 0.6 U ND 0.6 U	2.8 57 1.3 U 6.6 U 1.3 U 9.8 17 22.7 1.3 U	3.9 U 0.8 U 0.8 U 0.8 U ND	2.0 31 0.8 U 4.0 U 0.8 U 0.9 0.8 U ND 0.8 U	1.7 21 0.6 U 3.0 U 0.6 U 0.6 U 0.6 U ND 0.6 U	1.5 U 38 0.8 U 3.8 U 0.8 U 0.8 U 0.8 U ND 0.8 U	3.4 30 0.9 U 4.3 U 0.9 U 0.9 0.9 U ND 3.2	2.2 58 2.6 7.4 0.6 U 0.7 0.6 U ND 0.6 U
NWTPH-Dx Diesel Range Organics Oil-Range Organics		2000 (d) 2000 (d)	2000 (d) 2000 (d)	2000 (d) 2000 (d)							20 150					

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample detection limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NA = Not Analyzed.

ND = Not Detected

(a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008). The first number is Method C Ingestion (Method A Industrial for lead). The second number is Soil to Water Partition Calculation.

(b) = Statewide background concentration (Ecology 1994).

(c) = Value listed is for chromium III.

(d) = MTCA Method A cleanup level for industrial properties.

(e) = Screening level adjusted to 100% (1,000,000 mg/kg or 1,000,000,000 μ g/kg)

TABLE 3 SUMMARY OF ARSENIC CONCENTRATIONS IN GROUNDWATER NEAR MONITORING WELL I-104 BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

	Pre	eliminary Screening Lev	/els						
	PACCAR Interim Action Work Plan Cleanup Levels (a)	Method B Protection of Marine Surface Water	Method B Protection of Fresh Surface Water	IDP-1A OK85E 2/2/2009	IDP-2 OK85F 2/2/2009	IDP-3 OK85G 2/2/2009	IDP-4 OK85H 2/2/2009	IDP-5 OK85I 2/2/2009	IDP-6 OK85J 2/2/2009
DISSOLVED METALS (μg/L) Method 200.8/6010B/7470A Arsenic	-	8 (b)	8 (b)	77.7	24.4	12.0	2,360	1,610	346

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

⁽a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008).

⁽b) = Statewide background concentration (PTI 1989).

TABLE 4 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER - DIRECT- PUSH BORINGS BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

	PACCAR Interim Action Work Plan Cleanup Levels (a)	Method B Protection of Marine Surface Water	Method B Protection of Fresh Surface Water	North of F IDP-8 OL03K 2/3/2009	Forner Slip 5 IDP-9 OL03L 2/3/2009	Northern Prop IDP-12 OL03M 2/3/2009	Derty Boundary IDP-14 OL03N 2/3/2009
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Copper Lead Zinc		8 (b) 20 (b) 10 (b) 160 (b)	8 (b) 20 (b) 10 (b) 160 (b)	13,600 10 U 1 50 U	0.5 U 6 1 U 10 U	13.0 6 1 U 40	16,600 20 1 U 50 U
VOLATILES (µg/L) Method SW8260B Vinyl Chloride cis-1,2-Dichloroethene	2.4 80	2.4	0.025 70	0.2 0.5	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

U = Indicates the compound was undetected at the reported concentration.

⁽a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008).

⁽b) = Statewide background concentration (PTI 1989).

TABLE 5 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER - EXISTING MONITORING WELLS BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

	PACCAR Interim Action Work Plan Cleanup Levels (a)	Method B Protection of Marine Surface Water	Method B Protection of Fresh Surface Water	I-104 OK85B 2/2/2009	Dup of I-104 I-1044 OK85D 2/2/2009	I-200 OL24C 2/4/2009	I-203 OL19F 2/4/2009	PZ-1 OK85C 2/2/2009	PZ-3 OL24B 2/4/2009	PZ-6 OL24A 2/4/2009	PZ-7 OK85A 2/2/2009
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Copper Zinc		8 (b) 20 (b) 160 (b)	8 (b) 20 (b) 160 (b)	2,130 13 J 13 J	2,270 7 J 10 U	0.8 2 U 10 U	122 2 U 10 U	7.1 17 240	11.7 2 U 10	505 2 U 10 U	5.0 2 U 10 U
VOLATILES (μg/L) Method SW8260B Vinyl Chloride Acetone Carbon Disulfide 1,1-Dichloroethane	2.4	2.4	0.025 800 800 1600	0.2 3.7 0.2 U 0.2 U	0.2 U 3.4 0.2 U 0.2 U	0.2 U 11 0.2 U 0.2 U	0.2 U 3.1 0.2 U 0.2 U	0.2 U 3.0 U 0.2 U 0.2 U	0.2 U 7.1 0.2 U 0.2 U	0.2 U 3.9 0.2 0.2 U	0.2 U 4.8 0.2 U 0.2 U
trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,2-Dichloropropane	80	10000 15	100 70 0.50	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 1.3 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U	0.2 U 0.2 U 0.2 U

Bold indicates detected constituent.

Boxed values indicate exceedance of the Method C protection of fresh surface water screening levels.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample detection limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

⁽a) = Potential cleanup levels identified in PACCAR 2008 Interim Action Work Plan (AMEC 2008).

⁽b) = Statewide background concentration (PTI 1989).

Focused Phase II Soil and Groundwater Investigation Work Plan

Work Plan Focused Phase II Soil and Groundwater Investigation Boeing Isaacson Property Tukwila, Washington

January 23, 2009

Prepared for

The Boeing Company Seattle, Washington

TABLE OF CONTENTS

			<u>Page</u>
1.0	INT	RODUCTION	1-1
	1.1	BACKGROUND	1-1
	1.2	OBJECTIVES	1-3
	1.3	SCOPE OF WORK	1-3
2.0	SAN	MPLING AND ANALYSIS PLAN	2-1
	2.1	SOIL SAMPLING	2-1
		2.1.1 Soil Sample Locations	2-1
		2.1.2 Sample Collection Methods	2-1
		2.1.3 Sample Depth Intervals	2-2
		2.1.4 Sample Nomenclature	2-3
	2.2	GROUNDWATER SAMPLING	2-3
		2.2.1 Sampling Locations	2-3
		2.2.2 Sample Collection	2-3
		2.2.3 Sample Nomenclature	2-4
	2.3	SAMPLE TRANSPORTATION AND HANDLING	2-5
	2.4	SAMPLE CUSTODY AND DOCUMENTATION	2-5
	2.5	LABORATORY ANALYSES	2-6
		2.5.1 Soil Samples	2-6
		2.5.2 Groundwater Samples	2-7
	2.6	EQUIPMENT DECONTAMINATION	2-8
		2.6.1 Sampling Equipment	2-8
		2.6.2 Heavy Equipment	2-8
	2.7	BORING ABANDONMENT AND PAVEMENT PATCHING	2-8
	2.8	RESIDUAL WASTE MANAGEMENT	2-8
	2.9	UTILITY LOCATE	2-9
3.0	QUA	ALITY ASSURANCE/QUALITY CONTROL	3-1
4.0	HEA	ALTH AND SAFETY PLAN	4-1
5.0	REP	ORTING	5-1

LIST OF FIGURES

Figure Title 1 Vicinity Map

Vicinity Map
 Site and Sample Location Plan

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Sampling and Analysis Summary
2	Analytical Methods

LIST OF APPENDICES

Appendix Title

A Health and Safety Plan

1.0 INTRODUCTION

This document presents a work plan to conduct a focused Phase II soil and groundwater investigation at The Boeing Company (Boeing) Isaacson property (subject property) located on East Marginal Way South in the City of Tukwila, King County, Washington (Figure 1). The subject property is currently owned by Boeing. There are no structures present on the subject property and the property is currently used for limited storage by Boeing. In December 2008, Boeing completed a grading project to remove an asphalt-paved mound in the north-central portion of the subject property that resulted from a soil stabilization project completed at the subject property in 1991. A site plan is provided as Figure 2.

The purpose of this investigation is to evaluate and document the soil and groundwater quality at the subject property as part of Boeing's risk management and due diligence activities. The areas of potential concern were identified as part of Boeing's Environment, Health, and Safety (EHS) property assessment process, and specifically in the Phase I environmental site assessment (ESA) previously conducted for the subject property (Landau Associates 2008¹). The Phase I ESA identified environmental conditions at the subject property, based on historical operations, previous investigations, or observations of site conditions, that are considered to pose a potential liability to Boeing as owner of the property. The results of this Phase II investigation will be used to evaluate potential impacts to soil or groundwater at the subject property, and the need for additional action, if appropriate.

1.1 BACKGROUND

Landau Associates conducted a Phase I ESA at the subject property for Boeing. The Phase I ESA included a review of historical environmental documentation for the subject property, and observation of current conditions at the subject property on January 31, 2008 and April 21, 2008. The Phase I ESA identified the following *recognized environmental conditions* at the subject property that were considered to pose a potential liability to Boeing:

Arsenic was detected in soil and groundwater at the subject property at concentrations greater than the Washington State Model Toxics Control Act (MTCA) cleanup levels during previous investigations. Arsenic was detected in groundwater at the subject property at concentrations ranging from 0.7 micrograms per liter (μg/L) to 3,640 μg/L during the most recently sampling event in 2008, with the highest concentration detected in the northwestern portion of the subject property. The highest detected concentration of arsenic in soil at the subject property (outside of the areas where excavations have subsequently occurred) is 3,500 milligrams per kilogram (mg/kg), which was detected in a sample collected in 1988 from along the northern boundary of the stabilized soil excavation. The presence of arsenic in soil

¹ Landau Associates. 2008. Report: Environment, Health, and Safety Assessment / Phase I Environmental Site Assessment Boeing Isaacson Property, Tukwila, Washington. Prepared for the Boeing Company. September 15.

and groundwater from the subject property at concentrations greater than MTCA cleanup levels is a *recognized environmental condition*.

- Based on previous subsurface investigations at the subject property, fill material within the former Slip 5 area includes bricks, wood debris, and slag material. Debris within the fill material is a potential source of impact to subsurface soil and groundwater at the subject property. Metals have been detected in the fill material at concentrations greater than the MTCA Method A cleanup levels. The presence of metals at concentrations greater than the MTCA cleanup levels is a *recognized environmental condition*.
- Four diesel underground storage tanks (USTs), three sumps, and one heating oil tank were formerly in operation on the subject property. The tanks were reportedly located on the northern and southern sides of the former 14-05 building and the sumps were located in the vicinity of the former 14-08 building, in the eastern portion of the subject property. Available records indicate that the tanks and sumps have been removed; however, there is no available information regarding the condition of the tanks or the surrounding subsurface soils. Due to the lack of data for confirmation soil samples, the former presence of petroleum USTs on the subject property is a recognized environmental condition.
- Historical records indicate that the Mineralized Cell Wood Preserving Company formerly operated on or in the vicinity of the subject property, north of the former location of Slip 5. The practice of this company involved heating a solution of arsenic and sulfate salts of copper and zinc and applying the solution to the base of logs under pressure. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were drained directly to the ground surface. The release of arsenic and metals to the ground surface and its potential for impact to the subject property is a recognized environmental condition.

The Phase I ESA identified the following significant data gap:

• Condition of soil and groundwater at Jorgensen Forge Corporation site. Contaminants of concern have been identified in soil and groundwater at the Jorgensen Forge site, located adjacent to the north of the subject property. The current status of cleanup at this site is not known. Given that there is the potential for contaminants of concern at the Jorgensen site to migrate to the subject property via groundwater, this data gap is considered to be significant to evaluating current conditions at the subject property.

Boeing is conducting a Phase II ESA to document current conditions at the subject property and further assess the potential for conditions of environmental concern. The proposed sampling locations and test parameters for the Phase II ESA were selected based on the findings of the Phase I ESA. At the request of Boeing, in addition to the proposed test parameters, select soil and groundwater samples will be analyzed for the contaminants of concern identified by the Washington State Department of Ecology (Ecology) in the Source Control Action Plan (SCAP) for Early Action Area-6 (EAA-6), which includes the subject property.

1.2 OBJECTIVES

Based on the findings of the Phase I ESA, the objectives for the focused Phase II investigation are to:

- Collect sufficient data to document and evaluate shallow soil and groundwater conditions in selected areas that were identified in the Phase I ESA as having the potential to have been impacted by historical onsite operations
- Assess the condition of soil and groundwater at the subject property in relation to the contaminants of concern that have been identified by Ecology for EAA-6.
- Assess the need for further action.

1.3 SCOPE OF WORK

Samples of soil and groundwater will be collected for laboratory analysis for constituents of potential concern from the specific areas identified in the Phase I ESA, based on information regarding historical site operations. These areas for investigation will be referred to as the Phase II sampling areas, and consist of:

- Monitoring well I-104 (source investigation)
- Northern Property Boundary
- North of Former Slip 5 Boundary (Mineralized Cell Wood Preserving Company)
- Site-Wide Groundwater.

The Phase II sampling areas and sample locations are shown on Figure 2. The sampling and analytical strategies and procedures are outlined in Section 2.0.

2.0 SAMPLING AND ANALYSIS PLAN

This section describes the sampling strategy and procedures (sample location, collection methods, and laboratory analyses) that will be used to evaluate potential impacts to soil and groundwater in the Phase II sampling areas. The data obtained will be used to assess the nature of impacts, if any, in the sampling areas, and whether further actions are needed. A summary of the number of soil and groundwater samples to be submitted for laboratory analyses and/or archiving, and the type of analyses to be performed on each sample is presented in Table 1.

2.1 SOIL SAMPLING

Soil sample locations, collection methods, depth intervals, and nomenclature are described below.

2.1.1 SOIL SAMPLE LOCATIONS

As described in Section 1.3, specific soil sampling areas have been identified based on the Phase I ESA (Landau Associates 2008). These sampling areas include the area of monitoring well I-104, the northern property boundary, and the area north of the former Slip 5 boundary (Figure 2). Soil samples will be collected from 15 locations as shown in Table 1. The sampling locations were selected to collect representative soil samples in each sampling area. The specific sample locations planned for each Phase II sampling area are shown on Figure 2. Each sampling location will be documented in the field by taped measurements from a known reference point or by using Global Positioning System (GPS) equipment and will be marked with spray paint.

2.1.2 SAMPLE COLLECTION METHODS

Soil samples will be collected from direct-push borings. The borings will be accomplished using a truck-mounted, direct-push rig. Soil samples will be obtained from the soil borings using a sampling device with a 48-inch long, 1.5-inch inside-diameter (ID) core sampler. The sampler will be advanced over the desired depth interval, thereby coring the soil inside the sampler's disposable, single-use liner. The sampler will then be withdrawn to retrieve the liner and soil sample. The liner will be cut to remove the soil sample. A new liner will be placed in the core sampler and this process will be repeated until all desired soil samples have been obtained.

After the liner has been cut, soil samples will be field-screened for evidence of contamination by visual inspection (e.g., stained soil, free product) and measuring volatile vapors using a photoionization detector (PID). After the field-screening has been completed, the lithology of the soil sample will be

recorded on the Log of Exploration form. Soil samples from each boring will be selected for laboratory analysis. The samples will be selected from the intervals that indicate the highest likelihood for potential contamination based on field-screening results [i.e., visual presence of potential contamination and/or a PID measurement greater than 50 parts per million (ppm)]. In order to evaluate the vertical extent of impact, multiple samples may be selected from some borings. If field-screening results do not indicate the potential presence of contamination, then samples will be collected for laboratory analysis from depths where contamination would be anticipated based on historical site use, as described in Section 2.1.3. This may include collecting samples from the interval directly above the shallow groundwater level, or from below the invert depths of tanks, trenches, and/or piping in the area of investigation. Soil samples will be collected using methodology consistent with Ecology and U.S. Environmental Protection Agency (EPA) methods. Soil samples for analysis of volatile organic compounds (VOCs) will be collected using EPA Method 5035A.

Before and between drilling of each boring and at the completion of the project, downhole drilling equipment will be cleaned using a high-pressure hot water or steam washer, as described in Section 2.6.

2.1.3 SAMPLE DEPTH INTERVALS

At each location, the soil borings will be advanced to a depth of approximately 16 ft below ground surface (BGS), based on the concern to be addressed and field observations, and as described as follows:

- Monitoring well I-104: Six direct-push borings will be advanced in the area of existing monitoring well I-104 where the highest concentrations of dissolved arsenic were detected in groundwater during the previous two sampling events. The borings will be advanced to approximately 2 ft below the top of the water table, which is anticipated to be at approximately 14 ft to 15 ft BGS in the area of well I-104. Three soil samples will be collected from each of the six locations. At each location, soil samples will be collected from the 0 ft to 5 ft BGS interval, from the 6 ft to 10 ft BGS interval, and from the 11 ft to 15 ft BGS interval.
- Northern Property Boundary: Five direct-push borings will be advanced along the northern boundary of the subject property, north of the former location of the stabilized soil mound, where the highest concentrations of arsenic were detected in soil during previous investigations (not including areas that were subsequently excavated and/or stabilized). These borings will also address potential impact from the Jorgensen Forge property located adjacent to the north of the subject property. The borings will be advanced to approximately 2 ft below the top of the water table, which is anticipated to be at approximately 12 to 15 ft BGS across the site. One soil sample will be collected from each of the five locations. If no indications of impact are observed during field screening, soil samples will be collected from the hydraulic fringe zone, from a 2-ft interval beginning approximately 1 ft above the top of the water table.

• North of Former Slip 5 Boundary: Four direct-push borings will be advanced along the northern boundary of the former location of Slip 5, in the area of possible Mineralized Cell Wood Preserving Company operations. The borings will be advanced to approximately 2 ft below the top of the water table, which is anticipated to be at approximately 12 to 15 ft BGS across the site. If no indications of impact are observed during field screening, soil samples will be collected from within the upper 4 ft to address surface releases.

2.1.4 SAMPLE NOMENCLATURE

Direct-push sample locations will be preceded with the prefix "IDP" (Isaacson Direct Push) and numerically sequenced starting with number 1. This information will be followed with the depth the sample was initiated (top of sample) and date of sampling (year/month/day format). As an example, if a soil sample is collected starting at a depth of 2 ft from soil boring IDP1 on February 5, 2009, the sample label would be as follows: IDP1-2'-090205.

2.2 GROUNDWATER SAMPLING

Groundwater sample locations and collection methods to be used during this investigation are described below.

2.2.1 SAMPLING LOCATIONS

At 10 of the sample locations, a shallow groundwater sample will also be collected from the direct-push borings. In addition, seven groundwater samples will be collected from existing monitoring wells and piezometers located on the subject property. The groundwater sampling locations are shown on Figure 2. Note that three of the monitoring wells and/or piezometers (PZ-6, PZ-7, and I-203) appear to be located on the Boeing Thompson property; however, these wells have been included in the proposed sampling due to their proximity to the subject property.

2.2.2 SAMPLE COLLECTION

Groundwater samples will be collected by using the direct-push rig to push a decontaminated, shielded, temporary well screen to the target depth. For this investigation and based on an anticipated depth to water of 12 ft to 15 ft BGS, the top of the well screen will be located at approximately 11 ft to 14 ft BGS. The temporary well screens will be 4 ft long, 1 inch outer diameter (OD), 0.010-inch slot size, and made of stainless steel. Once the well screen has been advanced to the target depth, the protective shield will be withdrawn exposing the screen, and groundwater will be extracted using disposable polyethylene tubing and a peristaltic pump. The target screen depth will be adjusted, as appropriate,

based on the depth to water encountered in the field. Groundwater samples may also be collected using temporary 1-inch diameter PVC piping, rather than stainless steel well screens.

If possible, groundwater will be purged from the well screen until turbidity is low and successive measurements of pH, temperature, and conductivity agree to within 10 percent. The field parameters will be measured throughout the purge cycle. Field parameter readings will be recorded on a Groundwater Sample Collection form approximately every casing volume until at least three casing volumes have been purged and, if feasible, the groundwater is relatively non-turbid. If the field parameter readings collected after the second and third casing volumes are within 10 percent, sample collection will commence. If not, additional casing volumes will be purged until successive field parameter readings agree to within 10 percent, or until 10 casing volumes have been purged. If sample turbidity remains high after purging, a notation will be placed on the chain-of-custody (COC) form instructing the laboratory to allow the sample to remain undisturbed for at least 24 hours prior to extracting the sample and to extract only the clear portion of the sample from the top of the container for chemical analysis other than VOCs.

The groundwater samples will be collected using dedicated tubing. Sample bottles will be filled to minimize headspace. To prevent degassing during groundwater sample collection for VOC analysis, a pumping rate below 100 milliliters per minute (mL/min) will be maintained. Groundwater for dissolved metals analyses will be collected last and field-filtered through a 0.45 micron, in-line disposable filter. A note will be made on the sample collection form and COC form to indicate the sample has been field-filtered.

Before beginning drilling, between drilling of each boring, and at completion of the project, all downhole drilling equipment and sampling equipment will be cleaned using a high-pressure hot water or steam washer, as described in Section 2.6.

Samples collected from existing monitoring wells and piezometers will be collected using dedicated polyethylene tubing and a peristaltic pump. Low-flow groundwater sampling methodologies will be used (EPA 1996²).

2.2.3 SAMPLE NOMENCLATURE

As with the soil samples, groundwater samples collected from direct-push sample locations will be preceded with the prefix "IDP" and numerically sequenced to correspond to the specific direct-push location. This information will be followed by "GW" (Groundwater) and the date of sampling (year/month/day format). As an example, if a groundwater sample is collected from direct-push location

² EPA. 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. EPA/540/S-95/504. U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response. Washington, D.C. April.

IDP1 on February 5, 2009, the sample label would be as follows: IDP1-GW-090205. Groundwater samples collected from existing monitoring wells will be labeled with the well number followed by the date (e.g., I-104-090128).

2.3 SAMPLE TRANSPORTATION AND HANDLING

The transportation and handling of samples will be accomplished in a manner that protects the integrity of the sample and also prevents release of hazardous substances from the samples. Samples will be kept in coolers on ice until delivery to the analytical laboratory. All samples will be logged on a COC form. The COC form will accompany each shipment of samples to the laboratory. Samples will be delivered to the laboratory within 24 hours of sample collection.

2.4 SAMPLE CUSTODY AND DOCUMENTATION

The primary objective of sample custody is to create an accurate, written record that can be used to trace the possession and handling of samples so that their quality and integrity can be maintained from collection until completion of all required analyses. Adequate sample custody will be achieved by means of approved field and analytical documentation. Such documentation includes the COC record that is initially completed by the sampler and is, thereafter, signed by those individuals who sequentially accept custody of the sample. A sample is in custody if at least one of the following is true:

- It is in someone's physical possession
- It is in someone's view
- It is secured in a locked container or otherwise sealed so that tampering will be evident
- It is kept in a secured area, restricted to authorized personnel only.

Sample control and COC protocols in the field and during transportation to the laboratory will be followed conducted in general conformance with the procedures described below:

- As few persons as possible will handle samples.
- Sample bottles will be obtained new or pre-cleaned from the laboratory performing the analyses.
- The sample collector will be personally responsible for the completion of the COC record and the care and custody of samples collected until the samples are transferred to another person or dispatched properly under COC protocols.
- The coolers in which the samples are shipped will be accompanied by the COC record identifying their contents. The original record and laboratory copy will accompany the

shipment (sealed inside the shipping container). The other copy will be forwarded to Landau Associates along with sample collection forms.

• Coolers will be sealed with strapping tape and custody seals for shipment to the laboratory. The method of shipment, name of courier, and other pertinent information will be entered in the "remarks" section of the COC record.

When samples are transferred, the individuals relinquishing and receiving the samples will sign the COC form and record the date and time of transfer. The sample collector will sign the form in the first signature space. Each person taking custody will observe whether the shipping container is correctly sealed and in the same condition as noted by the previous custodian; deviations will be noted in the appropriate section of the COC record.

A designated sample custodian at the laboratory will accept custody of the shipped samples, verify the integrity of the custody seals, and certify that the sample identification numbers match those on the COC record. The custodian will then enter sample identification number data into a bound logbook, which is arranged by a project code and station number. If containers arrive with broken custody seals, the laboratory will note this on the COC record and will immediately notify the sampler and Landau Associates.

All documentation and other project records will be safeguarded to prevent loss, damage, or alteration. If an error is made on a document, corrections will be made by drawing a single line through the error and entering the correct information. The erroneous information will not be obliterated. Corrections will be initialed and dated and, if necessary, a footnote explaining the correction will be included. Errors will be corrected by the person who made the entry, whenever possible.

2.5 LABORATORY ANALYSES

This section describes the laboratory analyses to be conducted on the soil and groundwater samples. Laboratory analyses will be performed by Analytical Resources, Inc. (ARI) located in Tukwila, Washington.

2.5.1 SOIL SAMPLES

Soil samples collected from the area of monitoring well I-104 will be analyzed for total arsenic using EPA Method 6010B. Soil samples collected from the westernmost boring in the area of well I-104 and the remaining locations will be analyzed for total petroleum hydrocarbons (TPH) using the hydrocarbon identification method (NWTPH-HCID), total metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc) using EPA Methods 6010B and 7471, and volatile organic compounds (VOCs) using EPA Method 8260B. Follow-up analysis for gasoline-range and/or diesel-range petroleum

hydrocarbons may be conducted based on the HCID results. Follow-up analysis for hexavalent chromium may be conducted based on the total chromium results.

In addition to the constituents of concern identified for the subject property, select soil samples will be analyzed for the constituents of concern identified by Ecology for EAA-6 sediments. Soil samples collected from direct-push soil borings where water samples are planned (see Figure 2) will be analyzed for PCBs using EPA Method 8082, and semivolatile organic compounds [SVOCs; including polycyclic aromatic hydrocarbons (PAHs) and phthalates] using EPA Method 8270. The sample selection may be adjusted based on field conditions and discussions with Boeing.

With the exception of samples collected in the area of monitoring well I-104, if multiple samples are collected from a select location, initially only the sample collected from the interval that indicates the highest likelihood for potential contamination based on field-screening results will undergo laboratory analysis. The additional samples will be archived at the laboratory. Analysis of the additional soil samples will be determined based on field observations (e.g., odor, sheen, and PID readings) and analytical results for the initial soil samples and groundwater samples. A summary of the laboratory analyses to be performed on each soil sample is presented in Table 1. Soil sample analytical methods for each analyte are specified in Table 2.

2.5.2 GROUNDWATER SAMPLES

In the area of well I-104, groundwater samples collected from the temporary well points will be analyzed for dissolved arsenic by EPA Method 200.8. At the remaining temporary well points, groundwater samples will be analyzed for TPH using the hydrocarbon identification method (NWTPH-HCID), dissolved metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc) by Methods 200.8, 6010B, and 7470A, and VOCs by Method 8260. Dissolved metals samples will be field-filtered by passing water through a 0.45-micron filter prior to filling the laboratory-supplied jars. Follow-up analysis for gasoline-range and/or diesel-range petroleum hydrocarbons may be conducted based on the HCID results. Follow-up analysis for hexavalent chromium may be conducted based on total chromium results. A summary of the laboratory analyses to be performed on each groundwater sample is presented in Table 1. Groundwater sample analytical methods for each analyte are specified in Table 2.

In addition to the constituents of concern identified for the subject property, groundwater samples collected from direct-push locations and the existing monitoring wells and piezometers will be analyzed for the constituents of concern identified by Ecology for EAA-6 sediments. Groundwater samples will be analyzed for PCBs using EPA Method 8082, SVOCs by EPA Method 8270, and carcinogenic PAHs (cPAHs) using EPA Method 8270-SIM. Groundwater samples collected from direct-push borings in the

area of monitoring well I-104 will not be analyzed for the EAA-6 parameters. The sample selection may be adjusted based on field conditions and discussions with Boeing.

2.6 EQUIPMENT DECONTAMINATION

The decontamination procedures described below are to be used by field personnel to clean drilling, sampling, and related field equipment. Any deviation from these procedures will be documented in field records.

2.6.1 SAMPLING EQUIPMENT

All sampling equipment (e.g., stainless steel bowls, stainless steel spoons, soil core samplers, etc.) will be cleaned using a three-step process, as follows:

- 1. Scrub surfaces of equipment that would be in contact with the sample with brushes using an Alconox solution.
- 2. Rinse and scrub equipment with clean tap water.
- 3. Rinse equipment a final time with de-ionized water to remove tap water impurities.

Decontamination of the reusable sampling equipment will occur between collection of each sample.

2.6.2 HEAVY EQUIPMENT

Heavy equipment (e.g., the drilling rig, downhole drilling equipment, and any material or equipment going down a hole) will be cleaned by a hot water, high-pressure wash before each use and at completion of the project. Potable tap water will be used as the cleaning agent.

2.7 BORING ABANDONMENT AND PAVEMENT PATCHING

Following soil and groundwater sampling, direct-push borings will be abandoned and pavement will be patched. The borehole will be abandoned by backfilling with bentonite chips to within approximately 1 ft of the surface. Paved areas will be patched with cold-patch asphalt or quick-set cement.

2.8 RESIDUAL WASTE MANAGEMENT

Soil cuttings generated during boring advancement will be temporarily stored on site in 55-gal drums or rolloff containers at a location selected by Boeing. Purge water generated during groundwater

sampling will be temporarily stored on site in 55-gal drums. Under the direction of Boeing, samples of the waste material will be collected for waste characterization purposes. The appropriate disposal methods will be identified in discussions with Boeing personnel based on the analytical results for the soil and groundwater samples. Boeing will handle profiling and waste disposal.

2.9 UTILITY LOCATE

Prior to initiation of the sampling activities, Landau Associates personnel will conduct a site reconnaissance with the Boeing facility contact to mark sampling locations, identify aboveground and belowground utilities, and discuss access issues. A private utility location professional will also participate in the site reconnaissance to aid in selection and clearing of sample locations. A public utility locate service will be contacted to locate underground utilities along East Marginal Way South to identify utilities that may service the site. The sampling locations will be adjusted as necessary based on access and utility considerations. The site reconnaissance and utility locate will be conducted at least one day prior to the scheduled drilling activities.

3.0 QUALITY ASSURANCE/QUALITY CONTROL

The soil analytical results must be accurate, precise, representative, complete, and comparable. Groundwater samples will rely on the same quality control parameters.

Accuracy of the data will be determined through recovery of spiked surrogates, matrix spikes, and spiked laboratory control samples. Control limits for spike recovery will be laboratory acceptance limits generated according to EPA guidelines. For each analysis of soil and groundwater samples, the following quality control samples will be collected to evaluate accuracy:

• **Laboratory Control Sample.** A minimum of one laboratory control sample per 20 samples, not including quality control samples, or one laboratory control sample per sample batch if fewer than 20 samples are obtained, will be analyzed for all parameters.

Other types of quality control samples that will be collected include the following field blanks:

- **Field trip blanks.** A water field trip blank will be provided by the laboratory with the sample containers and cooler, and will remain in the cooler throughout the sampling event and during sample transport to the laboratory. One trip blank per cooler containing samples for VOC analysis will be evaluated to determine possible sample contamination during transport.
- **Field duplicates.** A blind field duplicate will be collected at a frequency of at least one per 20 samples per chemical for groundwater. The blind field duplicate will consist of a split sample collected at a single sample location. Blind field duplicates will be collected by alternately filling sample containers for both the original and the corresponding duplicate sample at the same location to decrease variability between the duplicates. Blind field duplicate sample results will be used to evaluate data precision. No blind field duplicates will be submitted for soil.

Representativeness of the data will be optimized through appropriate selection of sampling locations and methods. Analyses will be performed within established holding times.

Completeness for the project will be established as the proportion of data generated that is determined to be valid. The data quality objective for completeness is 90 percent.

Comparability is an expression of the confidence with which one data set can be compared to another. For this project, standard methods, promulgated by EPA or Ecology where available, will be used. Data generated will be reported in units consistent with Ecology or EPA guidelines.

4.0 HEALTH AND SAFETY PLAN

A project health and safety plan for implementation of field activities described in this work plan is provided as Appendix A. All Landau Associates employees will follow the procedures described in this plan. Landau Associates subcontractors will either adopt this plan or prepare their own plan that is at least as protective as this plan.

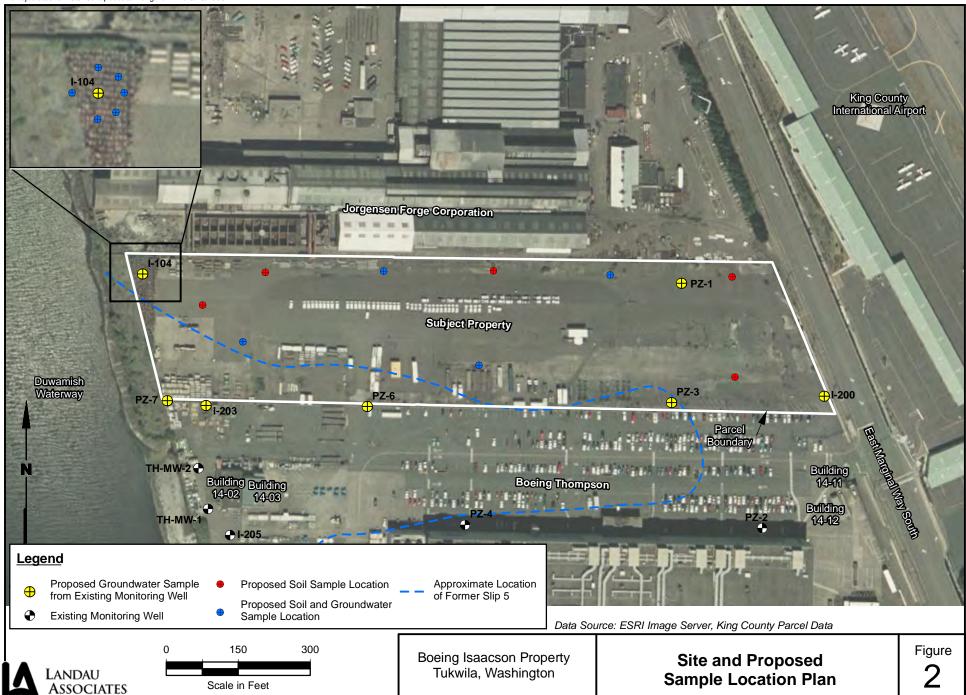
5.0 REPORTING

Analytical results will be validated for quality assurance purposes as described above. The results of the investigation, including a description of field activities, laboratory data, summary tables of the testing results, and a sample location figure will be presented in a report. The results will also be evaluated to assess the need for further investigative or cleanup actions, if appropriate. The results of the evaluation will be included in the report.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Kathryn F. Hartley


Project Scientist

Kristy J. Hendrickson, P.E.

Principal

KFH/KJH/ccy

TABLE 1 SAMPLING AND ANALYSIS PLAN BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

			No. of Samples		No. of Samples	
Area of Concern	Media	Sampling Approach	Soil	Analysis	Groundwater	Analysis
Existing monitoring well I-104 (hot spot	Soil / Groundwater	6 direct-push borings to approximately 2 ft below the top	15	Arsenic	6	Arsenic
arsenic investigation)	30117 Groundwater	of the water table; maximum depth is exptected to be approximately 16 ft BGS	3 (a)	PCBs, SVOCs, Metals		
Northern property boundary (limit of previous		5 direct-push borings to approximately 2 ft below the top of the water table; maximum depth is exptected to be approximately 16 ft BGS	3	TPH, Metals, VOCs		
soil stabilization project)	Soil / Groundwater		2 (b)	TPH, Metals, VOCs, PCBs, SVOCs	2	TPH, Metals, VOCs, PCBs, SVOCs, cPAHs
		4 direct-push borings to	2	TPH, Metals, VOCs		
North of Former Slip 5 (potential former location of Mineralized Cell Wood Preserving)	Soil / Groundwater	approximately 2 ft below the top of the water table; maximum depth is exptected to be approximately 16 ft BGS	2 (b)	TPH, Metals, VOCs, PCBs, SVOCs	2	TPH, Metals, VOCs, PCBs, SVOCs, cPAHs
Site Wide	Groundwater	Samples from existing wells and piezometers			7	TPH, Metals, VOCs, PCBs, SVOCs, cPAHs
Total number of samples collected			20		17	

Notes:

Metals include arsenic, cadmium, chromium, copper, lead, mercury, and zinc.

TPH = Total Petroleum Hydrocarbons. Initial analysis by the hydrocarbon identification (HCID) method.

Follow-up quantification for gasoline, diesel, or oil will be conducted, as appropriate, based on the HCID results.

VOCs = Volatile Organic Compounds; soil samples will be collected using the 5035 methodology.

PCBs = Polychlorinated Biphenyls

SVOCs = Semivolatile Organic Compounds

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

BGS = Below Ground Surface

- (a) These three soil samples will be collected from the westernmost direct-push boring in the area of monitoring well I-104.
- (b) These soil samples will be collected from direct-push borings where water samples are planned.

See Table 2 for specific analytical methods.

TABLE 2 ANALYTICAL METHODS BOEING ISAACSON PROPERTY TUKWILA, WASHINGTON

Analysis	Medium	Analytical Method
Metals	Soil	6010/7471
Metals	Water	200.8/6010B/7470A
VOCs	Soil	8260
VOCs	Water	8260
TPH	Soil	NWTPH-HCID
TPH	Water	NWTPH-HCID
PCBs	Soil	8082
PCBs	Water	8082
SVOCs	Soil	8270
SVOCs	Water	8270
cPAHs	Water	8270-SIM

Notes:

Metals include arsenic, cadmium, chromium, copper, lead, mercury, and zinc.

VOCs = Volatile Organic Compounds

TPH = Total Petroleum Hydrocarbons. Initial analysis by the hydrocarbon identification (HCID) method.

Follow-up quantification for gasoline, diesel, or oil will be conducted, as appropriate, based on the HCID results.

PCBs = Polychlorinated Biphenyls

SVOCs = Semivolatile Organic Compounds

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

Health and Safety Plan

WORK LOCATION PERSONNEL PROTECTION AND SAFETY EVALUATION FORM

Attach Pertinent Documents/Data Fill in Blanks As Appropriate

Job No.:	025173.090		
Prepared by:	Kathryn Hartley	Reviewed by:	Christine Kimmel
Date:	January 13, 2009	Date:	January 16, 2009

A. WORK LOCATION DESCRIPTION

1. Project Name: Phase II ESA, Boeing Isaacson Property

2. Location: East Marginal Way South, Tukwila, Washington

3. Anticipated Activities: Soil and groundwater sampling from 15 direct-push soil borings and

groundwater sampling from 7 existing monitoring wells.

A meander of the Duwamish River was formerly located on the project site.

stabilization process that reduced the leachability of the arsenic. The stabilized soil mound was removed from the subject property in 2008. The subject

4. Size: The site is approximately 9.84 acres.

5. Surrounding Population: Industrial

6. Buildings/Homes/Industry: Vacant asphalt capped land

7. Topography: Generally flat with a slight slope toward the west

8. Anticipated Weather: Mild; chance of rain

9. Unusual Features: None known

10. Site History:

The river was channelized in the late 1800s and early 1900s, which placed the river in its current location to the west of the site. Slip 5 of the Duwamish River remained on the site following the channelization until it was filled beginning in the 1930s. The site was developed with a steel melting, forging, and fabricating facility in the 1950s. The facility operated until the early 1980s when the property was purchased by Boeing. Boeing used the existing structures for storage for a short period of time before demolishing all structures in approximately 1990. A mound was created on the site as part of remedial actions to address arsenic-impacted soil at the site. Soil within the mound contained elevated levels of arsenic and was treated in 1991 using a

property is currently undeveloped and is paved.

B. HAZARD DESCRIPTION Complete Partial 1. **Background Review:** If partial, why? ПВ \Box C \boxtimes D **Hazardous Level:** Unknown 2. **Justification:** Precaution. 3. **Types of Hazards:** (Attach additional sheets as necessary) | Inhalation Explosive A. Ingestion O2 Def. Biological Skin Contact Describe: Exposure to chemical hazards from arsenic. Nitrile gloves will be worn. Respirators will be kept on site and will be worn if necessary (as described below). B. Physical Cold Stress ☐ Noise Heat Stress ⊠ Other Describe: Eye contact with drill rig operators or other signaling methods will be used near operating equipment. Reflective vests will be worn. C. Radiation Describe: 4. **Nature of Hazards:** X Air <u>Describe</u>: Exposure to metals, volatile organic compounds (VOCs), and petroleum hydrocarbons is possible. Breathing zone vapors will be analyzed with a photoionization detector (PID). Soil Soil <u>Describe</u>: Exposure to metals, polychlorinated biphenyls (PCBs), VOCs, and petroleum hydrocarbons in the soil is possible. Nitrile gloves will be worn when handling soil and equipment. Conduct screening with PID and visual indication for impacted soil conditions. Surface Water Describe: N/A ☐ Groundwater Describe: Exposure to metals, VOCs, and petroleum hydrocarbons in the groundwater is possible. Nitrile gloves will be worn while sampling groundwater and handling equipment. Safety glasses will be worn during sampling in the event of splashing. Other Describe:

5. Chemical Contaminants of Concern N/A

Contaminant	PEL	I.D.L.H.	Source/Quantity Characteristics	Route of Exposure	Symptoms of Acute Exposure	Instruments Used to Monitor Contaminant
Benzene	1 ppm	5 ppm	Soil and groundwater at unknown concentrations	Inhalation, ingestion, absorption, and skin or eye contact.	Irritated eyes, skin, nose, and respiratory system; giddiness; headache; nausea; staggered gait; dermatitis; fatigue; anorexia; lassitude; bone marrow depressant (carcinogenic)	PID meter
Toluene	100 ppm	150 ppm	Soil and groundwater at unknown concentrations	Inhalation, ingestion, percutaneous absorption, and skin & eye contact.	Headache, dizziness, drowsiness, coordination problems, and coma	PID meter
Xylene	100 ppm	150 ppm	Soil and groundwater at unknown concentrations	Inhalation, ingestion, percutaneous absorption, and skin & eye contact.	Nervous system depression, liver and kidney damage	PID meter
Ethylbenzene	100 ppm	125 ppm	Soil and groundwater at unknown concentrations	Inhalation, ingestion, percutaneous absorption, and skin & eye contact.	Nervous system depression, headaches, dizziness, nausea, convulsions, and coma	PID meter
Gasoline	300 ppm	500 ppm	Soil and groundwater at unknown concentrations	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, mucous membrane; dermatitis; headache; lassitude; blurred vision; dizziness; slurred speech; confusion; convulsions; chemical pneumonitis (aspiration liquid); possible liver, kidney damage; (potential occupational carcinogen)	PID meter

Contaminant	PEL	I.D.L.H.	Source/Quantity Characteristics	Route of Exposure	Symptoms of Acute Exposure	Instruments Used to Monitor Contaminant
Copper	1 mg/m ³	100 mg/m ³	Soil and groundwater at unknown concentrations	Inhalation, skin or eye contact, ingestion	Irritated eyes, respiratory system; cough dysprea; wheezing	Visual (Dust)
Arsenic	0.5 mg/m^3	5.0 mg/m ³	Present at moderate/high levels area-wide in soil. TCLP for stockpiled soil less than 5 mg/L.	Inhalation, eye contact, dermal contact	Skin and mucous membrane irritation; respiration irritation (potential occupational carcinogen)	Visual (Dust)
Mercury	0.05 mg/m ³	$\frac{10}{\text{mg/m}^3}$	Present	Inhalation eye contact, dermal contact	Irritated eyes, skin; cough; chest pains	Visual (Dust)
Lead	0.05 mg/m^3	$\frac{100}{\text{mg/m}^3}$	Present	Inhalation, ingestion, dermal contact	Weakness, lassitude, facial pallor, kidney disease	Visual (Dust)
PCBs	$0.001 \\ mg/m^3$	5 mg/m ³	Compressor oil, soil, and groundwater at unknown concentrations	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritated eyes; chloracne; liver damage; reproductive effects	Visual

Notes:

6. Physical Hazards of Concern N/A

Hazard	Location	Procedures Used to Monitor Hazard
Moving parts of drill rig, falling and flying objects	Near drill rig	Alert observation of surroundings; minimize time spent near drill rig; no loose clothing; use of safety glasses, hard hat, and steel-toed boots.
Vehicles and heavy equipment used at the site	Any area	Alert observation of surroundings, use of brightly colored safety vest. Make eye contact with operator prior to entering work zone.
Slips, trips, and falls	Any area	Alert observation of surroundings. Clean housekeeping work practices.

Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:

C. PERSONAL PROTECTIVE EQUIPMENT

l.	Level of Protection	
	□ A□ B□ C⊠ D	
	<u>Location/Activity:</u> Soil and groundwater sam	ple collection
	□ A□ B⊠ C□ D	
	<u>Location/Activity</u> . If action levels are met or e	exceeded
2.	Protective Equipment (specify probable qu	nantity required)
	Respirator N/A	Clothing N/A
	SCBA, Airline	☐ Fully Encapsulating Suit
	☐ Full-Face Respirator	☐ Chemically Resistant Splash Suit
	Half-Face Respirator (Particulate cart. organic vapor) (Only if upgrade to Level C per Attachment A)	Apron, Specify:
	Escape mask	Tyvek Coverall (Only if upgrade to Level C)
	None	Saranex Coverall
	Other:	Coverall, Specify
	Other: Ear plugs	Other:
	Head & Eye ☐ N/A ☐ Hard Hat	Hand Protection ☐ N/A ☐ Undergloves; Type: nitrile
	☐ Goggles	Gloves; Type:
	Face Shield	Overgloves; Type:
		None
	Other:	Other:
	Foot Protection N/A	
	☐ Neoprene Safety Boots with Steel Toe/Sh	nank
	☐ Disposable Overboots	
	Other: Steel-toed boots	

3.	Monitoring Equipment \[\subseteq \ N/A	
	☐ CGI	⊠ PID
	\square O ² Meter	☐ FID
	☐ Rad Survey	
	☐ Detector Tubes (optional)	
	<u>Type</u> :	
D. P	ERSONAL DECONTAMINATION	
	Required	☐ Not Required
	onnel should decontaminate by washing with so Disposable PPE will be discarded as solid wast	ap and water prior to eating and departing from the e.
I	EQUIPMENT DECONTAMINATION	
	Required	☐ Not Required
	If required, describe:	
All sa	ampling equipment will be decontaminated usir	ng wet decontamination procedures:
	Wash and scrub equipment with Alconor	x/tap water solution.
	• Rinse with tap water.	
	• Rinse with de-ionized water.	

Down-the-hole equipment will be decontaminated using a hot-water, high-pressure steam cleaner.

• Repeat entire procedure or any parts of the procedure as necessary.

In addition to the wet decontamination procedures, other measures will be taken to prevent cross-contamination. These measures include changing out disposable gloves between each sampling location, using fresh paper towels at each sample location, and maintaining a clean work area.

E. PERSONNEL Medical Fit Test **Work Location Title/Task** Current Name Current Kris Hendrickson 1. **Project Manager** \boxtimes \boxtimes 2. **Kathryn Hartley Project Scientist/Task Manager** 3. **Christine Kimmel Health and Safety Officer** \boxtimes \boxtimes 4. **Elizabeth Poole** Senior Staff Scientist/Field \boxtimes \bowtie Personnel 5. 6. 7. 8. 9. 10.

Site Safety Coordinator: Elizabeth Poole

F. ACTIVITIES COVERED UNDER THIS PLAN

Task No.	Description	Preliminary Schedule
1	Soil and groundwater sampling	February 2009

G. SUBCONTRACTOR'S HEALTH AND SAFETY PROGRAM EVALUATION N/A					
Name and Address of Subcontractor:	Cascade Drilling P.O. Box 1184 Woodinville, WA 98072 (425) 485-8908 EVALUATIO	ON CRITERIA	A		
Item	Adequate	Inadequate	Comments		
Medical Surveillance Program	\boxtimes				
Personal Protective Equipment Availability					
Onsite Monitoring Equipment Availability					
Safe Working Procedures Specification					
Training Protocols	\boxtimes				
Ancillary Support Procedures (if any)	\boxtimes				
Emergency Procedures	\boxtimes				
Evacuation Procedures Contingency Plan	\boxtimes				
Decontamination Procedures Equipment	\boxtimes				
Decontamination Procedures Personnel					
GENERAL HEALTH AND SAFETY PROGRAM EVALUATION: Adequate Inadequate					
Additional Comments: Review based on previous experience with contractor, review of contractor health and safety plan, and terms of Basic Agreement with Landau Associates					
Evaluation Conducted By: Christine Kimmel Date: October 24, 2008					

EMERGENCY FACILITIES AND NUMBERS

Hospital: Harborview Medical Center

325 Ninth Avenue Seattle, WA

Telephone: (206) 744-3000

Boeing Onsite Clinic and Medical Technicians:

(206) 655-2222 (Emergency Dispatch) 2-2222 from a plant phone

Have site name (Isaacson Site), building number, column number, and door number available.

Directions:

Maneu	vers	Distance
START	1: Start out going SOUTHEAST on E MARGINAL WAY S toward S 96TH PL.	0.7 miles
(2: Turn SLIGHT RIGHT.	<0.1 miles
•	3: Turn LEFT onto S BOEING ACCESS RD.	0.4 miles
THE STATE OF THE S	4: Merge onto I-5 N toward SEATTLE.	6.4 miles
164A EXIT	5: Take the DEARBORN ST. / JAMES ST. exit- EXIT 164A- toward MADISON ST.	1.0 miles
EXIT	6: Take the JAMES ST exit.	0.2 miles
(7: Turn RIGHT onto JAMES ST.	0.1 miles
\Rightarrow	8: Turn RIGHT onto 9TH AVE.	0.1 miles
END	9: End at 325 9th Ave Seattle, WA 98104-2420, US	
Total E	st. Time: 13 minutes Total Est. Distance: 9.34 miles	

Emergency Transportation Systems (Fire, Police, Ambulance) – 911

Emergency Routes – Map (Attachment B)

Emergency Contacts:

	Mobile	Office	
Kathryn Hartley	(425) 248-7520	425-778-0907	
Chris Kimmel	(206) 786-3801	425-778-0907	

In the event of an emergency, do the following:

- 1. Call for help as soon as possible. Call Boeing Emergency Dispatch (206-655-2222) then call 911. Give the following information:
 - WHERE the emergency is use cross streets or landmarks
 - PHONE NUMBER you are calling from
 - WHAT HAPPENED type of injury
 - WHAT is being done for the victim(s)
 - YOU HANG UP LAST let the person you called hang up first.
- 2. If the victim can be moved, paramedics will transport to the hospital. If the injury or exposure is not life threatening, decontaminate the individual first. If decontamination is not feasible, wrap the individual in a blanket or sheet of plastic prior to transport.

HEALTH AND SAFETY PLAN APPROVAL/SIGN OFF FORMAT

I have read, understood, and agreed with the information set forth in this Health and Safety Plan (and attachments) and discussed in the Personnel Health and Safety briefing.

Name	Signature	Date
Name	Signature	Date
Name	Signature	Date
Name	Signature	Date
<u></u>	Signature	Date 7
Elizabeth Poole	> Walson, Roxa	1/16/09
Site Safety Coordinator	Signature	Date
Chris Kimmel	Chustne Kernel	1/16/09
Landau Health and Safety Manager	Signature	Date'
Kris Hendrickson	Lasty & Gendricker	1/16/09
Project Manager	Signature	/ Date
Personnel Health and Safety Briefing 6	Conducted By:	
Name	Signature	Date

ATTACHMENT A

ACTION LEVELS FOR RESPIRATORY PROTECTION

Monitoring Parameter	Reading	Level of Protection
VOCs	>10 ppm and <20 ppm	Upgrade to level C half-face respirator
VOCs	>20 ppm and <100 ppm	Upgrade to level C, temporarily shutdown operations until ambient conditions reduce
VOCs	>100 ppm	Stop work, contact H&S Manager

ATTACHMENT B MAP TO HOSPITAL

Soil Boring Logs

Soil Classification System

USCS

MAJOR GRAPHIC LETTER DIVISIONS SYMBOL SYMBOL

TYPICAL DESCRIPTIONS (2)(3)

	DIVISIONS		STWIDGES	INDOL	DESCRIPTIONS
1.00	GRAVEL AND	CLEAN GRAVEL	00000	GW	Well-graded gravel; gravel/sand mixture(s); little or no fines
SOIL erial is e size	GRAVELLY SOIL	(Little or no fines)	00000	GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines
	(More than 50% of coarse fraction retained	GRAVEL WITH FINES		GM	Silty gravel; gravel/sand/silt mixture(s)
GRAINED 50% of mat No. 200 siev	on No. 4 sieve)	(Appreciable amount of fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
-GRA 1 50% No. 21	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
SSE thar than	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
COARSE-((More than larger than h	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of		SM	Silty sand; sand/silt mixture(s)
$O = \overline{a}$	through No. 4 sieve)	fines)		SC	Clayey sand; sand/clay mixture(s)
J E	SII T AI	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
SOIL % of er than size)				CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay
-GRAINED SOIL fore than 50% of rrial is smaller than . 200 sieve size)	(Liquid limit	less than 50)		OL	Organic silt; organic, silty clay of low plasticity
RAI e tha	SII T AI	ND CLAY		МН	Inorganic silt; micaceous or diatomaceous fine sand
INE-GRA (More th material is No. 200 s				СН	Inorganic clay of high plasticity; fat clay
FINE (No	(Liquid limit g	greater than 50)		ОН	Organic clay of medium to high plasticity; organic silt
	HIGHLY OF	RGANIC SOIL		PT	Peat; humus; swamp soil with high organic content

GRAPHIC LETTER SYMBOL SYMBOL

BOL TYPICAL DESCRIPTIONS

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement
ROCK	RK	Rock (See Rock Classification)
WOOD	WD	Wood, lumber, wood chips
DEBRIS	6/6/6/ DB	Construction debris, garbage

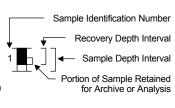
- Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
 - Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
 - 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

Primary Constituent: > 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc. Secondary Constituents: > 30% and $\leq 50\%$ - "very gravelly," "very sandy," "very silty," etc. > 15% and $\leq 30\%$ - "gravelly," "sandy," "silty," etc. Additional Constituents: > 5% and $\leq 15\%$ - "with gravel," "with sand," "with silt," etc.

≤ 5% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted.

4. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating conditions, field tests, and laboratory tests, as appropriate.

Drilling and Sampling Key SAMPLER TYPE SAMPLE NL


SAMPLE NUMBER & INTERVAL

Code Description

3.25-inch O.D., 2.42-inch I.D. Split Spoon

OTHER MATERIALS

- b 2.00-inch O.D., 1.50-inch I.D. Split Spoon
- c Shelby Tube
- d Grab Sample
- e Single-Tube Core Barrel
- f Double-Tube Core Barrel
- g 2.50-inch O.D., 2.00-inch I.D. WSDOT
- h 3.00-inch O.D., 2.375-inch I.D. Mod. California
- i Other See text if applicable
- 1 300-lb Hammer, 30-inch Drop
- 2 140-lb Hammer, 30-inch Drop
- 3 Pushed
- 4 Vibrocore (Rotosonic/Geoprobe)
- 5 Other See text if applicable

Field and Lab Test Data

Code	Description
PP = 1.0	Pocket Penetrometer, tsf
TV = 0.5	Torvane, tsf
PID = 100	Photoionization Detector VOC screening, ppm
W = 10	Moisture Content, %
D = 120	Dry Density, pcf
-200 = 60	Material smaller than No. 200 sieve, %
GS	Grain Size - See separate figure for data
AL	Atterberg Limits - See separate figure for data
GT	Other Geotechnical Testing
CA	Chemical Analysis

Groundwater

Approximate water level at time of drilling (ATD)
Approximate water level at time other than ATD

Boeing Isaacson Property Tukwila, Washington

Soil Classification System and Key

IDP-1/IDP-1A **SAMPLE DATA SOIL PROFILE GROUNDWATER** $Drilling \ Method: \underline{ \ Geoprobe^{TM} }$ Sample Number & Interval Graphic Symbol **USCS Symbol** Sampler Type Water Level Blows/Foot PID (ppm) Ground Elevation (ft): Drilled By: Cascade Drilling Inc AC Concrete SP Brown, fine to medium SAND with trace silt and gravel (medium dense, damp) (no odor, no sheen) [Fill] d3 -Crushed rock layer 0.25 ft thick CA 1.0 Brown, silty fine to medium SAND (medium SM dense, moist) (no odor, no sheen) d3 - 8 -Crushed rock layer 0.5 ft thick CA 0.9 10 $\sqrt{}$ ATD SP/ SM Gray, fine to medium SAND with silt 25173.09 3/31/09 NEDMDATA\GINT\GINT7\PROJECTS\025173.090.GPJ SOIL BORING LOG -12 (medium dense, wet) (no odor, no sheen) [Native] d3 CA 8.0 Boring Completed 02/02/09 Total Depth of Boring = 15.0 ft. 18 ----__20 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.

Boeing Isaacson Property Tukwila, Washington

Log of Boring IDP-1/IDP-1A

Figure **P** 2

SAMPLE DATA					SOIL PROFILE	GROUNDWATER		
o Depth (ft)	Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe™ Ground Elevation (ft): Drilled By:Cascade Drilling Inc.	Water Level
U					2:0:2:	AC GW	Asphalt Crushed gravel material	
·2		d3			0 0	SP	Brown, fine to coarse SAND with some silt and fine gravel (medium dense, damp) (no odor, no sheen) [Fill] -Lens of crushed rock and slag material	
4	CA			0.8		SM	Brown mottled silty fine SAND (medium dense, moist) (no order, no sheen) [Native]	
-6 -8 -10	CA	d3		0.8				
- 12 - 14	CA	d3		0.8		SP	Gray, fine to medium SAND with some silt (medium dense, moist to wet) (no odor, no sheen)	
16	1	Borii Total De	ng Comepth of	npleted 02/ Boring = 1	/02/09 5.0 ft.			
18	Notes:	2. Re	ference	to the tex	ct of this	report i	n field interpretations and are approximate. s necessary for a proper understanding of subsurface condi and Key" figure for explanation of graphics and symbols.	tions.

Log of Boring IDP-2

Figure R_3

SAMPLE DATA				SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type Blows/Foot	PID (ppm)	Graphic Symbol		Water Level
	13		A(S)		
CA		0.7	SI	(medium dense, damp to moist) (no odor, no sheen) [Fill]	
	13		M	Gray to dark gray, sandy, SILT (medium dense, moist to wet) (organic odor, no sheen) [Fill] -Sandy layer 0.5 ft thick - Wood debris at 7 and 9 ft	
CA]		0.8			
CA]	13	0.8		-Coarse gravel lens -Becomes brown mottled	∑ ATD
14			SI		
E 16 Tota	Boring Cor I Depth of	npleted 02/ Boring = 1	702/09 5.0 ft.		
18					
0					

Log of Boring IDP-3

Figure 1

SAMPLE DATA					SOIL PROFILE	GROUNDWATER	
Sample Number	& interval Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
J				0.0	AC	Asphalt	
2	d3				GW SP	Crushed gravel material Brown, gravelly, fine to coarse SAND (medium dense, damp) (no odor, no sheen) [Fill] -Layer of crushed rock at 3 ft	
4 CA -			0.7		SM	Brown mottled, silty, fine to medium SAND (medium dense, moist) (no odor, no sheen) [Native] -Becomes gray at 5 ft	
B CA	d3		0.7			-Wood debris at 7 and 9 ft	
10 – CA	- 		0.7			-Sandy layer at 10 ft	
12	d3		6.1		SP	Gray, fine to medium SAND with trace silt (medium dense, wet) (no odor, no sheen)	☑ atd
	Bori Total D	ng Com epth of	npleted 02/ Boring = 1	/02/09 5.0 ft.			
18							

Log of Boring IDP-4

Figure R_5

SAMPLE DATA					SOIL PROFILE	GROUNDWATER		
	& Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
CA		d3		0.7		AC SP	Asphalt Brown, gravelly, fine to medium SAND (medium dense, damp) (no odor, no sheen) [Fill] -Lens of crushed rock at 3 ft	
- -		d3		0.7		SP/ SM SM	-Lens of crushed rock at 5 ft Gray, fine to medium SAND with silt (medium dense, damp) (no odor, no sheen) [Native] -Brown mottled, silty, fine to medium SAND (medium dense, damp) (no odor, no sheen)	-
CA CA				0.7				
		d3						∑ ATD
5	To	Borir otal De	ng Com pth of I	pleted 02/ Boring = 1	02/09 5.0 ft.			
3								
) Not	es:	1. Stra	atigraph	nic contac	ts are b	ased or	n field interpretations and are approximate. s necessary for a proper understanding of subsurface condi	

IDP-6/IDP-6A **SAMPLE DATA SOIL PROFILE GROUNDWATER** $Drilling\ Method: \underline{\quad Geoprobe}^{\text{\tiny TM}}$ Sample Number & Interval Graphic Symbol **USCS Symbol** Sampler Type Water Level Blows/Foot PID (ppm) Ground Elevation (ft): Drilled By: Cascade Drilling Inc AC Asphalt GW Crushed gravel material Gray, gravelly, fine to coarse SAND with trace silt (medium dense, damp) (no odor, SP no sheen) [Fill] -Crushed rock layer at 1.5 ft d3 -Crushed rock lens at 2.5 ft 0.2 CA SM Brown mottled, silty, fine to medium SAND CA 0.7 (medium dense, damp to wet) (no odor, no sheen) [Native] d3 -8 CA 0.7 10 - Increase in sand content 25173.09 3/31/09 NEDMDATA\GINT\GINT7\PROJECTS\025173.090.GPJ SOIL BORING LOG 12 CA d3 0.7 ∇ atd Boring Completed 02/02/09 Total Depth of Boring = 15.0 ft. 18 E E E E __20 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.

Boeing Isaacson Property Tukwila, Washington

Log of Boring IDP-6/IDP-6A

Figure

	Ά	SOIL PROFILE	GROUNDWATER
Sample Number & Interval Sampler Type Blows/Foot	PID (ppm) Graphic Symbol USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
d3	O.O	Brown, fine to coarse SAND with silt and	
d3	0.0 SN	dense, moist) (no odor, no sheen) [Native]	
	ML	-Wood debris at 7 ft	
0 d3	0.0		
2 d3	0.1 SM	Gray, clayey, SILT with sand (soft, wet) (no odor, no sheen)	∑ ATD
6 Boring Co Total Depth o	mpleted 02/03/09 f Boring = 16.0 ft.		

Log of Boring IDP-7

Figure R_8

AC Asphalt SP Brown, fine to coarse SAND with silt and gravel (medium dense, damp) (no odor, no sheen) [Fill] -Layer of crushed rock at 2 ft -Increase in silt content SM Gray, silty, fine to medium SAND (medium dense, moist) (no odor, no sheen) [Native] -Silt layer at 6 ft -Organic matter at 7 ft -Sand layer at 7.5 ft -Increase in silt with depth	SAI	MPLE	DATA	١.			SOIL PROFILE	GROUNDWATER
SP Brown, fine to coarse SAND with silt and gravel (medium dense, damp) (no odor, no sheen) SP Brown, fine to coarse SAND with silt and gravel (medium dense, damp) (no odor, no sheen) Layer of crushed rock at 2 ft -Increase in silt content SM Gray, silty, fine to medium SAND (medium dense, moist) (no odor, no sheen) [Native] SM SP Brown, fine to coarse SAND with silt and gravel (medium sand) (medium dense, damp) (no odor, no sheen) SM Gray, silty, fine to medium SAND with silt (medium dense, wet) (no odor, no sheen)	Sample Number	& Interval Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol		Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
Gray, fine to medium SAND with silt (medium dense, wet) (no odor, no sheen)	CA -	d3		0.0		SP	Brown, fine to coarse SAND with silt and gravel (medium dense, damp) (no odor, no sheen) [Fill] -Layer of crushed rock at 2 ft -Increase in silt content Gray, silty, fine to medium SAND (medium dense, moist) (no odor, no sheen) [Native] -Silt layer at 6 ft -Organic matter at 7 ft - Sand layer at 7.5 ft	<u>V</u> ATD
6 - [Native]							Gray, fine to medium SAND with silt (medium dense, wet) (no odor, no sheen) [Native]	

Log of Boring IDP-8

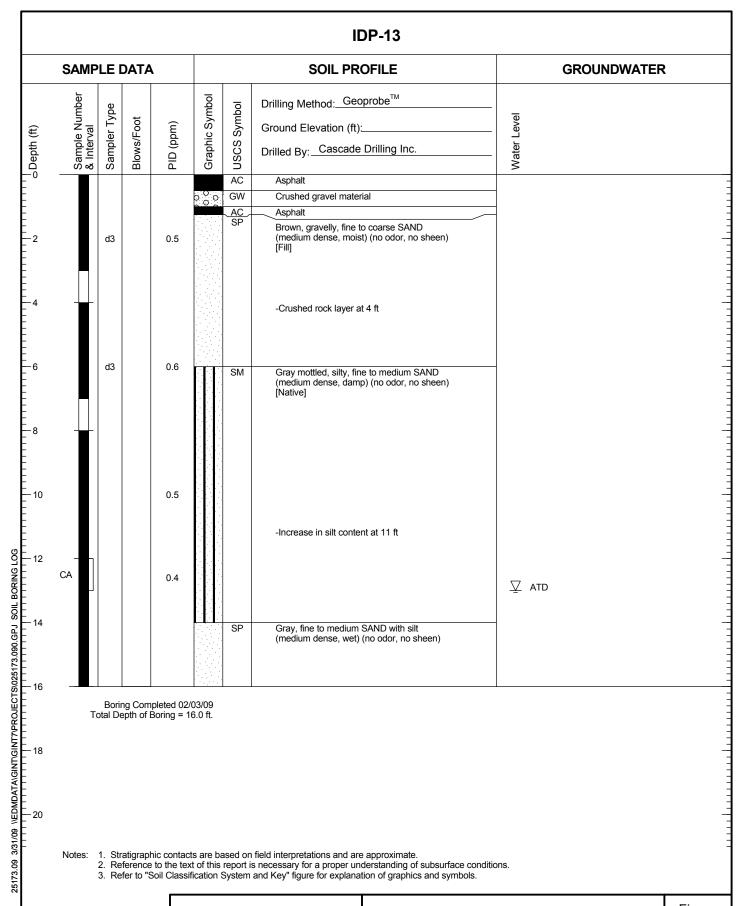
SAM	PLE I	LE DATA			SOIL PROFILE GROU					
Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe [™] Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level			
CA -	d3		0.0		AC SP	Aphalt Brown, fine to coarse SAND with gravel and trace silt (medium dense, damp) (no odor, no sheen) [Fill] -Crushed rock at 2 ft -Decrease in gravel content, increase in silt and fine sand				
	d3		0.1		SP/ SM	Brown, fine to medium SAND with silt (medium dense, damp) (no odor, no sheen)				
10	d3		0.1		SM	Brown mottled, silty, fine SAND (medium dense, moist to wet) (no odor, no sheen) [Native]				
14	d3		0.3							

Log of Boring IDP-9

SAI	/IPLE	DATA	١		SOIL PROFILE GROUNDY						
Depth (ft)	& Interval Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level				
2 CA	_ d3		0.2		AC SP	Asphalt Brown, fine to coarse SAND with gravel and trace silt (medium dense, damp) (no odor, no sheen) [Fill]					
-6	d3		0.2			-Decrease in gravel					
- 8 –	d3		0.3			-Crushed rock layer at 8.5 ft -Decrease in silt content					
- 12 -	- d3		0.3		SM	Brown mottled, silty, fine to medium SAND (medium dense, wet) (no odor, no sheen) [Native] -Becomes gray					

Log of Boring IDP-10

SAM	PLE	DATA	L			SOIL PROFILE	GROUNDWATER
Sample Number	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
CA -	d3		0.2	0 0 0	GW SP	Asphalt Crushed gravel material Brown, fine to medium SAND with trace silt (medium dense, damp) (no odor, no sheen) [Fill]	
6	d3		0.2			-Increase in silt and moisture content	
10	d3		0.3				∑ ATD
14	d3		0.3			-Decrease in silt content	



Log of Boring IDP-11

SAME	PLE I	DATA			SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft): Drilled By: Cascade Drilling Inc.	Water Level
-1-	d3		0.3	AC GO GW SM	Asphalt Crushed gravel material Brown, fine to medium SAND with silt (medium dense, damp to wet) (no odor, no sheen) [Fill]	
; ;	d3		0.4		-Crushed rock lens at 6 ft -Crushed rock lens at 8 ft	
10	d3		0.5		Crushed real loss at 10 ft	
CA CA	d3		0.6	SM	-Crushed rock lens at 12 ft Brown mottled, silty, fine to medium SAND (medium dense, wet) (no odor, no sheen) [Native]	

Log of Boring IDP-12

Log of Boring IDP-13

SAMI	PLE I	DATA	\			SOIL PROFILE	GROUNDWATER
		USCS Symbol	Drilling Method:_Geoprobe™ Ground Elevation (ft): Drilled By:_Cascade Drilling Inc.	Water Level			
2	d3		0.2	6001	AC GW SP/ SM	Asphalt Crushed gravel material Gray, fine to medium SAND with silt (medium dense, damp to moist) (no odor, no sheen) [Fill]	
i – –	d3		0.2		SM	Gray, silty, fine to medium SAND (medium dense, moist to wet) (no odor, no sheen) [Native] -Organic matter at 5.5 ft	
8	d3					-Wood debris at 8 ft -Increase in silt content at 9 ft	
CA 12			0.4			-Silt layer at 11 ft -Increase in sand content	
14	d3		0.5				<u>√</u> AID

Log of Boring IDP-14

SAMI	PLE I	DATA				SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type	Blows/Foot	PID (ppm)	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft): Drilled By:Cascade Drilling Inc.	Water Level
2	d3		0.3		AC SP	Asphalt Brown, gravelly, fine to coarse SAND with trace silt (medium dense, damp) (no odor, no sheen) [Fill] -Crushed rock at 3 ft	
4 – – 6 8 – –	d3		0.4		SM	Gray, fine to medium SAND with silt (medium dense, damp) (no odor, no sheen) [Native] -Becomes dark gray with increased silt content at 5.5 ft -Wood debris at 7 ft	
-10	d3		0.5			-Becomes light gray with increased silt content at 9 ft	
-12 CA			0.5				∑ ATD
14	d3				SP	-Increase in sand content	

Laboratory Analytical Reports (on CD-ROM)

Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Isaacson – Phase 2 025173.090

ARI Job: OK85

Dear Kathryn:

Enclosed, please find the original and revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted ten water samples, eighteen soil samples and trip blank in good condition on February 2, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM cPAHs, PCBs, NWTPH-HCID, and Total and Dissolved Metals, as requested on the COC.

Several LCS and LCSD percent recoveries were outside of the control limits both low and high for the soil and water SVOC analyses. No further corrective action was taken.

The SIM cPAHs method blank surrogate MNP is out of control low. The surrogate MNP is not associated with the cPAHs and no further corrective action was taken as all other QC is in control.

The total metals method blank contained zinc. All associated sample zinc concentrations were greater then five times the concentration found in the method blank and no further corrective action was taken.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bøttem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/co

Enclosures

Seattle (Edmonds) (425) 778 ☐ Tacoma (253) 926-2493	3-0907		7/2/29
LANDAU Spokane (509) 327-9737 ASSOCIATES Portland (Tigard) (503) 443-60	010		Date 701
Associates [Chain-of-Cu	stody Record	Pageof
Project Name Boeing Book 690 F	Project No. 075173, 090	Testing Para	ameters Turnaround Time
Project Location/Event Tukwika Mas			Standard
Sampler's Name Elitabeth Role	Mark Benner		☐ Accelerated
Project Contact KANNYN HOVEL	/ VA 1.3 Attack decays		
Send Results To Kharbur K Hannel	son A Hollerman M		# / / / /
0'	No. of $\Lambda \mathcal{O}/\Lambda$	TO STATE	
2-7 202	me Matrix Containers		/ Observations/Comments
I-104-090C0Z 1 115			Allow water samples to settle, collect
PZ-1-090207 14	30	×××××	aliquot from clear portion
	50 V + XX	×××× k	NWTPH-Dx: ✓ run acid wash/silica gel cleanup
5P 5050PO-4-1-90I	5 5 1		run samples standardized to
IDP-1A-9-090000 95		×.	product
IDP-14-14-090000 100		X	Analyze for EPH if no specific
	35	X	product identified
	45		VOC/BTEX/VPH (soll):non-preserved
TDP-2-11-090002 100	25	×	preserved w/methanol
TDP-3-4-090coz 112			preserved w/sodium bisulfate
	30		Freese upon receipt
	35 70		Dissolved metal water samples field filtered
IDP-4-81-090202 17		<u> </u>	oper Notato: As Cadium
51 505010-11-6-94T			U, W, tb, Hg, cine
IDP-5-4-090202 13			
IDP-5-8-090707- 1 135			
Special Shipment/Handling or Storage Requirements			Method of Shipment
Refinquished by Beceiv	/ed _v by ₁	Relinquished by	Received by
Skonature Signatur	m fayes	Signature	·
	Land Albert Co	Ü	Signature
Printed Name Printed	Name (Printed Name	Printed Name
Company Company Company	ny , and a second second second second second second second second second second second second second second se	Company	Company
Date Z	12/08 Time 1635	Date Time	Date Time

•	Seattle (Edmond	6-2493							77 lag
LANDAU ASSOCIATES	☐ Spokane (509) 32☐ Portland (Tigard)☐		Chair	of Cu	ıotodı	v Doo	ء ما		Date 2/2/09 Page 2 of 2
				-of-Cu	<u>istoa</u>	y Kec	ora		
TDP: 6.8'00 TDP: 6.8'00 TDP-1A-GW TDP-3-GW	Tulmila Poole Poole	I Phase I I Brunns Y Hending	Matrix Cont	o. of ainers	75 y y y y y y y y y y y y y y y y y y y	Te	sting Pa	rameters	Turnaround Time Standard Accelerated Accelerated Allow water samples to settle, collect aliquot from clear portion NWTPH-Dx: run acid wash/silica gel cleanup run samples standardized to product Analyze for EPH if no specific product identified VOC/BTEX/VPH (soll): non-preserved preserved w/methanol preserved w/sodium bisulfate Freese upon receipt Dissolved metal water samples field filtered Other
Special Shipment/Ha	ndling		L					Method	Lof
or Storage Requirem	ents							Shipme	
Relinguished by		Received by	Hayes		Relinqui	shed by			Received by
	ΩI_{α}	Signature	1/1/		Signature				Signature

WHITE COPY - Project File

1625

Company

Date

YELLOW COPY - Laboratory

1628

Printed Name

Company

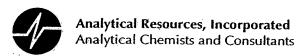
Date

PINK COPY - Client Representative

Time

Signature

Company


Date

Printed Name

Time

Seattle (Edmonds) ☐ Tacoma (253) 926-2 ☐ Spokane (509) 327-9	493	en en en en en en en en en en en en en e			Date 2/2/09
LANDAU Spokane (509) 327-3 ASSOCIATES: Portland (Tigard) (50	03) 443-6010	الأجراب الساسط	er i e		Page of 3
	C	hain-of-Cu	stody Rec	ord	Vin Statement and the statemen
Project Name Booking Books	Project No.	35173.090	Te	esting Parameter	Total and the same
Project Location/Event TUCWIA	Mar W_		16/11		Standard Accelerated
Sampler's Name CUTAOUN 10	de Hove b	MUNICK MA		*\T&/ /\$# .	
Project Contact KANNYN HOVE	du Katie	Lewis 1191		i√\$6 /\$€ /	ff
Send Results To R HOVELIN, K W	Mincheon A	Holoson M		7.117 / 1 1/ / .	1/201/10/09
Sample I.D. Date	Time Matr	No. of XXX			Observations/Comments
12-7-09020c proc	Proceedings of Michigan Agency, and Philipping				Allow water samples to settle, collect
1-104-090C0Z	1130	1 2 ×	XXXX		all quot from clear portion
505070-1-57	1430	N X X	*XXXX		NWTPH-Dx:
I-1044-090505	1950 V	* * *	\times \times \times \times \times		K run acid wash/silica gel cleanup
IDP-1-4-070C02	925 S			X	run samples standardized toproduct
IDP-1A-9-090000	950 1			*	
1DP-14-1901	1000			$ \mathbf{x} $	Analyze for EPH if no specific product identified
IDS-2-31 040005	1035			X	
TDX-2-8: 0100C	11042			×	VOC/BTEX/VPH (soil):non-preserved
IPP-S-11-090005	1,055			X	preserved w/methanol
(1PP-3-4-990coz)	1/125				preserved w/sodlum bisulfate Preese upon receipt
1D7-3-8-040205	1130				
IDP-3-11-090202	1135				Dissolved metal water samples field filtered
20 0000 1	1270			\times	Other Natrup: As Cadjum
2050PO-18-P-90II	17730				1 1 1 1 1 19, 79, 2WE
	1235				
108-5-4-090202 1 108-5-8-090202 1	1350	 		X	22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Special Shipment/Handling or Storage Requirements				Methi Shipi	
Belinquished by	Received by Jan	1 U S	Relinquished by	n y na taonaigh a tha an an an an an an an an an an an an an	Received by
Signature 7/1/2014 Son Co	Signature 1	L. in	Signature	c.	Signature
Printed Name	Printed Name	May =	Printed Name		Printed Name
Company _1-169.7	Gompany Gompany		Company		Company
Date 279 11625	Date 2/2/08	Time <u> 1035</u>	Date	Time	DateTime

Seattle (Edmonds)		added a py k	- 1 L
☐ Tacoma (253) 926-24 ☐ Spokane (509) 327-3		Va18101	Date 47,09
ASSOCIATES Portland (Tigard) (50			Page Z of Z
ASSOCIATES	——— Chain-of-Ci	stody Record	
72	A C A C A C A C A C A C A C A C A C A C	/ Testing Parameters	
Project Name Boring Israesa	Project No. OCO APP 070		Turnaround Time Sistandard
Project Location/Event Turnila	PhoseII		Accelerated
Sampler's Name & Rools M	Brunnine , mile		
12 37 19	Koffe Lewis M	[[] [] [] [] [] [] [] [] [] [
Project Contact	varranti varra il 1994 / / / / /		
Send Results To K HOW Y	- Hendrickson, A Hillway		/sk states (Comments
Sample I.D. Date	No. of Time Matrix Containers	43/3/43 [[] [] [Observations/Comments
1005 11.09020 Z 102021			Allow water samples to settle, collect
1DQ 6.21.090C02	(435) 1 ×		aliquot from clear portion
5050PO'8' 0) 901	150 6 K		NWTPH-Dx;
1 5050 PO \$1.0.907	1905 4 K.	XXX	run acid wash/silica gel cleanup
102-117-CM D10595	1014 M >101		run samples standardized to product
DR-Z-GW CHOOSE			Analyze for EPH if no specific
1083-GW-090002	111370		product identified
LDS. d. P.M. Odacos	1370 X		VOC/BTEX/VPH (soil):
TDP-5-GW-090002	[¥30] X		non-preserved
TCD-9-601-9-02-02			preserved w/methanol
恪			preserved w/sodium bisulfate Freese upon receipt
			Dissolved metal water samples field filtered
			Cossolved frietal water samples field intered
			Other # Metals = As, Cal, Cr, 2/3/6/ Ca, 86, Hg, Zn, Ke
<u> </u>			
<u> </u>	- V -		
Special Shipment/Handling	a a salata a sa ana anta da salata a ana anta anta a salata a salata a salata a salata a salata a salata a salata	Method Shipmer	
or Storage Requirements		Relinquished by	Received by
Relinguished by So	Received by Hayes	CONTROL OF THE STREET OF THE S	and constitution and an exercise of the second seco
Stizubakh Porla	Signature s in	Signature	Signature
Printed Name 0	Printed Name	Printed Name	Printed Name
Jamolan	Printed Name Company	Company	Company
Company Compan	T 17 43.0 %		
Date Time 100	Date 2/2/09 Time 1628	Date Time	Date Time

Cooler Receipt Form

ARI Client: BOXING ISACCSON COC No: Assigned ARI Job No:	Project Name: Delivered by: Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody s Were custody papers included with the cooler? Were custody papers properly filled out (ink, signe Record cooler temperature (recommended 2.0-6. Cooler Accepted by: Complete custody forms	YES NO YES NO O °C for chemistry 7.4 (1, 2) °C
Log-In Phase:	
	ES NO ES NO Apers? All Selection (attach preservation checklist) NA NO ES NO NA NO NA NO
Explain discrepancies or negative responses: Coc reads I Trip Blank, found in cooler. Pluised COC Si	but 2 Trip Blanks were
	Bu MIM Bu 2-3-00

Sample ID: PZ-7-090202 SAMPLE

Lab Sample ID: OK85A LIMS ID: 09-3269

QC Report No: OK85-The Boeing Company

Matrix: Water

Project: BOEING ISAACSON 025173.090

Data Release Authorized: Reported: 02/10/09

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 15:08 Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Dilution Factor: 1.00

108-95-2	CAS Number	Analyte	RL	Result
95-57-8 2-Chlorophenol 1.0 < 1.0	108-95-2	Phenol	1.0	< 1.0 U
541-73-1 1,3-Dichlorobenzene 1.0 < 1.0	111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
106-46-7	95-57-8	2-Chlorophenol	1.0	< 1.0 U
100-51-6 Benzyl Alcohol 5.0 < 5.0 U 95-50-1 1,2-Dichlorobenzene 1.0 < 1.0 U 1.0 U	541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
95-50-1 1,2-Dichlorobenzene 1.0	106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
95-48-7	100-51-6	Benzyl Alcohol	5.0	< 5.0 U
108-60-1 2,2'-Oxybis(1-Chloropropane) 1.0 < 1.0	95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
106-44-5 4-Methylphenol 1.0 < 1.0	95-48-7		1.0	< 1.0 U
106-44-5 4-Methylphenol 1.0 < 1.0	108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
67-72-1 Hexachloroethane 1.0 < 1.0	106-44-5		1.0	< 1.0 U
98-95-3 Nitrobenzene 1.0 < 1.0	621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
78-59-1 Isophorone 1.0 < 1.0	67-72-1	Hexachloroethane	1.0	< 1.0 U
88-75-5 2-Nitrophenol 5.0 < 5.0	98-95-3	Nitrobenzene	1.0	< 1.0 U
105-67-9 2,4-Dimethylphenol 1.0 < 1.0	78-59-1	Isophorone	1.0	< 1.0 U
65-85-0 Benzoic Acid 10 < 10 U	88-75-5	2-Nitrophenol	5.0	< 5.0 U
111-91-1 bis(2-Chloroethoxy) Methane 1.0 < 1.0	105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
120-83-2 2,4-Dichlorophenol 5.0 < 5.0	65-85-0	Benzoic Acid	10	< 10 U
120-82-1 1,2,4-Trichlorobenzene 1.0 < 1.0	111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
91-20-3 Naphthalene 1.0 < 1.0	120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
106-47-8 4-Chloroaniline 5.0 < 5.0	120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
87-68-3 Hexachlorobutadiene 1.0 < 1.0 U	91-20-3	Naphthalene	1.0	< 1.0 U
59-50-7 4-Chloro-3-methylphenol 5.0 < 5.0 U	106-47-8	4-Chloroaniline	5.0	< 5.0 U
91-57-6 2-Methylnaphthalene 1.0 < 1.0 U	87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
77-47-4 Hexachlorocyclopentadiene 5.0 < 5.0 U	59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
88-06-2 2,4,6-Trichlorophenol 5.0 < 5.0	91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
95-95-4 2,4,5-Trichlorophenol 5.0 < 5.0	77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
95-95-4 2,4,5-Trichlorophenol 5.0 < 5.0	88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
88-74-4 2-Nitroaniline 5.0 < 5.0	95-95-4		5.0	< 5.0 U
131-11-3 Dimethylphthalate 1.0 < 1.0 U	91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
208-96-8 Acenaphthylene 1.0 < 1.0 U	88-74-4		5.0	< 5.0 U
99-09-2 3-Nitroaniline 5.0 < 5.0 U	131-11-3	Dimethylphthalate	1.0	< 1.0 U
83-32-9 Acenaphthene 1.0 < 1.0 U	208-96-8	Acenaphthylene	1.0	< 1.0 U
51-28-5 2,4-Dinitrophenol 10 < 10 U	99-09-2		5.0	< 5.0 Ŭ
100-02-7 4-Nitrophenol 5.0 < 5.0 U	83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9 Dibenzofuran 1.0 < 1.0 U	51-28-5	2,4-Dinitrophenol	10	< 10 U
606-20-2 2,6-Dinitrotoluene 5.0 < 5.0	100-02-7	4-Nitrophenol	5.0	< 5.0 U
121-14-2 2,4-Dinitrotoluene 5.0 < 5.0 U	132-64-9	Dibenzofuran	1.0	< 1.0 U
	606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
84-66-2 Diethylphthalate 1.0 < 1.0 U	121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
	84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-7-090202

SAMPLE

Lab Sample ID: OK85A

LIMS ID: 09-3269 Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 15:08

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	70.8%	2-Fluorobiphenyl	72.4%
d14-p-Terphenyl	84.4%	d4-1,2-Dichlorobenzene	67.2%
d5-Phenol	37.9%	2-Fluorophenol	51.7%
2 4 6-Tribromonhenol	74.7%	d4-2-Chlorophenol	72.3%

Page 1 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Date Extracted: 02/04/09

Date Analyzed: 02/06/09 15:43

Instrument/Analyst: NT4/LJR

Reported: 02/10/09

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
04-00-2	preculationarace	1.0	< 1.0 O

Page 2 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3270

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02,	/06/09	15:43
--------------------	--------	-------

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	68.4%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	75.2%	d4-1,2-Dichlorobenzene	62.8%
d5-Phenol 2,4,6-Tribromophenol	35.7%	2-Fluorophenol	49.9%
	76.5%	d4-2-Chlorophenol	68.5%

Page 1 of 2

Lab Sample ID: OK85C

LIMS ID: 09-3271 Matrix: Water

Data Release Authorized:

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:17 Instrument/Analyst: NT4/LJR

Sample ID: PZ-1-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3271

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 16:17

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	70.0%	2-Fluorobiphenyl	73.6%
d14-p-Terphenyl	87.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	37.1%	2-Fluorophenol	51.2%
2,4,6-Tribromophenol	80.5%	d4-2-Chlorophenol	72.0%

Page 1 of 2

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: /

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:52 Instrument/Analyst: NT4/LJR

Sample ID: I-1044-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95 - 3	Nitrobenzene	1.0	< 1.0 U
78-59 - 1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
1 31-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
	· · · · · · · · · · · · · · · · · · ·		

Page 2 of 2

Matrix: Water

Sample ID: I-1044-090202

SAMPLE

Lab Sample ID: OK85D QC Report No: OK85-The Boeing Company LIMS ID: 09-3272

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 16:52

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
1 1 7-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	76.8%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	35.7%	2-Fluorophenol	49.3%
2.4.6-Tribromophenol	73.1%	d4-2-Chlorophenol	67 7%

Sample ID: MB-020409 METHOD BLANK

Lab Sample ID: MB-020409

LIMS ID: 09-3269

Matrix: Water Data Release Authorized:

Date Extracted: 02/04/09

Date Analyzed: 02/06/09 12:51

Instrument/Analyst: NT4/LJR

Reported: 02/10/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

Date Sampled: NA

Date Received: NA

QC Report No: OK85-The Boeing Company

025173.090

Project: BOEING ISAACSON

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U.
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-020409

METHOD BLANK

Lab Sample ID: MB-020409

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3269

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 12:51

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	69.2% 88.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	71.2% 69.6%
d5-Phenol	41.9%	2-Fluorophenol	56.0%
2,4,6-Tribromophenol	73.6%	d4-2-Chlorophenol	73.3%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON Matrix: Water

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-020409	69.2%	71.2%	88.8%	69.6%	41.9%	56.0%	73.6%	73.3%	0
LCS-020409	70.8%	71.2%	83.6%	74.0%	42.9%	58.9%	75.2%	77.6%	0
LCSD-020409	73.6%	74.8%	86.0%	75.2%	43.5%	60.0%	80.0%	79.5%	0
PZ-7-090202	70.8%	72.4%	84.4%	67.2%	37.9%	51.7%	74.7%	72.3%	0
I-104-090202	68.4%	70.0%	75.2%	62.8%	35.7%	49.9%	76.5%	68.5%	0
PZ-1-090202	70.0%	73.6%	87.2%	65.6%	37.1%	51.2%	80.5%	72.0%	0
I-1044-090202	66.0%	68.0%	76.8%	62.0%	35.7%	49.3%	73.1%	67.7%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
(TPH)	=	d14-p-Terphenyl	(48-120)	(46-119)
(DCB)	=	d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C Log Number Range: 09-3269 to 09-3272

Data Release Authorized://

Page 1 of 2

Matrix: Water

Reported: 02/10/09

Sample ID: LCS-020409 LCS/LCSD

Lab Sample ID: LCS-020409 QC Report No: OK85-The Boeing Company LIMS ID: 09-3269

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/04/09 Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 02/06/09 13:25 LCSD: 02/06/09 14:00 LCSD: 0.50 mL

Instrument/Analyst LCS: NT4/LJR Dilution Factor LCS: 1.00 LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	10.4	25.0	41.6%	10.8	25.0	43.2%	3.8%
Bis-(2-Chloroethyl) Ether	20.3	25.0	81.2%	21.6	25.0	86.4%	6.2%
2-Chlorophenol	20.0	25.0	80.0%	21.0	25.0	84.0%	4.9%
1,3-Dichlorobenzene	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
1,4-Dichlorobenzene	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
Benzyl Alcohol	26.8	50.0	53.6%	28.7	50.0	57.4%	6.8%
1,2-Dichlorobenzene	20.0	25.0	80.0%	21.5	25.0	86.0%	7.2%
2-Methylphenol	19.5	25.0	78.0%	20.7	25.0	82.8%	6.0%
2,2'-Oxybis(1-Chloropropane)16.5	25.0	66.0%	17.4	25.0	69.6%	5.3%
4-Methylphenol	38.6	50.0	77.2%	40.9	50.0	81.8%	5.8%
N-Nitroso-Di-N-Propylamine	19.4	25.0	77.6%	20.4	25.0	81.6%	5.0%
Hexachloroethane	19.7	25.0	78.8%	20.9	25.0	83.6%	5.9%
Nitrobenzene	18.6	25.0	74.4%	20.1	25.0	80.4%	7.8%
Isophorone	20.6	25.0	82.4%	22.1	25.0	88.4%	7.0%
2-Nitrophenol	19.7	25.0	78.8%	21.6	25.0	86.4%	9.2%
2,4-Dimethylphenol	17.6	25.0	70.4%	18.8	25.0	75.2%	6.6%
Benzoic Acid	30.9	75.0	41.2%	33.9	75.0	45.2%	9.3%
bis(2-Chloroethoxy) Methane		25.0	80.0%	21.9	25.0	87.6%	9.1%
2,4-Dichlorophenol	20.2	25.0	80.8%	22.0	25.0	88.0%	8.5%
1,2,4-Trichlorobenzene	18.8	25.0	75.2%	20.3	25.0	81.2%	7.7%
Naphthalene	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
4-Chloroaniline	3.8	60.0	6.3%	4.2	60.0	7.0%	10.6%
Hexachlorobutadiene	18.9	25.0	75.6%	20.3	25.0	81.2%	7.1%
4-Chloro-3-methylphenol	20.3	25.0	81.2%	21.8	25.0	87.2%	7.1%
2-Methylnaphthalene	19.8	25.0	79.2%	21.2	25.0	84.8%	6.8%
Hexachlorocyclopentadiene	78.8	75.0	105%	84.3	75.0	112%	6.7%
2,4,6-Trichlorophenol	20.2	25.0	80.8%	21.6	25.0	86.4%	6.7%
2,4,5-Trichlorophenol	20.4	25.0	81.6%	21.0	25.0	84.0%	2.9%
2-Chloronaphthalene	20.4	25.0	81.6%	21.8	25.0	87.2%	6.6%
2-Nitroaniline	19.3	25.0	77.2%	20.6	25.0	82.4%	6.5%
Dimethylphthalate	21.0	25.0	84.0%	22.5	25.0	90.0%	6.9%
Acenaphthylene	20.9	25.0	83.6%	22.6	25.0	90.4%	7.8%
3-Nitroaniline	40.3	64.0	63.0%	42.7	64.0	66.7%	5.8%
Acenaphthene	20.3	25.0	81.2%	21.9	25.0	87.6%	7.6%
2,4-Dinitrophenol	64.5	75.0	86.0%	71.5	75.0	95.3%	10.3%
4-Nitrophenol	10.6	25.0	42.4%	11.5	25.0	46.0%	8.1%
Dibenzofuran	20.5	25.0	82.0%	22.0	25.0	88.0%	7.1%
2,6-Dinitrotoluene	20.6	25.0	82.4%	21.5	25.0	86.0%	4.3%
2,4-Dinitrotoluene	20.4	25.0	81.6%	21.9	25.0	87.6%	7.1%
Diethylphthalate	21.0	25.0	84.0%	22.3	25.0	89.2%	6.0%
4-Chlorophenyl-phenylether	19.9	25.0	79.6%	21.3	25.0	85.2%	6.8%
Fluorene	21.1	25.0	84.4%	22.4	25.0	89.6%	6.0%
4-Nitroaniline	19.1	25.0	76.4%	20.6	25.0	82.4%	7.6%
4,6-Dinitro-2-Methylphenol	67.0	75.0	89.3%	72.6	75.0	96.8%	7.0% 8.0%
N-Nitrosodiphenylamine	21.3	25.0	85.2%	22.8	25.0	96.85 91.28	6.8%

Page 2 of 2

Sample ID: LCS-020409

LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269

Matrix: Water

Date Analyzed: 02/06/09 13:25

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

3	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	псэ	Added-1C5	Recovery	1000	nadea lebb	necovery	
4-Bromophenyl-phenylether	20.4	25.0	81.6%	21.6	25.0	86.4%	5.7%
Hexachlorobenzene	21.0	25.0	84.0%	22.4	25.0	89.6%	6.5%
Pentachlorophenol	20.8	25.0	83.2%	21.6	25.0	86.4%	3.8%
Phenanthrene	21.8	28.0	77.9%	23.2	28.0	82.9%	6.2%
Carbazole	21.6	25.0	86.4%	23.2	25.0	92.8%	7.1%
Anthracene	21.7	25.0	86.8%	22.9	25.0	91.6%	5.4%
Di-n-Butylphthalate	21.6	25.0	86.4%	23.1	25.0	92.4%	6.7%
Fluoranthene	20.3	25.0	81.2%	21.8	25.0	87.2%	7.1%
Pyrene	24.9	25.0	99.6%	25.7	25.0	103%	3.2%
Butylbenzylphthalate	23.3	25.0	93.2%	25.2	25.0	101%	7.8%
3,3'-Dichlorobenzidine	53.5	64.0	83.6%	59.1	64.0	92.3%	9.9%
Benzo(a)anthracene	21.7	25.0	86.8%	23.0	25.0	92.0%	5.8%
bis(2-Ethylhexyl)phthalate	21.8	25.0	87.2%	23.4	25.0	93.6%	7.1%
Chrysene	21.9	28.0	78.2%	23.6	28.0	84.3%	7.5%
Di-n-Octyl phthalate	21.2	25.0	84.8%	23.2	25.0	92.8%	9.0%
Benzo(b)fluoranthene	20.8	25.0	83.2%	21.4	25.0	85.6%	2.8%
Benzo(k)fluoranthene	22.0	28.0	78.6%	24.2	28.0	86.4%	9.5%
Benzo(a)pyrene	18.7	25.0	74.8%	20.1	25.0	80.4%	7.2%
Indeno(1,2,3-cd)pyrene	27.8	25.0	111%	29.5	25.0	118%	5.9%
Dibenz(a,h)anthracene	27.5	25.0	110%	29.3	25.0	117%	6.3%
Benzo(q,h,i)perylene	27.5	25.0	110%	29.0	25.0	116%	5.3%
1-Methylnaphthalene	21.1	25.0	84.4%	22.8	25.0	91.2%	7.7%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	70.8%	73.6%
2-Fluorobiphenyl	71.2%	74.8%
d14-p-Terphenyl	83.6%	86.0%
d4-1,2-Dichlorobenzene	74.0%	75.2%
d5-Phenol	42.9%	43.5%
2-Fluorophenol	58.9%	60.0%
2,4,6-Tribromophenol	75.2%	80.0%
d4-2-Chlorophenol	77.6%	79.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: OK85AB

LIMS ID: 09-3296 Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/06/09 19:41 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-6-8'-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 8.18 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.0%

	CAS Number	Analyte	RL	Result
	108-95-2	Phenol	61	< 61 U
	111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
	95-57-8	2-Chlorophenol	61	< 61 U
	541-73-1	1,3-Dichlorobenzene	61	< 61 U
	106-46-7	1,4-Dichlorobenzene	61	< 61 U
	100-51-6	Benzyl Alcohol	61	< 61 U
	95-50-1	1,2-Dichlorobenzene	61	< 61 U
	95-48-7	2-Methylphenol	61	< 61 U
	108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
	106-44-5	4-Methylphenol	61	< 61 U
	621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
	67-72-1	Hexachloroethane	61	< 61 U
	98-95-3	Nitrobenzene	61	< 61 Ū
	78-59-1	Isophorone	61	< 61 U
	88-75-5	2-Nitrophenol	61	< 61 U
	105-67-9	2,4-Dimethylphenol	61	< 61 U
	65-85-0	Benzoic Acid	610	< 610 U
	111-91- 1	bis(2-Chloroethoxy) Methane	61	< 61 U
	120-83-2	2,4-Dichlorophenol	310	< 310 U
	120-82-1	1,2,4-Trichlorobenzene	61	< 61 U
	91-20-3	Naphthalene	61	< 61 U
	106-47-8	4-Chloroaniline	310	< 310 U
	87-68-3	Hexachlorobutadiene	61	< 61 U
	59-50-7	4-Chloro-3-methylphenol	310	< 310 U
	91-57-6	2-Methylnaphthalene	61	< 61 U
	77-47-4	Hexachlorocyclopentadiene	310	< 310 U
	88-06-2	2,4,6-Trichlorophenol	310	< 310 U
	95-95-4	2,4,5-Trichlorophenol	310	< 310 U
	91-58-7	2-Chloronaphthalene	61	< 61 U
	88-74-4	2-Nitroaniline	310	< 310 U
	131-11-3	Dimethylphthalate	61	< 61 U
	208-96-8	Acenaphthylene	61	< 61 U
	99-09-2	3-Nitroaniline	310	< 310 U
	83-32-9	Acenaphthene	61	< 61 U
	51-28-5	2,4-Dinitrophenol	610	< 610 U
	100-02-7	4-Nitrophenol	310	< 310 U
	132-64-9	Dibenzofuran	61	< 61 U
	606-20-2	2,6-Dinitrotoluene	310	< 310 U
-	121-14-2	2,4-Dinitrotoluene	310	< 310 U

ANALYTICAL RESOURCES \ INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-8'-090202

SAMPLE

Lab Sample ID: OK85AB

LIMS ID: 09-3296 Matrix: Soil

Date Analyzed: 02/06/09 19:41

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U
			- 52 0

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	72.0%
d14-p-Terphenyl	81.6%	d4-1,2-Dichlorobenzene	88.4%
d5-Phenol	62.4%	2-Fluorophenol	69.3%
2,4,6-Tribromophenol	93.6%	d4-2-Chlorophenol	74.4%

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized: WW

Reported: 02/11/09

025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/05/09 Date Analyzed: 02/06/09 20:16 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample Amount: 7.66 g-dry-wt

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	< 65 U
111-44-4	Bis-(2-Chloroethyl) Ether	65	< 65 U
95-57-8	2-Chlorophenol	65	< 65 U
541-73-1	1,3-Dichlorobenzene	65	< 65 U
106-46-7	1,4-Dichlorobenzene	65	< 65 U
100-51-6	Benzyl Alcohol	65	< 65 U
95-50-1	1,2-Dichlorobenzene	65	< 65 U
95-48-7	2-Methylphenol	65	< 65 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	< 65 U
106-44-5	4-Methylphenol	65	< 65 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	65	< 65 U
98-95-3	Nitrobenzene	65	< 65 U
78-59-1	Isophorone	65	< 65 U
88-75-5	2-Nitrophenol	65	< 65 U
105-67-9	2,4-Dimethylphenol	65	< 65 U
65-85-0	Benzoic Acid	650	< 650 U
111-91-1	bis(2-Chloroethoxy) Methane	65	< 65 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	65	< 65 U
91-20-3	Naphthalene	65	< 65 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	65	< 65 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	65	< 65 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	65	< 65 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	65	< 65 U
208-96-8	Acenaphthylene	65	< 65 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	65	< 65 U
51-28-5	2,4-Dinitrophenol	650	< 650 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	65	< 65 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U
	· · · · · · · · · · · · · · · · · · ·	330	/ 220 O

ANALYTICAL RESOURCES \ INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 20:16

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	< 65 Ŭ
7005-72-3	4-Chlorophenyl-phenylether	65	< 65 Ü
86-73-7	Fluorene	65	< 65 Ŭ
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	650	< 650 U
86-30-6	N-Nitrosodiphenylamine	65	< 65 U
101-55-3	4-Bromophenyl-phenylether	65	< 65 U
118-74-1	Hexachlorobenzene	65	< 65 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	65	< 65 U
86-74-8	Carbazole	65	< 65 Ü
120-12-7	Anthracene	65	< 65 U
84-74-2	Di-n-Butylphthalate	65	< 65 U
206-44-0	Fluoranthene	65	< 65 U
129-00-0	Pyrene	65	< 65 U
85-68-7	Butylbenzylphthalate	65	< 65 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	65	< 65 U
117-81-7	bis(2-Ethylhexyl)phthalate	65	< 65 U
218-01-9	Chrysene	65 65	< 65 U
117-84-0	Di-n-Octyl phthalate	65	< 65 U
205-99-2	Benzo(b) fluoranthene	65	< 65 U
207-08-9	Benzo(k)fluoranthene	65	
50-32-8	Benzo(a) pyrene	65	< 65 U
193-39-5	Indeno(1,2,3-cd)pyrene	65	< 65 U
53-70-3	Dibenz(a,h)anthracene		< 65 Ŭ
191-24-2	Benzo(g,h,i)perylene	65 65	< 65 Ŭ
90-12-0	1-Methylnaphthalene	65 65	< 65 Ŭ
	o\ maphicharene	65	< 65 Ŭ

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	76.4%	2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	78.0%	d4-1,2-Dichlorobenzene	
d5-Phenol	55.7%	_	86.8%
2,4,6-Tribromophenol		2-Fluorophenol	67.2%
2,1,0 111DIOMODITETIOI	88.8%	d4-2-Chlorophenol	72.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: IDP-6-12'-090202 MATRIX SPIKE

Lab Sample ID: OK85AC

Date Extracted: 02/05/09

LIMS ID: 09-3297 Matrix: Soil

GPC Cleanup: No

Data Release Authorized:

Date Analyzed: 02/06/09 20:50

Instrument/Analyst: NT6/LJR

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 7.71 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	
111-44-4	Bis-(2-Chloroethyl) Ether	65	
95-57-8	2-Chlorophenol	65	-
541-73-1	1,3-Dichlorobenzene	65	
106-46-7	1,4-Dichlorobenzene	65	
100-51-6	Benzyl Alcohol	65	
95-50 -1	1,2-Dichlorobenzene	65	
95-48-7	2-Methylphenol	65	
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	
106-44-5	4-Methylphenol	65	
621 - 64-7	N-Nitroso-Di-N-Propylamine	320	
67-72-1	Hexachloroethane	65	
98-95-3	Nitrobenzene	65	
78-59-1	Isophorone	65	
88-75-5	2-Nitrophenol	65	
105-67-9	2,4-Dimethylphenol	65	
65-85-0	Benzoic Acid	650	
111-91-1	bis(2-Chloroethoxy) Methane	65	
120-83-2	2,4-Dichlorophenol	320	
120-82-1	1,2,4-Trichlorobenzene	65	
91-20-3	Naphthalene	65	
106-47-8	4-Chloroaniline	320	
87-68 - 3	Hexachlorobutadiene	65	
59-50-7	4-Chloro-3-methylphenol	320	
91-57-6	2-Methylnaphthalene	65	
77-47-4	Hexachlorocyclopentadiene	320	
38-06-2	2,4,6-Trichlorophenol	320	
95-95-4	2,4,5-Trichlorophenol	320	
91-58-7	2-Chloronaphthalene	65	
38-74 - 4	2-Nitroaniline	320	
L31-11-3	Dimethylphthalate	65	
208-96-8	Acenaphthylene	65	
99-09-2	3-Nitroaniline	320	
33-32-9	Acenaphthene		
51-28-5	2,4-Dinitrophenol	65 65	
L00-02-7	4-Nitrophenol	650	
L32-64-9	Dibenzofuran	320	
506-20-2	2,6-Dinitrotoluene	65	
L21-14-2		320	
77T-74-7	2,4-Dinitrotoluene	320	

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: IDP-6-12'-090202 MATRIX SPIKE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 20:50

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	
7005-72-3	4-Chlorophenyl-phenylether	65	
86-73-7	Fluorene	65	
100-01-6	4-Nitroaniline	320	
534-52-1	4,6-Dinitro-2-Methylphenol	650	
86-30-6	N-Nitrosodiphenylamine	65	=
101-55-3	4-Bromophenyl-phenylether	65	
118-74-1	Hexachlorobenzene	65	
87-86-5	Pentachlorophenol	320	
85-01-8	Phenanthrene	65	
86-74-8	Carbazole	65	
120-12-7	Anthracene	65	
84-74-2	Di-n-Butylphthalate	65	
206-44-0	Fluoranthene	65	
129-00-0	Pyrene	65	
85-68-7	Butylbenzylphthalate	65 65	
91-94-1	3,3'-Dichlorobenzidine	320	- - -
56-55-3	Benzo(a) anthracene	65	
117-81-7	bis(2-Ethylhexyl)phthalate	65	
218-01-9	Chrysene	65	
117-84-0	Di-n-Octyl phthalate	65	
205-99-2	Benzo(b) fluoranthene		
207-08-9	Benzo(k) fluoranthene	65 65	
50-32-8	Benzo(a) pyrene	65	
193-39-5	Indepo(1 2 2 ad) pressure	65	
53-70-3	Indeno(1,2,3-cd)pyrene	65	
191-24-2	Dibenz(a,h)anthracene	65	
90-12-0	Benzo(g,h,i)perylene	65	
JU 12-U	1-Methylnaphthalene	65	

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	76.4%	2-Fluorobiphenyl	79.6%
d14-p-Terphenyl	83.6%	d4-1,2-Dichlorobenzene	86.0%
d5-Phenol	67.7%	2-Fluorophenol	67.7%
2,4,6-Tribromophenol	94.9%	d4-2-Chlorophenol	67.7% 74.9%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Data Release Authorized: WW

Page 1 of 2

Matrix: Soil

LIMS ID: 09-3297

Reported: 02/11/09

Sample ID: IDP-6-12'-090202 MATRIX SPIKE DUPLICATE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/05/09

Lab Sample ID: OK85AC

Date Analyzed: 02/06/09 21:25 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample Amount: 7.71 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

		Result
Phenol	65	
Bis-(2-Chloroethyl) Ether	65	
2-Chlorophenol	65	
1,3-Dichlorobenzene	65	
1,4-Dichlorobenzene	65	
Benzyl Alcohol	65	
1,2-Dichlorobenzene	65	
2-Methylphenol	65	
2,2'-Oxybis(1-Chloropropane)	65	
	320	
Hexachloroethane		
Nitrobenzene		
Isophorone		
2-Nitrophenol		
-		
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
_		
-		
· · · · · · · · · · · · · · · · · · ·		
	Bis-(2-Chloroethyl) Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-Di-N-Propylamine Hexachloroethane Nitrobenzene	Bis-(2-Chloroethyl) Ether 65 2-Chlorophenol 65 1,3-Dichlorobenzene 65 1,4-Dichlorobenzene 65 Benzyl Alcohol 65 1,2-Dichlorobenzene 65 2-Methylphenol 65 2,2'-Oxybis(1-Chloropropane) 65 4-Methylphenol 65 N-Nitroso-Di-N-Propylamine 320 Hexachloroethane 65 Nitrobenzene 65 Isophorone 65 2-Nitrophenol 65 2,4-Dimethylphenol 65 2,4-Dimethylphenol 320 2,4-Dichlorophenol 320 1,2,4-Trichlorophenol 320 1,2,4-Trichlorophenol 320 2-Methylnaphthalene 65 4-Chloro-3-methylphenol 320 2-Methylnaphthalene 65 Hexachlorocyclopentadiene 320 2,4,6-Trichlorophenol 320 2,4,5-Trichlorophenol 320 2-Chloronaphthalene 65 2,Nitroaniline 320 <

ANALYTICAL RESOURCES \ **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202

MATRIX SPIKE DUPLICATE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 21:25

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	
7005-72-3	4-Chlorophenyl-phenylether	65	
86-73-7	Fluorene	65	
100-01-6	4-Nitroaniline	320	
534-52-1	4,6-Dinitro-2-Methylphenol	650	
86-30-6	N-Nitrosodiphenylamine	65	
101-55-3	4-Bromophenyl-phenylether	65	
118-74-1	Hexachlorobenzene	65	
87-86-5	Pentachlorophenol	320	
85-01-8	Phenanthrene	65	
86-74-8	Carbazole	65	
120-12-7	Anthracene	65	
84-74-2	Di-n-Butylphthalate	65	
206-44-0	Fluoranthene	65	
129-00-0	Pyrene	65	
85-68-7	Butylbenzylphthalate	65	
91-94-1	3,3'-Dichlorobenzidine	320	
56-55-3	Benzo(a)anthracene	65	
117-81-7	bis(2-Ethylhexyl)phthalate	65	
218-01-9	Chrysene	65	
117-84-0	Di-n-Octyl phthalate	65	
205-99-2	Benzo (b) fluoranthene	65	
207-08-9	Benzo(k)fluoranthene	65	
50-32-8	Benzo(a) pyrene	65	
193-39-5	Indeno(1,2,3-cd)pyrene	65	
53-70-3	Dibenz (a, h) anthracene	65	
191-24-2	Benzo(g,h,i)perylene	65	
90-12-0	1-Methylnaphthalene	65	

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	77.2%	d4-1,2-Dichlorobenzene	73.2%
d5-Phenol	60.5%	2-Fluorophenol	59.5%
2,4,6-Tribromophenol	87.7%	d4-2-Chlorophenol	66.9%

Page 1 of 2

Lab Sample ID: MB-020509

LIMS ID: 09-3297 Matrix: Soil

Data Release Authorized: WW

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/06/09 13:22 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: MB-020509 METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2 Sample ID: MB-020509 METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed: 02/06/09 13:22

117-81-7

218-01-9

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

90-12-0

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

67

67

67

67

67

67

67

67

67

67

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

< 67 U

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	-
534-52-1	4,6-Dinitro-2-Methylphenol	530 670	< 330 U
86-30-6	N-Nitrosodiphenylamine	-	< 670 U
101-55-3		67 67	< 67 U
118-74-1	4-Bromophenyl-phenylether	67	< 67 U
	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a) anthracene	67	< 67 U

Reported in µg/kg (ppb)

bis(2-Ethylhexyl)phthalate

Di-n-Octyl phthalate

Benzo(b) fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

1-Methylnaphthalene

Benzo(a)pyrene

Chrysene

Semivolatile Surrogate Recovery

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	86.8%
d5-Phenol	74.1%	2-Fluorophenol	72.3%
2,4,6-Tribromophenol	80.5%	d4-2-Chlorophenol	78.4%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
IDP-6-8'-090202 MB-020509 LCS-020509 LCSD-020509 IDP-6-12'-090202 IDP-6-12'-090202 MS IDP-6-12'-090202 MSD	77.6% 77.6% 76.0% 75.6% 76.4% 76.4% 66.0%	72.0% 76.4% 78.0% 78.4% 68.8% 79.6% 72.8%	81.6% 87.6% 91.2% 90.4% 78.0% 83.6% 77.2%	88.4% 86.8% 86.0% 86.4% 86.8% 86.0% 73.2%	62.4% 74.1% 73.9% 73.6% 55.7% 67.7% 60.5%	69.3% 72.3% 73.9% 72.8% 67.2% 67.7% 59.5%	93.6% 80.5% 88.0% 88.3% 88.8% 94.9%	74.4% 78.4% 77.3% 76.8% 72.5% 74.9% 66.9%	0 0 0 0 0 0

			LCS/MB LIMITS	QC LIMITS
		d5-Nitrobenzene	(30-160)	(30-160)
		2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	=	d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
		d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
		2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)
		<u>.</u>	(30 100)	(20-T00)

Prep Method: SW3546

Log Number Range: 09-3296 to 09-3297

Page 1 of 2

Sample ID: LCS-020509 LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/05/09

Date Analyzed LCS: 02/06/09 13:56

LCSD: 02/06/09 14:31

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: NO

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	1310	1670	78.4%	1330	1670	79.6%	1.5%
Bis-(2-Chloroethyl) Ether	1360	1670	81.4%	1380	1670	82.6%	1.5%
2-Chlorophenol	1440	1670	86.2%	1460	1670	87.4%	1.4%
1,3-Dichlorobenzene	1440	1670	86.2%	1480	1670	88.6%	2.7%
1,4-Dichlorobenzene	1450	1670	86.8%	1460	1670	87.4%	0.7%
Benzyl Alcohol	2250	3330	67.6%	2310	3330	69.4%	2.6%
1,2-Dichlorobenzene	1440	1670	86.2%	1470	1670	88.0%	2.1%
2-Methylphenol	1380	1670	82.6%	1380	1670	82.6%	0.0%
2,2'-Oxybis(1-Chloropropane)1400	1670	83.8%	1430	1670	85.6%	2.1%
4-Methylphenol	2820	3330	84.7%	2840	3330	85.3%	
N-Nitroso-Di-N-Propylamine	1430	1670	85.6%	1450	1670	86.8%	0.7% 1.4%
Hexachloroethane	1400	1670	83.8%	1430	1670	85.6%	
Nitrobenzene	1360	1670	81.4%	1370	1670	82.0%	2.1% 0.7%
Isophorone	1430	1670	85.6%	1450	1670	86.8%	0.78 1.4%
2-Nitrophenol	1590	1670	95.2%	1610	1670	96.4%	
2,4-Dimethylphenol	1330	1670	79.6%	1340	1670	90.4° 80.2%	1.2%
Benzoic Acid	1590	5000	31.8%	1910	5000	38.2%	0.7% 18.3%
bis(2-Chloroethoxy) Methane	1420	1670	85.0%	1440	1670	36.2% 86.2%	
2,4-Dichlorophenol	1510	1670	90.4%	1540	1670	92.2%	1.4%
1,2,4-Trichlorobenzene	1460	1670	87.4%	1520	1670	91.0%	2.0%
Naphthalene	1520	1670	91.0%	1550	1670	92.8%	4.0%
4-Chloroaniline	3270	4000	81.8%	3030	4000	75.8%	2.0%
Hexachlorobutadiene	1500	1670	89.8%	1560	1670	75.6% 93.4%	7.6%
4-Chloro-3-methylphenol	1450	1670	86.8%	1510	1670	93.4% 90.4%	3.9%
2-Methylnaphthalene	1510	1670	90.4%	1530	1670	91.6%	4.1%
Hexachlorocyclopentadiene	7380	5000	148%	7540	5000	91.66 151%	1.3%
2,4,6-Trichlorophenol	1620	1670	97.0%	1610	1670	96.4%	2.1%
2,4,5-Trichlorophenol	1580	1670	94.6%	1670	1670	100%	0.6%
2-Chloronaphthalene	1760	1670	105%	1770	1670	106%	5.5%
2-Nitroaniline	1560	1670	93.4%	1600	1670		0.6%
Dimethylphthalate	1520	1670	91.0%	1540	1670	95.8%	2.5%
Acenaphthylene	1490	1670	89.2%	1500	1670	92.2%	1.3%
3-Nitroaniline	4070	4270	95.3%	3860	4270	89.8%	0.7%
Acenaphthene	1500	1670	89.8%	1510	1670	90.4%	5.3%
			22.00	1310	1070	90.4%	0.7%

Page 2 of 2 Sample ID: LCSD-020509

LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3297 Matrix: Soil

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed LCS: 02/06/09 13:56

LCSD: 02/06/09 14:31

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	5790	5000	116%	6230	5000	125%	7.3%
4-Nitrophenol	1670	1670	100%	1610	1670	96.4%	3.7%
Dibenzofuran	1540	1670	92.2%	1540	1670	92.2%	0.0%
2,6-Dinitrotoluene	1680	1670	101%	1690	1670	101%	0.6%
2,4-Dinitrotoluene	1700	1670	102%	1740	1670	104%	2.3%
Diethylphthalate	1550	1670	92.8%	1580	1670	94.6%	1.9%
4-Chlorophenyl-phenylether	1620	1670	97.0%	1640	1670	98.2%	1.2%
Fluorene	1620	1670	97.0%	1620	1670	97.0%	0.0%
1-Nitroaniline	1620	1670	97.0%	1640	1670	98.2%	1,2%
1,6-Dinitro-2-Methylphenol	6990	5000	140%	7150	5000	143%	2.3%
N-Nitrosodiphenylamine	1610	1670	96.4%	1620	1670	97.0%	0.6%
1-Bromophenyl-phenylether	1600	1670	95.8%	1610	1670	96.4%	0.6%
Hexachlorobenzene	1580	1670	94.6%	1560	1670	93.4%	1.3%
Pentachlorophenol	1000	1670	59.9%	1010	1670	60.5%	1.0%
Phenanthrene	1640	1670	98.2%	1660	1670	99.4%	1.2%
Carbazole	1710	1670	102%	1710	1670	102%	0.0%
Anthracene	1660	1670	99.4%	1660	1670	99.4%	0.0%
Di-n-Butylphthalate	1790	1670	107%	1810	1670	108%	1.1%
Fluoranthene	1820	1670	109%	1850	1670	111%	1.6%
Pyrene	1670	1670	100%	1680	1670	101%	0.6%
Butylbenzylphthalate	1840	1670	110%	1840	1670	110%	0.0%
,3'-Dichlorobenzidine	4370	4270	102%	4210	4270	98.6%	3.7%
Benzo(a)anthracene	1640	1670	98.2%	1630	1670	97.6%	0.6%
ois(2-Ethylhexyl)phthalate	1850	1670	111%	1880	1670	113%	1.6%
Chrysene	1480	1670	88.6%	1490	1670	89.2%	0.7%
i-n-Octyl phthalate	1620	1670	97.0%	1610	1670	96.4%	0.6%
Benzo(b)fluoranthene	1830	1670	110%	1860	1670	111%	1.6%
Benzo(k)fluoranthene	1940	1670	116%	1950	1670	117%	0.5%
enzo(a)pyrene	1550	1670	92.8%	1560	1670	93.4%	0.5%
indeno(1,2,3-cd)pyrene	1880	1670	113%	1870	1670	112%	0.5%
ibenz(a,h)anthracene	1820	1670	109%	1820	1670	109%	0.0%
senzo(g,h,i)perylene	1780	1670	107%	1770	1670	106%	0.6%
-Methylnaphthalene	1630	1670	97.6%	1670	1670	100%	2.4%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	75.6%
2-Fluorobiphenyl	78.0%	78.4%
d14-p-Terphenyl	91.2%	90.4%
d4-1,2-Dichlorobenzene	86.0%	86.4%
d5-Phenol	73.9%	73.6%
2-Fluorophenol	73.9%	72.8%
2,4,6-Tribromophenol	88.0%	88.3%
d4-2-Chlorophenol	77.3%	76.8%

Results reported in µg/kg RPD calculated using sample concentrations per SW846.

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2

Sample ID: IDP-6-12'-090202

MS/MSD

Lab Sample ID: OK85AC

LIMS ID: 09-3297 Matrix: Soil

Data Release Authorized: WW

Date Extracted MS/MSD: 02/05/09

Date Analyzed MS: 02/06/09 20:50

Instrument/Analyst MS: NT6/LJR

MSD: 02/06/09 21:25

MSD: NT6/LJR

Reported: 02/11/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09

Date Received: 02/02/09

Sample Amount MS: 7.71 g-dry-wt

MSD: 7.71 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

GPC Cleanup: NO

MSD: 1.00 Percent Moisture: 15.1 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 65.3	1200	1620	74.1%	1090	1620	67.3%	9.6%
Bis-(2-Chloroethyl) Ether	< 65.3	1410	1620	87.0%	1200	1620	74.1%	16.1%
2-Chlorophenol	< 65.3	1370	1620	84.6%	1220	1620	75.3%	11.6%
1,3-Dichlorobenzene	< 65.3	1390	1620	85.8%	1240	1620	76.5%	11.4%
1,4-Dichlorobenzene	< 65.3	1410	1620	87.0%	1240	1620	76.5%	12.8%
Benzyl Alcohol	< 65.3	< 64.9 U	3240	NA	< 64.9 U		NA	NA
1,2-Dichlorobenzene	< 65.3	1470	1620	90.7%	1270	1620	78.4%	14.6%
2-Methylphenol	< 65.3	1300	1620	80.2%	1190	1620	73.5%	8.8%
2,2'-Oxybis(1-Chloropropan	e< 65.3	1410	1620	87.0%	1250	1620	77.2%	12.0%
4-Methylphenol	< 65.3	2660	3240	82.1%	2420	3240	74.7%	9.4%
N-Nitroso-Di-N-Propylamine	< 326	1390	1620	85.8%	1250	1620	77,2%	10.6%
Hexachloroethane	< 65.3	1250	1620	77,2%	1120	1620	69.1%	11.0%
Nitrobenzene	< 65.3	1300	1620	80.2%	1200	1620	74.1%	8.0%
Isophorone	< 65.3	1450	1620	89.5%	1310	1620	80.9%	10.1%
2-Nitrophenol	< 65.3	1530	1620	94.4%	1370	1620	84.6%	11.0%
2,4-Dimethylphenol	< 65.3	1240	1620	76.5%	1160	1620	71.6%	6.7%
Benzoic Acid	< 653	2910	4860	59.9%	2580	4860	53.1%	12.0%
bis(2-Chloroethoxy) Methan	e< 65.3	1400	1620	86.4%	1260	1620	77.8%	10.5%
2,4-Dichlorophenol	< 326	1430	1620	88.3%	1300	1620	80.2%	9.5%
1,2,4-Trichlorobenzene	< 65.3	1450	1620	89.5%	1290	1620	79.6%	11.7%
Naphthalene	< 65.3	1530	1620	94.4%	1330	1620	82.1%	14.0%
4-Chloroaniline	< 326	2820	3890	72.5%	2500	3890	64.3%	12.0%
Hexachlorobutadiene	< 65.3	1500	1620	92.6%	1320	1620	81.5%	12.8%
4-Chloro-3-methylphenol	< 326	1500	1620	92.6%	1360	1620	84.0%	9.8%
2-Methylnaphthalene	< 65.3	1460	1620	90.1%	1340	1620	82.7%	8.6%
Hexachlorocyclopentadiene	< 326	3830	4860	78.8%	3460	4860	71.2%	10.2%
2,4,6-Trichlorophenol	< 326	1360	1620	84.0%	1200	1620	74.1%	12.5%
2,4,5-Trichlorophenol	< 326	1700	1620	105%	1680	1620	104%	1.2%
2-Chloronaphthalene	< 65.3	1730	1620	107%	1560	1620	96.3%	10.3%
2-Nitroaniline	< 326	1560	1620	96.3%	1450	1620	89.5%	7.3%
Dimethylphthalate	< 65.3	1540	1620	95.1%	1460	1620	90.1%	5.3%
Acenaphthylene	< 65.3	1460	1620	90.1%	1380	1620	85.2%	5.6%
3-Nitroaniline	< 326	3660	4150	88.2%	3560	4150	85.8%	2.8%
Acenaphthene	< 65.3	1470	1620	90.7%	1380	1620	85.2%	6.3%
2,4-Dinitrophenol	< 653	4280	4860	88.1%	4290	4860	88.3%	0.2%
4-Nitrophenol	< 326	527	1620	32.5%	431	1620	26.6%	20.0%
Dibenzofuran	< 65.3	1510	1620	93.2%	1420	1620	87.7%	6.1%
2,6-Dinitrotoluene	< 326	1650	1620	102%	1580	1620	97.5%	4.3%
2,4-Dinitrotoluene	< 326	1670	1620	103%	1610	1620	99.4%	3.7%
Diethylphthalate	< 65.3	1560	1620	96.3%	1480	1620	91.4%	5.3%
4-Chlorophenyl-phenylether		1600	1620	98.8%	1500	1620	92.6%	6.5%
Fluorene	< 65.3	1580	1620	97.5%	1490	1620	92.0%	5.9%
4-Nitroaniline	< 326	1420	1620	87.7%	1370	1620	84.6%	3.6%
4,6-Dinitro-2-Methylphenol	< 653	5500	4860	113%	5240	4860	108%	4.8%
N-Nitrosodiphenylamine	< 65.3	1610	1620	99.4%	1480	1620	91.4%	8.4%

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: IDP-6-12'-090202

MS/MSD

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Date Analyzed MS: 02/06/09 20:50

MSD: 02/06/09 21:25

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
4-Bromophenyl-phenylether	< 65.3	1580	1620	97.5%	1470	1620	90.7%	7.2%
Hexachlorobenzene	< 65.3	1560	1620	96.3%	1450	1620	89.5%	7.3%
Pentachlorophenol	< 326	2080	1620	128%	1900	1620	117%	9.0%
Phenanthrene	< 65.3	1670	1620	103%	1540	1620	95.1%	8.1%
Carbazole	< 65.3	1730	1620	107%	1620	1620	100%	6.6%
Anthracene	< 65.3	1690	1620	104%	1540	1620	95.1%	9.3%
Di-n-Butylphthalate	< 65.3	1840	1620	114%	1690	1620	104%	8.5%
Fluoranthene	< 65.3	1930	1620	119%	1830	1620	113%	5.3%
Pyrene	< 65.3	1570	1620	96.9%	1470	1620	90.7%	6.6%
Butylbenzylphthalate	< 65.3	1650	1620	102%	1550	1620	95.7%	6,2%
3,3'-Dichlorobenzidine	< 326	3290	4150	79.3%	3140	4150	75.7%	4.7%
Benzo(a)anthracene	< 65.3	1590	1620	98.1%	1490	1620	92.0%	6.5%
bis(2-Ethylhexyl)phthalate	< 65.3	1790	1620	110%	1690	1620	104%	5.7%
Chrysene	< 65.3	1470	1620	90.7%	1350	1620	83.3%	8.5%
Di-n-Octyl phthalate	< 65.3	1600	1620	98.8%	1490	1620	92.0%	7.1%
Benzo(b)fluoranthene	< 65.3	1790	1620	110%	1630	1620	101%	9.4%
Benzo(k)fluoranthene	< 65.3	2050	1620	127%	1950	1620	120%	5.0%
Benzo(a)pyrene	< 65.3	1550	1620	95.7%	1440	1620	88.9%	7.4%
Indeno(1,2,3-cd)pyrene	< 65.3	1710	1620	106%	1560	1620	96.3%	9.2%
Dibenz(a,h)anthracene	< 65.3	1670	1620	103%	1540	1620	95.1%	8.1%
Benzo(g,h,i)perylene	< 65.3	1500	1620	92.6%	1340	1620	82.7%	11.3%
1-Methylnaphthalene	< 65.3	1630	1620	101%	1460	1620	90.1%	11.0%

Results reported in µg/kg

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OK85A

Matrix: Water Data Release Authorized:

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/06/09 19:02

Reported: 02/10/09

LIMS ID: 09-3269

Project: BOEING ISAACSON 025173.090

QC Report No: OK85-The Boeing Company

Sample ID: PZ-7-090202

SAMPLE

Date Sampled: 02/02/09

Date Received: 02/02/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83 - 9	Bromomethane	0.5	< 0.5	Ū
75-01-4	Vinyl Chloride	0.2	< 0.2	Ū
75-00-3	Chloroethane	0.2		Ū
75-09 - 2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	3.0	4.8	
75-15-0	Carbon Disulfide	0.2		U
75-35-4	1,1-Dichloroethene	0.2		Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60 - 5	trans-1,2-Dichloroethene	0.2		Ū
156-59 - 2	cis-1,2-Dichloroethene	0.2		Ū
67-66-3	Chloroform	0.2		Ū
107-06-2	1,2-Dichloroethane	0.2		Ū
78-93-3	2-Butanone	2.5		Ū
71-55 - 6	1,1,1-Trichloroethane	0.2		Ū
56-23-5	Carbon Tetrachloride	0.2		Ū
108-05-4	Vinyl Acetate	1.0		Ū
75-27-4	Bromodichloromethane	0.2		Ū
78-87-5	1,2-Dichloropropane	0.2		Ū
10061-01-5	cis-1,3-Dichloropropene	0.2		Ū
79 - 01-6	Trichloroethene	0.2		Ū
124-48-1	Dibromochloromethane	0.2		Ū
79-00-5	1,1,2-Trichloroethane	0.2		Ū
71-43-2	Benzene	0.2		Ū
10061-02-6	trans-1,3-Dichloropropene	0.2		Ū
110-75-8	2-Chloroethylvinylether	1.0		Ū
75-25-2	Bromoform	0.2		Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5		Ū
591-78-6	2-Hexanone	2.5		Ū
127-18-4	Tetrachloroethene	0.2		Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2		Ū
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2		Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2		U
541-73-1	1,3-Dichlorobenzene	0.2		U
106-46-7	1,4-Dichlorobenzene	0.2		U
107-02-8	Acrolein	5.0		Ū
74-88-4	Methyl Iodide	1.0		Ū
74-96-4	Bromoethane	0.2		U
107-13-1	Acrylonitrile	1.0		Ū
563 - 58-6	1,1-Dichloropropene	0.2		Ū
74-95-3	Dibromomethane	0.2		U
630-20-6	1,1,1,2-Tetrachloroethane	0.2		U
96-12-8	1,2-Dibromo-3-chloropropane	0.5		Ū
96-18-4	1,2,3-Trichloropropane	0.5		Ū

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-7-090202

SAMPLE

Lab Sample ID: OK85A

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3269

Project: BOEING ISAACSON

025173.090

Matrix: Water

Date Analyzed: 02/06/09 19:02

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	106%
d8-Toluene	100%
Bromofluorobenzene	102%
d4-1.2-Dichlorobenzene	103%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sa

Page 1 of 2

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water
Data Release Authorized: \text{\text{WW}}

Reported: 02/10/09

Instrument/Analyst: NT7/PKC
Date Analyzed: 02/06/09 19:28

Sample ID: I-104-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	Ü
74-83-9	Bromomethane	0.5	< 0.5	Ü
75-01-4	Vinyl Chloride	0.2	0.2	_
75 - 00-3	Chloroethane	0.2	< 0.2	Ü
75-09-2	Methylene Chloride	0.5	< 0.5	Ü
67-64-1	Acetone	3.0	3.7	
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ü
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ü
156 - 59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Ü
67-66-3	Chloroform	0.2	< 0.2	Ü
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ü
78-93-3	2-Butanone	2.5	< 2.5	Ü
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ü
56-23-5	Carbon Tetrachloride	0.2	< 0.2	Ü
108-05-4	Vinyl Acetate	1.0	< 1.0	Ü
75-27-4	Bromodichloromethane	0.2	< 0.2	Ü
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ü
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ü
124-48-1	Dibromochloromethane	0.2	< 0.2	Ü
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ü
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6 110-75-8	trans-1,3-Dichloropropene	0.2	< 0.2	Ŭ
75-25-2	2-Chloroethylvinylether Bromoform	1.0	< 1.0	Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	0.2	< 0.2	Ū
591-78-6	2-Hexanone	2.5	< 2.5	Ū
127-18-4	Tetrachloroethene	2.5	< 2.5	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ü
108-88-3	Toluene	0.2	< 0.2	Ü
108-90-7	Chlorobenzene	0.2	< 0.2 < 0.2	Ü
100-41-4	Ethylbenzene	0.2	< 0.2	U U
100-42-5	Styrene	0.2	< 0.2	Ü
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ü
1330-20-7	m,p-Xylene	0.4		Ū
95-47 - 6	o-Xylene	0.2		Ū
95-50-1	1,2-Dichlorobenzene	0.2		Ü
541-73-1	1,3-Dichlorobenzene	0.2		Ū
106-46-7	1,4-Dichlorobenzene	0.2		Ū
107-02-8	Acrolein	5.0		Ū
74-88-4	Methyl Iodide	1.0		Ū
74-96-4	Bromoethane	0.2		U
107-13-1	Acrylonitrile	1.0		Ū
563-58 - 6	1,1-Dichloropropene	0.2		U
74-95-3	Dibromomethane	0.2		U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Date Analyzed: 02/06/09 19:28

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL '	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	Ū
106-93-4	Ethylene Dibromide	0.2	< 0.3	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2		-
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene		< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.2	< 0.2	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6		0.5	< 0.5	U
0, 01-0	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	99.0%
d8-Toluene	98.8%
Bromofluorobenzene	104%
d4-1,2-Dichlorobenzene	102%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C QC Report No: OK85-The Boeing Company LIMS ID: 09-3271 Project: BOEING ISAACSON

Project: BOEING ISAACSON 025173.090

Matrix: Water 025173.090
Data Release Authorized: Date Sampled: 02/02/09
Reported: 02/10/09 Date Received: 02/02/09

Instrument/Analyst: NT7/PKC Sample Amount: 20.0 mL Date Analyzed: 02/06/09 19:53 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23 - 5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87 - 5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01 - 6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00 - 5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	Ü
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ŭ
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	Ŭ
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Page 2 of 2

Sample ID: PZ-1-090202

SAMPLE

Lab Sample ID: OK85C

LIMS ID: 09-3271 Matrix: Water

9-3271 Proje

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 19:53

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ū
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ū
98-06-6	tert-Butylbenzene	0.2	< 0.2	Ū
135-98-8	sec-Butylbenzene	0.2	< 0.2	Ū
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ū
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	102%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	101%

Sample ID: I-1044-090202 Page 1 of 2 SAMPLE

Lab Sample ID: OK85D

LIMS ID: 09-3272 Matrix: Water

Data Release Authorized:

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Instrument/Analyst: NT7/PKC Sample Amount: 20.0 mL Date Analyzed: 02/06/09 20:18 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	Ū
75-01-4	Vinyl Chloride	0.2	< 0.2	Ū
75-00-3	Chloroethane	0.2	< 0.2	Ū
75-09-2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	3.0	3.4	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2 10061-02-6	Benzene	0.2	< 0.2	Ū
110-75-8	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
75-25-2	2-Chloroethylvinylether Bromoform	1.0	< 1.0	Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	0.2	< 0.2	Ū
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	2.5	< 2.5	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2 < 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U U
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	Ū
95-50-1	1,2-Dichlorobenzene	0.2		Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2		Ū
107-02-8	Acrolein	5.0		Ū
74-88-4	Methyl Iodide	1.0		Ū
74-96-4	Bromoethane	0.2		Ŭ
107-13-1	Acrylonitrile	1.0		Ū
563-58-6	1,1-Dichloropropene	0.2		Ū
74-95-3	Dibromomethane	0.2		Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2		U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	_	U
96-18-4	1,2,3-Trichloropropane	0.5		Ū

Page 2 of 2

Sample ID: I-1044-090202

SAMPLE

Lab Sample ID: OK85D

LIMS ID: 09-3272

Matrix: Water

Date Analyzed: 02/06/09 20:18

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	บ
106-93-4	Ethylene Dibromide	0.2	< 0.3	บ
74-97-5	Bromochloromethane	0.2	< 0.2	_
594-20-7	2,2-Dichloropropane	0.2		Ŭ
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ü
98-82-8	Isopropylbenzene		< 0.2	Ŭ
103-65-1	n-Propylbenzene	0.2	< 0.2	Ū
1 08-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4		0.2	< 0.2	Ü
98-06-6	4-Chlorotoluene	0.2	< 0.2	U
_	tert-Butylbenzene	0.2	< 0.2	Ū
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ü

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	99.8%
Bromofluorobenzene	103%
d4-1,2-Dichlorobenzene	102%

Page 1 of 2

Sample ID: TB SAMPLE

Lab Sample ID: OK85K

LIMS ID: 09-3279

Matrix: Water
Data Release Authorized:

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/06/09 12:44

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74 - 83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	< 3.0 U
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1 591-78-6	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
127-18-4	2-Hexanone	2.5	< 2.5 U
79-34-5	Tetrachloroethene	0.2	< 0.2 U
108-88-3	1,1,2,2-Tetrachloroethane Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 U
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.2 U
95-47-6	o-Xylene	0.4	< 0.4 U < 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U < 0.2 U
541-73-1	1,3-Dichlorobenzene		_
106-46-7	1,4-Dichlorobenzene	0.2	
107-02-8	Acrolein	5.0	< 0.2 U
74-88-4	Methyl Iodide	1.0	< 5.0 U < 1.0 U
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U
	. 	-	

Page 2 of 2

Sample ID: TB SAMPLE

Lab Sample ID: OK85K

QC Report No: OK85-The Boeing Company

LIMS ID: 09-3279

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/06/09 12:44

CAS Number	Analyte	RL	Result	Q
1 10-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	Ū
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ū
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	Ū
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	Ū
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	91.2%
d8-Toluene	99.5%
Bromofluorobenzene	95.0%
d4-1.2-Dichlorobenzene	1025

Page 1 of 2 Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: \text{TWW}

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst: NT7/PKC Sample Amount: 20.0 mL Date Analyzed: 02/06/09 11:40 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	< 0.2 U
74-83-9	Bromomethane	0.5	< 0.5 U
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-00-3	Chloroethane	0.2	< 0.2 U
75-09-2	Methylene Chloride	0.5	< 0.5 U
67-64-1	Acetone	3.0	< 3.0 U
75-15-0	Carbon Disulfide	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
75-34-3	1,1-Dichloroethane	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
67-66-3	Chloroform	0.2	< 0.2 U
107-06-2	1,2-Dichloroethane	0.2	< 0.2 U
78-93-3	2-Butanone	2.5	< 2.5 U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2 U
56-23-5	Carbon Tetrachloride	0.2	< 0.2 U
108-05-4	Vinyl Acetate	1.0	< 1.0 U
75-27-4	Bromodichloromethane	0.2	< 0.2 U
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
124-48-1	Dibromochloromethane	0.2	< 0.2 U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U
71-43-2	Benzene	0.2	< 0.2 U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U
75-25-2	Bromoform	0.2	< 0.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U
591-78-6	2-Hexanone	2.5	< 2.5 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U
108-88-3	Toluene	0.2	< 0.2 U
108-90-7	Chlorobenzene	0.2	< 0.2 U
100-41-4	Ethylbenzene	0.2	< 0.2 Ū
100-42-5	Styrene	0.2	< 0.2 U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U
1330-20-7	m,p-Xylene	0.4	< 0.4 U
95-47-6	o-Xylene	0.2	< 0.2 U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2 U
107-02-8	Acrolein	5.0	< 5.0 U
74-88-4	Methyl Iodide	1.0	< 1.0 U
74-96-4	Bromoethane	0.2	< 0.2 U
107-13-1	Acrylonitrile	1.0	< 1.0 U
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U
74-95-3	Dibromomethane	0.2	< 0.2 U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U

Page 2 of 2

Sample ID: MB-020609

METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3269

Matrix: Water

Date Analyzed: 02/06/09 11:40

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87 - 68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	Ū
74-97-5	Bromochloromethane	0.2	< 0.2	Ü
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	IJ
1,03-65-1	n-Propylbenzene	0.2	< 0.2	Ū
108-86-1	Bromobenzene	0.2	< 0.2	Ū
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ü
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ü
98-06-6	tert-Butylbenzene	0.2	< 0.2	IJ
135-98-8	sec-Butylbenzene	0.2	< 0.2	IJ
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ū
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	93.2%
d8-Toluene	100%
Bromofluorobenzene	98.5%
d4-1.2-Dichlorohenzene	1025

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-020609 LCS-020609 LCSD-020609 OK85A OK85B OK85C OK85D OK85K	Method Blank Lab Control Lab Control Dup PZ-7-090202 I-104-090202 PZ-1-090202 I-1044-090202 TB	20 20 20 20 20 20 20 20	93.2% 91.8% 94.0% 106% 99.0% 102% 105% 91.2%	100% 100% 99.2% 100% 98.8% 100% 99.8% 99.5%	98.5% 97.0% 100% 102% 104% 101% 103% 95.0%	102% 99.2% 98.8% 103% 102% 101% 102% 103%	0 0 0 0 0 0 0
SW8260B (DCE) = d4-1,2-Dichloroethane (TOL) = d8-Toluene (BFB) = Bromofluorobenzene (DCB) = d4-1,2-Dichlorobenzene		LCS	70-131 80-120 74-121 80-120	ITS		QC LIMIT 64-146 78-125 71-120 80-121	5

Prep Method: SW5030B

Log Number Range: 09-3269 to 09-3279

Page 1 of 2

Sample ID: LCS-020609

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020609

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/06/09 10:49

LCSD: 02/06/09 11:15

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	T 66	Spike	LCS		Spike	LCSD	
Maryce	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	2.8	4.0	70.0%	2.7	4.0	67.5%	3.6%
Bromomethane	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
Vinyl Chloride	3.5	4.0	87.5%	3.5	4.0	87.5%	0.0%
Chloroethane	4.4	4.0	110%	4.4	4.0	110%	0.0%
Methylene Chloride	4.6	4.0	115%	4.5	4.0	112%	2.2%
Acetone	18.6	20.0	93.0%	18.4	20.0	92.0%	1.1%
Carbon Disulfide	4.1	4.0	102%	4.0	4.0	100%	2.5%
1,1-Dichloroethene	4.4	4.0	110%	4.4	4.0	110%	0.0%
1,1-Dichloroethane	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
trans-1,2-Dichloroethene	4.4	4.0	110%	4.2	4.0	105%	4.7%
cis-1,2-Dichloroethene	4.4	4.0	110%	4.2	4.0	105%	4.7%
Chloroform	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,2-Dichloroethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
2-Butanone	20.0	20.0	100%	19.1	20.0	95.5%	4.6%
1,1,1-Trichloroethane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Carbon Tetrachloride	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Vinyl Acetate	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Bromodichloromethane	4.3	4.0	108%	4.2	4.0	105%	2.4%
1,2-Dichloropropane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
cis-1,3-Dichloropropene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Trichloroethene	4.0	4.0	100%	4.0	4.0	100%	0.0%
Dibromochloromethane	4.5	4.0	112%	4.3	4.0	108%	4.5%
1,1,2-Trichloroethane	4.2	4.0	105%	4.2	4.0	105%	0.0%
Benzene	4.1	4.0	102%	4.0	4.0	100%	2.5%
trans-1,3-Dichloropropene	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
2-Chloroethylvinylether	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Bromoform	4.5	4.0	112%	4.0	4.0	100%	11.8%
4-Methyl-2-Pentanone (MIBK)	21.2	20.0	106%	20.0	20.0	100%	5.8%
2-Hexanone	16.6	20.0	83.0%	15.5	20.0	77.5%	6.9%
Tetrachloroethene	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,1,2,2-Tetrachloroethane	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
Toluene	4.2	4.0	105%	4.0	4.0	100%	4.9%
Chlorobenzene	4.2	4.0	105%	4.1	4.0	100% 102%	2.4%
Ethylbenzene	4.3	4.0	108%	4.2	4.0	102%	2.4%
Styrene	4.3	4.0	108%	4.3	4.0	103%	0.0%
Trichlorofluoromethane	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,1,2-Trichloro-1,2,2-trifluoroetha	4.2	4.0	105%	4.1	4.0	100%	2.4%
m,p-Xylene	8.4	8.0	105%	8.3	8.0	102%	2.4% 1.2%
o-Xylene	4.2	4.0	105%	4.1	4.0	104%	2.4%
1,2-Dichlorobenzene	4.2	4.0	105%	3.9	4.0	97.5%	
1,3-Dichlorobenzene	4.2	4.0	105%	4.0	4.0		7.4%
1,4-Dichlorobenzene	4.1	4.0	102%	3.8		100%	4.9%
Acrolein	20.6	20.0	102%	21.1	4.0	95.0%	7.6%
Methyl Iodide	4.5	4.0	112%	4.5	20.0	106%	2.4%
Bromoethane	4.2	4.0	105%	4.5	4.0 4.0	112% 102%	0.0%
		1.0	1000	4.1	4. ∪	T07.2	2.4%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-020609

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020609

LIMS ID: 09-3269 Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Acrylonitrile	3.9	4.0	97.5%	3,6	4.0	90.0%	0.00
1,1-Dichloropropene	4.1	4.0	102%	4.0	4.0	100%	8.0%
Dibromomethane	4.2	4.0	105%	4.0	4.0	100%	2.5%
1,1,1,2-Tetrachloroethane	4.2	4.0	105%	4.1	4.0	100%	4.9%
1,2-Dibromo-3-chloropropane	3.8	4.0	95.0%	3.6	4.0	90.0%	2.4%
1,2,3-Trichloropropane	4.7	4.0	118%	4.3	4.0	108%	5.4%
trans-1,4-Dichloro-2-butene	3.5	4.0	87.5%	3.2	4.0	108%	8.9%
1,3,5-Trimethylbenzene	4.2	4.0	105%	4.0	4.0	100%	9.0%
1,2,4-Trimethylbenzene	4.2	4.0	105%	4.0	4.0		4.9%
Hexachlorobutadiene	3.9	4.0	97.5%	3.6	4.0	100%	4.9%
Ethylene Dibromide	4.3	4.0	108%	4.2	4.0	90.0%	8.0%
Bromochloromethane	4.2	4.0	105%	4.1		105%	2.4%
2,2-Dichloropropane	4.2	4.0	105%	3.9	4.0 4.0	102%	2.4%
1,3-Dichloropropane	4.2	4.0	105%	4.1		97.5%	7.4%
Isopropylbenzene	4.1	4.0	102%	3.8	4.0	102%	2.4%
n-Propylbenzene	4.2	4.0	105%	4.0	4.0	95.0%	7.6%
Bromobenzene	4.3	4.0	108%	4.0	4.0	100%	4.9%
2-Chlorotoluene	4.1	4.0	102%	3.9	4.0	100%	7.2%
4-Chlorotoluene	4.2	4.0	105%	4.0	4.0	97.5%	5.0%
tert-Butylbenzene	4.2	4.0	105%		4.0	100%	4.9%
sec-Butylbenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
4-Isopropyltoluene	4.3	4.0	105%	4.0	4.0	100%	4.9%
n-Butylbenzene	4.2	4.0	108%	4.0	4.0	100%	7.2%
1,2,4-Trichlorobenzene	4.2	4.0		4.0	4.0	100%	4.9%
Naphthalene	4.1		105%	3.9	4.0	97.5%	7.4%
1,2,3-Trichlorobenzene	$\frac{4.1}{4.1}$	4.0	102%	4.1	4.0	102%	0.0%
	4.1	4.0	102%	4.0	4.0	100%	2.5%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	91.8%	94.0%
d8-Toluene	100%	99.2%
Bromofluorobenzene	97.0%	100%
d4-1,2-Dichlorobenzene	99 28	98 98

< 0.63 U

84.8%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Oil

o-Terphenyl

025173.090

Data Release Authorized: Reported: 02/06/09

Extraction Analysis Date DLResult ARI ID Sample ID Date Range < 0.25 U MB-020409 Method Blank 02/04/09 02/06/09 1.0 Gas < 0.63 U 09-3269 Diesel < 0.63 U Oil o-Terphenyl 79.6% < 0.25 U OK85A PZ-7-090202 02/04/09 02/06/09 1.0 Gas < 0.63 U Diesel 09-3269 HC ID: ---< 0.63 U Oil 84.1% o-Terphenyl < 0.25 U OK85B I-104-090202 02/04/09 02/06/09 1.0 Gas < 0.63 U Diesel 09-3270 HC ID: ---Oil < 0.63 U 86.5% o-Terphenyl < 0.25 U OK85C PZ-1-090202 02/04/09 02/06/09 1.0 Gas Diesel < 0.63 U 09-3271 HC ID: ---< 0.63 U Oil 72.9% o-Terphenyl < 0.25 U I-1044-090202 02/04/09 02/06/09 1.0 Gas OK85D < 0.63 U Diesel 09-3272 HC ID: ---

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	O-TER	TOT OUT
MB-020409	79.6%	0
LCS-020409	85.4%	0
LCSD-020409	84.8%	0
PZ-7-090202	84.1%	0
I-104-090202	86.5%	0
PZ-1-090202	72.9%	0
T-1044-090202	84.8%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C

Log Number Range: 09-3269 to 09-3272

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-020409 LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized:

Reported: 02/06/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09

Date Received: 02/02/09

Date Extracted LCS/LCSD: 02/04/09

Date Analyzed LCS: 02/06/09 01:52

LCSD: 02/06/09 02:11

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	_
Diesel	2.37	3.00	79.0%	2.34	3.00	78.0%	1.3%	

HCID Surrogate Recovery

LCS LCSD

o-Terphenyl

85.4% 84.8%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OK85

Matrix: Water

Project: BOEING ISAACSON

Date Received: 02/02/09

025173.090

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
09-3269-020409MB 09-3269-020409LCS 09-3269-020409LCSD 09-3269-0K85A 09-3270-0K85B 09-3271-0K85C 09-3272-0K85D	Method Blank Lab Control Lab Control Dup PZ-7-090202 I-104-090202 PZ-1-090202 I-1044-090202	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: PZ-7-090202 SAMPLE

Lab Sample ID: OK85A LIMS ID: 09-3269

Matrix: Water

Data Release Authorized:

Reported: 02/09/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 13:33 Instrument/Analyst: NT1/VTS

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 57.0% d14-Dibenzo(a,h)anthracene 71.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/07/09 13:56

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo (a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz (a, h) anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 60.7% d14-Dibenzo(a,h)anthracene 80.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: PZ-1-090202 SAMPLE

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/07/09 14:18

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 49.7% d14-Dibenzo(a,h)anthracene 75.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: I-1044-090202 SAMPLE

Lab Sample ID: OK85D

LIMS ID: 09-3272 Matrix: Water

Data Release Authorized: W

Date Analyzed: 02/07/09 14:41

Instrument/Analyst: NT1/VTS

Date Extracted: 02/05/09

Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/02/09

Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k) fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a h)anthracene	0 10	< 0.10 II

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.7% d14-Dibenzo(a,h)anthracene 79.7%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: MB-020509 METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3269

Matrix: Water Data Release Authorized: MW

Reported: 02/09/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 12:25 Instrument/Analyst: NT1/VTS

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	. 0 10 11
218-01-9	Chrysene		< 0.10 U
205-99-2		0.10	< 0.10 U
	Benzo(b) fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	. — -	·
53-70-3	Thecho(1,2,3-cd)pyrene	0.10	< 0.10 U
55-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 11

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 45.0% d14-Dibenzo(a,h)anthracene 83.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	MNP	DBA	TOT OUT
MB-020509	45.0%*	83.3%	1
LCS-020509	55.0%	82.7%	0
LCSD-020509	58.7%	87.3%	0
PZ-7-090202	57.0%	71.7%	0
I-104-090202	60.7%	80.0%	0
PZ-1-090202	49.7%	75.0%	0
I-1044-090202	59.7%	79.7%	0

	LCS/MB LIMITS	QC LIMITS
(MNP) = d10-2-Methylnaphthalene	(49-113)	(44-112)
(DBA) = d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C Log Number Range: 09-3269 to 09-3272

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-020509

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020509

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: Www. Reported: 02/09/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 02/05/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/07/09 12:48

Instrument/Analyst LCS: NT1/VTS

LCSD: 02/07/09 13:11

LCSD: NT1/VTS

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a)anthracene	2.40	3.00	80.0%	2.64	3.00	88.0%	9.5%
Chrysene	2.44	3.00	81.3%	2.63	3.00	87.7%	7.5%
Benzo(b)fluoranthene	2.63	3.00	87.7%	2.83	3.00	94.3%	7.3%
Benzo(k)fluoranthene	2.68	3.00	89.3%	3.00	3.00	100%	11.3%
Benzo(a)pyrene	2.47	3.00	82.3%	2.84	3.00	94.7%	13.9%
Indeno(1,2,3-cd)pyrene	2.36	3.00	78.7%	2.54	3.00	84.7%	7.3%
Dibenz(a,h)anthracene	2.41	3.00	80.3%	2.67	3.00	89.0%	10.2%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	55.0%	58.7%
d14-Dibenzo(a,h)anthracene	82.7%	87.3%

Page 1 of 1 Sample ID: IDP-6-8'-090202

SAMPLE

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: WW

Reported: 02/10/09

Date Extracted: 02/05/09

Date Analyzed: 02/07/09 16:57 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 26.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	89.2%
Tetrachlorometaxylene	86.5%

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Matrix: Soil

Sample ID: IDP-6-8'-090202 MATRIX SPIKE

Lab Sample ID: OK85AB QC Report No: OK85-The Boeing Company LIMS ID: 09-3296

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:15 Instrument/Analyst: ECD5/JGR

Data Release Authorized: \\W

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Reported: 02/10/09

Percent Moisture: 26.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	85.2%

ANALYTICAL RESOURCES ' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: IDP-6-8'-090202 MATRIX SPIKE DUP

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/10/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:32

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 26.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.5%
Tetrachlorometaxylene	86.0%

Page 1 of 1

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC

LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized: YWW

Reported: 02/10/09

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 17:49

Instrument/Analyst: ECD5/JGR GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in µg/kg (ppb)

Decachlorobiphenyl		86.2%
Tetrachlorometaxylene		77.2%

Page 1 of 1

Sample ID: MB-020509

METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3296 Matrix: Soil

Data Release Authorized: WWW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA

Date Received: NA

Sample Amount: 12.0 g

Final Extract Volume: 4.0 mL

Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

Date Extracted: 02/05/09 Date Analyzed: 02/07/09 16:06 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 3.3 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	82.8%
Tetrachlorometaxylene	79.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020509	82.8%	59-122	79.0%	61-118	0
LCS-020509	89.0%	59-122	85.0%	61-118	Ō
LCSD-020509	91.0%	59-122	88.0%	61-118	0
IDP-6-8'-090202	89.2%	40-139	86.5%	49-120	0
IDP-6-8'-090202 MS	88.0%	40-139	85.2%	49-120	0
IDP-6-8'-090202 MSD	88.5%	40-139	86.0%	49-120	0
IDP-6-12'-090202	86.2%	40-139	77.2%	49-120	0

Standard Sonication Control Limits Prep Method: SW3550B Log Number Range: 09-3296 to 09-3297

Page 1 of 1

Sample ID: IDP-6-8'-090202

MS/MSD

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: WW

Reported: 02/10/09

Date Extracted MS/MSD: 02/05/09

Date Analyzed MS: 02/07/09 17:15

MSD: 02/07/09 17:32 Instrument/Analyst MS: ECD5/JGR

CDC Classin, No.

Aroclor 1260

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount MS: 12.6 g-dry-wt

MSD: 12.6 g-dry-wt

159

97.5%

6.0%

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00 MSD: 1.00

Silica Gel: No

155

Percent Moisture: 26.0%

91.8%

Spike Spike MSD MS Added-MS Recovery MSD Added-MSD Recovery RPD Analyte Sample MS 159 92.5% 5.6% Aroclor 1016 < 31.8 U 139 159 87.4% 147

159

Results reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

< 31.8 U

146

MSD: ECD5/JGR

Page 1 of 1

Lab Sample ID: LCS-020509

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/10/09

Date Extracted LCS/LCSD: 02/05/09

Date Analyzed LCS: 02/07/09 16:23

LCSD: 02/07/09 16:40

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-020509 LCS/LCSD

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	148	167	88.8%	153	167	91.8%	3.3%
Aroclor 1260	163	167	97.8%	167	167	100%	2.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	89.0%	91.0%
Tetrachlorometaxylene	85.0%	88.0%

Results reported in µg/kg (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OK85A LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: 7

Reported: 02/10/09

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-7-090202 SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	97.0%
Tetrachlorometaxylene	76.8%

Page 1 of 1

Sample ID: I-104-090202

SAMPLE

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Date Extracted: 02/04/09
Date Analyzed: 02/06/09 16:40
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	82.8%
Tetrachlorometaxylene	73.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: PZ-1-090202

SAMPLE

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 16:57 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11104-28-2 11141-16-5	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232	1.0 1.0 1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	98.2%
Tetrachlorometaxylene	88.0%

ANALYTICAL **RESOURCES INCORPORATED**

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Sample ID: I-1044-090202 SAMPLE

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: Www

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 17:14 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	69.8%
Tetrachlorometaxylene	72.8%

Page 1 of 1

Sample ID: MB-020409

METHOD BLANK

Lab Sample ID: MB-020409

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: WW

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

Date Extracted: 02/04/09 Date Analyzed: 02/06/09 15:31 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11104-28-2 11141-16-5	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232	1.0 1.0 1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U

Reported in µg/L (ppb)

Decachlorobiphenyl	95.0%
Tetrachlorometaxylene	64.0%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020409	95.0%	47-101	64.0%	61-104	0
LCS-020409	95.2%	47-101	73.5%	61-104	0
LCSD-020409	96.5%	47-101	72.2%	61-104	0
PZ-7-090202	97.0%	42-120	76.8%	55-102	0
I-104-090202	82.8%	42-120	73.8%	55-102	0
PZ-1-090202	98.2%	42-120	88.0%	55-102	0
I-1044-090202	69.8%	42-120	72.8%	55-102	0

Prep Method: SW3510C

Log Number Range: 09-3269 to 09-3272

Page 1 of 1

Sample ID: LCS-020409

LCS/LCSD

Lab Sample ID: LCS-020409

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized: Www

Reported: 02/10/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA

Date Received: NA

Date Extracted LCS/LCSD: 02/04/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/06/09 15:48

Final Extract Volume LCS: 5.0 mL

LCSD: 02/06/09 16:05

LCSD: 5.0 mL

Instrument/Analyst LCS: ECD5/JGR

Dilution Factor LCS: 1.00

LCSD: ECD5/JGR

LCSD: 1.00

GPC Cleanup: No Sulfur Cleanup: No

Silica Gel: No

Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.50	5.00	90.0%	4.49	5.00	89.8%	0.2%
Aroclor 1260	5.13	5.00	103%	5.06	5.00	101%	1.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	95.2%	96.5%
Tetrachlorometaxylene	73.5%	72.2%

Results reported in µg/L RPD calculated using sample concentrations per SW846.

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85L LIMS ID: 09-3280

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 80.6%

Sample ID: IDP-1-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	30	60	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85M

LIMS ID: 09-3281

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 76.4%

Sample ID: IDP-1A-9'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	186	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85N

LIMS ID: 09-3282

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 80.1%

Sample ID: IDP-1A-14'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK850

LIMS ID: 09-3283

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 80.0%

Sample ID: IDP-2-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	10	180	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85P

LIMS ID: 09-3284 Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 80.5%

Sample ID: IDP-2-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON 025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Q

LIMS ID: 09-3285

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 77.6%

Sample ID: IDP-2-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85R LIMS ID: 09-3286

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 79.1%

Sample ID: IDP-3-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Prep Analysis Analysis mg/kg-dry RLQ Analyte Meth Date Method Date CAS Number 6 34 02/12/09 **7440-38-2** 02/09/09 6010B Arsenic 3050B

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85S

LIMS ID: 09-3287

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 74.9%

Sample ID: IDP-3-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	48	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85T

LIMS ID: 09-3288 Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 78.6%

Sample ID: IDP-3-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85U

LIMS ID: 09-3289

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 81.5%

Sample ID: IDP-4-4'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	15	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85V

LIMS ID: 09-3290

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 74.6%

Sample ID: IDP-4-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	7	17	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85W LIMS ID: 09-3291

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 77.5%

Sample ID: IDP-4-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	6	Ü

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85X LIMS ID: 09-3292

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Sample ID: IDP-5-4'-090202

SAMPLE

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 84.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	60	60	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Y

LIMS ID: 09-3293 Matrix: Soil

Data Release Authorized: ()

Reported: 02/23/09

02/23/09

Percent Total Solids: 76.8%

Sample ID: IDP-5-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	333	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85Z

LIMS ID: 09-3294

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-5-11'-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 88.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U

TOTAL METALS

Page 1 of 1

Sample ID: IDP-6-4'-090202 SAMPLE

Lab Sample ID: OK85AA LIMS ID: 09-3295

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 86.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/13/09	7440-38-2	Arsenic	10	10	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85AB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 76.0%

Sample ID: IDP-6-8'-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	6	71	
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.3	0.3	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.6	19.2	
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.3	26.9	
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	3	3	
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.06	
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	153	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Sample ID: IDP-6-12'-090202

SAMPLE

Lab Sample ID: OK85AC LIMS ID: 09-3297

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Percent Total Solids: 85.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.5	9.0	
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.2	9.1	
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	2	2	U
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	20	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85MB

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20500	00/00/00	60100	00/10/00	7440 00 0			_	
3050B	02/09/09	6010B	02/12/09	7440-38-2	Arsenic	5	5	U
3050B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	0.5	0.5	U
3050B	02/09/09	6010B	02/12/09	7440-50-8	Copper	0.2	0.2	U
3050B	02/09/09	6010B	02/12/09	7439-92-1	Lead	. 2	. 2	U
CLP	02/09/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	1	3	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OK85LCS

LIMS ID: 09-3296

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

•	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	6010B	198	200	99.0%	
Cadmium	6010B	49.5	50.0	99.0%	
Chromium	6010B	48.9	50.0	97.8%	
Copper	6010B	49.6	50.0	99.2%	
Lead	6010B	197	200	98.5%	
Mercury	7471A	1.12	1.00	112%	
Zinc	6010B	50	50	100%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: OK85A

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: PZ-7-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
	0.0.10.0.10.0							
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.5	5.0	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	2	U
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97 - 6	Mercury	0.1	0.1	Ū
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OK85B

LIMS ID: 09-3270

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: I-104-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
					· · · · · · · · · · · · · · · · · · ·			
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,130	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	13	
200.8	02/09/09	200,8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	20	

Page 1 of 1

Lab Sample ID: OK85C LIMS ID: 09-3271

Matrix: Water Data Release Authorized Reported: 02/23/09

Sample ID: PZ-1-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	7.1	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	17	
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	240	

Page 1 of 1

Lab Sample ID: OK85D LIMS ID: 09-3272

Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: I-1044-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,270	
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	. 2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	7	
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OK85E

LIMS ID: 09-3273 Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-1A-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	77.7	

Page 1 of 1

Lab Sample ID: OK85F

LIMS ID: 09-3274 Matrix: Water

Data Release Authorized Reported: 02/23/09 Sample ID: IDP-2-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	24.4	

Page 1 of 1

Lab Sample ID: OK85G

LIMS ID: 09-3275

Matrix: Water Data Release Authorized Reported: 02/23/09

Sample ID: IDP-3-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	12.0	

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OK85H

LIMS ID: 09-3276

Matrix: Water

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-4-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	2,360	

Page 1 of 1

Lab Sample ID: OK85I

LIMS ID: 09-3277

Matrix: Water

Data Release Authorized Reported: 02/23/09

Sample ID: IDP-5-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09 Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	5	1,610	

Page 1 of 1

Lab Sample ID: OK85J

LIMS ID: 09-3278

Matrix: Water

Data Release Authorized Reported: 02/23/09

Sample ID: IDP-6-GW-090202

SAMPLE

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/02/09
Date Received: 02/02/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/09/09	200.8	02/11/09	7440-38-2	Arsenic	1	346	

Page 1 of 1

Lab Sample ID: OK85MB

LIMS ID: 09-3269 Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: METHOD BLANK

QC Report No: OK85-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	<u>Q</u>
200.8	02/09/09	200.8	02/10/09	7440-38-2	Arsenic	0.2	0.2	U
6010B	02/09/09	6010B	02/12/09	7440-43-9	Cadmium	2	2	U
6010B	02/09/09	6010B	02/12/09	7440-47-3	Chromium	5	5	U
6010B	02/09/09	6010B	02/12/09	7440-50-8	Copper	2	2	U
200.8	02/09/09	200.8	02/10/09	7439-92-1	Lead	1	1	U
7470A	02/09/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/09/09	6010B	02/12/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OK85LCS

LIMS ID: 09-3269

Matrix: Water

Data Release Authorized

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OK85-The Boeing Company Project: BOEING ISAACSON

025173.090
Date Sampled: NA
Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	26.8	25.0	107%	
Cadmium	6010B	532	500	106%	
Chromium	6010B	501	500	100%	
Copper	6010B	495	500	99.0%	
Lead	200.8	28	25	112%	
Mercury	7470A	1.9	2.0	95.0%	
Zinc	6010B	510	500	102%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

February 23, 2009

Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Isaacson 025173

ARI Job: OL03 and OL61

Dear Kathryn:

Enclosed, please find e-mail documentation the original and a revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted ten soil samples and four water samples and a trip blank in good condition on February 3, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total Metals and Dissolved Metals, VOCs, PCBs, SVOCs, SIM cPAHs, HCID and NWTPH-Dx, as requested on the COC.

The VOCs water method blanks for 2/12/09 and 2/13/09 contained naphthalene and 1,2,3-Trichlorobenzene. All associated samples were non-detect for naphthalene and 1,2,3-Trichlorobenzene, therefore no further corrective action was taken.

The soil VOCs LCS and LCSD is out of control high for several analytes for the 2/9/09 and 2/10/09 analyses. No further corrective action was taken.

The HCID surrogate o-Terphenyl is out of control high for the LCSD. All associated samples were non-detect and all other surrogate recoveries are in control, therefore no further corrective action was taken.

The SVOCs soil LCS and LCSD for the 2/6/09 and 2/13/09 analyses are out of control both low and high for several analytes with wide RPDs for benzoic acid. No further corrective action was taken.

Samples IDP-8-3-090203 and IDP-6A-3-090203 were re-extracted and re-analyzed due to low surrogate recoveries. Both sets of data have been included for your review.

All associated water SVOCs samples were originally analyzed within the method recommended holding time for the analysis. The samples were re-extracted and re-analyzed outside of the method recommended holding time due to low surrogates and LCSD spike recoveries. Both sets of data have been included for your review.

The metals matrix spike on sample IDP-7-3-090203 is out of control both high and low for several analytes with wide sample duplicate RPDs for copper and zinc. All other QC is in control and no further corrective action was taken.

The dissolved metals matrix spike on sample IDP-8-GW-090203 is out of control high for arsenic. No further corrective action was taken.

The dissolved metals method blank contained arsenic. All associated sample arsenic concentrations were greater then ten times the concentration found in the method blank with the exception of sample IDP-9-GW-090203 which is pending client review.

There were no other anomalies associated with the analysis of these samples.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/co

Enclosures

Seattle (Ed			•									0	12/20
☐ Tacoma (2	•											10	Date 90
LANDAU Spokane (S ASSOCIATES Portland (T												<i>. . .</i>	Page of
ASSOCIATES - Contains (Cha	ain-o	f-Cu	ıst	od	lv F	Rec	ord	\mathcal{Q}		rage
72.	•						/				Paran		
Project Name DORMG 50	Joc Ray	_ Projec	t No. 025	51+3.1	<u>940</u>	,	<i></i> ,	//	7	/ /		/	Turnaround Time ✓ Standard
Project Location/Event TUNG	vila Y	Mae [Π		_	_			//		10/25	γ /	☐ Accelerated
Sampler's Name	α		The B	mnu	9)/	/ /	/ /	/ F 7			Accelerated
			up ye iv	1 401 11 001		$\mathcal{L}_{\mathcal{L}}$	0/		//			/ /	<u> </u>
Project Contact	Horte			(1 1 %)	- /,	ZK	3/10	109/	WE		727 /	/ /	/ /
Send Results To	KATUP	onclus	A ME	Hower	M Z	7 7/	\mathcal{Q}	0/0	(α	//	
Sample I.D.	Wig _{ate}	Time	Matrix	No. of Container	。/ / -	Z /	>/v]/ :3	5/	7 / /	/ /	/ Observations/Comments
1DP.7.3.090203			S	ì	X >	ZZ	(17		-	X
TDP.8.3.090203	17/01	900	<u> </u>	7	V X		メ	X					Allow water samples to settle, collect aliquot from clear portion
10P9.3.890203		050		7	X x		X					-	
E65090-5-019CM		1050		7	XX	X	1						NWTPH-Dx: run acid wash/silica gel cleanup
1DP-11-11-090203		1235		6	v ×	X							run samples standardized to
DP.12.12.090203		1200		7	$\langle \zeta \rangle$		×	X					product
DR. 13/2.090203		1405		io	X >	(X							Analyze for EPH if no specific
DP 14.11.090.203		1330		7	XX	X	X	×					product identified
DR.15 12.090203		1525	4	6	XX	< ×	<u> </u>						VOC/BTEX/VPH (soll):
IDP. LA.3.090203		1540		2	X 9		X						non-preserved preserved w/methanol
IDP-8-6W-040203		0943	Wider	15	X	X	Z		X	X			preserved w/methanion preserved w/sodium bisulfate
IDP-9-6W-090203		1100	Water	15	X	×	X	X	7	X			Freeze upon receipt
IDP-12-6W-090203		1230	water	15	X	×	×	X	X	X			K Dissolved metal water samples field filtered
IDP-14-GW-090203		1400	Water	15	X	×	×	X	X	X			Other Motals: AS. Ca. Cr.
行的			V V V	3		×							Cu. Pb. Hg. ZD
	Ψ												
Special Shipment/Handling or Storage Requirements												Metho Shipm	d of ent
Relinquished by	F	Received b	nv .1			R	elina	nuishe	ed by		<u> </u>	Onipin	Received by
Eumber Role		Jam	Haye					•	J- 1,				
Signature Pocle	5	ign et ure		1 2		S	ignati	ıre					Signature
Printed Name	F	rinted Nam	e truje	()		P	rinted	Name					Printed Name
Company/)	_	Company				. _	ompa	nv					Company
1 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5	21	2702	1,	(T)		ompa	AI I Y					7-1
Date 707 Time 10		oate	709	Time <u>[[</u>	150 1	. D	ate _			Tin	ne		Date Time
• •													

Seattle (Edmo ☐ Tacoma (253)	nds) (4 926-249	25) 778-090 13	7			<i>.</i>		9	115	3				
A JANDAU Spokane (509)	327-97	37											V. 3	Date 2/3/09
ASSOCIATES Portland (Tigal	rd) (503)	443-6010		. .	\$1 VM 4.4	4.5			5,			8	~ >>	
		0000 (AD) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	– Ch	ain-c)f-(Cus	toc	yk	R	ec	or	d 🔀	3	Pageof
Project Name BORMG Sook	Project Name CORING (Strategy) Project No. 075 173.090 Testing Parameters Turnaround Time													
Project Location/Event TINGNI	alt	Mae.	Π				/ /	1 7	/ /	/ /		1	$X_{0}Z$	★ Standard
	· / 1 · · · · · ·		We Pe	mmn	: 63	/) /	1			19	1/5/	Y	☐ Accelerated
1 12 14 1 7 27	\$ 307.97		WW IC	inhm	Ŀ		Ž0/	1	/ /	1 /	II.	072	7/	
	out/			4 .		17	ZY.	1,0	o/.	.//		HH		<i>! [:]</i>
Send Results To	<u>. MU</u>	Mile	<u>A mo</u> e	Halver	MV.		7U	16		14	3	7	//	
Sample I.D.	Sata	Time	Matrix	No. of	_/_	1/2/	S/;	2//	0/;		1/1	7/		
		930	S	Container	汉	1	70	1	7	7	/\ <u>\</u>		11	Observations/Comments
DP.8.3.090203	المالح	900	3	3	100	\(\frac{1}{2}\)	<u> </u>	1000	NATE:			_	1	Allow water samples to settle, collect
DR9.3.890203		1050		7	长	213	쏫	X	27.91%				1	aliquot from clear portion
E65619-5.619-GA	1	1850		7			YV	Μ.	<u> </u>				1-1-	NWTPH-Dx:
IDP-11-11-090203	+	1235			13			-	<u> </u>					run acid wash/eilica gel cleanup
DP-12-12-090203	-	1200		4			1	V-						run samples standardized to
DR.13/2-090203	+	1405		7			<u> </u>	\triangle					<u> </u>	
top. 14.11.090203	 	1330		- <u>V</u> 7	1×		رد							Analyze for EPH if no specificproduct identified
DV.15/2.070203	 	1525		3		$\frac{\times \times}{\times}$	X	\sim						
IDP64.3.090203	+	1540	3.	(b) (Z)	X		k >	0				é		VOC/BTEX/VPH (soll):non-preserved
IDP-8-6W-20303		0943	Woder		188							j		☐ ★ preserved w/methanol ☐ ★ preserved w/methanol
IDP-9-GW-090203	-	1100		15 15		-13		X			$egin{array}{c} \egin{array}{c} \egin{array}$	1		preserved w/sodium bisulfate
IDP-12-CW-090203	1	13.30	Water		X	- ×	X	X			X			Freeze upon receipt
IDP-14-6W-090203	-	1400	water	15	×			X		$ \mathcal{X} $	<u> </u>			L Dissolved metal water samples field filtered
TIZ -010303		1100	Water	15 3	X	_ K	\times	X		X.	X.			Other Motals: AS, Co. Cr.
	+-					$-\!\!\!\!/\!$		77.5	_	_				Lu, Pb, Hg, ZN
										_	4			
A CONTRACTOR OF THE CONTRACTOR	\forall			4			1							
Special Shipment/Handling		5		1011 pt - 1011	<u> </u>	<u>J.</u>			1				Meth	od of
or Storage Requirements	la sa		10 00 00 00 00 00 00 00 00 00 00 00 00 0		The Teagles					د رياسلامين			Shipr	nent
Relinquished by Kolu	F	leceived b				B	eling	uish	ed b	y				Received by
	∫ s	Ignature .	Hayo	St. Jed Semma industries	000 57.45747.8	∣ s	gnatu	re					·	Signature
Printed Name		6/1/Mi	Haye	<u> </u>	a						***************************************			
	1	rinted Name	T s	***		P	rinted	Nam	е	0 2700	1,54 F. 34			Printed Name
Company]	C	отрапу	(a)	AND THE STREET STREET, SANS		_ დ	ompa	ny	.,	*****	***************************************			Company
Date 2/3/09 Time 1752	ם 🌡 🤦	ate <u>2/2</u>		Time 110	\mathcal{O}_{z}	l n	ate	¢+			-	_		
				The state of	14 12 12 12 12 12 12 12 12 12 12 12 12 12	-19	<u> </u>	adá.			_ Tim	θ		DateTime

Eric Branson

From:

"Kelly Bottem" <kellyb@arilabs.com>
"Eric Branson" <eric@arilabs.com>

To: Sent:

Friday, February 06, 2009 4:13 PM

Subject:

Change order

Kelly,

Please run sample IDP-10-2-090203 (ARI sample # OL03D) for NWTPH-Dx.

Thank you,

Kathryn F. Hartley

Project Scientist

Landau Associates

130 2nd Avenue South

Edmonds, WA 98020

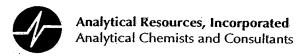
(425) 329-0268

----Original Message----

From: Kelly Bottem [mailto:kellyb@arilabs.com]

Sent: Friday, February 06, 2009 3:47 PM

To: Lewis, Kathryn L; Kathryn Hartley; Anne Halvorsen; Kris


Hendrickson

Subject: Re: OL03 rush HCID for Isaacson With the corrected COC.

Sent the first set without the corrected COC.

Have a great weekend.

K

Cooler Receipt Form

ARI Client: Landon DOLV Project Name: Bock Isalison COC No: Delivered by: Hand Tracking No:	
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES NO Were custody papers included with the cooler? NO Were custody papers properly filled out (ink, signed, etc.) YES NO Record cooler temperature (recommended 2.0-6.0 °C for chemistry 4.8, 2.4 1.4 (a.to °C Cooler Accepted by:	
Log-In Phase:	_
Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? NA Was sufficient amount of sample sent in each bottle? Date: 7 1 1 1 1 1 1 1 1 1	
Explain discrepancies or negative responses:	
Sample TB, was observed to have Pewsize bubbles in lot 3 vials Sample 1 bP-14- GW-090203 and 10P-8-GW-090202 were observed to have Peasize and small bubbles in 1 of 5 vials respectively Added Sim for cpAHS By: WM Date: 2-4-09	•

Page 1 of 2

Lab Sample ID: OL03K

LIMS ID: 09-3401

Matrix: Water Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 14:33 Instrument/Analyst: NT4/LJR

Sample ID: IDP-8-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50 -7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: IDP-8-GW-090203

SAMPLE

Lab Sample ID: OL03K QC Report No: OL03-The Boeing Company

LIMS ID: 09-3401 Project: BOEING ISAACSON Matrix: Water

025173.090

Date Analyzed: 02/10/09 14:33

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	36.8%	2-Fluorobiphenyl	42.4%
d14-p-Terphenyl	64.4%	d4-1,2-Dichlorobenzene	27.0%
d5-Phenol	17.1%	2-Fluorophenol	19.4%
2,4,6-Tribromophenol	62.1%	d4-2-Chlorophenol	34.9%

Page 1 of 2

Lab Sample ID: OL03K LIMS ID: 09-4560

Matrix: Water

Data Release Authorized: \(\sigma_1 > \)

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 13:19 Instrument/Analyst: NT4/LJR

Sample ID: IDP-8-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: TUKWILA/PHASE II

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-5 7 -6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimetry iphenatace	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Matrix: Water

Sample ID: IDP-8-GW-090203

SAMPLE

Lab Sample ID: OL03K QC Report No: OL03-The Boeing Company LIMS ID: 09-4560

Project: TUKWILA/PHASE II

025173.090

Date Analyzed: 02/14/09 13:19

S3-32-9 Acenaphthene	CAS Number	Analyte	RL	Result
100-02-7 4-Nitrophenol 5.0 < 5.0	83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9 Dibenzofuran 1.0 < 1.0	51-28-5	2,4-Dinitrophenol	10	< 10 U
606-20-2 2,6-Dinitrotoluene 5.0 < 5.0	100-02-7	4-Nitrophenol	5.0	< 5.0 U
121-14-2 2,4-Dinitrotoluene 5.0 < 5.0	132-64-9	Dibenzofuran	1.0	< 1.0 U
84-66-2 Diethylphthalate 1.0 < 1.0	606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
7005-72-3 4-Chlorophenyl-phenylether 1.0 < 1.0	121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
86-73-7 Fluorene 1.0 < 1.0	84-66-2	Diethylphthalate	1.0	< 1.0 U
100-01-6 4-Nitroaniline 5.0 < 5.0	7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
534-52-1 4,6-Dinitro-2-Methylphenol 10 < 10 U	86-73-7	Fluorene	1.0	< 1.0 U
86-30-6 N-Nitrosodiphenylamine 1.0 < 1.0	100-01-6	4-Nitroaniline	5.0	< 5.0 U
101-55-3 4-Bromophenyl-phenylether 1.0 < 1.0	534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
118-74-1 Hexachlorobenzene 1.0 < 1.0	86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
87-86-5 Pentachlorophenol 5.0 < 5.0	101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
85-01-8 Phenanthrene 1.0 < 1.0	118-74-1	Hexachlorobenzene	1.0	< 1.0 U
86-74-8 Carbazole 1.0 < 1.0	87-86-5	Pentachlorophenol	5.0	< 5.0 U
120-12-7 Anthracene 1.0 < 1.0	85-01-8	Phenanthrene	1.0	< 1.0 U
84-74-2 Di-n-Butylphthalate 1.0 < 1.0	86-74-8	Carbazole	1.0	< 1.0 U
206-44-0 Fluoranthene 1.0 < 1.0	120-12-7	Anthracene	1.0	< 1.0 U
129-00-0 Pyrene 1.0 < 1.0	84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
85-68-7 Butylbenzylphthalate 1.0 < 1.0	206-44-0	Fluoranthene	1.0	< 1.0 U
91-94-1 3,3'-Dichlorobenzidine 5.0 < 5.0	129-00-0	Pyrene	1.0	< 1.0 U
91-94-1 3,3'-Dichlorobenzidine 5.0 < 5.0	85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
117-81-7 bis(2-Ethylhexyl)phthalate 1.0 < 1.0	91-94-1		5.0	< 5.0 U
218-01-9 Chrysene 1.0 < 1.0 U	56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-84-0 Di-n-Octyl phthalate 1.0 < 1.0 U	117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
205-99-2 Benzo(b) fluoranthene 1.0 < 1.0	218-01-9	Chrysene	1.0	< 1.0 U
205-99-2 Benzo(b) fluoranthene 1.0 < 1.0	117-84-0		1.0	< 1.0 U
50-32-8 Benzo(a)pyrene 1.0 < 1.0	205-99-2		1.0	< 1.0 U
193-39-5 Indeno(1,2,3-cd)pyrene 1.0 < 1.0 U	207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
193-39-5 Indeno(1,2,3-cd)pyrene 1.0 < 1.0 U	50-32-8	Benzo (a) pyrene	1.0	< 1.0 U
53-70-3 Dibenz(a,h)anthracene 1.0 < 1.0 U 191-24-2 Benzo(g,h,i)perylene 1.0 < 1.0 U	193-39-5		1.0	< 1.0 U
191-24-2 Benzo(g,h,i) perylene 1.0 $<$ 1.0 U	53-70-3		1.0	< 1.0 U
	191-24-2		1.0	< 1.0 U
	90-12-0	<u> </u>	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	46.8%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	66.9%	2-Fluorophenol	67.7%
2,4,6-Tribromophenol	86.9%	d4-2-Chlorophenol	70.7%

Page 1 of 2

Sample ID: IDP-9-GW-090203

SAMPLE

Lab Sample ID: OL03L

LIMS ID: 09-3402 Matrix: Water

Data Release Authorized:

Date Extracted: 02/06/09

Date Analyzed: 02/10/09 15:07

Instrument/Analyst: NT4/LJR

Reported: 02/12/09

d: **A**

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 Ŭ
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 Ŭ
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ü
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 Ü
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: IDP-9-GW-090203

SAMPLE

Lab Sample ID: OL03L LIMS ID: 09-3402

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Matrix: Water
Date Analyzed: 02/10/09 15:07

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55 <i>-</i> 3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	60.0% 73.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	56.0% 57.2%
d5-Phenol	12.9%	2-Fluorophenol	24.1%
2,4,6-Tribromophenol	58.7%	d4-2-Chlorophenol	51.2%

Page 1 of 2

Lab Sample ID: OL03L LIMS ID: 09-4561

Matrix: Water

Data Release Authorized:

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 13:54 Instrument/Analyst: NT4/LJR Sample ID: IDP-9-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: TUKWILA/PHASE II

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Sample ID: IDP-9-GW-090203 SAMPLE

QC Report No: OL03-The Boeing Company

Lab Sample ID: OL03L LIMS ID: 09-4561

Project: TUKWILA/PHASE II

Matrix: Water

025173.090

Date Analyzed: 02/14/09 13:54

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 Ŭ
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	81.6%	2-Fluorobiphenyl	80.0%
d14-p-Terphenyl	83.2%	d4-1,2-Dichlorobenzene	72.4%
d5-Phenol	75.2%	2-Fluorophenol	74.9%
2,4,6-Tribromophenol	82.1%	d4-2-Chlorophenol	77.1%

Page 1 of 2

Sample ID: IDP-12-GW-090203

SAMPLE

Lab Sample ID: OLO3M

LIMS ID: 09-3403 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Date Extracted: 02/06/09 Sample Amount: 500 mL
Date Analyzed: 02/10/09 15:42 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT4/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: IDP-12-GW-090203

SAMPLE

Lab Sample ID: OL03M

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3403

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/10/09 15:42

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno $(1,2,3-cd)$ pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	21.5%	2-Fluorobiphenyl	20.4%
d14-p-Terphenyl	35.9%	d4-1,2-Dichlorobenzene	19.6%
d5-Phenol	6.1%	2-Fluorophenol	9.5%
2,4,6-Tribromophenol	28.0%	d4-2-Chlorophenol	19.0%

Page 1 of 2

Matrix: Water

Lab Sample ID: OL03M

LIMS ID: 09-4562

Reported: 02/17/09

QC Report No: OL03-The Boeing Company

SAMPLE

Project: TUKWILA/PHASE II

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 14:29 Instrument/Analyst: NT4/LJR

Data Release Authorized:

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50 - 1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
J J = 0 J = 2	5 MICIOMILITAIO	J	

Page 2 of 2

Sample ID: IDP-12-GW-090203

SAMPLE

Lab Sample ID: OL03M QC Report No: OL03-The Boeing Company

LIMS ID: 09-4562 Project: TUKWILA/PHASE II
Matrix: Water 025173.090

Date Analyzed: 02/14/09 14:29

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55 - 3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
	- -		

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	68.4%
d14-p-Terphenyl	74.0%	d4-1,2-Dichlorobenzene	57.6%
d5-Phenol	61.1%	2-Fluorophenol	59.7%
2,4,6-Tribromophenol	78.4%	d4-2-Chlorophenol	62.4%

Page 1 of 2

LIMS ID: 09-3404 Matrix: Water

Lab Sample ID: OL03N

QC Report No: OL03-The Boeing Company

SAMPLE

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09 Sample Amount: 500 mL
Date Analyzed: 02/10/09 16:16 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT4/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 Ŭ
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 Ŭ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: IDP-14-GW-090203

SAMPLE

Lab Sample ID: OL03N

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3404

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/10/09 16:16

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	40.8%	2-Fluorobiphenyl	44.8%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	32.7%
d5-Phenol	17.8%	2-Fluorophenol	23.2%
2,4,6-Tribromophenol	74.7%	d4-2-Chlorophenol	38.9%

Page 1 of 2

Sample ID: IDP-14-GW-090203

SAMPLE

Lab Sample ID: OL03N

LIMS ID: 09-4563 Matrix: Water

Data Release Authorized:

Date Extracted: 02/16/09

Date Analyzed: 02/20/09 00:38

Instrument/Analyst: NT4/LJR

Reported: 02/20/09

QC Report No: OL03-The Boeing Company

Project: TUKWILA/PHASE II

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95 -4 8-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
121-14-2 84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: IDP-14-GW-090203

SAMPLE

Lab Sample ID: OL03N QC Report No: OL03-The Boeing Company

LIMS ID: 09-4563 Project: TUKWILA/PHASE II Matrix: Water

025173.090

Date Analyzed: 02/20/09 00:38

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	20
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	67.2%	2-Fluorobiphenyl	69.2%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	68.3%	2-Fluorophenol	65.1%
2.4.6-Tribromophenol	78.9%	d4-2-Chlorophenol	67.5%

Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 12:49 Instrument/Analyst: NT4/LJR QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-020609 METHOD BLANK

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Lab Sample ID: MB-020609 LIMS ID: 09-3401

Matrix: Water Date Analyzed: 02/10/09 12:49

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86- 7 4-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00 -0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	62.8%	2-Fluorobiphenyl	58.4%
d14-p-Terphenyl	83.6%	d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	30.7%	2-Fluorophenol	45.6%
2.4.6-Tribromophenol	70.9%	d4-2-Chlorophenol	69.1%

Page 1 of 2

Lab Sample ID: MB-021209

LIMS ID: 09-4560 Matrix: Water

Data Release Authorized:

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 11:35 Instrument/Analyst: NT4/LJR

Sample ID: MB-021209 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: TUKWILA/PHASE II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 Ŭ
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 Ŭ
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	ຸ< 5.0 ປັ
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 Ŭ

Sample ID: MB-021209 METHOD BLANK

Lab Sample ID: MB-021209

QC Report No: OL03-The Boeing Company

LIMS ID: 09-4560

Project: TUKWILA/PHASE II

Matrix: Water

025173.090

Date Analyzed: 02/14/09 11:35

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86 -7 3-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo (a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(q,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	70.4%
d14-p-Terphenyl	82.4%	d4-1,2-Dichlorobenzene	61.2%
d5-Phenol	72.0%	2-Fluorophenol	70.9%
2,4,6-Tribromophenol	74.9%	d4-2-Chlorophenol	74.1%

Page 1 of 2

Lab Sample ID: MB-021609 LIMS ID: 09-3404

Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Date Extracted: 02/16/09 Date Analyzed: 02/19/09 18:52 Instrument/Analyst: NT4/LJR

Sample ID: MB-021609 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-021609 METHOD BLANK

Lab Sample ID: MB-021609 LIMS ID: 09-3404 QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Matrix: Water Date Analyzed: 02/19/09 18:52

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	75.6%	2-Fluorobiphenyl	71.2%
d14-p-Terphenyl	104%	d4-1,2-Dichlorobenzene	59.6%
d5-Phenol	75.7%	2-Fluorophenol	71.2%
2.4.6-Tribromophenol	70.4%	d4-2-Chlorophenol	75.2%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP TO	TUO T
		_					50.0 0	CO 10	2
MB-020609	62.8%	58.4%	83.6%	64.4%	30.7%*	45.6%*	70.9%	69.1%	2
LCS-020609	67.2%	67.6%	78.4%	69.2%	33.3%*	48.5%*	80.3%	75.2%	2
LCSD-020609	63.2%	69.6%	84.4%	65.2%	32.0%*	45.6%*	85.9%	69.9%	2
IDP-8-GW-090203	36.8%*	42.4%	64.4%	27.0%*	17.1%*	19.4%*	62.1%	34.9%*	5
IDP-9-GW-090203	60.0%	56.0%	73.6%	57.2%	12.9%*	24.1%*	58.7%	51.2%	2
IDP-12-GW-090203	21.5%*	20.4%*	35.9%	19.6%*	6.1%*	9.5%*	28.0%*	19.0%*	7
MB-021609	75.6%	71.2%	104%	59.6%	75.7%	71.2%	70.4%	75.2%	0
LCS-021609	81.2%	77.2%	94.8%	72.0%	81.6%	76.5%	84.8%	79.7%	0
LCSD-021609	80.8%	80.0%	96.4%	61.6%	81.1%	73.1%	84.0%	76.8%	0
IDP-14-GW-090203	40.8%	44.8%	74.8%	32.7%	17.8%*	23.2%*	74.7%	38.9%*	3
MB-021209	74.8%	70.4%	82.4%	61.2%	72.0%	70.9%	74.9%	74.1%	0
LCS-021209	76.0%	71.2%	90.0%	65.6%	79.2%	72.5%	93.1%	75.5%	0
LCSD-021209	70.0%	75.2%	82.0%	59.2%	67.7%	63.7%	90.9%	65.6%	0
TDP-8-GW-090203	74.8%	77.2%	46.8%	65.6%	66.9%	67.7%	86.9%	70.7%	0
TDP-9-GW-090203	81.6%	80.0%	83.2%	72.4%	75.2%	74.9%	82.1%	77.1%	0
IDP-12-GW-090203	66.0%	68.4%	74.0%	57.6%	61.1%	59.7%	78.4%	62.4%	0
IDP-14-GW-090203	67.2%	69.2%	74.8%	54.8%	68.3%	65.1%	78.9%	67.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	· =	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 09-3401 to 09-4563

Page 1 of 2

Sample ID: LCS-020609

LCS/LCSD

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Lab Sample ID: LCS-020609 LIMS ID: 09-3401

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted LCS/LCSD: 02/06/09

Date Analyzed LCS: 02/10/09 13:24

LCSD: 02/10/09 13:59

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

GPC Cleanup: NO

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	7.5	25.0	30.0%	7.2	25.0	28.8%	3.0%
Bis-(2-Chloroethyl) Ether	18.7	25.0	74.8%	17.9	25.0	71.6%	4.4%
2-Chlorophenol	18.1	25.0	72.4%	16.9	25.0	67.6%	6.9%
1,3-Dichlorobenzene	16.7	25.0	66.8%	16.1	25.0	64.4%	3.7%
1,4-Dichlorobenzene	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Benzyl Alcohol	18.2	50.0	36.4%	18.3	50.0	36.6%	0.5%
1,2-Dichlorobenzene	17.6	25.0	70.4%	17.0	25.0	68.0%	3.5%
2-Methylphenol	16.1	25.0	64.4%	15.6	25.0	62.4%	3.2%
2,2'-Oxybis(1-Chloropropane	14.3	25.0	57.2%	13.8	25.0	55.2%	3.6%
4-Methylphenol	30.9	50.0	61.8%	30.7	50.0	61.4%	0.6%
N-Nitroso-Di-N-Propylamine	16.5	25.0	66.0%	16.4	25.0	65.6%	0.6%
Hexachloroethane	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Nitrobenzene	16.2	25.0	64.8%	15.7	25.0	62.8%	3.1%
Isophorone	17.8	25.0	71.2%	18.1	25.0	72.4%	1.7%
2-Nitrophenol	18.4	25.0	73.6%	17.8	25.0	71.2%	3.3%
2,4-Dimethylphenol	12.9	25.0	51.6%	12.5	25.0	50.0%	3.1%
Benzoic Acid	28.2	75.0	37.6%	29.6	75.0	39.5%	4.8%
bis(2-Chloroethoxy) Methane	17.7	25.0	70.8%	17.6	25.0	70.4%	0.6%
2,4-Dichlorophenol	18.4	25.0	73.6%	18.0	25.0	72.0%	2.2%
1,2,4-Trichlorobenzene	16.4	25.0	65.6%	16.0	25.0	64.0%	2.5%
Naphthalene	17.8	25.0	71.2%	17.3	25.0	69.2%	2.8%
4-Chloroaniline	< 5.0	60.0	NA%	< 5.0	60.0	NA%	NA
Hexachlorobutadiene	16.1	25.0	64.4%	15.5	25.0	62.0%	3.8%
4-Chloro-3-methylphenol	18.5	25.0	74.0%	19.1	25.0	76.4%	3.2%
2-Methylnaphthalene	18.3	25.0	73.2%	18.1	25.0	72.4%	1.1%
Hexachlorocyclopentadiene	45.9	75.0	61.2%	45.8	75.0	61.1%	0.2%
2,4,6-Trichlorophenol	17.3	25.0	69.2%	18.1	25.0	72.4%	4.5%
2,4,5-Trichlorophenol	18.2	25.0	72.8%	18.4	25.0	73.6%	1.1%
2-Chloronaphthalene	17.5	25.0	70.0%	17.9	25.0	71.6%	2.3%
2-Nitroaniline	16.7	25.0	66.8%	17.6	25.0	70.4%	5.2%
Dimethylphthalate	19.1	25.0	76.4%	20.4	25.0	81.6%	6.6%
Acenaphthylene	18.3	25.0	73.2%	19.0	25.0	76.0%	3.8%
3-Nitroaniline	17.7	64.0	27.7%	19.7	64.0	30.8%	10.7%
Acenaphthene	17.9	25.0	71.6%	18.4	25.0	73.6%	2.8%
2,4-Dinitrophenol	75.8	75.0	101%	85.7	75.0	114%	12.3%
4-Nitrophenol	9.6	25.0	38.4%	10.2	25.0	40.8%	6.3%
Dibenzofuran	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
2,6-Dinitrotoluene	18.6	25.0	74.4%	19.8	25.0	79.2%	6.2%
2,4-Dinitrotoluene	19.7	25.0	78.8%	21.1	25.0	84.4%	6.9%
Diethylphthalate	19.1	25.0	76.4%	20.7	25.0	82.8%	8.0%
4-Chlorophenyl-phenylether	18.0	25.0	72.0%	19.0	25.0	76.0%	5.4%
Fluorene	19.2	25.0	76.8%	20.1	25.0	80.4%	4.6%
4-Nitroaniline	17.6	25.0	70.4%	18.7	25.0	74.8%	6.1%
4,6-Dinitro-2-Methylphenol	68.3	75.0	91.1%	76.8	75.0	102%	11.7%
N-Nitrosodiphenylamine	16.9	25.0	67.6%	18.1	25.0	72.4%	6.9%
w withosogibuenliamine	10.7	23.0	37.00	~~.*	23.0	· = • • •	

Page 2 of 2

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3401

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/10/09 13:24

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	16.8	25.0	67.2%	18.1	25.0	72.4%	7.4%
Hexachlorobenzene	17.2	25.0	68.8%	18.4	25.0	73.6%	6.7%
Pentachlorophenol	18.7	25.0	74.8%	20.5	25.0	82.0%	9.2%
Phenanthrene	18.8	28.0	67.1%	20.0	28.0	71.4%	6.2%
Carbazole	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
Anthracene	18.3	25.0	73.2%	19.5	25.0	78.0%	6.3%
Di-n-Butylphthalate	19.3	25.0	77.2%	20.8	25.0	83.2%	7.5%
Fluoranthene	19.0	25.0	76.0%	20.3	25.0	81.2%	6.6%
Pyrene	19.7	25.0	78.8%	21.4	25.0	85.6%	8.3%
Butylbenzylphthalate	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
3,3 -Dichlorobenzidine	34.0	64.0	53.1%	41.0	64.0	64.1%	18.7%
Benzo(a)anthracene	18.5	25.0	74.0%	20.2	25.0	80.8%	8.8%
bis(2-Ethylhexyl)phthalate	19.8	25.0	79.2%	22.0	25.0	88.0%	10.5%
Chrysene	18.6	28.0	66.4%	19.8	28.0	70.7%	6.2%
Di-n-Octyl phthalate	18.4	25.0	73.6%	19.9	25.0	79.6%	7.8%
Benzo(b) fluoranthene	20.1	25.0	80.4%	22.5	25.0	90.0%	11.3%
Benzo(k)fluoranthene	19.9	28.0	71.1%	21.2	28.0	75.7%	6.3%
Benzo(a)pyrene	15.5	25.0	62.0%	17.3	25.0	69.2%	11.0%
Indeno(1,2,3-cd)pyrene	17.6	25.0	70.4%	19.4	25.0	77.6%	9.7%
Dibenz(a,h)anthracene	17.7	25.0	70.8%	19.4	25.0	77.6%	9.2%
Benzo(g,h,i)perylene	16.9	25.0	67.6%	18.5	25.0	74.0%	9.0%
1-Methylnaphthalene	19.5	25.0	78.0%	19.8	25.0	79.2%	1.5%

Semivolatile Surrogate Recovery

•		
	LCS	LCSD
d5-Nitrobenzene	67.2%	63.2%
2-Fluorobiphenyl	67.6%	69.6%
d14-p-Terphenyl	78.4%	84.4%
d4-1,2-Dichlorobenzene	69.2%	65.2%
d5-Phenol	33.3%	32.0%
2-Fluorophenol	48.5%	45.6%
2,4,6-Tribromophenol	80.3%	85.9%
d4-2-Chlorophenol	75.2%	69.9%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: LCS-021209

LIMS ID: 09-4560 Matrix: Water

Data Release Authorized:

Reported: 02/17/09

QC Report No: OL03-The Boeing Company

Project: TUKWILA/PHASE II

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Sample ID: LCS-021209

LCS/LCSD

Date Extracted LCS/LCSD: 02/12/09

Date Analyzed LCS: 02/14/09 12:09

LCSD: 02/14/09 12:44

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

GPC Cleanup: NO

Spike LCS Spike LCSD LCSD Added-LCSD Recovery RPD LCS Added-LCS Recovery Analyte 66.0% 16.7% 25.0 78.0% 16.5 25.0 19.5 Phenol 25.0 72.8% 16.1 25.0 64.4% 12.2% Bis-(2-Chloroethyl) Ether 18.2 25.0 16.2 64.8% 13.3% 2-Chlorophenol 18.5 25.0 74.0% 25.0 46.4% 8.3% 50.4% 11.6 1,3-Dichlorobenzene 12.6 25.0 12.0 25.0 48.0% 8.0% 1,4-Dichlorobenzene 13.0 25.0 52.0% 50.0 11.8% 70.2% 31.2 62.4% Benzyl Alcohol 35.1 50.0 25.0 49.6% 9.2% 54.4% 12.4 13.6 25.0 1,2-Dichlorobenzene 25.0 64.8% 1.4.9% 18.8 25.0 75.2% 16.2 2-Methylphenol 25.0 67.2% 12.3% 76.0% 16.8 25.0 2,2'-Oxybis(1-Chloropropane)19.0 38.9 50.0 77.8% 34.1 50.0 68.2% 13.2% 4-Methylphenol 25.0 10.6% 68.0% 17.0 N-Nitroso-Di-N-Propylamine 18.9 25.0 75.6% 25.0 45.6% 10.6 25.0 42.4% 7.3% Hexachloroethane 11.4 74.8% 17.6 25.0 70.4% 6.1% 18.7 25.0 Nitrobenzene 25.0 78.4% 2.5% 20.1 25.0 80.4% 19.6 Isophorone 70.4% 73.6% 17.6 25.0 4.4% 2-Nitrophenol 18.4 25.0 66.8% 7.5% 72.0% 16.7 25.0 18.0 25.0 2,4-Dimethylphenol 59.9 75.0 79.9% 6.8% 75.0 85.5% Benzoic Acid 64.1 71.2% 2.8% 25.0 73.2% 17.8 25.0 bis(2-Chloroethoxy) Methane 18.3 2.7% 76.4% 18.6 25.0 74.4% 2,4-Dichlorophenol 19.1 25.0 56.0% 1.4% 14.0 25.0 1,2,4-Trichlorobenzene 55.2% 13.8 25.0 25.0 65.6% 15.7 25.0 62.8% 4.4% 16.4 Naphthalene 87.5% 6.8% 60.0 93.7% 52.5 60.0 4-Chloroaniline 56.2 47.6% 12.7 25.0 50.8% 6.5% 25.0 Hexachlorobutadiene 11.9 20.1 25.0 80.4% 3.9% 4-Chloro-3-methylphenol 20.9 25.0 83.6% 25.0 67.2% 1.2% 17.0 25.0 68.0% 16.8 2-Methylnaphthalene 41.7% 75.0 38.6 75.0 51.5% 20.9% Hexachlorocyclopentadiene 31.3 20.4 25.0 81.6% 7.6% 2,4,6-Trichlorophenol 18.9 25.0 75.6% 25.0 82.8% 5.5% 20.7 19.6 25.0 78.4% 2,4,5-Trichlorophenol 64.8% 17.8 25.0 71.2% 9.4% 25.0 2-Chloronaphthalene 16.2 0.9% 2-Nitroaniline 21.8 25.0 87.2% 22.0 25.0 88.0% 84.8% 0.9% 25.0 Dimethylphthalate 21.0 25.0 84.0% 21.2 77.6% 5.3% 25.0 73.6% 19.4 25.0 18.4 Acenaphthylene 99.4% 3.28 65.7 64.0 103% 63.6 64.0 3-Nitroaniline 19.8 25.0 79.2% 7.3% 25.0 73.6% Acenaphthene 18.4 93.0 75.0 124% 93.8 75.0 125% 0.9% 2,4-Dinitrophenol 2.7% 25.0 87.2% 25.0 89.6% 21.8 4-Nitrophenol 22.4 77.2% 20.2 25.0 80.88 4.6% 25.0 Dibenzofuran 19.3 0.0% 21.2 25.0 84.8% 2,6-Dinitrotoluene 21.2 25.0 84.8%

Sample ID: LCS-021209 LCS/LCSD

Lab Sample ID: LCS-021209

QC Report No: OL03-The Boeing Company

LIMS ID: 09-4560

Project: TUKWILA/PHASE II

Matrix: Water

025173.090

Date Analyzed: 02/14/09 12:09

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrotoluene	22.0	25.0	88.0%	21.6	25.0	86.4%	1.8%
Diethylphthalate	20.4	25.0	81.6%	20.2	25.0	80.8%	1.0%
4-Chlorophenyl-phenylether	19.7	25.0	78.8%	20.2	25.0	80.8%	2.5%
Fluorene	20.4	25.0	81.6%	20.8	25.0	83.2%	1.9%
4-Nitroaniline	21.4	25.0	85.6%	20.4	25.0	81.6%	4.8%
4,6-Dinitro-2-Methylphenol	76.5	75.0	102%	80.2	75.0	107%	4.7%
N-Nitrosodiphenylamine	19.2	25.0	76.8%	20.2	25.0	80.8%	5.1%
4-Bromophenyl-phenylether	18.9	25.0	75.6%	20.7	25.0	82.8%	9.1%
Hexachlorobenzene	19.6	25.0	78.4%	21.6	25.0	86.4%	9.7%
Pentachlorophenol	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
Phenanthrene	20.5	25.0	82.0%	21.6	25.0	86.4%	5.2%
Carbazole	20.8	25.0	83.2%	21.2	25.0	84.8%	1.9%
Anthracene	19.8	25.0	79.2%	21.0	25.0	84.0%	5.9%
Di-n-Butylphthalate	20.4	25.0	81.6%	21.3	25.0	85.2%	4.3%
Fluoranthene	20.2	25.0	80.8%	21.9	25.0	87.6%	8.1%
Pyrene	21.1	25.0	84.4%	19.6	25.0	78.4%	7.4%
Butylbenzylphthalate	20.9	25.0	83.6%	20.2	25.0	80.8%	3.4%
3,3'-Dichlorobenzidine	52.2	64.0	81.6%	57.5	64.0	89.8%	9.7%
Benzo(a)anthracene	20.4	25.0	81.6%	21.4	25.0	85.6%	4.8%
bis(2-Ethylhexyl)phthalate	21.0	25.0	84.0%	20.8	25.0	83.2%	1.0%
Chrysene	19.9	25.0	79.6%	20.9	25.0	83.6%	4.9%
Di-n-Octyl phthalate	20.2	25.0	80.8%	21.8	25.0	87.2%	7.6%
Benzo(b) fluoranthene	19.6	25.0	78.4%	22.0	25.0	88.0%	11.5%
Benzo(k) fluoranthene	22.6	25.0	90.4%	21.1	25.0	84.4%	6.9%
Benzo(a)pyrene	16.6	25.0	66.4%	17.8	25.0	71.2%	7.0%
Indeno(1,2,3-cd)pyrene	19.4	25.0	77.6%	22.0	25.0	88.0%	12.6%
Dibenz(a,h)anthracene	18.9	25.0	75.6%	21.5	25.0	86.0%	12.9%
Benzo(q,h,i)perylene	18.4	25.0	73.6%	20.7	25.0	82.8%	11.8%
1-Methylnaphthalene	18.0	25.0	72.0%	17.8	25.0	71.2%	1.1%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	70.0%
2-Fluorobiphenyl	71.2%	75.2%
d14-p-Terphenyl	90.0%	82.0%
d4-1,2-Dichlorobenzene	65.6%	59.2%
d5-Phenol	79.2%	67.7%
2-Fluorophenol	72.5%	63.7%
2,4,6-Tribromophenol	93.1%	90.9%
d4-2-Chlorophenol	75.5%	65.6%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: LCS-021609

LIMS ID: 09-3404 Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Date Extracted LCS/LCSD: 02/16/09

Date Analyzed LCS: 02/19/09 19:27

LCSD: 02/19/09 20:01

Instrument/Analyst LCS: NT4/LJR

LCSD: NT4/LJR

GPC Cleanup: NO

Sample ID: LCS-021609 LCS/LCSD

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	18.8	25.0	75.2%	19.0	25.0	76.0%	1.1%
Bis-(2-Chloroethyl) Ether	19.4	25.0	77.6%	18.8	25.0	75.2%	3.1%
2-Chlorophenol	19.8	25.0	79.2%	19.3	25.0	77.2%	2.6%
1,3-Dichlorobenzene	17.1	25.0	68.4%	12.0	25.0	48.0%	35.1%
1,4-Dichlorobenzene	17.0	25.0	68.0%	12.4	25.0	49.6%	31.3%
Benzyl Alcohol	37.0	50.0	74.0%	37.4	50.0	74.8%	1.1%
1,2-Dichlorobenzene	17.3	25.0	69.2%	13.0	25.0	52.0%	28.4%
2-Methylphenol	19.1	25.0	76.4%	19.5	25.0	78.0%	2.1%
2,2'-Oxybis(1-Chloropropane		25.0	77.6%	19.0	25.0	76.0%	2.1%
4-Methylphenol	39.8	50.0	79.6%	41.0	50.0	82.0%	3.0%
N-Nitroso-Di-N-Propylamine	18.7	25.0	74.8%	18.7	25.0	74.8%	0.0%
Hexachloroethane	17.1	25.0	68.4%	10.5	25.0	42.0%	47.8%
Nitrobenzene	20.7	25.0	82.8%	20.5	25.0	82.0%	1.0%
Isophorone	20.6	25.0	82.4%	20.8	25.0	83.2%	1.0%
2-Nitrophenol	20.0	25.0	80.0%	20.1	25.0	80.4%	0.5%
2,4-Dimethylphenol	14.5	25.0	58.0%	17.4	25.0	69.6%	18.2%
Benzoic Acid	59.9	75.0	79.9%	61.5	75.0	82.0%	2.6%
bis(2-Chloroethoxy) Methane	19.6	25.0	78.4%	19.9	25.0	79.6%	1.5%
2,4-Dichlorophenol	20.4	25.0	81.6%	21.3	25.0	85.2%	4.3%
1,2,4-Trichlorobenzene	18.7	25.0	74.8%	14.4	25.0	57.6%	26.0%
Naphthalene	19.0	25.0	76.0%	17.6	25.0	70.4%	7.7%
4-Chloroaniline	51.0	60.0	85.0%	53.3	60.0	88.8%	4.4%
Hexachlorobutadiene	19.3	25.0	77.2%	11.8	25.0	47.2%	48.2%
4-Chloro-3-methylphenol	20.0	25.0	80.0%	20.4	25.0	81.6%	2.0%
2-Methylnaphthalene	19.0	25.0	76.0%	17.6	25.0	70.4%	7.7%
Hexachlorocyclopentadiene	40.9	75.0	54.5%	31.3	75.0	41.7%	26.6%
2,4,6-Trichlorophenol	21.0	25.0	84.0%	21.8	25.0	87.2%	3.7%
2,4,5-Trichlorophenol	21.4	25.0	85.6%	22.0	25.0	88.0%	2.8%
2-Chloronaphthalene	19.9	25.0	79.6%	19.3	25.0	77.2%	3.1%
2-Nitroaniline	22.5	25.0	90.0%	22.8	25.0	91.2%	1.3%
Dimethylphthalate	20.6	25.0	82.4%	20.9	25.0	83.6%	1.4%
Acenaphthylene	19.5	25.0	78.0%	19.6	25.0	78.4%	0.5%
3-Nitroaniline	61.0	64.0	95.3%	63.6	64.0	99.4%	4.2%
Acenaphthene	20.1	25.0	80.4%	20.2	25.0	80.8%	0.5%
2,4-Dinitrophenol	87.0	75.0	116%	87.4	75.0	117%	0.5%
4-Nitrophenol	21.6	25.0	86.4%	21.4	25.0	85.6%	0.9%
Dibenzofuran	20.0	25.0	80.0%	20.2	25.0	80.8%	1.0%
2,6-Dinitrotoluene	20.5	25.0	82.0%	20.8	25.0	83.2%	1.5%
2,4-Dinitrotoluene	20.4	25.0	81.6%	20.4	25.0	81.6%	0.0%
Diethylphthalate	19.0	25.0	76.0%	19.1	25.0	76.4%	0.5%
4-Chlorophenyl-phenylether	19.5	25.0	78.0%	19.8	25.0	79.2%	1.5%
Fluorene	20.3	25.0	81.2%	20.3	25.0	81.2%	0.0%
4-Nitroaniline	18.0	25.0	72.0%	18.2	25.0	72.8%	1.1%
4,6-Dinitro-2-Methylphenol	79.3	75.0	106%	79.6	75.0	106%	0.4%
N-Nitrosodiphenylamine	20.8	25.0	83.2%	21.3	25.0	85.2%	2.4%

Page 2 of 2

Lab Sample ID: LCS-021609

LIMS ID: 09-3404 Matrix: Water

Date Analyzed: 02/19/09 19:27

Sample ID: LCS-021609 LCS/LCSD

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	21.4	25.0	85.6%	21.8	25.0	87.2%	1.9%
Hexachlorobenzene	21.9	25.0	87.6%	23.3	25.0	93.2%	6.2%
Pentachlorophenol	17.3	25.0	69.2%	17.8	25.0	71.2%	2.8%
Phenanthrene	21.6	25.0	86.4%	22.3	25.0	89.2%	3.2%
Carbazole	19.7	25.0	78.8%	20.3	25.0	81.2%	3.0%
Anthracene	20.5	25.0	82.0%	21.0	25.0	84.0%	2.4%
Di-n-Butylphthalate	19.4	25.0	77.6%	19.8	25.0	79.2%	2.0%
Fluoranthene	18.9	25.0	75.6%	19.2	25.0	76.8%	1.6%
Pyrene	24.0	25.0	96.0%	24.3	25.0	97.2%	1.2%
Butylbenzylphthalate	21.8	25.0	87.2%	21.9	25.0	87.6%	0.5%
3,3'-Dichlorobenzidine	51.8	64.0	80.9%	50.6	64.0	79.1%	2.3%
Benzo(a)anthracene	22.4	25.0	89.6%	22.8	25.0	91.2%	1.8%
bis(2-Ethylhexyl)phthalate	21.9	25.0	87.6%	24.6	25.0	98.4%	11.6%
Chrysene	20.8	25.0	83.2%	21.3	25.0	85.2%	2.4%
Di-n-Octyl phthalate	22.0	25.0	88.0%	22.6	25.0	90.4%	2.7%
Benzo(b) fluoranthene	19.0	25.0	76.0%	21.2	25.0	84.8%	10.9%
Benzo(k) fluoranthene	22.0	25.0	88.0%	20.5	25.0	82.0%	7.1%
Benzo(a) pyrene	17.1	25.0	68.4%	17.6	25.0	70.4%	2.9%
Indeno(1,2,3-cd)pyrene	27.9	25.0	112%	29.2	25.0	117%	4.6%
Dibenz (a, h) anthracene	26.8	25.0	107%	28.3	25.0	113%	5.4%
Benzo(g,h,i)perylene	28.9	25.0	116%	30.3	25.0	121%	4.7%
1-Methylnaphthalene	19.8	25.0	79.2%	18.8	25.0	75.2%	5.2%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	81.2%	80.8%
2-Fluorobiphenyl	77.2%	80.0%
d14-p-Terphenyl	94.8%	96.4%
d4-1,2-Dichlorobenzene	72.0%	61.6%
d5-Phenol	81.6%	81.1%
2-Fluorophenol	76.5%	73. 1 %
2,4,6-Tribromophenol	84.8%	84.0%
d4-2-Chlorophenol	79.7%	76.8%

Results reported in μ g/L RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: OL03B

LIMS ID: 09-3392 Matrix: Soil

Data Release Authorized: Reported: 02/13/09

Date Extracted: 02/06/09 Date Analyzed: 02/06/09 21:59 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-8-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090 Date Sampled: 02/03/09

Date Received: 02/03/09

Sample Amount: 7.80 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Sample ID: IDP-8-3-090203

SAMPLE

Lab Sample ID: OL03B

LIMS ID: 09-3392 Matrix: Soil

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/06/09 21:59

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 Ŭ
85-01-8	Phenanthrene	64	< 64 Ŭ
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84 - 74 - 2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 Ŭ
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 Ŭ
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 Ŭ
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 Ŭ
53-70-3	Dibenz(a,h)anthracene	64	< 64 Ŭ
191-24-2	Benzo(g,h,i)perylene	64	< 64 Ŭ
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	64.8% 74.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	60.8% 71.6%
d14-p-Terphenyl	, =		
d5-Phenol	45.9%	2-Fluorophenol	34.9%
2.4.6-Tribromophenol	11.8%	d4-2-Chlorophenol	51.7%

Page 1 of 2

Sample ID: IDP-8-3-090203 REEXTRACT

Lab Sample ID: OL03B LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized: Reported: 02/18/09

025173.090
Date Sampled: 02/03/09
Date Received: 02/03/09

Date Extracted: 02/13/09
Date Analyzed: 02/17/09 16:38

Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample Amount: 7.79 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.5%

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-6 0 -1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 Ŭ
88-75-5	2-Nitrophenol	64	< 64 Ŭ
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 Ŭ
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 Ŭ
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Sample ID: IDP-8-3-090203

REEXTRACT

Lab Sample ID: OL03B

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3392

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/17/09 16:38

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a) anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b) fluoranthene	64	< 64 U
207-08-9	Benzo(k) fluoranthene	64	< 64 U
50-32-8	Benzo (a) pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	69.2%	2-Fluorobiphenyl	67.6%
d14-p-Terphenyl	79.2%	d4-1,2-Dichlorobenzene	76.4%
d5-Phenol	68.0%	2-Fluorophenol	60.5%
2.4.6-Tribromophenol	56.3%	d4-2-Chlorophenol	69.3%

Sample ID: IDP-9-3-090203

SAMPLE

Lab Sample ID: OL03C

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized: Reported: 02/13/09

ed: //

Date Extracted: 02/06/09 Date Analyzed: 02/06/09 22:34 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 8.16 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.8%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	61	< 61 U
111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
95-57-8	2-Chlorophenol	61	< 61 U
541-73-1	1,3-Dichlorobenzene	61	< 61 U
106-46-7	1,4-Dichlorobenzene	61	< 61 U
100-51-6	Benzyl Alcohol	61	< 61 U
95-50-1	1,2-Dichlorobenzene	61	< 61 U
95-48-7	2-Methylphenol	61	< 61 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
106-44-5	4-Methylphenol	61	< 61 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	61	< 61 U
98-95-3	Nitrobenzene	61	< 61 U
78-59-1	Isophorone	61	< 61 U
88-75-5	2-Nitrophenol	61	< 61 U
105-67-9	2,4-Dimethylphenol	61	< 61 U
65-85-0	Benzoic Acid	610	< 610 U
111-91-1	bis(2-Chloroethoxy) Methane	61	< 61 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	61	< 61 U
91-20-3	Naphthalene	61	< 61 U
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	61	< 61 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	61	< 61 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	61	< 61 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	61	< 61 U
208-96-8	Acenaphthylene	61	< 61 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	61	< 61 U
51-28-5	2,4-Dinitrophenol	610	< 610 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	61	< 61 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Page 2 of 2

Sample ID: IDP-9-3-090203

SAMPLE

Lab Sample ID: OL03C

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3393

Project: BOEING ISAACSON

025173.090

Matrix: Soil

Date Analyzed: 02/06/09 22:34

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	65.6%	2-Fluorobiphenyl	63.6%
d14-p-Terphenyl	75.6%	d4-1,2-Dichlorobenzene	73.6%
d5-Phenol	50.9%	2-Fluorophenol	57.3%
2.4.6-Tribromophenol	80.5%	d4-2-Chlorophenol	64.0%

Sample ID: IDP-9-3-090203 MATRIX SPIKE

Lab Sample ID: OL03C

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

: *[*]

Date Extracted: 02/06/09
Date Analyzed: 02/06/09 23:09
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 7.86 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.8%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	
111-44-4	Bis-(2-Chloroethyl) Ether	64	
95-57 - 8	2-Chlorophenol	64	
541-73 - 1	1,3-Dichlorobenzene	64	
106-46-7	1,4-Dichlorobenzene	64	
100-51-6	Benzyl Alcohol	64	
95-50-1	1,2-Dichlorobenzene	64	
95-48-7	2-Methylphenol	64	
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	
106-44-5	4-Methylphenol	64	
621-64-7	N-Nitroso-Di-N-Propylamine	320	-
67-72-1	Hexachloroethane	64	-
98-95-3	Nitrobenzene	64	_
78-59-1	Isophorone	64	
88-75-5	2-Nitrophenol	64	
105-67-9	2,4-Dimethylphenol	64	
65-85-0	Benzoic Acid	640	
111-91-1	bis(2-Chloroethoxy) Methane	64	
120-83-2	2,4-Dichlorophenol	320	
120-82-1	1,2,4-Trichlorobenzene	64	
91-20-3	Naphthalene	64	
106-47-8	4-Chloroaniline	320	-
87-68-3	Hexachlorobutadiene	64	-
59-50-7	4-Chloro-3-methylphenol	320	-
91-57-6	2-Methylnaphthalene	64	
77-47-4	Hexachlorocyclopentadiene	320	
88-06-2	2,4,6-Trichlorophenol	320	
95-95-4	2,4,5-Trichlorophenol	320	
91-58-7	2-Chloronaphthalene	64	
88-74-4	2-Nitroaniline	320	
131-11-3	Dimethylphthalate	64	
208-96-8	Acenaphthylene	64	
99-09-2	3-Nitroaniline	320	
83-32-9	Acenaphthene	64	
51-28-5	2,4-Dinitrophenol	640	
100-02-7	4-Nitrophenol	320	
132-64-9	Dibenzofuran	64	
606-20-2	2,6-Dinitrotoluene	320	
121-14-2	2,4-Dinitrotoluene	320	

Page 2 of 2

Sample ID: IDP-9-3-090203 MATRIX SPIKE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Lab Sample ID: OL03C LIMS ID: 09-3393 Matrix: Soil

Date Analyzed: 02/06/09 23:09

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	-
7005-72-3	4-Chlorophenyl-phenylether	64	
86-73-7	Fluorene	64	
100-01-6	4-Nitroaniline	320	
534-52-1	4,6-Dinitro-2-Methylphenol	640	
86-30-6	N-Nitrosodiphenylamine	64	
101-55-3	4-Bromophenyl-phenylether	64	
118-74-1	Hexachlorobenzene	64	
87-86-5	Pentachlorophenol	320	
85-01-8	Phenanthrene	64	
86-74-8	Carbazole	64	
120-12-7	Anthracene	64	
84-74-2	Di-n-Butylphthalate	64	
206-44-0	Fluoranthene	64	
129-00-0	Pyrene	64	
85-68-7	Butylbenzylphthalate	64	
91-94-1	3,3'-Dichlorobenzidine	320	
56-55-3	Benzo(a)anthracene	64	
117-81-7	bis(2-Ethylhexyl)phthalate	64	
218-01-9	Chrysene	64	
117-84-0	Di-n-Octyl phthalate	64	
205-99-2	Benzo(b)fluoranthene	64	
207-08-9	Benzo(k)fluoranthene	64	
50-32-8	Benzo(a)pyrene	64	
193-39-5	Indeno(1,2,3-cd)pyrene	64	
53-70-3	Dibenz(a,h)anthracene	64	
191-24-2	Benzo(q,h,i)perylene	64	
90-12-0	1-Methylnaphthalene	64	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	68.8%	2-Fluorobiphenyl	71.6%
d14-p-Terphenyl	78.4%	d4-1,2-Dichlorobenzene	73.6%
d5-Phenol	60.8%	2-Fluorophenol	60.5%
2,4,6-Tribromophenol	92.5%	d4-2-Chlorophenol	68.8%

Sample ID: IDP-9-3-090203

MATRIX SPIKE DUPLICATE

Lab Sample ID: OL03C

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized: Reported: 02/13/09

Project: BOEING ISAACSON
025173.090
Date Sampled: 02/03/09

QC Report No: OL03-The Boeing Company

Date Sampled: 02/03/09 Date Received: 02/03/09

Date Extracted: 02/06/09
Date Analyzed: 02/12/09 21:25
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample Amount: 7.96 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.8%

111-44-4 Bis-(2-Chloroethyl) Ether 63 95-57-8 2-Chlorophenol 63 104-1073-1 1,3-Dichlorobenzene 63 106-46-7 1,4-Dichlorobenzene 63 100-51-6 Benzyl Alcohol 63 95-50-1 1,2-Dichlorobenzene 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 106-44-5 4-Methylphenol 63 108-64-7 N-Nitroso-Di-N-Propylamine 310 107-72-1 Hexachloroethane 63 108-95-3 Nitrobenzene 63 105-67-9 2,4-Dimethylphenol 63 105-67-9 2,4-Dimethylphenol 63 111-91-1 bis(2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 1106-47-8 4-Chloroaniline 63 106-47-8 4-Chloroaniline 63 106-47-8 4-Chloroaniline 63 107-57-6 2-Methylnaphthalene 63 105-95-95-4 2,4,5-Trichlorophenol 310 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63 191-58-7 2-Chloronaphthalene 63	CAS Number	Analyte	RL	Result
95-57-8	108-95-2	Phenol	63	
541-73-1 1,3-Dichlorobenzene 63 106-46-7 1,4-Dichlorobenzene 63 95-50-1 1,2-Dichlorobenzene 63 95-50-1 1,2-Dichlorobenzene 63 95-48-7 2-Methylphenol 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 106-44-5 4-Methylphenol 63 621-64-7 N-Nitroso-Di-N-Propylamine 310 67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 88-75-5 1.Sophorone 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-83-2 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 91-20-3 Hexachlorobutadiene 63 <td>111-44-4</td> <td>Bis-(2-Chloroethyl) Ether</td> <td>63</td> <td></td>	111-44-4	Bis-(2-Chloroethyl) Ether	63	
106-46-7 1,4-Dichlorobenzene 63 100-51-6 Benzyl Alcohol 63 95-50-1 1,2-Dichlorobenzene 63 95-48-7 2-Methylphenol 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 106-44-5 4-Methylphenol 63 621-64-7 N-Nitroso-Di-N-Propylamine 310 98-95-3 Nitrobenzene 63 98-95-3 Nitrobenzene 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 105-67-9 2,4-Dimethylphenol 63 110-91-1 bis(2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 191-58-7 2-Methylnaphthalene 63 191-58-7 2-Chlorophenol 310 21-58-7 2-Chlorophenol 310 21-58-7 2-Chlorophenol 310 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63 21-58-7 2-Chloronaphthalene 63	95-57 - 8	2-Chlorophenol	63	
100-51-6 Benzyl Alcohol 63 95-50-1 1,2-Dichlorobenzene 63 95-48-7 2-Methylphenol 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 106-44-5 4-Methylphenol 63 106-44-5 4-Methylphenol 63 621-64-7 N-Nitroso-Di-N-Propylamine 310 67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 98-95-3 Nitrobenzene 63 98-95-1 Isophorone 63 98-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 105-67-9 2,4-Dimethylphenol 63 11-91-1 bis(2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-83-2 2,4-Trichlorobenzene 63 106-47-8 4-Chloroaniline 310 106-47-8 4-Chloroaniline 310 191-57-6 2-Methylnaphthalene 63 191-57-6 2-Methylnaphthalene 63 195-95-4 2,4,5-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 191-11-3 Dimethylphthalate 63 191-28-5 2,4-Dinitrophenol 310 191-28-5 2,4-Dinitrophenol 310 191-28-5 2,4-Dinitrophenol 310 192-64-9 Dibenzofuran 63 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol 310 100-02-7 4-Nitrophenol	541-73-1	1,3-Dichlorobenzene	63	
95-50-1 1,2-Dichlorobenzene 63 95-48-7 2-Methylphenol 63 108-60-1 2,2'-Oxybis(1-Chloropropane) 63 106-44-5 4-Methylphenol 63 621-64-7 N-Nitroso-Di-N-Propylamine 310 67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 105-67-9 2,4-Dimethylphenol 63 111-91-1 bis(2-Chloroethoxy) Methane 63 120-82-1 1,2,4-Trichlorobenzene 63 112-98-3 Naphthalene 63 120-82-1 1,2,4-Trichlorobenzene 63 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 159-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 91-57-6 2-Methylnaphthalene 63 91-58-7 2-Chloronaphthalene 63 91-58-9-9-9-2 3-Nitroaniline 310 91-58-9-9-9-2 3-Nitroaniline 310 91-58-9-9-9-2 3-Nitroaniline 310 91-58-9-9-9-2 3-Nitroaniline 310 91-58-9-9-9-9-2 3-Nitroaniline 310 91-58-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	106-46-7	1,4-Dichlorobenzene	63	
95-48-7	100-51-6	Benzyl Alcohol	63	
95-48-7	95-50-1	1,2-Dichlorobenzene	63	
108-60-1 2,2'-Oxybis (1-Chloropropane) 63 106-44-5 4-Methylphenol 63 621-64-7 N-Nitroso-Di-N-Propylamine 310 67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 78-59-1 Isophorone 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 105-67-9 2,4-Dimethylphenol 63 11-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-83-2 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 99-50-7 4-Chloro-3-methylphenol 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,6-Trichlorophenol 310	95-48-7		63	
106-44-5	108-60-1		63	
621-64-7 N-Nitroso-Di-N-Propylamine 310 67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 98-95-1 Isophorone 63 88-75-5 2-Nitrophenol 63 65-85-0 Benzoic Acid 630 65-85-0 Benzoic Acid 630 120-83-2 2,4-Dinhethylphenol 310 120-83-2 1,2,4-Trichlorophenol 310 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Hexachlorobutadiene 63 91-57-6 2-Methylnaphthalene 63 91-57-6 2-Methylnaphthalene 63 91-57-6 2-Methylnaphthalene 63 91-57-6 2-Methylnaphthalene 63 91-57-6 2-Methylnaphthalene 63 91-58-7 2-Chloronaphthalene 91-58-7 2-Chloronaphthalen	106-44-5		63	
67-72-1 Hexachloroethane 63 98-95-3 Nitrobenzene 63 78-59-1 Isophorone 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 95-50-7 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 31 98-90-7 2-Methylnaphthalene 63 98-90-8 2,4,5-Trichlorophenol 310 98-95-9 2,4,5-Trichlorophenol 310 <td< td=""><td>621-64-7</td><td></td><td>310</td><td></td></td<>	621-64-7		310	
78-59-1 Isophorone 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 91-20-4 91-20-7 2-Methylnaphthalene 310 95-95-4 2,4,6-Trichlorophenol 310 98-95-4 2,	67-72-1	_ 	63	
78-59-1 Isophorone 63 88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 99-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 88-74-4 2-Nitroaniline 310		Nitrobenzene	63	
88-75-5 2-Nitrophenol 63 105-67-9 2,4-Dimethylphenol 63 65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 88-74-4 2-Nitroaniline 310 83-32-9 Acenaphthene 63 81-28-5 2,4-Dinitrophenol 63 <		Isophorone	63	
105-67-9 2,4-Dimethylphenol 63 65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 88-06-2 2,4,6-Trichlorophenol 310 88-06-2 2,4,6-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 88-74-4 2-Nitroaniline 310 308-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 310		•	63	
65-85-0 Benzoic Acid 630 111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 310-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 100-02-7 4-Nitrophenol 310 <			63	
111-91-1 bis (2-Chloroethoxy) Methane 63 120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 88-06-2 2,4,6-Trichlorophenol 310 88-06-2 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 83-32-9 Acenaphthene 63 132-64-9 Dibenzofuran 63 132-64-9 Dibenzofuran 63 132-64-9 Dibenzofuran 63 100-02-7 4-Dinitrotoluene 310		• -	630	
120-83-2 2,4-Dichlorophenol 310 120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 88-06-2 2,4,6-Trichlorophenol 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 31-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310 </td <td></td> <td></td> <td>63</td> <td></td>			63	
120-82-1 1,2,4-Trichlorobenzene 63 91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 310 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310 </td <td></td> <td></td> <td>310</td> <td></td>			310	
91-20-3 Naphthalene 63 106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310		-	63	
106-47-8 4-Chloroaniline 310 87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			63	
87-68-3 Hexachlorobutadiene 63 59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 81-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			310	
59-50-7 4-Chloro-3-methylphenol 310 91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 83-32-9 Acenaphthene 63 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 310 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310		Hexachlorobutadiene	63	
91-57-6 2-Methylnaphthalene 63 77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			310	
77-47-4 Hexachlorocyclopentadiene 310 88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 89-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			63	
88-06-2 2,4,6-Trichlorophenol 310 95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			310	
95-95-4 2,4,5-Trichlorophenol 310 91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			310	
91-58-7 2-Chloronaphthalene 63 88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
88-74-4 2-Nitroaniline 310 131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			63	
131-11-3 Dimethylphthalate 63 208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310		. - .		
208-96-8 Acenaphthylene 63 99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
99-09-2 3-Nitroaniline 310 83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
83-32-9 Acenaphthene 63 51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
51-28-5 2,4-Dinitrophenol 630 100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
100-02-7 4-Nitrophenol 310 132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310			_	
132-64-9 Dibenzofuran 63 606-20-2 2,6-Dinitrotoluene 310				
606-20-2 2,6-Dinitrotoluene 310				
	121-14-2	2,4-Dinitrotoluene	310	

Page 2 of 2

Sample ID: IDP-9-3-090203

MATRIX SPIKE DUPLICATE

Lab Sample ID: OL03C

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3393

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/12/09 21:25

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	63	
7005-72-3	4-Chlorophenyl-phenylether	63	
86-73-7	Fluorene	63	
100-01-6	4-Nitroaniline	310	
534-52-1	4,6-Dinitro-2-Methylphenol	630	
86-30-6	N-Nitrosodiphenylamine	63	
101-55-3	4-Bromophenyl-phenylether	63	
118-74-1	Hexachlorobenzene	63	
87-86-5	Pentachlorophenol	310	
8 5-01-8	Phenanthrene	63	
86-74-8	Carbazole	63	
120-12-7	Anthracene	63	
84-74-2	Di-n-Butylphthalate	63	
206-44-0	Fluoranthene	63	
129-00-0	Pyrene	63	
85-68-7	Butylbenzylphthalate	63	
91-94-1	3,3'-Dichlorobenzidine	310	
56-55-3	Benzo(a) anthracene	63	
117-81-7	bis(2-Ethylhexyl)phthalate	63	
218-01-9	Chrysene	63	-
117-84-0	Di-n-Octyl phthalate	63	=
205-99-2	Benzo(b) fluoranthene	63	
207-08-9	Benzo(k)fluoranthene	63	
50-32-8	Benzo(a)pyrene	63	
193-39-5	Indeno(1,2,3-cd)pyrene	63	
53-70-3	Dibenz(a,h)anthracene	63	
191-24-2	Benzo(g,h,i)perylene	63	
90-12-0	1-Methylnaphthalene	63	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	59.6%	2-Fluorobiphenyl	60.4%
d14-p-Terphenyl	78.0%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	62.9%	2-Fluorophenol	60.8%
2.4.6-Tribromophenol	82.1%	d4-2-Chlorophenol	63.7%

Page 1 of 2

Lab Sample ID: OL03F LIMS ID: 09-3396

Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Date Extracted: 02/06/09
Date Analyzed: 02/12/09 21:57
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-12-12-090203
SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 7.85 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 24.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 Ŭ
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 Ŭ
208-96-8	Acenaphthylene	64	< 64 Ŭ
99-09-2	3-Nitroaniline	320	< 320 U
83-3 2- 9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Sample ID: IDP-12-12-090203

SAMPLE

QC Report No: OL03-The Boeing Company Lab Sample ID: OL03F

LIMS ID: 09-3396 Project: BOEING ISAACSON Matrix: Soil

025173.090

Date Analyzed: 02/12/09 21:57

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 Ŭ
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in μ g/kg (ppb)

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	78.4%	d4-1,2-Dichlorobenzene	78.0%
d5-Phenol	67.7%	2-Fluorophenol	69.1%
2 4 6-Tribromophenol	82.9%	d4-2-Chlorophenol	72.5%

Page 1 of 2

Lab Sample ID: OL03H

LIMS ID: 09-3398 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Date Extracted: 02/06/09 Date Analyzed: 02/12/09 22:30 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-14-11-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 8.54 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 25.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	58	< 58 Ü
111-44-4	Bis-(2-Chloroethyl) Ether	58	< 58 Ŭ
95-57-8	2-Chlorophenol	58	< 58 U
541-73-1	1,3-Dichlorobenzene	58	< 58 U
106-46-7	1,4-Dichlorobenzene	58	< 58 U
100-51-6	Benzyl Alcohol	58	< 58 Ŭ
95-50-1	1,2-Dichlorobenzene	58	< 58 Ŭ
95-48-7	2-Methylphenol	58	< 58 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	58	< 58 U
106-44-5	4-Methylphenol	58	< 58 U
621-64-7	N-Nitroso-Di-N-Propylamine	290	< 290 U
67-72 - 1	Hexachloroethane	58	< 58 U
98-95-3	Nitrobenzene	58	< 58 U
78-59-1	Isophorone	58	< 58 U
88-75-5	2-Nitrophenol	58	< 58 Ŭ
105-67-9	2,4-Dimethylphenol	58	< 58 U
65-85-0	Benzoic Acid	580	< 580 Ŭ
111-91-1	bis(2-Chloroethoxy) Methane	58	< 58 U
120-83-2	2,4-Dichlorophenol	290	< 290 U
120-82-1	1,2,4-Trichlorobenzene	58	< 58 U
91-20-3	Naphthalene	58	< 58 U
106-47-8	4-Chloroaniline	290	< 290 U
87-68-3	Hexachlorobutadiene	58	< 58 U
59-50-7	4-Chloro-3-methylphenol	290	< 290 U
91-57-6	2-Methylnaphthalene	58	< 58 Ŭ
77-47-4	Hexachlorocyclopentadiene	290	< 290 U
88-06-2	2,4,6-Trichlorophenol	290	< 290 U
95-95-4	2,4,5-Trichlorophenol	290	< 290 U
91-58-7	2-Chloronaphthalene	58	< 58 Ŭ
88-74-4	2-Nitroaniline	290	< 290 Ŭ
131-11-3	Dimethylphthalate	58	< 58 Ü
208-96-8	Acenaphthylene	58	< 58 U
99-09-2	3-Nitroaniline	290	< 290 Ŭ
83-32-9	Acenaphthene	58	< 58 Ü
51-28-5	2,4-Dinitrophenol	580	< 580 U
100-02-7	4-Nitrophenol	290	< 290 U
132-64-9	Dibenzofuran	58	< 58 U
606-20-2	2,6-Dinitrotoluene	290	< 290 U
121-14-2	2,4-Dinitrotoluene	290	< 290 U

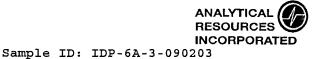
Page 2 of 2

Sample ID: IDP-14-11-090203 SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090


Lab Sample ID: OL03H LIMS ID: 09-3398 Matrix: Soil

Date Analyzed: 02/12/09 22:30

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	58	< 58 U
7005-72-3	4-Chlorophenyl-phenylether	58	< 58 U
86-73-7	Fluorene	58	< 58 Ŭ
100-01-6	4-Nitroaniline	290	< 290 U
534-52-1	4,6-Dinitro-2-Methylphenol	580	< 580 U
86-30-6	N-Nitrosodiphenylamine	58	< 58 U
101-55-3	4-Bromophenyl-phenylether	58	< 58 U
118-74-1	Hexachlorobenzene	58	< 58 U
87-86-5	Pentachlorophenol	290	< 290 U
85-01-8	Phenanthrene	58	< 58 U
86-74-8	Carbazole	58	< 58 U
120-12-7	Anthracene	58	< 58 U
84-74-2	Di-n-Butylphthalate	58	< 58 U
206-44-0	Fluoranthene	58	< 58 U
129-00-0	Pyrene	58	< 58 U
85-68-7	Butylbenzylphthalate	58	< 58 U
91-94-1	3,3'-Dichlorobenzidine	290	< 290 U
56-55-3	Benzo(a) anthracene	58	< 58 U
117-81-7	bis(2-Ethylhexyl)phthalate	58	< 58 U
218-01-9	Chrysene	58	< 58 U
117-84-0	Di-n-Octyl phthalate	58	< 58 U
205-99-2	Benzo(b) fluoranthene	58	< 58 U
207-08-9	Benzo(k) fluoranthene	58	< 58 U
50-32-8	Benzo(a) pyrene	58	< 58 U
193-39-5	Indeno(1,2,3-cd)pyrene	58	< 58 U
53-70-3	Dibenz(a,h)anthracene	58	< 58 U
191-24-2	Benzo(g,h,i)perylene	58	< 58 U
90-12-0	1-Methylnaphthalene	58	< 58 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol	64.0% 80.8% 64.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	63.2% 74.0% 64.8% 69.1%
2,4,6-Tribromophenol	79.2%	d4-2-Chlorophenol	69.16

Page 1 of 2

Matrix: Soil

LIMS ID: 09-3400

GPC Cleanup: No

Lab Sample ID: OL03J QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON 025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Data Release Authorized: Reported: 02/13/09

Date Extracted: 02/06/09
Date Analyzed: 02/12/09 23:03
Instrument/Analyst: NT6/LJR

Sample Amount: 8.55 g-dry-wt Final Extract Volume: 0.5 mL

SAMPLE

final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	58	< 58 U
111-44-4	Bis-(2-Chloroethyl) Ether	58	< 58 U
95-57-8	2-Chlorophenol	58	< 58 U
541-73-1	1,3-Dichlorobenzene	58	< 58 U
106-46-7	1,4-Dichlorobenzene	58	< 58 U
100-51-6	Benzyl Alcohol	58	< 58 U
95-50-1	1,2-Dichlorobenzene	58	< 58 U
95-48-7	2-Methylphenol	58	< 58 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	58	< 58 U
106-44-5	4-Methylphenol	58	< 58 U
621-64-7	N-Nitroso-Di-N-Propylamine	290	< 290 U
67-72-1	Hexachloroethane	58	< 58 U
98-95-3	Nitrobenzene	58	< 58 U
78-59-1	Isophorone	58	< 58 U
88-75-5	2-Nitrophenol	58	< 58 U
105-67-9	2,4-Dimethylphenol	58	< 58 U
65-85-0	Benzoic Acid	580	< 580 U
111-91-1	bis(2-Chloroethoxy) Methane	58	< 58 U
120-83-2	2,4-Dichlorophenol	290	< 290 U
120-82-1	1,2,4-Trichlorobenzene	58	< 58 U
91-20-3	Naphthalene	58	< 58 U
106-47-8	4-Chloroaniline	290	< 290 U
87-68-3	Hexachlorobutadiene	58	< 58 U
59-50-7	4-Chloro-3-methylphenol	290	< 290 U
91-57-6	2-Methylnaphthalene	58	< 58 U
77-47-4	Hexachlorocyclopentadiene	290	< 290 U
88-06-2	2,4,6-Trichlorophenol	290	< 290 U
95-95-4	2,4,5-Trichlorophenol	290	< 290 U
91-58-7	2-Chloronaphthalene	58	< 58 U
88-74-4	2-Nitroaniline	290	< 290 U
131-11-3	Dimethylphthalate	58	< 58 U
208-96-8	Acenaphthylene	58	< 58 U
99-09-2	3-Nitroaniline	290	< 290 U
83-32-9	Acenaphthene	58	< 58 U
51-28-5	2,4-Dinitrophenol	580	< 580 U
100-02-7	4-Nitrophenol	290	< 290 U
132-64-9	Dibenzofuran	58	< 58 U
606-20-2	2,6-Dinitrotoluene	290	< 290 U
121-14-2	2,4-Dinitrotoluene	290	< 290 U

Page 2 of 2

Sample ID: IDP-6A-3-090203

SAMPLE

Lab Sample ID: OL03J

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3400

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/12/09 23:03

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	58	< 58 U
7005-72-3	4-Chlorophenyl-phenylether	58	< 58 U
86-73-7	Fluorene	58	< 58 U
100-01-6	4-Nitroaniline	290	< 290 U
534-52-1	4,6-Dinitro-2-Methylphenol	580	< 580 U
86-30-6	N-Nitrosodiphenylamine	58	< 58 U
101-55-3	4-Bromophenyl-phenylether	58	< 58 U
118-74-1	Hexachlorobenzene	58	< 58 U
87-86 - 5	Pentachlorophenol	290	< 290 U
85-01-8	Phenanthrene	58	< 58 U
86-74-8	Carbazole	58	< 58 U
120-12-7	Anthracene	58	< 58 U
84-74-2	Di-n-Butylphthalate	58	< 58 U
206-44-0	Fluoranthene	58	< 58 U
129-00-0	Pyrene	58	< 58 U
85-68-7	Butylbenzylphthalate	58	< 58 U
91-94-1	3,3'-Dichlorobenzidine	290	< 290 U
56-55-3	Benzo(a) anthracene	58	< 58 U
117-81-7	bis(2-Ethylhexyl)phthalate	58	< 58 U
218-01-9	Chrysene	58	< 58 U
117-84-0	Di-n-Octyl phthalate	58	< 58 U
205-99-2	Benzo(b)fluoranthene	58	< 58 U
207-08-9	Benzo(k)fluoranthene	58	< 58 U
50-32-8	Benzo(a)pyrene	58	< 58 U
193-39-5	Indeno(1,2,3-cd)pyrene	58	< 58 U
53-70-3	Dibenz(a,h)anthracene	58	< 58 U
191-24-2	Benzo(g,h,i)perylene	58	< 58 U
90-12-0	1-Methylnaphthalene	58	< 58 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	64.4%
d14-p-Terphenyl	81.2%	d4-1,2-Dichlorobenzene	74.8%
d5-Phenol	55.2%	2-Fluorophenol	20.4%
2.4.6-Tribromophenol	2.7%	d4-2-Chlorophenol	38.4%

Page 1 of 2

Lab Sample ID: OL03J

LIMS ID: 09-3400 Matrix: Soil

Data Release Authorized: Reported: 02/18/09

Date Extracted: 02/13/09
Date Analyzed: 02/17/09 17:11
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: IDP-6A-3-090203
REEXTRACT

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 8.46 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
111-44-4	Bis-(2-Chloroethyl) Ether	59	< 59 U
95-57-8	2-Chlorophenol	59	< 59 U
541-73-1	1,3-Dichlorobenzene	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 U
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	59	< 59 U
106-44-5	4-Methylphenol	59	< 59 U
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	59	< 59 U
98-95-3	Nitrobenzene	59	< 59 U
78-59-1	Isophorone	59	< 59 U
88-75-5	2-Nitrophenol	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
111-91-1	bis(2-Chloroethoxy) Methane	59	< 59 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	< 59 U
106-47-8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	59	< 59 U
59-50-7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	59	< 59 U
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	59	< 59 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	< 59 U
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	59	< 59 U
51-28-5	2,4-Dinitrophenol	590	< 590 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	59	< 59 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

Page 2 of 2

Sample ID: IDP-6A-3-090203

REEXTRACT

Lab Sample ID: OL03J

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3400

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/17/09 17:11

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	59	< 59 U
7005-72-3	4-Chlorophenyl-phenylether	59	< 59 U
86-73-7	Fluorene	59	< 59 U
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	590	< 590 U
86-30-6	N-Nitrosodiphenylamine	59	< 59 U
101-55-3	4-Bromophenyl-phenylether	59	< 59 U
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	59	< 59 U
86-74-8	Carbazole	59	< 59 U
120-12-7	Anthracene	59	< 59 U
84-74-2	Di-n-Butylphthalate	59	< 59 U
206-44-0	Fluoranthene	59	< 59 U
129-00-0	Pyrene	59	< 59 U
85-68-7	Butylbenzylphthalate	59	< 59 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a) anthracene	59	< 59 U
117-81-7	bis(2-Ethylhexyl)phthalate	59	< 59 U
218-01-9	Chrysene	59	< 59 U
117-84-0	Di-n-Octyl phthalate	59	< 59 U
205-99-2	Benzo(b)fluoranthene	59	< 59 U
207-08-9	Benzo(k)fluoranthene	59	< 59 U
50-32-8	Benzo(a)pyrene	59	< 59 U
193-39-5	Indeno(1,2,3-cd)pyrene	59	< 59 U
53-70-3	Dibenz(a,h)anthracene	59	< 59 U
191-24-2	Benzo(g,h,i)perylene	59	< 59 U
90-12-0	1-Methylnaphthalene	59	< 59 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	76.0%	d4-1,2-Dichlorobenzene	70.4%
d5-Phenol	62.4%	2-Fluorophenol	44.5%
2.4.6-Tribromophenol	14.1%	d4-2-Chlorophenol	58.9%

Page 1 of 2

Lab Sample ID: MB-020609

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Date Extracted: 02/06/09 Date Analyzed: 02/06/09 15:05 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: MB-020609 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: MB-020609

METHOD BLANK

Lab Sample ID: MB-020609

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3393

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/06/09 15:05

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a) anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b) fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo (a) pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	68.8%	2-Fluorobiphenyl	69.2%
d14-p-Terphenyl	82.4%	d4-1,2-Dichlorobenzene	78.0%
d5-Phenol	68.3%	2-Fluorophenol	66.4%
2.4.6-Tribromophenol	68.3%	d4-2-Chlorophenol	72.5%

Page 1 of 2

Lab Sample ID: MB-021309

LIMS ID: 09-3400 Matrix: Soil

Data Release Authorized:

Reported: 02/18/09

Date Extracted: 02/13/09 Date Analyzed: 02/17/09 13:52 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: MB-021309 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64 -7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: MB-021309 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Lab Sample ID: MB-021309

LIMS ID: 09-3400 Matrix: Soil

Date Analyzed: 02/17/09 13:52

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 Ü
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 ปั
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 Ŭ
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 ปั
117-84-0	Di-n-Octyl phthalate	67	< 67 Ŭ
205-99-2	Benzo(b)fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 Ŭ
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	70.8%	2-Fluorobiphenyl	66.4%
d14-p-Terphenyl	80.4%	d4-1,2-Dichlorobenzene	79.2%
d5-Phenol	71.2%	2-Fluorophenol	68.8%
2,4,6-Tribromophenol	82.4%	d4-2-Chlorophenol	73.6%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
TDD 0 2 000202	64.8%	60.8%	74.0%	71.6%	45.9%	34.9%	11.8%*	51.7%	1
IDP-8-3-090203 IDP-8-3-090203 RE	69.2%	67.6%	79.2%	76.4%	68.0%	60.5%	56.3%	69.3%	0
MB-020609	68.8%	69.2%	82.4%	78.0%	68.3%	66.4%	68.3%	72.5%	0
LCS-020609	67.6%	73.2%	90.8%	72.0%	66.1%	63.2%	88.5%	68.0%	0
LCSD-020609	67.2%	70.0%	84.4%	73.2%	63.7%	62.9%	79.7%	68.8%	0
IDP-9-3-090203	65.6%	63.6%	75.6%	73.6%	50.9%	57.3%	80.5%	64.0%	0
IDP-9-3-090203 MS	68.8%	71.6%	78.4%	73.6%	60.8%	60.5%	92.5%	68.8%	0
IDP-9-3-090203 MSD	59.6%	60.4%	78.0%	65.6%	62.9%	60.8%	82.1%	63.7%	0
IDP-12-12-090203	66.4%	64.0%	78.4%	78.0%	67.7%	69.1%	82.9%	72.5%	0
IDP-14-11-090203	64.0%	63.2%	80.8%	74.0%	64.0%	64.8%	79.2%	69.1%	0
MB-021309	70.8%	66.4%	80.4%	7 9.2%	71.2%	68.8%	82.4%	73.6%	0
LCS-021309	67.2%	67.6%	84.0%	74.4%	70.7%	67.2%	84.8%	69.9%	0
LCSD-021309	69.2%	70.8%	82.4%	76.8%	72.5%	69.1%	84.0%	70.7%	0
IDP-6A-3-090203	66.4%	64.4%	81.2%	74.8%	55.2%	20.4%*	2.7%*	38.4%	2
IDP-6A-3-090203 RE	64.4%	65.2%	76.0%	70.4%	62.4%	44.5%	14.1%*	58.9%	1

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
		d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	=	d4-1,2-Dichlorobenzene	(30-160)	(30-160)
(PHL)	=	d5-Phenol	(30-160)	(30-160)
(2FP)	==	2-Fluorophenol	(30-160)	(30-160)
(TBP)	=	2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	=	d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 09-3392 to 09-3400

Page 1 of 2

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09

Date Received: 02/03/09

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Date Extracted LCS/LCSD: 02/06/09

Date Analyzed LCS: 02/06/09 15:40

LCSD: 02/06/09 16:14

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: NO

31k-	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	TC2	Added-LC5	Recovery	псэп	Added-LCSD	Recovery	RFD
Phenol	1050	1670	62.9%	1050	1670	62.9%	0.0%
Bis-(2-Chloroethyl) Ether	1050	1670	62.9%	1220	1670	73.1%	15.0%
2-Chlorophenol	1150	1670	68.9%	1180	1670	70.7%	2.6%
1,3-Dichlorobenzene	1130	1670	67.7%	1180	1670	70.7%	4.3%
1,4-Dichlorobenzene	1120	1670	67.1%	1180	1670	70.7%	5.2%
Benzyl Alcohol	1270	3330	38.1%	1670	3330	50.2%	27.2%
1,2-Dichlorobenzene	1120	1670	67.1%	1170	1670	70.1%	4.4%
2-Methylphenol	1080	1670	64.7%	1070	1670	64.1%	0.9%
2,2'-Oxybis(1-Chloropropane)1120	1670	67.1%	1160	1670	69.5%	3.5%
4-Methylphenol	2240	3330	67.3%	2250	3330	67.6%	0.4%
N-Nitroso-Di-N-Propylamine	1150	1670	68.9%	1160	1670	69.5%	0.9%
Hexachloroethane	1100	1670	65.9%	1160	1670	69.5%	5.3%
Nitrobenzene	1080	1670	64.7%	1100	1670	65.9%	1.8%
Isophorone	1180	1670	70.7%	1160	1670	69.5%	1.7%
2-Nitrophenol	1250	1670	74.9%	1290	1670	77.2%	3.1%
2,4-Dimethylphenol	1070	1670	64.1%	1030	1670	61.7%	3.8%
Benzoic Acid	2060	5000	41.2%	1250	5000	25.0%	48.9%
bis(2-Chloroethoxy) Methane	1160	1670	69.5%	1130	1670	67.7%	2.6%
2,4-Dichlorophenol	1250	1670	74.9%	1230	1670	73.7%	1.6%
1,2,4-Trichlorobenzene	1150	1670	68.9%	1180	1670	70.7%	2.6%
Naphthalene	1190	1670	71.3%	1200	1670	71.9%	0.8%
4-Chloroaniline	2600	4000	65.0%	2180	4000	54.5%	17.6%
Hexachlorobutadiene	1200	1670	71.9%	1230	1670	73.7%	2.5%
4-Chloro-3-methylphenol	1270	1670	76.0%	1200	1670	71.9%	5.7%
2-Methylnaphthalene	1170	1670	70.1%	1130	1670	67.7%	3.5%
Hexachlorocyclopentadiene	6440	5000	129%	6510	5000	130%	1.1%
2,4,6-Trichlorophenol	1320	1670	79.0%	1250	1670	74.9%	5.4%
2,4,5-Trichlorophenol	1290	1670	77.2%	1300	1670	77.8%	0.8%
2-Chloronaphthalene	1390	1670	83.2%	1350	1670	80.8%	2.9%
2-Nitroaniline	1340	1670	80.2%	1260	1670	75.4%	6.2%
Dimethylphthalate	1340	1670	80.2%	1240	1670	74.3%	7.8%
Acenaphthylene	1250	1670	74.9%	1200	1670	71.9%	4.1%
3-Nitroaniline	3570	4270	83.6%	3020	4270	70.7%	16.7%
Acenaphthene	1250	1670	74.9%	1200	1670	71.9%	4.1%

Page 2 of 2

Sample ID: LCSD-020609

LCS/LCSD

Lab Sample ID: LCS-020609

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3393

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed LCS: 02/06/09 15:40

LCSD: 02/06/09 16:14

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
2,4-Dinitrophenol	6120	5000	122%	5500	5000	110%	10.7%
4-Nitrophenol	1390	1670	83.2%	1210	1670	72.5%	13.8%
Dibenzofuran	1280	1670	76.6%	1220	1670	73.1%	4.8%
2,6-Dinitrotoluene	1440	1670	86.2%	1330	1670	79.6%	7.9%
2,4-Dinitrotoluene	1500	1670	89.8%	1400	1670	83.8%	6.9%
Diethylphthalate	1400	1670	83.8%	1290	1670	77.2%	8.2%
4-Chlorophenyl-phenylether	1380	1670	82.6%	1290	1670	77.2%	6.7%
Fluorene	1390	1670	83.2%	1300	1670	77.8%	6.7%
4-Nitroaniline	1390	1670	83.2%	1260	1670	75.4%	9.8%
4,6-Dinitro-2-Methylphenol	6970	5000	139%	6320	5000	126%	9.8%
N-Nitrosodiphenylamine	1380	1670	82.6%	1290	1670	77.2%	6.7%
4-Bromophenyl-phenylether	1360	1670	81.4%	1260	1670	75.4%	7.6%
Hexachlorobenzene	1340	1670	80.2%	1260	1670	75.4%	6.2%
Pentachlorophenol	853	1670	51.1%	828	1670	49.6%	3.0%
Phenanthrene	1420	1670	85.0%	1300	1670	77.8%	8.8%
Carbazole	1520	1670	91.0%	1390	1670	83.2%	8.9%
Anthracene	1420	1670	85.0%	1290	1670	77.2%	9.6%
Di-n-Butylphthalate	1600	1670	95.8%	1490	1670	89.2%	7.1%
Fluoranthene	1640	1670	98.2%	1490	1670	89.2%	9.6%
Pyrene	1450	1670	86.8%	1380	1670	82.6%	4.9%
Butylbenzylphthalate	1610	1670	96.4%	1500	1670	89.8%	7.1%
3,3'-Dichlorobenzidine	3780	4270	88.5%	3010	4270	70.5%	22.7%
Benzo(a)anthracene	1420	1670	85.0%	1330	1670	79.6%	6.5%
bis(2-Ethylhexyl)phthalate	1650	1670	98.8%	1620	1670	97.0%	1.8%
Chrysene	1290	1670	77.2%	1200	1670	71.9%	7.2%
Di-n-Octyl phthalate	1400	1670	83.8%	1310	1670	78.4%	6.6%
Benzo(b)fluoranthene	1560	1670	93.4%	1580	1670	94.6%	1.3%
Benzo(k)fluoranthene	1800	1670	108%	1460	1670	87.4%	20.9%
Benzo(a)pyrene	1360	1670	81.4%	1280	1670	76.6%	6.1%
Indeno(1,2,3-cd)pyrene	1620	1670	97.0%	1530	1670	91.6%	5.7%
Dibenz(a,h)anthracene	1560	1670	93.4%	1470	1670	88.0%	5.9%
Benzo(g,h,i)perylene	1550	1670	92.8%	1460	1670	87.4%	6.0%
1-Methylnaphthalene	1310	1670	78.4%	1280	1670	76.6%	2.3%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	67.6%	67.2%
2-Fluorobiphenyl	73.2%	70.0%
d14-p-Terphenyl	90.8%	84.4%
d4-1,2-Dichlorobenzene	72.0%	73.2%
d5-Phenol	66.1%	63.7%
2-Fluorophenol	63.2%	62.9%
2,4,6-Tribromophenol	88.5%	79.7%
d4-2-Chlorophenol	68.0%	68.8%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Date Extracted LCS/LCSD: 02/13/09

Date Analyzed LCS: 02/17/09 14:26

Instrument/Analyst LCS: NT6/LJR

LCSD: 02/17/09 14:59

LCSD: NT6/LJR

Page 1 of 2

Lab Sample ID: LCS-021309

LIMS ID: 09-3400

Matrix: Soil

Data Release Authorized:

Reported: 02/18/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

LCS/LCSD

Sample ID: LCS-021309

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

GPC Cleanup: NO

Percent Moisture: NA

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	1090	1670	65.3%	1130	1670	67.7%	3.6%
Bis-(2-Chloroethyl) Ether	966	1670	57.8%	1040	1670	62.3%	7.4%
2-Chlorophenol	1130	1670	67.7%	1170	1670	70.1%	3.5%
1,3-Dichlorobenzene	1110	1670	66.5%	1180	1670	70.7%	6.1%
1,4-Dichlorobenzene	1130	1670	67.7%	1200	1670	71.9%	6.0%
Benzyl Alcohol	1210	3330	36.3%	1010	3330	30.3%	18.0%
1,2-Dichlorobenzene	1130	1670	67.7%	1200	1670	71.9%	6.0%
2-Methylphenol	1100	1670	65.9%	1200	1670	71.9%	8.7%
2,2'-Oxybis(1-Chloropropane)1200	1670	71.9%	1250	1670	74.9%	4.1%
4-Methylphenol	2370	3330	71.2%	2450	3330	73.6%	3.3%
N-Nitroso-Di-N-Propylamine	1160	1670	69.5%	1210	1670	72.5%	4.2%
Hexachloroethane	1160	1670	69.5%	1240	1670	74.3%	6.7%
Nitrobenzene	1140	1670	68.3%	1200	1670	71.9%	5.1%
Isophorone	1210	1670	72.5%	1280	1670	76.6%	5.6%
2-Nitrophenol	1300	1670	77.8%	1370	1670	82.0%	5.2%
2,4-Dimethylphenol	1160	1670	69.5%	1230	1670	73.7%	5.9%
Benzoic Acid	1750	5000	35.0%	2330	5000	46.6%	28.4%
bis(2-Chloroethoxy) Methane	1160	1670	69.5%	1210	1670	72.5%	4.2%
2,4-Dichlorophenol	1310	1670	78.4%	1370	1670	82.0%	4.5%
1,2,4-Trichlorobenzene	1200	1670	71.9%	1260	1670	75.4%	4.9%
Naphthalene	1200	1670	71.9%	1270	1670	76.0%	5.7%
4-Chloroaniline	2430	4000	60.8%	2780	4000	69.5%	13.4%
Hexachlorobutadiene	1230	1670	73.7%	1330	1670	79.6%	7.8%
4-Chloro-3-methylphenol	1330	1670	79.6%	1390	1670	83.2%	4.4%
2-Methylnaphthalene	1200	1670	71.9%	1310	1670	78.4%	8.8%
Hexachlorocyclopentadiene	4500	5000	90.0%	4900	5000	98.0%	8.5%
2,4,6-Trichlorophenol	1200	1670	71.9%	1220	1670	73.1%	1.7%
2,4,5-Trichlorophenol	1350	1670	80.8%	1400	1670	83.8%	3.6%
2-Chloronaphthalene	1310	1670	78.4%	1390	1670	83.2%	5.9%
2-Nitroaniline	1260	1670	75.4%	1310	1670	78.4%	3.9%
Dimethylphthalate	1190	1670	71.3%	1240	1670	74.3%	4.1%
Acenaphthylene	1190	1670	71.3%	1250	1670	74.9%	4.9%
3-Nitroaniline	3020	4270	70.7%	3330	4270	78.0%	9.8%
Acenaphthene	1110	1670	66.5%	1170	1670	70.1%	5.3%

Page 2 of 2

Sample ID: LCSD-021309 LCS/LCSD

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Lab Sample ID: LCS-021309

LIMS ID: 09-3400

Matrix: Soil
Date Analyzed LCS: 02/17/09 14:26

LCSD: 02/17/09 14:59

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	6250	5000	125%	6460	5000	129%	3.3%
4-Nitrophenol	858	1670	51.4%	877	1670	52.5%	2.2%
Dibenzofuran	1220	1670	73.1%	1280	1670	76.6%	4.8%
2,6-Dinitrotoluene	1340	1670	80.2%	1420	1670	85.0%	5.8%
2,4-Dinitrotoluene	1420	1670	85.0%	1470	1670	88.0%	3.5%
Diethylphthalate	1280	1670	76.6%	1300	1670	77.8%	1.6%
4-Chlorophenyl-phenylether	1250	1670	74.9%	1300	1670	77.8%	3.9%
Fluorene	1310	1670	78.4%	1360	1670	81.4%	3.7%
4-Nitroaniline	1310	1670	78.4%	1380	1670	82.6%	5.2%
4,6-Dinitro-2-Methylphenol	6910	5000	138%	7050	5000	141%	2.0%
N-Nitrosodiphenylamine	1250	1670	74.9%	1260	1670	75.4%	0.8%
4-Bromophenyl-phenylether	1260	1670	75.4%	1330	1670	79.6%	5.4%
Hexachlorobenzene	1290	1670	77.2%	1360	1670	81.4%	5.3%
Pentachlorophenol	1520	1670	91.0%	1580	1670	94.6%	3.9%
Phenanthrene	1290	1670	77.2%	1330	1670	79.6%	3.1%
Carbazole	1400	1670	83.8%	1440	1670	86.2%	2.8%
Anthracene	1300	1670	77.8%	1340	1670	80.2%	3.0%
Di-n-Butylphthalate	1430	1670	85.6%	1440	1670	86.2%	0.7%
Fluoranthene	1470	1670	88.0%	1490	1670	89.2%	1.4%
Pyrene	1330	1670	79.6%	1360	1670	81.4%	2.2%
Butylbenzylphthalate	1390	1670	83.2%	1420	1670	85.0%	2.1%
3,3 ¹ -Dichlorobenzidine	2810	4270	65.8%	3170	4270	74.2%	12.0%
Benzo(a)anthracene	1330	1670	79.6%	1370	1670	82.0%	3.0%
bis(2-Ethylhexyl)phthalate	1510	1670	90.4%	1520	1670	91.0%	0.7%
Chrysene	1200	1670	71.9%	1230	1670	73.7%	2.5%
Di-n-Octyl phthalate	1260	1670	75.4%	1310	1670	78.4%	3.9%
Benzo(b) fluoranthene	1310	1670	78.4%	1380	1670	82.6%	5.2%
Benzo(k) fluoranthene	1560	1670	93.4%	1570	1670	94.0%	0.6%
Benzo(a)pyrene	1190	1670	71.3%	1230	1670	73.7%	3.3%
Indeno(1,2,3-cd)pyrene	1470	1670	88.0%	1540	1670	92.2%	4.7%
Dibenz(a,h)anthracene	1330	1670	79.6%	1380	1670	82.6%	3.7%
Benzo(g,h,i)perylene	1380	1670	82.6%	1430	1670	85.6%	3.6%
1-Methylnaphthalene	1280	1670	76.6%	1350	1670	80.8%	5.3%

Semivolatile Surrogate Recovery

LCS	LCSD
67.2%	69.2%
67.6%	70.8%
84.0%	82.4%
74.4%	76.8%
70.7%	72.5%
67.2%	69.1%
84.8%	84.0%
69.9%	70.7%
	67.2% 67.6% 84.0% 74.4% 70.7% 67.2% 84.8%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: IDP-9-3-090203

MS/MSD

Lab Sample ID: OL03C LIMS ID: 09-3393

Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Date Extracted MS/MSD: 02/06/09

Date Analyzed MS: 02/06/09 23:09 MSD: 02/12/09 21:25

Instrument/Analyst MS: NT6/LJR

MSD: NT6/LJR

GPC Cleanup: NO

Sample Amount MS: 7.86 g-dry-wt

MSD: 7.96 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 13.8 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 61.3	925	1590	58.2%	941	1570	59.9%	1.7%
Bis-(2-Chloroethyl) Ether	< 61.3	1110	1590	69.8%	911	1570	58.0%	19.7%
2-Chlorophenol	< 61.3	1080	1590	67.9%	1020	1570	65.0%	5.7%
1,3-Dichlorobenzene	< 61.3	1090	1590	68.6%	1000	1570	63.7%	8.6%
1,4-Dichlorobenzene	< 61.3	1110	1590	69.8%	1000	1570	63.7%	10.4%
Benzyl Alcohol	< 61.3	< 63.6 U	3180	NA	1950	3140	62.1%	NA
1,2-Dichlorobenzene	< 61.3	1120	1590	70.4%	1010	1570	64.3%	10.3%
2-Methylphenol	< 61.3	1010	1590	63.5%	1000	1570	63.7%	1.0%
2,2'-Oxybis(1-Chloropropan		1120	1590	70.4%	1020	1570	65.0%	9.3%
4-Methylphenol	< 61.3	2080	3180	65.4%	2090	3140	66.6%	0.5%
N-Nitroso-Di-N-Propylamine		1080	1590	67.9%	997	1570	63.5%	8.0%
Hexachloroethane	< 61.3	985	1590	61.9%	982	1570	62.5%	0.3%
Nitrobenzene	< 61.3	1050	1590	66.0%	931	1570	59.3%	12.0%
Isophorone	< 61.3	1120	1590	70.4%	1020	1570	65.0%	9.3%
2-Nitrophenol	< 61.3	1190	1590	74.8%	1090	1570	69.4%	8.8%
2,4-Dimethylphenol	< 61.3	1040	1590	65.4%	965	1570	61.5%	7.5%
Benzoic Acid	< 613	< 636 U	4770	NA	< 628 U	4710	NA	NA
bis(2-Chloroethoxy) Methane	e< 61.3	1070	1590	67.3%	996	1570	63.4%	7.2%
2,4-Dichlorophenol	< 306	1130	1590	71.1%	1130	1570	72.0%	0.0%
1,2,4-Trichlorobenzene	< 61.3	1130	1590	71.1%	1010	1570	64.3%	11.2%
Naphthalene	< 61.3	1160	1590	73.0%	1030	1570	65.6%	11.9%
4-Chloroaniline	< 306	2300	3820	60.2%	2570	3770	68.2%	11.1%
Hexachlorobutadiene	< 61.3	1210	1590	76.1%	1040	1570	66.2%	15.1%
4-Chloro-3-methylphenol	< 306	1150	1590	72.3%	1160	1570	73.9%	0.9%
2-Methylnaphthalene	< 61.3	1110	1590	69.8%	1030	1570	65.6%	7.5%
Hexachlorocyclopentadiene	< 306	2740	4770	57.4%	3500	4710	74.3%	24.4%
2,4,6-Trichlorophenol	< 306	978	1590	61.5%	1090	1570	69.4%	10.8%
2,4,5-Trichlorophenol	< 306	1250	1590	78.6%	1120	1570	71.3%	11.0%
2-Chloronaphthalene	< 61.3	1290	1590	81.1%	1080	1570	68.8%	17.7%
2-Nitroaniline	< 306	1210	1590	76.1%	1070	1570	68.2%	12.3%
Dimethylphthalate	< 61.3	1200	1590	75.5%	1010	1570	64.3%	17.2%
Acenaphthylene	< 61.3	1150	1590	72.3%	989	1570	63.0%	15.1%
3-Nitroaniline	< 306	2970	4070	73.0%	3310	4020	82.3%	10.8%
Acenaphthene	< 61.3	1150	1590	72.3%	951	1570	60.6%	18.9%
2,4-Dinitrophenol	< 613	1310	4770	27.5%	1500	4710	31.8%	13.5%
4-Nitrophenol	< 306	361	1590	22.7%	1180	1570	75.2%	106%
Dibenzofuran	< 61.3	1190	1590	74.8%	1080	1570	68.8%	9.7%
2,6-Dinitrotoluene	< 306	1280	1590	80.5%	1150	1570	73.2%	10.7%
2,4-Dinitrotoluene	< 306	1320	1590	83.0%	1220	1570	77.7%	7.9%
Diethylphthalate	< 61.3	1240	1590	78.0%	1110	1570	70.7%	11.1%
4-Chlorophenyl-phenylether	< 61.3	1230	1590	77.4%	1130	1570	72.0%	8.5%
Fluorene	< 61.3	1260	1590	79.2%	1180	1570	75.2%	6.6%
4-Nitroaniline	< 306	1320	1590	83.0%	1220	1570	77.7%	7.9%
4,6-Dinitro-2-Methylphenol	< 613	2370	4770	49.7%	2460	4710	52.2%	3.7%
N-Nitrosodiphenylamine	< 61.3	1220	1590	76.7%	1130	1570	72.0%	7.7%

Page 2 of 2

Sample ID: IDP-9-3-090203

MS/MSD

Lab Sample ID: OL03C

LIMS ID: 09-3393

Matrix: Soil

Date Analyzed MS: 02/06/09 23:09

MSD: 02/12/09 21:25

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
4-Bromophenyl-phenylether	< 61.3	1210	1590	76.1%	1090	1570	69.4%	10.4%
Hexachlorobenzene	< 61.3	1210	1590	76.1%	1080	1570	68.8%	11.4%
Pentachlorophenol	< 306	1090	1590	68.6%	1000	1570	63.7%	8.6%
Phenanthrene	< 61.3	1290	1590	81.1%	1120	1570	71.3%	14.1%
Carbazole	< 61.3	1370	1590	86.2%	1200	1570	76.4%	13.2%
Anthracene	< 61.3	1300	1590	81.8%	1110	1570	70.7%	15.8%
Di-n-Butylphthalate	< 61.3	1410	1590	88.7%	1210	1570	77.1%	15.3%
Fluoranthene	< 61.3	1520	1590	95.6%	1220	1570	77.7%	21.9%
Pyrene	< 61.3	1270	1590	79.9%	1250	1570	79.6%	1.6%
Butylbenzylphthalate	< 61.3	1320	1590	83.0%	1280	1570	81.5%	3.1%
3,3'-Dichlorobenzidine	< 306	2520	4070	61.9%	3100	4020	77.1%	20.6%
Benzo(a)anthracene	< 61.3	1240	1590	78.0%	1120	1570	71.3%	10.2%
bis(2-Ethylhexyl)phthalate	< 61.3	1430	1590	89.9%	1380	1570	87.9%	3.6%
Chrysene	< 61.3	1170	1590	73.6%	1030	1570	65.6%	12.7%
Di-n-Octyl phthalate	< 61.3	1260	1590	79.2%	1130	1570	72.0%	10.9%
Benzo(b)fluoranthene	< 61.3	1520	1590	95.6%	1270	1570	80.9%	17.9%
Benzo(k)fluoranthene	< 61.3	1450	1590	91.2%	1440	1570	91.7%	0.7%
Benzo(a)pyrene	< 61.3	1220	1590	76.7%	1070	1570	68.2%	13.1%
Indeno(1,2,3-cd)pyrene	< 61.3	1290	1590	81.1%	1180	1570	75.2%	8.9%
Dibenz(a,h)anthracene	< 61.3	1260	1590	79.2%	1130	1570	72.0%	10.9%
Benzo(g,h,i)perylene	< 61.3	1120	1590	70.4%	1020	1570	65.0%	9.3%
1-Methylnaphthalene	< 61.3	1240	1590	78.0%	1140	1570	72.6%	8.4%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

Page 1 of 2

SAMPLE

Sample ID: IDP-7-3-090203

Lab Sample ID: OL03A LIMS ID: 09-3391

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT9/PAB

Date Analyzed: 02/09/09 17:06

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 4.37 g-dry-wt

Purge Volume: 5.0 mL Moisture: 10.4%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.3	4.3	
67-64-1	Acetone	5.7	150	
75-15-0	Carbon Disulfide	1.1	2.2	
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1. 1	U
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.7	13	
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	Ū
108-05-4	Vinyl Acetate	5.7	< 5.7	Ū
75-27-4	Bromodichloromethane	1.1	< 1.1	Ū
78-87-5	1,2-Dichloropropane	1.1	< 1.1	Ū
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	1.6	•
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
	• •	1.1	2.7	O
71-43-2	Benzene	1.1	< 1.1	U
10061-02-6	trans-1,3-Dichloropropene	5.7	< 5.7	U
110-75-8	2-Chloroethylvinylether	1.1	< 1.1	U
75-25-2	Bromoform	5.7	< 5.7	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.7	< 5.7	U
591-78-6	2-Hexanone	1.1	< 1.1	U
127-18-4	Tetrachloroethene			U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	1.7	тт
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.3	U
1330-20-7	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U
95-50-1	1,2-Dichlorobenzene	1.1	< 1.1	U
541-73-1	1,3-Dichlorobenzene	1.1	< 1.1	U
106-46-7	1,4-Dichlorobenzene	1.1	< 1.1	U
107-02-8	Acrolein	57	< 57	U
74-88-4	Methyl Iodide	1.1	< 1.1	U
74-96-4	Bromoethane	2.3	< 2.3	U
107-13-1	Acrylonitrile	5.7	< 5.7	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-7-3-090203

SAMPLE

Lab Sample ID: OL03A

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3391

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/09/09 17:06

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.1	< 1.1	U
74-95-3	Dibromomethane	1.1	< 1.1	U
630-20-6	1,1,1,2-Tetrachloroethane	1.1	< 1.1	U
96-12-8	1,2-Dibromo-3-chloropropane	5.7	< 5.7	U
96-18-4	1,2,3-Trichloropropane	2.3	< 2.3	U
110-57-6	trans-1,4-Dichloro-2-butene	5.7	< 5.7	U
108-67-8	1,3,5-Trimethylbenzene	1.1	< 1.1	U
95-63-6	1,2,4-Trimethylbenzene	1.1	< 1.1	U
87-68-3	Hexachlorobutadiene	5.7	< 5.7	U
106-93-4	Ethylene Dibromide	1.1	< 1.1	U
74-97-5	Bromochloromethane	1.1	< 1.1	U
594-20-7	2,2-Dichloropropane	1.1	< 1.1	U
142-28-9	1,3-Dichloropropane	1.1	< 1.1	U
98-82-8	Isopropylbenzene	1.1	< 1.1	U
103-65-1	n-Propylbenzene	1.1	< 1.1	U
108-86-1	Bromobenzene	1.1	< 1.1	U
95-49-8	2-Chlorotoluene	1.1	< 1.1	U
106-43-4	4-Chlorotoluene	1.1	< 1.1	U
98-06-6	tert-Butylbenzene	1.1	< 1.1	U
135-98-8	sec-Butylbenzene	1.1	< 1.1	U
99-87-6	4-Isopropyltoluene	1.1	< 1.1	U
104-51-8	n-Butylbenzene	1.1	< 1.1	U
120-82-1	1,2,4-Trichlorobenzene	5.7	< 5.7	U
91-20-3	Naphthalene	5.7	< 5.7	U
87-61-6	1,2,3-Trichlorobenzene	5.7	< 5.7	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	118%
d8-Toluene	98.1%
Bromofluorobenzene	98.6%
d4-1.2-Dichlorobenzene	104%

Page 1 of 2

Lab Sample ID: OL03B

LIMS ID: 09-3392 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Instrument/Analyst: NT9/PAB Date Analyzed: 02/09/09 17:32 Sample ID: IDP-8-3-090203 SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 7.69 g-dry-wt

Purge Volume: 5.0 mL Moisture: 13.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.6	< 0.6	U
74-83-9	Bromomethane	0.6	< 0.6	U
75-01-4	Vinyl Chloride	0.6	< 0.6	U
75-00-3	Chloroethane	0.6	< 0.6	U
75-09-2	Methylene Chloride	1.3	< 1.3	U
67-64-1	Acetone	3.2	15	
75 - 15-0	Carbon Disulfide	0.6	< 0.6	U
75 - 35-4	1,1-Dichloroethene	0.6	< 0.6	U
75-34-3	1,1-Dichloroethane	0.6	< 0.6	U
156-60-5	trans-1,2-Dichloroethene	0.6	< 0.6	U
156-59-2	cis-1,2-Dichloroethene	0.6	< 0.6	U
67-66-3	Chloroform	0.6	< 0.6	U
107-06-2	1,2-Dichloroethane	0.6	< 0.6	U
78-93-3	2-Butanone	3.2	< 3.2	U
71-55-6	1,1,1-Trichloroethane	0.6	< 0.6	U
56-23-5	Carbon Tetrachloride	0.6	< 0.6	U
108-05-4	Vinyl Acetate	3.2	< 3.2	U
75-27-4	Bromodichloromethane	0.6	< 0.6	U
78-87-5	1,2-Dichloropropane	0.6	< 0.6	U
10061-01-5	cis-1,3-Dichloropropene	0.6	< 0.6	U
79-01-6	Trichloroethene	0.6	< 0.6	U
124-48-1	Dibromochloromethane	0.6	< 0.6	U
79-00-5	1,1,2-Trichloroethane	0.6	< 0.6	U
71-43-2	Benzene	0.6	< 0.6	U
10061-02-6	trans-1,3-Dichloropropene	0.6	< 0.6	U
110-75-8	2-Chloroethylvinylether	3.2	< 3.2	U
75-25-2	Bromoform	0.6	< 0.6	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.2	< 3.2	U
591-78-6	2-Hexanone	3.2	< 3.2	Ŭ
127-18-4	Tetrachloroethene	0.6	< 0.6	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.6	< 0.6	U
108-88-3	Toluene	0.6	< 0.6	U
108-90-7	Chlorobenzene	0.6	< 0.6	U
100-41-4	Ethylbenzene	0.6	< 0.6	Ű
100-42-5	Styrene	0.6	< 0.6	U
75-69-4	Trichlorofluoromethane	0.6	< 0.6	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.3	< 1.3	Ŭ
1330-20-7	m,p-Xylene	0.6	< 0.6	Ŭ
95-47-6	o-Xylene	0.6	< 0.6	Ŭ
95-50-1	1,2-Dichlorobenzene	0.6	< 0.6	Ŭ
541-73-1	1,3-Dichlorobenzene	0.6	< 0.6	Ŭ
106-46-7	1,4-Dichlorobenzene	0.6	< 0.6	Ŭ
107-02-8	Acrolein	32	< 32	Ŭ
74-88-4	Methyl Iodide	0.6	< 0.6	Ŭ
74-96-4	Bromoethane	1.3	< 1.3	Ű
107-13-1	Acrylonitrile	3.2	< 3.2	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: IDP-8-3-090203

Page 2 of 2

SAMPLE

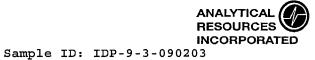
Lab Sample ID: OL03B

LIMS ID: 09-3392

Matrix: Soil

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON


025173.090

Date Analyzed: 02/09/09 17:32

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.6	< 0.6	U
74-95-3	Dibromomethane	0.6	< 0.6	U
630-20-6	1,1,1,2-Tetrachloroethane	0.6	< 0.6	U
96-12-8	1,2-Dibromo-3-chloropropane	3.2	< 3.2	U
96-18-4	1,2,3-Trichloropropane	1.3	< 1.3	U
110-57-6	trans-1,4-Dichloro-2-butene	3.2	< 3.2	U
108-67-8	1,3,5-Trimethylbenzene	0.6	< 0.6	U
95-63-6	1,2,4-Trimethylbenzene	0.6	< 0.6	U
87-68-3	Hexachlorobutadiene	3.2	< 3.2	U
106-93-4	Ethylene Dibromide	0.6	< 0.6	U
74-97-5	Bromochloromethane	0.6	< 0.6	U
594-20-7	2,2-Dichloropropane	0.6	< 0.6	U
142-28-9	1,3-Dichloropropane	0.6	< 0.6	U
98-82-8	Isopropylbenzene	0.6	< 0.6	U
103-65-1	n-Propylbenzene	0.6	< 0.6	U
108-86-1	Bromobenzene	0.6	< 0.6	U
95-49-8	2-Chlorotoluene	0.6	< 0.6	U
106-43-4	4-Chlorotoluene	0.6	< 0.6	U
98-06-6	tert-Butylbenzene	0.6	< 0.6	U
135-98-8	sec-Butylbenzene	0.6	< 0.6	U
99-87-6	4-Isopropyltoluene	0.6	< 0.6	U
104-51-8	n-Butylbenzene	0.6	< 0.6	U
120-82-1	1,2,4-Trichlorobenzene	3.2	< 3.2	U
91-20-3	Naphthalene	3.2	< 3.2	U
87-61-6	1,2,3-Trichlorobenzene	3.2	< 3.2	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	112%
d8-Toluene	100%
Bromofluorobenzene	106%
d4-1,2-Dichlorobenzene	103%

Page 1 of 2

Matrix: Soil

LIMS ID: 09-3393

Reported: 02/13/09

Lab Sample ID: OL03C

Data Release Authorized:

Instrument/Analyst: NT9/PAB

Date Analyzed: 02/09/09 17:58

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON 025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 3.76 g-dry-wt

Purge Volume: 5.0 mL Moisture: 13.8%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.3	< 1.3	U
74-83-9	Bromomethane	1.3	< 1.3	U
75-01-4	Vinyl Chloride	1.3	< 1.3	U
75-00-3	Chloroethane	1.3	< 1.3	U
75-09-2	Methylene Chloride	2.7	2.8	
67-64-1	Acetone	6.6	57	
75-15-0	Carbon Disulfide	1.3	< 1.3	U
75-35-4	1,1-Dichloroethene	1.3	< 1.3	U
75-34-3	1,1-Dichloroethane	1.3	< 1.3	U
156-60-5	trans-1,2-Dichloroethene	1.3	< 1.3	U
156-59-2	cis-1,2-Dichloroethene	1.3	< 1.3	U
67-66-3	Chloroform	1.3	< 1.3	U
107-06-2	1,2-Dichloroethane	1.3	< 1.3	U
78-93-3	2-Butanone	6.6	< 6.6	U
71-55-6	1,1,1-Trichloroethane	1.3	< 1.3	U
56-23-5	Carbon Tetrachloride	1.3	< 1.3	U
108-05-4	Vinyl Acetate	6.6	< 6.6	U
75-27-4	Bromodichloromethane	1.3	< 1.3	U
78-87-5	1,2-Dichloropropane	1.3	< 1.3	U
10061-01-5	cis-1,3-Dichloropropene	1.3	< 1.3	U
79-01-6	Trichloroethene	1.3	< 1.3	U
124-48-1	Dibromochloromethane	1.3	< 1.3	U
79-00-5	1,1,2-Trichloroethane	1.3	< 1.3	U
71-43-2	Benzene	1.3	9.8	
10061-02-6	trans-1,3-Dichloropropene	1.3	< 1.3	U
110-75-8	2-Chloroethylvinylether	6.6	< 6.6	U
75-25-2	Bromoform	1.3	< 1.3	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.6	< 6.6	U
591-78-6	2-Hexanone	6.6	< 6.6	U
127-18-4	Tetrachloroethene	1.3	< 1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	1.3	< 1.3	U
108-88-3	Toluene	1.3	17	
108-90-7	Chlorobenzene	1.3	< 1.3	U
100-41-4	Ethylbenzene	1.3	< 1.3	U
100-42-5	Styrene	1.3	< 1.3	Ũ
75-69-4	Trichlorofluoromethane	1.3	< 1.3	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.7	< 2.7	U
1330-20-7	m,p-Xylene	1.3	15	
95-47-6	o-Xylene	1.3	7.7	
95-50-1	1,2-Dichlorobenzene	1.3	< 1.3	U
541-73-1	1,3-Dichlorobenzene	1.3	< 1.3	U
106-46-7	1,4-Dichlorobenzene	1.3	< 1.3	U
107-02-8	Acrolein	66	< 66	U
74-88-4	Methyl Iodide	1.3	< 1.3	U
74-96-4	Bromoethane	2.7	< 2.7	U
	Acrylonitrile	6.6	< 6.6	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: IDP-9-3-090203

Page 2 of 2 SAMPLE

Lab Sample ID: OL03C QC Report No: OL03-The Boeing Company

LIMS ID: 09-3393 Project: BOEING ISAACSON Matrix: Soil 025173.090

Date Analyzed: 02/09/09 17:58

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.3	< 1.3	U
74-95-3	Dibromomethane	1.3	< 1.3	U
630-20-6	1,1,1,2-Tetrachloroethane	1.3	< 1.3	U
96-12-8	1,2-Dibromo-3-chloropropane	6.6	< 6.6	U
96-18-4	1,2,3-Trichloropropane	2.7	< 2.7	U
110-57-6	trans-1,4-Dichloro-2-butene	6.6	< 6.6	U
108-67-8	1,3,5-Trimethylbenzene	1.3	< 1.3	U
95-63-6	1,2,4-Trimethylbenzene	1.3	< 1.3	U
87-68-3	Hexachlorobutadiene	6.6	< 6.6	U
106-93-4	Ethylene Dibromide	1.3	< 1.3	U
74-97-5	Bromochloromethane	1.3	< 1.3	U
594-20-7	2,2-Dichloropropane	1.3	< 1.3	U
142-28-9	1,3-Dichloropropane	1.3	< 1.3	U
98-82-8	Isopropylbenzene	1.3	< 1.3	U
103-65-1	n-Propylbenzene	1.3	< 1.3	U
108-86-1	Bromobenzene	1.3	< 1.3	U
95-49-8	2-Chlorotoluene	1.3	< 1.3	U
106-43-4	4-Chlorotoluene	1.3	< 1.3	U
98-06-6	tert-Butylbenzene	1.3	< 1.3	U
135-98-8	sec-Butylbenzene	1.3	< 1.3	U
99-87-6	4-Isopropyltoluene	1.3	< 1.3	U
104-51-8	n-Butylbenzene	1.3	< 1.3	U
120-82-1	1,2,4-Trichlorobenzene	6.6	< 6.6	U
91-20-3	Naphthalene	6.6	< 6.6	U
87-61-6	1,2,3-Trichlorobenzene	6.6	< 6.6	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	109%
d8-Toluene	97.9%
Bromofluorobenzene	92.1%
d4-1,2-Dichlorobenzene	105%

Matrix: Soil

Reported: 02/13/09

Data Release Authorized:

Sample ID: IDP-10-2-090203 Volatiles by Purge & Trap GC/MS-Method SW8260B

SAMPLE Page 1 of 2

Lab Sample ID: OL03D QC Report No: OL03-The Boeing Company LIMS ID: 09-3394

Project: BOEING ISAACSON 025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Instrument/Analyst: NT9/PAB Sample Amount: 6.39 g-dry-wt

Date Analyzed: 02/09/09 18:24 Purge Volume: 5.0 mL Moisture: 13.0%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	υ
74-83-9	Bromomethane	0.8	< 0.8	U
75-01-4	Vinyl Chloride	0.8	< 0.8	U
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.6	1.7	
67-64-1	Acetone	3.9	39	
75-15-0	Carbon Disulfide	0.8	< 0.8	U
75-35-4	1,1-Dichloroethene	0.8	< 0.8	U
75-34-3	1,1-Dichloroethane	0.8	< 0.8	U
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	U
67-66-3	Chloroform	0.8	< 0.8	U
107-06-2	1,2-Dichloroethane	0.8	< 0.8	U
78-93-3	2-Butanone	3.9	< 3.9	U
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	U
56-23-5	Carbon Tetrachloride	0.8	< 0.8	U
108-05-4	Vinyl Acetate	3.9	< 3.9	U
75-27-4	Bromodichloromethane	0.8	< 0.8	U
78-87-5	1,2-Dichloropropane	0.8	< 0.8	U
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	U
79-01-6	Trichloroethene	0.8	< 0.8	U
124-48-1	Dibromochloromethane	0.8	< 0.8	U
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	< 0.8	U
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	3.9	< 3.9	U
7 5-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.9	< 3.9	U
591-78-6	2-Hexanone	3.9	< 3.9	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	< 0.8	U
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.6	< 1.6	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U
95-50-1	1,2-Dichlorobenzene	0.8	< 0.8	U
541 -7 3-1	1,3-Dichlorobenzene	0.8	< 0.8	Ū
106-46-7	1,4-Dichlorobenzene	0.8	< 0.8	U
107-02-8	Acrolein	39	< 39	Ū
74-88-4	Methyl Iodide	0.8	< 0.8	Ū
74-96-4	Bromoethane	1.6	< 1.6	Ū
107-13-1	Acrylonitrile	3.9	< 3.9	Ū
		-		-

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-10-2-090203

SAMPLE

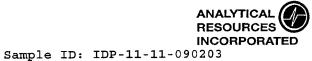
Lab Sample ID: OL03D

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3394

Project: BOEING ISAACSON

Matrix: Soil


025173.090

Date Analyzed: 02/09/09 18:24

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.8	< 0.8	U
74-95-3	Dibromomethane	0.8	< 0.8	U
630-20-6	1,1,1,2-Tetrachloroethane	0.8	< 0.8	U
96-12-8	1,2-Dibromo-3-chloropropane	3.9	< 3.9	U
96-18-4	1,2,3-Trichloropropane	1.6	< 1.6	U
110-57-6	trans-1,4-Dichloro-2-butene	3.9	< 3.9	U
108-67-8	1,3,5-Trimethylbenzene	0.8	< 0.8	U
95-63-6	1,2,4-Trimethylbenzene	0.8	< 0.8	U
87-68-3	Hexachlorobutadiene	3.9	< 3.9	U
106-93-4	Ethylene Dibromide	0.8	< 0.8	U
74-97-5	Bromochloromethane	0.8	< 0.8	U
594-20-7	2,2-Dichloropropane	0.8	< 0.8	U
142-28-9	1,3-Dichloropropane	0.8	< 0.8	U
98-82-8	Isopropylbenzene	0.8	< 0.8	U
103-65-1	n-Propylbenzene	0.8	< 0.8	U
108-86-1	Bromobenzene	0.8	< 0.8	U
95-49-8	2-Chlorotoluene	0.8	< 0.8	U
106-43-4	4-Chlorotoluene	0.8	< 0.8	U
98-06-6	tert-Butylbenzene	0.8	< 0.8	U
135-98-8	sec-Butylbenzene	0.8	< 0.8	U
99-87-6	4-Isopropyltoluene	0.8	< 0.8	U
104-51-8	n-Butylbenzene	0.8	< 0.8	U
120-82-1	1,2,4-Trichlorobenzene	3.9	< 3.9	U
91-20-3	Naphthalene	3.9	< 3.9	U
87-61-6	1,2,3-Trichlorobenzene	3.9	< 3.9	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	112%
d8-Toluene	101%
Bromofluorobenzene	106%
d4-1.2-Dichlorobenzene	103%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OL03E

LIMS ID: 09-3395 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT9/PAB
Date Analyzed: 02/09/09 18:50

Reported: 02/13/09

B

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

SAMPLE

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 6.30 g-dry-wt

Purge Volume: 5.0 mL Moisture: 19.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	U
74-83-9	Bromomethane	0.8	< 0.8	U
75-01-4	Vinyl Chloride	0.8	< 0.8	U
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.6	2.0	
67-64-1	Acetone	4.0	31	
75-15-0	Carbon Disulfide	0.8	< 0.8	U
75-35-4	1,1-Dichloroethene	0.8	< 0.8	U
75-34-3	1,1-Dichloroethane	0.8	< 0.8	U
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	U
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	U
67-66-3	Chloroform	0.8	< 0.8	U
107-06-2	1,2-Dichloroethane	0.8	< 0.8	U
78-93-3	2-Butanone	4.0	< 4.0	U
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	U
56-23-5	Carbon Tetrachloride	0.8	< 0.8	U
108-05-4	Vinyl Acetate	4.0	< 4.0	U
75-27-4	Bromodichloromethane	0.8	< 0.8	U
78 - 87-5	1,2-Dichloropropane	0.8	< 0.8	U
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	U
79-01-6	Trichloroethene	0.8	< 0.8	U
124-48-1	Dibromochloromethane	0.8	< 0.8	U
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	0.9	
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	4.0	< 4.0	U
75-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.0	< 4.0	U
591-78 - 6	2-Hexanone	4.0	< 4.0	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	< 0.8	U
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.6	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U
95-50-1	1,2-Dichlorobenzene	0.8	< 0.8	U
541-73-1	1,3-Dichlorobenzene	0.8	< 0.8	U
106-46-7	1,4-Dichlorobenzene	0.8	< 0.8	U
107-02-8	Acrolein	40	< 40	U
74-88-4	Methyl Iodide	0.8	< 0.8	U
74-96-4	Bromoethane	1.6	< 1.6	U U
107-13-1	Acrylonitrile	4.0	< 4.0	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: IDP-11-11-090203

Page 2 of 2

LIMS ID: 09-3395

Lab Sample ID: OL03E

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

SAMPLE

Matrix: Soil
Date Analyzed: 02/09/09 18:50

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.8	< 0.8	U
74-95-3	Dibromomethane	0.8	< 0.8	U
630-20-6	1,1,1,2-Tetrachloroethane	0.8	< 0.8	Ŭ
96-12-8	1,2-Dibromo-3-chloropropane	4.0	< 4.0	Ų
96-18-4	1,2,3-Trichloropropane	1.6	< 1.6	U
110-57-6	trans-1,4-Dichloro-2-butene	4.0	< 4.0	U
108-67-8	1,3,5-Trimethylbenzene	0.8	< 0.8	U
95 - 63-6	1,2,4-Trimethylbenzene	0.8	< 0.8	U
87-68-3	Hexachlorobutadiene	4.0	< 4.0	U
106-93-4	Ethylene Dibromide	0.8	< 0.8	U
74-97-5	Bromochloromethane	0.8	< 0.8	U
594-20-7	2,2-Dichloropropane	0.8	< 0.8	U
142-28-9	1,3-Dichloropropane	0.8	< 0.8	U
98-82-8	Isopropylbenzene	0.8	< 0.8	U
103-65-1	n-Propylbenzene	0.8	< 0.8	U
108-86-1	Bromobenzene	0.8	< 0.8	U
95-49-8	2-Chlorotoluene	0.8	< 0.8	U
106-43-4	4-Chlorotoluene	0.8	< 0.8	U
98-06-6	tert-Butylbenzene	0.8	< 0.8	U
135-98-8	sec-Butylbenzene	0.8	< 0.8	U
99-87-6	4-Isopropyltoluene	0.8	< 0.8	U
104-51-8	n-Butylbenzene	0.8	< 0.8	U
120-82-1	1,2,4-Trichlorobenzene	4.0	< 4.0	U
91-20-3	Naphthalene	4.0	< 4.0	U
87-61-6	1,2,3-Trichlorobenzene	4.0	< 4.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	99.4%
Bromofluorobenzene	98.6%
d4-1.2-Dichlorobenzene	100%

Sample ID: IDP-12-12-090203

1 of 2 SAMPLE Page

Lab Sample ID: OL03F QC Report No: OL03-The Boeing Company LIMS ID: 09-3396

Project: BOEING ISAACSON 025173.090

Matrix: Soil Data Release Authorized: Reported: 02/13/09

Date Sampled: 02/03/09 Date Received: 02/03/09

Instrument/Analyst: NT9/PAB Date Analyzed: 02/09/09 19:16 Sample Amount: 8.35 g-dry-wt

Purge Volume: 5.0 mL Moisture: 24.1%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.6	< 0.6	U
74-83-9	Bromomethane	0.6	< 0.6	U
75-01-4	Vinyl Chloride	0.6	< 0.6	U
75-00-3	Chloroethane	0.6	< 0.6	U
75-09-2	Methylene Chloride	1.2	1.7	
67-64-1	Acetone	3.0	21	
75-15-0	Carbon Disulfide	0.6	< 0.6	U
75-35-4	1,1-Dichloroethene	0.6	< 0.6	U
75-34-3	1,1-Dichloroethane	0.6	< 0.6	U
156-60-5	trans-1,2-Dichloroethene	0.6	< 0.6	Ű
156-59-2	cis-1,2-Dichloroethene	0.6	< 0.6	U
67-66-3	Chloroform	0.6	< 0.6	U
107-06-2	1,2-Dichloroethane	0.6	< 0.6	U
78-93-3	2-Butanone	3.0	< 3.0	U
71-55-6	1,1,1-Trichloroethane	0.6	< 0.6	Ŭ
56-23-5	Carbon Tetrachloride	0.6	< 0.6	Ű
108-05-4	Vinyl Acetate	3.0	< 3.0	U
75-27-4	Bromodichloromethane	0.6	< 0.6	U
78-87-5	1,2-Dichloropropane	0.6	< 0.6	U
10061-01-5	cis-1,3-Dichloropropene	0.6	< 0.6	U
79-01-6	Trichloroethene	0.6	< 0.6	U
124-48-1	Dibromochloromethane	0.6	< 0.6	U
79-00-5	1,1,2-Trichloroethane	0.6	< 0.6	Ű
71-43-2	Benzene	0.6	< 0.6	Ű
10061-02-6	trans-1,3-Dichloropropene	0.6	< 0.6	Ű
110-75-8	2-Chloroethylvinylether	3.0	< 3.0	U
75-25-2	Bromoform	0.6	< 0.6	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.0	< 3.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.6	< 0.6	Ű
79-34-5	1,1,2,2-Tetrachloroethane	0.6	< 0.6	Ű
108-88-3	Toluene	0.6	< 0.6	U
108-90-7	Chlorobenzene	0.6	< 0.6	U
100-41-4	Ethylbenzene	0.6	< 0.6	U
100-42-5	Styrene	0.6	< 0.6	Ű
75-69-4	Trichlorofluoromethane	0.6	< 0.6	Ű
7 6-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.2	Ű
1330-20-7	m,p-Xylene	0.6	< 0.6	U
95-47-6	o-Xylene	0.6	< 0.6	Ű
95-50-1	1,2-Dichlorobenzene	0.6	< 0.6	U
541-73-1	1,3-Dichlorobenzene	0.6	< 0.6	U
106-46-7	1,4-Dichlorobenzene	0.6	< 0.6	U
107-02-8	Acrolein	30	< 30	U
74-88-4	Methyl Iodide	0.6	< 0.6	Ű
74-96-4	Bromoethane	1.2	< 1.2	U
107-13-1	Acrylonitrile	3.0	< 3.0	Ŭ

Page 2 of 2

Sample ID: IDP-12-12-090203

SAMPLE

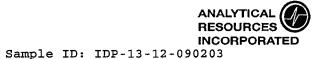
Lab Sample ID: OL03F

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3396

Project: BOEING ISAACSON

025173.090


Matrix: Soil

Date Analyzed: 02/09/09 19:16

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.6	< 0.6	U
74-95-3	Dibromomethane	0.6	< 0.6	U
630-20-6	1,1,1,2-Tetrachloroethane	0.6	< 0.6	U
96-12-8	1,2-Dibromo-3-chloropropane	3.0	< 3.0	U
96-18-4	1,2,3-Trichloropropane	1.2	< 1.2	U
110-57-6	trans-1,4-Dichloro-2-butene	3.0	< 3.0	U
108-67-8	1,3,5-Trimethylbenzene	0.6	< 0.6	U
95-63-6	1,2,4-Trimethylbenzene	0.6	< 0.6	U
87-68-3	Hexachlorobutadiene	3.0	< 3.0	U
106-93-4	Ethylene Dibromide	0.6	< 0.6	U
74-97-5	Bromochloromethane	0.6	< 0.6	U
594-20-7	2,2-Dichloropropane	0.6	< 0.6	U
142-28-9	1,3-Dichloropropane	0.6	< 0.6	U
98-82-8	Isopropylbenzene	0.6	< 0.6	U
103-65-1	n-Propylbenzene	0.6	< 0.6	U
108-86-1	Bromobenzene	0.6	< 0.6	U
95-49-8	2-Chlorotoluene	0.6	< 0.6	U
106-43-4	4-Chlorotoluene	0.6	< 0.6	U
98-06-6	tert-Butylbenzene	0.6	< 0.6	U
135-98-8	sec-Butylbenzene	0.6	< 0.6	U
99-87-6	4-Isopropyltoluene	0.6	< 0.6	U
104-51-8	n-Butylbenzene	0.6	< 0.6	U
120-82-1	1,2,4-Trichlorobenzene	3.0	< 3.0	U
91-20-3	Naphthalene	3.0	< 3.0	U
87-61-6	1,2,3-Trichlorobenzene	3.0	< 3.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	101%
Bromofluorobenzene	107%
d4-1.2-Dichlorobenzene	103%

Page 1 of 2

SAMPLE

Lab Sample ID: OL03G

LIMS ID: 09-3397 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT9/PAB Date Analyzed: 02/09/09 19:42

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 6.56 g-dry-wt

Purge Volume: 5.0 mL Moisture: 27.7%

CAS Number	Analyte	RĹ	Result	Q
74-87-3	Chloromethane	0.8	< 0.8	U
74-83-9	Bromomethane	0.8	< 0.8	U
75-01-4	Vinyl Chloride	0.8	< 0.8	U
75-00-3	Chloroethane	0.8	< 0.8	U
75-09-2	Methylene Chloride	1.5	< 1.5	U
67-64-1	Acetone	3.8	38	
75-15-0	Carbon Disulfide	0.8	< 0.8	U
75-35-4	1,1-Dichloroethene	0.8	< 0.8	Ū
75-34-3	1,1-Dichloroethane	0.8	< 0.8	Ū
156-60-5	trans-1,2-Dichloroethene	0.8	< 0.8	Ū
156-59-2	cis-1,2-Dichloroethene	0.8	< 0.8	Ū
67-66-3	Chloroform	0.8	< 0.8	Ū
107-06-2	1,2-Dichloroethane	0.8	< 0.8	Ū
78-93-3	2-Butanone	3.8	< 3.8	Ū
71-55-6	1,1,1-Trichloroethane	0.8	< 0.8	Ū
56-23-5	Carbon Tetrachloride	0.8	< 0.8	Ü
108-05-4	Vinyl Acetate	3.8	< 3.8	Ū
75-27-4	Bromodichloromethane	0.8	< 0.8	Ū
78-87-5	1,2-Dichloropropane	0.8	< 0.8	Ū
10061-01-5	cis-1,3-Dichloropropene	0.8	< 0.8	Ū
79-01-6	Trichloroethene	0.8	< 0.8	Ū
124-48-1	Dibromochloromethane	0.8	< 0.8	Ū
79-00-5	1,1,2-Trichloroethane	0.8	< 0.8	U
71-43-2	Benzene	0.8	< 0.8	U
10061-02-6	trans-1,3-Dichloropropene	0.8	< 0.8	U
110-75-8	2-Chloroethylvinylether	3.8	< 3.8	U
75-25-2	Bromoform	0.8	< 0.8	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.8	< 3.8	U
591-78-6	2-Hexanone	3.8	< 3.8	U
127-18-4	Tetrachloroethene	0.8	< 0.8	U
79-34-5	1,1,2,2-Tetrachloroethane	0.8	< 0.8	U
108-88-3	Toluene	0.8	< 0.8	U
108-90-7	Chlorobenzene	0.8	< 0.8	U
100-41-4	Ethylbenzene	0.8	< 0.8	U
100-42-5	Styrene	0.8	< 0.8	U
75-69-4	Trichlorofluoromethane	0.8	< 0.8	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.5	< 1.5	U
1330-20-7	m,p-Xylene	0.8	< 0.8	U
95-47-6	o-Xylene	0.8	< 0.8	U
95-50-1	1,2-Dichlorobenzene	0.8	< 0.8	U
541-73-1	1,3-Dichlorobenzene	0.8	< 0.8	U
106-46-7	1,4-Dichlorobenzene	0.8	< 0.8	U
107-02-8	Acrolein	38	< 38	U
74-88-4	Methyl Iodide	0.8	< 0.8	U
74-96-4	Bromoethane	1.5	< 1.5	U
107-13-1	Acrylonitrile	3.8	< 3.8	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-13-12-090203

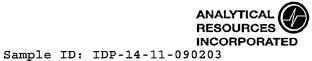
SAMPLE

Lab Sample ID: OL03G

LIMS ID: 09-3397

Matrix: Soil

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON


025173.090

Date Analyzed: 02/09/09 19:42

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.8	< 0.8	U
74-95-3	Dibromomethane	0.8	< 0.8	U
630-20-6	1,1,1,2-Tetrachloroethane	0.8	< 0.8	U
96-12-8	1,2-Dibromo-3-chloropropane	3.8	< 3.8	U
96-18-4	1,2,3-Trichloropropane	1.5	< 1.5	U
110-57-6	trans-1,4-Dichloro-2-butene	3.8	< 3.8	U
108-67-8	1,3,5-Trimethylbenzene	0.8	< 0.8	U
95-63-6	1,2,4-Trimethylbenzene	0.8	< 0.8	U
87-68-3	Hexachlorobutadiene	3.8	< 3.8	U
106-93-4	Ethylene Dibromide	0.8	< 0.8	Ũ
74-97-5	Bromochloromethane	0.8	< 0.8	U
594-20-7	2,2-Dichloropropane	0.8	< 0.8	U
142-28-9	1,3-Dichloropropane	0.8	< 0.8	U
98-82-8	Isopropylbenzene	0.8	< 0.8	U
103-65-1	n-Propylbenzene	0.8	< 0.8	U
108-86-1	Bromobenzene	0.8	< 0.8	U
95-49-8	2-Chlorotoluene	0.8	< 0.8	U
106-43-4	4-Chlorotoluene	0.8	< 0.8	U
98-06-6	tert-Butylbenzene	0.8	< 0.8	U
135-98-8	sec-Butylbenzene	0.8	< 0.8	Ŭ
99-87-6	4-Isopropyltoluene	0.8	< 0.8	U
104-51-8	n-Butylbenzene	0.8	< 0.8	U
120-82-1	1,2,4-Trichlorobenzene	3.8	< 3.8	U
91-20-3	Naphthalene	3.8	< 3.8	U
87-61-6	1,2,3-Trichlorobenzene	3.8	< 3.8	U

Reported in μ g/kg (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	100%
Bromofluorobenzene	105%
d4-1,2-Dichlorobenzene	100%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OL03H

LIMS ID: 09-3398 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT9/PAB Date Analyzed: 02/09/09 20:08

Reported: 02/13/09

Project: BOEING ISAACSON

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 5.80 g-dry-wt

QC Report No: OL03-The Boeing Company

025173.090

SAMPLE

Purge Volume: 5.0 mL Moisture: 25.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.7	3.4	
67-64-1	Acetone	4.3	30	
75-15-0	Carbon Disulfide	0.9	< 0.9	U
75-35-4	1,1-Dichloroethene	0.9	< 0.9	Ū
75-34-3	1,1-Dichloroethane	0.9	< 0.9	Ū
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	Ū
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	Ū
67-66-3	Chloroform	0.9	< 0.9	Ū
107-06-2	1,2-Dichloroethane	0.9	< 0.9	Ū
78-93-3	2-Butanone	4.3	< 4.3	Ü
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	Ū
56-23-5	Carbon Tetrachloride	0.9	< 0.9	Ū
108-05-4	Vinyl Acetate	4.3	< 4.3	Ū
75-27-4	Bromodichloromethane	0.9	< 0.9	Ū
78-87-5	1,2-Dichloropropane	0.9	< 0.9	Ū
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	Ū
79-01-6	Trichloroethene	0.9	< 0.9	Ū
124-48-1	Dibromochloromethane	0.9	< 0.9	Ū
79-00-5	1,1,2-Trichloroethane	0.9	< 0.9	Ū
71-43-2	Benzene	0.9	0.9	
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.3	< 4.3	Ū
75-25-2	Bromoform	0.9	< 0.9	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.3	< 4.3	U
591-78-6	2-Hexanone	4.3	< 4.3	U
127-18-4	Tetrachloroethene	0.9	< 0.9	U
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
108-90-7	Chlorobenzene	0.9	< 0.9	Ū
100-41-4	Ethylbenzene	0.9	< 0.9	U
100-42-5	Styrene	0.9	< 0.9	U
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.7	< 1.7	U
1330-20-7	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U
95-50-1	1,2-Dichlorobenzene	0.9	< 0.9	U
541-73-1	1,3-Dichlorobenzene	0.9	< 0.9	U
106-46-7	1,4-Dichlorobenzene	0.9	< 0.9	U
107-02-8	Acrolein	43	< 43	U
74-88-4	Methyl Iodide	0.9	3.2	
74-96-4	Bromoethane	1.7	< 1.7	U
107-13-1	Acrylonitrile	4.3	< 4.3	U
	•			

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-14-11-090203

SAMPLE

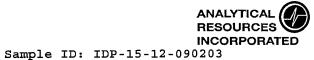
Lab Sample ID: OL03H

LIMS ID: 09-3398

Matrix: Soil

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON


025173.090

Date Analyzed: 02/09/09 20:08

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.9	< 0.9	U
74-95-3	Dibromomethane	0.9	< 0.9	U
630-20-6	1,1,1,2-Tetrachloroethane	0.9	< 0.9	U
96-12-8	1,2-Dibromo-3-chloropropane	4.3	< 4.3	U
96-18-4	1,2,3-Trichloropropane	1.7	< 1.7	U
110-57-6	trans-1,4-Dichloro-2-butene	4.3	< 4.3	U
108-67-8	1,3,5-Trimethylbenzene	0.9	< 0.9	U
95-63-6	1,2,4-Trimethylbenzene	0.9	< 0.9	U
87-68-3	Hexachlorobutadiene	4.3	< 4.3	U
106-93-4	Ethylene Dibromide	0.9	< 0.9	U
74-97-5	Bromochloromethane	0.9	< 0.9	U
594-20-7	2,2-Dichloropropane	0.9	< 0.9	U
142-28-9	1,3-Dichloropropane	0.9	< 0.9	U
98-82-8	Isopropylbenzene	0.9	< 0.9	U
103-65-1	n-Propylbenzene	0.9	< 0.9	U
108-86-1	Bromobenzene	0.9	< 0.9	U
95-49-8	2-Chlorotoluene	0.9	< 0.9	U
106-43-4	4-Chlorotoluene	0.9	< 0.9	U
98-06-6	tert-Butylbenzene	0.9	< 0.9	U
1 3 5-98-8	sec-Butylbenzene	0.9	< 0.9	U
99-87-6	4-Isopropyltoluene	0.9	< 0.9	U
104-51-8	n-Butylbenzene	0.9	< 0.9	U
120-82-1	1,2,4-Trichlorobenzene	4.3	< 4.3	U
91-20-3	Naphthalene	4.3	< 4.3	U
87-61-6	1,2,3-Trichlorobenzene	4.3	< 4.3	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	99.5%
Bromofluorobenzene	103%
d4-1,2-Dichlorobenzene	101%

SAMPLE Page 1 of 2

QC Report No: OL03-The Boeing Company

025173.090

Project: BOEING ISAACSON

Date Sampled: 02/03/09

Lab Sample ID: OL03I LIMS ID: 09-3399

Matrix: Soil Data Release Authorized:

Reported: 02/13/09

Date Received: 02/03/09 Sample Amount: 7.77 g-dry-wt Instrument/Analyst: NT9/PAB

Date Analyzed: 02/10/09 15:23 Purge Volume: 5.0 mL Moisture: 28.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.6	< 0.6	U
74-83-9	Bromomethane	0.6	< 0.6	U
75-01-4	Vinyl Chloride	0.6	< 0.6	U
75-00-3	Chloroethane	0.6	< 0.6	U
75-09-2	Methylene Chloride	1.3	2.2	
67-64-1	Acetone	3.2	58	
75-15-0	Carbon Disulfide	0.6	2.6	
75-35-4	1,1-Dichloroethene	0.6	< 0.6	U
75-34-3	1,1-Dichloroethane	0.6	< 0.6	U
156-60-5	trans-1,2-Dichloroethene	0.6	< 0.6	U
156-59-2	cis-1,2-Dichloroethene	0.6	< 0.6	U
67-66-3	Chloroform	0.6	< 0.6	U
107-06-2	1,2-Dichloroethane	0.6	< 0.6	U
78-93-3	2-Butanone	3.2	7.4	
71-55-6	1,1,1-Trichloroethane	0.6	< 0.6	U
56-23-5	Carbon Tetrachloride	0.6	< 0.6	U
108-05-4	Vinyl Acetate	3.2	< 3.2	U
75-27-4	Bromodichloromethane	0.6	< 0.6	U
78-87-5	1,2-Dichloropropane	0.6	< 0.6	U
10061-01-5	cis-1,3-Dichloropropene	0.6	< 0.6	U
79-01-6	Trichloroethene	0.6	< 0.6	U
124-48-1	Dibromochloromethane	0.6	< 0.6	U
79-00-5	1,1,2-Trichloroethane	0.6	< 0.6	U
71-43-2	Benzene	0.6	0.7	
10061-02-6	trans-1,3-Dichloropropene	0.6	< 0.6	U
110-75-8	2-Chloroethylvinylether	3.2	< 3.2	U
75-25-2	Bromoform	0.6	< 0.6	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	3.2	< 3.2	U
591-78-6	2-Hexanone	3.2	< 3.2	U
127-18-4	Tetrachloroethene	0.6	< 0.6	U
79-34-5	1,1,2,2-Tetrachloroethane	0.6	< 0.6	U
108-88-3	Toluene	0.6	< 0.6	U
108-90-7	Chlorobenzene	0.6	< 0.6	U
100-41-4	Ethylbenzene	0.6	< 0.6	U
100-42-5	Styrene	0.6	< 0.6	U
75-69-4	Trichlorofluoromethane	0.6	< 0.6	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.3	< 1.3	U
1330-20-7	m,p-Xylene	0.6	< 0.6	U
95-47-6	o-Xylene	0.6	< 0.6	U
95-50-1	1,2-Dichlorobenzene	0.6	< 0.6	U
541-73-1	1,3-Dichlorobenzene	0.6	< 0.6	U
106-46-7	1,4-Dichlorobenzene	0.6	< 0.6	U
107-02-8	Acrolein	32	< 32	U
74-88-4	Methyl Iodide	0.6	< 0.6	U
74-96-4	Bromoethane	1.3	< 1.3	U
107-13-1	Acrylonitrile	3.2	< 3.2	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-15-12-090203

SAMPLE

Lab Sample ID: OL03I

LIMS ID: 09-3399

P:

Matrix: Soil

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date	Analyzed:	02/10/	09	15:23
------	-----------	--------	----	-------

CAS Number	Analyte	\mathtt{RL}	Result	Q
563-58-6	1,1-Dichloropropene	0.6	< 0.6	U
74-95-3	Dibromomethane	0.6	< 0.6	U
630-20-6	1,1,1,2-Tetrachloroethane	0.6	< 0.6	U
96-12-8	1,2-Dibromo-3-chloropropane	3.2	< 3.2	U
96-18-4	1,2,3-Trichloropropane	1.3	< 1.3	U
110-57-6	trans-1,4-Dichloro-2-butene	3.2	< 3.2	U
108-67-8	1,3,5-Trimethylbenzene	0.6	< 0.6	U
95-63-6	1,2,4-Trimethylbenzene	0.6	< 0.6	U
87-68-3	Hexachlorobutadiene	3.2	< 3.2	U
106-93-4	Ethylene Dibromide	0.6	< 0.6	U
74-97-5	Bromochloromethane	0.6	< 0.6	U
594-20-7	2,2-Dichloropropane	0.6	< 0.6	U
142-28-9	1,3-Dichloropropane	0.6	< 0.6	U
98-82-8	Isopropylbenzene	0.6	< 0.6	U
103-65-1	n-Propylbenzene	0.6	< 0.6	U
108-86-1	Bromobenzene	0.6	< 0.6	U
95-49-8	2-Chlorotoluene	0.6	< 0.6	U
106-43-4	4-Chlorotoluene	0.6	< 0.6	U
98-06-6	tert-Butylbenzene	0.6	< 0.6	U
135-98-8	sec-Butylbenzene	0.6	< 0.6	U
99-87-6	4-Isopropyltoluene	0.6	< 0.6	U
104-51-8	n-Butylbenzene	0.6	< 0.6	U
120-82-1	1,2,4-Trichlorobenzene	3.2	< 3.2	U
91-20-3	Naphthalene	3.2	< 3.2	U
87-61-6	1,2,3-Trichlorobenzene	3.2	< 3.2	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	108%
d8-Toluene	95.4%
Bromofluorobenzene	88.7%
d4-1,2-Dichlorobenzene	94.5%

Page 1 of 2

Sample ID: MB-020909 METHOD BLANK

Lab Sample ID: MB-020909

Instrument/Analyst: NT9/PAB
Date Analyzed: 02/09/09 11:01

LIMS ID: 09-3391

Matrix: Soil Data Release Authorized:

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ū
108-88-3	Toluene	1.0	< 1.0	Ū
108-90-7	Chlorobenzene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	Ū
75-69-4	Trichlorofluoromethane	1.0	< 1.0	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ū
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ŭ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	Ū
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	U
107-02-8	Acrolein	50	< 50	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-86-4	Bromoethane	2.0	< 2.0	Ū
	Acrylonitrile	5.0	< 5.0	Ū
107-13-1	WCTATOHITCTTTE	J. U	` 5.0	U

Page 2 of 2

Sample ID: MB-020909

METHOD BLANK

Lab Sample ID: MB-020909

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3391

Project: BOEING ISAACSON

Matrix: Soil

025173.090

Date Analyzed: 02/09/09 11:01

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.0	< 1.0	U
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-2 0- 3	Naphthalene	5.0	< 5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	95.2%
d8-Toluene	99.3%
Bromofluorobenzene	99.3%
d4-1.2-Dichlorobenzene	96.88

Page 1 of 2

Sample ID: MB-021009 METHOD BLANK

Lab Sample ID: MB-021009

LIMS ID: 09-3399 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT9/PAB

Date Analyzed: 02/10/09 14:49

Reported: 02/13/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA
Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	Ū
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	Ū
107-02-8	Acrolein	50	< 50	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	2.0	< 2.0	Ū
107-13-1	Acrylonitrile	5.0	< 5.0	Ū
10, 10-1	1101 1 10111 01 110	J . U		_

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-021009
Page 2 of 2 METHOD BLANK

Lab Sample ID: MB-021009

LIMS ID: 09-3399

Matrix: Soil

Date Analyzed: 02/10/09 14:49

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.0	< 1.0	U
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-20-3	Naphthalene	5.0	< 5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	90.1%
d8-Toluene	98.9%
Bromofluorobenzene	99.9%
d4-1.2-Dichlorobenzene	97.9%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-020909	Method Blank	Low	95.2%	99.3%	99.3%	96.8%	0
LCS-020909	Lab Control	Low	94.4%	99.1%	98.9%	97.6%	0
LCSD-020909	Lab Control Dup	Low	100%	99.2%	100%	99.2%	0
OL03A	IDP-7-3-090203	Low	118%	98.1%	98.6%	104%	0
OL03B	IDP-8-3-090203	Low	112%	100%	106%	103%	0
OL03C	IDP-9-3-090203	Low	109%	97.9%	92.1%	105%	0
OL03D	IDP-10-2-090203	Low	112%	101%	106%	103%	0
OL03E	IDP-11-11-090203	Low	108%	99.4%	98.6%	100%	0
OL03F	IDP-12-12-090203	Low	115%	101%	107%	103%	0
OL03G	IDP-13-12-090203	Low	108%	100%	105%	100%	0
OL03H	IDP-14-11-090203	Low	115%	99.5%	103%	101%	0
MB-021009	Method Blank	Low	90.1%	98.9%	99.9%	97.9%	0
LCS-021009	Lab Control	Low	98.7%	99.4%	98.1%	98.2%	0
LCSD-021009	Lab Control Dup	Low	96.2%	99.6%	103%	97.3%	0
OL03I	IDP-15-12-090203	Low	108%	95.4%	88.7%	94.5%	0
		LCS	/MB LIN	MITS		QC LIMI	TS
SW8260B		Low		Med	Lo	W	Med
	2-Dichloroethane	75-12)	76-12 0	72-1	134	69-120
(TOL) = d8-To		80-12	2	80-120	78-1	124	80-120
	fluorobenzene	79-12)	80-120	66-1	120	76-128
· /	2-Dichlorobenzene	80-12)	80-120	79-1	120	80-120

Log Number Range: 09-3391 to 09-3399

Page 1 of 2

Sample ID: LCS-020909

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020909

LIMS ID: 09-3391 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT9/PAB

LCSD: NT9/PAB

Date Analyzed LCS: 02/09/09 09:43

LCSD: 02/09/09 10:09

Sample Amount LCS: 5.00 g-dry-wt

QC Report No: OL03-The Boeing Company

025173.090

Project: BOEING ISAACSON

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	68.3	50.0	137%	67.2	50.0	134%	1.6%
Bromomethane	57.5	50.0	115%	57.8	50.0	116%	0.5%
Vinyl Chloride	63.2	50.0	126%	61.7	50.0	123%	2.4%
Chloroethane	58.9	50.0	118%	56.9	50.0	114%	3.5%
Methylene Chloride	49.4	50.0	98.8%	50.5	50.0	101%	2.2%
Acetone	227	250	90.8%	254	250	102%	11.2%
Carbon Disulfide	53.5	50.0	107%	51.9	50.0	104%	3.0%
1,1-Dichloroethene	57.6	50.0	115%	56.6	50.0	113%	1.8%
1,1-Dichloroethane	53.8	50.0	108%	53.2	50.0	106%	1.1%
trans-1,2-Dichloroethene	51.4	50.0	103%	49.7	50.0	99.4%	3.4%
cis-1,2-Dichloroethene	53.0	50.0	106%	52.4	50.0	105%	1.1%
Chloroform	53.6	50.0	107%	53.0	50.0	106%	1.1%
1,2-Dichloroethane	50.4	50.0	101%	51.7	50.0	103%	2.5%
2-Butanone	226	250	90.4%	251	250	100%	10.5%
1,1,1-Trichloroethane	55.6	50.0	111%	54.4	50.0	109%	2.2%
Carbon Tetrachloride	55.5	50.0	111%	53.9	50.0	108%	2.9%
Vinyl Acetate	45.2	50.0	90.4%	48.2	50.0	96.4%	6.4%
Bromodichloromethane	49.0	50.0	98.0%	49.1	50.0	98.2%	0.2%
1,2-Dichloropropane	51.4	50.0	103%	51.2	50.0	102%	0.4%
cis-1,3-Dichloropropene	51.2	50.0	102%	51.4	50.0	103%	0.4%
Trichloroethene	55.1	50.0	110%	53.2	50.0	106%	3.5%
Dibromochloromethane	50.3	50.0	101%	50.6	50.0	101%	0.6%
1,1,2-Trichloroethane	46.6	50.0	93.2%	49.2	50.0	98.4%	5.4%
Benzene	52.4	50.0	105%	50.7	50.0	101%	3.3%
trans-1,3-Dichloropropene	53.2	50.0	106%	54.8	50.0	110%	3.0%
2-Chloroethylvinylether	75.9	50.0	152%	82.2	50.0	164%	8.0%
Bromoform	60.6	50.0	121%	59.4	50.0	119%	2.0%
4-Methyl-2-Pentanone (MIBK)	225	250	90.0%	255	250	102%	12.5%
2-Hexanone	227	250	90.8%	250	250	100%	9.6%
Tetrachloroethene	57.0	50.0	114%	53.4	50.0	107%	6.5%
1,1,2,2-Tetrachloroethane	53.2	50.0	106%	53.9	50.0	108%	1.3%
Toluene	5 1 .7	50.0	103%	50.7	50.0	101%	2.0%
Chlorobenzene	53.4	50.0	107%	51. 1	50.0	102%	4.4%
Ethylbenzene	55.4	50.0	111%	50.9	50.0	102%	8.5%
Styrene	54.4	50.0	109%	51.9	50.0	104%	4.7%
Trichlorofluoromethane	68.0	50.0	136%	56.6	50.0	113%	18.3%
1,1,2-Trichloro-1,2,2-trifluoroetha	61.3	50.0	123%	59.3	50.0	119%	3.3%
m,p-Xylene	108	100	108%	102	100	102%	5.7%
o-Xylene	52.4	50.0	105%	50.2	50.0	100%	4.3%
1,2-Dichlorobenzene	56.9	50.0	114%	52.2	50.0	104%	8.6%
1,3-Dichlorobenzene	60.0	50.0	120%	53.7	50.0	107%	11.1%
1,4-Dichlorobenzene	58.7	50.0	117%	52.3	50.0	105%	11.5%
Acrolein	381	250	152%	418	250	167%	9.3%
Methyl Iodide	79.4	50.0	159%	76.2	50.0	152%	4.1%
Bromoethane	71.2	50.0	142%	68.7	50.0	137%	3.6%
Acrylonitrile	50.3	50.0	101%	54.2	50.0	108%	7.5%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-020909

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020909

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3391 Matrix: Soil

Project: BOEING ISAACSON

025173.090

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1-Dichloropropene	54.6	50.0	109%	53.2	50.0	106%	2.6%
Dibromomethane	48.7	50.0	97.4%	51.4	50.0	103%	5.4%
1,1,1,2-Tetrachloroethane	54.4	50.0	109%	53.1	50.0	106%	2.4%
1,2-Dibromo-3-chloropropane	50.6	50.0	101%	51.8	50.0	104%	2.3%
1,2,3-Trichloropropane	51.1	50.0	102%	51.4	50.0	103%	0.6%
trans-1,4-Dichloro-2-butene	58.4	50.0	117%	60.2	50.0	120%	3.0%
1,3,5-Trimethylbenzene	61.6	50.0	123%	55.2	50.0	110%	11.0%
1,2,4-Trimethylbenzene	61.2	50.0	122%	54.6	50.0	109%	11.4%
Hexachlorobutadiene	60.8	50.0	122%	53.1	50.0	106%	13.5%
Ethylene Dibromide	46.5	50.0	93.0%	49.0	50.0	98.0%	5.2%
Bromochloromethane	51.8	50.0	104%	52.8	50.0	106%	1.9%
2,2-Dichloropropane	57.0	50.0	114%	55.6	50.0	111%	2.5%
1,3-Dichloropropane	48.4	50.0	96.8%	49.1	50.0	98.2%	1.4%
Isopropylbenzene	73.0	50.0	146%	65.8	50.0	132%	10.4%
n-Propylbenzene	64.9	50.0	130%	57.6	50.0	115%	11.9%
Bromobenzene	61.6	50.0	123%	56.8	50.0	114%	8.1%
2-Chlorotoluene	58.9	50.0	118%	53.7	50.0	107%	9.2%
4-Chlorotoluene	61.3	50.0	123%	55.0	50.0	110%	10.8%
tert-Butylbenzene	65.3	50.0	131%	58.5	50.0	117%	11.0%
sec-Butylbenzene	62.4	50.0	125%	55.5	50.0	111%	11.7%
4-Isopropyltoluene	63.2	50.0	126%	55.6	50.0	111%	12.8%
n-Butylbenzene	62.5	50.0	125%	54.0	50.0	108%	14.6%
1,2,4-Trichlorobenzene	56.5	50.0	113%	49.8	50.0	99.6%	12.6%
Naphthalene	48.6	50.0	97.2%	48.2	50.0	96.4%	0.8%
1,2,3-Trichlorobenzene	53.1	50.0	106%	48.9	50.0	97.8%	8.2%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	94.4%	100%
d8-Toluene	99.1%	99.2%
Bromofluorobenzene	98.9%	100%
d4-1.2-Dichlorobenzene	97.6%	99 28

Sample ID: LCS-021009 Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

LIMS ID: 09-3399 Matrix: Soil

Data Release Authorized:

Reported: 02/13/09

Instrument/Analyst LCS: NT9/PAB LCSD: NT9/PAB

Date Analyzed LCS: 02/10/09 13:55

LCSD: 02/10/09 14:23

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	45.6	50.0	91.2%	46.3	50.0	92.6%	1.5%
Bromomethane	50.9	50.0	102%	52.2	50.0	104%	2.5%
Vinyl Chloride	52.3	50.0	105%	52.6	50.0	105%	0.6%
Chloroethane	54.6	50.0	109%	58.4	50.0	117%	6.7%
Methylene Chloride	49.5	50.0	99.0%	50.0	50.0	100%	1.0%
Acetone	236	250	94.4%	210	250	84.0%	11.7%
Carbon Disulfide	49.3	50.0	98.6%	50.3	50.0	101%	2.0%
1,1-Dichloroethene	53.1	50.0	106%	55.1	50.0	110%	3.7%
1,1-Dichloroethane	51.6	50.0	103%	52.7	50.0	105%	2.1%
trans-1,2-Dichloroethene	50.4	50.0	101%	52.1	50.0	104%	3.3%
cis-1,2-Dichloroethene	51.5	50.0	103%	52.3	50.0	105%	1.5%
Chloroform	52.6	50.0	105%	52.6	50.0	105%	0.0%
1,2-Dichloroethane	48.7	50.0	97.4%	49.0	50.0	98.0%	0.6%
2-Butanone	233	250	93.2%	218	250	87.2%	6.7%
1,1,1-Trichloroethane	52.3	50.0	105%	54.4	50.0	109%	3.9%
Carbon Tetrachloride	50.6	50.0	101%	52.9	50.0	106%	4.4%
Vinyl Acetate	45.3	50.0	90.6%	43.6	50.0	87.2%	3.8%
Bromodichloromethane	50.0	50.0	100%	51.0	50.0	102%	2.0%
1,2-Dichloropropane	48.6	50.0	97.2%	50.4	50.0	101%	3.6%
cis-1,3-Dichloropropene	48.3	50.0	96.6%	49.4	50.0	98.8%	2.3%
Trichloroethene	50.2	50.0	100%	52.5	50.0	105%	4.5%
Dibromochloromethane	48.9	50.0	97.8%	48.9	50.0	97.8%	0.0%
1,1,2-Trichloroethane	46.7	50.0	93.4%	46.4	50.0	92.8%	0.6%
Benzene	49.1	50.0	98.2%	50.7	50.0	101%	3.2%
trans-1,3-Dichloropropene	48.4	50.0	96.8%	49.0	50.0	98.0%	1.2%
2-Chloroethylvinylether	66.7	50.0	133%	64.4	50.0	129%	3.5%
Bromoform	60.2	50.0	120%	51.8	50.0	104%	15.0%
4-Methyl-2-Pentanone (MIBK)	232	250	92.8%	221	250	88.4%	4.9%
2-Hexanone	234	250	93.6%	215	250	86.0%	8.5%
Tetrachloroethene	51.5	50.0	103%	52.6	50.0	105%	2.1%
1,1,2,2-Tetrachloroethane	53.9	50.0	108%	46.2	50.0	92.4%	15.4%
Toluene	49.0	50.0	98.0%	50.4	50.0	101%	2.8%
Chlorobenzene	49.6	50.0	99.2%	50.8	50.0	102%	2.4%
Ethylbenzene	50.1	50.0	100%	51.5	50.0	103%	2.8%
Styrene	51.4	50.0	103%	52.7	50.0	105%	2.5%
Trichlorofluoromethane	62.3	50.0	125%	64.1	50.0	128%	2.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	56.1	50.0	112%	57.7	50.0	115%	2.8%
m,p-Xylene	99.7	100	99.7%	103	100	103%	3.3%
o-Xylene	49.0	50.0	98.0%	51.0	50.0	102%	4.0%
1,2-Dichlorobenzene	54.6	50.0	109%	50.0	50.0	100%	8.8%
1,3-Dichlorobenzene	57.1	50.0	114%	52.3	50.0	105%	8.8%
1,4-Dichlorobenzene	56.1	50.0	112%	51.6	50.0	103%	8.4%
Acrolein	214	250	85.6%	203	250	81.2%	5.3%
Methyl Iodide	70.0	50.0	140%	73.9	50.0	148%	5.4%
Bromoethane	64.4	50.0	129%	66.1	50.0	132%	2.6%
Acrylonitrile	47.7	50.0	95.4%	45.4	50.0	90.8%	4.9%

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3399 Matrix: Soil

Project: BOEING ISAACSON

025173.090

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1-Dichloropropene	50.7	50.0	101%	51.3	50.0	103%	1.2%
Dibromomethane	48.1	50.0	96.2%	48.0	50.0	96.0%	0.2%
1,1,1,2-Tetrachloroethane	51.0	50.0	102%	52.1	50.0	104%	2.1%
1,2-Dibromo-3-chloropropane	50.8	50.0	102%	44.1	50.0	88.2%	14.1%
1,2,3-Trichloropropane	57.2	50.0	114%	49.2	50.0	98.4%	15.0%
trans-1,4-Dichloro-2-butene	54.2	50.0	108%	46.4	50.0	92.8%	15.5%
1,3,5-Trimethylbenzene	58.1	50.0	116%	53.4	50.0	107%	8.4%
1,2,4-Trimethylbenzene	57.3	50.0	115%	52.7	50.0	105%	8.4%
Hexachlorobutadiene	55.4	50.0	111%	54.8	50.0	110%	1.1%
Ethylene Dibromide	46.5	50.0	93.0%	46.3	50.0	92.6%	0.4%
Bromochloromethane	51.6	50.0	103%	50.8	50.0	102%	1.6%
2,2-Dichloropropane	52.9	50.0	106%	54.6	50.0	109%	3.2%
1,3-Dichloropropane	47.7	50.0	95.4%	47.1	50.0	94.2%	1.3%
Isopropylbenzene	59.4	50.0	119%	54.4	50.0	109%	8.8%
n-Propylbenzene	60.4	50.0	121%	55.5	50.0	111%	8.5%
Bromobenzene	59.4	50.0	119%	53.4	50.0	107%	10.6%
2-Chlorotoluene	55.8	50.0	112%	51.1	50.0	102%	8.8%
4-Chlorotoluene	57.9	50.0	116%	52.6	50.0	105%	9.6%
tert-Butylbenzene	60.6	50.0	121%	56.2	50.0	112%	7.5%
sec-Butylbenzene	58.3	50.0	117%	54.2	50.0	108%	7.3%
4-Isopropyltoluene	58.5	50.0	117%	54.4	50.0	109%	7.3%
n-Butylbenzene	59.4	50.0	119%	55.3	50.0	111%	7.1%
1,2,4-Trichlorobenzene	54.4	50.0	109%	51.1	50.0	102%	6.3%
Naphthalene	49.7	50.0	99.4%	46.3	50.0	92.6%	7.1%
1,2,3-Trichlorobenzene	53.0	50.0	106%	50.7	50.0	101%	4.4%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	98.7%	96.2%
d8-Toluene	99.4%	99.6%
Bromofluorobenzene	98.1%	103%
d4-1.2-Dichlorobenzene	98.2%	97.3%

Sample ID: IDP-8-GW-090203

SAMPLE

Lab Sample ID: OL03K

LIMS ID: 09-3401

Page 1 of 2

Matrix: Water
Data Release Authorized:
Reported: 02/18/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 02/13/09 16:05 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	0.2	
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	0.5	
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23 - 5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2 < 0.2	U U
630-20-6	1,1,1,2-Tetrachloroethane		< 0.2	U
96-12-8 96-18-4	1,2-Dibromo-3-chloropropane	0.5 0.5	< 0.5	U
J0-10-4	1,2,3-Trichloropropane	0.5	\ 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: IDP-8-GW-090203

Page 2 of 2

Matrix: Water

SAMPLE

Lab Sample ID: OL03K QC Report No: OL03-The Boeing Company LIMS ID: 09-3401

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/13/09 16:05

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.7%
d8-Toluene	99.28
Bromofluorobenzene	97.7%
d4-1 2-Dichlorobenzene	101%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: IDP-9-GW-090203 SAMPLE

Page 1 of 2

Lab Sample ID: OL03L

LIMS ID: 09-3402 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 02/13/09 16:33

Reported: 02/18/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74- 8 3-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66 - 3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-9-GW-090203

SAMPLE

Lab Sample ID: OL03L

LIMS ID: 09-3402

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Matrix: Water Date Analyzed: 02/13/09 16:33

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
d8-Toluene	98.8%
Bromofluorobenzene	96.2%
d4-1,2-Dichlorobenzene	101%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Matrix: Water

Data Release Authorized:

Reported: 02/18/09

Lab Sample ID: OL03M QC Report No: OL03-The Boeing Company LIMS ID: 09-3403

Project: BOEING ISAACSON

SAMPLE

025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 02/12/09 23:34 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U ·
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-12-GW-090203

SAMPLE

Lab Sample ID: OL03M

LIMS ID: 09-3403

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Matrix: Water Date Analyzed: 02/12/09 23:34

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	Ŭ
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ŭ
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ŭ
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	98.4%
Bromofluorobenzene	96.3%
d4-1 2-Dichlorobenzene	100%

SAMPLE Page 1 of 2

Lab Sample ID: OL03N LIMS ID: 09-3404

Matrix: Water Data Release Authorized;

Reported: 02/18/09

Instrument/Analyst: NT5/JZ Date Analyzed: 02/13/09 00:01 QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 < 2.5	U
591-78-6	2-Hexanone	0.2	< 0.2	U U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane Toluene	0.2	< 0.2	U
108-88-3	Chlorobenzene	0.2	< 0.2	U
108-90-7	Ethylbenzene	0.2	< 0.2	U
100-41-4 100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ü
1330-20-7	m,p-Xylene	0.4	< 0.2	U
95-47-6	o-Xylene	0.2	< 0.1	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ü
107-02-8	Acrolein	5.0	< 5.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ū
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U
20 20 1	-,-,3			-

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: IDP-14-GW-090203

SAMPLE

Lab Sample ID: OL03N

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3404

Project: BOEING ISAACSON 025173.090

Matrix: Water

Date Analyzed: 02/13/09 00:01

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	Ū
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	Ŭ
106-93-4	Ethylene Dibromide	0.2	< 0.2	Ŭ
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	99.4%
Bromofluorobenzene	96.9%
d4-1,2-Dichlorobenzene	103%

Page 1 of 2

Matrix: Water

Reported: 02/18/09

Data Release Authorized:

Sample ID: TB SAMPLE

Lab Sample ID: OL030 QC Report No: OL03-The Boeing Company
LIMS ID: 09-3405 Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09
Date Received: 02/03/09

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 02/12/09 20:52 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: TB SAMPLE

Lab Sample ID: OL030 QC Report No: OL03-The Boeing Company

LIMS ID: 09-3405 Project: BOEING ISAACSON Matrix: Water 025173.090

Date Analyzed: 02/12/09 20:52

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.8%
d8-Toluene	100%
Bromofluorobenzene	96.4%
d4-1,2-Dichlorobenzene	101%

Page 1 of 2

Lab Sample ID: MB-021209

LIMS ID: 09-3403 Matrix: Water

Data Release Authorized:

Reported: 02/18/09

d: //

Instrument/Analyst: NT5/JZ
Date Analyzed: 02/12/09 19:58

Sample ID: MB-021209

METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ŭ
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	Ü
107-13-1	Acrylonitrile	1.0	< 1.0	Ü
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: MB-021209 METHOD BLANK

Lab Sample ID: MB-021209

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3403

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/12/09 19:58

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	0.7	
87-61-6	1,2,3-Trichlorobenzene	0.5	0.5	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	100%
d8-Toluene	99.1%
Bromofluorobenzene	98.3%
d4-1,2-Dichlorobenzene	101%

Sample ID: MB-021309 Page 1 of 2 METHOD BLANK

Lab Sample ID: MB-021309

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 02/13/09 12:02

Reported: 02/18/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25 <i>-</i> 2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	Ü
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	Ŭ
74-96-4	Bromoethane	0.2	< 0.2	Ŭ
107-13-1	Acrylonitrile	1.0	< 1.0	Ŭ
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12 - 8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Sample ID: MB-021309 Page 2 of 2 METHOD BLANK

Lab Sample ID: MB-021309

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

LIMS ID: 09-3401 Matrix: Water

Date Analyzed: 02/13/09 12:02

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	0.5	
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.0%
d8-Toluene	99.0%
Bromofluorobenzene	94.6%
d4-1,2-Dichlorobenzene	100%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-021309	Method Blank	10	98.0%	99.0%	94.6%	100%	0
LCS-021209	Lab Control	10	97.3%	100%	101%	102%	0
LCSD-021209	Lab Control Dup	10	97.3%	99.7%	100%	99.9%	0
OL03K	IDP-8-GW-090203	10	98.7%	99.2%	97.7%	101%	0
OL03L	IDP-9-GW-090203	10	101%	98.8%	96.2%	101%	0
MB-021209	Method Blank	10	100%	99.1%	98.3%	101%	0
LCS-021309	Lab Control	10	99.5%	100%	100%	101%	0
LCSD-021309	Lab Control Dup	10	99.8%	100%	101%	101%	0
OL03M	IDP-12-GW-090203	10	100%	98.4%	96.3%	100%	0
OL03N	IDP-14-GW-090203	10	100%	99.4%	96.9%	1038	0
OL030	TB	10	98.8%	100%	96.4%	101%	0
	LCS	/MB LIM	ITS		QC LIMIT	rs	
SW8260B							
(DCE) = d4-1,	2-Dichloroethane	70-130		70-130			
(TOL) = d8-Tc	oluene		70-130			70-130)
(BFB) = Bromo	ofluorobenzene		70-130			70-130)
(DCB) = d4-1,	2-Dichlorobenzene		70-130		70-130		

Prep Method: SW5030B Log Number Range: 09-3401 to 09-3405

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-021209

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Reported: 02/18/09

Instrument/Analyst LCS: NT5/JZ

LCSD: NT5/JZ Date Analyzed LCS: 02/12/09 19:04

LCSD: 02/12/09 19:31

QC Report No: OL03-The Boeing Company

Sample ID: LCS-021209

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS		LCSD	Added-LCSD		RPD
Chloromethane	18.1	20.0	90.5%	17.7	20.0	88.5%	2.2%
Bromomethane	24.1	20.0	120%	22.0	20.0	110%	9.1%
Vinyl Chloride	19.6	20.0	98.0%	19.8	20.0	99.0%	1.0%
Chloroethane	17.8	20.0	89.0%	18.7	20.0	93.5%	4.9%
Methylene Chloride	20.4	20.0	102%	14.7	20.0	73.5%	32.5%
Acetone	97.6	100	97.6%	99.2	100	99.2%	1.6%
Carbon Disulfide	19.8	20.0	99.0%	21.5	20.0	108%	8.2%
1,1-Dichloroethene	19.0	20.0	95.0%	19.4	20.0	97.0%	2.1%
1,1-Dichloroethane	19.5	20.0	97.5%	19.6	20.0	98.0%	0.5%
trans-1,2-Dichloroethene	19.1	20.0	95.5%	19.5	20.0	97.5%	2.1%
cis-1,2-Dichloroethene	19.6	20.0	98.0%	19.8	20.0	99.0%	1.0%
Chloroform	19.3	20.0	96.5%	19.5	20.0	97.5%	1.0%
1,2-Dichloroethane	19.9	20.0	99.5%	20.3	20.0	102%	2.0%
2-Butanone	96.2	100	96.2%	98.8	100	98.8%	2.7%
1,1,1-Trichloroethane	19.4	20.0	97.0%	19.7	20.0	98.5%	1.5%
Carbon Tetrachloride	19.8	20.0	99.0%	20.5	20.0	102%	3.5%
Vinyl Acetate	20.2	20.0	101%	20.0	20.0	100%	1.0%
Bromodichloromethane	19.9	20.0	99.5%	19.8	20.0	99.0%	0.5%
1,2-Dichloropropane	19.7	20.0	98.5%	20.0	20.0	100%	1.5%
cis-1,3-Dichloropropene	20.2	20.0	101%	20.2	20.0	101%	0.0%
Trichloroethene	19.9	20.0	99.5%	20.3	20.0	102%	2.0%
Dibromochloromethane	20.6	20.0	103%	20.5	20.0	102%	0.5%
1,1,2-Trichloroethane	19.9	20.0	99.5%	19.9	20.0	99.5%	0.0%
Benzene	19.9	20.0	99.5%	20.2	20.0	101%	1.5%
trans-1,3-Dichloropropene	20.2	20.0	101%	20.6	20.0	103%	2.0%
2-Chloroethylvinylether	20.8	20.0	104%	21.2	20.0	106%	1.9%
Bromoform	20.3	20.0	102%	20.4	20.0	102%	0.5%
4-Methyl-2-Pentanone (MIBK)	101	100	101%	104	100	104%	2.9%
2-Hexanone	102	100	102%	105	100	105%	2.9%
Tetrachloroethene	19.6	20.0	98.0%	19.8	20.0	99.0%	1.0%
1,1,2,2-Tetrachloroethane	19.6	20.0	98.0%	19.4	20.0	97.0%	1.0%
Toluene	20.1	20.0	100%	20.4	20.0	102%	1.5%
Chlorobenzene	20.8	20.0	104%	20.7	20.0	104%	0.5%
Ethylbenzene	22.2	20.0	111%	22.3	20.0	112%	0.4%
Styrene	21.2	20.0	106%	21.2	20.0	106%	0.0%
Trichlorofluoromethane	19.0	20.0	95.0%	20.7	20.0	104%	8.6%
1,1,2-Trichloro-1,2,2-trifluoroetha	20.1	20.0	100%	19.8	20.0	99.0%	1.5%
m,p-Xylene	41.2	40.0	103%	41.2	40.0	103%	0.0%
o-Xylene	20.6	20.0	103%	21.0	20.0	105%	1.9%
1,2-Dichlorobenzene	20.6	20.0	103%	20.1	20.0	100%	2.5%
1,3-Dichlorobenzene	20.6	20.0	103%	20.3	20.0	102%	1.5%
1,4-Dichlorobenzene	20.6	20.0	103%	20.2	20.0	101%	2.0%
Acrolein	106	100	106%	108	100	101%	1.9%
Methyl Iodide	26.0	20.0	130%	25.4	20.0	127%	2.3%
Bromoethane	17.4	20.0	87.0%	17.9	20.0	89.5%	2.8%
Diomocchanc	11.1	20.0	07.00	11.9	20.0	09.50	2.00

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021209

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021209

QC Report No: OL03-The Boeing Company

LIMS ID: 09-3401 Matrix: Water

Project: BOEING ISAACSON

025173.090

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Acrylonitrile	19.4	20.0	97.0%	20.2	20.0	101%	4.0%
1,1-Dichloropropene	20.1	20.0	100%	20.5	20.0	102%	2.0%
Dibromomethane	19.6	20.0	98.0%	20.0	20.0	100%	2.0%
1,1,1,2-Tetrachloroethane	20.6	20.0	103%	20.4	20.0	102%	1.0%
1,2-Dibromo-3-chloropropane	18.8	20.0	94.0%	18.7	20.0	93.5%	0.5%
1,2,3-Trichloropropane	19.8	20.0	99.0%	19.7	20.0	98.5%	0.5%
trans-1,4-Dichloro-2-butene	19.0	20.0	95.0%	19.2	20.0	96.0%	1.0%
1,3,5-Trimethylbenzene	20.6	20.0	103%	20.5	20.0	102%	0.5%
1,2,4-Trimethylbenzene	20.6	20.0	103%	20.4	20.0	102%	1.0%
Hexachlorobutadiene	22.2	20.0	111%	20.8	20.0	104%	6.5%
Ethylene Dibromide	20.4	20.0	102%	20.8	20.0	104%	1.9%
Bromochloromethane	19.0	20.0	95.0%	19.9	20.0	99.5%	4.6%
2,2-Dichloropropane	18.6	20.0	93.0%	18.7	20.0	93.5%	0.5%
1,3-Dichloropropane	20.1	20.0	100%	20.2	20.0	101%	0.5%
Isopropylbenzene	20.4	20.0	102%	20.4	20.0	102%	0.0%
n-Propylbenzene	20.4	20.0	102%	20.4	20.0	102%	0.0%
Bromobenzene	20.8	20.0	104%	20.4	20.0	102%	1.9%
2-Chlorotoluene	20.5	20.0	102%	20.3	20.0	102%	1.0%
4-Chlorotoluene	20.4	20.0	102%	20.1	20.0	100%	1.5%
tert-Butylbenzene	20.5	20.0	102%	20.4	20.0	102%	0.5%
sec-Butylbenzene	20.7	20.0	104%	20.6	20.0	103%	0.5%
4-Isopropyltoluene	20.7	20.0	104%	20.5	20.0	102%	1.0%
n-Butylbenzene	20.8	20.0	104%	20.6	20.0	103%	1.0%
1,2,4-Trichlorobenzene	21.5	20.0	108%	20.7	20.0	104%	3.8%
Naphthalene	21.6	20.0	108%	21.0	20.0	105%	2.8%
1,2,3-Trichlorobenzene	21.6	20.0	108%	20.6	20.0	103%	4.7%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	97.3%	97.3%
d8-Toluene	100%	99.7%
Bromofluorobenzene	101%	100%
d4-1,2-Dichlorobenzene	102%	99.9%

Page 1 of 2

Sample ID: LCS-021309

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3403 Matrix: Water

Data Release Authorized:

Reported: 02/18/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/JZ LCSD: NT5/JZ

Date Analyzed LCS: 02/13/09 11:05

LCSD: 02/13/09 11:35

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	18.2	20.0	91.0%	18.6	20.0	93.0%	2.2%
Bromomethane	21.7	20.0	108%	22.6	20.0	113%	4.1%
Vinyl Chloride	19.2	20.0	96.0%	19.8	20.0	99.0%	3.1%
Chloroethane	18.6	20.0	93.0%	19.4	20.0	97.0%	4.2%
Methylene Chloride	20.6	20.0	103%	20.9	20.0	104%	1.4%
Acetone	108	100	108%	103	100	103%	4.7%
Carbon Disulfide	16.7	20.0	83.5%	21.9	20.0	110%	26.9%
1,1-Dichloroethene	18.9	20.0	94.5%	19.6	20.0	98.0%	3.6%
1,1-Dichloroethane	19.1	20.0	95.5%	19.7	20.0	98.5%	3.1%
trans-1,2-Dichloroethene	18.8	20.0	94.0%	19.5	20.0	97.5%	3.7%
cis-1,2-Dichloroethene	19.1	20.0	95.5%	19.9	20.0	99.5%	4.1%
Chloroform	18.9	20.0	94.5%	19.4	20.0	97.0%	2.6%
1,2-Dichloroethane	19.3	20.0	96.5%	19.8	20.0	99.0%	2.6%
2-Butanone	109	100	109%	104	100	104%	4.7%
1,1,1-Trichloroethane	18.7	20.0	93.5%	19.4	20.0	97.0%	3.7%
Carbon Tetrachloride	19.1	20.0	95.5%	19.5	20.0	97.5%	2.1%
Vinyl Acetate	21.3	20.0	106%	21.2	20.0	106%	0.5%
Bromodichloromethane	19.2	20.0	96.0%	19.5	20.0	97.5%	1.6%
1,2-Dichloropropane	19.4	20.0	97.0%	19.8	20.0	99.0%	2.0%
cis-1,3-Dichloropropene	19.9	20.0	99.5%	20.2	20.0	101%	1.5%
Trichloroethene	19.2	20.0	96.0%	19.8	20.0	99.0%	3.1%
Dibromochloromethane	20.0	20.0	100%	20.1	20.0	100%	0.5%
1,1,2-Trichloroethane	19.7	20.0	98.5%	19.7	20.0	98.5%	0.0%
Benzene	19.2	20.0	96.0%	19.9	20.0	99.5%	3.6%
trans-1,3-Dichloropropene	19.9	20.0	99.5%	20.0	20.0	100%	0.5%
2-Chloroethylvinylether	22.1	20.0	110%	22.3	20.0	112%	0.9%
Bromoform	19.9	20.0	99.5%	19.6	20.0	98.0%	1.5%
4-Methyl-2-Pentanone (MIBK)	113	100	113%	110	100	110%	2.7%
2-Hexanone	116	100	116%	109	100	109%	6.2%
Tetrachloroethene	18.7	20.0	93.5%	19.1	20.0	95.5%	2.1%
1,1,2,2-Tetrachloroethane	20.3	20.0	102%	19.6	20.0	98.0%	3.5%
Toluene	19.3	20.0	96.5%	20.0	20.0	100%	3.6%
Chlorobenzene	19.8	20.0	99.0%	20.2	20.0	101%	2.0%
Ethylbenzene	20.2	20.0	101%	21.8	20.0	109%	7.6%
Styrene	20.3	20.0	102%	20.7	20.0	104%	2.0%
Trichlorofluoromethane	18.9	20.0	94.5%	21.0	20.0	105%	10.5%
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.0	100%	20.4	20.0	102%	2.0%
m,p-Xylene	39.4	40.0	98.5%	40.3	40.0	101%	2.3%
o-Xylene	20.0	20.0	100%	20.5	20.0	102%	2.5%
1,2-Dichlorobenzene	19.7	20.0	98.5%	19.9	20.0	99.5%	1.0%
1,3-Dichlorobenzene	1 9.7	20.0	98.5%	19.9	20.0	99.5%	1.0%
1,4-Dichlorobenzene	19.8	20.0	99.0%	19.9	20.0	99.5%	0.5%
Acrolein	120	100	120%	119	100	119%	0.8%
Methyl Iodide	20.5	20.0	102%	24.3	20.0	122%	17.0%
Bromoethane	15.3	20.0	76.5%	20.4	20.0	102%	28.6%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-021309

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021309

LIMS ID: 09-3403 Matrix: Water QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Acrylonitrile	22.0	20.0	110%	21.2	20.0	106%	3.7%
1,1-Dichloropropene	19.4	20.0	97.0%	19.9	20.0	99.5%	2.5%
Dibromomethane	19.7	20.0	98.5%	19.6	20.0	98.0%	0.5%
1,1,1,2-Tetrachloroethane	19.5	20.0	97.5%	19.6	20.0	98.0%	0.5%
1,2-Dibromo-3-chloropropane	19.8	20.0	99.0%	18.4	20.0	92.0%	7.3%
1,2,3-Trichloropropane	20.0	20.0	100%	19.8	20.0	99.0%	1.0%
trans-1,4-Dichloro-2-butene	20.6	20.0	103%	20.1	20.0	100%	2.5%
1,3,5-Trimethylbenzene	19.7	20.0	98.5%	20.0	20.0	100%	1.5%
1,2,4-Trimethylbenzene	19.7	20.0	98.5%	20.1	20.0	100%	2.0%
Hexachlorobutadiene	20.6	20.0	103%	19.9	20.0	99.5%	3.5%
Ethylene Dibromide	20.3	20.0	102%	20.4	20.0	102%	0.5%
Bromochloromethane	18.3	20.0	91.5%	19.8	20.0	99.0%	7.9%
2,2-Dichloropropane	19.0	20.0	95.0%	19.3	20.0	96.5%	1.6%
1,3-Dichloropropane	20.2	20.0	101%	20.2	20.0	101%	0.0%
Isopropylbenzene	19.5	20.0	97.5%	19.9	20.0	99.5%	2.0%
n-Propylbenzene	19.7	20.0	98.5%	20.0	20.0	100%	1.5%
Bromobenzene	20.0	20.0	100%	20.0	20.0	100%	0.0%
2-Chlorotoluene	19.6	20.0	98.0%	20.0	20.0	100%	2.0%
4-Chlorotoluene	19.5	20.0	97.5%	19.7	20.0	98.5%	1.0%
tert-Butylbenzene	19.6	20.0	98.0%	19.8	20.0	99.0%	1.0%
sec-Butylbenzene	20.0	20.0	100%	20.1	20.0	100%	0.5%
4-Isopropyltoluene	20.0	20.0	100%	20.2	20.0	101%	1.0%
n-Butylbenzene	20.5	20.0	102%	20.6	20.0	103%	0.5%
1,2,4-Trichlorobenzene	20.4	20.0	102%	20.3	20.0	102%	0.5%
Naphthalene	21.5	20.0	108%	20.8	20.0	104%	3.3%
1,2,3-Trichlorobenzene	20.7	20.0	104%	20.4	20.0	102%	1.5%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	99.5%	99.8%
d8-Toluene	100%	100%
Bromofluorobenzene	100%	101%
d4-1,2-Dichlorobenzene	101%	101%

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Data Release Authorized: Reported: 02/09/09

Extraction Analysis ARI ID Sample ID Date Date DLRange Result < 0.25 U MB-020509 Method Blank 02/05/09 02/06/09 1.0 Gas Diesel < 0.63 U 09-3401 Oil < 0.63 U 83.5% o-Terphenyl 02/05/09 02/06/09 1.0 < 0.25 U OL03K IDP-8-GW-090203 Gas < 0.63 U Diesel HC ID: ---09-3401 < 0.63 U Oil o-Terphenyl 93.6% 02/05/09 02/06/09 1.0 < 0.25 U IDP-9-GW-090203 Gas OL03L Diesel < 0.63 U HC ID: ---09-3402 Oil < 0.63 U 82.9% o-Terphenyl < 0.25 U OL03M IDP-12-GW-090203 02/05/09 02/06/09 1.0 Gas < 0.63 U HC ID: ---Diesel 09-3403 < 0.63 U Oil o-Terphenyl 81.4% Gas OL03N IDP-14-GW-090203 02/05/09 02/06/09 1.0 < 0.25 U Diesel < 0.63 U 09-3404 HC ID: ---Oil < 0.63 U 86.7% o-Terphenyl

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	O-TER '	TOT OUT
MB-020509	83.5%	0
LCS-020509	1148*	1
LCSD-020509	86.8%	0
IDP-8-GW-090203	93.6%	0
IDP-9-GW-090203	82.9%	0
IDP-12-GW-090203	81.4%	0
IDP-14-GW-090203	86.7%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C Log Number Range: 09-3401 to 09-3404

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-020509

LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Reported: 02/09/09

Date Extracted LCS/LCSD: 02/05/09

Date Analyzed LCS: 02/06/09 14:52

LCSD: 02/06/09 15:10

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.35	3.00	78.3%	2.37	3.00	79.0%	0.8%

HCID Surrogate Recovery

o-Terphenyl

LCS LCSD 114% 86.8%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OL03

Matrix: Water Project: BOEING ISAACSON

Date Received: 02/03/09

025173.090

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
09-3401-020509MB	Method Blank	500 mL	1.00 mL	02/05/09
09-3401-020509LCS	Lab Control	500 mL	1.00 mL	02/05/09
09-3401-020509LCSD	Lab Control Dup	500 mL	1.00 mL	02/05/09
09-3401-OL03K	IDP-8-GW-090203	500 mL	1.00 mL	02/05/09
09-3402-OL03L	IDP-9-GW-090203	500 mL	1.00 mL	02/05/09
09-3403-OL03M	IDP-12-GW-090203	500 mL	1.00 mL	02/05/09
09-3404-OL03N	IDP-14-GW-090203	500 mL	1.00 mL	02/05/09

NWTPH-HCID Method by GC/FID

Page 1 of 2 Matrix: Soil

Data Release Authorized: Reported: 02/06/09

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-020409 09-3391	Method Blank	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 97.4%
OL03A 09-3391	IDP-7-3-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 95.9%
OL03ADP 09-3391	IDP-7-3-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 96.2%
OL03B 09-3392	IDP-8-3-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 96.7%
OL03C 09-3393	IDP-9-3-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 99.5%
OL03D 09-3394	IDP-10-2-090203 HC ID: MOTOR OIL	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U > 100 98.0%
OL03E 09-3395	IDP-11-11-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 98.2%
OL03F 09-3396	IDP-12-12-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 99.0%
OL03G 09-3397	IDP-13-12-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 95.9%

NWTPH-HCID Method by GC/FID

Page 2 of 2 Matrix: Soil QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Data Release Authorized:

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
OL03H 09-3398	IDP-14-11-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 95.9%
OL03I 09-3399	IDP-15-12-090203 HC ID:	02/04/09	02/06/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 Ŭ < 50 Ŭ < 100 Ŭ 97.5%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	O-TER TO	T OUT
020409MB	97.4%	0
IDP-7-3-090203	95.9%	0
IDP-7-3-090203 DP	96.2%	0
IDP-8-3-090203	96.7%	0
IDP-9-3-090203	99.5%	0
IDP-10-2-090203	98.0%	0
IDP-11-11-090203	98.2%	0
IDP-12-12-090203	99.0%	0
IDP-13-12-090203	95.9%	0
IDP-14-11-090203	95.9%	0
IDP-15-12-090203	97.5%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(68-122)

(50-150)

Prep Method: SW3550B Log Number Range: 09-3391 to 09-3399

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Soil

ARI Job: OL03

Date Received: 02/03/09

Project: BOEING ISAACSON

025173.090

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
09-3391-020409MB 09-3391-0L03A 09-3391-0L03ADP 09-3392-0L03B 09-3393-0L03C 09-3394-0L03D 09-3395-0L03E 09-3396-0L03F 09-3397-0L03G 09-3398-0L03H 09-3399-0L03I	Method Blank IDP-7-3-090203 IDP-7-3-090203 IDP-8-3-090203 IDP-9-3-090203 IDP-11-11-090203 IDP-12-12-090203 IDP-13-12-090203 IDP-14-11-090203 IDP-14-11-090203	10.0 g 9.05 g 8.97 g 8.67 g 8.67 g 8.76 g 7.66 g 7.30 g 7.44 g 7.15 g	5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL 5.00 mL	- D D D D D D	02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09 02/04/09

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

1 of 1 Matrix: Soil

QC Report No: OL61-The Boeing Company Project: BOEING ISAACSON

025173.090

Data Release Authorized:

Reported: 02/10/09

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-020909 09-3774	Method Blank HC ID:	02/09/09	02/09/09 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 78.7%
OL61A 09-3774	IDP-10-2-090203 HC ID: DRO/MOTOR OII	02/09/09	02/10/09 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.5 11	20 150 70.4%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OL61-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	OTER	TOT OUT
MB-020909	78.7%	0
LCS-020909	81.8%	0
LCSD-020909	78.2%	0
IDP-10-2-090203	70.4%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(62-118) (49-125)

Prep Method: SW3546

Log Number Range: 09-3774 to 09-3774

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-020909

LCS/LCSD

Lab Sample ID: LCS-020909

LIMS ID: 09-3774

Matrix: Soil
Data Release Authorized:

Reported: 02/10/09

QC Report No: OL61-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/06/09

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/09/09 21:42

LCSD: 02/09/09 22:00

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	115	150	76.7%	110	150	73.3%	4.4%

TPHD Surrogate Recovery

LCS

o-Terphenyl

81.8% 78.2%

LCSD

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OL61

Matrix: Soil

Project: BOEING ISAACSON

Date Received: 02/06/09

025173.090

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
09-3774-020909MB1	Method Blank	10.0 g	1.00 mL		02/09/09
09-3774-020909LCS1	Lab Control	10.0 g	1.00 mL		02/09/09
09-3774-020909LCSD1	Lab Control Dup	10.0 g	1.00 mL		02/09/09
09-3774-OL61A	IDP-10-2-090203	9.15 g	1.00 mL	ı D	02/09/09

Page 1 of 1

Sample ID: IDP-8-GW-090203

SAMPLE

Lab Sample ID: OLO3K

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/11/09 13:22

Instrument/Analyst: NT1/PK

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.7% d14-Dibenzo(a,h)anthracene 36.3%

Page 1 of 1

Sample ID: IDP-9-GW-090203

SAMPLE

Lab Sample ID: OL03L

LIMS ID: 09-3402 Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 13:45

Instrument/Analyst: NT1/PK

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.3% d14-Dibenzo(a,h)anthracene 77.0%

Page 1 of 1

Sample ID: IDP-12-GW-090203

SAMPLE

Lab Sample ID: OL03M

LIMS ID: 09-3403 Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/11/09 14:07

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

Instrument/Analyst: NT1/PK

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 56.7% d14-Dibenzo(a,h)anthracene 85.0%

Page 1 of 1

Sample ID: IDP-14-GW-090203

SAMPLE

Lab Sample ID: OL03N LIMS ID: 09-3404

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Date Extracted: 02/09/09 Date Analyzed: 02/11/09 14:30 Dilution Factor: 1.00 Instrument/Analyst: NT1/PK

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 55.3% d14-Dibenzo(a,h)anthracene 47.0%

Page 1 of 1

Sample ID: MB-020909

METHOD BLANK

Lab Sample ID: MB-020909

Date Extracted: 02/09/09

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 12:14

Instrument/Analyst: NT1/PK

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result	
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U	
218-01-9	Chrysene	0.10	< 0.10 U	
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U	
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U	
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U	
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U	
53-70-3	Dibenz (a, h) anthracene	0.10	< 0.10 II	

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene 80.0%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Client ID	MNP	DBA	TOT OUT
WD 000000	50.00		•
MB-020909	63.3%	80.0%	0
LCS-020909	63.7%	81.3%	0
LCSD-020909	58.7%	79.7%	0
IDP-8-GW-090203	58.7%	36.3%	0
IDP-9-GW-090203	58.3%	77.0%	0
IDP-12-GW-090203	56.7%	85.0%	0
IDP-14-GW-090203	55.3%	47.0%	0

	LCS/MB LIMITS	QC LIMITS	
(MNP) = d10-2-Methylnaphthalene	(49-113)	(44-112)	
(DBA) = d14-Dibenzo(a,h) anthracene	(49-132)	(10-138)	

Prep Method: SW3520C

Log Number Range: 09-3401 to 09-3404

Page 1 of 1

Sample ID: LCS-020909

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020909

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized: WW

Reported: 02/12/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

Event: 025173.090

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 02/09/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/11/09 12:37

LCSD: 02/11/09 12:59

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL Dilution Factor LCS: 1.00

LCSD: 1.00

Instrument/Analyst LCS: NT1/PK

LCSD: NT1/PK

		Spike	LCS		Spike	LCSD	
Analyte	LCS Added-LC		Recovery	LCSD Added-LCSD		Recovery	RPD
Benzo(a)anthracene	2.27	3.00	75.7%	2.38	3.00	79.3%	4.7%
Chrysene	2.43	3.00	81.0%	2.45	3.00	81.7%	0.8%
Benzo(b)fluoranthene	2.53	3.00	84.3%	2.41	3.00	80.3%	4.9%
Benzo(k)fluoranthene	2.94	3.00	98.0%	3.04	3.00	101%	3.3%
Benzo(a)pyrene	2.57	3.00	85.7%	2.49	3.00	83.0%	3.2%
Indeno(1,2,3-cd)pyrene	2.41	3.00	80.3%	2.47	3.00	82.3%	2.5%
Dibenz(a,h)anthracene	2.52	3.00	84.0%	2.50	3.00	83.3%	0.8%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	63.7%	58.7%
d14-Dibenzo(a,h)anthracene	81.3%	79.7%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082
Page 1 of 1

Sample ID: IDP-8-GW-090203

SAMPLE

Lab Sample ID: OL03K

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized:

Reported: 02/11/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

ed: 02/05/09 Sample Amount: 500 mL

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes Acid Cleanup: Yes

Date Extracted: 02/05/09
Date Analyzed: 02/09/09 17:53
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	74.2%
Tetrachlorometaxylene	48.8%

Page 1 of 1

Lab Sample ID: OL03L LIMS ID: 09-3402

Matrix: Water

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/09/09 18:11 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes

Sample ID: IDP-9-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: Yes

Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	88.5%
Tetrachlorometaxylene	51.0%

SAMPLE

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: OL03M

LIMS ID: 09-3403 Matrix: Water

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/09/09 18:28

Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes Acid Cleanup: Yes

Date Sampled: 02/03/09 Date Received: 02/03/09

QC Report No: OL03-The Boeing Company

025173.090

Sample Amount: 500 mL

Project: BOEING ISAACSON

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	82.2%
Tetrachlorometaxylene	56.8%

Page 1 of 1

Lab Sample ID: OL03N

LIMS ID: 09-3404 Matrix: Water

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/05/09 Date Analyzed: 02/09/09 18:45 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	76.5%
Tetrachlorometaxylene	52.2%

Page 1 of 1

Sample ID: MB-020509

METHOD BLANK

Lab Sample ID: MB-020509

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized

Date Extracted: 02/05/09

Date Analyzed: 02/09/09 17:02

Instrument/Analyst: ECD5/JGR

Reported: 02/11/09

GPC Cleanup: No Sulfur Cleanup: Yes QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: Yes Acid Cleanup: Yes

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	86.8%
Tetrachlorometaxylene	53.2%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020509	86.8%	30-160	53.2%	30-160	0
LCS-020509	87.0%	30-160	53.2%	30-160	0
LCSD-020509	88.8%	30-160	63.5%	30-160	0
IDP-8-GW-090203	74.2%	30-160	48.8%	30-160	0
IDP-9-GW-090203	88.5%	30-160	51.0%	30-160	0
IDP-12-GW-090203	82.2%	30-160	56.8%	30-160	0
IDP-14-GW-090203	76.5%	30-160	52.2%	30-160	0

Prep Method: SW3510C Log Number Range: 09-3401 to 09-3404

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: LCS-020509

LCS/LCSD

Lab Sample ID: LCS-020509

LIMS ID: 09-3401

Project: BOEING ISAACSON

Matrix: Water

QC Report No: OL03-The Boeing Company 025173.090

Data Release Authorized:

Date Sampled: NA Date Received: NA

Reported: 02/11/09

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/09/09 17:19

Date Extracted LCS/LCSD: 02/05/09

Final Extract Volume LCS: 5.0 mL

LCSD: 02/09/09 17:36

LCSD: 5.0 mL

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

Dilution Factor LCS: 1.00

GPC Cleanup: No

LCSD: 1.00

Sulfur Cleanup: Yes

Silica Gel: Yes Acid Cleanup: Yes

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.88	5.00	77.6%	3.91	5.00	78.2%	0.8%
Aroclor 1260	4.56	5.00	91.2%	4.55	5.00	91.0%	0.2%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	87.0%	88.8%
Tetrachlorometaxylene	53.2%	63.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OL03B LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/06/09 Date Analyzed: 02/07/09 12:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: IDP-8-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	80.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: IDP-8-3-090203 MATRIX SPIKE

Lab Sample ID: OL03B LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized: Reported: 02/11/09

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Date Extracted: 02/06/09

Date Analyzed: 02/07/09 12:40 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	88.2%
Tetrachlorometaxylene	81.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: IDP-8-3-090203 MATRIX SPIKE DUP

Lab Sample ID: OL03B LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Project: BOEING ISAACSON

025173.090

QC Report No: OL03-The Boeing Company

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 12.1 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.5%

Date Extracted: 02/06/09 Date Analyzed: 02/07/09 12:58 Instrument/Analyst: ECD5/JGR GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.8%
Tetrachlorometaxylene	85.5%

Page 1 of 1

Lab Sample ID: OL03C

LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/06/09 Date Analyzed: 02/07/09 13:15 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: IDP-9-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 13.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	82.0%

Page 1 of 1

Lab Sample ID: OL03F LIMS ID: 09-3396

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/06/09

Date Analyzed: 02/07/09 13:32 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: IDP-12-12-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 24.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.0%
Tetrachlorometaxylene	80.0%

Page 1 of 1

Lab Sample ID: OL03H

LIMS ID: 09-3398

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/06/09 Date Analyzed: 02/07/09 13:49

Instrument/Analyst: ECD5/JGR

GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: IDP-14-11-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 13.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 25.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decach	lorobiphenyl	93.0%
Tetrach	nlorometaxylene	90.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: OL03J

LIMS ID: 09-3400 Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted: 02/06/09
Date Analyzed: 02/07/09 15:32

Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: IDP-6A-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount: 13.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 17.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.2%
Tetrachlorometaxylene	81.5%

Page 1 of 1

Lab Sample ID: MB-020609

LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized: Reported: 02/11/09

Date Extracted: 02/06/09 Date Analyzed: 02/07/09 11:32 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: MB-020609 METHOD BLANK

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	97.5%
Tetrachlorometaxylene	84.2%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-020609	97.5%	30-160	84.2%	30-160	0
LCS-020609	97.2%	30-160	88.0%	30-160	0
LCSD-020609	99.5%	30-160	91.0%	30-160	0
IDP-8-3-090203	87.5%	30-160	80.0%	30-160	0
IDP-8-3-090203 MS	88.2%	30-160	81.5%	30-160	0
IDP-8-3-090203 MSD	89.8%	30-160	85.5%	30-160	0
IDP-9-3-090203	87.5%	30-160	82.0%	30-160	0
IDP-12-12-090203	89.0%	30-160	80.0%	30-160	0
TDP-14-11-090203	93.0%	30-160	90.5%	30-160	0
IDP-6A-3-090203	89.2%	30-160	81.5%	30-160	0

Microwave (MARS) Control Limits Prep Method: SW3546

Log Number Range: 09-3392 to 09-3400

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LCS-020609 LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted LCS/LCSD: 02/06/09

Date Analyzed LCS: 02/07/09 11:49

LCSD: 02/07/09 12:06 Instrument/Analyst LCS: ECD5/JGR

LCSD: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-020609

LCS/LCSD

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL LCSD: 4.0 mL

> Dilution Factor LCS: 1.00 LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	154	167	92.4%	158	167	94.8%	2.6%
Aroclor 1260	175	167	105%	180	167	108%	2.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	97.2%	99.5%
Tetrachlorometaxylene	88.0%	91.0%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OL03B

LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized:

Reported: 02/11/09

Date Extracted MS/MSD: 02/06/09

Date Analyzed MS: 02/07/09 12:40

MSD: 02/07/09 12:58
Instrument/Analyst MS: ECD5/JGR

MSD: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup:

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: IDP-8-3-090203

MS/MSD

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Sample Amount MS: 12.5 g-dry-wt

MSD: 12.1 g-dry-wt

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel: No

Percent Moisture: 13.5%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 32.1 U	137	161	85.1%	145	165	87.9%	5.7%
Aroglor 1260	< 32.1 II	150	161	93.2%	160	165	97.0%	6.5%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

TOTAL METALS

Page 1 of 1

Lab Sample ID: OLO3A

LIMS ID: 09-3391

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 89.0%

Sample ID: IDP-7-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09
Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/18/09	7440-38-2	Arsenic	50	50	U
3050B	02/11/09	6010B	02/18/09	7440-43-9	Cadmium	2	4	
3050B	02/11/09	6010B	02/18/09	7440-47-3	Chromium	5	262	
3050B	02/11/09	6010B	02/18/09	7440-50-8	Copper	2	177	
3050B	02/11/09	6010B	02/18/09	7439-92-1	Lead	20	420	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.04	0.52	
3050B	02/11/09	6010B	02/18/09	7440-66-6	Zinc	10	1,390	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03A

LIMS ID: 09-3391

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-7-3-090203

DUPLICATE

QC Report No: OLO3-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	50 U	50 U	0.0%	+/- 50	L
Cadmium	6010B	4	6	40.0%	+/- 2	L
Chromium	6010B	262	247	5.9%	+/- 20%	
Copper	6010B	177	446	86.4%	+/- 20%	*
Lead	6010B	420	490	15.4%	+/- 20%	
Mercury	7471A	0.52	0.60	14.3%	+/- 20%	
Zinc	6010B	1,390	910	41.7%	+/- 20%	*

Reported in mg/kg-dry

^{*-}Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03A

LIMS ID: 09-3391

Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-7-3-090203 MATRIX SPIKE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010B	50 U	210	218	96.3%	
Cadmium	6010B	4	51	54.5	86.2%	
Chromium	6010B	262	278	54.5	29.4%	H
Copper	6010B	177	219	54.5	77.1%	
Lead	6010B	420	620	218	91.7%	
Mercury	7471A	0.52	1.15	0.448	141%	N
Zinc	6010B	1,390	950	54.5	-807%	H

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03B LIMS ID: 09-3392

Matrix: Soil Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 79.5%

Sample ID: IDP-8-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	32	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.4	
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	36.9	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	27.4	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	27	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.08	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	89	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03C LIMS ID: 09-3393 Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Sample ID: IDP-9-3-090203

SAMPLE

QC Report No: OLO3-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Percent Total Solids: 89.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/18/09	7440-38-2	Arsenic	10	30	
3050B	02/11/09	6010B	02/18/09	7440-43-9	Cadmium	0.5	0.6	
3050B	02/11/09	6010B	02/18/09	7440-47-3	Chromium	1	58	
3050B	02/11/09	6010B	02/18/09	7440-50-8	Copper	0.5	93.2	
3050B	02/11/09	6010B	02/18/09	7439-92-1	Lead	5	112	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.04	0.18	
3050B	02/11/09	6010B	02/18/09	7440-66-6	Zinc	3	267	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03D

LIMS ID: 09-3394 Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Percent Total Solids: 87.1%

Sample ID: IDP-10-2-090203

SAMPLE

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	5	23	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.6	
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.5	16.2	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	55.6	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	59	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.15	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	220	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OLO3E LIMS ID: 09-3395

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 81.1%

Sample ID: IDP-11-11-090203

SAMPLE

QC Report No: OLO3-The Boeing Company Project: BOEING ISAACSON 025173.090 Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	6	U
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	11.8	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	13.5	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	2	U
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	35	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OLO3F LIMS ID: 09-3396 Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 74.2%

Sample ID: IDP-12-12-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
						_		
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	204	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.3	0.3	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	16.3	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.3	163	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	3	4	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.06	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	354	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03G LIMS ID: 09-3397

Matrix: Soil

Data Release Authorized: Reported: 02/23/09

Percent Total Solids: 71.4%

Sample ID: IDP-13-12-090203

SAMPLE

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090
Date Sampled: 02/03/09
Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
			1 - 1 - 1		_			
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	7	18	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.3	0.3	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.7	23.5	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.3	131	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	3	4	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.06	0.08	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	97	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OLO3H

LIMS ID: 09-3398 Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Percent Total Solids: 75.5%

Sample ID: IDP-14-11-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON 025173.090
Date Sampled: 02/03/09
Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	220	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	15.4	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	624	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	6	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.21	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	77	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03I LIMS ID: 09-3399

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 72.3%

Sample ID: IDP-15-12-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	274	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.3	0.3	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	17.3	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.3	47.2	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	3	5	
CLP	02/11/09	7471A	02/20/09	7 4 39- 9 7-6	Mercury	0.05	0.06	
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	96	

TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03J LIMS ID: 09-3400

Matrix: Soil

Data Release Authorized Reported: 02/23/09

Percent Total Solids: 86.6%

Sample ID: IDP-6A-3-090203

SAMPLE

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	6	14	
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.6	52.0	
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	20.8	
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	27	
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	68	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OL03MB LIMS ID: 09-3392 Matrix: Soil

Data Release Authorized

Reported: 02/23/09

Sample ID: METHOD BLANK

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	02/11/09	6010B	02/17/09	7440-38-2	Arsenic	5	5	U
3050B	02/11/09	6010B	02/17/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	02/11/09	6010B	02/17/09	7440-47-3	Chromium	0.5	0.5	U
3050B	02/11/09	6010B	02/17/09	7440-50-8	Copper	0.2	0.2	U
3050B	02/11/09	6010B	02/17/09	7439-92-1	Lead	2	2	U
CLP	02/11/09	7471A	02/20/09	7439-97-6	Mercury	0.05	0.05	U
3050B	02/11/09	6010B	02/17/09	7440-66-6	Zinc	1	1	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OLO3LCS LIMS ID: 09-3392

Matrix: Soil

Data Release Authorized:

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OLO3-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	6010B	208	200	104%	
Cadmium	6010B	51.0	50.0	102%	
Chromium	6010B	47.0	50.0	94.0%	
Copper	6010B	49.9	50.0	99.8%	
Lead	6010B	201	200	100%	
Mercury	7471A	1.10	1.00	110%	
Zinc	6010B	48	50	96.0%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OL03K LIMS ID: 09-3401

Matrix: Water Data Release Authorized:

Reported: 02/23/09

Sample ID: IDP-8-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON 025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/13/09	7440-38-2	Arsenic	100	13,600	
6010B	02/10/09	6010B	02/16/09	7440-43-9	Cadmium	10	10	U
6010B	02/10/09	6010B	02/16/09	7440-47-3	Chromium	20	20	U
6010B	02/10/09	6010B	02/16/09	7440-50-8	Copper	10	10	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/16/09	7440-66-6	Zinc	50	50	U

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: OL03K

LIMS ID: 09-3401 Matrix: Water

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-8-GW-090203

DUPLICATE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	_
Arsenic	200.8	13,600	13,800	1.5%	+/- 20%		
Cadmium	6010B	10 U	10 U	0.0%	+/- 10	L	
Chromium	6010B	20 U	20 U	0.0%	+/- 20	L	
Copper	6010B	10 U	10 U	0.0%	+/- 10	L	
Lead	200.8	1	1	0.0%	+/- 1	L	
Mercury	7470A	0.1 U	0.1 U	0.0%	+/- 0.1	L	
Zinc	6010B	50 บ	50 U	0.0%	+/- 50	L	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: OLO3K LIMS ID: 09-3401

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: IDP-8-GW-090203 MATRIX SPIKE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	%	_
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	200.8	13,600	14,000	25.0	1600%	Н
Cadmium	6010B	10.0 U	2,540	2,500	102%	
Chromium	6010B	25.0 U	2,310	2,500	92.4%	
Copper	6010B	10.0 U	2,560	2,500	102%	
Lead	200.8	1.41	25.4	25.0	96.0%	
Mercury	7470A	0.100 U	1.01	1.00	101%	
Zinc	6010B	50.0 U	2,410	2,500	96.4%	

Reported in $\mu g/L$

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: OL03L LIMS ID: 09-3402

Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: IDP-9-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/12/09	7440-38-2	Arsenic	0.5	0.5	
6010B	02/10/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/13/09	7440-50-8	Copper	2	6	
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL03M

LIMS ID: 09-3403

Matrix: Water
Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-12-GW-090203

SAMPLE

QC Report No: OL03-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/11/09	7440-38-2	Arsenic	0.2	13.0	
6010B	02/10/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/13/09	7440-50-8	Copper	2	6	
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/13/09	7440-66-6	Zinc	10	40	

Page 1 of 1

Lab Sample ID: OLO3N LIMS ID: 09-3404

Matrix: Water

Data Release Authorized

Reported: 02/23/09

Sample ID: IDP-14-GW-090203

SAMPLE

QC Report No: OLO3-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/03/09 Date Received: 02/03/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/13/09	7440-38-2	Arsenic	100	16,600	
6010B	02/10/09	6010B	02/16/09	7440-43-9	Cadmium	10	10	U
6010B	02/10/09	6010B	02/16/09	7440-47-3	Chromium	20	20	U
6010B	02/10/09	6010B	02/16/09	7440-50-8	Copper	10	20	
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/16/09	7440-66-6	Zinc	50	50	U

Page 1 of 1

Lab Sample ID: OL03MB LIMS ID: 09-3402

Matrix: Water

Data Release Authorized

Reported: 02/23/09

Sample ID: METHOD BLANK

QC Report No: OLO3-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/10/09	200.8	02/12/09	7440-38-2	Arsenic	0.2	0.4	
6010B	02/10/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/10/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/10/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/10/09	200.8	02/11/09	7439-92-1	Lead	1	. 1	U
7470A	02/10/09	7470A	02/12/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/10/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

Page 1 of 1

Lab Sample ID: OL03LCS

LIMS ID: 09-3402 Matrix: Water

Data Release Authorized:

Reported: 02/23/09

Sample ID: LAB CONTROL

QC Report No: OL03-The Boeing Company Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	0
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	27.3	25.0	109%	
Cadmium	6010B	507	500	101%	
Chromium	6010B	478	500	95.6%	
Copper	6010B	470	500	94.0%	
Lead	200.8	26	25	104%	
Mercury	7470A	2.0	2.0	100%	
Zinc	6010B	490	500	98.0%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

February 20, 2009

Kathryn Hartley Landau Associates 130 Second Avenue South Edmonds, WA 98020

RE: Project: Boeing Isaacson – Phase II, 025173.090

ARI Job: OL24

Dear Kathryn:

Enclosed, please find e-mail documentation, the original and revised copy of the Chain-of-Custody (COC) record, sample receipt documentation, and final data report for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted three water samples and trip blank in good condition on February 4, 2009. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for VOCs, SVOCs, SIM PAHs, PCBs, NWTPH-HCID, and Dissolved Metals, as requested on the COC.

The LCS and LCSD percent recoveries of Acrolein and the LCS percent recoveries of 1,2,3-Trichloropropane, trans-1,4-Dichloro-2-butene, Bromobenzene, and tert-Butylbenzene were outside the control limits high for LCS-021109 for the VOCs analysis. All samples were undetected for these compounds. No further corrective action was required.

Several LCS and LCSD percent recoveries fell outside the control limits low for LCS-020609 for the SVOCs analysis. All samples and associated QC were re-extracted and re-analyzed outside the method recommended holding times. All LCS and LCSD percent recoveries were within control limits for LCS-021209. Both sets of data have been submitted in this report for your review. No further corrective action was required.

The surrogate percent recoveries of Tetrachlorometaxylene fell outside the control limits low for LCS-020909 and LCSD-020909 for the PCBs. The LCS and LCSD percent recoveries were within control limits and all other surrogate percent recoveries were within control limits. No further corrective action was required.

Quality control analysis results are included for your review. An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely.

ANALYTICAL RESOURCES, INC

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

KB/co

☐ Tacoma (25								2/4/29
LANDAU Spokane (5	509) 327-9737 Figard) (503) 443-6010							Date
ASSOCIATES Portland (T		Chain-of	-Cu	stod	v Re	cord		Pageof
		***************************************	*****				Paramete	
Project Name Boens 150	Projec	ot No. 075 173.00	10				7 / /	
Project Location/Event TKW	No/ Phase	T.		//_	//	///	/ / /	Standard Accelerated
Sampler's Name 200	h Roll Mark	r Konnyler	/	5/2	' / /	' / /	///	☐ Accelerated
Project Contact KATWIN	Hortley		Ĺ	737	//.	/ / /	′///	
Send Results To K HOWEU	ey Klews,	Albahurson	7	178%	n/SE	₹ / /	///	
Sample I.D. Hondin	CASON Time	No. of Matrix Containers	at	浴 浴		7 / /	·///	Observations/Comments
The Marian Control of the Control of	74/09/0903	· · · · · · · · · · · · · · · · · · ·	1	8 3	88	-	1	
PZ-3-090204	1 1003		-	XX				Allow water samples to settle, collect aliquot from clear portion
405090-005.I	V 1178				x X			NWTPH-Dx:
TB		24		X				run acid wash/silica gel cleanup
								run samples standardized to
							-	Analyze for EPH if no specific
					+-			product identified
								VOC/BTEX/VPH (soli):
								non-preserved preserved w/methanol
								preserved w/sodium bisulfate
								Freeze upon receipt
					-			
			+		++			Other Mthb:
Special Shipment/Handling							Math	
or Storage Requirements							Metr Ship	nod of ment
Refinquished by	Received b	1A		Relinqu	ished by			Received by
Signature	Signature	- 1		Signature)			Signature
Printed Name	Printed Name	Hays		Printed N	ame	•		Printed Name
Company	Company	<u></u>		Company	,			Company
Date 2/4/69 Time 16	45 Date 40	409 Time WU	u		,			
Time 10	1) Date	Time US		Date		Time		_ Date Time

Seattle (Edmonds) (425) 778-0907

Analytical Resources, Incorporated Analytical Chemists and Consultants
, and the same some same

Cooler Receipt Form

ARI Client: Landew BOLVO	Project Name:
COC No:	Delivered by:
Assigned ARI Job No:OL2Y	Tracking No:
D. P. C. C. D.	
Preliminary Examination Phase:	
Were intact, properly signed and dated custody	
Were custody papers included with the cooler?	
were custody papers properly filled out (ink, sig	gned, etc.) Fis NO -6.0 °C for chemistry 5.2 7.4 4,6 °C
Cooler Accepted by:	Date: <u>2/4/29</u> Time: <u>1653</u>
Complete custody for	ms and attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler	? YES N S
What kind of packing material was used?	
Was sufficient ice used (if appropriate)?	
Were all bottles sealed in individual plastic bags	
Did all bottle arrive in good condition (unbroken)	
Were all bottle labels complete and legible?	
Were all bottles used correct for the requested a	
Do any of the analyses (bottles) require preserva	
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bo	
	Date: <u>2/5/84</u> Time: <u>10/31</u>
** Notify Project Mana	ger of discrepancies or concerns **
Explain discrepancies or negative responses:	
cxplain discrepancies of negative responses.	
Only 2 trip blank	3 metuded
Sin	7 revised COC
•	
	By: 30 Pate:
	. i

LANDAU ☐ Portland (Tigard) (50 ☐ Control of the co	2493 -9737 503) 443-6010	nain-of-Cu	ıstody Rec		Date 2/4/09 Page 1 of 1	À
Send Results To Sample I.D. Howards of Pat	Project No. <u>67</u> Phase II. The Matrix Time Matrix	15/73:090 MUR VESY, No. of Containers		sting Parameters	Turnaround Time Standard Accelerated Observations/Comments	,
12-6-090204 22-3-090204 1-700-090204 1-78	04 05703 W 1003 V	15 & x & x & x & x & x & x & x & x & x &			Allow water samples to settle, collect allquot from clear portion NWTPH-Dx: Yerun acid wash/silica gel cleanup run samples standardized to product Analyze for EPH if no specific product identified VOC/BTEX/VPH (soll): non-preserved preserved w/methanol preserved w/sodium bisulfate Freeze upon receipt X Dissolved metal water samples field filtered Other What : A Collect to settle.	T. S. S. S. S. S. S. S. S. S. S. S. S. S.
Special Shipment/Handling or Storage Requirements Refinquished by Signature	Received by Signature		Relinquished by Signature	Method Shipme	of	
Printed Name Company Date Z/4/64 Time 12,245	Printed Name Company Date Z/U/07 COPY - Project File	Time WUT	Printed Name Company Date	Time	Printed Name Company Date Time	

Eric Branson

```
From:
          "Kelly Bottem" <kellyb@arilabs.com>
 To:
          "Kathryn Hartley" <khartley@landauinc.com>; "Eric Branson" <eric@arilabs.com>
 Sent:
          Monday, February 09, 2009 2:21 PM
 Subject:
          Re: Ol24 sample aka
Got it. Eric please change ASAP.
K
Kathryn Hartley wrote:
> Kelly,
>
>
> For data package OL24, please make the following changes:
            Change P2-6-090204 to PZ-6-090204
            Change P2-3-090204 to PZ-3-090204
>
            Add Phase II to the project name
>
>
>
> Please confirm that you received this message and let me know if
you
> have any questions.
>
>
  Thanks,
>
> Kathryn F. Hartley
> Project Scientist
> Landau Associates
> 130 2nd Avenue South
> Edmonds, WA 98020
  (425) 329-0268
>
>
> ----Original Message----
```


Page 1 of 2

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized: Reported: 02/12/09

-

Instrument/Analyst: NT7/PKC
Date Analyzed: 02/10/09 20:04

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	3.9	
75-15-0	Carbon Disulfide	0.2	0.2	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U ·
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ū
107-02-8	Acrolein	5.0	< 5.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ū
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ū
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ŭ
JU-10-4	T, Z, J - II TOHITOLOPI OPAHO	5.5	` 0.5	_

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II 025173.090

Matrix: Water Date Analyzed: 02/10/09 20:04

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	Ũ
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ũ
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ũ
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ŭ
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	117%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	101%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: OL24B

LIMS ID: 09-3552 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/PKC

Date Analyzed: 02/10/09 20:29

Reported: 02/12/09

: **/**

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Sample ID: PZ-3-090204

SAMPLE

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number Analyte	RL	Result	Q
74-87-3 Chloromethane	0.2	< 0.2	U
74-83-9 Bromomethane	0.5	< 0.5	U
75-01-4 Vinyl Chloride	0.2	< 0.2	U
75-00-3 Chloroethane	0.2	< 0.2	U
75-09-2 Methylene Chloride	0.5	< 0.5	U
57-64-1 Acetone	2.5	7.1	
75-15-0 Carbon Disulfide	0.2	< 0.2	U
75-35-4 1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3 1,1-Dichloroethane	0.2	< 0.2	Ü
	0.2	< 0.2	Ū
	0.2	< 0.2	ΰ
•	0.2	< 0.2	U
	0.2	< 0.2	U
1,2-Dichloroethane		< 2.5	Ü
78-93-3 2-Butanone	2.5		
71-55-6 1,1,1-Trichloroethane	0.2	< 0.2	U
66-23-5 Carbon Tetrachloride	0.2	< 0.2	U
108-05-4 Vinyl Acetate	1.0	< 1.0	U
75-27-4 Bromodichloromethane	0.2	< 0.2	U
78-87-5 1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5 cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6 Trichloroethene	0.2	< 0.2	U
124-48-1 Dibromochloromethane	0.2	< 0.2	U
79-00-5 1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2 Benzene	0.2	< 0.2	U
10061-02-6 trans-1,3-Dichloropropene	0.2	< 0.2	U
10-75-8 2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2 Bromoform	0.2	< 0.2	U
108-10-1 4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6 2-Hexanone	2.5	< 2.5	U
127-18-4 Tetrachloroethene	0.2	< 0.2	U
79-34-5 1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3 Toluene	0.2	< 0.2	U
108-90-7 Chlorobenzene	0.2	< 0.2	U
100-41-4 Ethylbenzene	0.2	< 0.2	U
100-42-5 Styrene	0.2	< 0.2	U
75-69-4 Trichlorofluoromethane	0.2	< 0.2	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1,1,2 lilentolo 1,2,2 clilidolos 1,330-20-7 m,p-Xylene	0.4	< 0.4	Ū
_	0.2	< 0.2	Ū
	0.2	< 0.2	ΰ
95-50-1 1,2-Dichlorobenzene	0.2	< 0.2	ΰ
1,3-Dichlorobenzene			
1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8 Acrolein	5.0	< 5.0	U
74-88-4 Methyl Iodide	1.0	< 1.0	U
74-96-4 Bromoethane	0.2	< 0.2	U
107-13-1 Acrylonitrile	1.0	< 1.0	Ū
63-58-6 1,1-Dichloropropene	0.2	< 0.2	Ŭ
74-95-3 Dibromomethane	0.2	< 0.2	Ü
20 20 6 1 1 1 2 Tetrachloroethane	0.2	< 0.2	Ŭ
330-20-6 1,1,1,2-Tetrachloroethane			
1,1,1,2-letrachioroethane 1,2-Dibromo-3-chloropropane	0.5	< 0.5 < 0.5	Ŭ

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: PZ-3-090204

SAMPLE

Lab Sample ID: OL24B

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3552

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 20:29

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	98.7%
Bromofluorobenzene	100%
d4-1,2-Dichlorobenzene	102%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: I-200-090204 SAMPLE Page 1 of 2

Lab Sample ID: OL24C

LIMS ID: 09-3553 Matrix: Water

Data Release Authorized: Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/10/09 20:54 QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
57-64-1	Acetone	2.5	11	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ū
L56-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ū
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Ū
57-66-3	Chloroform	0.2	< 0.2	Ū
.07-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
'8-93-3	2-Butanone	2.5	< 2.5	Ū
1-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ū
	Carbon Tetrachloride	0.2	< 0.2	Ū
56-23-5		1.0	< 1.0	Ū
108-05-4	Vinyl Acetate		< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2		
.0061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
9-01-6	Trichloroethene	0.2	< 0.2	U
L24-48-1	Dibromochloromethane	0.2	< 0.2	U
9-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
1-43-2	Benzene	0.2	< 0.2	U
.0061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
.10-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
5-25-2	Bromoform	0.2	< 0.2	U
.08-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
91-78-6	2-Hexanone	2.5	< 2.5	U
27-18-4	Tetrachloroethene	0.2	< 0.2	U
9-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
08-88-3	Toluene	0.2	< 0.2	U
08-90-7	Chlorobenzene	0.2	< 0.2	U
00-41-4	Ethylbenzene	0.2	< 0.2	U
00-42-5	Styrene	0.2	< 0.2	U
5-69-4	Trichlorofluoromethane	0.2	< 0.2	U
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
330-20-7	m,p-Xylene	0.4	< 0.4	U
5-47-6	o-Xylene	0.2	< 0.2	U
5-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
41-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
06-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
07-02-8	Acrolein	5.0	< 5.0	Ū
4-88-4	Methyl Iodide	1.0	< 1.0	Ū
4-86-4	Bromoethane	0.2	< 0.2	U
	Acrylonitrile	1.0	< 1.0	U
.07-13-1	1,1-Dichloropropene	0.2	< 0.2	U
663-58-6	Dibromomethane	0.2	< 0.2	U
74-95-3		0.2	< 0.2	U
30-20-6	1,1,1,2-Tetrachloroethane		< 0.2	U
96-12 - 8 96-18-4	<pre>1,2-Dibromo-3-chloropropane 1,2,3-Trichloropropane</pre>	0.5 0.5	< 0.5	U
	I / Z = "I'YI CH I OYONYONANA	11 5	< U 5	1.1

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3553

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

Date Analyzed: 02/10/09 20:54

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	100%
Bromofluorobenzene	102%
d4-1,2-Dichlorobenzene	104%

Sample ID: TRIP BLANK Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 2 SAMPLE

Lab Sample ID: OL24D LIMS ID: 09-3554

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/11/09 13:31 QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: TRIP BLANK

SAMPLE

Lab Sample ID: OL24D LIMS ID: 09-3554

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

Date Analyzed: 02/11/09 13:31

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	111%
d8-Toluene	99.1%
Bromofluorobenzene	102%
d4-1.2-Dichlorobenzene	101음

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-021009	Method Blank	10	98.3%	99.5%	97.8%	99.9%	0
LCS-021009	Lab Control	10	99.8%	98.7%	99.6%	102%	ő
LCSD-021009	Lab Control Dup	10	97.5%	99.5%	98.3%	100%	0
OL24A	PZ-6-090204	10	117%	100%	101%	101%	0
OL24B	PZ-3-090204	10	115%	98.7%	100%	102%	0
OL24C	I-200-090204	10	115%	100%	102%	104%	0
MB-021109	Method Blank	10	111%	102%	101%	102%	0
LCS-021109	Lab Control	10	113%	96.0%	93.9%	102%	0
LCSD-021109	Lab Control Dup	10	111%	101%	102%	102%	0
OL24D	TRIP BLANK	10	111%	99.1%	102%	101%	0
		LCS	/MB LIM	ITS		QC LIMI	rs
SW8260B							
(DCE) = d4-1,	2-Dichloroethane		70-130			70-130)
(TOL) = d8-Tc	oluene		70-130			70-130)
(BFB) = Bromo	ofluorobenzene		70-130			70-130)
(DCB) = d4-1,	2-Dichlorobenzene		70-130			70-130)

Prep Method: SW5030B Log Number Range: 09-3551 to 09-3554

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-021009

Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/10/09 12:55

LCSD: 02/10/09 13:20

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD	RPD
Analyce	пса	Added-Ecs		1000			
Chloromethane	9.0	10.0	90.0%	9.3	10.0	93.0%	3.3%
Bromomethane	10.0	10.0	100%	10.8	10.0	108%	7.7%
Vinyl Chloride	9.7	10.0	97.0%	10.0	10.0	100%	3.0%
Chloroethane	10.7	10.0	107%	11.0	10.0	110%	2.8%
Methylene Chloride	9.8	10.0	98.0%	10.0	10.0	100%	2.0%
Acetone	55.6	50.0	111%	56.0	50.0	112%	0.7%
Carbon Disulfide	9.7	10.0	97.0%	10.0	10.0	100%	3.0%
1,1-Dichloroethene	9.4	10.0	94.0%	10.0	10.0	100%	6.2%
1,1-Dichloroethane	9.6	10.0	96.0%	9.6	10.0	96.0%	0.0%
trans-1,2-Dichloroethene	9.7	_ 10.0	97.0%	9.7	10.0	97.0%	0.0%
cis-1,2-Dichloroethene	9.8	10.0	98.0%	10.1	10.0	101%	3.0%
Chloroform	9.7	10.0	97.0%	9.9	10.0	99.0%	2.0%
1,2-Dichloroethane	9.8	10.0	98.0%	9.8	10.0	98.0%	0.0%
2-Butanone	52.4	50.0	105%	51.1	50.0	102%	2.5%
1,1,1-Trichloroethane	9.6	10.0	96.0%	9.8	10.0	98.0%	2.1%
Carbon Tetrachloride	9.7	10.0	97.0%	10.3	10.0	103%	6.0%
Vinyl Acetate	8.8	10.0	88.0%	8.8	10.0	88.0%	0.0%
Bromodichloromethane	9.9	10.0	99.0%	10.3	10.0	103%	4.0%
1,2-Dichloropropane	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
cis-1,3-Dichloropropene	9.8	10.0	98.0%	10.2	10.0	102%	4.0%
Trichloroethene	9.5	10.0	95.0%	9.9	10.0	99.0%	4.1%
Dibromochloromethane	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
1,1,2-Trichloroethane	9.4	10.0	94.0%	10.0	10.0	100%	6.2%
Benzene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
trans-1,3-Dichloropropene	10.0	10.0	100%	10.3	10.0	103%	3.0%
2-Chloroethylvinylether	9.9	10.0	99.0%	10.1	10.0	101%	2.0%
Bromoform	10.2	10.0	102%	10.4	10.0	104%	1.9%
4-Methyl-2-Pentanone (MIBK)	52.2	50.0	104%	50.5	50.0	101%	3.3%
2-Hexanone	50.6	50.0	101%	48.9	50.0	97.8%	3.4%
Tetrachloroethene	9.3	10.0	93.0%	10.0	10.0	100%	7.3%
1,1,2,2-Tetrachloroethane	8.7	10.0	87.0%	9.0	10.0	90.0%	3.4%
Toluene	8.9	10.0	89.0%	9.6	10.0	96.0%	7.6%
Chlorobenzene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
Ethylbenzene	9.3	10.0	93.0%	10.1	10.0	101%	8.2%
Styrene	9.7	10.0	97.0%	9.8	10.0	98.0%	1.0%
Trichlorofluoromethane	9.8	10.0	98.0%	9.9	10.0	99.0%	1.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.1	10.0	101%	10.4	10.0	104%	2.9%
m,p-Xylene	18.4	20.0	92.0%	19.4	20.0	97.0%	5.3%
o-Xylene	9.1	10.0	91.0%	9.7	10.0	97.0%	6.4%
1,2-Dichlorobenzene	9.3	10.0	93.0%	9.8	10.0	98.0%	5.2%
1,3-Dichlorobenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,4-Dichlorobenzene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
Acrolein	61.8	50.0	124%	57.1	50.0	114%	7.9%
Methyl Iodide	11.5	10.0	115%	12.3	10.0	123%	6.7%
Bromoethane	9.5	10.0	95.0%	9.6	10.0	96.0%	1.0%

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021009

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551 Matrix: Water

Project: Boeing Isaacson Phase II

025173.090

2007 100	LCS	Spike Added-LCS	LCS	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	тсэ	Added-11C5	Kecovery	ПСОБ	Added-1cbD	Recovery	
Acrylonitrile	10.9	10.0	109%	10.7	10.0	107%	1.9%
1,1-Dichloropropene	8.9	10.0	89.0%	9.5	10.0	95.0%	6.5%
Dibromomethane	9.8	10.0	98.0%	10.4	10.0	104%	5.9%
1,1,1,2-Tetrachloroethane	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
1,2-Dibromo-3-chloropropane	8.7	10.0	87.0%	9.3	10.0	93.0%	6.7%
1,2,3-Trichloropropane	9.9	10.0	99.0%	9.8	10.0	98.0%	1.0%
trans-1,4-Dichloro-2-butene	9.1	10.0	91.0%	9.6	10.0	96.0%	5.3%
1,3,5-Trimethylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,2,4-Trimethylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
Hexachlorobutadiene	9.3	10.0	93.0%	10.0	10.0	100%	7.3%
Ethylene Dibromide	9.8	10.0	98.0%	10.1	10.0	101%	3.0%
Bromochloromethane	10.0	10.0	100%	10.3	10.0	103%	3.0%
2,2-Dichloropropane	10.0	10.0	100%	10.0	10.0	100%	0.0%
1,3-Dichloropropane	9.7	10.0	97.0%	9.7	10.0	97.0%	0.0%
Isopropylbenzene	9.5	10.0	95.0%	10.2	10.0	102%	7.1%
n-Propylbenzene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
Bromobenzene	9.6	10.0	96.0%	9.9	10.0	99.0%	3.1%
2-Chlorotoluene	9.5	10.0	95.0%	10.0	10.0	100%	5.1%
4-Chlorotoluene	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
tert-Butylbenzene	9.3	10.0	93.0%	9.8	10.0	98.0%	5.2%
sec-Butylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
4-Isopropyltoluene	9.5	10.0	95.0%	10.1	10.0	101%	6.1%
n-Butylbenzene	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
1,2,4-Trichlorobenzene	10.3	10.0	103%	10.2	10.0	102%	1.0%
Naphthalene	10.5	10.0	105%	10.2	10.0	102%	2.9%
1,2,3-Trichlorobenzene	10.3	10.0	103%	10.2	10.0	102%	1.0%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	99.8%	97.5%
d8-Toluene	98.7%	99.5%
Bromofluorobenzene	99.6%	98.3%
d4-1.2-Dichlorobenzene	1028	100%

Page 1 of 2

Sample ID: LCS-021109

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021109

LIMS ID: 09-3554 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT7/PKC

LCSD: NT7/PKC

Date Analyzed LCS: 02/11/09 11:27

LCSD: 02/11/09 11:51

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	10.8	10.0	108%	10.4	10.0	104%	3.8%
Bromomethane	9.9	10.0	99.0%	9.3	10.0	93.0%	6.2%
Vinyl Chloride	10.1	10.0	101%	10.1	10.0	101%	0.0%
Chloroethane	11.9	10.0	119%	11.3	10.0	113%	5.2%
Methylene Chloride	10.1	10.0	101%	9.7	10.0	97.0%	4.0%
Acetone	54.5	50.0	109%	56.8	50.0	114%	4.1%
Carbon Disulfide	9.8	10.0	98.0%	9.2	10.0	92.0%	6.3%
1,1-Dichloroethene	9.3	10.0	93.0%	9.2	10.0	92.0%	1.1%
1,1-Dichloroethane	10.5	10.0	105%	9.7	10.0	97.0%	7.9%
trans-1,2-Dichloroethene	9.3	10.0	93.0%	9.3	10.0	93.0%	0.0%
cis-1,2-Dichloroethene	10.0	10.0	100%	9.4	10.0	94.0%	6.2%
Chloroform	10.4	10.0	104%	10.0	10.0	100%	3.9%
1,2-Dichloroethane	11.0	10.0	110%	10.7	10.0	107%	2.8%
2-Butanone	51.0	50.0	102%	50.5	50.0	101%	1.0%
1,1,1-Trichloroethane	10.8	10.0	108%	10.2	10.0	102%	5.7%
Carbon Tetrachloride	11.2	10.0	112%	10.6	10.0	106%	5.5%
Vinvl Acetate	9.4	10.0	94.0%	9.4	10.0	94.0%	0.0%
Bromodichloromethane	11.0	10.0	110%	10.6	10.0	106%	3.7%
1,2-Dichloropropane	10.0	10.0	100%	9.9	10.0	99.0%	1.0%
cis-1,3-Dichloropropene	10.4	10.0	104%	10.0	10.0	100%	3.9%
Trichloroethene	10.1	10.0	101%	9.4	10.0	94.0%	7.2%
Dibromochloromethane	11.2	10.0	112%	9.6	10.0	96.0%	15.4%
1,1,2-Trichloroethane	9.6	10.0	96.0%	9.5	10.0	95.0%	1.0%
Benzene	9.7	10.0	97.0%	9.4	10.0	94.0%	3.1%
trans-1,3-Dichloropropene	10.6	10.0	106%	10.2	10.0	102%	3.8%
2-Chloroethylvinylether	10.0	10.0	100%	10.2	10.0	102%	2.0%
Bromoform	13.2	10.0	132%	10.1	10.0	101%	26.6%
4-Methyl-2-Pentanone (MIBK)	53.4	50.0	107%	54.4	50.0	109%	1.9%
2-Hexanone	55.5	50.0	111%	51.1	50.0	102%	8.3%
Tetrachloroethene	10.5	10.0	105%	8.9	10.0	89.0%	16.5%
1,1,2,2-Tetrachloroethane	11.4	10.0	114%	8.6	10.0	86.0%	28.0%
Toluene	9.3	10.0	93.0%	8.9	10.0	89.0%	4.4%
Chlorobenzene	10.6	10.0	106%	9.1	10.0	91.0%	15.2%
Ethylbenzene	10.7	10.0	107%	9.4	10.0	94.0%	12.9%
Styrene	11.2	10.0	112%	9.5	10.0	95.0%	16.4%
Trichlorofluoromethane	10.8	10.0	108%	10.4	10.0	104%	3.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.7	10.0	107%	9.9	10.0	99.0%	7.8%
m,p-Xylene	21.1	20.0	106%	17.7	20.0	88.5%	17.5%
o-Xylene	10.6	10.0	106%	8.9	10.0	89.0%	17.4%
1,2-Dichlorobenzene	12.0	10.0	120%	9.0	10.0	90.0%	28.6%
1,3-Dichlorobenzene	12.0	10.0	120%	9.0	10.0	90.0%	28.6%
1,4-Dichlorobenzene	11.9	10.0	119%	8.8	10.0	88.0%	30.0%
Acrolein	71.5	50.0	143%	72.3	50.0	145%	1.1%
Methyl Iodide	11.5	10.0	115%	10.3	10.0	103%	11.0%
Bromoethane	9.4	10.0	94.0%	8.6	10.0	86.0%	8.9%

Page 2 of 2

Sample ID: LCS-021109

LAB CONTROL SAMPLE

Lab Sample ID: LCS-021109

LIMS ID: 09-3554 Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

21	LÇS	Spike	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	ПСВ	Added-103	Recovery	псэр	Added-LCSD	Recovery	
Acrylonitrile	10.5	10.0	105%	11.0	10.0	110%	4.7%
1,1-Dichloropropene	9.6	10.0	96.0%	8.8	10.0	88.0%	8.7%
Dibromomethane	10.4	10.0	104%	10.6	10.0	106%	1.9%
1,1,1,2-Tetrachloroethane	11.0	10.0	110%	9.3	10.0	93.0%	16.7%
1,2-Dibromo-3-chloropropane	12.0	10.0	120%	9.4	10.0	94.0%	24.3%
1,2,3-Trichloropropane	13.2	10.0	132%	9.4	10.0	94.0%	33.6%
trans-1,4-Dichloro-2-butene	13.5	10.0	135%	9.6	10.0	96.0%	33.8%
1,3,5-Trimethylbenzene	11.8	10.0	118%	9.0	10.0	90.0%	26.9%
1,2,4-Trimethylbenzene	11.8	10.0	118%	8.9	10.0	89.0%	28.0%
Hexachlorobutadiene	12.4	10.0	124%	9.0	10.0	90.0%	31.8%
Ethylene Dibromide	10.0	10.0	100%	9.9	10.0	99.0%	1.0%
Bromochloromethane	10.1	10.0	101%	9.8	10.0	98.0%	3.0%
2,2-Dichloropropane	11.0	10.0	110%	10.2	10.0	102%	7.5%
1,3-Dichloropropane	10.8	10.0	108%	9.5	10.0	95.0%	12.8%
Isopropylbenzene	12.3	10.0	123%	9.2	10.0	92.0%	28.8%
n-Propylbenzene	12.4	10.0	124%	9.1	10.0	91.0%	30.7%
Bromobenzene	12.1	10.0	121%	8.7	10.0	87.0%	32.7%
2-Chlorotoluene	12.5	10.0	125%	9.1	10.0	91.0%	31.5%
4-Chlorotoluene	12.5	10.0	125%	9.0	10.0	90.0%	32.6%
tert-Butylbenzene	12.1	10.0	121%	8.8	10.0	88.0%	31.6%
sec-Butylbenzene	12.0	10.0	120%	8.9	10.0	89.0%	29.7%
4-Isopropyltoluene	12.1	10.0	121%	8.9	10.0	89.0%	30.5%
n-Butylbenzene	11.7	10.0	117%	8.8	10.0	88.0%	28.3%
1,2,4-Trichlorobenzene	11.5	10.0	115%	9.1	10.0	91.0%	23.3%
Naphthalene	11.5	10.0	115%	9.3	10.0	93.0%	21.2%
1,2,3-Trichlorobenzene	11.7	10.0	117%	9.3	10.0	93.0%	22.9%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	113%	111%
d8-Toluene	96.0%	101%
Bromofluorobenzene	93.9%	102%
d4-1,2-Dichlorobenzene	102%	102%

Page 1 of 2

Matrix: Water

Reported: 02/12/09

Data Release Authorized:

METHOD BLANK

Lab Sample ID: MB-021009 QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551 Project: Boeing Isaacson Phase II

025173.090

Sample ID: MB-021009

Date Sampled: NA Date Received: NA

Instrument/Analyst: NT7/PKC Sample Amount: 10.0 mL Date Analyzed: 02/10/09 14:18 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15 - 0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34 - 3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Page 2 of 2

Sample ID: MB-021009

METHOD BLANK

Lab Sample ID: MB-021009

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 14:18

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.3%
d8-Toluene	99.5%
Bromofluorobenzene	97.8%
d4-1,2-Dichlorobenzene	99.9%

Page 1 of 2

Lab Sample ID: MB-021109

LIMS ID: 09-3554

Matrix: Water Data Release Authorized:

Reported: 02/12/09

Instrument/Analyst: NT7/PKC Date Analyzed: 02/11/09 12:47 Sample ID: MB-021109 METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	Ū
10061- 0 2-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ū
75-25-2	Bromoform	0.2	< 0.2	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	2.5	< 2.5	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ū
79-34-5	Toluene	0.2	< 0.2	Ū
108-88-3	Chlorobenzene	0.2	< 0.2	Ū
108-90-7	Ethylbenzene	0.2	< 0.2	Ū
100-41-4	-	0.2	< 0.2	Ū
100-42-5	Styrene Trichlorofluoromethane	0.2	< 0.2	Ū
75-69-4	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
76-13-1		0.4	< 0.4	U
1330-20-7	m,p-Xylene	0.2	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene		< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 5.0	U
107-02-8	Acrolein	5.0		
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: MB-021109

METHOD BLANK

Lab Sample ID: MB-021109

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Matrix: Water

LIMS ID: 09-3554

Date Analyzed: 02/11/09 12:47

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	111%
d8-Toluene	102%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	102%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09
Date Analyzed: 02/10/09 22:04
Instrument/Analyst: NT4/LJR

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551 Project: Boeing Isaacson Phase II

025173.090

Matrix: Water
Date Analyzed: 02/10/09 22:04

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	64.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	28.0%	2-Fluorophenol	42.4%
2,4,6-Tribromophenol	89.1%	d4-2-Chlorophenol	67.5%

Page 1 of 2

Lab Sample ID: OL24A LIMS ID: 09-4573

Matrix: Water

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 20:17 Instrument/Analyst: NT4/LJR

Sample ID: P2-6-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65 - 8 <u>5</u> - 0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Matrix: Water

Lab Sample ID: OL24A

LIMS ID: 09-4573

Sample ID: P2-6-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Analyzed: 02/14/09 20:17

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	28
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	85.6%	d4-1,2-Dichlorobenzene	64.8%
d5-Phenol	69.6%	2-Fluorophenol	67.7%
2,4,6-Tribromophenol	94.1%	d4-2-Chlorophenol	71.5%

Page 1 of 2

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water

Data Release Authorized: Reported: 02/12/09

Date Extracted: 02/06/09 Date Analyzed: 02/10/09 22:38 Instrument/Analyst: NT4/LJR

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64- 7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
1 0 0-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc. Lab Sample ID: OL24B Project: Boeing Isaacson Phase II LIMS ID: 09-3552

025173.090

Matrix: Water Date Analyzed: 02/10/09 22:38

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	89.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	27.5%	2-Fluorophenol	42.4%
2,4,6-Tribromophenol	85.1%	d4-2-Chlorophenol	68.5%

Sample ID: P2-3-090204

SAMPLE

Lab Sample ID: OL24B LIMS ID: 09-4574 QC Report No: OL24-The Boeing Company Project: BOEING ISAACSON

Matrix: Water

Project: BOEING ISAACSON 025173.090

Data Release Authorized: VTS Reported: 02/17/09

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/12/09
Date Analyzed: 02/14/09 20:52
Instrument/Analyst: NT4/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88- 7 5-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Lab Sample ID: OL24B

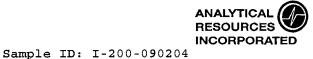
LIMS ID: 09-4574 Matrix: Water Sample ID: P2-3-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090


Date Analyzed: 02/14/09 20:52

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 Ŭ
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 Ü
120-12-7	Anthracene	1.0	< 1.0 Ü
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	71.6%	2-Fluorobiphenyl	72.4%
d14-p-Terphenyl	79.2%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	66.1%	2-Fluorophenol	65.1%
2,4,6-Tribromophenol	92.0%	d4-2-Chlorophenol	66.9%

Page 1 of 2

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

B

Date Extracted: 02/06/09
Date Analyzed: 02/11/09 17:27

Instrument/Analyst: NT4/LJR

Date Received: 02/04/09

Sample Amount: 5

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

Date Sampled: 02/04/09

QC Report No: OL24-Landau Associates, Inc.

025173.090

Project: Boeing Isaacson Phase II

SAMPLE

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3553

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/11/09 17:27

CAS Number	Analyte	RL	Result
7 005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	90.8%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	27.7%	2-Fluorophenol	43.5%
2,4,6-Tribromophenol	88.0%	d4-2-Chlorophenol	68.5%

Page 1 of 2

Lab Sample ID: OL24C LIMS ID: 09-4575

Matrix: Water

Data Release Authorized: \\

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 21:27 Instrument/Analyst: NT4/LJR

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 ℧
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 Ŭ
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 Ŭ
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-The Boeing Company Lab Sample ID: OL24C LIMS ID: 09-4575

Project: BOEING ISAACSON

025173.090

Matrix: Water Date Analyzed: 02/14/09 21:27

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	70.4%	2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	76.0%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	60.3%	2-Fluorophenol	63.7%
2,4,6-Tribromophenol	75.5%	d4-2-Chlorophenol	66.4%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II 025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-020609	62.8%	58.4%	83.6%	64.4%	30.7%	45.6%	70.9%	69.1%	0
LCS-020609	67.2%	67.6%	78.4%	69.2%	33.3%	48.5%	80.3%	75.2%	0
LCSD-020609	63.2%	69.6%	84.4%	65.2%	32.0%	45.6%	85.9%	69.9%	0
PZ-6-090204	64.4%	64.4%	87.6%	62.4%	28.0%	42.4%	89.1%	67.5%	0
PZ-3-090204	64.8%	64.0%	89.2%	65.6%	27.5%	42.4%	85.1%	68.5%	0-
I-200-090204	64.8%	65.2%	90.8%	66.4%	27.7%	43.5%	88.0%	68.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
		d14-p-Terphenyl	(48-120)	(46-119)
(DCB)	=	d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C

Log Number Range: 09-3551 to 09-3553

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	TUO TC
MD 001000	74.0%	70 49	00.48	61.2%	70 0%	70 0%	74.9%	71 10	^
MB-021209	74.8%	70.4%							0
LCS-021209	76.0%	71.2%	90.0%	65.6%	79.2%	72.5%	93.1%	75.5%	0
LCSD-021209	70.0%	75.2%	82.0%	59.2%	67.7%	63.7%	90.9%	65.6%	0
P2-6-090204	74.8%	76.4%	85.6%	64.8%	69.6%	67.7%	94.1%	71.5%	0
P2-3-090204	71.6%	72.4%	79.2%	62.4%	66.1%	65.1%	92.0%	66.9%	0
I-200-090204	70.4%	68.0%	76.0%	64.0%	60.3%	63.7%	75.5%	66.4%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
(TPH)	=	d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 09-4573 to 09-4575

Instrument/Analyst LCS: NT4/LJR

Data Release Authorized:

Page 1 of 2

Matrix: Water

Reported: 02/12/09

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609 QC Report No: OL24-Landau Associates, Inc. LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount LCS: 500 mL Date Extracted LCS/LCSD: 02/06/09

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 02/10/09 13:24 LCSD: 02/10/09 13:59 LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

LCSD: NT4/LJR

GPC Cleanup: NO

3 m a lank a	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
Analyte	ncs	Added-LC5	Recovery	БСЭБ	Added-BCSD	Recovery	KFD
Phenol	7.5	25.0	30.0%	7.2	25.0	28.8%	3.0%
Bis-(2-Chloroethyl) Ether	18.7	25.0	74.8%	17.9	25.0	71.6%	4.4%
2-Chlorophenol	18.1	25.0	72.4%	16.9	25.0	67.6%	6.9%
1,3-Dichlorobenzene	16.7	25.0	66.8%	16.1	25.0	64.4%	3.7%
1,4-Dichlorobenzene	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Benzyl Alcohol	18.2	50.0	36.4%	18.3	50.0	36.6%	0.5%
1,2-Dichlorobenzene	17.6	25.0	70.4%	17.0	25.0	68.0%	3.5%
2-Methylphenol	16.1	25.0	64.4%	15.6	25.0	62.4%	3.2%
2,2'-Oxybis(1-Chloropropane	2)14.3	25.0	57.2%	13.8	25.0	55.2%	3.6%
4-Methylphenol	30.9	50.0	61.8%	30.7	50.0	61.4%	0.6%
N-Nitroso-Di-N-Propylamine	16.5	25.0	66.0%	16.4	25.0	65.6%	0.6%
Hexachloroethane	16.6	25.0	66.4%	16.2	25.0	64.8%	2.4%
Nitrobenzene	16.2	25.0	64.8%	15.7	25.0	62.8%	3.1%
Isophorone	17.8	25.0	71.2%	18.1	25.0	72.4%	1.7%
2-Nitrophenol	18.4	25.0	73.6%	17.8	25.0	71.2%	3.3%
2,4-Dimethylphenol	12.9	25.0	51.6%	12.5	25.0	50.0%	3.1%
Benzoic Acid	28.2	75.0	37.6%	29.6	75.0	39.5%	4.8%
bis(2-Chloroethoxy) Methane	17.7	25.0	70.8%	17.6	25.0	70.4%	0.6%
2,4-Dichlorophenol	18.4	25.0	73.6%	18.0	25.0	72.0%	2.2%
1,2,4-Trichlorobenzene	16.4	25.0	65.6%	16.0	25.0	64.0%	2.5%
Naphthalene	17.8	25.0	71.2%	17.3	25.0	69.2%	2.8%
4-Chloroaniline	< 5.0	60.0	NA%	< 5.0	60.0	NA%	NA
Hexachlorobutadiene	16.1	25.0	64.4%	15.5	25.0	62.0%	3.8%
4-Chloro-3-methylphenol	18.5	25.0	74.0%	19.1	25.0	76.4%	3.2%
2-Methylnaphthalene	18.3	25.0	73.2%	18.1	25.0	72.4%	1.1%
Hexachlorocyclopentadiene	45.9	75.0	61.2%	45.8	75.0	61.1%	0.2%
2,4,6-Trichlorophenol	17.3	25.0	69.2%	18.1	25.0	72.4%	4.5%
2,4,5-Trichlorophenol	18.2	25.0	72.8%	18.4	25.0	73.6%	1.1%
2-Chloronaphthalene	17.5	25.0	70.0%	17.9	25.0	71.6%	2.3%
2-Nitroaniline	16.7	25.0	66.8%	17.6	25.0	70.4%	5.2%
Dimethylphthalate	19.1	25.0	76.4%	20.4	25.0	81.6%	6.6%
Acenaphthylene	18.3	25.0	73.2%	19.0	25.0	76.0%	3.8%
3-Nitroaniline	17.7	64.0	27.7%	19.7	64.0	30.8%	10.7%
Acenaphthene	17.9	25.0	71.6%	18.4	25.0	73.6%	2.8%
2,4-Dinitrophenol	75.8	75.0	101%	85.7	75.0	114%	12.3%
4-Nitrophenol	9.6	25.0	38.4%	10.2	25.0	40.8%	6.3%
Dibenzofuran	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
2,6-Dinitrotoluene	18.6	25.0	74.4%	19.8	25.0	79.2%	6.2%
2,4-Dinitrotoluene	19.7	25.0	78.8%	21.1	25.0	84.4%	6.9%
Diethylphthalate	19.1	25.0	76.4%	20.7	25.0	82.8%	8.0%
4-Chlorophenyl-phenylether	18.0	25.0	72.0%	19.0	25.0	76.0%	5.4%
Fluorene	19.2	25.0	76.8%	20.1	25.0	80.4%	4.6%
4-Nitroaniline	17.6	25.0	70.4%	18.7	25.0	74.8%	6.1%
4,6-Dinitro-2-Methylphenol	68.3	75.0	91.1%	76.8	75.0	102%	11.7%
N-Nitrosodiphenylamine	16.9	25.0	67.6%	18.1	25.0	72.4%	6.9%

Page 2 of 2

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

QC Report No: OL24-Landau Associates, Inc.

LIMS ID: 09-3551

Project: Boeing Isaacson Phase II

Matrix: Water

025173.090

Date Analyzed: 02/10/09 13:24

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
4-Bromophenyl-phenylether	16.8	25.0	67.2%	18.1	25.0	72.4%	7.4%
Hexachlorobenzene	17.2	25.0	68.8%	18.4	25.0	73.6%	6.7%
Pentachlorophenol	18.7	25.0	74.8%	20.5	25.0	82.0%	9.2%
Phenanthrene	18.8	28.0	67.1%	20.0	28.0	71.4%	6.2%
Carbazole	19.9	25.0	79.6%	21.4	25.0	85.6%	7.3%
Anthracene	18.3	25.0	73.2%	19.5	25.0	78.0%	6.3%
Di-n-Butylphthalate	19.3	25.0	77.2%	20.8	25.0	83.2%	7.5%
Fluoranthene	19.0	25.0	76.0%	20.3	25.0	81.2%	6.6%
Pyrene	19.7	25.0	78.8%	21.4	25.0	85.6%	8.3%
Butylbenzylphthalate	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
3,3'-Dichlorobenzidine	34.0	64.0	53.1%	41.0	64.0	64.1%	18.7%
Benzo(a)anthracene	18.5	25.0	74.0%	20.2	25.0	80.8%	8.8%
bis(2-Ethylhexyl)phthalate	19.8	25.0	79.2%	22.0	25.0	88.0%	10.5%
Chrysene	18.6	28.0	66.4%	19.8	28.0	70.7%	6.2%
Di-n-Octyl phthalate	18.4	25.0	73.6%	19.9	25.0	79.6%	7.8%
Benzo(b)fluoranthene	20.1	25.0	80.4%	22.5	25.0	90.0%	11.3%
Benzo(k)fluoranthene	19.9	28.0	71.1%	21.2	28.0	75.7%	6.3%
Benzo(a)pyrene	15.5	25.0	62.0%	17.3	25.0	69.2%	11.0%
Indeno(1,2,3-cd)pyrene	17.6	25.0	70.4%	19.4	25.0	77.6%	9.7%
Dibenz(a,h)anthracene	17.7	25.0	70.8%	19.4	25.0	77.6%	9.2%
Benzo(g,h,i)perylene	16.9	25.0	67.6%	18.5	25.0	74.0%	9.0%
1-Methylnaphthalene	19.5	25.0	78.0%	19.8	25.0	79.2%	1.5%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	67.2%	63.2%
2-Fluorobiphenyl	67.6%	69.6%
d14-p-Terphenyl	78.4%	84.4%
d4-1,2-Dichlorobenzene	69.2%	65.2%
d5-Phenol	33.3%	32.0%
2-Fluorophenol	48.5%	45.6%
2,4,6-Tribromophenol	80.3%	85.9%
d4-2-Chlorophenol	75.2%	69.9%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: LCS-021209

LCS/LCSD

Lab Sample ID: LCS-021209

LIMS ID: 09-4573 Matrix: Water

Data Release Authorized: \

Reported: 02/17/09

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted LCS/LCSD: 02/12/09 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 02/14/09 12:09 Final Extract Volume LCS: 0.50 mL LCSD: 02/14/09 12:44 LCSD: 0.50 mL

Dilution Factor LCS: 1.00

Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

LCSD: 1.00

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	19.5	25.0	78.0%	16.5	25.0	66.0%	16.7%
Bis-(2-Chloroethyl) Ether	18.2	25.0	72.8%	16.1	25.0	64.4%	12.2%
2-Chlorophenol	18.5	25.0	74.0%	16.2	25.0	64.8%	13.3%
1,3-Dichlorobenzene	12.6	25.0	50.4%	11.6	25.0	46.4%	8.3%
1,4-Dichlorobenzene	13.0	25.0	52.0%	12.0	25.0	48.0%	8.0%
Benzyl Alcohol	35.1	50.0	70.2%	31.2	50.0	62.4%	11.8%
1,2-Dichlorobenzene	13.6	25.0	54.4%	12.4	25.0	49.6%	9.2%
2-Methylphenol	18.8	25.0	75.2%	16.2	25.0	64.8%	14.9%
2,2'-Oxybis(1-Chloropropane		25.0	76.0%	16.8	25.0	67.2%	12.3%
4-Methylphenol	38.9	50.0	77.8%	34.1	50.0	68.2%	13.2%
N-Nitroso-Di-N-Propylamine	18.9	25.0	75.6%	17.0	25.0	68.0%	10.6%
Hexachloroethane	11.4	25.0	45.6%	10.6	25.0	42.4%	7.3%
Nitrobenzene	18.7	25.0	74.8%	17.6	25.0	70.4%	6.1%
Isophorone	20.1	25.0	80.4%	19.6	25.0	78.4%	2.5%
2-Nitrophenol	18.4	25.0	73.6%	17.6	25.0	70.4%	4.4%
2,4-Dimethylphenol	18.0	25.0	72.0%	16.7	25.0	66.8%	7.5%
Benzoic Acid	64.1	75.0	85.5%	59.9	75.0	79.9%	6.8%
bis(2-Chloroethoxy) Methane	18.3	25.0	73.2%	17.8	25.0	71.2%	2.8%
2,4-Dichlorophenol	19.1	25.0	76.4%	18.6	25.0	74.4%	2.7%
1,2,4-Trichlorobenzene	13.8	25.0	55.2%	14.0	25.0	56.0%	1.4%
Naphthalene	16.4	25.0	65.6%	15.7	25.0	62.8%	4.4%
4-Chloroaniline	56.2	60.0	93.7%	52.5	60.0	87.5%	6.8%
Hexachlorobutadiene	11.9	25.0	47.6%	12.7	25.0	50.8%	6.5%
4-Chloro-3-methylphenol	20.9	25.0	83.6%	20.1	25.0	80.4%	3.9%
2-Methylnaphthalene	17.0	25.0	68.0%	16.8	25.0	67.2%	1.2%
Hexachlorocyclopentadiene	31.3	75.0	41.7%	38.6	75.0	51.5%	20.9%
2,4,6-Trichlorophenol	18.9	25.0	75.6%	20.4	25.0	81.6%	7.6%
2,4,5-Trichlorophenol	19.6	25.0	78.4%	20.7	25.0	82.8%	5.5%
2-Chloronaphthalene	16.2	25.0	64.8%	17.8	25.0	71.2%	9.4%
2-Nitroaniline	21.8	25.0	87.2%	22.0	25.0	88 0%	0.9%
Dimethylphthalate	21.0	25.0	84.0%	21.2	25.0	84.8%	0.9%
Acenaphthylene	18.4	25.0	73.6%	19.4	25.0	77.6%	5.3%
3-Nitroaniline	65.7	64.0	103%	63.6	64.0	99.4%	3.2%
Acenaphthene	18.4	25.0	73.6%	19.8	25.0	79.2%	7.3%
2,4-Dinitrophenol	93.0	75.0	124%	93.8	75.0	125%	0.9%
4-Nitrophenol	22.4	25.0	89.6%	21.8	25.0	87.2%	2.7%
Dibenzofuran	19.3	25.0	77.2%	20.2	25.0	80.8%	4.6%
2,6-Dinitrotoluene	21.2	25.0	84.8%	21.2	25.0	84.8%	0.0%

Page 2 of 2

Sample ID: LCS-021209

LCS/LCSD

Lab Sample ID: LCS-021209

QC Report No: OL24-The Boeing Company

LIMS ID: 09-4573

Project: BOEING ISAACSON

Matrix: Water

025173.090

Date Analyzed: 02/14/09 12:09

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrotoluene	22.0	25.0	88.0%	21.6	25.0	86.4%	1.8%
Diethylphthalate	20.4	25.0	81.6%	20.2	25.0	80.8%	1.0%
4-Chlorophenyl-phenylether	19.7	25.0	78.8%	20.2	25.0	80.8%	2.5%
Fluorene	20.4	25.0	81.6%	20.8	25.0	83.2%	1.9%
4-Nitroaniline	21.4	25.0	85.6%	20.4	25.0	81.6%	4.8%
4,6-Dinitro-2-Methylphenol	76.5	75.0	102%	80.2	75.0	107%	4.7%
N-Nitrosodiphenylamine	19.2	25.0	76.8%	20.2	25.0	80.8%	5.1%
4-Bromophenyl-phenylether	18.9	25.0	75.6%	20.7	25.0	82.8%	9.1%
Hexachlorobenzene	19.6	25.0	78.4%	21.6	25.0	86.4%	9.7%
Pentachlorophenol	20.0	25.0	80.0%	22.0	25.0	88.0%	9.5%
Phenanthrene	20.5	25.0	82.0%	21.6	25.0	86.4%	5.2%
Carbazole	20.8	25.0	83.2%	21.2	25.0	84.8%	1.9%
Anthracene	19.8	25.0	79.2%	21.0	25.0	84.0%	5.9%
Di-n-Butylphthalate	20.4	25.0	81.6%	21.3	25.0	85.2%	4.3%
Fluoranthene	20.2	25.0	80.8%	21.9	25.0	87.6%	8.1%
Pyrene	21.1	25.0	84.4%	19.6	25.0	78.4%	7.4%
Butylbenzylphthalate	20.9	25.0	83.6%	20.2	25.0	80.8%	3.4%
3,3'-Dichlorobenzidine	52.2	64.0	81.6%	57.5	64.0	89.8%	9.7%
Benzo(a)anthracene	20.4	25.0	81.6%	21.4	25.0	85.6%	4.8%
bis(2-Ethylhexyl)phthalate	21.0	25.0	84.0%	20.8	25.0	83.2%	1.0%
Chrysene	19.9	25.0	79.6%	20.9	25.0	83.6%	4.9%
Di-n-Octyl phthalate	20.2	25.0	80.8%	21.8	25.0	87.2%	7.6%
Benzo(b)fluoranthene	19.6	25.0	78.4%	22.0	25.0	88.0%	11.5%
Benzo(k) fluoranthene	22.6	25.0	90.4%	21.1	25.0	84.4%	6.9%
Benzo(a)pyrene	16.6	25.0	66.4%	17.8	25.0	71.2%	7.0%
Indeno(1,2,3-cd)pyrene	19.4	25.0	77.6%	22.0	25.0	88.0%	12.6%
Dibenz(a,h)anthracene	18.9	25.0	75.6%	21.5	25.0	86.0%	12.9%
Benzo(q,h,i)perylene	18.4	25.0	73.6%	20.7	25.0	82.8%	11.8%
1-Methylnaphthalene	18.0	25.0	72.0%	17.8	25.0	71.2%	1.1%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	76.0%	70.0%
2-Fluorobiphenyl	71.2%	75.2%
d14-p-Terphenyl	90.0%	82.0%
d4-1,2-Dichlorobenzene	65.6%	59.2%
d5-Phenol	79.2%	67.7%
2-Fluorophenol	72.5%	63.7%
2,4,6-Tribromophenol	93.1%	90.9%
d4-2-Chlorophenol	75.5%	65.6%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: MB-020609 METHOD BLANK

Lab Sample ID: MB-020609

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Date Extracted: 02/06/09 Sample Amount: 500 mL
Date Analyzed: 02/10/09 12:49 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT4/LJR Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72 - 1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
07 00 ° 2	Dicenty i prictica acce	±••	` 1.0 0

Page 2 of 2

Sample ID: MB-020609

METHOD BLANK

Lab Sample ID: MB-020609

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

LIMS ID: 09-3551

025173.090

Matrix: Water

Date Analyzed: 02/10/09 12:49

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	62.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol	58.48
d14-p-Terphenyl	83.6%		64.48
d5-Phenol	30.7%		45.68
2,4,6-Tribromophenol	70.9%	d4-2-Chlorophenol	69.1%

Lab Sample ID: MB-021209

LIMS ID: 09-4573

Matrix: Water

Data Release Authorized:

Reported: 02/17/09

Date Extracted: 02/12/09 Date Analyzed: 02/14/09 11:35 Instrument/Analyst: NT4/LJR Sample ID: MB-021209 METHOD BLANK

QC Report No: OL24-The Boeing Company

Project: BOEING ISAACSON

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U

Page 2 of 2

Sample ID: MB-021209

METHOD BLANK

Lab Sample ID: MB-021209

QC Report No: OL24-The Boeing Company

LIMS ID: 09-4573

Project: BOEING ISAACSON

025173.090

Matrix: Water

Date Analyzed: 02/14/09 11:35

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b) fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	74.8% 82.4%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	70.4% 61.2%
d5-Phenol	72.0%	2-Fluorophenol	70.9%
2,4,6-Tribromophenol	74.9%	d4-2-Chlorophenol	74.1%

Page 1 of 1

Sample ID: PZ-6-090204

SAMPLE

Lab Sample ID: OL24A LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/11/09 17:31

Instrument/Analyst: NT1/PK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II Event: 025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.7% d14-Dibenzo(a,h)anthracene 35.7%

Page 1 of 1

Sample ID: PZ-3-090204

SAMPLE

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water

Data Release Authorized:

Date Analyzed: 02/11/09 17:53

Instrument/Analyst: NT1/PK

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 61.7% d14-Dibenzo(a,h)anthracene 71.3%

Page 1 of 1

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 02/11/09 18:16

Instrument/Analyst: NT1/PK

Date Extracted: 02/09/09

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090 Date Sampled: 02/04/09

Date Sampled: 02/04/09
Date Received: 02/04/09

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.3% d14-Dibenzo(a,h)anthracene 70.7%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

Client ID	MNP	DBA	TOT OUT
MB-020909	63.3%	80.0%	0
LCS-020909	63.7%	81.3%	0
LCSD-020909	58.7%	79.7%	0
PZ-6-090204	59.7%	35.7%	0
PZ-3-090204	61.7%	71.3%	0
I-200-090204	59.3%	70.7%	0

	LCS/MB LIMITS	QC LIMITS
d10-2-Methylnaphthalene	(49-113)	(44-112)
d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C

Log Number Range: 09-3551 to 09-3553

Page 1 of 1

Sample ID: LCS-020909

LAB CONTROL SAMPLE

Lab Sample ID: LCS-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

 \mathcal{W}

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/11/09 12:37

LCSD: 02/11/09 12:59

Instrument/Analyst LCS: NT1/PK

LCSD: NT1/PK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a)anthracene	2.27	3.00	75.7%	2.38	3.00	79.3%	4.7%
Chrysene	2.43	3.00	81.0%	2.45	3.00	81.7%	0.8%
Benzo(b)fluoranthene	2.53	3.00	84.3%	2.41	3.00	80.3%	4.9%
Benzo(k)fluoranthene	2.94	3.00	98.0%	3.04	3.00	101%	3.3%
Benzo(a)pyrene	2.57	3.00	85.7%	2.49	3.00	83.0%	3.2%
Indeno(1,2,3-cd)pyrene	2.41	3.00	80.3%	2.47	3.00	82.3%	2.5%
Dibenz(a,h)anthracene	2.52	3.00	84.0%	2.50	3.00	83.3%	0.8%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	63.7%	58.7%
d14-Dibenzo(a,h)anthracene	81.3%	79.7%

Page 1 of 1

Sample ID: MB-020909

METHOD BLANK

Lab Sample ID: MB-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Date Extracted: 02/09/09

Instrument/Analyst: NT1/PK

Date Analyzed: 02/11/09 12:14

Reported: 02/12/09

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II

Event: 025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.3% d14-Dibenzo(a,h)anthracene 80.0%

Page 1 of 1

Lab Sample ID: OL24A

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:05 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	55.5%

Page 1 of 1

Lab Sample ID: OL24B

LIMS ID: 09-3552 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:23 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	60.8%

Page 1 of 1

Sample ID: I-200-090204

SAMPLE

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized:/ Reported: 02/12/09

Project: Boeing Isaacson Phase II 025173.090

QC Report No: OL24-Landau Associates, Inc.

Date Sampled: 02/04/09 Date Received: 02/04/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 14:40 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	78.2%
Tetrachlorometaxylene	62.0%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc. Project: Boeing Isaacson Phase II 025173.090

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
	00.09	47 101	CE 0%	61 104	0
MB-020909	88.8%	47-101		61-104	-
LCS-020909	81.8%	47-101	57.2%*	61-104	1
LCSD-020909	83.8%	47-101	59.5%*	61-104	1
PZ-6-090204	87.5%	42-120	55.5%	55-102	0
PZ-3-090204	84.2%	42-120	60.8%	55-102	0
I-200-090204	78.2%	42-120	62.0%	55-102	0

Prep Method: SW3510C Log Number Range: 09-3551 to 09-3553

Page 1 of 1

Lab Sample ID: LCS-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted LCS/LCSD: 02/09/09

Date Analyzed LCS: 02/10/09 10:57

LCSD: 02/10/09 11:14

Instrument/Analyst LCS: ECD5/JGR LCSD: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: LCS-020909

LCS/LCSD

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	3.98	5.00	79.6%	4.25	5.00	85.0%	6.6%
Aroclor 1260	4.50	5.00	90.0%	4.52	5.00	90.4%	0.4%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	81.8%	83.8%
Tetrachlorometaxylene	57.2%	59.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-020909

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/12/09

Date Extracted: 02/09/09 Date Analyzed: 02/10/09 10:39 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-020909

METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	88.8%
Tetrachlorometaxylene	65.8%

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID

Page 1 of 1 Matrix: Water

Data Release Authorized: Reported: 02/09/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-020609 09-3551	Method Blank	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 76.8%
OL24A 09-3551	PZ-6-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 83.2%
OL24B 09-3552	PZ-3-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 83.1%
OL24C 09-3553	I-200-090204 HC ID:	02/06/09	02/07/09	1.0	Gas Diesel Oil o-Terphenyl	< 0.25 U < 0.63 U < 0.63 U 69.0%

Reported in mg/L (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

Client ID	O-TER	TOT OUT
MB-020609	76.8%	0
LCS-020609	89.6%	0
LCSD-020609	88.1%	0
PZ-6-090204	83.2%	0
PZ-3-090204	83.1%	0
T-200-090204	69.0%	0

LCS/MB LIMITS QC LIMITS

(O-TER) = o-Terphenyl

(55-110)

(50-150)

Prep Method: SW3510C Log Number Range: 09-3551 to 09-3553

ORGANICS ANALYSIS DATA SHEET NWTPH-HCID Method by GC/FID

Page 1 of 1

Sample ID: LCS-020609

LCS/LCSD

Lab Sample ID: LCS-020609

LIMS ID: 09-3551 Matrix: Water

Data Release Authorized:

Reported: 02/09/09

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: 02/04/09 Date Received: 02/04/09

Sample Amount LCS: 500 mL Date Extracted LCS/LCSD: 02/06/09

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL Date Analyzed LCS: 02/07/09 02:17 LCSD: 02/07/09 02:35

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.45	3.00	81.7%	2.41	3.00	80.3%	1.6%

HCID Surrogate Recovery

LCSD LCS

o-Terphenyl

89.6% 88.1%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: OL24

Project: Boeing Isaacson Phase II 025173.090

Matrix: Water Date Received: 02/04/09

ARI ID	Client ID	Sample Amt	Final Vol	Prep Date
09-3551-020609MB	Method Blank	500 mL	1.00 mL	02/06/09
09-3551-020609MB 09-3551-020609LCS	Lab Control	500 mL	1.00 mL	02/06/09
09-3551-020609LCSD	Lab Control Dup	500 mL	1.00 mL	02/06/09
09-3551-020609LCSD	PZ-6-090204	500 mL	1.00 mL	02/06/09
09-3551-0H24A 09-3552-0L24B	PZ-3-090204	500 mL	1.00 mL	02/06/09
09-3553-OL24C	I-200-090204	500 mL	1.00 mL	02/06/09

Page 1 of 1

Lab Sample ID: OL24A LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Sample ID: PZ-6-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	2	505	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	5	5	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	Ü

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24B LIMS ID: 09-3552

Matrix: Water Data Release Authorized: Reported: 02/20/09

Sample ID: PZ-3-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.
Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
-								
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	11.7	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24C LIMS ID: 09-3553

Matrix: Water

Data Release Authorized

Reported: 02/20/09

Sample ID: I-200-090204

SAMPLE

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II
025173.090
Date Sampled: 02/04/09
Date Received: 02/04/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	0.8	
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	IJ
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	Ū
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

U-Analyte undetected at given RL RL-Reporting Limit

Page 1 of 1

Lab Sample ID: OL24LCS LIMS ID: 09-3551

Matrix: Water

Data Release Authorized Reported: 02/20/09

Sample ID: LAB CONTROL

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II 025173.090

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	0
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	26.2	25.0	105%	
Cadmium	6010B	498	500	99.6%	
Chromium	6010B	465	500	93.0%	
Copper	6010B	465	500	93.0%	
Lead	200.8	28	25	112%	
Mercury	7470A	2.1	2.0	105%	
Zinc	6010B	480	500	96.0%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: OL24MB

LIMS ID: 09-3551

Matrix: Water

Data Release Authorized:

Reported: 02/20/09

Sample ID: METHOD BLANK

QC Report No: OL24-Landau Associates, Inc.

Project: Boeing Isaacson Phase II

025173.090

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/12/09	200.8	02/16/09	7440-38-2	Arsenic	0.2	0.2	U
6010B	02/12/09	6010B	02/13/09	7440-43-9	Cadmium	2	2	U
6010B	02/12/09	6010B	02/13/09	7440-47-3	Chromium	5	5	U
6010B	02/12/09	6010B	02/13/09	7440-50-8	Copper	2	2	U
200.8	02/12/09	200.8	02/17/09	7439-92-1	Lead	1	1	U
7470A	02/12/09	7470A	02/19/09	7439-97-6	Mercury	0.1	0.1	U
6010B	02/12/09	6010B	02/13/09	7440-66-6	Zinc	10	10	U

U-Analyte undetected at given RL RL-Reporting Limit