

PFAS REMEDIAL INVESTIGATION CONCEPTUAL SITE MODEL TECHNICAL MEMORANDUM

Yakima Training Center

Yakima, Washington

Joint Base Lewis-McChord Public Works – Environmental Division

IMLM-PWE

MS 17 Box 339500 Joint Base Lewis-McChord, Washington 98433

This page intentionally left blank.

TABLE OF CONTENTS

1	INTRODUCTION1
2	SITE INVESTIGATION ACTIVITIES
2.1	Surface Geophysics
2.2	Boundary Well Installation
2.2.1	Borehole Geophysics
2.2.2	Well Construction and Development
2.2.3	Geochemical Analysis of Basalt Chips
2.3	Boundary Well Installation
3	CONCEPTUAL SITE MODEL
3.1	Geology and Hydrogeology
3.2	PFAS Areas of Interest
3.3	Contaminant Fate and Transport Pathways
3.4	Data Needs
4	REFERENCES 17

EXHIBITS

- Exhibit 1. Major Structural Features of the Yakima Fold and Thrust Belt and Location of Completed Geophysical Transects
- Exhibit 2. Generalized Diagram of Sedimentary Interbeds within the Columbia River Basalt Group

LIST OF FIGURES

Figure 1.	Site Location
riguit I.	She Location

- Figure 2. Site Features and AOI Locations
- Figure 3. Off-Post Evaluation Area
- Figure 4. Surface Geophysical Transect Locations
- Figure 5. Surface Geophysics Results (A-A')
- Figure 6. Surface Geophysics Results (B-B')
- Figure 7. Surface Geophysics Results (C-C')
- Figure 8. Former Fire Training Pit (YFCR-53) (AOI 1) and Bird Bath Wash Rack (AOI 2) Baseline Sampling Results
- Figure 9. AFFF Storage Area (Building 821) (AOI 3) Baseline Sampling Results
- Figure 10.Refractometer Solutions Testing Area (AOI 4), Fire Station 29 (Building 346)AOI 5), and AFFF Storage Area (Building 321) (AOI 6) Baseline Sampling Results
- Figure 11. Mettie Airstrip (AOI 7) Baseline Sampling Results

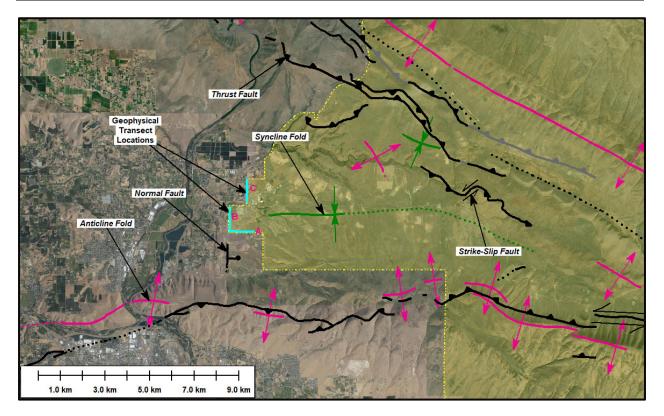
LIST OF TABLES

- Table 1.Baseline Groundwater Analytical Results
- Table 2.Baseline Surface Water Analytical Results
- Table 3.Baseline Sediment Analytical Results

LIST OF ATTACHMENTS

Attachment 1.	Boundary Well Boring Logs
Attachment 2.	Baseline Data Validation Reports
Attachment 3.	Basalt X-Ray Fluorescence Laboratory Results

milligram per kilogram mg/kg nanogram per liter ng/L AFFF aqueous film-forming foam Area of Interest AOI Arcadis Arcadis US. Inc. below ground surface bgs Columbia River Basalt CRB CSM Conceptual Site Model **Environmental Chemical Corporation** ECC Fm Formation HAL Health Advisory Level mean sea level msl OSD Office of the Assistant Secretary of Defense PA/SI Preliminary Assessment / Site Inspection per- and polyfluoroalkyl substance PFAS PFBS perfluorobutanesulfonic acid perfluorohexane sulfonate PFHxS PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctane sulfonate Quality Assurance Project Plan OAPP **Remedial Investigation** RI RSL **Risk Screening Level** U.S. Environmental Protection Agency USEPA WSU Washington State University XRF X-ray Fluorescence YTC Yakima Training Center


LIST OF ACRONYMS AND ABBREVIATIONS

1 INTRODUCTION

This Conceptual Site Model (CSM) Technical Memorandum presents the CSM relevant to the perand polyfluoroalkyl substances (PFAS) remedial investigation (RI) at the United States (U.S.) Army Yakima Training Center (YTC) in Yakima, Washington (**Figure 1**) and is an update to the CSM presented in the Preliminary Assessment/Site Inspection (PA/SI; Arcadis 2019). It incorporates the results of recent surface geophysical surveys, baseline sampling, and boundary monitoring well installations completed in accordance with the Baseline Sampling Work Plan (ECC/Arcadis, 2023a) and the Boundary Investigation Technical Memorandum Work Plan (and Revisions 1 and 2) (ECC/Arcadis, 2023b).

This RI is being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 under United States Army Environmental Command Contract Number W9124J18D0004, Delivery Order Number W9124J22F0144 by Environmental Chemical Corporation (ECC) and Arcadis U.S., Inc. (Arcadis). This RI addresses the characterization and on- and off-post delineation of PFAS at YTC associated with the areas of interest (AOIs; **Figure 2**) previously identified in the PA/SI (Arcadis, 2019). This CSM incorporates data sets and interpretations generated during the boundary investigation, which included characterization of subsurface structural geology and identification of geologic features that may potentially act as preferential groundwater and PFAS migration pathways along YTC boundaries. In addition, this CSM includes supplemental baseline sediment, surface water, and groundwater analytical results. The CSM provides a framework useful for identifying data needs for the RI and will be used to establish the scope of the RI Phase I investigation that will be presented in the RI Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP), which is forthcoming under separate cover.

The seven AOIs identified for the RI at YTC are situated within the Yakima River basin aquifer system, which consists of 1) basin-fill sedimentary deposits, 2) the Columbia River Basalt Group, and 3) deep bedrock consisting of Eocene and Oligocene-age volcanic and fluvial deposits. YTC is situated in a tectonically active zone known as the Yakima Fold Belt of south-central Washington, also referred to as the Yakima Fold and Thrust Belt. **Exhibit 1** depicts mapped geologic structures associated with the Yakima Fold and Thrust Belt, which are expected to influence both regional and local hydrogeology and groundwater flow.

Exhibit 1. Major Structural Features of the Yakima Fold and Thrust Belt and Location of the Completed Geophysical Transects

Extensive folding of the sedimentary and Columbia River basalt strata in the area has created a complex hydrogeologic system with highly variable groundwater chemistry, hydraulic properties, depths to water, and flow directions at YTC. Contaminant transport within the subsurface is correspondingly complex.

The drinking water supply for YTC is provided entirely from groundwater sources. Wells provide water for three permitted drinking water distribution systems located in the cantonment area, at the Yakima Research Station and the Multi-Purpose Range Complex (Department of Defense, Department of the Army, 2010). The supply well located at the Selah Airstrip is currently not in use, due to detections of PFAS in associated water quality samples. Areas west and southwest of the YTC cantonment area source drinking water from multiple sources including the Pomona Water District and private water supply wells drilled to various depths, which pump from a variety of water bearing zones.

As part of the PA/SI, a total of 301 drinking water samples were collected from 299 potable water supply wells located downgradient of the Installation. Sampling activities and results for the off-post well sampling events are documented in the 2023 PA/SI Addendum (Arcadis, 2023). The area included in the off-post evaluation is shown on **Figure 3**. Perfluorooctane sulfonate (PFOS) was detected in 151 samples and 145 samples had detections of perfluorooctanoic acid (PFOA). In

total, 155 had detections of either PFOS, PFOA or both, while 146 samples were reported as nondetect for both PFOS and PFOA. Of the 151 samples with PFOS detections, concentrations ranged from 0.49 J (the 'J' qualifier denotes an estimated concentration) nanograms per liter (ng/L) to 1,500 ng/L. Of the 145 samples with PFOA detections, concentrations ranged from 0.62 J ng/L to 150 ng/L. Sixty-two residential samples (collected from wells at 61 properties) had combined concentrations of PFOS and PFOA that exceeded the U.S. Environmental Protection Agency (USEPA) Health Advisory Level (HAL) of 70 ng/L (individually or combined if both are detected). The remaining 93 samples with detections of PFOS and/or PFOA had combined concentrations below the HAL. This page intentionally left blank.

2 SITE INVESTIGATION ACTIVITIES

The boundary investigation and baseline sampling are part of a data-driven, sequenced approach to the PFAS RI at YTC. The following investigation activities were designed to build on the findings of the SI and are being incorporated into the CSM to develop a comprehensive investigation approach for the RI UFP-QAPP.

2.1 Surface Geophysics

Electrical resistivity and seismic data sets were collected along the three transects shown on **Figure 4**. The alignment of the transects target YTC boundaries, where PFAS-impacted groundwater is migrating from the Installation into downgradient private drinking water wells. Each transect is approximately 3,640 linear feet, providing resolution of geophysics data to approximately 300 to 400 feet below ground surface (bgs).

Electrical resistivity and seismic velocity are used to estimate porosity and permeability and are useful in identifying preferential groundwater pathways. These two geophysical methods were performed congruently to address potential ambiguities common to each method. Analysis of the electrical resistivity was used as the primary means of estimating the depth of the water table and identifying different materials within the subsurface. Resistivity data were used to differentiate between basalt flows and the sedimentary Ellensburg Formation (Fm), to map the topography of contacts between formations, and provide an estimate of the relative permeability within the heterogeneous sediments of the Ellensburg Fm.

The combined surface geophysical data sets were evaluated to develop interpreted subsurface profiles and for the preliminary identification of subsurface anomalies likely to be the more permeable zones. Geophysical profiles for Transect A, Transect B and Transect C, are provided on **Figures 5, 6, and 7**, respectively. A total of 19 anomalies of interest were identified and formed the basis for siting monitoring wells. A subset of eight anomalies were identified as initial targets for boundary well installation and were selected based on proximity to downgradient receptors, upgradient PFAS source areas, and site topography.

A summary of key geologic interpretations from the geophysical profiles is provided for each of the following transects:

• Transect A (Figure 5) is located along the installation boundary to the south of the cantonment area. The electrical resistivity data along Transect A show variable elevation of the basalt flow top underlying the Ellensburg Fm. These variations correspond to seismic anomalies and suggest significant structural deformation and/or displacement along interpreted faults. Above the basalt, the unsaturated Ellensburg Fm generally exhibits low resistivity, which suggests units of lower permeability and high clay content. Notable increases in resistivity are observed in the zone below the interpreted water table. This, in addition to thicker sedimentary deposits overlying the basalt flow in this area may be

interpreted as a more permeable alluvial channel deposit (refer to anomaly A5 on **Figure 5**).

- Transect B (Figure 6) was generally consistent with the observations along Transect A. Sediments of the Ellensburg Fm overlie a basalt flow in this area and show an irregular contact interpreted as structural deformation (i.e., folding and faulting). The basalt unit between anomalies B4 and B5 (Figure 5) appears offset and exhibits a lower resistivity relative to the basalt to the north and south. These resistivity observations correspond to a sharp decline in seismic shear wave velocity and suggests that this basalt may be less competent and more permeable relative to basalt along the rest of transect B. This may be indicative of either faulting and/or fracturing. Within the saturated Ellensburg Fm, zones of higher resistivity were identified at anomalies B1 and B6 and are likely representative of sand/sandstone deposited within alluvial channels.
- Transect C (**Figure 7**) resistivity results show the presence of a shallow basalt unit (interpreted to be the Pomona Member) overlying the Ellensburg Fm, and a deeper basalt unit below. High shear wave velocities and resistivity values observed in the basalts along Transect C suggest a lower permeability, competent basalt. The resistivity profile shows significant irregularity in the elevation of the bottom of the Pomona Member and may be a result of basalt flows infilling paleo-surface features, displacement due to faulting, or some combination of the two.

While preliminary interpretation of the geophysical results was used to identify hydrostratigraphic zones of interest, refinement of the interpretations was made possible by correlating the electrical resistivity and seismic signals with borehole logging. Drilling observations, chip logging, and borehole geophysical results generally showed favorable correlation with features identified in the surface geophysical survey.

2.2 Boundary Well Installation

Installation of the eight boundary wells was completed in accordance with the Boundary Investigation Technical Memorandum Work Plan (ECC/Arcadis, 2023b) to establish an initial monitoring network along the perimeter of the Installation and preliminarily characterize subsurface conditions to support the developing CSM. The boundary wells are positioned along the geophysical transect lines shown in **Figure 4**.

Objectives for the boundary wells included:

- Lateral and vertical delineation of PFAS plumes along the western Installation boundary.
- Characterization of preferential flow pathways or geologic conditions that may be influencing groundwater flow regime(s).

• Refine geologic interpretations through the correlation of surface geophysics and borehole geophysics.

Boreholes for monitoring wells were advanced to the target depths using air-rotary drilling methods. Borehole depths ranged from 142 to 236 feet bgs. Basalt chip samples were retained from each basalt unit observed during drilling. Select basalt chip samples were submitted to the Washington State University (WSU) GeoAnalytical Lab for geochemical fingerprinting using X-ray fluorescence (XRF), as discussed below. In addition, during advancement of the boreholes, grab groundwater samples were collected from the first water-bearing zone encountered in each borehole for laboratory analysis of PFAS. The results of groundwater grab sampling will be presented under separate cover.

2.2.1 Borehole Geophysics

Selection of the screened interval for each boundary well was based on lithologic interpretations from rock chip logging during drilling and review of borehole geophysics results. Borehole geophysics were conducted in the open boreholes and/or in boreholes with temporary casing, depending on the stability of the surrounding formation. Borehole geophysical measurements included natural gamma ray, spontaneous potential and single point resistance, and 3-arm caliper. Select boreholes were surveyed with an optical televiewer probe to provide a three-dimensional visualization of the borehole. Boring logs, including lithologic descriptions and geophysical data are presented in **Attachment 1**.

2.2.2 Well Construction and Development

Monitoring wells were installed in accordance with the Boundary Investigation Technical Memorandum Work Plan (ECC/Arcadis, 2023b). Monitoring wells were constructed with screened intervals in transmissive zones interpreted as potential corollaries to downgradient private wells with screen lengths ranging from 10 to 20 feet based on observed lithology. Boring logs, including well construction information, are presented in **Attachment 1**.

Following construction, the monitoring wells were developed using surge and purge methods (bailing and pumping) and sampled using low-flow methods. The results of low-flow sampling will be presented under separate cover.

2.2.3 Geochemical Analysis of Basalt Chips

Basalt chip samples were collected during drilling from three boreholes: MW-02 at 110 ft bgs and 210 ft bgs; MW-03 at 189 ft bgs; and MW-06 at 235 ft bgs. and analyzed for geochemical fingerprinting using XRF. WSU compared the geochemical fingerprints obtained from the samples to a library of geochemical profiles of Columbia River Basalts (CRBs) to determine the origin formation/member. Results of the geochemical analysis and comparison to known CRBs are provided in **Attachment 2** and are preliminarily interpreted as follows:

Sample Name	Interpreted Formation	Interpreted Member			
YTC_MW-02_110	Saddle Mountains	Weippe-Pomona			
YTC_MW-02_210 Grande Ronde		Fields Spring (or Mount Horrible)			
YTC_MW-03_189 ⁺	Saddle Mountains	Weippe-Pomona			
YTC_MW-06_235*	Grande Ronde	Meyer Ridge (or Sentinel Bluffs)			

Notes:

⁺Likely represents material transported following deposition.

*The WSU lab analyst indicated the sample was significantly weathered and therefore the results were less definitive. The chemical signature correlates strongly with the Grande Ronde Formation (Meyer Ridge or Sentinel Bluffs Members), as well as the Saddle Mountains Formation (Buford Member), which has a wide range of geochemical signatures.

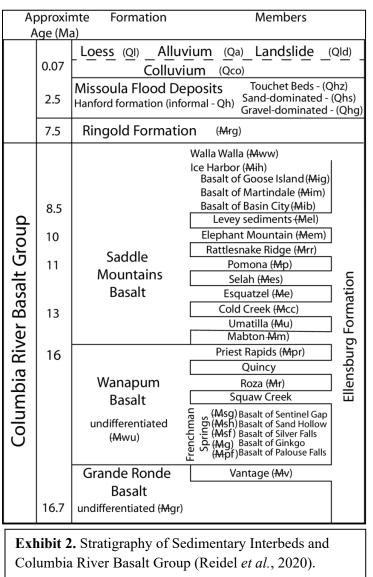
While the XRF results are informative, they also present the potential for a more complex geologic environment than previously understood. This may include larger structural offsets and/or deformation than what simple correlation of units between boreholes would suggest. Additional structural analysis is needed to interpret the significance of these results and to more accurately depict the geologic units and structural features that are influencing groundwater migration.

2.3 Boundary Well Installation

The baseline sampling event was completed during February 2023 in accordance with the Baseline Sampling Work Plan (ECC/Arcadis, 2023a). Baseline samples were analyzed in compliance with Quality Systems Manual 5.4, Table B-15, Method 537 modified, as noted in the existing QAPP Addendum for YTC (Arcadis, 2020).

A total of two co-located surface water and sediment samples, six sediment samples, and nine groundwater samples from existing monitoring wells (MMP-1, MMP-2, MTS-2, MTS-3, MTS-4, MRC-2, TVR-2, TVR-3, and TVR-6) were collected during the baseline sampling event. Baseline sampling locations are presented on **Figures 8 through 11**. Surface water was present only in two out of the eight surface water sample locations; however, sediment samples were collected from all eight locations. Monitoring well ARC-2 was added to the sampling network during the planning phase; however, this well could not be located and appears to have been abandoned or destroyed during recent construction activities nearby. Surface water and sediment sampling was completed at on-post drainages, outfalls, and surface water bodies adjacent and/or downgradient to the AOIs.

Analytical results from samples collected from the baseline sampling event are presented for groundwater in **Table 1**, for surface water in **Table 2**, and for sediment in **Table 3**. Sample locations and PFOS, PFOA, perfluorobutanesulfonic acid (PFBS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonate (PFHxS) analytical results for all media are presented on **Figures 8 through 11**. Data Validation Reports for the baseline sampling event are compiled in **Attachment 3**.


3 CONCEPTUAL SITE MODEL

The results discussed in **Section 2** were used in conjunction with historical data to refine the CSM for the YTC PFAS RI with a focus on understanding groundwater occurrence, preferential groundwater migration pathways, PFAS distribution, and identification of data gaps.

3.1 Geology and Hydrogeology

deformation of Structural the sedimentary and CRB strata, as well as variable permeability within the basalt flows and sediments, has created a complex hydrogeologic system with variable groundwater highly chemistry, hydraulic properties, depths to water and flow directions beneath YTC. Contaminant transport subsurface within the is correspondingly complex.

The youngest basalt flow identified during investigation activities is encountered near the surface on the northern portion of the cantonment area and has been interpreted as the Pomona Member Basalt (Pomona Member; Exhibit 2) based on both geochemical composition of the XRF collected from MW-02 sample (Attachment 2), and geologic maps of the region. The Pomona Member is notably absent within the southern portion of the cantonment area. Figure 4 shows the inferred horizontal extent of the Pomona Member. Geophysical logging of borings penetrating the

Pomona Member suggests that the Pomona Member at the site is generally massive, competent, and sparsely fractured, conclusions corroborated by the high resistivity and seismic shear wave velocities which correspond with the occurrence of the Pomona Member along Transect C. Groundwater within the Pomona Member occurs only within limited fractured zones, which are generally encountered at or near the base of the basalt flow (see monitoring well log YTC-MW-02 in **Attachment 1** for geophysical imaging of the basalt) and exhibit confined behavior due to

the overlying massive basalt. Each of the existing monitoring wells at YTC are screened near the base of the Pomona Member, with the possible exception of the monitoring wells located at the Former Fire Training Pit (YTC-FTP-1, YTC-FTP-13, YTC-FTP-14, YTC-FTP-15, and YTC-FTP-16). Here, the first water encountered in the Pomona Member is significantly shallower and may or may not be hydraulically linked to the groundwater encountered in the other monitoring wells. Groundwater occurring within the Pomona Member is referred to as "perched water" in previous investigation reports (e.g., Final Groundwater Monitoring Report: Fire Training Pit and Tracked Vehicle Repair/Old Mobilization and Training Equipment Site [Tetra Tech, 2017]), has limited production potential, and is not known to be used as a potable water source near YTC. The flow direction of perched groundwater within the Pomona Member is generally to the west and southwest, and off-post toward the Yakima River (Tetra Tech, 2017).

A sedimentary interbed of the Ellensburg Fm underlies the Pomona Member on the northern portion of the cantonment area and is the shallowest bedrock unit in the southern portion of the cantonment area. The Ellensburg Fm sediments observed along all transects primarily consist of low permeability clays and claystone, with zones of poorly sorted sands, gravels, and sandstones present in some areas. The sediments are generally poorly consolidated, as evidenced by recurring borehole collapse during air-rotary drilling. Groundwater occurs within permeable alluvial sands and gravels within the Ellensburg Fm and is encountered under both unconfined and confined conditions, depending on the permeability of overlying strata. Thick sequences of sandstone are present along Transects A and B (anomaly A5 on **Figure 5** and anomalies B1 and B6 shown on **Figure 6**). Additional water-bearing basal sands/gravels are encountered just above the surface of the underlying basalt. The sandstones within the Ellensburg Fm are utilized by many private water supply wells located downgradient of YTC. Groundwater flow direction within the sandstones of the Ellensburg is unknown; however, it is expected to mirror groundwater flow within the Pomona Basalt (to the west and southwest, and off-post toward the Yakima River).

The deepest lithology encountered during investigation activities at YTC is a basalt unit underlying the Ellensburg Fm. This basalt unit was observed in borings completed for YTC-MW-02, YTC-MW-03, YTC-MW-05, and YTC-MW-06 (**Attachment 2**) and based on correlation with the geophysical profiles (**Figures 5 through 7**), is present across the YTC cantonment area. Geochemical profiles of samples collected from the top of the lower basalt at YTC-MW-02 and YTC-MW-06 (**Attachment 2**) correspond most closely with basalts of the Grande Ronde Fm; however, the samples from YTC-MW-06 exhibited significant weathering, which diminished the confidence of the result. Additionally, a rock chip sample collected from the top surface of the lower basalt at YTC-MW-03 (**Attachment 2**) was a geochemical match for the Pomona Member of the Saddle Mountain Fm, which suggests that the chip sample submitted for analysis may represent transported material rather than autogenetic basalt. Geophysical profiles of the surface of the surface of significant vertical displacement along suspected faults, as well as a roughly east-west trending syncline shown in plan view on **Figure 4**, and in cross-section on **Figure 6** (between anomalies B6 and B8). The upper contact zone of the lower basalt is heavily

vesiculated and weathered. A silty material present immediately above the lower basalt across the cantonment area exhibits a significant natural gamma response and is consistent with a felsic volcanic ash deposit. Several private water supply wells located near YTC are completed in the lower basalt, although data on construction and lithology are not available for the majority of the wells. The nature of the water-bearing zones in the lower basalt at and near YTC is not well documented or characterized. Groundwater within the basalt is likely present within the weathered and fractured contact zones and sedimentary interbeds.

A high-yield regional basalt aquifer underlies the cantonment area, which serves as the primary drinking water supply for YTC, as well as the Pomona Artesian Irrigation Company water system, which provides drinking water to approximately 60 homes and businesses near the Installation. These water supply wells are screened at depths greater than 350 feet bgs. Groundwater in this regional aquifer occurs in basalt fractures and intercalated sediments. Regional groundwater generally flows west toward the Yakima River, with a more northwesterly flow component closer to the river (Arcadis, 2021). The Pomona well operated by YTC and the Pomona Artesian Irrigation Company well are located within the YTC cantonment area and operate under artesian conditions. The Pomona well is completed in the Wanapum and/or Grande Ronde Fm, with open borehole completion between depths of approximately 353 and 407 feet bgs. Historical surveys indicate that groundwater enters the Pomona well at approximately 401 feet bgs, along a sedimentary interbed or fracture zone (Tetra Tech, 2017). This flow system is presumably recharged from an area that is considerably higher in elevation to the east (up slope) and under confined pressure beneath less permeable basalt or fine-grained sediment (USACE, 2012). The upward hydraulic gradients encountered at YTC, in addition to the overlying low permeability materials that contribute to the observed artesian conditions, have thus far prevented the downward migration of contaminants from shallower aquifers.

3.2 PFAS Areas of Interest

A discussion of PFAS source areas, summary of PFAS concentrations in soil, sediment, surface water, and groundwater, interpreted relevant migration pathways and the current understanding of the relationship between source area and downgradient groundwater, is included below.

Former Fire Training Pit (AOI 1) and Bird Bath Wash Rack (AOI 2)

The Former Fire Training Pit and the Bird Bath Wash Rack are directly adjacent and located in the northeast portion of the cantonment area (**Figure 2**). Groundwater samples collected from shallow bedrock wells in this area during the SI contained PFOS, PFOA, PFBS, PFHxS and PFNA at concentrations exceeding the risk screening levels (RSLs) (Office of the Assistant Secretary of Defense [OSD], 2022). The highest concentrations of each PFAS constituent were identified in groundwater collected from monitoring well YTC-FTP-1 positoned in the center of the Former Fire Training Pit: PFOS at 45,000 ng/L; PFOA at 5,200 ng/L; PFBS at 5,900 ng/L;PFHxS at 23,000 ng/L; and PFNA at 75 ng/L. Soil was not sampled at the Former Fire Training Pit or the

Bird Bath Wash Rack because the ground has been significantly reworked during previous Installation Restoration Program and/or construction activities. Two baseline sediment samples collected in the irrigation canal downgradient of the AOIs (Figure 8) were reported as non-detect for PFAS, which suggests that PFAS impacted groundwater is likely not discharging to the canal. Groundwater samples from monitoring wells MTS-2, -3, and -4 (considered to be downgradient of the AOIs based on perched groundwater flow directions) exhibited detections of PFAS at concentrations several orders of magnitude below the concentrations indentified at the AOIs (Figure 8). Monitoring well MRC-2, located at the western Installation boundary is considered downgradient of the AOIs from a regional groundwater flow perspective, and contained PFOS, PFOA, and PFHxS at concentrations of 1,100 ng/L, 51 ng/L, and 860 ng/L respectively. Groundwater sampled at the AOI 1 originated within vesiculated basalt at a significantly higher elevation (approximately 1,440 feet above mean sea level [msl]) than the screened intervals of downgradient monitoring wells sampled during the baseline event (approximately 1,190 to 1,250 feet msl). Wells MTS-2, -3, -4, and MRC-2 are each screened in fractured basalt at or near the base of the Pomona Member. The potential for hydraulic communication between these shallow and deep flow zones is considered a data gap.

AFFF Storage Area (Building 821) (AOI 3)

Building 821 is located north of Firing Center Road (Figure 2). SI soil samples from Building 821 contained PFAS at concentrations below the OSD 2022 RSL. However, groundwater in sidegradient/downgradient monitoring wells TVR-5 and 815-2 exhibited PFOS concentrations of 180 ng/L and 260 ng/L respectively, exceeding the OSD 2022 RSL. In addition, groundwater samples collected from three existing upgradient and side-gradient monitoring wells during the baseline event contained PFAS exceeding the OSD 2022 RSL (Figure 9). AOI 1 is located upgradient of Building 821. Baseline groundwater sampling results suggest that PFAS observed in groundwater around Building 821 may be associated with AOI 3. One baseline surface water sample (SW-04) collected at the drainage ditch along the north side of Firing Center Road (which bounds AOI 3 to the south) contained PFOS, PFOA, PFBS, PFNA, and PFHxS at concentrations exceeding the OSD 2022 RSLs (Figure 10). This location receives surface runoff from both Building 821 and the Refractometer Solutions Test Area, and it is unclear from which AOI, if not both, the PFAS in the drainage ditch originates. Additionally, the surface water sample was collected from standing water in a channel depression, not actively flowing surface water, and as such, may not be representative of surface water discharge. The potential for ongoing discharges through this pathway is being evaluated.

Refractometer Solutions Test Area (AOI 4), Fire Station 29 (Building 346, AOI 5), and AFFF Storage Area (Building 321, AOI 6)

The Refractometer Solutions Test Area, Building 346, and Building 321 are located on the south side of Firing Center Road (**Figure 2**). Two soil samples were from this area during the SI, and

two existing monitoring wells (MMP-1 and MMP-2) screened at the lower interface of the Pomona Member were sampled, all of which contained PFOS concentrations exceeding applicable OSD 2022 RSL. In addition, PFOA, PFNA, and PFHxS concentrations exceeded the OSD 2022 RSL in the two groundwater samples. MMP-1 and MMP-2 were resampled during the baseline event and exhibit similar results to the SI samples (**Figure 10**). Sediment collected from the drainage ditch immediately north of the refractometer testing area during the SI contained PFOS at a concentration of 0.10 milligrams per kilogram (mg/kg), which exceeds the soil OSD 2022 RSL. PFOS detected in baseline sediment sample SED-05 collected approximately 250 feet downstream of the SI sample location was below the soil OSD 2022 RSL (**Figure 10**). The detections in sediment indicate that overland transport of PFAS from the AOIs to the drainage ditches has occurred. The potential for ongoing discharges through this pathway is being evaluated.

Mettie Airstrip (AOI 7) (formerly Selah Airstrip)

The Mettie Airstrip AOI is located approximately 6 miles northeast of the main cantonment area (see inset on **Figure 11**). Due to the distance between the cantonment AOIs and the Mettie Airstrip, in conjunction with the complex regional geology, the causal correlation of PFAS in the subsurface between these areas is unlikely. A groundwater sample collected in 2019 from the Airstrip supply well (screened from approximately 73 to 91 feet bgs) contained PFOA at a concentration of 100 ng/L (Arcadis, 2021). Soil samples collected from within the limits of the former crash truck parking area (a suspected aqueous film-forming foam [AFFF] release area) associated with the AOI, contained PFOS concentrations exceeding the OSD 2022 RSL at a maximum detection of 0.12 mg/kg. Local geologic and hydrogeologic conditions are poorly understood due to a lack of subsurface data at and near the Mettie Airstrip, and it is unclear if the supply well is positioned downgradient or side-gradient of the former crash truck parking area. PFAS was not detected in the surface water sample collected to evaluate potential PFAS impacts in groundwater discharging to Selah Creek. Sediment samples collected from a dry creekbed both upgradient and downgradient of Mettie Airstrip contained PFOS below the OSD 2022 RSL (**Figure 11**).

3.3 Contaminant Fate and Transport Pathways

PFAS impacts have been identified in soil, sediment, and groundwater associated with the AOIs and the potential source areas described above. The following interpretation of contaminant transport pathways provide a framework for understanding the distribution of PFAS the environment at YTC. Multi-media sample sets collected to date provide a basis for adaptive characterization activities to be completed as part of the PFAS RI.

Contaminant transport pathways are heavily influenced by the complex geologic environment described in **Section 3.1**. Primary migration pathways identified at YTC include:

- Leaching to groundwater from PFAS impacted soils at the source areas based on PFAS concentrations identified in soil samples.
- Storm and surface water drainages that receive direct runoff from several of the AOIs, including the Refractometer Solutions Test Area, Fire Station 29 (Building 346), AFFF Storage Area (Building 321), and AFFF Storage Area (Building 821). PFAS detections in surface water and sediment suggest that drainage ditches within the cantonment area have historically received and transported runoff containing AFFF. Additional surface water drainage channels located near Mettie Airstrip contained sediment impacted with PFOS and may receive intermittent seepage of PFAS impacted groundwater from the airstrip.
- Lateral groundwater migration occurs within vesiculated and/or fractured upper and lower contacts of the Pomona Member. Based on the massive nature of the basalt units observed during drilling, vertical migration within the Pomona Member is likely limited to areas of faulting or, to a limited extent, fractures. Groundwater that occurs along the upper surface of basalt flows may be limited to areas of higher elevation.
- The sandstones encountered within of the Ellensburg Fm (anomaly A5 on Figure 5 and anomaly B1 on Figure 6) likely serve as preferential pathways for lateral migration, as well as a vertical pathway to the permeable sediments and vesicular basalt observed at the surface of the underlying basalt. Elevated PFAS concentrations were observed in off-post wells screened in the sandstone units. Additionally, these sandstones produced the highest yields observed during boundary well drilling.
- The contact between the Ellensburg Fm and underlying basalt consistently exhibits a thin volcanic ash lens, followed by a thin layer of coarse material (i.e., basal deposits). These basal deposits likely serve as a generally continuous zone of relatively higher permeability which could facilitate lateral migration of impacted groundwater. This migration pathway may be interrupted where the permeable strata are offset by faults.

3.4 Data Needs

The following data gaps were identified while developing the CSM and will be addressed as part of the ongoing PFAS RI at YTC:

- The lateral and vertical extents of PFAS in soil and groundwater at each AOI are currently undefined and relative PFAS contributions from individual AOIs to the entire PFAS plume are unknown. Contributions attributable to an individual source can be influenced by source mass, connections to preferential pathways, the degree of surface infiltration, and the age of each source. Further source characterization and evaluation of preferential contaminant migration pathways will be undertaken in the RI.
- Perched groundwater at the Former Fire Training Pit and Bird Bath Wash Rack contains substantial PFAS mass; however, the hydraulic connection between water-bearing zone(s)

within the up-slope basalts and the downgradient deeper water-bearing zone identified at the Installation boundary has not been determined. Migration pathways at and downgradient of the Mettie Airstrip are unknown due to a lack of subsurface data and distance from the other AOIs.

- The mechanism for vertical migration of perched groundwater to the underlying sand-rich units of the Ellensburg Fm is not completely understood. Some vertical groundwater transport may occur through fractured zones within the Pomona Member. However, the more massive sections of the Pomona Member likely enhance lateral migration along the surface of the basaltuntil it encounters the edge of the Pomona Member and infiltrates into the more permeable Ellenburg Fm. If lateral groundwater migration occurs along the surface of the Pomona Member, a refined understanding of the extent of the Pomona Member will be critical to defining the migration pathway.
- Current groundwater data sets are insufficient to adequately delineate the lateral and vertical extent of PFAS exceeding the RSLs. PFAS extent in the downgradient direction is currently based on analtyical results generated from private water supply wells. However, the absence of well construction details for the majority of off-post private wells inhibits accurate correlation between wells.
- Soil quality has not been delineated at the Refractometer Solutions Test Area, Building 321, or Selah Airstrip. Additionally, despite the significant soil reworking that occurred at the Former Fire Training Pit and Bird Bath Wash Rack, soil sampling will be required to confirm that PFAS is not present in soils above applicable RSLs.
- The irrigation canal was dry at the time of sampling; however, sediment samples collected at locations SED-01 and SED-02 were reported as non-detect for PFAS compounds (**Figure 8**). The irrigation canal is unlined and is anticipated to be a losing stream when flowing (Margaret Taaffe, pers. com., 2022). The potential for PFAS transport in the irrigation canal should be evaluated.

This page intentionally left blank.

4 REFERENCES

- Arcadis. 2019. Final Preliminary Assessment of Per-and Polyfluoroalkyl Substances. Yakima Training Center. Yakima, Washington. October.
- Arcadis. 2020. Uniform Federal Policy-Quality Assurance Project Plan Addendum. USAEC PFAS PA/SI. Yakima Training Center, WA. August.
- Arcadis. 2021. Final Preliminary Assessment and Site Inspection of Per-and Polyfluoroalkyl Substances. Yakima Training Center. Yakima, Washington. October.
- Arcadis. 2023. Preliminary Assessment/Site Inspection Addendum Off-post Private Well Investigations of Per-and Polyfluoroalkyl Substances. Yakima Training Center. Yakima, Washington. March.
- Department of Defense, Department of the Army. 2010. Fort Lewis Grow the Army Final Environmental Impact Statement: Chapter 5 Affected Environment – Yakima Training Center. July.
- ECC/Arcadis. 2023a. Final Per- and Polyfluoroalkyl Substances Remedial Investigation, Baseline Sampling Work Plan. Yakima Training Center. Yakima, Washington. January.
- ECC/Arcadis. 2023b. Final Boundary Investigation Technical Memorandum Work Plan. Yakima Training Center. Yakima, Washington. March.
- OSD. 2022. Memorandum: Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program. July.
- Reidel, S.P., Fecht, K.R., Hutter, I.L., Tolan, TL., and Chamness, M. A. 2020. The Olympic-Wallowa Lineament: A New Look at an Old Controversy. Geological Society of America Bulletin. May.
- Tetra Tech. 2017. Final Groundwater Monitoring Report: Fire Training Pit and Tracked Vehicle Repair/Old Mobilization and Training Equipment Site, Joint Base Lewis-McChord and Yakima Training Center, Yakima, Washington. June.
- USACE. 2012. Periodic Review Report, Yakima Training Center, Yakima, Washington. September.

FIGURES

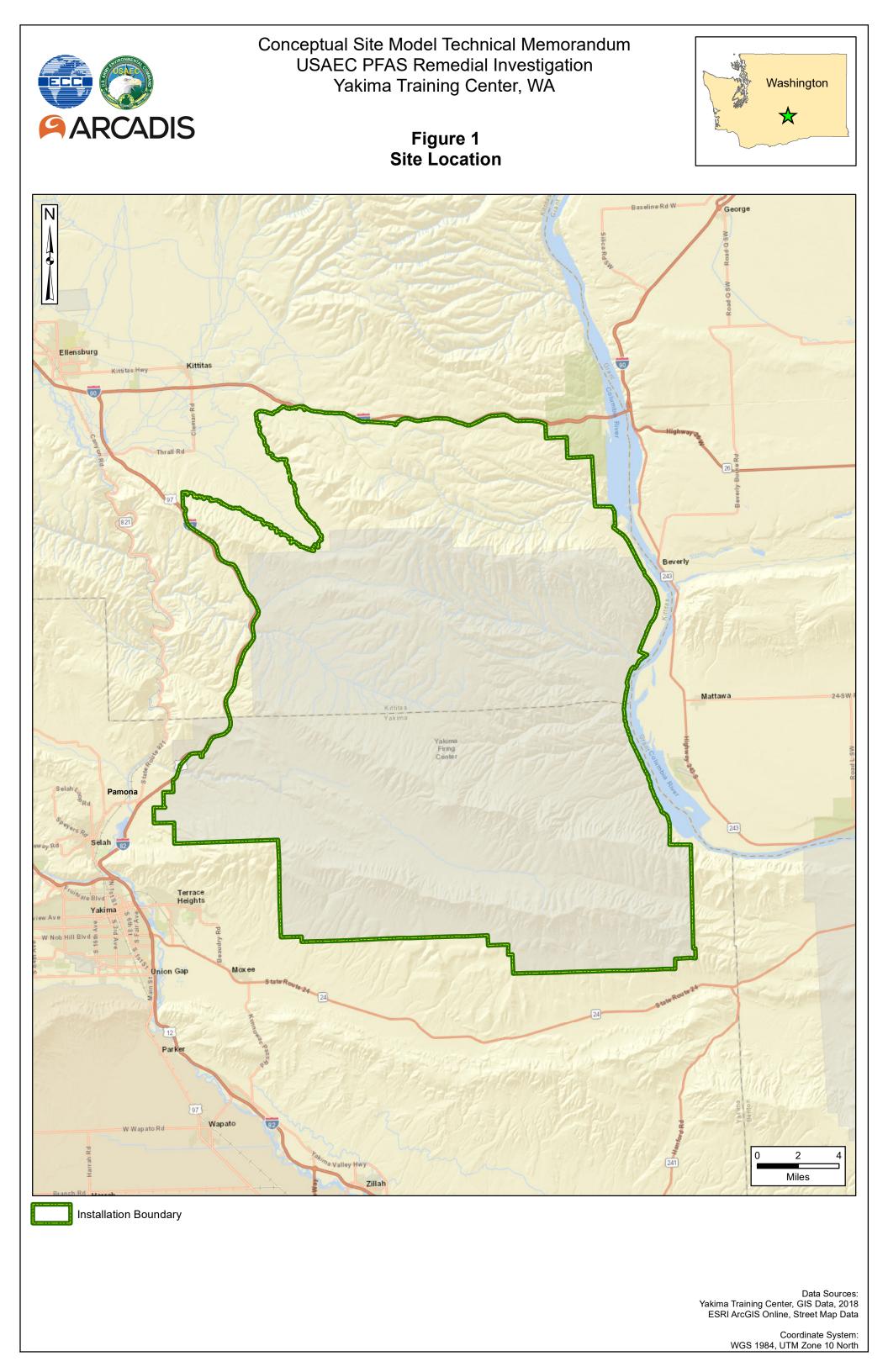
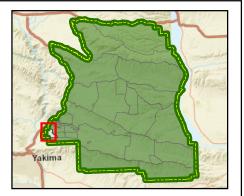



Figure 2 Site Features and AOI Locations

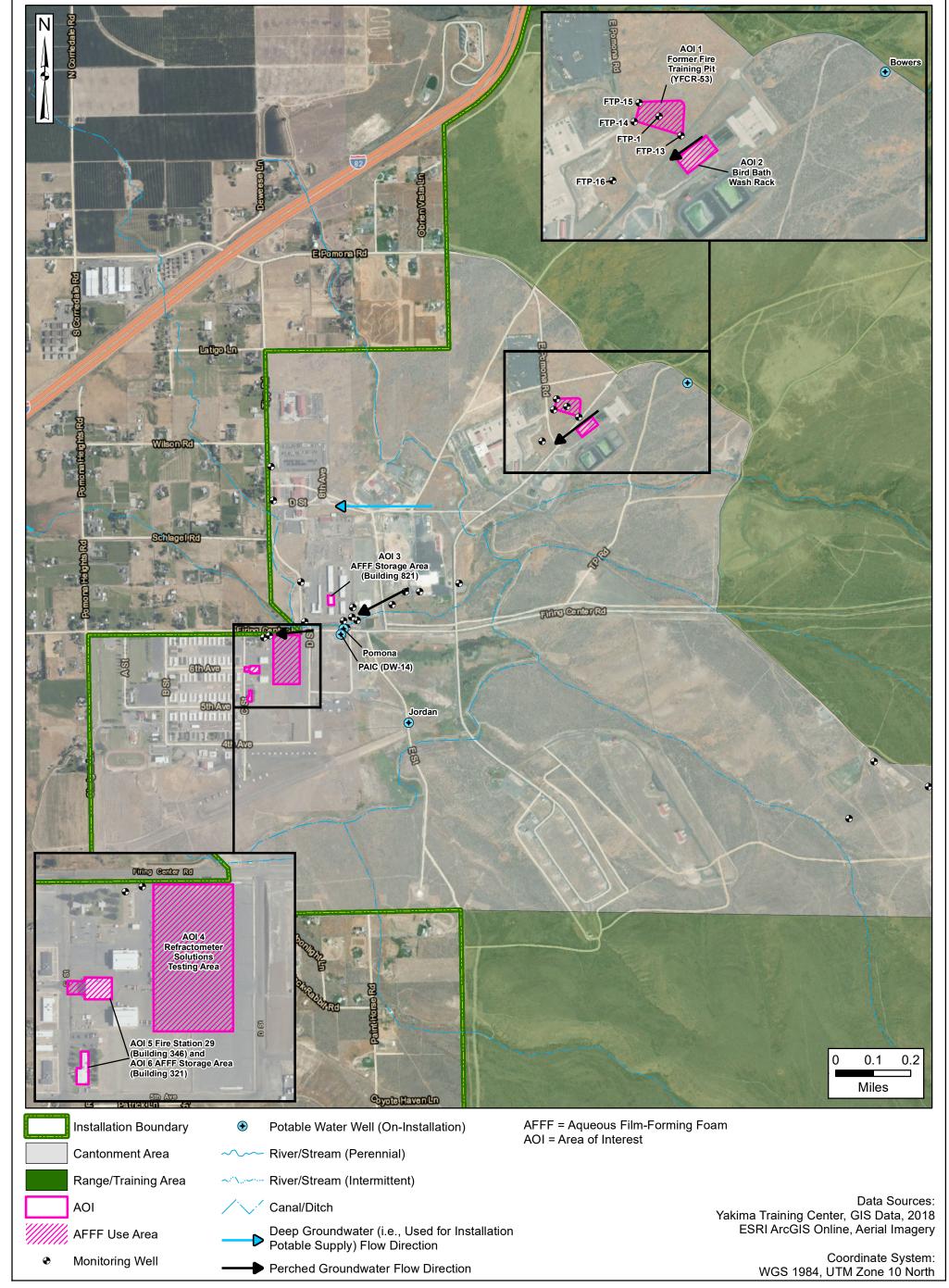
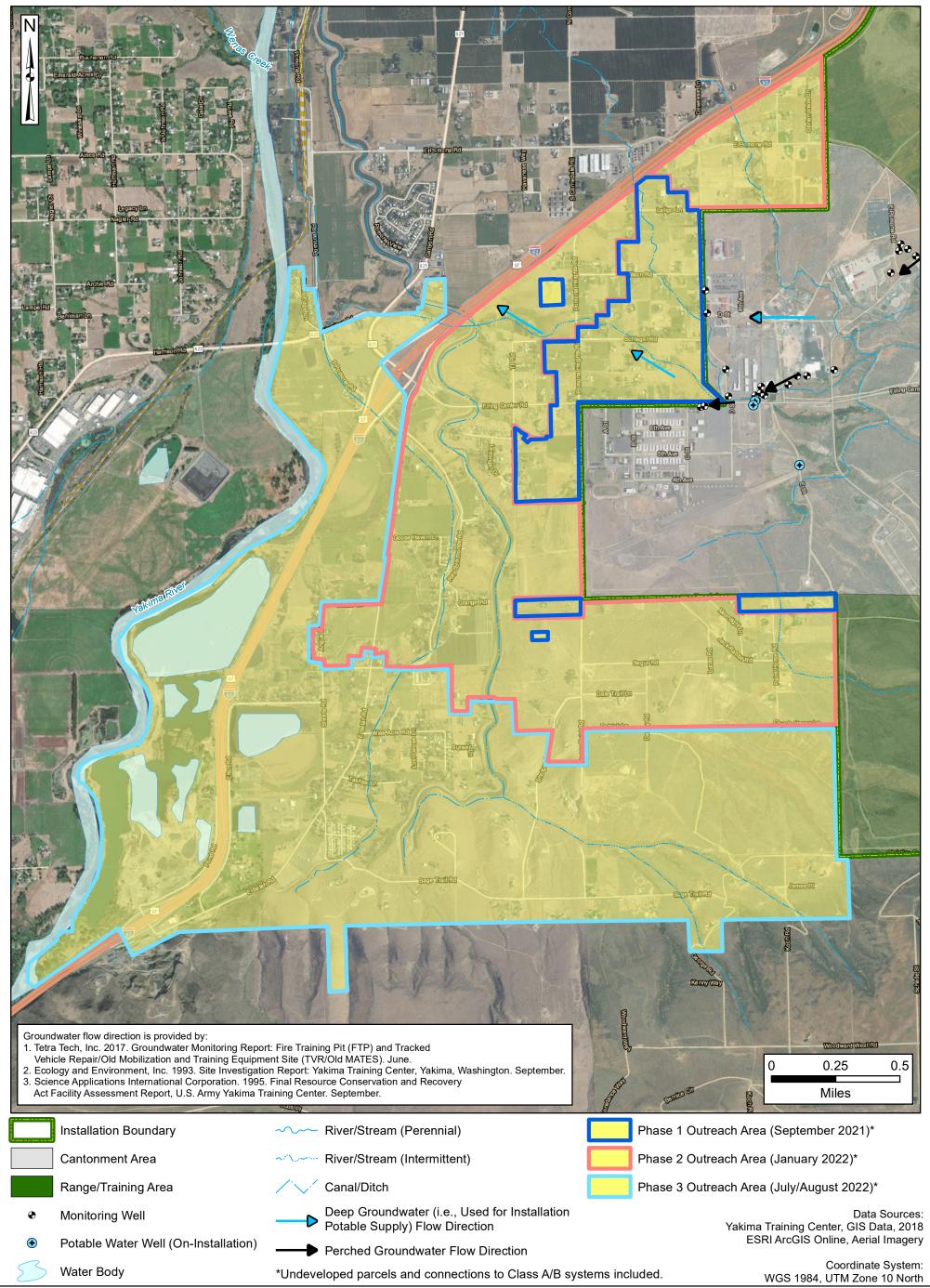
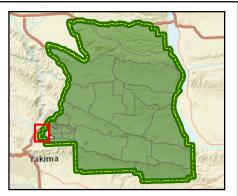
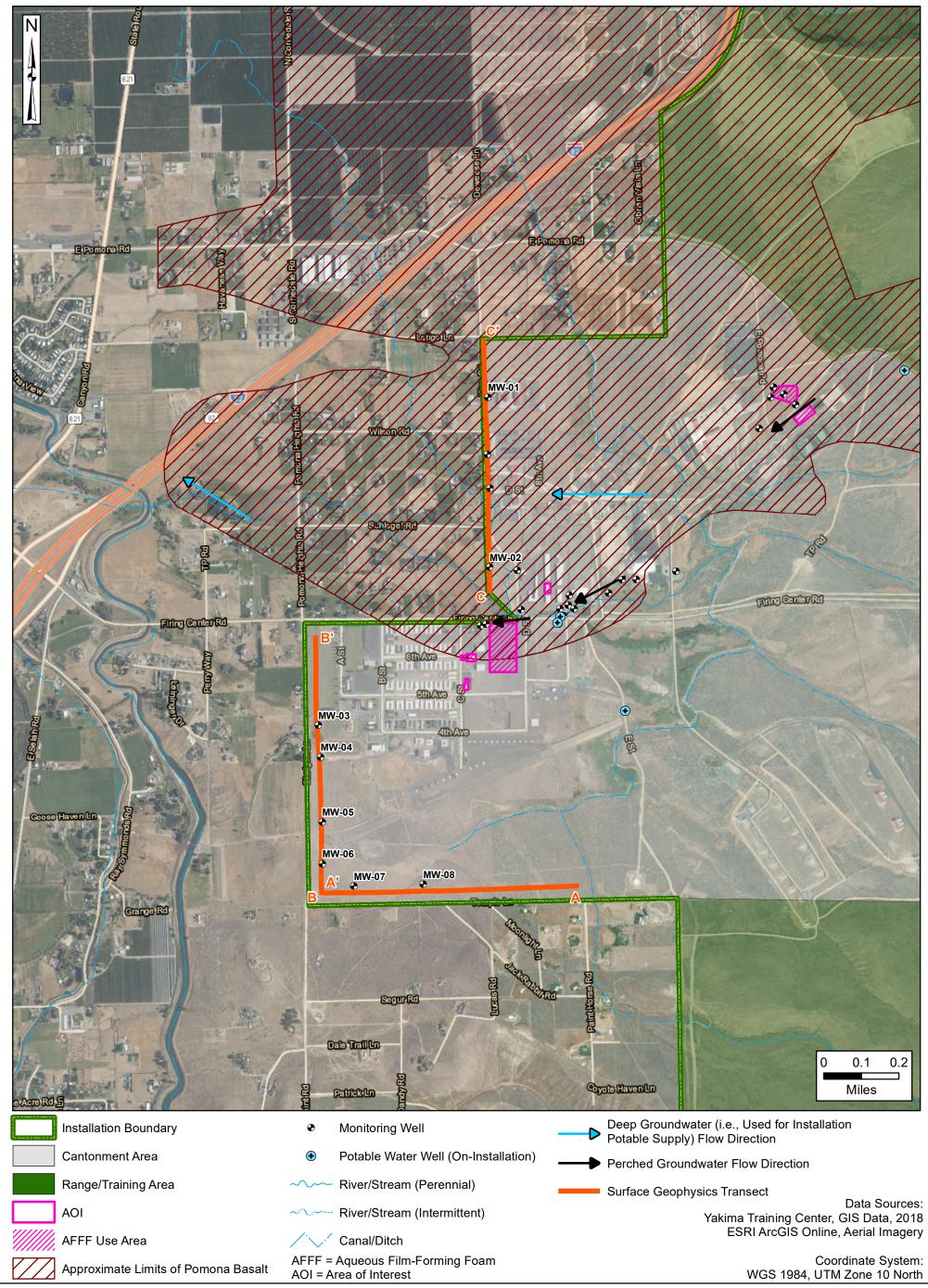
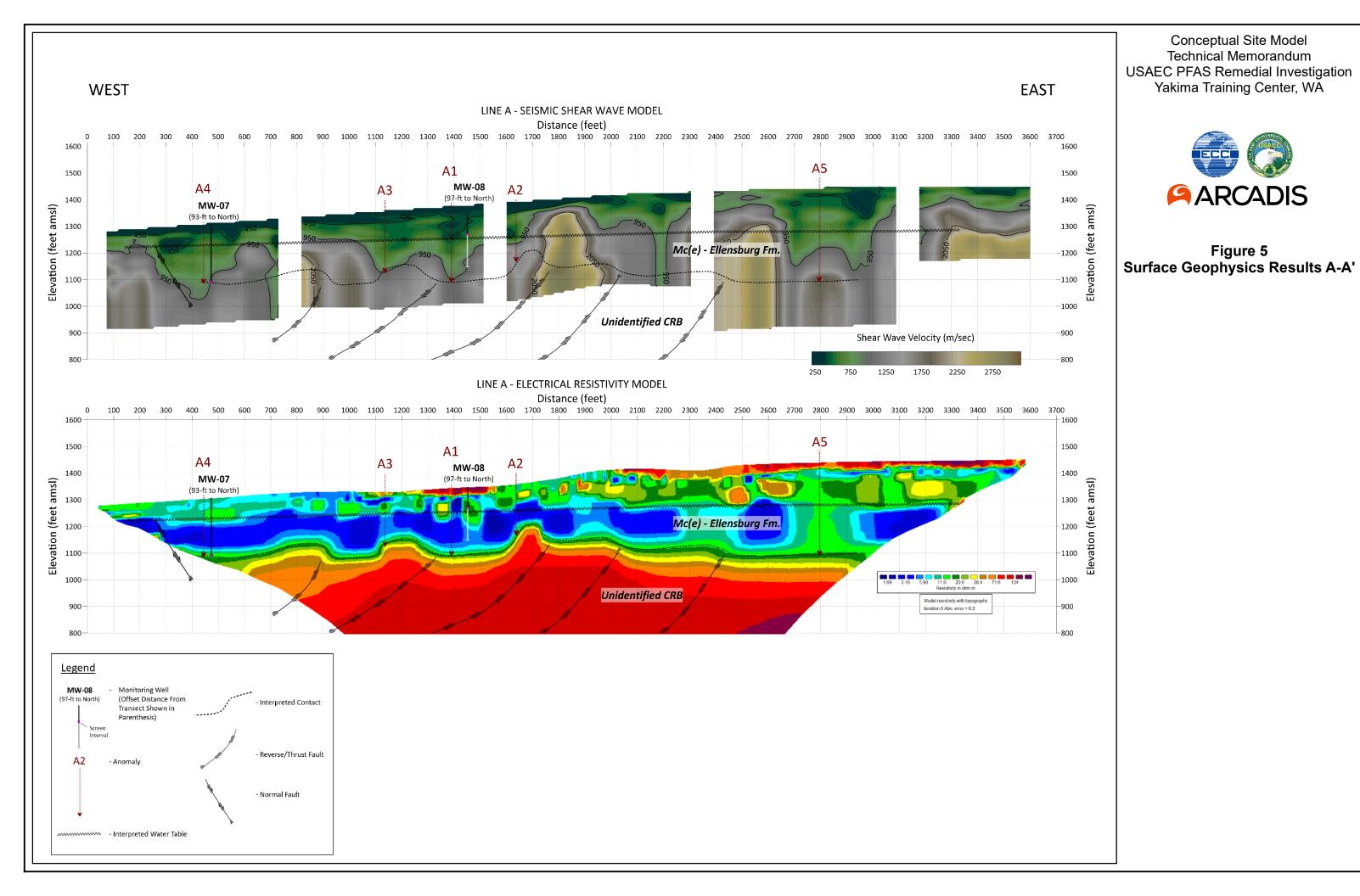
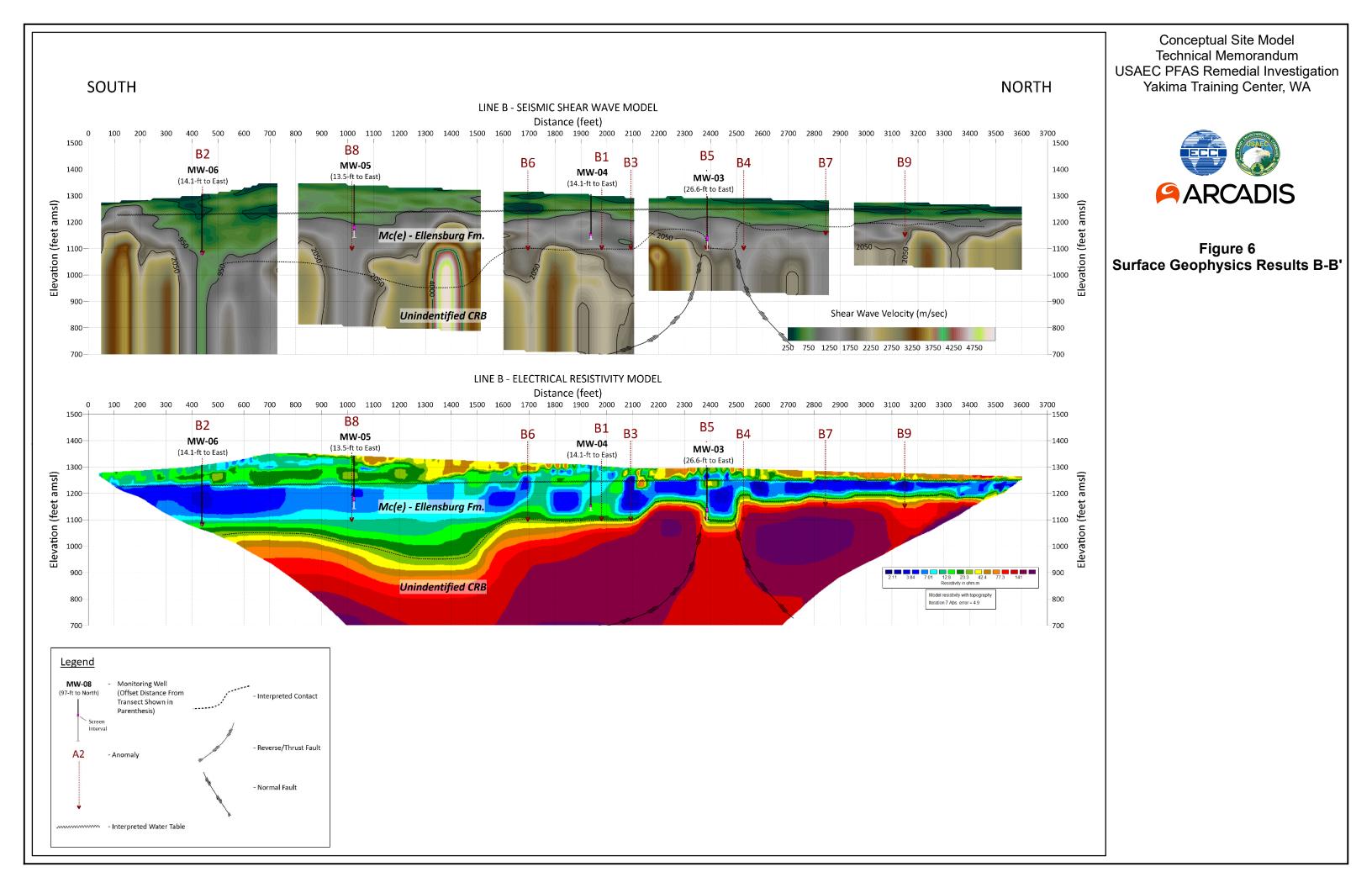
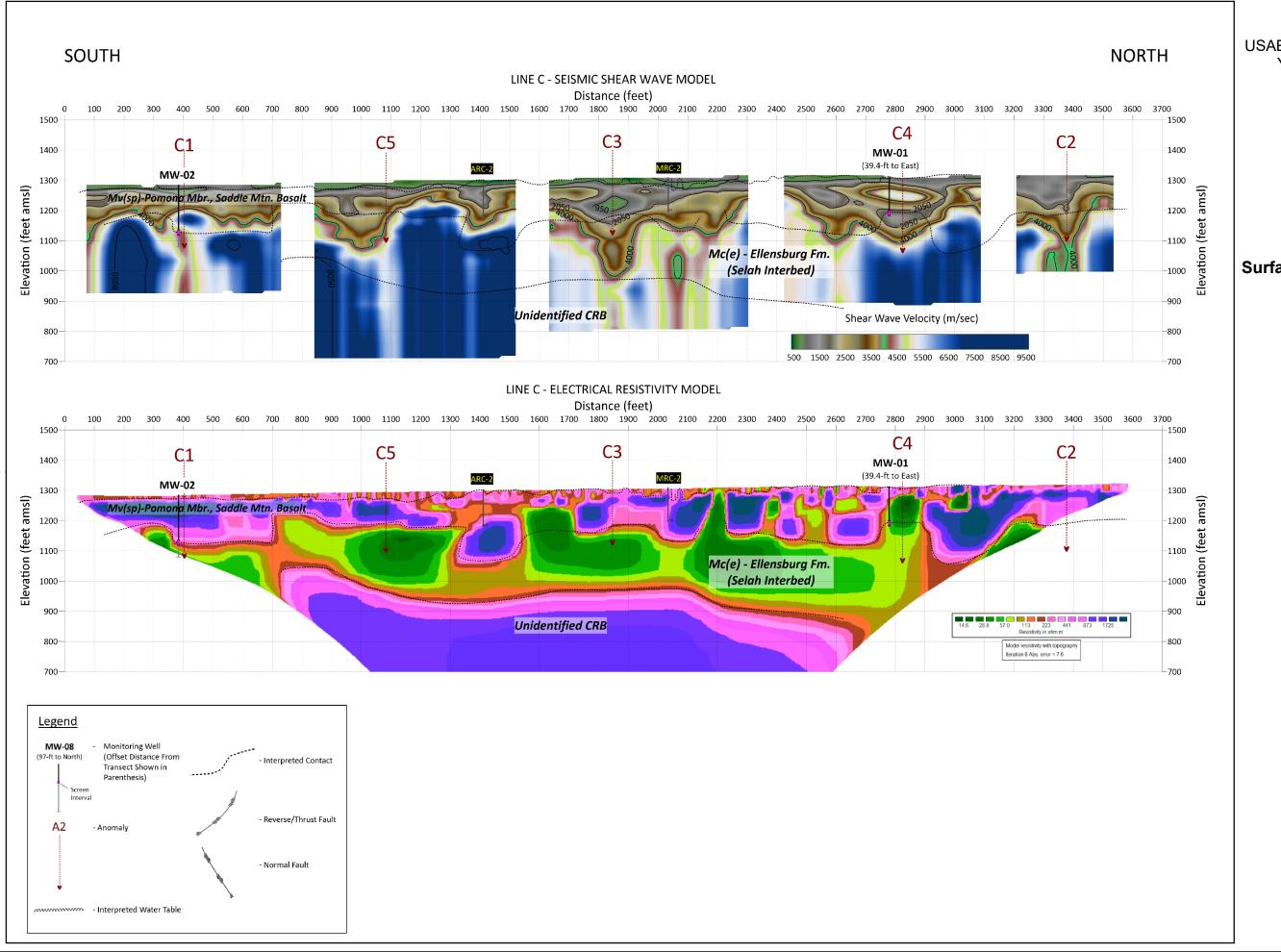
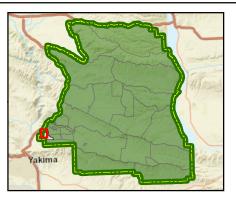


Figure 3 Off-Post Evaluation Area




Figure 4 Surface Geophysics Transect Locations



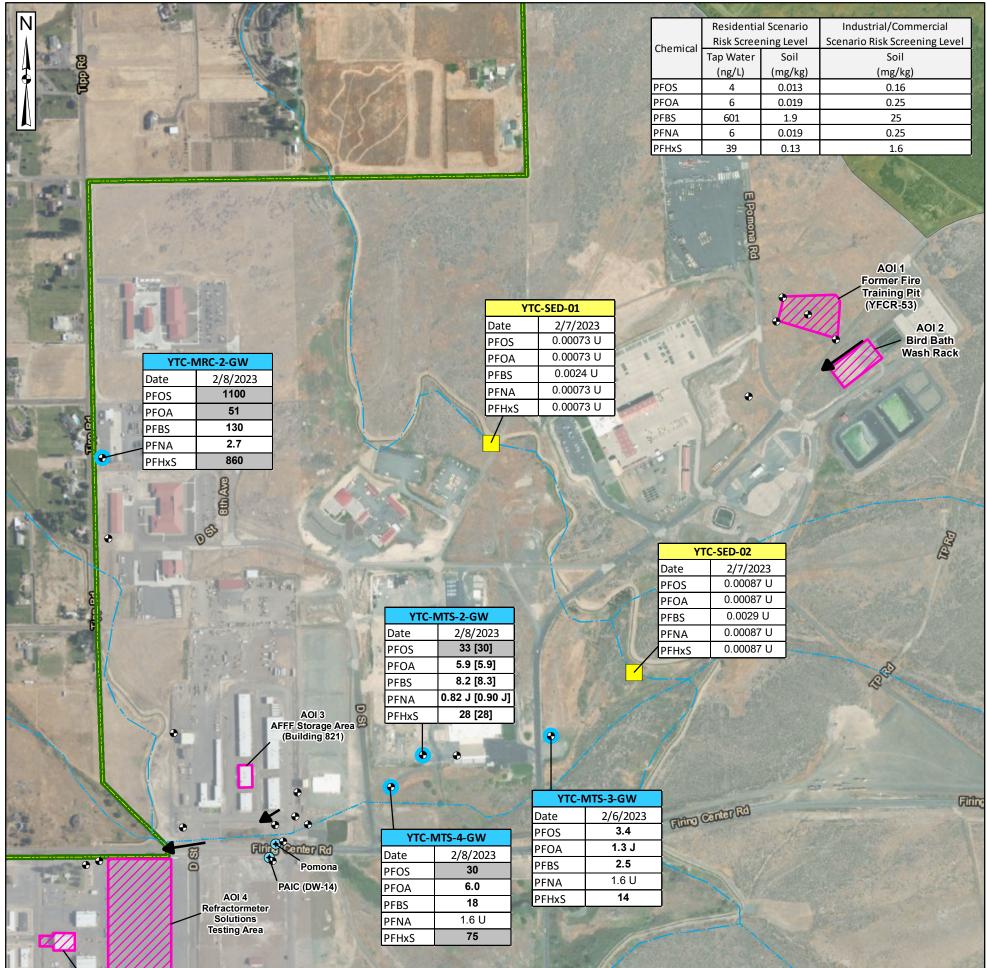
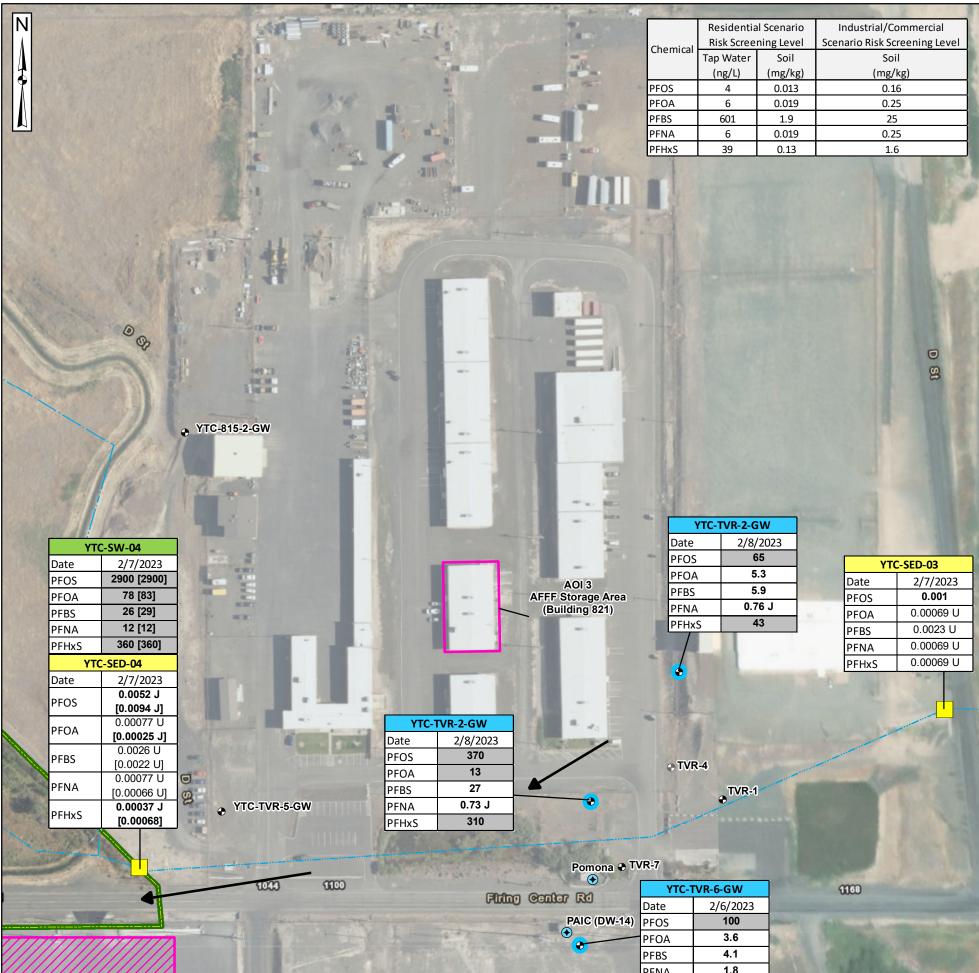
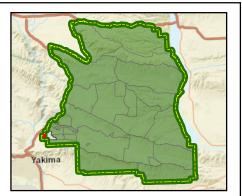


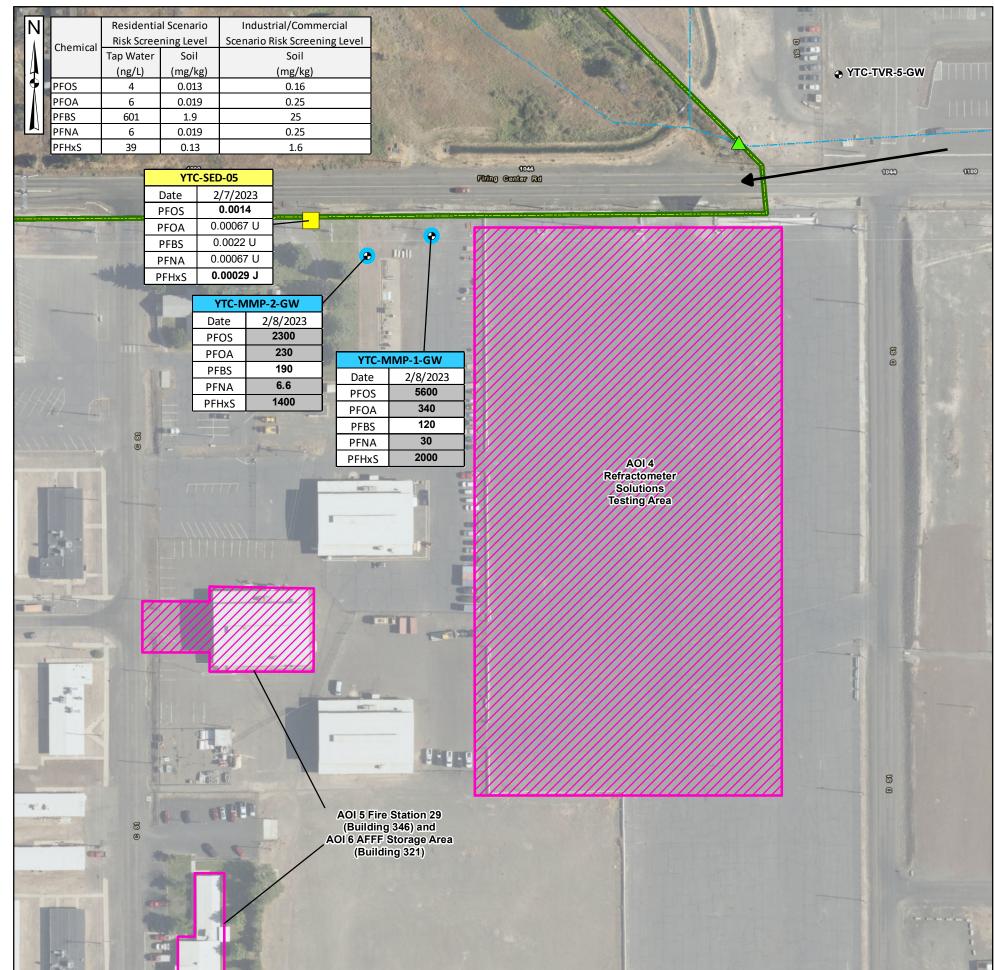
Figure 7 Surface Geophysics Results C-C'

Figure 8 Former Fire Training Pit (YFCR-53) and Bird Bath Wash Rack AOI Baseline Sampling Results

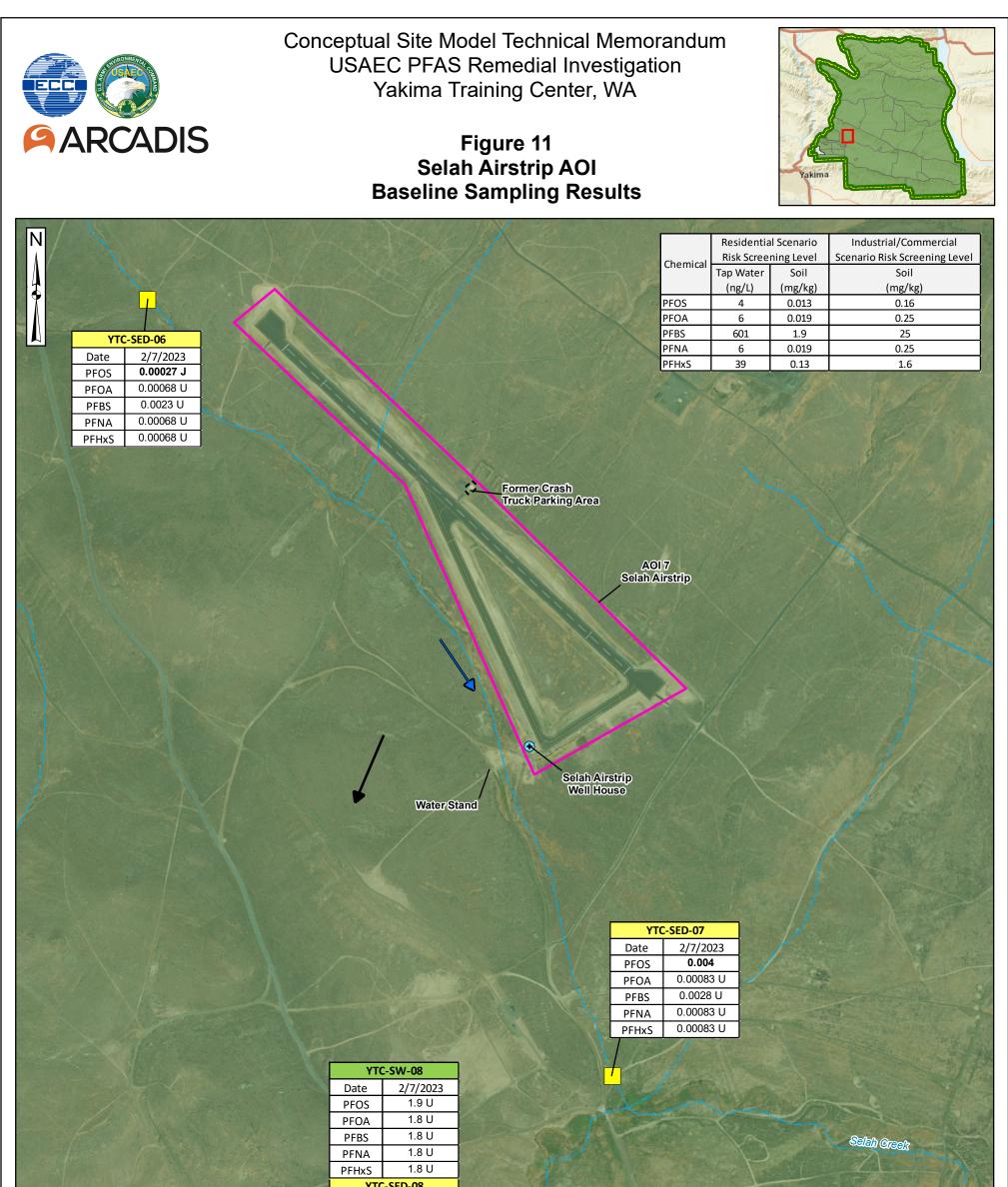


AOI 5 Fire Station 22 (Building 346) and AOI 6 AFFF Storage A (Building 321)	rea Jordan	 Notes: 1. Groundwater results are reported in nanogra 2. Sediment results are reported in milligrams 3. Results in brackets are field duplicate samp 4. Bolded values indicate detections. 5. Results that exceed Office of the Secretary or risk screening levels (OSD 2022) are highlig Qualifiers: J = The analyte was positively identified; howe an estimated concentration only. U = The analyte was analyzed for, but was not 	per kilogram (mg/kg). le results. of Defense (OSD) residential scenario hted gray.
Installation Boundary	Potable Water Well (On-Installat)	tion) Sampling Locations	
Cantonment Area	∼`\~ River/Stream (Intermittent)	Existing Monitoring Well	
Range/Training Area	∕ · ∕ · ∕ Canal/Ditch	Sediment	
AOI	> Perched Groundwater Flow Dire	ection	Data Sources:
AFFF Use Area	AFFF = Aqueous Film-Forming Foam AOI = Area of Interest	PFOA = perfluoroctanoic acid PFOS = perfluoroctane sulfonate	Yakima Training Center, GIS Data, 2018 ESRI ArcGIS Online, Aerial Imagery
Monitoring Well	OSD = Office of the Secretary of Defense PFBS = perfluorobutanesulfonic acid	PFNA = perfluorononanoic acid PFHxS = perfluorohexane sulfonate	Coordinate System: WGS 1984, UTM Zone 10 North


Figure 9 AFFF Storage Area (Building 821) AOI Baseline Sampling Results



AOI 4 Refractometer	- 199	PFIXA 1.0 PFHxS 45	CONTRACTOR OF A DESCRIPTION OF A DESCRIP			
Solutions Testing Area	8	 Notes: 1. Groundwater and surface water results are reported. 2. Sediment results are reported in milligrams per 3. Results in brackets are field duplicate sample results. 4. Bolded values indicate detections. 5. Results that exceed Office of the Secretary of Drisk screening levels (OSD 2022) are highlighted. 	kilogram (mg/kg). esults. Defense (OSD) residential scenario			
0 100 200 Feet		Qualifiers: J = The analyte was positively identified; however an estimated concentration only. U = The analyte was analyzed for, but was not def				
Installation Boundary	Potable Water Well (On-Installa	tion) Sampling Locations				
Cantonment Area	∼`\~ River/Stream (Intermittent)	Existing Monitoring Well				
Range/Training Area	∕ · ∕ · ∕ Canal/Ditch	Sediment				
AOI	> Perched Groundwater Flow Dire	ection				
AFFF Use Area	AFFF = Aqueous Film-Forming Foam	PFOA = perfluoroctanoic acid	Data Sources: Yakima Training Center, GIS Data, 2018			
 Monitoring Well 	AOI = Area of Interest OSD = Office of the Secretary of Defense	PFOS = perfluoroctane sulfonate PFNA = perfluorononanoic acid	ESRI ArcGIS Online, Aerial Imagery			
Abandoned Monitoring Well	PFBS = perfluorobutanesulfonic acid	PFHxS = perfluorohexane sulfonate	Coordinate System: WGS 1984, UTM Zone 10 North			


Figure 10 Refractometer Solutions Testing Area and Fire Station 29 (Building 346) and AFFF Storage Area (Building 321) AOI Baseline Sampling Results

0	100 200 Feet)	STD ATO	 Notes: 1. Groundwater results are reported in nanograms/liter (ng 2. Sediment results are reported in milligrams per kilogram 3. Bolded values indicate detections. 4. Results that exceed Office of the Secretary of Defense risk screening levels (OSD 2022) are highlighted gray. Qualifiers: J = The analyte was positively identified; however the asso an estimated concentration only. U = The analyte was analyzed for, but was not detected all 	n (mg/kg). (OSD) residential scenario pciated numerical value is
	Installation Boundary	~~~	River/Stream (Intermittent)	AFFF = Aqueous Film-Forming Foam AOI = Area of Interest	
	Cantonment Area	/~/	Canal/Ditch	OSD = Office of the Secretary of Defense PFBS = perfluorobutanesulfonic acid	
	Range/Training Area		Perched Groundwater Flow Direction	PFOA = perfluoroctanoic acid PFOS = perfluoroctane sulfonate	
	AOI	Samplir	ng Locations	PFNA = perfluorononanoic acid	Data Sources
	AFFF Use Area		Existing Monitoring Well	PFHxS = perfluorohexane sulfonate Ya	Data Sources: akima Training Center, GIS Data, 2018
•	Monitoring Well	$\boldsymbol{\bigtriangleup}$	Surface Water		ESRI ArcGIS Online, Aerial Imagery
			Sediment		Coordinate System: WGS 1984, UTM Zone 10 North

	YTC	C-SED-08								
	Date	2/7/2023	Notes:							
	PFOS	0.00095 U		ter results are reported in nanogr	ams/liter (ng/L).					
	PFOA	0.00095 U	2. Sediment r	esults are reported in milligrams p						
a the second	PFBS	0.0032 U	3. Bolded val	ues indicate detections.						
	PFNA	0.00095 U	Qualifiers:							
	PFHxS	0.00095 U		J = The analyte was positively identified; however the associated numerical value is						
A COLORIS	-		an estima	ted concentration only.						
and the part of th			U = The analy	te was analyzed for, but was not	detected above the limit of quantitation (LOQ).					
	Se Se	lah Spring	Groundwater	flow direction is provided by:						
0 500 1,000	\mathbf{O}				nvironmental Baseline Survey No.					
0 500 1,000					ed Aircraft System Facility, Yakima Training					
Feet			Center, Se	ah Airstrip, Yakima, Washington.	September.					
Installation Boundary	Canal/Ditch		۲	Spring						
Cantonment Area	> Perched Ground	lwater Flow Dire	ection Sampl	ing Locations						
		Leve Dive etien		Surface Water						
Range/Training Area	Surface Water F	low Direction								
AOPI	Potable Water W	/ell (On-Installa	ation)	Sediment	Data Sources:					
		,	,		Yakima Training Center, GIS Data, 2018					
Former Building	AOI = Area of Interest			luoroctanoic acid	ESRI ArcGIS Online, Aerial Imagery					
	OSD = Office of the Secre			fluoroctane sulfonate						
River/Stream (Intermittent)	PFBS = perfluorobutanesu	ulfonic acid		luorononanoic acid rfluorohexane sulfonate	Coordinate System:					
			1 1 1 XO – pe		WGS 1984, UTM Zone 10 North					

TABLES

Table 1 - Groundwater Analytical Results Conceptual Site Model Technical Memorandum Yakima Training Center Yakima, Washington

			Location	YTC-MMP-1-GW		YTC-MMP-2-G	W	YTC-MRC-2-GW			YTC-MT	S-2-GW	
Sample/Duplicate				olicate ID YTC-MMP-1-GW-020823		YTC-MMP-2-GW-020823		YTC-MRC-2-GW-020823		YTC-MTS-2-GW-02	20823	YTC-FD-01-GW-0	20823
			Sample Date	02/08/2023		02/08/2023		02/08/2023		02/08/2023		02/08/2023	
		;	Sample Type	N		N		N		N		FD	
			Matrix	Ground Water		Ground Wate		Ground Water		Ground Wate		Ground Wate	er
Analyte	CAS	OSD Tapwater	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS													
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		ng/L	2.4		0.74	J	1.6	U	1.6	U	1.6	U
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		ng/L	1300	J	630		3.7		2.4	U	2.4	U
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		ng/L	300		110		5.4		2.4	U	2.4	U
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		ng/L	2.5	U	2.6	U	2.4	U	2.4	U	2.4	U
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		ng/L	1.7	U	1.7	U	1.6	U	1.6	U	1.6	U
Perfluorobutane sulfonic acid (PFBS)	375-73-5	601	ng/L	120		190		130		8.2		8.3	
Perfluorobutanoic acid (PFBA)	375-22-4		ng/L	140		110		53		7.5		7.4	
Perfluorodecane sulfonic acid (PFDS)	335-77-3		ng/L	0.91	J	1.7	U	1.6	U	1.6	U	1.6	U
Perfluorodecanoic acid (PFDA)	335-76-2		ng/L	4.6		1.3	J	0.55	J	1.6	U	1.6	U
Perfluorododecanoic acid (PFDoA)	307-55-1		ng/L	1.7	U	1.7	U	1.6	U	1.6	U	1.6	U
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		ng/L	120		56		25		0.76	J	0.67	J
Perfluoroheptanoic acid (PFHpA)	375-85-9		ng/L	360		180		39		5.6		5.5	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	39	ng/L	2000		1400		860		28		28	
Perfluorohexanoic acid (PFHxA)	307-24-4		ng/L	520		530		220		15		15	
Perfluorononane sulfonic acid (PFNS)	68259-12-1		ng/L	1.7	U	1.7	U	2.4		1.6	U	1.6	U
Perfluorononanoic acid (PFNA)	375-95-1	6	ng/L	30		6.6		2.7		0.82	J	0.90	J
Perfluorooctane sulfonamide (PFOSA)	754-91-6		ng/L	18		11		2.9		1.6	U	1.6	U
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	4	ng/L	5600		2300		1100		33		30	
Perfluorooctanoic acid (PFOA)	335-67-1	6	ng/L	340		230		51		5.9		5.9	
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		ng/L	180		210		150		6.5		6.5	
Perfluoropentanoic acid (PFPeA)	2706-90-3		ng/L	450		360		120		13		13	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		ng/L	1.7	U	1.7	U	1.6	U	1.6	U	1.6	U
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		ng/L	1.7	U	1.7	U	1.6	U	1.6	U	1.6	U
Perfluoroundecanoic acid (PFUdA)	2058-94-8		ng/L	1.7	U	1.7	U	1.6	U	1.6	U	1.6	U

Table 1 - Groundwater Analytical Results Conceptual Site Model Technical Memorandum Yakima Training Center Yakima, Washington

			Location	YTC-MTS-3-GW		YTC-MTS-4-G	W	YTC-SOURCE-	1	YTC-TVR-2-G	N	YTC-TVR-3-G	W
		Sample	/Duplicate ID	YTC-MTS-3-GW-020	623	YTC-MTS-4-GW-0	020823	YTC-SOURCE-1-02	0723	YTC-TVR-2-GW-02	20823	YTC-TVR-3-GW-0	020723
			Sample Date	02/06/2023		02/08/2023		02/07/2023		02/08/2023		02/07/2023	
			Sample Type	N		Ν		Ν		Ν		Ν	
		ng/L 1.6			Ground Water		Ground Water		Ground Wate		Ground Wate		
Analyte	CAS	OSD Tapwater	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS		-											
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		ng/L	1.6	U	1.6	U	1.7	U	1.6	U	1.6	U
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		ng/L	2.5	U	2.4	U	2.5	U	2.4	U	2.5	U
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		ng/L	2.5	U	2.4	U	2.5	U	2.4	U	2.5	U
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		ng/L	2.5	U	2.4	U	2.5	U	2.4	U	2.5	U
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Perfluorobutane sulfonic acid (PFBS)	375-73-5	601	ng/L	2.5		18		1.6	U	5.9		27	
Perfluorobutanoic acid (PFBA)	375-22-4		ng/L	4.1	U	7.5		4.1	U	9.5		11	
Perfluorodecane sulfonic acid (PFDS)	335-77-3		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.1	J
Perfluorodecanoic acid (PFDA)	335-76-2		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Perfluorododecanoic acid (PFDoA)	307-55-1		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		ng/L	1.6	U	1.7		1.6	U	1.4	J	11	J+
Perfluoroheptanoic acid (PFHpA)	375-85-9		ng/L	0.50	J	5.6		1.6	U	4.9		8.8	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	39	ng/L	14		75		1.6	U	43		310	
Perfluorohexanoic acid (PFHxA)	307-24-4		ng/L	1.5	J	27		1.6	U	12		46	
Perfluorononane sulfonic acid (PFNS)	68259-12-1		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	0.52	J
Perfluorononanoic acid (PFNA)	375-95-1	6	ng/L	1.6	U	1.6	U	1.6	U	0.76	J	0.73	J
Perfluorooctane sulfonamide (PFOSA)	754-91-6		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	0.80	J
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	4	ng/L	3.4		30		1.7	U	65		370	
Perfluorooctanoic acid (PFOA)	335-67-1	6	ng/L	1.3	J	6.0		1.6	U	5.3		13	
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		ng/L	2.0		17		1.6	U	7.1		49	
Perfluoropentanoic acid (PFPeA)	2706-90-3		ng/L	0.99	J	12		1.6	U	10		21	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Perfluoroundecanoic acid (PFUdA)	2058-94-8		ng/L	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U

Table 1 - Groundwater Analytical Results Conceptual Site Model Technical Memorandum Yakima Training Center Yakima, Washington

			Location	YTC-TVR-6-G	W
		Sample	e/Duplicate ID	YTC-TVR-6-GW-0	20623
			Sample Date	02/06/2023	
			Sample Type	N	
			Matrix	Ground Wate	er
Analyte	CAS	OSD Tapwater	Units	Result	Qual
PFAS					
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		ng/L	1.7	U
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		ng/L	2.6	U
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		ng/L	2.5	U
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		ng/L	2.5	U
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		ng/L	1.7	U
Perfluorobutane sulfonic acid (PFBS)	375-73-5	601	ng/L	4.1	
Perfluorobutanoic acid (PFBA)	375-22-4		ng/L	4.0	J
Perfluorodecane sulfonic acid (PFDS)	335-77-3		ng/L	1.7	U
Perfluorodecanoic acid (PFDA)	335-76-2		ng/L	2.8	
Perfluorododecanoic acid (PFDoA)	307-55-1		ng/L	1.7	U
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		ng/L	1.4	J
Perfluoroheptanoic acid (PFHpA)	375-85-9		ng/L	3.2	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	39	ng/L	45	
Perfluorohexanoic acid (PFHxA)	307-24-4		ng/L	8.5	
Perfluorononane sulfonic acid (PFNS)	68259-12-1		ng/L	1.7	U
Perfluorononanoic acid (PFNA)	375-95-1	6	ng/L	1.8	
Perfluorooctane sulfonamide (PFOSA)	754-91-6		ng/L	1.7	UJ
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	4	ng/L	100	
Perfluorooctanoic acid (PFOA)	335-67-1	6	ng/L	3.6	
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		ng/L	7.2	
Perfluoropentanoic acid (PFPeA)	2706-90-3		ng/L	7.0	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		ng/L	1.7	U
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		ng/L	1.7	U
Perfluoroundecanoic acid (PFUdA)	2058-94-8		ng/L	1.7	U

Page 3 of 4

Table 1 - Groundwater Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

Notes:

1. **Bolded** values indicate the result was detected greater than the limit of detection.

2. Grey shaded values indicate the result was detected greater than the 2022 Office of the Secretary of Defense (OSD) risk screening levels, (OSD. 2022. Memorandum: Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program. July).

Acronyms/Abbreviations:

-- = not applicable % = percent AOPI = Area of Potential Interest CAS = Chemical Abstracts Service number FD = field duplicate sample ID = identification N = primary sample ng/L = nanograms per liter (parts per trillion) PFAS = per- and polyfluoroalkyl substances

Qualifier	Description
J	The analyte was positively identified; however the associated numerical value is an estimated concentration only.
J+	The result is an estimated quantity; the result may be biased high.
U	The analyte was analyzed for but the result was not detected above thelimit of quantitation (LOQ).
UJ	The analyte was analyzed for but was not detected. The reported limit of quantitation (LOQ) is approximate and may be inaccurate or
	imprecise.

Page 4 of 4

Table 2 - Surface Water Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

			Location		YTC-S	W-04		
		Sample/	Duplicate ID	YTC-SW-04-02072	3	YTC-FD-01-SW-02	0723	
			Sample Date	02/07/2023		02/07/2023		1
		ę	Sample Type	N		FD		1
			Matrix	Surface Water		Surface Water	•	1
Analyte	CAS	OSD Tapwater	Units	Result	Qual	Result	Qual	1
PFAS								
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		ng/L	0.60	J	0.61	J	
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		ng/L	180		200		
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		ng/L	81		80		
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		ng/L	2.7	U	2.6	U	
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		ng/L	1.8	U	1.7	U	
Perfluorobutane sulfonic acid (PFBS)	375-73-5	601	ng/L	26		29		
Perfluorobutanoic acid (PFBA)	375-22-4		ng/L	22		21		
Perfluorodecane sulfonic acid (PFDS)	335-77-3		ng/L	2.5		2.4		
Perfluorodecanoic acid (PFDA)	335-76-2		ng/L	11		11		
Perfluorododecanoic acid (PFDoA)	307-55-1		ng/L	1.9	J	1.9		
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		ng/L	41		43		
Perfluoroheptanoic acid (PFHpA)	375-85-9		ng/L	59		59		
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	39	ng/L	360		360		
Perfluorohexanoic acid (PFHxA)	307-24-4		ng/L	160		170		
Perfluorononane sulfonic acid (PFNS)	68259-12-1		ng/L	3.8		3.4		
Perfluorononanoic acid (PFNA)	375-95-1	6	ng/L	12		12		
Perfluorooctane sulfonamide (PFOSA)	754-91-6		ng/L	11	J+	12	J+	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	4	ng/L	2900		2900		
Perfluorooctanoic acid (PFOA)	335-67-1	6	ng/L	78		83		
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		ng/L	39		41		
Perfluoropentanoic acid (PFPeA)	2706-90-3		ng/L	79		78		
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		ng/L	1.8	U	1.7	U	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		ng/L	1.8	U	1.7	U	
Perfluoroundecanoic acid (PFUdA)	2058-94-8		ng/L	2.3		2.4		[

YTC-SW-08 YTC-SW-08-020723	
02/07/2023	
Ν	
Surface Water	
Result	Qual
1.8	U
2.7	U
2.7	U
2.7	U
1.8	U
1.8	U
4.5	U
1.8	U
1.8	U
1.8	UX
1.8	U
1.9	U
1.8	UX
1.8	UX
1.8	U

Table 2 - Surface Water Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

Notes:

1. **Bolded** values indicate the result was detected greater than the limit of detection.

2. Grey shaded values indicate the result was detected greater than the 2022 Office of the Secretary of Defense (OSD) risk screening levels, (OSD. 2022. Memorandum: Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program. July).

Acronyms/Abbreviations:

-- = not applicable % = percent CAS = Chemical Abstracts Service number FD = field duplicate sample ID = identification N = primary sample ng/L = nanograms per liter (parts per trillion) PFAS = per- and polyfluoroalkyl substances

Qualifier	Description
J	The analyte was positively identified; however the associated numerical value is an estimated concentration only.
J+	The result is an estimated quantity; the result may be biased high.
U	The analyte was analyzed for but the result was not detected above thelimit of quantitation (LOQ).
UX	Non-detect sample results were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided.

Page 2 of 2

Table 3 - Sediment Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

			Location	YTC-SED-01		YTC-SED-02		YTC-SED-03			YTC-SI	ED-04	
		Sample/	Duplicate ID	YTC-SED-01-020	723	YTC-SED-02-020	723	YTC-SED-03-020	723	YTC-SED-04-0	20723	YTC-FD-01-SED-0	020723
		Ş	Sample Date	02/07/2023		02/07/2023		02/07/2023		02/07/2023	3	02/07/2023	
		S	ample Type	N		N		Ν		N		FD	
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sediment		Sediment							
Analyte	CAS	OSD Risk Screening Level	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS													
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		mg/kg	0.0036	U	0.0044	U	0.0034	U	0.0038	U	0.0033	U
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
Perfluorobutane sulfonic acid (PFBS)	375-73-5	1.9 (R) 25 (I/C)	mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
Perfluorobutanoic acid (PFBA)	375-22-4		mg/kg	0.0024	U	0.0029	U	0.0023	U	0.0026	U	0.0022	U
Perfluorodecane sulfonic acid (PFDS)	335-77-3		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorodecanoic acid (PFDA)	335-76-2		mg/kg	0.00073	U	0.00087	U	0.00024	J	0.00077	U	0.00025	J
Perfluorododecanoic acid (PFDoA)	307-55-1		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00039	J
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluoroheptanoic acid (PFHpA)	375-85-9		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.13 (R) 1.6 (I/C)	mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00037	J	0.00068	
Perfluorohexanoic acid (PFHxA)	307-24-4		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00026	J	0.00047	J
Perfluorononane sulfonic acid (PFNS)	68259-12-1		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorononanoic acid (PFNA)	375-95-1	0.019 (R) 0.25 (I/C)	mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorooctane sulfonamide (PFOSA)	754-91-6		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.013 (R) 0.16 (I/C)	mg/kg	0.00073	U	0.00087	U	0.001		0.0052	J	0.0094	J
Perfluorooctanoic acid (PFOA)	335-67-1	0.019 (R) 0.25 (I/C)	mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00025	J
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		mg/kg	0.0036	U	0.0044	U	0.0034	U	0.0038	U	0.0033	U
Perfluoropentanoic acid (PFPeA)	2706-90-3		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00059	J	0.0011	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U
Perfluoroundecanoic acid (PFUdA)	2058-94-8		mg/kg	0.00073	U	0.00087	U	0.00069	U	0.00077	U	0.00066	U

Table 3 - Sediment Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

			Location	YTC-SED-05		YTC-SED-06		YTC-SED-07		YTC-SED-08	8
		Sample/	Duplicate ID	YTC-SED-05-0207	/23	YTC-SED-06-0207	23	YTC-SED-07-02)723	YTC-SED-08-02	0723
		Ę	Sample Date	02/07/2023		02/07/2023		02/07/2023		02/07/2023	
		S	ample Type	N		Ν		Ν		N	
			Matrix	Sediment		Sediment		Sediment		Sediment	
Analyte	CAS	OSD Risk Screening Level	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS											
4:2 Fluorotelomer sulfonate (4:2 FTS)	757124-72-4		mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	27619-97-2		mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	39108-34-4		mg/kg	0.0033	U	0.0034	U	0.0041	U	0.0047	U
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6		mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
N-Methylperfluoroocatane sulfonamidoacetic acid (MeFOSAA)	2355-31-9		mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
Perfluorobutane sulfonic acid (PFBS)	375-73-5	1.9 (R) 25 (I/C)	mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
Perfluorobutanoic acid (PFBA)	375-22-4		mg/kg	0.0022	U	0.0023	U	0.0028	U	0.0032	U
Perfluorodecane sulfonic acid (PFDS)	335-77-3		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorodecanoic acid (PFDA)	335-76-2		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorododecanoic acid (PFDoA)	307-55-1		mg/kg	0.0003	J	0.00068	U	0.00083	U	0.00095	U
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluoroheptanoic acid (PFHpA)	375-85-9		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.13 (R) 1.6 (I/C)	mg/kg	0.00029	J	0.00068	U	0.00083	U	0.00095	U
Perfluorohexanoic acid (PFHxA)	307-24-4		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorononane sulfonic acid (PFNS)	68259-12-1		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorononanoic acid (PFNA)	375-95-1	0.019 (R) 0.25 (I/C)	mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorooctane sulfonamide (PFOSA)	754-91-6		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.013 (R) 0.16 (I/C)	mg/kg	0.0014		0.00027	J	0.004		0.00095	U
Perfluorooctanoic acid (PFOA)	335-67-1	0.019 (R) 0.25 (I/C)	mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluoropentane sulfonic acid (PFPeSA)	2706-91-4		mg/kg	0.0033	U	0.0034	U	0.0041	U	0.0047	U
Perfluoropentanoic acid (PFPeA)	2706-90-3		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorotetradecanoic acid (PFTeDA)	376-06-7		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluorotridecanoic acid (PFTrDA)	72629-94-8		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U
Perfluoroundecanoic acid (PFUdA)	2058-94-8		mg/kg	0.00067	U	0.00068	U	0.00083	U	0.00095	U

Table 3 - Sediment Analytical ResultsConceptual Site Model Technical MemorandumYakima Training CenterYakima, Washington

Notes:

1. Bolded values indicate the result was detected greater than the limit of detection.

2. All laboratory reported results in nanograms per gram (ng/g) were converted to milligrams per kilogram (mg/kg).

3. Data are compared to the 2022 Office of the Secretary of Defense (OSD) risk screening levels, (OSD. 2022. Memorandum: Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program. July).

Acronyms/Abbreviations:

--- = not applicable/not analyzed % = percent CAS = Chemical Abstracts Service number FD = field duplicate sample I/C = industrial/commercial receptor scenario ID = identification mg/kg = milligrams per kilogram (parts per million) N = primary sample PFAS = per- and polyfluoroalkyl substances R = residential receptor scenario

Qualifier	Description
J	The analyte was positively identified; however the associated numerical value is an estimated concentration only.
U	The analyte was analyzed for but the result was not detected above thelimit of quantitation (LOQ).

Page 3 of 3

ATTACHMENTS

Attachment 1

Boundary Well Boring Logs

WELL ID: MW-01 CLIENT: Army Environmental Command LOCATION: Yakima Training Center, WA	Project #: 30124009 Reviewed by: Jesse Hemmen, PG#2958		Logging Probes Used V Natural Gamma
DATE DRILLING STARTED: 4/12/2023	NORTHING: 492518.30 EASTING: 1651519.53	WELL CONSTRUCTION	Fluid Temperature/Resistivity Induction Conductivity Normal Resistivity
DATE DRILLING FINISHED: 4/12/2023	TOC ELEVATION: 1322.95 ft	WELL CASING: Schedule 40 PVC	3-Arm Caliper Acoustic Televiewer
DATE WELL COMPLETE: 4/13/2023	GROUND SURFACE ELEVATION: 1320.60 ft	WELL DIAMETER: 2.0 inches	Optical Televiewer Heat Pulse Flow Meter
DRILLING COMPANY: Gregory Drilling	TOTAL BOREHOLE DEPTH: 142 feet bgs	WELL SCREEN: Schedule 40 PVC SCREEN DIAMETER:2.0 inches	Spinner Flow Meter Spectral Gamma
DRILLING RIG: Foremost DR-12	BOREHOLE DIAMETER: 6.0 inches	SLOT SIZE: 0.010 inches	Full Waveform Sonic Nuclear Magnetic Resonance
DRILLER'S NAME: Chris Gregory	DRILLING METHOD: Air Rotary	SAND PACK: #2/12 Sand Pack ANNULUS SEALHydrated Bentonite Chips	CDFM Flow Meter SPR/SP
DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis	SAMPLING INTERVAL: Continuous	GROUT: Neat Portland Cement	Other:
LOGGED BY: Larissa Sleeper	SAMPLING DEVICE: Cyclone	COMPLETION TYPE Stick Up	
	DRILLING FLUID USED: Water as Needed		
Aunsell Penetration Color Sample Description Rate Comple Description	Naturai Gamma	meous Potential Caliper	⁸ Well Construction

Color	Sample Description	Rate		Denth	Elevatior	Natural Gaminia	-60		mV	30	6	In		8	1	Nell C	onetr	uction
Lithology	and Comments	0 ft/min 2	Sample Photos	Deptil	(feet NAVDED)		00 —	Single Poir	nt Resistance			ATV Ampl	tude-NM		1 '		Unsu	
Lithology		0 ienin 2			(net texaded)	U AFI I	150	0	hms 3	300	0° 90	0° 18)° 27()° 0°				
	(0.0-1.0 ft) SILT: medium plasticity, no dilatancy; little sand, very fine grained; moist; medium stift; 7.5YR 6/3 - light brown; organic odor; presence of roots.			- 0.0	-1320.0											ł.		Stick Up Neat Portland Cement (0.0-4.0 ft
	(1.0-2.0 ft) SILT: medium plasticity, no dilatancy; little sand, evry fine grained; little pebbles, medium to large, subangular to subround; moist; medium stiff; 7.5YR 6/3 - light brown; pebbles of		MW01_010	- 5.0	-1315.0													Hydrated Bentonite
	2 to 3 inch diameter. (2.0-7.0 ft) GRAVEL: small to medium pebbles, angular to subangular; little sand, fine to medium grained; well sorted; dry; very loose; 10YR 3/3 - dark brown.	-		- 10.0	-1310.0													Chips (4.0-18.0 ft bgs)
	(7.0-10.0 ft) SILT: some granules, subangular to subround; some very fine to fine sand; no plasticity; no dilatancy; dry; very soft; 2.5YR 2.5/3 - dark reddish brown.			- 20.0	-1300.0										-			
	(10.0 - 20.0 ft) BASALT: aphanitic; 10YR 2/1 - black; moderately weathered; very hard; very intensely fractured; vesicular.			- 25.0	- 1295.0										-			
	(20.0-25.0 ft) BASALT: aphanitic, 10YR 2/2 - very dark brown; slightly weathered; very hard; very intensly fractured.			- 30.0	-1290.0										-			
	(25.0-29.0 ft) SAND: very fine to fine grained; some silt, low plasticity, no dilatancy; dry to moist; very soft; 10YR 3/1 - very dark gray.	_		- 35.0	-1285.0										-			
			I.	- 40.0	- 1280.0													
			-	- 45.0	-1275.0													
				- 50.0	- 1270.0													
				- 55.0	- 1265.0													2-inch diameter Schedule
			136	- 60.0	-1260.0	ξ												40 PVC Casing

MW-01

Table Connormit Sample Proce Name A PY Single Prof. Single Prof. No	sell		Penetra				Natural Gamma			us Potential			Cali						
B0 B0 API L00 DAP DD DDD Poisson DD Poisson <thd poisson<="" th=""> DD Poisson <</thd>	or	Sample Description	Rate	Sample Photos	Depth	Elevation		-60			30	6			8	W	ell Co	nstrue	ction
C20-112 II BRAT. memory set with the set of	av	and Comments	0 ft/min			(feet NAVDEE)	0 API 100		-										
	-9)							150	Oł	nms	300	0° 9	D° 18)° 27	'0° 0°				(0.0.40)
E30-12.01:055ALT. reservery 70.0 128.0 100.0 1	$\sum_{i=1}^{n}$			MWD1_005	7														(0.0-12) bgs
CPA-112 01 BASALT: spearer: 700 1260-0	\sum			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER	- 65.0 -	4													Nea
	22					-1255.0-													Portla Ceme
Child 2010 BABLET synchronic Wirk 2017 Jabes (Barty, very hard) Bigs, soard Booreng Bale. 70.0 1280.0 <t< td=""><td>\gtrsim</td><td></td><td></td><td>MW01_070</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(18.0-1</td></t<>	\gtrsim			MW01_070															(18.0-1
(112.01.01.01 () SLT: moderney index, stability of the submit is	\gtrsim				- 70.0														ft bg
(172-155.01) 117.0-155.01) </td <td>\geq</td> <td></td> <td></td> <td></td> <td>10.0</td> <td>-1250.0-</td> <td>Σ.</td> <td></td>	\geq				10.0	-1250.0-	Σ.												
UP: Model Monterly Induced & d = 11 UP: Model Model Model & d = 11 UP: Model Model Model & d = 11	23	(29.0-112.0 ft) BASALT: aphanitic;		MW01_075			, Ç												
(120-150 0) E&T. modum 125.0 (120-150 0) E&T. modum 1000 1220.0 1220.0 1000 120.0 1000 120.0 1000 120.0 1000 120.0 1000 100.0	1	very intensely fractured; at 40 ft		Area and	- 75.0		<u>_</u>												
(1120-113.01) B.1.*meduning Bid granus, subargular to subcost: with subargular to subcost: With subcost: With subcost: With subcost: With subcost:	\leq	bgs, basalt becomes pitted.			10.0	-1245.0-	<u>~</u>												
(1120-113.01) B.1.*meduning Bid granus, subargular to subcost: with subargular to subcost: With subcost: With subcost: With subcost: With subcost:	\leq			MWOLCOD															
(112.015.019.81)*medun 128.0 (112.015.019.81)*medun 100.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 100.0 128.0 112.015.019.018.1*modun 100.0 120.0 100.0 120.0 100.0 120.0 100.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 119.0 120.0 <t< td=""><td>\leq</td><td></td><td></td><td>Analy and the second</td><td>- 80.0 -</td><td></td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	\leq			Analy and the second	- 80.0 -		<u></u>												
(112.0-113.0-1) SLT_STONE satergistic to wit store. (112.0-12.0.0-1-120	\mathbb{N}			1	00.0	-1240.0-													
(112.0-115.01) SLTSTONE: 1150-137.01) GRANULES, shorted to wet str. (112.0-140.01) SLTSTONE: 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01	\sum			MWD1_085			\leq												
(112.0-115.01) SLTSTONE: 1150-137.01) GRANULES, shorted to wet str. (112.0-140.01) SLTSTONE: 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01 1150-1100.01	\sum				- 85.0 -	4	MA												
(112.0-115.01) SLT: medium petitoly, no distancy sorting address, sorting, weight to softward, weight sorting, weight to softward, weight sorted, weight to softward, weight softward, weight to softward, weight softward, weight to softward, weight so	\gtrsim					-1235.0-	<u>></u>												
(112.0-115.01) SLT: medium petitoly, no distancy sorting address, sorting, weight to softward, weight sorting, weight to softward, weight sorted, weight to softward, weight softward, weight to softward, weight softward, weight to softward, weight so	X			MWOILCOO															
(112.0-115.0-11) SLT: medium platicity, no distancy zone dry, satorout it work, soft; 100.0 1225.0 (112.0-15.0-11) SLT: medium platicity, no distancy zone dry, satorout it work, soft; 100.0 1210.0 (112.0-15.0-11) SLT: medium platicity, no distancy zone dry, satorout it work, soft; 100.0 1210.0 (115.0-172.0+10GNANLES) softed; were yobose; 1097.41- dict gry, 100.0 1200.0 (115.0-172.0+10GNANLES) softed; were yobose; 1097.41- dict gry, 100.0 1180.0 (112.0+15.0+10) SLTSTONE; softed; were you planead, were were soft; were were you planead, were were soft; were you planead, were were s	\leq				- 90.0 -	4000 5	<u>}</u>				_				<u> </u>				
(1120-115.0 1) SLT: medium pile by, no flexery: sorie or baschourd, tile sand, we fine to fine grande multitot wet soit: 100.0 -122.0 -100.0 -122.0 (1120-115.0 1) SLT: medium pile by, no flexery: sorie or baschourd, tile sand, we fine to fine grande multitot wet soit: 110.0 -122.0 -100.0 -1	X					-1230.0-	A A												
(1120-115.0 1) SLT: medium pile by, no flexery: sorie or baschourd, tile sand, we fine to fine grande multitot wet soit: 100.0 -122.0 -100.0 -122.0 (1120-115.0 1) SLT: medium pile by, no flexery: sorie or baschourd, tile sand, we fine to fine grande multitot wet soit: 110.0 -122.0 -100.0 -1	\leq			MWOLCOS			S and a second se												
(112.0-115.0 1) S.R.T: medum placety, no filter by: sortion; subtruct, lifts sand, we life to fme grained nucle to wet sort: 100.0 -122.0 -122.0 (112.0-115.0 1) S.R.T: medum placety, no filter by: sortion; subtruct, lifts sand, we life to fme grained nucle to wet sort: 110.0 -122.0 -120.0 (115.0-137.0 1) GRANULES; subtruct, we loss: 115.0 -120.0 -120.0 -110.0 (115.0-137.0 1) GRANULES; subtruct, we loss: 120.0 -110.0 -120.0 -110.0 (115.0-137.0 1) GRANULES; subtruct, we loss: 120.0 -110.0 -110.0 -110.0 (115.0-137.0 1) GRANULES; subtruct, we loss: 130.0 -110.0 -110.0 -110.0 (115.0-137.0 1) GRANULES; subtruct, we loss: 130.0 -110.0 -110.0 -110.0	\leq				- 95.0 ·	4005.0	25				_								
(1120-115.0 1) SLT: medium plasticity, collision; some clay; liteling grances, subangular to subcruch; tiles grances, noist to wet; solt; liteling routes, subangular to subcruch; tiles grances, subangular to subcruch; til	\leq			d.		-1225.0-													
(1120-115.0 1) SLT: medium plasticity, collision; some clay; liteling grances, subangular to subcruch; tiles grances, noist to wet; solt; liteling routes, subangular to subcruch; tiles grances, subangular to subcruch; til	\mathbb{S}^{2}			ENWOIL COD															
(112.0-115.0 It) SLT: medium plasticity, no distancy: some day, like granules, subanguir to subcruzel, like sad, wet, soft, 107R 21 - black. 106.0 -1215.0 (115.0-137.0 It) SRANULES, subcruzel, like gravel, subcruzel, like and rigrav. 100.0 -1200.0 -1200.0 (115.0-137.0 It) SRANULES, subcruzel, like gravel, wet weth and rigrav. 100.0 -1200.0 -1200.0 -1200.0 (115.0-137.0 It) SRANULES, subcruzel, like to subcruzel, like to and rigrav. 100.0 -1200.0 -1200.0 -1200.0 (115.0-137.0 It) SRANULES, subcruzel, like to subcruzel, like to and rigrav. 1190.0 -1190.0 -1190.0 -1190.0 -1190.0 (116.0-137.0 It) SRANULES, subcruzel, like to subcruzel, like to and rigrav. -1190.0	\sum				- 100.0 -	1000.0					_								
(112.0-115.0 h) SLT: medium plasticity, for its order day, little granues, subarquist to wet, solt; 10/R 2/1 - black. 110.0 120.0 120.0 115.0 (115.0-137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 120.0 120.0 120.0 120.0 (115.0-137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 120.0 120.0 120.0 120.0 (115.0-137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 130.0 119.0 120.0 120.0 (115.0-137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 130.0 119.0 119.0 120.0 120.0 (115.0-137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 130.0 119.0 119.0 119.0 119.0 119.0 (116.0+137.0 h) GRANULES, subarquist to subcord; 10/R 2/1 119.0 </td <td>\sum</td> <td></td> <td></td> <td>- ALER-</td> <td>-</td> <td>- 1220.0 -</td> <td><u>}</u></td> <td></td>	\sum			- ALER-	-	- 1220.0 -	<u>}</u>												
(1120-1150 (t)) S.U.T. medium plasticity, no filtamoy: some day lift granules, subangular to suborud; filte sand, very life to fine grained; moist to ver; solt; 110.0 110.0 120.0 110.0 120.0 110.0	\gtrsim			NW01 105			<u> </u>												
(112-0-115.0 ft) SUT: medium plasicity, no distancy; some day; listig granules, subangular to subcrucht, fulles and, very line to the granule, subangular to subcrucht, fulles and, very line to the granule, subangular to subcrucht, fulles and, very line to the granule, subangular to subcrucht, fulles and, very lose; 10VR 4/1-dark gray. 110.0 120.	23				- 105.0 -	-1215.0-	<u> </u>				_								
(112.0-115.0 ft) SILT: medium plasticity, not officiancy: sous constance, sous	23			The second second	ALC: NO	1210.0													
(112.0-115.0 ft) SILT: medium plasticity, not officiancy: sous constance, sous	8			15															
(1120 1) 30 (1) 20 (1120 1) (1120 1	\leq_{l}			and the second s	- 110.0 ·	-1210.0-													Firs
Ittle granules, subangular to subround; tille sand, every line to fine grained; moist to wet; sol; 10/R 2/1 - black. 115.0 115.0 115.0 120.0	\leq	plasticity, no dilatancy; some clay;					F											_	Encour Wat
Ine grained; moist to wet; solt; 115.0 1205.0 1205.0 1200.0 <td></td> <td>little granules, subangular to</td> <td></td> <td>(112</td>		little granules, subangular to																	(112
(115.0-137.0 ft):GRANULES, subangular to subround; well subangular to subround; to/R 3/4 - dark gray. (117.0-142.0 ft) SILTSTONE: subangular to subround; 10/R 3/4 - dark yellowish forwn; moderately weathered; subrund; 10/R 3/4 - dark yellowish forwn; moderately		fine grained; moist to wet; soft;			- 115.0 ·	- 1205.0 -					_								bgs
(115.0-137.0 ft):GRANULES, subargular to subround; well sorted; wet; very loose; 10YR 4/1 - dark gray. (117.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; soft; weil intensity (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately (127.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately		TOTR 2/1 - DIACK.			-														Hydra Bento
(115.0-137.0 ft):GRANULES, subangular to subround; well solted; wet; very loose; 10YR 4/1 - dark gray.				MM01_120												\sim	K	\sim	Chi (112.0-
subangular to subround; well sorted; wet; very loose; 10YR 4/1 - dark gray. (137.0-142.0 ft) SILTSTONE: subangular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; soft; wery intensely (140.0 - 1180.0 -					- 120.0 ·	- 1200.0 -											K	\times	ft bg
subargular to subround; well sorted; wet; very loose; 10YR 4/1- dark gray. 130.0 1190.0																	Ľ	\sim	
subangular to subround; well sorted; wet; very loose; 10YR 4/1 - dark gray. (137.0-142.0 ft) SILTSTONE: subangular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; soft; wery intensely (140.0 - 1180.0 -				Line and Lin			<u> </u>										ľ	\sim	
sorted; wet; very loose; 10YR 4/1 - dark gray. (137.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; soft; wery intensely (140.0 - 1180.0 -		(115.0-137.0 ft):GRANULES,			- 125.0 -	- 1195.0 -	2				+						ľ	\sim	
(137.0-142.0 ft) SILTSTONE: subargular to subround; 10YR 3/4 - dark yellowish brow; moderately		sorted; wet; very loose; 10YR 4/1 -		WW01-50			۲.										—	\sim	
(137.0-142.0 ft) SILTSTONE: subargular to subround; 10/R 3/4 - dark yellowish brown; moderately weathered; soft; wey intensely (127.0-142.0 ft) SILTSTONE: (127.0-142.0 ft		dark gray.		1.488		-	Ş										——	\times	#2/12 Pac
(137.0-142.0 ft) SILTSTONE: subargular to subround; 10/R 3/4 - dark yellowish brown; moderately weathered; soft; weij intensely					- 130.0 -	- 1190.0 -	<u></u>										— K	\mathbf{X}	(118.0-
(137.0-142.0 ft) SILTSTONE: subangular to subround; 10/R 3/4 - dark yellowish brown; moderately weathered; soft; wey intensely				MW01 135		_	Ş											\times	ft bg 2-in
(137.0-142.0 ft) SILTSTONE: subangular to subround; 10/R 3/4 - dark yellowish brown; moderately weathered; soft; way intensely (12000000000000000000000000000000000000				and the second se	405.0		\geq										k	\times	diame
(137.0-142.0 ft) SILTSTONE: subangular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; soft, very intensely (12					- 135.0 -	- 1185.0 -	>										K	\times	Sch. PVC
subangular to subround; 10/K 3/4 - dark yellowish brown; moderately weathered; soft; very intensely (12)	ľ	(137.0-142.0 ft) SILTSTONE:		MWOI 140													K	\times	scree 0.010
weathered; soft; very intensely	.11	 dark yellowish brown; moderately 		12000	- 140.0													\sim	slo
		weathered; soft; very intensely		1. 2.2.5	140.0	- 1180.0 -			Τ		-						$\sim\sim\sim$	\sim	(120.0- ft bg
																• • • •	×	N	Ĩ
BREVIATIONS: bgs = beneath ground surface, NA = not available, It = feet, PVC = polyvinyl chloride, USCS = Unified Soil Classification System, in = inches, mm = millimeters, <= less than, % = percent, NAVD88 = North American Datum of 1988, NAD83 = North American Datum of 1983								. –							(1000 111				

Bornig, wen construct	on, a (Jeophysicar	Jog					Fortiand, OK s	01202				
WELL ID: MW-02 CLIENT: Army Environmenta LOCATION: Yakima Training				-	: 30124009 I by: Jesse Hemmen, PG#2	958				Logging Probes Used Natural Gamma			
DATE DRILLING STARTED: DATE DRILLING FINISHED: DATE WELL COMPLETE: 4/4 DRILLING COMPANY: Grego DRILLING RIG: Foremo DRILLER'S NAME: Chris Gro DRILLER'S ASSISTANT(S): LOGGED BY: Roberto Piemo	4/3/2023 /2023 ry Drillin est DR-1 egory M. Graul	g 2	ר ס פ פ פ פ פ פ פ פ פ פ פ פ פ פ פ פ פ פ	TOC EL GROUN TOTAL BOREH DRILLIN SAMPL SAMPL	NG: 490133.45 EASTING: 165 LEVATION: 1292.26 ft ND SURFACE ELEVATION: 1 BOREHOLE DEPTH: 210.0 IOLE DIAMETER: 6.0 inche NG METHOD: Air Rotary ING INTERVAL: Continuous ING DEVICE: Cyclone NG FLUID USED: Water as 1	1289.70 ft feet bgs es	WELL CASING: Sch WELL CASING: Sch WELL DIAMETER: 2. WELL SCREEN: Sch SCREEN DIAMETER SLOT SIZE: 0.010 in SAND PACK: #2/12 S ANNULUS SEAL-Hyo GROUT: Neat Portlar COMPLETION TYPE	0 inches nedule 40 PVC ;2.0 inches ches Sand Pack Irated Bentonite Chips nd Cement	c Notifial Resistivity 3-Arm Caliper Acoustic Televiewer Optical Televiewer Heat Pulse Flow Meter Spectral Gamma Full Waveform Sonic Nuclear Magnetic Resonan CDFM Flow Meter				
Munsell Color Sample Description and Comments	Penetration Rate	Sample Photos		Elevation	Natural Gamma	Sponta -60	neous Potential mV 30 Point Resistance	Caliper 6 In ATV Amplitude-NN	8	Well Construction			
Sample Description		Sample Photos	- 0.0 - - 5.0 - - 10.0 - - 15.0 - - 25.0 - - 25.0 - - 35.0 - - 35.0 - - 40.0 - - 45.0 - - 45.0 -	Elevation Parameteria - 1290.0 - - 1285.0 - - 1285.0 - - 1275.0 - - 1275.0 - - 1265.0 - - 1265.0 - - 1265.0 - - 1255.0 - - 1255				ATV Amplitude-NN		Veli Construction			

Page 1 of 3

Munsell Color	Sample Description	Penetration Rate	Sample Photos	Depth	Elevation	Natural Gamma	Spontaneous Potential -60 mV 30 6		Well Construction
Lithology	and Comments	0 filmin 4	Sample Photos		(feet NAVDED)	0 API 100	Single Point Resistance	ATV Amplitude-NM ° 90° 180° 270° 0°	
	(10.0-125.0 ft) BASALT: aphanitic; massive; hard; moderately weathered; 10YR 2/1 - black; at 20.0 ft bgs, becomes slightly			- 65.0 -	- 1225.0 -		150 Ohms 300 0°	° 90° 180° 270° 0°	
	weathered and color becomes 10YR 3/1 - very dark gray.		MW-02_75 ft	- 70.0 -	- 1220.0 - - 1215.0 -				
			MW-02 SO R		- 1210.0 -	A A A A A A A A A A A A A A A A A A A			Neat Portland Cerment (20.0-139.0 ft bgs)
			MW-02 85 ft MW-02 90 ft		- 1205.0 -	J. Marine Mar			
			MW-02_95 ft	- 90.0 - - 95.0 -	- 1200.0 - - 1195.0 -				
			MW-02_100 B		- 1190.0 -				First Encountered Water (10.0 ft bgs)
					- 1185.0 - - 1180.0 -				2-inch diameter, Sch. 40 PVC casing (0.0-208.0 ft bgs)
				- 115.0 -	-1175.0 -				
	(125.0-133.0 ft) GRAVEL:				- 1170.0 - - 1165.0 -		\sim		
	subangular to subround; some sand, coarse to very coarse grained, subangular to subround; poorly sorted; wet; loose; 10YR 4/1 - dark gray; some red, green, and white lithic granules.			- 130.0 -	 - 1160.0 - 				
H H H H H H H	(133.0-142.0 ft) MUDSTONE: 10YR 6/3 - pale brown; soft.				- 1155.0 - - 1150.0 -			5	
- 60° 60° 60°	(142.0-150.0 ft) GRAVEL: subangular to subround; some sand, coarse to very coarse grained, subround; poorly sorted; wet; loose; 10YR					5			Hydrated Bentonite Chips (139.0-150.0 ft bgs)
	4/1 - dark gray; some red, green, and white lithic granules. (150.0-156.0 ft) SANDSTONE: 10YR 5/4 - yellowish brown; soft; massive.				- 1140.0 - - 1135.0 -	A MARA MARA		2	
	(156.0-160.0 ft) MUDSTONE: 10Y 3/1 - dark greenish gray; soft.		a a l		-1130.0 -				2-inch diameter, Sch. 40 PVC Well
	(160.0-180.0 ft) GRAVEL:		MALOR 57(1)		-1125.0-	A A A A A A A A A A A A A A A A A A A	\rightarrow		Screen, 0.010 inch slot (153.0-173.0 ft bgs) #2/12 Sand
	subangular to subround; poorly sorted; wet; loose; 10YR 6/4 - light yellowish brown.				-1120.0 - - 1115.0 -		ζ		Pack (150,0-177.0 tt bg)

MW-02

Munsell Color	Sample Description	Penetratio Rate	n			Natural Gamma	Sponta -60	meous Potential mV 30	Caliper 6 In 8	
Lithology	and Comments	0 ft/min 4	Sample Photos	Depth	Elevation	0 API 100	Single F	oint Resistance	ATV Amplitude-NM	Well Construction
						V	150	Ohms 300	0° 90° 180° 270° 0°	
	(180.0-185.0 ft) SANDSTONE; slightly weathered; soft; massive; 10YR 6/3 - pale brown.				- 1105.0 -		5	$\sum_{i=1}^{n}$		
+ · · · · · · · · · · · · · · · · · · ·	(185.0-190.0 ft) SILTSTONE: moderately weathered; soft; massive; 10YR 6/3 - pale brown.				- 1100.0 -		5			Hydrated
			-	- 195.0 -	- 1095.0 -		5			Bentonite Chips (177.0-208.0 ft bgs)
				- 200.0 -	- 1090.0 -		$\left \right\rangle$	~	Lund V	
	(208.0.210.0.4) BASALT	-		- 205.0 -	- 1085.0 -		5	7		
	(208.0-210.0 ft) BASALT: phaneritic; hard; massive; highly weathered; 10YR 4/1 - dark gray; presence of feldspar, pyrite, and mafic minerals.			- 210.0 -	- 1080.0 -					

NOTES: Horizontal coordinate projection: SPCS, Washington South, NAD83 Datum, U.S. Survey Feet. Elevation is reported in the NAVD88 (Geold 18) system. Hand augered to 5.0 ft bgs or to refusal.

	Boring, Well Construction	on, & (Geophysical I	Log							Portla	nd, OR	97232				
CI	/ELL ID: MW-03 LIENT: Army Environmental DCATION: Yakima Training (-	30124009 I by: Jesse Hem	men, PG#2	2958					✓	Loggin Natural			<u>¥d</u>
D/ D/ DF DF DF	ATE DRILLING STARTED: 4 ATE DRILLING FINISHED: 4 ATE WELL COMPLETE: 4/6/ RILLING COMPANY: Gregor RILLING RIG: Foremos RILLER'S NAME: Chris Greg RILLER'S ASSISTANT(S): M DGGED BY: Roberto Piemon	g 2		TOC EL GROUN TOTAL BOREH DRILLII SAMPL SAMPL	NG: 487990.45 E EVATION: 1307. ID SURFACE ELE BOREHOLE DEP IOLE DIAMETER: NG METHOD: AI ING INTERVAL: ING DEVICE: Cy NG FLUID USED:	TH: 210.0 6.0 inch r Rotary Continuous	1305.00 ft) feet bgs es	WELL CASING: WELL CASING: WELL DIAMETE WELL SCREEN: SCREEN DIAME SLOT SIZE: 0.0 SAND PACK: #2 ANNULUS SEAL GROUT: Neat P COMPLETION T	Schedu R: 2.0 ir : Sched :TER: 2.0 10 inche /12 San _:Hydrat ortland 0	ele 40 PVC aches ule 40 PVC) inches is d Pack ed Bentonite Cement			Inductio Normal 3-Arm C Acoustic Optical Heat Pu Spinner Spectra Full Wat	n Condu Resistiv Caliper c Teleview Ise Flow Flow Me I Gamm veform S Magnet Flow Met	vity ewer wer v Meter eter ia Sonic tic Reson		
Munsell Color Litholog	Sample Description and Comments	Penetration Rate	Sample Photos	Depth		Natural Gan	nma 100	-60	neous Potential mV Point Resistance Ohms	30 6 300 0	ATV	Caliper In Amplitude-NI 180° 2	8 M 70° 0°	W	ell Cc	onstruc	ction
	 (0.0-0.5 ft) SILT: low plasticity, no dilatancy; little sand, very fine grained; moist, soft; 7.5YR 3/2 - dark brown, organic odor. (0.5-2.5 ft) SILT: medium plasticity, no dilatancy; little sand, very fine grained; moist; medium stiff; 10YR 6/3 - pale brown; organic odor, presence of roots; at 2.0 ft bgs, green and reddish weathered bands present; soft; at 2.0 ft bgs, color becomes 7.5YR 3/2 - dark brown. (2.5-10.0 ft) SANDSTONE: slightly weathered; hard; massive; 10YR 6/3 - pale brown. (2.5-10.0 ft) SANDSTONE: slightly weathered; hard; massive; 10YR 4/3 - brown. (10.0-15.0 ft) SANDSTONE: slightly weathered; soft; massive; 10YR 4/3 - brown. (20.0-30.0 ft) SILT: no plasticity, no dilatancy; dry; soft; 10YR 3/4 - yellowish brown. (30.0-35.0 ft) CLAY: medium plasticity, no dilatancy; some sint, we fine to fine grained; moist; soft; 10YR 4/3 - brown. (30.0-35.0 ft) CLAY: medium plasticity, no dilatancy; dry; soft; 10YR 4/3 - brown. 			- 15.0 - 20.0 - 25.0													Stick Up Neat Portland Cement (0.0-2.0 ft bgs) Hydrated Bentonite Chips (2.0-5.0 ft bgs)
	(35.0-45.0 ft) CLAY: medium plasticity, no dilatancy; little silt; moist; stiff; 10YR 5/2 - grayish brown. (45.0-50.0 ft) MUDSTONE: soft; 10YR 5/2 - grayish brown.			- 40.0	- 1265.0 - - 1265.0 - - 1265.0 - - 1255.0 - - 1255.0 -	man Mandana Andre											

MW-03

60.0 -1245.0-

Ζ

Page 1 of 3

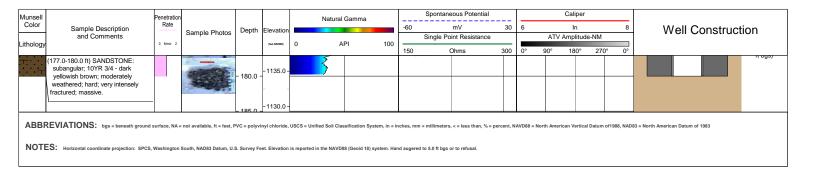
Munsell Color		Penetratio Rate	n			Natural Gamma		Spontaneou				liper					
	Sample Description and Comments	0 filmin 4	Sample Photos	Depth	Elevation	0 API 100	-60	m Single Point) 6		n litude-NM	8	W	ell Co	onstruc	tion
Lithology		0 1,000 4			(sec water)		150	Oh	ms 300) 0°	90° 18	30° 270°	0°				
				- 65.0 -	- 1240.0 -												
				- 70.0 - - 75.0 -	- 1235.0 - - - 1230.0 -	Mark											First Encountered Water (75.0
	(50.0-109.0 ft) CLAY: medium plasticity, no dilatancy; some sand, coarse grained, subangular to subround; moist; stiff; 10YR 6/6 - brownish yellow; bedding of layers with higher concentration of sand and clay.			- 80.0 -	- 1225.0 -	and the second sec											ft bgs) Neat Portland Cement (5.0-147.0 ft bgs)
				- 85.0 -	- 1220.0 - - 1215.0 -												
				- 95.0 -	- 1210.0 -												
					- 1205.0 - 												2-inch diameter, Sch. 40
+ + +		-		- 110.0 -	- 1195.0 -	A MARKEN											PVC
: + : + : + + : + : + : -	(109.0-130.0 ft) SILTSTONE: 5G 4/1 - dark greenish gray; lenses of clay, medium plasticity, 10YR 6/3 - light yellowish brown; presence of brown and red oxidized grains.				- 1190.0 - - 1185.0 -	A A A A											
					- 1180.0 -												
	(130.0-142.0 ft) CLAY: medium to high plasticity, no dilatancy; little silt; moist to wet; stiff; 10YR 6/4 - light yellowish brown; iron oxide staining.			- 135.0 -	- 1170.0 -												
	(142.0-156.0 ft) SAND: medium to				- 1165.0 - - 1160.0 -	A share a shar	~										
	very coarse grained, angular to subangular; some granules, angular to subangular; poorly sorted; moist; medium dense; 10YR 5/3 - brown; iron oxide staining.				- 1155.0 -						5						Hydrated Bentonite Chips (147.0-154.0 ft bgs)
	(156.0-160.0 ft) BASALT: aphanitic; moderately weathered; 10YR 2/1 - black.				- 1150.0 - - - 1145.0 -			Ś		10000							
	(160.0-165.0 ft) MUDSTONE: soft; 10YR 6/3 - light yellowish brown; presence of red and orange oxidized grains.			- 165.0 -	- 1140.0 -			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Contraction								2-inch diameter, Sch. 50 PVC Well Screen, 0.010 slot
MW-03	(165.0-180.0 ft) BASALT: aphanitic; massive; 10YR 2/1 - black; presence of red, orange, and green oxidized grains.			- 170.0 - - 175.0 -	- 1135.0 - 	1 August			my children			A A A A A A A A A A A A A A A A A A A					(157.0-177.0 ft bgs) #2/12 Sand Pack (154.0-182.0 ft bgs)

MW-03

Page 2 of 3

Munsell Color		Penetration Rate				Natural Gamma		Spontaneous Potential	Caliper	
00101	Sample Description and Comments		Sample Photos	Depth	Elevation		-60 S	mV 30 ingle Point Resistance	6 In 8 ATV Amplitude-NM	Well Construction
Lithology		0 ft/min 4			(feet NAVDEE)	0 API 100	150	Ohms 300	0° 90° 180° 270° 0°	
: + : : + : : : + : : : : : : : : : : :	(180.0-185.0 ft) MUDSTONE: hard; 10YR 6/3 - light yellowish brown.			- 180.0 -	- 1125.0 -	Annal April				ft bgs)
	(185.0-195.0 ft) BASALT: aphanitic; massive; hard; 10YR 2/1 - black; some oxidation.			- 190.0 -	- 1120.0 - - 1115.0 - - 1115.0 - - 1110.0 -	March Make				Hydrated Bentonite
:	(195.0-205.0 ft) MUDSTONE: soft; 10/R 6/3 - light yellowish brown; lenses of pinkish red and mafic minerals.			- 200.0 -						Chips (182.0-210.0 ft bgs)
	(205.0-210.0 ft) BASALT: aphanitic; massive; moderately weathered; hard; 10YR 2/1 - black.				- 1100.0 - - 1095.0 -	a Array				
ABBF	REVIATIONS: bgs = beneath ground	surface, NA =	not available, ft = feet, F	VC = polyvi	nyl chloride,	USCS = Unified Soil Classification System, in = in	iches, mm = n	nillimeters, < = less than, % = percent, N	AVD88 = North American Vertical Datum of1988, NAD	33 = North American Datum of 1983

NOTES: Horizontal coordinate projection: SPCS, Washington South, NAD83 Datum, U.S. Survey Feet. Elevation is reported in the NAVD88 (Geold 18) system. Hand augered to 5.0 ft bgs or to refusal.


		n	
WELL ID: MW-04			
CLIENT: Army Environmental Command	Project #: 30124009		Logging Probes Used
LOCATION: Yakima Training Center, WA	Reviewed by: Jesse Hemmen, PG#2958		✓ Natural Gamma
DATE DRILLING STARTED: 4/17/2023 DATE DRILLING FINISHED: 4/17/2023 DATE WELL COMPLETE: 4/18/2023 DRILLING COMPANY: Gregory Drilling DRILLING RIG: Foremost DR-12 DRILLER'S NAME: Chris Gregory DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis	NORTHING: 487542.02 EASTING: 1649009.88 TOC ELEVATION: 1315.69 ft GROUND SURFACE ELEVATION: 1314.30 ft TOTAL BOREHOLE DEPTH: 180 feet bgs BOREHOLE DIAMETER: 6.0 inches DRILLING METHOD: Air Rotary SAMPLING INTERVAL: Continuous	WELL CONSTRUCTION WELL CASING: Schedule 40 PVC WELL DIAMETER: 2.0 inches WELL SCREEN: Schedule 40 PVC SCREEN DIAMETER: 2.0 inches SLOT SIZE: 0.010 inches SLOT SIZE: 0.010 inches SAND PACK: #2/12 Sand Pack ANNULUS SEAL:Hydrated Bentonite Chips GROUT: Neat Portland Cement	 Natural Gamma Fluid Temperature/Resistivity Induction Conductivity Normal Resistivity 3-Arm Caliper Acoustic Televiewer Optical Televiewer Heat Pulse Flow Meter Spinner Flow Meter Spectral Gamma Full Waveform Sonic Nuclear Magnetic Resonance CDFM Flow Meter SPR/SP Other:
LOGGED BY: Larissa Sleeper	SAMPLING DEVICE: Cyclone	COMPLETION TYPE Stick Up	
	DRILLING FLUID USED: Water as Needed		
Munsell Color Sample Description and Comments Penetration Rate and Comments Sample Photos	Depth Elevation 0 API 100 Single P	neous Potential Caliper mV 30 6 In Point Resistance ATV Amplitude-NM	
(0.0-10.0 ft) SAND: very fine to medium grained; little granules, subangular to aubrouns; little sitt,		Ohms 300 0° 90° 180° 27	70° 0° Natural Backfill (0.0-2.0 ft bgs)

				-1315.0-							1	Δ	Stick Up
			- 0.0 -	- 1315.0-									Natural Backfill
	(0.0-10.0 ft) SAND: very fine to medium grained; little granules, subangular to aubrours, little silt, no plasticity, no dilatancy; dry; very soft; 10YR 6/4 - light yellowish brown.	-	- 5.0 -	- 1310.0 -						-			(0.0-2.0 ft bgs)
			- 10.0 ·	- 1305.0 -						-			
			- 15.0 ·	- 1300.0 -						-			
	(10.0-45.0 ft) SILT: low plasticity, no dilatancy; some sand, very fine		- 20.0 ·	- 1295.0 -						-			
	to fine grained; dry; some sand, very fine to fine grained; dry; very soft; 10YR 6/4 - light yellowish brown; at 15 ft bgs, silt content increases to 80%; at 20ft bgs, color becomes light brown; at 30 ft bgs,	0	- 25.0 ·	- 1290.0 -									
	silt content decreases to 50%; at 35 ft bgs, silt content decreases to 50%; at 40 ft bgs, silt content decreases to 50%.		- 30.0 ·	- 1285.0 -									
			- 35.0 ·	- 1280.0 -									
		9	- 40.0 ·	- 1275.0 -	No.		$\left\{ \begin{array}{c} \\ \end{array} \right\}$			-			
			- 45.0 ·	- 1270.0 -	255 		$\left\{ \right\}$			-			
	(45.0-60.0 ft bgs) SANAD: very fine to medium grained; some silt, low plasticity, no dilatanncy; dry; soft; 10YR 3/4 - dark yellowish		- 50.0 ·	- 1265.0 -		E.	5	-					
	brown.		- 55.0 ·	- 1260.0 -		- And							
-1-1-1 			- 60.0 ·	- 1255.0 -	>		-						
MW-04	a l		1	1		1 21	1 7		1				Page 1 of 3

Munsell Color	Sample Description	Penetration Rate				Natural Gamma	-60	Spontaneous Potential mV 30	Caliper 6 In 8		ati a ra
Lithology	and Comments	0 ft/min 2	Sample Photos	Depth	(test NAVODD)	0 API 100	s	Single Point Resistance	ATV Amplitude-NM	Well Constru	ction
	(60.0-70.0 ft) SANDSTONE: subangular to subround; 10YR 3/4 - dark yellowish brown; moderately weathered; very intensely fractured; massive; 1 to 2 inch globules of sit; at 65 ft bgs, silt content increases.			- 65.0 -	- 1250.0 -		150	Ohms 300	0° 90° 180° 270° 0°		
	(70.0-80.0 ft) Sandy SILTSTONE: subangular to subround; 10YR 6/4 - light yellowish brown; highly weathered; soft; very intensely fractured; massive.			- 75.0 -	- 1240.0 -		>	N V W			Neat Portland Cement (2.0-143.0 ft bgs)
	(80.0-90.0 ft) SANDSTONE: subangular to subround; 7.5YR 6/3 - light brown; highly weathered; soft; very intensely fractured; massive.			- 85.0 -	- 1230.0 - - 1225.0 -			Conserver -			2-inch diameter, Sch. 40
+ 0 0 + 0 0 + 0 0 + 0 0 + 0 0 0 0 0 0 0	(90.0-116.0 ft) CONGLOMERATE: subangular to subround; 10YR 3/4 - dark yellowish brown; highly weathered;			- 95.0 -	- 1220.0 - - 1215.0 -		3	AN The			PVC Casing (0.0-180.0 ft bgs)
00-00-00-00-00-00-00-00-00-00-00-00-00-	medium hard; very intensely fractured; massive; at 100 ft bgs, sit content increases, few basalt clasts; at 110 ft bgs, sit content increases, high plasticity, medium dilatancy.			- 105.0 - - 110.0 -	- 1210.0 - - 1205.0 - 						
	(116.0-120.0 ft) SILTSTONE: subargular to subround; 10B 3/1 - very dark bluis gray; highly weathered; medium hard; very intensely fractured; massive.	-		- 115.0 - - 120.0 -	- 1200.0 - - 1195.0 -						First Encountered Water (116 ft bgs)
	(120.0-135.0 ft) SANDSTONE: subangular to subround; 2.5V 5/2 - grayish brown; moderately weathered; medium hard; very intensely fractured; massive.		9	- 125.0 - - 130.0 -	- 1190.0 - - 1185.0 - 	A ANALAN AND A ANALAN					
	(135.0-140.0 ft) SILTSTONE: subargular to subround; 10B 3/1 - very dark bluish gray; highly weathered; medium hard; very intensely fractured; massive. (140.0-145.0 ft) SANDSTONE: subargular to subround; 10YR 4/2 - dark gravish brow; moderately	-		- 135.0 - - 140.0 -	- 1180.0 - - 1175.0 -		5				
	weathered; medium hard; very intensely fractured; massive. (145.0-160.0 ft) SILTSTONE: subangular to subround; 10B 3/1 - very dark buils gray; highly	-		- 145.0 - - 150.0 -	- 1170.0 - - 1165.0 -						Hydrated Bentonite Chips (143.0-153.0 ft bgs)
	weathered; medium hard; very intensely fractured; massive; 0.5 to 4 cm clasts of tan sandstone.			- 155.0 - - 160.0 -	- 1160.0 - - 1155.0 -						2-inch diameter, Sch. 40 PVC Well Screen, 0.010 inch slot
	(160.0-176.0 ft) SANDSTONE: subangular to subround; 10YR 4/3 - dark yellowish brown; moderately weathered; hard; very intensely fractured; massive.			- 165.0 - - 170.0 -	- 1150.0 - - - 1145.0 -		<				(156.0-166.0 ft bgs) #2/12 Sand Pack (153.0-170.0 ft bgs)
	(176.0-177.0 ft) BASALT: aphanitic; 10YR 2/1 - black; slightly weathered; hard; very intensly fractured; vesicular; clasts of sandstone.		à	- 175.0 -	- 1140.0 -						Hydrated Bentonite Chips (170.0-180.0 ft boc)

MW-04

Page 2 of 3

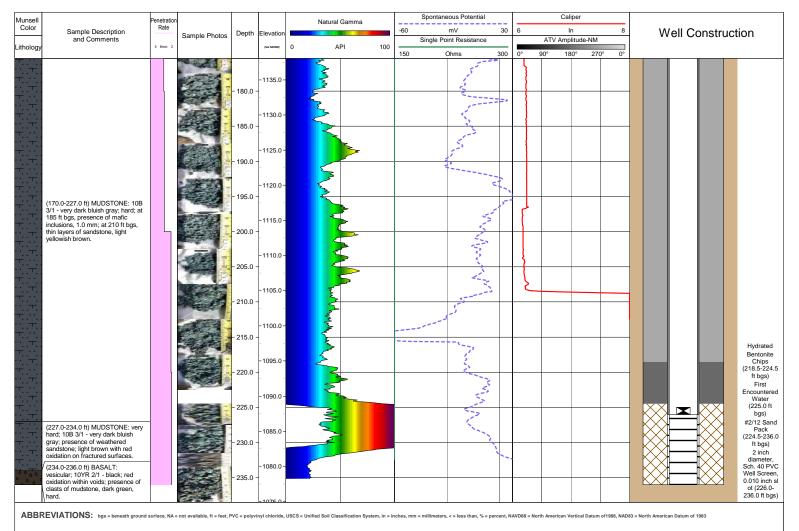
				-												
CL	ELL ID: MW-05 IENT: Army Environmental					: 30124009 d by: Jesse Hemmen, PG#2	958						_		oes Use	<u>:d</u>
DA DA DA DF DF DF	LOCATION: Yakima Training Center, WA DATE DRILLING STARTED: 4/12/2023 DATE DRILLING FINISHED: 4/12/2023 DATE WELL COMPLETE: 4/13/2023 DRILLING COMPANY: Gregory Drilling DRILLING RIG: Foremost DR-12 DRILLER'S NAME: Chris Gregory DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis LOGGED BY: Larissa Sleeper				NORTHIN TOC EL GROUN TOTAL BOREH DRILLIN SAMPLI SAMPLI	NG: 486631.14 EASTING: 164 EVATION: 1354.49 ft ND SURFACE ELEVATION: 1 BOREHOLE DEPTH: 210 fe HOLE DIAMETER: 6.0 inche NG METHOD: Air Rotary LING INTERVAL: Continuous LING DEVICE: Cyclone NG FLUID USED: Water as N	9002.06 1351.80 ft eet bgs es	WELL CASING: S WELL CASING: S WELL DIAMETER: WELL SCREEN: S SCREEN DIAMETH SLOT SIZE: 0.010 SAND PACK: #2/13 ANNULUS SEAL 3 GROUT: Neat Port COMPLETION TYP	Scheo : 2.0 Sche ER:2) inch 2 Sa Hydra tland	dule 40 PVC inches edule 40 PVC 2.0 inches hes and Pack ated Bentonite C			Fluid T Inducti Norma 3-Arm Acoust Optica Heat P Spinne Spectr Full Wa Nuclea CDFM	on Condu I Resistiv Caliper ic Televie I Televiev ulse Flow r Flow M al Gamm aveform 3 ir Magnet Flow Me	ure/Resist uctivity ity ewer ver v Meter eter a Sonic ic Resona	
Munsell Color _itholog	Sample Description and Comments	Penetration Rate	Sample Photos	Depth	Elevation	Natural Gamma 0 API 100	-60	neous Potential mV 3 Point Resistance Ohms 30	_	6 ATV / 0° 90°	Caliper In Amplitude- 180°	8 NM 270° 0°	v	Vell Co	onstruc	tion
	(0.0-5.0 ft) SAND; fine to coarse grained, subangular to subround; some small pebbles, subangular to subround; poorly sorted; dry; very loose; 10YR 7/3 - pale brown.			- 0.0 - 5.0	- 1350.0 - - 1350.0 - - 1345.0 -						180*					Stick Up Natural Backfill (0.0-2.0 ft bgs)
	(5.0-25.0 ft) SAND: very fine to			- 10.0	- 1340.0 -		N.									

loose;	10YR 7/3 - pale brown.	- 5.0 -	<u> </u>	1		bys)
		- 1345.0 -		Sec.		
(5.0-25	5.0 ft) SAND: very fine to m grained; some small to	- 10.01340.0 -		N.V.V		
mediu mediu subrou 4/3 - b	m grained; some small to m pebbles, subangular to und; dry; very loose; 10YR rown.	- 15.0				
		- 20.0			-	
		- 25.0 -				
(25.0-3 mediu plastic soft; 1	30.0 ft) SAND: very fine to m grained; little silt, low ity, no dilatancy; dry; very 0YR 4/3 - brown.	- 1325.0 -		W.		
		- 30.0 - - 1320.0 - - 35.0 -				
		- 1315.0 -				
(30.0-6 fine gr mediui	60.0 ft) SAND: very fine to ained; some clay; little silt, m plasticity, no dilatancy;	- 40.01310.0 -		V-W		
well so brown; more y color b	ained; some clay; little sit, m plasticity, no dilatancy; nted; dry; loose; 10YR 4/3 - ; at 35 ft bgs, color becomes yellowish brown; at 45 ft bgs, pecomes brown.	- 45.0 - -1305.0 -		×.		
		- 50.0 1300.0 -				
		- 55.0				
		- 60.0 -		<u> </u>		David of

Color Lithology	Sample Description and Comments	Rate				Natural Gamma	-60	mV 30	6	In 8		
	1	0 filmin 2	Sample Photos	Depth	Elevation	0 API 100		bint Resistance		ATV Amplitude-NM	Well Constru	ICTION
		0 101111 2					150	Ohms 300	0°	90° 180° 270° 0°		
	(60.0-80.0 ft) CLAY and SILT: no to low plasticity, slow dilatancy; wet; very soft; 10YR 6/2 - light brownish gray; at 75 ft bgs, clay content increases to 80%.			- 65.0 - - 70.0 - - 75.0 -	- 1290.0 - - 1285.0 - - 1280.0 - - 1280.0 - - 1275.0 -		Mr. A. Com					Neat
00000000000000000000000000000000000000	(80.0-85.0 ft) SAND: very fine to medium grained; some small pebbles, subangular to subround; some silt; little clay, low plasticity, no dilatancy; poorly sorted; moist to wet; loose; 10YR 4/3 - brown.			- 80.0 - - 85.0 -	- 1270.0 - 		Nor A					Portland Cement (2.0-155.0 ft bgs)
	(85.0-100.0 ft) SAND: very fine to fine grained; some silt; some clay; low plasticity, slow dilatancy; wet; very soft; 7:278 (64 - light forwn; from 85 to 90 ft bgs, pockets of sand in silt and clays.			- 90.0 - - 95.0 -	- 1260.0 - - 1255.0 -			==				2 inch diameter, Sch. 40 PVC Casing (0.0-186.0 ft bgs)
	(100.0-140.0 ft) CLAY: low plasticity, slow dilatancy; some silt; some sand, very fine to fine grained: wer, very soft; 7.5/R 6/4 - light forowr; occassional very small granules of basal; from 105 to 120 ft bgs, pockets of sand; from 120 to 140 ft bgs, pockets of stiff clay.			- 100.0 - - 105.0 - - 110.0 - - 115.0 - - 120.0 - - 125.0 - - 135.0 - - 135.0 -	- 1250.0 - - 1245.0 - - 1245.0 - - 1240.0 - - 1235.0 - - 1235.0 - - 1230.0 - - 1220.0 - - 1220.0 - - 1220.0 - - 1220.0 - 		>	A A A A A A A A A A A A A A A A A A A				
	subangular to subround; some sand, very fine to fine grained; some clay, medium plasticity, no dilatancy; well sorted; wet; loose; 7.5YR 6/4 - light brown. (145.0-160.0 ft) CLAY; medium plasticity, no dilatancy; some silt; trace granules, subangular to subround; wet; very soft; 108 3/1 - very dark bluish gray; very occassional very small granules of basalt; at 150 ft bgs, color becomes more blue; at 155 ft bgs,		CONVERT	- 140.0 - - 145.0 - - 150.0 - - 155.0 -	- 1210.0 - - 1205.0 - - 1200.0 - - 1200.0 -		M And					
	pockets of stiff clay. (160.0-167.0) CLAY and GRANULES: subangular to subround; little silt, medium plasticity, no dilatancy; wet soft: 10B 3/1 - very dark bluish gray; granules composed of weathered and oxidized basait, 1 to 10 mm. (167.0-175.0 tt) GRAVEL: subangular to subround; little clay, medium plasticity, no dilatancy; well sorted; wet; loose; 10B 3/1 - very dark bluish gray; at 170 ft bgs, clay content increases to 20%.	-		- 160.0 - - 165.0 - - 170.0 -	- 1195.0 - - 1190.0 - - 1185.0 - - 1185.0 - - 1180.0 -		man Mar					Hydrated Bentonite Chips (155.0-167.0 ft bgs) #2/12 Sand Pack (167.0-179.0 ft bgs)

Munsell		Penetration				Natural Gamma		Spontaneous Potential		_		Caliper				
Color	Sample Description and Comments	Rate	Sample Photos	Depth	Elevation		-60	mV ingle Point Resistance	30	6	4777	In Amplitude	NIM	8	Well Construct	ion
Lithology	and comments	0 ft/min 2			(feet NAVD55)	0 API 100		Ohms	300	0°	90°	180°	270°	0°		
	(175.0-192.0 ft) CLAY: medium to high plasticity, no dilatancy; some granules, subangular to subround; wet; solt; 108 3/1 - very dark bluish gray; at 183 ft bgs, gravel content increases to 40%; at 186 ft bgs, gravel content increases to 60%, 2 to 20 cm granules; at 189 ft bgs, gravel content increases, 1 to 3 cm.			- 180.0 - - 185.0 - - 190.0 -	-1175.0 - - 1170.0 - - 1165.0 - 	And Annaly										2 inch diameter, Sch. 40 PVC Well Screen, 0.010 inch slot (163.0-183.0 ft bgs) First Encountered Water (177.0 ft bgs)
	(192.0-210.0 ft) BASALT: aphantic; 10B 3/1 - very dark bluish gray; moderately			- 195.0 - - 200.0 -	-1160.0 - - 1155.0 -											Hydrated Bentonite Chips (179.0-186.0 ft bgs)
	blast god, hard; very filensly weathered; hard; very filensly fractured; occassional oxidized pieces of basalt, tan in color.			- 205.0 - - 210.0 -	-1150.0 - - 1145.0 -											
	REVIATIONS: bgs = beneath ground : ES: Horizontal coordinate projection: SPCS,								percent, N	IAVD88	3 = North Ameri	can Vertical	Datum of198	8, NAD83	3 = North American Datum of 1983	

Arcadis 830 NE Portlan


Arcadis U.S., Inc. 830 NE Holladay Street, Suite #109 Portland, OR 97232

WELL ID: MW-06 CLIENT: Army Environmental Command LOCATION: Yakima Training Center, WA	Project #: 30124009 Reviewed by: Jesse Hemmen, PG#2958		Logging Probes Used V Natural Gamma
DATE DRILLING STARTED: 4/23/2023 DATE DRILLING FINISHED: 4/23/2023 DATE WELL COMPLETE: 4/24/2023 DRILLING COMPANY: Gregory Drilling DRILLING RIG: Foremost DR-12 DRILLER'S NAME: Chris Gregory DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis LOGGED BY: Roberto Piemontese	NORTHING: 486049.10 EASTING: 1648988.98 TOC ELEVATION: 1315.81 ft GROUND SURFACE ELEVATION: 1313.40 ft TOTAL BOREHOLE DEPTH: 236 feet bgs BOREHOLE DIAMETER: 6.0 inches DRILLING METHOD: Air Rotary SAMPLING INTERVAL: Continuous SAMPLING DEVICE: Cyclone DRILLING FLUID USED: Water as Needed	WELL CONSTRUCTION WELL CASING: Schedule 40 PVC WELL DIAMETER:2.0 inches WELL SCREEN: Schedule 40 PVC SCREEN DIAMETER:2.0 inches SLOT SIZE: 0.010 inches SAND PACK: #2/12 Sand Pack ANNULUS SEAL:Hydrated Bentonite Chips GROUT: Neat Portland Cement COMPLETION TYPE Stick Up	Fluid Temperature/Resistivity Induction Conductivity Normal Resistivity 3-Arm Caliper Acoustic Televiewer Optical Televiewer Heat Pulse Flow Meter Spinner Flow Meter Spectral Gamma Full Waveform Sonic Nuclear Magnetic Resonance CDFM Flow Meter SPR/SP Other:
Munsell Color Lithology Sample Description and Comments Uthology Sample Photos	Depth Elevation	aneous Potential Caliper mV 30 6 In Point Resistance ATV Amplitude-NI 0° 90° 180° 2	⁸ Well Construction
(0.0-1.0 ft) SILT: medium plasticity, no dilatancy; little sand, very fine grained; dry to moist; medium stift; 7.5YR 6/3 - light brown.	0.0 - 1315.0		Stick Up Natural Backfill (0.0-5.0 ft bgs)

	0.0-1.0 ft) SILT: medium		- 0.0 -	-1315.0					[Stick Up
	plasticity, no dilatancy; little sand, very fine grained; dry to moist; medium stiff; 7.5YR 6/3 - light brown.		- 0.0 -	-1310.0						Natural Backfill (0.0-5.0 ft
	(1.0-2.5 ft) SILT: medium plasticity, no dilatancy; little sand, very fine grained; dry to moist; medium stiff; 7.5YR 6/3 - light		- 5.0 -							bgs)
· · · · · · · · · · · · · · · · · · ·	2.5-3.0 ft) SANDSTONE: weathered; soft; 7.5YR 6/3 - light brown.		- 10.0 -	-1305.0				-		Hydrated Bentonite
	(3.0-20.0 ft) SANDSTONE: fractured; 10YR 5/3 - brown; mafic	e zie	- 15.0 -	-1300.0				-		Chips (5.0-20.0 ft bgs)
т. т	inclusions; at 15 ft bgs, presence of oxidation.		- 20.0 -	-1295.0-						
тт т				- 1290.0 -	Ş					
			- 25.0 -	- 1285.0 -	<u>E</u>					
· · · · · · · · · · · · · · · · · · ·	(20.0-45.0 ft) SANDSTONE: hard; medium to fine grains; 10YR 5/3 -		- 30.0 -							
т. т	brown; mafic inclusions.		- 35.0 -	-1280.0				-		
			- 40.0 -	-1275.0 -						
				-1270.0						
т			- 45.0 -	- 1265.0 -						
			- 50.0 -					-		
	(45.0-65.0 ft) SANDSTONE: fractured; 10YR 5/3 - brown; red oxidation along fractured surfaces; mafic inclusions.		- 55.0 -	-1260.0						
			- 60.0 -	-1255.0						
MW-06										Page 1 of

Munsell Color	2 mile David	Penetra Rate	ion			Natural	Gamma	-60	meous Potential	6	Calip		8 V			
Lithology	Sample Description and Comments	0 ft/min	2 Sample Photos	Depth	Elevation	0 A	NPI 100	Single F	oint Resistance	-	ATV Ampli	tude-NM		Vell Cor	nstruc	tion
					- 1250.0 -	Ś		150	Ohms 30) 0°	90° 180	<u>° 270°</u>	0°			
— · · · ·				- 65.0 -		Man							-			
····.	(65.0-80.0 ft) MUDSTONE: stiff; 10YR 5/1 - gray; stiff; at 80 ft bgs,		to a	- 70.0 -	-1245.0-								_			
	presence of laminations, red, 2 to 3 mm.			- 75.0 -	- 1240.0 -					_			_			
				- 80.0 -	- 1235.0 -											
				- 85.0 -	- 1230.0 -	A A										
 				- 05.0 -	- 1225.0 -	X										
т т	(80.0-110.0 ft) SANDSTONE:			- 90.0 -	- 1220.0 -	A A A A A A A A A A A A A A A A A A A										
	fractured; 10YR 2/1 - black; at 95 ft bgs, alternating layers of sandstone and siltstone, light brown.			- 95.0 -		and the second se	•									
 				- 100.0 -	-1215.0-	A A A A A A A A A A A A A A A A A A A							-			
				- 105.0 -	- 1210.0 -								_			
				- 110.0 -	- 1205.0 -								_			
····	(110.0-122.0 ft) SILTSTONE:			- 115.0 -	- 1200.0 -											2 inch
	(110.0-122.0 ft) SILTSTONE: 10YR 5/1 - gray; 0.5 to 1 cm layers of mudstone, dark red.			- 120.0 -	- 1195.0 -											diameter, Sch. 40 PVC Casing (0.0-236.0 ft
··		-			- 1190.0 -											bgs) Neat Portland Cement
				- 125.0 -	- 1185.0 -											(20.0-218.5 ft bgs)
				- 130.0 -	- 1180.0 -		•									
	(122.0-150.0 ft) MUDSTONE: 10B 3/1 - very dark bluish gray; from 138 to 142 ft bgs, becomes softer.		23	- 135.0 -		J. Jam							-			
		Γ		- 140.0 -	-1175.0-											
+ · · · · · · · +				- 145.0 -	-1170.0-	A A										
				- 150.0 -	-1165.0-											
				- 155.0 -	-1160.0-		• •									
	(150.0-170.0 ft) MUDSTONE:		63.		- 1155.0 -	MAN A			N. S. S.							
	(150.0-170.0 ft) MUDSTONE: 10YR 5/1 - gray; soft.		-	- 160.0 -	-1150.0-				5							
			020	- 165.0 -	- 1145.0 -		F		2							
				- 170.0 -					3							
				- 175.0 -	-1140.0-				5							Page 2 (

MW-06

NOTES: Horizontal coordinate projection: SPCS, Washington South, NAD83 Datum, U.S. Survey Feet. Elevation is reported in the NAVD88 (Geoid 18) system. Hand augered to 5.0 ft bgs or to refusal.

WELL ID: MW-07 CLIENT: Army Environmental Command LOCATION: Yakima Training Center, WA	Project #: 30124009 Reviewed by: Jesse Hemmen, PG#2958		Logging Probes Used
DATE DRILLING STARTED: 4/23/2023 DATE DRILLING FINISHED: 4/23/2023 DATE WELL COMPLETE: 4/24/2023 DRILLING COMPANY: Gregory Drilling DRILLING RIG: Foremost DR-12 DRILLER'S NAME: Nicholas Pilar DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis	NORTHING: 485716.90 EASTING: 1649418.98 TOC ELEVATION: 1323.93 ft GROUND SURFACE ELEVATION: 1321.20 ft TOTAL BOREHOLE DEPTH: 236 feet bgs BOREHOLE DIAMETER: 6.0 inches DRILLING METHOD: Air Rotary SAMPLING INTERVAL: Continuous	WELL CONSTRUCTION WELL CASING: Schedule 40 PVC WELL DIAMETER: 2.0 inches WELL SCREEN: Schedule 40 PVC SCREEN DIAMETER: 2.0 inches SLOT SIZE: 0.010 inches SAND PACK: #2/12 Sand Pack ANNULUS SEAL:Hydrated Bentonite Chips GROUT: Neat Portland Cement	Fluid Temperature/Resistivity Induction Conductivity Normal Resistivity 3-Arm Caliper Acoustic Televiewer Optical Televiewer Heat Pulse Flow Meter Spinner Flow Meter Spectral Gamma Full Waveform Sonic Nuclear Magnetic Resonance CDFM Flow Meter SPR/SP Other:
LOGGED BY: Roberto Piemontese	SAMPLING DEVICE: Cyclone DRILLING FLUID USED: Water as Needed	COMPLETION TYPE Stick Up	
Munsell Sample Description and Comments Lithology Sample Photos	Depth Elevation -60	neous Potential Caliper mV 30 6 In Point Resistance ATV Amplitude-NM 0° 90° 180° 27	

					150	Ohms	300	0° 90°	18	0° 27	0° 0°		 	
		- 0.0 -	- 1320.0 -										Na Ba	ick Up atural ackfill
(5.0-10.0 ft) SAND: very fine to coarse grained, angular to subround; some granules to small pebbles, angular to subangular; some siti, no plasticity, no		- 5.0 -	- 1315.0 -										Hyd Ben C (2.0	0-2.0 ft bgs) drated ntonite Chips 0-5.0 ft
dilatancy; poorly sorted; dry; loose; 10YR 5/2 - grayish brown. (10.0-15.0 ft) SILT: medium		- 10.0 -	-1310.0-										b	bgs)
plasticity, no dilatancy; some sand, very fine to fine grained; dry; soft; 10YR 5/3 - brown.	100	- 15.0 -	- 1305.0-											
(15.0-20.0 ft) SILT: medium plasticity, no dilatancy; trace sand, very fine to fine grained; dry; soft; 10YR 5/3 - brown.		- 20.0 -		Ser er										
(20.0-25.0 ft) SILT: medium plasticity, no dilatancy; some sand, very fine to fine grained; little clay; dry; soft; 10YR 6/6 - brownish		- 25.0 -	- 1300.0 -											
yellow; iron oxide staining.		20.0	- 1295.0 -											
(25.0-40.0 ft) SILT: medium plasticity, no dilatancy; trace sand, very fine to fine grained; dry; doft;		- 30.0 -	- 1290.0 -											
10YR 6/2 - light brownish gray.		- 35.0 -	-1285.0-											
(40.0-45.0 ft) SILT: medium plasticity, no dilatancy; trace granules, subangular to subround; trace sand, very fine to fine		- 40.0 -	- 1280.0 -											
grained; dry; sóft; 10YR 6/2 - light brownish gray. (45.0-50.0 ft) SILT: medium	A	- 45.0 -	- 1275.0 -											
plasticity, no dilatancy; trace sand, very fine to fine grained; dry; soft; 10YR 6/2 - light brownish gray.	Sec.	- 50.0 -												
(50.0-55.0 ft) SILT: medium plasticity, no dilatancy; some sand, very fine to fine grained; dry; soft; 10YR 6/2 - light brownish gray.	1	55.0	- 1270.0 -	and the second se										
(55.0-60.0 ft) SILT: medium plasticity, no dilatancy; some sand, very fine to fine grained; dry; very soft; 10YR 6/2 - light brownish	La L	- 55.0 -	- 1265.0 -											

MW-07

Munsell		Penetration	1			Natura	Gamma	Spor	ntaneous Potential			Cali	per						
Color	Sample Description and Comments	Rate	Sample Photos	Depth	Elevation			-60	mV e Point Resistance	30	6	Ir ATV Ampl		8	V	/ell Co	onstru	ictio	n
Lithology		0 ft/min 2			(feet NAVDEE)	0 A	API 10	0		200	08								
	n		and the second second		- 1260.0 -	-		150	Ohms	300	0° 9	90° 18	0° 270°	0°					
	(60.0-70.0 ft) SILT and SAND: low					5													
	plasticity, no dilatancy; very fine to medium grained; dry; soft; 10YR		Terra.	- 65.0 -	-	<u> </u>													
	6/2 - light brownish gray; iron oxide staining.				- 1255.0 -														
	stairiirig.		-																
	(70.0-75.0 ft) SAND and SILT:		-	- 70.0 -	- 1250.0 -	~													
	very fine to medium grained; low plasticity, no dilatancy; dry; soft;				1200.0	\leq													
	10YR 5/3 - brown.			- 75.0 -		l l													
					- 1245.0 -	All and a second se													
	(75.0-90.0 ft) SAND: very fine to very coarse grained, subangular to			- 80.0 -	4040.0		•												
	subround; some silt, no plasticity, no dilatancy; little small to medium pebbles, angular to subangular;				- 1240.0 -														
	poorly sorted; dry; loos; 10YR 5/3 -			05.0		4													
	brown; iron oxide staining.		- in a	- 85.0 -	- 1235.0 -														
		1	a manage																
1.8.1	(90.0-95.0 ft) SANDSTONE: fine	-	54	- 90.0 -						+									
	to coarse grains, subangular to subround, poorly cemented; 10YR	1			- 1230.0 -	م ج													
÷	4/2 - dark grayish brown; iron oxide staining.		The second second			3													
т ··т.	(95.0-100.0 ft) SILTSTONE: some	1	att.	- 95.0 -	- 1225.0 -	5													
··	sand, very fine to medium grained; 5Y 6/2 - pale yellow; iron oxide				0.0														
	staining.	1	10 · 000	- 100.0 -		<u> </u>													
···	(100.0-105.0 ft) MUDSTONE:		1.2		- 1220.0 -	, see													
 	small subangular granules; 5G 6/1 - greenish gray.					Ş													
		-		- 105.0 -	- 1215.0 -	5													
	(105.0-115.0 ft) SILT: medium to		-		1215.0-	No.													
	high plasticity, no dilatancy; some sand, very fine to meduim grained;			- 110.0 -		5													Neat Portland
	dry; soft; 5GY 7/1 - light greenish		1.4	110.0	- 1210.0 -	5													Cement
	gray.		-			<u>S</u>												(5	5.0-217.0 ft bgs)
		-		- 115.0 -	-	5													2-inch
· · –	(115.0-120.0 ft) SILTSTONE: little sand, medium to coarse grained,		1 Part		- 1205.0 -	5													diameter, Sch. 40
····	subangular to subround; 10Y 5/1 - greenish gray; iron oxide staining.					Ş												P	VC casing 0.0-236.0 ft
<u> </u>				- 120.0 -	- 1200.0 -														bgs)
	1																		
·····	(120.0-130.0 ft) SILTSTONE: some sand, fine to medium		1 and	- 125.0 -	-	l se													
· · · · - ·	grained; 10YR 5/2 - grayish brown.				-1195.0-	~													
·····			-	1		5													
	(130.0-135.0 ft) SANDSTONE:	1	1.200	- 130.0 -	-1190.0-														
···· · -	fine grained with some silt; 10GY 4/1 - dark greenish gray; trace iron		-			Ę	1												
<u> </u>	oxide staining.	4	- Hast	- 135.0 -		Ę	-												
·····	1				-1185.0-		•												
	(135.0-145.0 ft) SILTSTONE: soe		and a second sec				-												
	sand, fine to medium grained, subround; soft; 10Y 6/1 - greenish		22	- 140.0 -	- 1180.0 -	5													
···	gray; little iron oxide staining.					<u></u>													
		1	10 A	- 145.0 -	-	2													
	1				- 1175.0 -	×.													
<u> </u>						3													
т	1	1		- 150.0 -	- 1170.0 -														
			and and		1170.0-	5													
	1		The set	- 155 0			<u>-</u>												
Ţ			Martin .	- 155.0 -	-1165.0-	2													
	(145.0-175.0 ft) MUDSTONE: little						ł												
· · . · · ·	sandstone granules, fine grained, subangular; soft; 5G 6/1 - greenish	1	-	- 160.0 -			\$												
· _	gray.		Sin :		-1160.0-														
Ţ			All I	107.5															
 			Carlo I	- 165.0 -	-1155.0-		>												
···						<													
· –	1	1	2000	- 170.0 -	-	5	-												
		1			-1150.0-	2	•												
	1	1																	
		4	1000	- 175.0 -	ł		1	1		_		I							

unsell		Penetration				Natural Gamma		Spontaneo	ous Potential				Caliper						
Color	Sample Description	Rate	Sample Photos	Depth	Elevation		-60		nV	30	6		In		8	W	ell Co	nstruc	tion
nology	and Comments	0 ft/min 2	Sample Friotos		(feet NAVD00)	0 API 100		Single Poir	nt Resistance			ATV A	Amplitude	e-NM		••	0		
lology					,		150	0	hms	300	0°	90°	180°	270°	0°				
	(175.0-190.0 ft) MUDSTONE: some sand, very fine to medium grained; title sandstone granules, subangular; soft; 5G 6/1 - greenish gray.			- 180.0 - - 185.0 -	- 1145.0 - - 1140.0 - - 1135.0 -														
H	(190.0-195.0 ft) MUDSTONE: little sand, very fine to medium grained; 5G 6/1 - greenish gray.	_		- 190.0 - - 195.0 -															
H. : H. : H. : H. :	(195.0-205.0 ft) MUDSTONE: little sandstone granules, fine grained, subangular, G6 (41 - greenish gray, trace iron oxide staining.		2	- 200.0 -	- 1125.0 - - 1120.0 -														
	(205.0-230.0 ft) SANDSTONE:	_		- 205.0 - - 210.0 - - 215.0 -	- 1115.0 - - 1110.0 - - 1110.0 - - 1105.0 -														
	fine to medium grained; SBG 3/1 - very dark greenish gray; at 220 ft bgs, silt content increases.			- 220.0 - - 225.0 -	 - 1100.0 - 												X		Hydrat Bentor Chip (217.0-2 ft bgs #2/12 S Pacl (221.0-2
	(230.0-236.0 ft) SANDSTONE: fine grained; laminated; 2.5Y 6/4 - light yellowish brown; trace iron oxide staining; some inclusion of 5BG 3/1 - very dark greenish gray			- 230.0 -	- 1095.0 - - 1090.0 -														ft bgs 2-inc diamete h. 40 PVC W Scree 0.010 in slot (22
	sandstone.		· · ·	- 235.0 -	- 1085.0 -													\sim	235.0 ft

ABBREVIATIONS: bgs = beneath ground surface, NA = not available, ft = feet, PVC = polyvinyl chloride, USCS = Unified Soil Classification System, in = inches, mm = millimeters, <= less than, % = percent, NAVD88 = North American Vertical Datum of 1988, NAD83 = North American Datum of 1988, NAD83 = N

NOTES: Horizontal coordinate projection: SPCS, Washington South, NAD83 Datum, U.S. Survey Feet. Elevation is reported in the NAVD88 (Geoid 18) system. Hand augered to 5.0 ft bgs or to refusal.

WELL ID: MW-08 CLIENT: Army Environmental Command LOCATION: Yakima Training Center, WA	Project #: 30124009 Reviewed by: Jesse Hemmen, PG#2958			Logging Probes Used Natural Gamma Fluid Temperature/Resistivity
DATE DRILLING STARTED: 4/23/2023	NORTHING: 485710.84 EASTING: 1650395.35	WELL CON	STRUCTION	Induction Conductivity Normal Resistivity
DATE DRILLING FINISHED: 4/23/2023	TOC ELEVATION: 1360.67 ft	WELL CASING: Sche	dule 40 PVC	✓ 3-Arm Caliper Acoustic Televiewer
DATE WELL COMPLETE: 4/24/2023	GROUND SURFACE ELEVATION: 1358.00 ft	WELL DIAMETER: 2.0	inches	Optical Televiewer Heat Pulse Flow Meter
DRILLING COMPANY: Gregory Drilling	TOTAL BOREHOLE DEPTH: 210 feet bgs	WELL SCREEN: Sche		Spinner Flow Meter Spectral Gamma
DRILLING RIG: Foremost DR-12	BOREHOLE DIAMETER: 6.0 inches	SLOT SIZE: 0.010 incl	hes	Full Waveform Sonic Nuclear Magnetic Resonance
DRILLER'S NAME: Nicholas Pilar	DRILLING METHOD: Air Rotary	SAND PACK: #2/12 Sa		CDFM Flow Meter SPR/SP
DRILLER'S ASSISTANT(S): M. Grauberer, J. Davis	SAMPLING INTERVAL: Continuous	GROUT: Neat Portland	l Cement	Other:
LOGGED BY: Larissa Sleeper	SAMPLING DEVICE: Cyclone	COMPLETION TYPE	Stick Up	
	DRILLING FLUID USED: Water as Needed			
tunsell Penetration Rate Sample Description And Comments Sample Photos De	Peth Elevation	neous Potential mV 30 Point Resistance	Caliper 6 In ATV Amplitude-NM	* Well Construction

Color	Sample Description	Rate	Sample Photos	Depth	Elevation		-60	mV	30	6		n	8	Well C	construct	ion
Lithology	and Comments	0 ft/min 4	Sample Fliolos		(feet NAVDEE)	0 API 100	Single	Point Resistance			ATV Amp	litude-NM				
Litrology		5 gam 4			(net rescal)	5 AFI 100	150	Ohms	300	0°	90° 18	30° 270°	0°			
	(0.0-1.0 ft) SILT: medium plasticity, no dilatancy; some small cobbles, subangular to subround; little sand, very fine grained; moist; stiff. 75 VR 32 - dark horw; oragnic odor; cobbles of 2 to 8 inches of diameter; presence of roots.			- 0.0 -	- 1360.0 - - 1355.0 -											Stick Up Natural Backfill (0.0-2.0 ft bgs)
	(1.0-2.0 ft) SILT: medium plasticity, no dilatancy: cobbles, small to large, subangular to subround; little clay; moist; very stiff; 7.5/R 3/2 - dark brown; organic oddr; cobbles of 2 to 8 inches diameter.			- 5.0 -	- 1350.0 -	A Contraction of the second seco										
	(2.0-3.0 ft) COBBLES and SILT: small to large, subangular to subround; medium plasticity, no dilatancy; poorly sorted; dry; stiff; 10YR 4/3 - brown; cobbles of 2 to 10 inch diameter.			- 15.0 -	- 1345.0 - - 1340.0 -		V									
	(3.0-10.0 ft) GRAVEL: granules to medium pebbles, angular to subround; well sorted; dry; loose; 10YR 2/2 - very dark brown.	ĺ		- 20.0 -	-1335.0-											
	(10.20.0 ft) SAND: medium to coarse grained, subangular to subround; small to medium pebbles, subangular to subround; little silt, no plasticity, no dilatancy; poorty sorted; dry; very loose; 10/Y 8/3' - dark brown; at 15 ft bgs, sand content increases to 75%.			- 25.0 - - 30.0 -	- 1330.0 -	and the second second							_			
	(20.0-30.0 ft) GRAVEL: granules to large pebbles, angular to subround; poorly sorted; wet; very loose; 10YR 2/1 - black.			- 35.0 -	- 1320.0 -		N.									Neat Portland
	(30.0-40.0 ft) SAND: very fine to medium grained; little granules, subangular to subround; dry; very soft; 10YR 4/3 - brown.			- 40.0 -	-1315.0-		- 5 - 7									Cement (2.0-76.0 ft bgs)
	(40.0-45.0 ft) SAND and SILT: very fine to fine grained; medium plasticity, no dilatancy; dry; very soft; 10YR 4/3 - brown.			- 45.0 -	- 1310.0 -		~	22=>		- 						
	(45.0-70.0 ft) SILT and GRAVEL: medium plasticity, no dilatancy; subangular to subround; little sand, very fine to fine grained;wet; soft 10YR 4/3 - brown.			- 50.0 - - 55.0 -	- 1305.0 -											
			-		- 1300.0 -				Ł							

Munsell Color	Sample Description	Penetra Rat	le	Courses Directors	Depth	Elevation	Natural Gamma	-60 mV 30		Well Construction]
Lithology	and Comments	0 ft/mir		Sample Photos		(feet NAVDEE)	0 API 100	Single Point Resistance	ATV Amplitude-NM		
					- 65.0 -	- 1295.0 - - - 1290.0 -		a start and a start a star			
	(70.0-90.0 ft) SILT: high plasticity, no dilatancy: some clay; wet; soft; 7.5YR 6/3 - light brown.				- 70.0 - - 75.0 - - 80.0 - - 85.0 -	- 1285.0 - - 1280.0 - - 1280.0 - - 1275.0 - 		Man Martin Contraction		Hydrated Bentonite Chips (76.0-79.0 ft bgs) 2 inch diameter, Sch. 40 PVC, well casing (0.0-82.0 ft bgs) 2 inch diameter, Sch. 40 PVC, well casing (0.0-82.0 ft bgs) 2 inch	
	(90.0-102.0 ft) SAND and GRAVEL: very fine to medium grained; subangular to subround; fittle silt, medium plasticity, slow dilatancy; wet; soft; 7.5YR 6/3 - light brow; at 95 ft bgs, sand content increases to 70% and coarsens to fine to coarse grained.	-			- 90.0 - - 95.0 - - 100.0 - - 105.0 -	- 1265.0 - - 1260.0 - - 1255.0 -				diameter, Sch. 40 PVC, well screen, 0.010 Inch slot (82.0-92.0 ft bgs) #2/12 Sand Pack (79.0-96.0 ft bgs) First Encountered	
	(102.0-120.0 ft) SILSTONE: some fine sand; 5GY 4/2 - green.				- 110.0 - - 115.0 - - 120.0 -	- 1250.0 - - 1245.0 - - 1245.0 - - 1240.0 -				Water (92.0 ft bgs)	
	(120.0-145.0 ft) SILTSTONE: some sand, fine to medium grained, rounded; 5Y 6/1 - grey; presence of very thin layers of reddish mudstone.				- 125.0 - - 130.0 - - 135.0 -	-1235.0 - -1230.0 - - 1225.0 - - 1225.0 - 				Hydrated Bentonite Chips (96.0-160.0 ft)	
「日本市大学の中心での					- 140.0 - - 145.0 - - 150.0 -	- 1215.0 - - 1210.0 - - 1210.0 - - 1205.0 -	A CALIFORNIA A CAL	A CAN			
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					- 155.0 - - 160.0 - - 165.0 -	- 1200.0 - 					
 MW-08					- 170.0 -	- 1185.0 -				Page 2	

Munsell		Penetration				Natural	Gamma		Spontane	ous Potential				Calip	er		
Color	Sample Description and Comments	Rate	Sample Photos	Depth	Elevation			-60		mV int Resistance	30	6	47)	In (Amplit	ude-NM	8	Well Construction
Lithology	and Comments	0 ft/min 4			(feet NAVD55)	0 A	.PI 100		-								
				- 175.0 -	-			150	(Dhms	300	0°	90°	180	° 270	° 0°	
······································	(145.0-210.0 ft) SILTSTONE: some sand, fine to medium grained, round; 5GY 4/2 - green; at 160 ft bgs, presence of thin layers		Tersies.	- 180.0 -	- 1180.0 -												
	of mudstone, 2.5Y 5/1 - grey; occassional traces of sandstone, 10YR 7/6 - orangish brown.			- 185.0 -	-1175.0-												
				- 190.0 -	- 1170.0 -												
· · · · · · · · · · · · · · · · · · ·				- 195.0 -	- 1165.0 -												
H : H :				- 200.0 -	-1160.0-												
				- 205.0 -	-1155.0-												
···· +· + ···				- 210.0 -	-1150.0-												
			- Carton	- 215.0 -	-1145.0-												
				- 220.0 -	- 1140.0 -												
				- 225.0 -	- 1135.0 -												
				- 230.0 -	- 1130.0 -												
				- 235.0 -	-1125.0-												
ABBR	REVIATIONS: bgs = beneath ground s	surface, NA =	not available, ft = feet, F		nyl chloride,	USCS = Unified Soil Cla	ssification System, in =	inches, mn	n = millimeters,	. < = less than, % = p	ercent, N	AVD88 =	North Ame	erican Verl	tical Datum	of1988, NAD	83 = North American Datum of 1983
	ES: Horizontal coordinate projection: SPCS, W																

Attachment 2

Baseline Data Validation Reports

Yakima Training Center PFAS RI

DATA REVIEW

Yakima, Washington

Per- and Polyfluoroalkyl Substances (PFAS) Analysis

SDG #410-115153-1

Analyses Performed By: Eurofins Lancaster Laboratories Environmental Lancaster, Pennsylvania

Report #48944R Review Level: Stage 2b/4 Project: 30124009.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 410-115153-1 for samples collected in association with the Yakima Training Center (YTC) site. The review was conducted as 100 percent Stage 2B and 10% Stage 3/4 evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	Analysis
					PFAS
YTC-MTS-2-GW-020823	410-115153-1	Water	02/08/2023		х
YTC-FD-01-GW-020823	410-115153-2	Water	02/08/2023	YTC-MTS-2-GW-020823	х
YTC-MTS-4-GW-020823	410-115153-3	Water	02/08/2023		х
YTC-TVR-2-GW-020823	410-115153-4	Water	02/08/2023		Х
YTC-MRC-2-GW-020823	410-115153-5	Water	02/08/2023		х
YTC-MMP-2-GW-020823	410-115153-6	Water	02/08/2023		х
YTC-MMP-1-GW-020823	410-115153-7	Water	02/08/2023		х
YTC-EB-3-020823	410-115153-8	Water	02/08/2023		х
YTC-FB-3-020823	410-115153-9	Water	02/08/2023		х

Notes:

- 1. Stage 4 validation was performed on sample location YTC-MMP-1-GW-020823.
- 2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations associated with this SDG.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		rmance ptable	Not
	Items Reviewed	No	Yes	No Yes		Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		X	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories (QSM) conducted using Liquid Chromatography Tandem Mass Spectrometry compliant with Table B-15 of QSM 5.4. Data were reviewed in accordance with Eurofins Lancaster Laboratories Environmental (ELLE) SOP T-PFAS-WI36458 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Revision 1.1 Modified QSM 5.4 Table B-15 Using /LC/MS/MS, Version 3 (2022), SOP T-PFAS-WI36459 Polyfluorinated Alkyl Substances (PFASs) in Solids by Method 537 Version 1.1 Modified QSM 5.4 Table B-15 Using LC/MS/MS, Version 2 (2022), Department of Defense (DoD) Quality Systems Manual (QSM) 5.4, DoD General Data Validation Guidelines, November 2019, DoD Final Data Validation Guidelines Module 3: PFAS, May 2020, and Final Programmatic Uniform Federal Policy-Quality Assurance Project Plan USAEC PFAS PA/SI Active Army Installations, October 2019 (Arcadis).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified, and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Per DoD General Data Validation Guidelines November 2019 Revision 1 Section 4.8 states; "The following provides a brief explanation of the DoD data validation qualifiers assigned to results during the data review process by a data validator. The reviewer should use these qualifiers, as applicable, unless other data qualifiers are specified in a project related document, such as a QAPP. If other qualifiers are used, a complete explanation of those qualifiers should accompany the data validation report." Below are the qualifier codes that may be applied in this validation report:

- Concentration (C) Qualifiers
 - U The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The reported result was an estimated value with an unknown bias.
 - J+ The result was an estimated quantity, but the result may be biased high.
 - J- The result was an estimated quantity, but the result may be biased low.
 - UJ The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.

X The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

A fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

PERFLUOROALKYL SUBSTANCES (PFAS) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
DoD QSM 5.4	Water	28 days to extraction; 28 days from extraction to analysis	Cool to <6 °C
Table B-15	Soil	28 days to extraction; 28 days from extraction to analysis	Cool to <6 °C

The holding time has been changed from the original holding time documented in EPA 537 of 14 days for extraction to 28 days. This was documented in EPA Technical Brief EPA/600/F-17/022h Updated January 2020. Utilizing the new guidance of 28 days all samples were analyzed within the specified holding time criteria.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, instrument, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Instrument blanks measure carryover in the instrument from one sample to another. Method blanks measure laboratory contamination. Equipment rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the detection limit (DL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

The compound perfluorooctanesulfonic acid was detected in the associated equipment blank- YTC-EB-3-020823; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required. All other criteria were met.

3. Mass Calibration

Mass calibration and system performance were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The percent relative standard deviation (%RSD) of the response factors (RF) must be less than 20%, or for linear calibration, $r^2 \ge 0.99$. Analytes must be within 70-130% recovery of their true value for each calibration standard. The initial calibration verification (ICV) standard recoveries must be within 70-130% recovery of their true value.

The initial calibration, calibration standards and ICV recoveries were within acceptable limits.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration verification (CCV) standards must exhibit a percent recovery (%R) within 70% to 130%.

All compounds associated with the CCVs were within the specified control limits.

4.3 Instrument Sensitivity Check (ISC)

The ISC concentration must be at the LOQ. All target compounds associated with the ISC must exhibit a percent recovery (%R) of 70 to 130%.

All compounds associated with ISC recoveries were within control limits.

4.4 Ion Transitions

Quantitation of analytes must use the ion transitions documented in DoD QSM 5.4 Table B-15.

The ion transitions were as specified in DoD QSM 5.4.

5. Extracted Internal Standards (EIS)

Labeled standards must be added to all field samples and QC samples prior to extraction. EIS recoveries must be within 50% to 150% of ICAL midpoint standard area or area measured in the initial CCV on days when ICAL not performed.

Sample locations associated with EIS exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	EIS	Associated Compounds	EIS %R	RE EIS %R
YTC-MTS-2-GW-020823	M2-4:2 FTS	4:2 FTS	>150%	AC
YTC-FD-01-GW-020823	M2-4:2 FTS	4:2 FTS	>150%	AC
YTC-MTS-4-GW-020823	M2-4:2 FTS	4:2 FTS	>150%	AC
	M2-6:2 FTS	6:2 FTS	>150%	AC
YTC-TVR-2-GW-020823	M2-4:2 FTS	4:2 FTS	>150%	AC
	M2-6:2 FTS	6:2 FTS	>150%	AC
YTC-MRC-2-GW-020823	13C4 PFHpA	Perfluoroheptanoic acid (PFHpA)	< 50 but >20%	AC
11C-WINC-2-GW-020025	13C4 PFBA	Perfluorobutanoic acid (PFBA)	< 50 but >20%	AC
YTC-MMP-2-GW-020823	13C3 PFHxS	Perfluorohexanesulfonic acid (PFHxS)	< 20% (DL)	AC
	13C4 PFHpA	Perfluoroheptanoic acid (PFHpA)	< 20% (DL)	AC
YTC-MMP-1-GW-020823	13C9 PFNA	Perfluorononanoic acid (PFNA)	< 50 but >20%	AC
	13C3 PFHxS	Perfluorohexanesulfonic acid (PFHxS)	< 20% (DL)	AC

Sample Locations	EIS	Associated Compounds	EIS %R	RE EIS %R
	13C8 PFOS	Perfluorooctanesulfonic acid (PFOS)	< 20% (DL)	AC
	M2-4:2 FTS	4:2 FTS	>150%	AC
	13C5 PFHxA	Perfluorohexanoic acid (PFHxA)	>150%	AC
YTC-FB-3-020823	13C3 PFBS	Perfluorobutanesulfonic acid (PFBS)	>150%	AC
	13C4 PFBA	Perfluorobutanoic acid (PFBA)	>150%	AC
	13C5 PFPeA	Perfluoropentanoic acid (PFPeA)	>150%	AC

Notes:

AC Acceptable

DL Dilution

Where a re-extracted analysis was performed, results are reported from the analysis in bold above.

The analytical report lists the EIS recoveries based on true value. Form VIII was reviewed for area counts between the sample location and the initial CCV for EIS recovery exceedances. The recoveries reported on the analytical result pages can be slightly different when calculated using area.

The criteria used to evaluate the EIS recoveries are presented in the following table. In the case of an EIS deviation, the sample results associated with the EIS are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
. 4500/	Non-detect	No Action
> 150%	Detect	J-
- 50%	Non-detect	UJ
< 50% but > 20%	Detect	J+
	Non-detect	UX
< 20%	Detect	Х

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the DoD QSM 5.4 acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must be \leq 30%.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis was not performed on sample locations associated with this SDG.

7. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery and RPD within the DoD QSM 5.4 acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. For sample results greater than five times the LOQ, control limits of 30% for water matrices and 50% for soils are applied to the RPD between the parent sample and the field duplicate sample results. For sample results less than five times the LOQ, a control limit of two times the LOQ is applied for water matrices and a control limit of three times the LOQ is applied for soil matrices. The table below presents analytical results for each parent/duplicate sample pair, either an RPD value or an absolute difference value (as applicable), the applicable control limit (as either a percentage or a multiplier of the LOQ), and determination of whether the parent/duplicate sample results differences meet the applicable control limits.

Sample ID / Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD/ Absolute Difference	LOQ CL/ RPD CL	AC/ NC
	Perfluorohexanoic acid	15	15	0.0%	30%	AC
	Perfluoroheptanoic acid	5.6	5.5	0.1	3.2	AC
	Perfluorooctanoic acid	5.9	5.9	0.0	3.2	AC
	Perfluorononanoic acid	0.82 J	0.90 J	0.08	3.2	AC
YTC-MTS-2-GW-	Perfluorobutanesulfonic acid	8.2	8.3	0.1	3.2	AC
020823 / YTC-FD-01-GW-	Perfluorohexanesulfonic acid	28	28	0.0%	30%	AC
020823	Perfluorooctanesulfonic acid	33	30	9.5%	30%	AC
	Perfluoropentanesulfonic acid	6.5	6.5	0.0	3.2	AC
	Perfluoroheptanesulfonic acid	0.76 J	0.67 J	0.09	3.2	AC
	Perfluorobutanoic acid	7.5	7.4	0.1	8	AC
	Perfluoropentanoic acid	13	13	0.0%	30%	AC

Notes:

AC Acceptable

CL Control limit

The calculated RPDs for results greater than five times the LOQ and the absolute differences for results less than five times the LOQ were acceptable between the parent sample and field duplicate.

9. Compound Identification

PFC analytes are identified by using the compound's ion abundance ratios, signal-to-noise values, and relative retention times.

Sample locations associated with ion ratios outside of the control limits of 50% to 150% recovery (%R) are presented in the following table.

Sample Location	Compound	Ion Ratio %R
YTC-MMP-1-GW-020823	Perfluorodecanesulfonic acid	39%

In the case of an ion ratio deviation, the sample results are qualified as documented in the table below.

Control limit	Sample Result	Qualification
< 50% or > 150% R	Detect	J

Note a number of results were manually integrated which were spot checked. The manual quantitation (M) laboratory qualifier has been preserved with the data as informational data for the end user; there was no impact on the data usability. The manual quantitation (M) laboratory qualifier associated with data reported as non-detect have been removed.

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compounds	Original Analysis	Diluted Analysis	Reported Analysis
YTC-MTS-4-GW-020823	Perfluorohexanesulfonic acid	74 E	75	75 D
	Perfluorooctanesulfonic acid	1324 E	1100	1100 D
YTC-MRC-2-GW-020823	Perfluorohexanesulfonic acid	901 E	860	860 D
	Perfluorohexanoic acid	597 E	530	530 D
	Perfluoroheptanoic acid	209 E	180	180 D
	Perfluorooctanesulfonic acid	2727 E	2300	2300 D
YTC-MMP-2-GW-020823	Perfluoroheptanesulfonic acid	84 E	56	56 D
	Perfluoropentanoic acid	391 E	360	360 D
	6:2 Fluorotelomer sulfonic acid	614 E	630	630 D
	8:2 Fluorotelomer sulfonic acid	115 E	110	110 D
	Perfluorohexanoic acid	633 E	520	520 D
	Perfluorooctanoic acid	417 E	340	340 D
	Perfluoroheptanesulfonic acid	156 E	120	120 D
YTC-MMP-1-GW-020823	Perfluoropentanoic acid	501 E	450	450 D
	6:2 Fluorotelomer sulfonic acid	1244 E	1300	1300 D
	8:2 Fluorotelomer sulfonic acid	369 E	300	300 D
	Perfluorooctanesulfonic acid	9790 E	5600	5600 D

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range.	D

10. System Performance and Overall Assessment

Some of the compound results were qualified 'cn' that is defined as Refer to Case Narrative for further detail. The case narrative was reviewed, and associated data qualified if appropriate. The case narrative noted the EIS recoveries outside control limits as listed in Section 5, and the data was qualified. The "cn" qualifier has been removed from the database.

Some of the compound results were qualified 'J1' that is defined as the quantitation is an estimation due to discrepancies in the meeting certain analyte-specific quality control criteria. The "J1" qualifier has been removed and qualified as estimated 'J'.

Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PFAS

PFAS: DoD QSM 5.4	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Requirec
LIQUID CHROMATOGRAPHY/MASS SPECTROME	TRY (LC/	MS/MS)			
Stage 2B Validation					
Holding times		Х		Х	
Reporting limits (units)		х		Х	
Blanks	1	1		1	1
A. Method blanks		Х		Х	
B. Equipment blanks		Х	Х		
C. Field blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R	Х				Х
Matrix Spike Duplicate (MSD) %R	Х				Х
MS/MSD Precision (RPD)	Х				Х
Field Duplicate (RPD)		Х		Х	
Extracted Internal Standard %R		Х	X		
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Stage 3/4 Validation	1	1			1
Instrument tune and performance check		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration %Rs		Х		Х	
Instrument sensitivity check		Х		Х	
Ion transitions used		Х		Х	
Compound identification and quantitation		1		1	1
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		X		Х	
C. RT of sample compounds within the established RT windows		х		x	
D. Ion Ratio %R		Х	X		

Rep	oorted	Performance Acceptable		Not
No	Yes	No	Yes	Required
TRY (LC	/MS/MS)			
	x		Х	
	х		х	
	No	TRY (LC/MS/MS)	Reported Acce No Yes No TRY (LC/MS/MS) X Image: Comparison of the second s	Reported Acceptable No Yes No Yes TRY (LC/MS/MS) X X

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Pruthvi Kumar C, Arcadis

SIGNATURE:

DATE: March 20, 2023

PEER REVIEW: Dennis Capria, Arcadis

DATE: March 28, 2023

Stage 3 / 4 PFAS Calibration Standards %D

 SDG #:
 410-115153-1

 Lab:
 Eurofins Lancaster

 Project:
 Yakima Training Center PFAS RI

Date:	03/17/2023
Page:	1
Validated by:	РК

Method: EPA modified 537 per DoD QSM 5.4

PFPeA 02/	18/2023 Calik	oration		Instrumen	t: 30728	Page 1709	-1725 of SDG 4	410-115153-1			
Cal Conc					Calculated		Calc		Calculated	Reported	
ng/ml	Std Area	EIS Area	EIS Conc	Area Ratio	RF	Avg RF	Amount	Tvalue	% D	% D	
0.2	51988	2324466	10	0.022366	1.1182783	1.0293	0.217289	0.2	8.645	8.6	MATCH
0.5	125673	2482712	10	0.050619	1.0123848	1.0293	0.491783	0.5	-1.643	-1.6	MATCH
2	504339	2446209	10	0.206172	1.0308584	1.0293	2.003028	2	0.151	0.1	MATCH
8	1778826	2189878	10	0.812295	1.0153682	1.0293	7.891718	8	-1.354	-1.4	MATCH
20	4310218	2080370	10	2.071852	1.0359258	1.0293	20.12874	20	0.644	0.6	MATCH
50	8733678	1754931	10	4.97665	0.9953301	1.0293	48.34985	50	-3.300	-3.3	MATCH
100	16607702	1665472	10	9.971769	0.9971769	1.0293	96.87913	100	-3.121	-3.1	MATCH
				Avg RF	1.0293318	MATCH					

Concentration ng/ml = (Peak area ratio/Avg RF) x EIS concentration

Stage 3/4 PFAS ICV CCV Standards %D

SDG #:	410-115153-1	Date: 03/17/2023
Lab:	Eurofins Lancaster	Page: 2
Project:	Yakima Training Center PFAS RI	Validated by: PK

Method: EPA modified 537 per DoD QSM 5.3

Instrument: 30728 ICV 410-345861/9 02/18/2023 13:09 File ID: 23FEB18DCAL-09.d Page 2444 of SDG 410-115153-1

	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFPeA	480254	2295291	10.00	0.2092345	1.0293	2.0328	2.00	1.639	1.6	Match
PFHxS	394929	1794566	9.46	0.2200694	1.0806	1.9266	1.82	5.856	5.6	Match
PFHpA	656668	2988309	10.00	0.2197457	1.0328	2.1277	2.00	6.383	6.4	Match

Instrument: 30728

File ID: 23FEB22DOD-05.d

CCVIS 410-346984/1 02/22/2023 16:35 Page 2462 of SDG 410-115153-1 This CCVIS is applicable for the sample YTC-MMP-1-GW-020823 (410-115153-7)

	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFPeA	111755	2148151	10.00	0.0520238	1.0293	0.5054	0.500	1.086	1.1	Match
PFHxS	86521	1732589	9.46	0.0499374	1.0806	0.4372	0.456	-4.129	-4.1	Match
PFHpA	150073	2863851	10.00	0.0524025	1.0328	0.5074	0.500	1.477	1.5	Match

Instrument: 30728

File ID: 23FEB22DOD-83.d

CCV 410-346984/79 410-346984/79

Page 2501 of SDG 410-115153-1 This CCV is applicable for the sample YTC-MMP-1-GW-020823 (410-115153-7)

	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFPeA	443858	2180417	10.00	0.2035656	1.0293	1.9777	2.00	-1.115	-1.1	Match
PFBS	356311	1602592	9.3	0.2223342	1.0933	1.8913	1.77	6.851	6.9	Match
PFHpA	600861	2735199	10.00	0.2196773	1.0328	2.1270	2.00	6.350	6.4	Match

Concentration ng/ml = (Peak area ratio/Avg RF) x EIS concentration

Stage 3 / 4 PFAS LCS

SDG #:	410-115153-1		Date:	03/17/2023
Lab:	Eurofins Lancaster		- Page:	3
Project:	Yakima Training Center PFAS RI	V	alidated by:	РК
Method:	EPA modified 537 per DoD QSM 5.4			
	LCS ID 410-345997/3-A ANALYTE Perfluorobutanesulfonic acid		Page 972 of	SDG 410-115153-1
	RTED LCS %R 94			
	TED LCSD %R NA			
-	PORTED RPD NA			
NL.				
	%R = 100 * LCS Concentration	RPD =	= <u>100 * LCS</u>	%R - LCSD %R
	LCS TV		Average of	LCS LCSD %R
LCS C	oncentration 21.3	LCS %R	93.8326	МАТСН
LCSD C	oncentration NA	LCSD %R	NA	MATCH
	LCS TV 22.7	RPD	NA	МАТСН
	LCSD TV NA			

Differences in %R may be due to rounding of the true value

This LCS is applicable for the sample YTC-MMP-1-GW-020823 (410-115153-7)

Stage 3 / 4 PFAS Sample Concentration

SDG #: 410-115153-1 Lab: **Eurofins Lancaster** Project: Yakima Training Center PFAS RI

Date:	03/17/2023
Page:	4
Validated by:	РК

Page 1287 of SDG 410-115153-1

Method: EPA modified 537 per DoD QSM 5.4

YTC-MMP-1-GW-020823 Lab ID: 410-115153-7

ont. 20220 ī. ctr

Instrumen	t: 30728						FV= 1ml			
						Calculated				
	Analyte					Amount	Sample	Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	ng/ml	Volume mls	ng/L	Value ng/L	
PFNA	665218	793449	10.00	0.838388	0.9466	8.86	295.1	30.01	30	Match
PFDA	278308	2318134	10	0.120057	0.8872	1.35	295.1	4.59	4.6	Match
PFBS	5113584	1239418	9.30	4.125795	1.0933	35.10	295.1	118.93	120	Match

Concentration ng/ml = (Peak area ratio/Avg RF) x DF x EIS concentration Concentration ng/L = concentration ng/ml / (sample volume/1000)

Stage 3 / 4 PFAS EIS

SDG #:	410-11515	3-1			Date:	03/17/2023
Lab:	Eurofins La	ncaster			– Page:	5
Project:	Yakima Tra	ining Cente	r PFAS RI	V	alidated by:	РК
Method:	EPA modifi	ed 537 per	DoD QSM	5.3	-	
YTC-MMP	-1-GW-0208	23	Lab ID: 41	0-115153-7		
	EIS	13C3 PFBS		-		
REPOR	RTED EIS %R	71		-		
				-		
	%R =	100 * EIS C	oncentrati	on		
		EIS	TV	-		
EIS Co	ncentration	6.65		Page 1289 of SDG 41	0-115153-1	
	EIS TV	9.3		Lab Reports EIS %R ba	ased on true	value
	%R	71.5	MATCH			
	%R =	100 * EIS A	rea	_		
		CCVIS EIS A	rea	_		
	EIS Area	1239418	Page 1026	and 1289 of SDG 410	-115153-1	
CC	VIS EIS Area	1688135	Page 1018	and 2464 of SDG 410	-115153-1	
	%R	73.4				

DoD QSM 5.3 specifies EIS %R calculated from area compared to initial CCV. Lab supplies area counts on Form VIII in Stage 4 data package. Form VIII is reviewed for EIS %R exceedances.

CHAIN OF CUSTODY SAMPLE ANALYSIS DATA SHEETS

s Environme

Chain of Custody Record

15153 Chain of Custody	JA-Bal	OLER	Polle	Led Mar	РМ: tin, Elia	abet	1				Carner Tri	acking No(s)		COC No: 410-80232-2204	40 5	
Courtney Bigelow	Phone: 415.4		5375	E-Ma	uit;			urofinsu	is com		State of O	rigin:			Page: Page 5 of 5	1 of	1
ompany: nvironmental Chemical Corp.			PWSID:				6			is Rea	uestec			_	Job #:	1 01	
ddress: 304 Governors Court Suites 101 & 102	Due Date Requeste	ed:									lester	İΤ	TT	100	Preservation Cod	CH2(3,7)	
ity	TAT Requested (da	iys):				(spi									A - HCL B - NaOH	M - Hexane N - None	
Nbingdon tate, Zip:	15	day	TAT	_		nodu									C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S	
	Compliance Project	t: △ Yes /	No No		1	4 Cor									E - NaHSD4 F - MeOH	Q - Na2SO3 R - Na2S2O S - H2SO4	
10-671-2970(Tel)	PO Pending				0	st of 2									G - Amchlor H - Ascorbic Acid	T - TSP Dod U - Acetone	
mail bigelow@ecc net	WO #:				Vo)	3 (L)									I - Ice J - DI Water	V - MCAA W - pH 4-5	
roject Name: /akima PFAS	Project #: 41013850				(Yes or	A_DS	ture							tainer	K - EDTA L - EDA	Y - Trizma Z - other (sp	ecity)
ite:	SSOW#				Sample (SD (Yes	- PFC_IDA_D5.3 (List of 24 Compounds)	t Mois							Con	Other:		
				Matrix	MS/MS	5.3 - P	Moisture - Percent Moisture							ber of			
			Sample Type	(Wewster.	Filter	PFC_IDA_D5.3	d - 51							Total Number			
sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	S=solid, O=waste/oil, BT=Tissue, A=Air	Field Filt	PFC_II	Aoistu							otal	Special Ir	nstructions/	Note
		>		tion Code.		N	N			0.29				Ń	Special III	Structions	mote.
YTC- MTS-2-GW-020823	2-8-23	0856	G	Gw	NN	2	~								setlish 1	AFAS I	Expe
4TC-MTS-2-GW-020823 4TC-FD-01-GW-020823	2-8-23	0000	G	Gw	NN	2	~	R	50						4 Hich 1	AGAS 1	Fundi
4TC-MTS-4-GW-020823		1041	G	GW	NH	2	-		K	5					in Had	nals	France
UT1- TVR-2-GW-020923	0		G	GW	NN	17	_			P.					++++++	ACAS F	Linke
1.T(- M&C-7-1/1W-020823	2-9-23		6	(IW	NN	2	-			K	2				+H.d	ACAT I	English
1TT - MMP-2-GW-020823	0	1516	G	GW	MA		_				5				VUL P	KAC T	aper
VTC-MMP-1-GW-020823		16.36	G	GW	NN	6	-				Ř				section 1	PEACE	aper.
VTC-EB-3-020823	2-8-23	1715	-	W		2		+				R			* I ren		espa
	2-8-23		9	w		2	-		+-+-			4					
4TC-FB-3-020823	2-0-25	1720	9	5	MN	12		+	+ +				N		17		
THE O	A	R			++				++-				+				
Possible Hazard Identification		, all	20	>	-	mole	Dispr	sal / A	fee m	avbec	SASEA	lifsama	les are re	taino	ed longer than 1	month	
Non-Hazard Chammable Skin Irritant Poise	on B 🖂 Unkn	own	Radiologica	,	- "			To Clier			isposal				ive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)					Sp					uiremen							
Empty Kit Relinquished by:		Date:			Time						Met	hod of Ship	ment:				
Relinquished by	Date/Time 2/9/2	7 1	530	Company	1	Rece	ived by:	VS	di	R		Dat	e/Time.	19	1/23/53	Company	_
Relinquished by	Date/Time:		2 20	Company	4	Rece	eved by:	12				Dat	e/Time:	11	jus	Company	
Relinquished by	Date/Time.			Company		Rece	eived by:	1				Dat	e/Time: /			Commony	-
								12	r				2/10/2	3	9:54	Comprany	FJ

Client: Environmental Chemical Corp. Project/Site: Yakima PFAS

Job ID: 410-115153-1

Qualifiers

LCMS	
Qualifier	Qualifier Description
cn	Refer to Case Narrative for further detail
D	The reported value is from a dilution.
Н	Sample was prepped or analyzed beyond the specified holding time
I	Value is EMPC (estimated maximum possible concentration).
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
М	Manual integrated compound.
Q	One or more quality control criteria failed.
U	Undetected at the Limit of Detection.

Glossary

<u> </u>	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample ID: YTC-MTS-2-GW-020823 Date Collected: 02/08/23 08:56 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-1 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	15		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluoroheptanoic acid	5.6		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorooctanoic acid	5.9		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorononanoic acid	0.82	J	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorodecanoic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorotridecanoic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorotetradecanoic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorobutanesulfonic acid	8.2		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorohexanesulfonic acid	28		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorooctanesulfonic acid	33		1.7	1.6	0.81	ng/L	02/25/23 02:21	1
NEtFOSAA	0.81	U	2.4	0.81	0.40	ng/L	02/25/23 02:21	1
NMeFOSAA	0.97	U	1.6	0.97	0.48	ng/L	02/25/23 02:21	1
Perfluoropentanesulfonic acid	6.5		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluoroheptanesulfonic acid	0.76	J	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorononanesulfonic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorodecanesulfonic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorooctanesulfonamide	1.1	UM	1.6	1.1	0.56	ng/L	02/25/23 02:21	1
Perfluorobutanoic acid	7.5		4.0	3.2	1.6	ng/L	02/25/23 02:21	1
Perfluoropentanoic acid	13		1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluoroundecanoic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Perfluorododecanoic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
6:2 Fluorotelomer sulfonic acid	1.6	U	2.4	1.6	0.81	ng/L	02/25/23 02:21	1
8:2 Fluorotelomer sulfonic acid	1.6	U	2.4	1.6	0.81	ng/L	02/25/23 02:21	1
4:2 Fluorotelomer sulfonic acid	0.81	U	1.6	0.81	0.40	ng/L	02/25/23 02:21	1
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
M2-4:2 FTS		cn	50 - 150			02/20/23 07:09	02/25/23 02:21	1
M2-8:2 FTS	127		50 - 150			02/20/23 07:09	02/25/23 02:21	1
M2-6:2 FTS	153 Q	cn	50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C5 PFHxA	132		50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C4 PFHpA	121		50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C8 PFOA	141		50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C9 PFNA	130		50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C6 PFDA	129		50 - 150			02/20/23 07:09	02/25/23 02:21	1
13C7 PFUnA	141		50 - 150			02/20/23 07:09	02/25/23 02:21	1

131

130

128

130

127

124

132

118

101

116

13C2-PFDoDA

13C2 PFTeDA

13C3 PFBS

13C3 PFHxS

13C8 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C8 FOSA

13C4 PFBA

13C5 PFPeA

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	14	Н	1.9	0.96	0.48	ng/L		03/03/23 13:12	1
Perfluoroheptanoic acid	5.4	нм	1.9	0.96	0.48	ng/L		03/03/23 13:12	1

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Eurofins Lancaster Laboratories Environment Testing, LLC

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

02/20/23 07:09 02/25/23 02:21

1

1

1

1

1

1

1

1

1

1

Client Sample ID: YTC-MTS-2-GW-020823 Date Collected: 02/08/23 08:56 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-1 Matrix: Water

Analyte	Result	Qualifier	L	.OQ	LOD		Unit D	Analyzed	Dil Fac
Perfluorooctanoic acid	5.4	H		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorononanoic acid	0.76	JH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorodecanoic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorotridecanoic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorotetradecanoic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorobutanesulfonic acid	8.0	н		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorohexanesulfonic acid	28	н		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorooctanesulfonic acid	29	Н		2.0	1.9	0.96	ng/L	03/03/23 13:12	1
NEtFOSAA	0.96	AH		2.9	0.96	0.48	ng/L	03/03/23 13:12	1
NMeFOSAA	1.1	υн		1.9	1.1	0.57	ng/L	03/03/23 13:12	1
Perfluoropentanesulfonic acid	6.3	НМ	\sim	1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluoroheptanesulfonic acid	0.65	JH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorononanesulfonic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorodecanesulfonic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorooctanesulfonamide	0.96	JH		1.9	1.3	0.67	ng/L	03/03/23 13:12	1
Perfluorobutanoic acid	7.1	н		4.8	3.8	1.9	ng/L	03/03/23 13:12	1
Perfluoropentanoic acid	13	Н		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluoroundecanoic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Perfluorododecanoic acid	0.96	UH		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
6:2 Fluorotelomer sulfonic acid	1.9	UH		2.9	1.9	0.96	ng/L	03/03/23 13:12	1
8.2 Fluorotelomer sulfonic acid	1.9	UH		2.9	1.9	0.96	ng/L	03/03/23 13:12	1
4:2 Fluorotelomer sulfonic acid	0.96	υн		1.9	0.96	0.48	ng/L	03/03/23 13:12	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	104		50 - 150	-			03/01/23 08:26	03/03/23 13:12	1
M2-8:2 FTS	134		50 - 150				03/01/23 08:26	03/03/23 13:12	1
M2-6:2 FTS	126		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C5 PFHxA	113		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C4 PFHpA	116		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C8 PFOA	127		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C9 PFNA	121		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C6 PFDA	122		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C7 PFUnA	122		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C2-PFDoDA	122		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C2 PFTeDA	110		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C3 PFBS	116		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C3 PFHxS	128		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C8 PFOS	117		50 - 150				03/01/23 08:26	03/03/23 13:12	1
d3-NMeFOSAA	121		50 - 150				03/01/23 08:26	03/03/23 13:12	1
d5-NEtFOSAA	118		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C8 FOSA	107		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C4 PFBA	90		50 - 150				03/01/23 08:26	03/03/23 13:12	1
13C5 PFPeA	100		50 - 150					03/03/23 13:12	

Lab Sample ID: 410-115153-2 Client Sample ID: YTC-FD-01-GW-020823 Date Collected: 02/08/23 00:00 **Matrix: Water** Date Received: 02/10/23 09:54 Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Result Qualifier Analyte LOQ LOD DL Unit D Analyzed Dil Fac 0.41 ng/L Perfluorohexanoic acid 15 1.6 0.81 02/25/23 02:32 1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-FD-01-GW-020823 Date Collected: 02/08/23 00:00 Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluoroheptanoic acid	5.5		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorooctanoic acid	5.9		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorononanoic acid	0.90	JM	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorodecanoic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorotridecanoic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorotetradecanoic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorobutanesulfonic acid	8.3		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorohexanesulfonic acid	28		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorooctanesulfonic acid	30		1.7	1.6	0.81	ng/L		02/25/23 02:32	1
NEtFOSAA	0.81	U	2.4	0.81	0.41	ng/L		02/25/23 02:32	1
NMeFOSAA	0.98	U	1.6	0.98	0.49	ng/L		02/25/23 02:32	1
Perfluoropentanesulfonic acid	6.5		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluoroheptanesulfonic acid	0.67	J	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorononanesulfonic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorodecanesulfonic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorooctanesulfonamide	1.1	UN	1.6	1.1	0.57	ng/L		02/25/23 02:32	1
Perfluorobutanoic acid	7.4	'	4.1	3.3	1.6	ng/L		02/25/23 02:32	1
Perfluoropentanoic acid	13		1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluoroundecanoic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
Perfluorododecanoic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1
6:2 Fluorotelomer sulfonic acid	1.6	U	2.4	1.6	0.81	ng/L		02/25/23 02:32	1
8:2 Fluorotelomer sulfonic acid	1.6	U	2.4	1.6	0.81	ng/L		02/25/23 02:32	1
4:2 Fluorotelomer sulfonic acid	0.81	U	1.6	0.81	0.41	ng/L		02/25/23 02:32	1

	-			 		-
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	162	Q cn	50 - 150	02/20/23 07:09	02/25/23 02:32	1
M2-8:2 FTS	133		50 - 150	02/20/23 07:09	02/25/23 02:32	1
M2-6:2 FTS	142		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C5 PFHxA	135		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C4 PFHpA	122		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C8 PFOA	143		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C9 PFNA	130		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C6 PFDA	133		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C7 PFUnA	143		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C2-PFDoDA	133		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C2 PFTeDA	120		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C3 PFBS	127		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C3 PFHxS	133		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C8 PFOS	134		50 - 150	02/20/23 07:09	02/25/23 02:32	1
d3-NMeFOSAA	118		50 - 150	02/20/23 07:09	02/25/23 02:32	1
d5-NEtFOSAA	128		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C8 FOSA	115		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C4 PFBA	102		50 - 150	02/20/23 07:09	02/25/23 02:32	1
13C5 PFPeA	116		50 - 150	02/20/23 07:09	02/25/23 02:32	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	15	Н	2.0	0.99	0.49 ng/L	03/03/23 13:23	1
Perfluoroheptanoic acid	5.5	НМ	2.0	0.99	0.49 ng/L	03/03/23 13:23	1
Perfluorooctanoic acid	5.5	н	2.0	0.99	0.49 ng/L	03/03/23 13:23	1

Job ID: 410-115153-1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-FD-01-GW-020823 Date Collected: 02/08/23 00:00 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-2 Matrix: Water

Analyte		Qualifier	L	.00	LOD		Unit D	Analyzed	Dil Fac
Perfluorononanoic acid	0.78	JHM		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorodecanoic acid	0.99	UH		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorotridecanoic acid	0.99	UH		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorotetradecanoic acid	0.99	UH		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorobutanesulfonic acid	7.9	н		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorohexanesulfonic acid	29	н		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluorooctanesulfonic acid	29	Н		2.1	2.0	0.99	ng/L	03/03/23 13:23	1
NEtFOSAA	0.99	UH		3.0	0.99	0.49	ng/L	03/03/23 13:23	
NMeFOSAA	1.2	UH		2.0	1.2	0.59	ng/L	03/03/23 13:23	1
Perfluoropentanesulfonic acid	6.7	НМ	\sim	2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluoroheptanesulfonic acid	0.67	JH		2.0	0.99	0.49	ng/L	03/03/23 13:23	
Perfluorononanesulfonic acid	0.99	UΗ		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluorodecanesulfonic acid	0.99	UΗ		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluorooctanesulfonamide	0.96	JH		2.0	1.4	0.69	ng/L	03/03/23 13:23	1
Perfluorobutanoic acid	7.1	н		4.9	4.0	2.0	ng/L	03/03/23 13:23	1
Perfluoropentanoic acid	13	Н		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluoroundecanoic acid	0.99	UΗ		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Perfluorododecanoic acid	0.99	UΗ		2.0	0.99	0.49	ng/L	03/03/23 13:23	
6:2 Fluorotelomer sulfonic acid	2.0	UΗ		3.0	2.0	0.99	ng/L	03/03/23 13:23	
8:2 Fluorotelomer sulfonic acid	2.0	UΗ		3.0	2.0	0.99	ng/L	03/03/23 13:23	
4:2 Fluorotelomer sulfonic acid	0.99	υ μ		2.0	0.99	0.49	ng/L	03/03/23 13:23	1
Isotope Dilution	%Recovery Q	, ualifier	Limits				Prepared	Analyzed	Dil Fa
M2-4:2 FTS	109		50 - 150	-			03/01/23 08:26	03/03/23 13:23	
M2-8:2 FTS	127		50 - 150				03/01/23 08:26	03/03/23 13:23	1
M2-6:2 FTS	140		50 - 150				03/01/23 08:26	03/03/23 13:23	
13C5 PFHxA	117		50 - 150				03/01/23 08:26	03/03/23 13:23	
13C4 PFHpA	116		50 - 150				03/01/23 08:26	03/03/23 13:23	-
13C8 PFOA	129		50 - 150				03/01/23 08:26	03/03/23 13:23	-
13C9 PFNA	127		50 - 150				03/01/23 08:26	03/03/23 13:23	
13C6 PFDA	119		50 - 150				03/01/23 08:26	03/03/23 13:23	-
13C7 PFUnA	123		50 - 150				03/01/23 08:26	03/03/23 13:23	-
13C2-PFDoDA	127		50 - 150				03/01/23 08:26	03/03/23 13:23	
			50 - 150				03/01/23 08:26	03/03/23 13:23	-
13C2 PFTeDA	115		00 - 700				02/01/22 08:26	03/03/23 13:23	
	115 115		50 - 150				03/01/23 00.20	03/03/23 13.23	
13C3 PFBS								03/03/23 13:23	
13C3 PFBS 13C3 PFHxS	115		50 - 150				03/01/23 08:26		•
13C3 PFBS 13C3 PFHxS 13C8 PFOS	115 133		50 ₋ 150 50 ₋ 150				03/01/23 08:26 03/01/23 08:26	03/03/23 13:23	
13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA	115 133 127		50 - 150 50 - 150 50 - 150				03/01/23 08:26 03/01/23 08:26 03/01/23 08:26	03/03/23 13:23 03/03/23 13:23	
13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA d5-NEtFOSAA	115 133 127 118		50 - 150 50 - 150 50 - 150 50 - 150				03/01/23 08:26 03/01/23 08:26 03/01/23 08:26 03/01/23 08:26	03/03/23 13:23 03/03/23 13:23 03/03/23 13:23	
13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C8 FOSA 13C4 PFBA	115 133 127 118 120		50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				03/01/23 08:26 03/01/23 08:26 03/01/23 08:26 03/01/23 08:26 03/01/23 08:26	03/03/23 13:23 03/03/23 13:23 03/03/23 13:23 03/03/23 13:23	

Client Sample ID: YTC-MTS-4-GW-020823 Date Collected: 02/08/23 10:41 Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac D Perfluorohexanoic acid 27 1.6 0.81 0.41 ng/L 02/25/23 02:43 Perfluoroheptanoic acid 5.6 1.6 0.81 0.41 ng/L 02/25/23 02:43

Eurofins Lancaster Laboratories Environment Testing, LLC

Matrix: Water

1

1

Client Sample ID: YTC-MTS-4-GW-020823 Date Collected: 02/08/23 10:41 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-3 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD		Unit D	Analyzed	Dil Fa
Perfluorooctanoic acid	6.0		1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorononanoic acid	0.81 L	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorodecanoic acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorotridecanoic acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorotetradecanoic acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorobutanesulfonic acid	18		1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorooctanesulfonic acid	30		1.7	1.6	0.81	ng/L	02/25/23 02:43	
NEtFOSAA	0.81 L	J	2.4	0.81	0.41	ng/L	02/25/23 02:43	
NMeFOSAA	0.98 l	J	1.6	0.98	0.49	ng/L	02/25/23 02:43	
Perfluoropentanesulfonic acid	17		1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluoroheptanesulfonic acid	1.7		1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorononanesulfonic acid	0.81 L	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorodecanesulfonic acid	0.81 L	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorooctanesulfonamide	1.1 U	J	1.6	1.1	0.57	ng/L	02/25/23 02:43	
Perfluorobutanoic acid	7.5		4.1	3.3	1.6	ng/L	02/25/23 02:43	
Perfluoropentanoic acid	12		1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluoroundecanoic acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
Perfluorododecanoic acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
5:2 Fluorotelomer sulfonic acid	1.6 t	J	2.4	1.6	0.81	ng/L	02/25/23 02:43	
3:2 Fluorotelomer sulfonic acid	1.6 l	J	2.4	1.6	0.81	ng/L	02/25/23 02:43	
H2 Fluorotelomer sulfonie acid	0.81 l	J	1.6	0.81	0.41	ng/L	02/25/23 02:43	
sotope Dilution	%Recovery Qua	alifier Lim	its			Prepared	Analyzed	Dil Fa
M2-4:2 FTS	172 Q cr	n 50 -	150			02/20/23 07:09	02/25/23 02:43	
M2-8:2 FTS	125	50 -	150			02/20/23 07:09	02/25/23 02:43	
M2-6:2 FTS	156 Q cr	n 50-	150			02/20/23 07:09	02/25/23 02:43	
13C5 PFHxA	136	- 50	150			02/20/23 07:09	02/25/23 02:43	
13C4 PFHpA	122	50 -	150			02/20/23 07:09	02/25/23 02:43	
13C8 PFOA	150	50 -	150			02/20/23 07:09	02/25/23 02:43	
13C9 PFNA	136	- 50	150			02/20/23 07:09	02/25/23 02:43	
13C6 PFDA	136	50 -	150			02/20/23 07:09	02/25/23 02:43	
13C7 PFUnA	147	50 -	150			02/20/23 07:09	02/25/23 02:43	
13C2-PFDoDA	126	- 50	150			02/20/23 07:09	02/25/23 02:43	
13C2 PFTeDA	119	50 -	150			02/20/23 07:09	02/25/23 02:43	
I3C3 PFBS	128	50 -	150			02/20/23 07:09	02/25/23 02:43	
3C3 PFHxS	129	- 50	150			02/20/23 07:09	02/25/23 02:43	
I3C8 PFOS	133	50 -	150			02/20/23 07:09	02/25/23 02:43	
13-NMeFOSAA	128	50 -	150				02/25/23 02:43	
15-NEtFOSAA	133	50 -	150				02/25/23 02:43	
13C8 FOSA	114	50 -				02/20/23 07:09	02/25/23 02:43	
I3C4 PFBA	108	50 -					02/25/23 02:43	
13C5 PFPeA	123	- 50	150			02/20/23 07:09	02/25/23 02:43	
Method: DOD 5.4 QSM B15 -	PFAS for OSM 5	4 Table R-1	5 - DI					
Analyte	Result C		LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Perfluorohexanesulfonic acid	75		16	8.1	4.1	ng/L	02/25/23 02:54	1

Client Sample ID: YTC-MTS-4-GW-020823 Date Collected: 02/08/23 10:41 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-3 Matrix: Water

Method: DOD 5.4 QSM B15 - I Analyte		Qualifier	L	0Q	LOD		Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	26	H		1.9	0.97	0.49	ng/L	03/03/23 13:33	- 1
Perfluoroheptanoic acid	5.1	НМ		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorooctanoic acid	6.0	н		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorononanoic acid	0.97	UH		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorodecanoic acid	0.97	UH		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorotridecanoic acid	0.97	UΗ		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorotetradecanoic acid	0.97	UH		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorobutanesulfonic acid	19	н		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorohexanesulfonic acid	75	HL.		1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Perfluorooctanesulfonic acid	32	н		2.0	1.9	0.97	ng/L	03/03/23 13:33	1
NEtFOSAA	0.97			2.9	0.97	0.49	-	03/03/23 13:33	1
NMeFOSAA		UΗ		1.9	1.2	0.58	-	03/03/23 13:33	1
Perfluoropentanesulfonic acid		НМ		1.9	0.97		ng/L	03/03/23 13:33	
Perfluoroheptanesulfonic acid		JH		1.9	0.97	0.49	-	03/03/23 13:33	1
Perfluorononanesulfonic acid		UН		1.9	0.97	0.49	-	03/03/23 13:33	1
Perfluorodecanesulfonic acid		UH		1.9	0.97		ng/L	03/03/23 13:33	1
Perfluorooctanesulfonamide		UH		1.9	1.4	0.68		03/03/23 13:33	1
Perfluorobutanoic acid	7.4			4.9	3.9		ng/L	03/03/23 13:33	1
				4.9 1.9	0.97		ng/L	03/03/23 13:33	ا 1
Perfluoropentanoic acid	13 0.97			1.9	0.97		-	03/03/23 13:33	
Perfluoroundecanoic acid						0.49	-	03/03/23 13:33	
Perfluorododecanoic acid		UH		1.9	0.97	0.49			
6:2 Fluorotelomer sulfonic acid		UН		2.9	1.9	0.97	-	03/03/23 13:33	1
8.2 Fluorotelomer sulfonic acid		UII		2.9	1.9		ng/L	03/03/23 13:33	
4:2 Fluorotelomer sulfonic acid	0.97			1.9	0.97	0.49	ng/L	03/03/23 13:33	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	108		50 - 150					03/03/23 13:33	1
M2-8:2 FTS	126		50 - 150					03/03/23 13:33	1
M2-6:2 FTS	126		50 - 150					03/03/23 13:33	1
13C5 PFHxA	114		50 - 150					03/03/23 13:33	1
13C4 PFHpA	118		50 - 150					03/03/23 13:33	1
13C8 PFOA	129		50 - 150					03/03/23 13:33	1
13C9 PFNA	119		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C6 PFDA	116		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C7 PFUnA	120		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C2-PFDoDA	117		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C2 PFTeDA	111		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C3 PFBS	115		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C3 PFHxS	128		50 - 150				03/01/23 08:26	03/03/23 13:33	1
13C8 PFOS	113		50 - 150				03/01/23 08:26	03/03/23 13:33	1
d3-NMeFOSAA	111		50 - 150					03/03/23 13:33	1
d5-NEtFOSAA	118		50 - 150					03/03/23 13:33	
13C8 FOSA	106		50 - 150					03/03/23 13:33	1
13C4 PFBA	102		50 - 150					03/03/23 13:33	1

Client Sample ID: YTC-TVR-2-GW-020823 Date Collected: 02/08/23 11:52 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-4 Matrix: Water

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	12			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluoroheptanoic acid	4.9			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorooctanoic acid	5.3			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorononanoic acid	0.76	J		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorodecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorotridecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorotetradecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorobutanesulfonic acid	5.9			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorohexanesulfonic acid	43			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorooctanesulfonic acid	65			1.7	1.6	0.80	ng/L	02/25/23 03:05	1
NEtFOSAA	0.80	U		2.4	0.80	0.40	ng/L	02/25/23 03:05	1
NMeFOSAA	0.96	U		1.6	0.96	0.48	ng/L	02/25/23 03:05	1
Perfluoropentanesulfonic acid	7.1			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluoroheptanesulfonic acid	1.4	J		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorononanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorodecanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorooctanesulfonamide	1.1	U		1.6	1.1	0.56	ng/L	02/25/23 03:05	1
Perfluorobutanoic acid	9.5			4.0	3.2	1.6	ng/L	02/25/23 03:05	1
Perfluoropentanoic acid	10			1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluoroundecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Perfluorododecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
-6:2 Fluorotelomer sulfonic acid		U		2.4	1.6	0.80	ng/L	02/25/23 03:05	1
8:2 Fluorotelomer sulfonic acid	1.6	U		2.4	1.6	0.80	ng/L	02/25/23 03:05	1
4:2 Fluorotelomer sulfenic acid	0.80	U		1.6	0.80	0.40	ng/L	02/25/23 03:05	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	168	Q cn	50 - 150	02/20/23 07:09	02/25/23 03:05	1
M2-8:2 FTS	129		50 - 150	02/20/23 07:09	02/25/23 03:05	1
M2-6:2 FTS	161	Q cn	50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C5 PFHxA	125		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C4 PFHpA	117		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C8 PFOA	144		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C9 PFNA	134		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C6 PFDA	134		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C7 PFUnA	138		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C2-PFDoDA	136		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C2 PFTeDA	108		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C3 PFBS	117		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C3 PFHxS	127		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C8 PFOS	126		50 - 150	02/20/23 07:09	02/25/23 03:05	1
d3-NMeFOSAA	120		50 - 150	02/20/23 07:09	02/25/23 03:05	1
d5-NEtFOSAA	122		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C8 FOSA	116		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C4 PFBA	76		50 - 150	02/20/23 07:09	02/25/23 03:05	1
13C5 PFPeA	103		50 - 150	02/20/23 07:09	02/25/23 03:05	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result	Qualifier	LOQ	LOD	DL Un	it D	Analyzed	Dil Fac
Perfluorohexanoic acid	13	Н	2.0	0.98	0.49 ng/	/L	03/03/23 13:44	1
Perfluoroheptanoic acid	3.9	НМ	2.0	0.98	0.49 ng/	L.	03/03/23 13.44	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-TVR-2-GW-020823 Date Collected: 02/08/23 11:52 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-4 Matrix: Water

Method: DOD 5.4 QSM B15 - Analyte	Result	Qualifier		LOQ	LOD		Unit D		Dil Fac
Perfluorooctanoic acid	4.9	H		2.0	0.98	0.49	ng/L	03/03/23 13:44	
Perfluorononanoic acid	0.74	JHM		2.0	0.98	0.49	-	03/03/23 13:44	1
Perfluorodecanoic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorotridecanoic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorotetradecanoic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorobutanesulfonic acid	6.4	H		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorohexanesulfonic acid	42	н		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorooctanesulfonic acid	63	¥		2.0	2.0	0.98	ng/L	03/03/23 13:44	1
NEtFOSAA	0.98	UH		2.9	0.98	0.49	ng/L	03/03/23 13:44	1
NMeFOSAA	1.2	UH		2.0	1.2	0.59	ng/L	03/03/23 13:44	1
Perfluoropentanesulfonic acid	6.6	НМ		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluoroheptanesulfonic acid	1.3	JH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorononanesulfonic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorodecanesulfonic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluorooctanesulfonamide	0.68	JH		2.0	1.4	0.68	ng/L	03/03/23 13:44	1
Perfluorobutanoic acid	8.1	н		4.9	3.9	2.0	ng/L	03/03/23 13:44	1
Perfluoropentanoic acid		Н		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
Perfluoroundecanoic acid	0.98	UH		2.0	0.98	0.49	-	03/03/23 13:44	1
Perfluorododecanoic acid	0.98	UH		2.0	0.98	0.49	ng/L	03/03/23 13:44	1
6:2 Fluorotelomer sulfonic acid	2.0	UH		2.9	2.0	0.98		03/03/23 13:44	1
8:2 Fluorotelomer sulfonic acid	2.0	UII		2.9	2.0		ng/L	03/03/23 13:44	
4:2 Fluorotelomer sulfonic acid	0.98	UH		2.0	0.98	0.49	•	03/03/23 13:44	1
Isotope Dilution	%Recovery Q	ualifier	Limits	_			Prepared	Analyzed	Dil Fac
M2-4:2 FTS	101		50 - 150				03/01/23 08:26	03/03/23 13:44	1
M2-8:2 FTS	135		50 - 150				03/01/23 08:26	03/03/23 13:44	1
M2-6:2 FTS	122		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C5 PFHxA	109		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C4 PFHpA	111		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C8 PFOA	130		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C9 PFNA	121		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C6 PFDA	115		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C7 PFUnA	129		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C2-PFDoDA	127		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C2 PFTeDA	120		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C3 PFBS	109		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C3 PFHxS	128		50 - 150				03/01/23 08:26	03/03/23 13:44	
13C8 PFOS	120		50 - 150				03/01/23 08:26	03/03/23 13:44	1
d3-NMeFOSAA	121		50 - 150					03/03/23 13:44	1
d5-NEtFOSAA	130		50 - 150				03/01/23 08:26	03/03/23 13:44	1
13C8 FOSA	114		50 - 150					03/03/23 13:44	1
13C4 PFBA	100		50 - 150					03/03/23 13:44	1
· · · · - · ·			22 - 700				20.0		'

Client Sample ID: YTC-MRC-2-GW-020823 Date Collected: 02/08/23 13:36

Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - PFA	S for QSM 5	5.4, Table E	3-15						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	220		1.6	0.80	0.40	ng/L		02/23/23 07:23	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115153-5

Matrix: Water

Client Sample ID: YTC-MRC-2-GW-020823 Date Collected: 02/08/23 13:36 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-5 Matrix: Water

Analyte		Qualifier	LOQ	LOD		Unit D	Analyzed	Dil Fa
Perfluoroheptanoic acid			1.6	0.80	0.40	ng/L	02/23/23 07:23	
Perfluorooctanoic acid	51		1.6	0.80		ng/L	02/23/23 07:23	
Perfluorononanoic acid	2.7		1.6	0.80		ng/L	02/23/23 07:23	
Perfluorodecanoic acid		JM	1.6	0.80		ng/L	02/23/23 07:23	
Perfluorotridecanoic acid	0.80	U	1.6	0.80		ng/L	02/23/23 07:23	
Perfluorotetradecanoic acid	0.80	U	1.6	0.80		ng/L	02/23/23 07:23	
Perfluorobutanesulfonic acid	130		1.6	0.80		ng/L	02/23/23 07:23	
NEtFOSAA	0.80	U	2.4	0.80		ng/L	02/23/23 07:23	
NMeFOSAA	0.96	U	1.6	0.96		ng/L	02/23/23 07:23	
Perfluoropentanesulfonic acid	150		1.6	0.80		ng/L	02/23/23 07:23	
Perfluoroheptanesulfonic acid	25	Μ	1.6	0.80		ng/L	02/23/23 07:23	
Perfluorononanesulfonic acid	2.4	Μ	1.6	0.80		ng/L	02/23/23 07:23	
Perfluorodecanesulfonic acid	0.80	U	1.6	0.80	0.40	ng/L	02/23/23 07:23	
Perfluorooctanesulfonamide	2.9	Μ	1.6	1.1	0.56	ng/L	02/23/23 07:23	
Perfiuorobutanoic acid	53		4.0	3.2	1.0	ng/L	02/23/23 07.23	
Perfluoropentanoic acid	120		1.6	0.80	0.40	ng/L	02/23/23 07:23	
Perfluoroundecanoic acid	0.80	U	1.6	0.80	0.40	ng/L	02/23/23 07:23	
Perfluorododecanoic acid	0.80	U	1.6	0.80	0.40	ng/L	02/23/23 07:23	
6:2 Fluorotelomer sulfonic acid	3.7		2.4	1.6	0.80	ng/L	02/23/23 07:23	
8:2 Fluorotelomer sulfonic acid	5.4		2.4	1.6	0.80	ng/L	02/23/23 07:23	
4:2 Fluorotelomer sulfonic acid	0.80	U	1.6	0.80	0.40	ng/L	02/23/23 07:23	
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fa
M2-4:2 FTS	70		50 - 150			02/20/23 07:09	02/23/23 07:23	
M2-8:2 FTS	73		50 - 150			02/20/23 07:09	02/23/23 07:23	
M2-6:2 FTS	72		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C5 PFHxA	55		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C4 PFHpA	48 Q	сп	50 - 150			02/20/23 07:09	02/23/23 07:23	
13C8 PFOA	70		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C9 PFNA	54		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C6 PFDA	69		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C7 PFUnA	76		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C2-PFDoDA	68		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C2 PFTeDA	53		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C3 PFBS	57		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C3 PFHxS	49 Q		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C8 PFOS	48 Q		50 - 150			02/20/23 07:09	02/23/23 07:23	
d3-NMeFOSAA	96 Q	сп	50 - 150			02/20/23 07:09	02/23/23 07:23	
d5-NEtFOSAA	87		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C8 FOSA	71		50 - 150			02/20/23 07:09	02/23/23 07:23	
13C4 PFBA	43 Q	cn	50 - 150				02/23/23 07:23	
13C5 PFPeA	53		50 - 150			02/20/23 07:09	02/23/23 07:23	
Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4, Table	e B-15 - DL					
		Qualifier	LOQ					Dil Fa

13C3 PFHxS

13C8 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C8 FOSA

13C4 PFBA

Client Sample ID: YTC-MRC-2-GW-020823 Date Collected: 02/08/23 13:36 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-5 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD		Unit D	Analyzed	Dil Fac
Perfluorohexanesulfonic acid	860	D	160	80	40	ng/L	02/25/23 03:38	100
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fa
13C3 PFHxS	114		50 - 150			02/20/23 07:09	02/25/23 03:38	100
Method: DOD 5.4 QSM B15 -						Unit D	Anolymod	
Analyte Perfluorohexanoic acid		Qualifier	LOQ	LOD		Unit D	Analyzed	Dil Fac
		H JI X	1.9	0.90		ng/L	03/03/23 13:54	
Perfluoroheptanoic acid Perfluorooctanoic acid		71 H	1.9	0.90		ng/L	03/03/23 13:54	,
Perfluorononanoic acid	52 2.8		1.9	0.96		ng/L	03/03/23 13:54	
Perfluorodecanoic acid	2.o 0.53		1.9	0.90		ng/L	03/03/23 13:54	
Perfluorotridecanoic acid	0.96		1.9	0.96		ng/L	03/03/23 13:54	
Perfluorotetradecanoic acid	0.96		1.9	0.96		ng/∟ ng/L	03/03/23 13:54	
Perfluorobutanesulfonic acid	0.90		1.9	0.96		ng/L	03/03/23 13:54	
Perfluorohexanesulfonic acid		H J1	1.9	0.96		ng/L	03/03/23 13:54	
Perfluorooctanesulfonic acid			2.0	1.9		ng/L	03/03/23 13:54	
NEtFOSAA	0.96		2.9	0.96		ng/L	03/03/23 13:54	
NMeFOSAA	1.1	UH	1.9	1.1		ng/L	03/03/23 13:54	
Perfluoropentanesulfonic acid	140		1.9	0.96		ng/L	03/03/23 13:54	
Perfluoroheptanesulfonic acid	26	H	1.9	0.96		ng/L	03/03/23 13:54	
Perfluorononanesulfonic acid	20		1.9	0.90		ng/L	03/03/23 13:54	
Perfluorodecanesulfonic acid			1.9	0.90		ng/L	03/03/23 13:54	
Perfluorooctanesulfonamide	4.3		1.9	1.3		_ng/L	03/03/23 13:54	
Perfluorobutanoic acid	57		4.8	3.8		ng/L	03/03/23 13:54	
Perfluoropentanoic acid				0.96		ng/L	03/03/23 13:54	
Perfiuoroundecanoic acid	0.96		1.9	0.96		ng/L	03/03/23 13:54	
Perfluorododecanoic acid		υн	1.9	0.96		ng/L	03/03/23 13:54	
6:2 Fluorotelomer sulfonic acid	3.6		2.9	1.9		ng/L	03/03/23 13:54	
8:2 Fluorotelomer sulfonic acid	5.9		2.9	1.9		ng/L	03/03/23 13:54	
4:2 Fluorotelomer sulfonic acid		UH	<u> </u>	0.96		ng/L	03/03/23 13:54	
Isotope Dilution	%Recovery Q		Limits	0.00	0110	•	Analyzed	Dil Fa
M2-4:2 FTS	80		50 - 150			Prepared 03/01/23 08:26		
M2-8:2 FTS	111		50 - 150			03/01/23 08:26		
M2-6:2 FTS	105		50 - 150 50 - 150				03/03/23 13:54	
	· · · · · · · · · · · · · · · · · · ·							
13C5 PFHxA 13C4 PFHpA	67 75		50 - 150 50 - 150				03/03/23 13:54 03/03/23 13:54	
13C8 PFOA	107						03/03/23 13:54	
13C9 PFNA	87		50 - 150 50 - 150				03/03/23 13:54	
13C6 PFDA	87 98						03/03/23 13:54	
			50 - 150 50 - 150					
13C7 PFUnA	93		50 - 150 50 - 150				03/03/23 13:54	
13C2-PFDoDA	67		50 - 150 50 - 150				03/03/23 13:54	1
13C2 PFTeDA	31 Q		50 - 150				03/03/23 13:54	
13C3 PFBS	91		50 - 150			03/01/23 08:26	03/03/23 13:54	

88 50 - 150 03/01/23 08:26 03/03/23 13:54 1 92 50 - 150 03/01/23 08:26 03/03/23 13:54 1 71 50 - 150 03/01/23 08:26 03/03/23 13:54 1 82 50 - 150 03/01/23 08:26 03/03/23 13:54 1

Eurofins Lancaster Laboratories Environment Testing, LLC

03/01/23 08:26 03/03/23 13:54

03/01/23 08:26 03/03/23 13:54

1

1

50 - 150

50 - 150

86

80

Client Sample ID: YTC-MRC-2-GW-020823 Date Collected: 02/08/23 13:36 Date Received: 02/10/23 09:54

Job ID: 410-115153-1

Lab Sample ID: 410-115153-5 Matrix: Water

Method: DOD 5.4 QSM B15 -				ontinued)				
Isotope Dilution	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fa
13C5 PFPeA	81		50 - 150			03/01/23 08:26	03/03/23 13:54	
lient Sample ID: YTC-MI	MP-2-GW-020)823			L	ab Sample	ID: 410-115	5153-6
ate Collected: 02/08/23 15:16							Matrix	: Wate
ate Received: 02/10/23 09:54								
Method: DOD 5.4 QSM B15 - Analyte		5.4, Table Qualifier	B-15	LOD	DL	Unit D	Analyzed	Dil Fa
Perfluorooctanoic acid	230		1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorononanoic acid	6.6		1.7	0.85		ng/L	02/23/23 07:34	
Perfluorodecanoic acid	1.3	J	1.7	0.85		ng/L	02/23/23 07:34	
Perfluorotridecanoic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorotetradecanoic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorobutanesulfonic acid	190		1.7	0.85	0.43	ng/L	02/23/23 07:34	
NEtFOSAA	0.85	U	2.6	0.85	0.43	ng/L	02/23/23 07:34	
NMeFOSAA	1.0	U	1.7	1.0	0.51	ng/L	02/23/23 07:34	
Perfluoropentanesulfonic acid	210		1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorononanesulfonic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorodecanesulfonic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorooctanesulfonamide	11		1.7	1.2	0.60	ng/L	02/23/23 07:34	
Perfluorobutanoic acid	110		4.3	3.4	1.7	ng/L	02/23/23 07:34	
Perfluoroundecanoic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
Perfluorododecanoic acid	0.85	U	1.7	0.85	0.43	ng/L	02/23/23 07:34	
4:2 Fluorotelomer sulfonic acid	0.74	J	1.7	0.85	0.43	ng/L	02/23/23 07:34	
sotope Dilution	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fa
M2-4:2 FTS	66		50 - 150			02/20/23 07:09	02/23/23 07:34	
M2-8:2 FTS	74		50 - 150			02/20/23 07:09	02/23/23 07:34	
M2-6:2 FTS	58		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C5 PFHxA	62		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C4 PFHpA	45 Q		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C8 PFOA	68		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C9 PFNA	53		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C6 PFDA	84		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C7 PFUnA	87		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C2-PFDoDA	72		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C2 PFTeDA	54		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C3 PFBS	69		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C3 PFHxS	44 Q (cn	50 - 150			02/20/23 07:09	02/23/23 07:34	
13C8 PFOS	45 Q		50 - 150			02/20/23 07:09	02/23/23 07:34	
d3-NMeFOSAA	103 Q 0	cn	50 - 150			02/20/23 07:09	02/23/23 07:34	
15-NEtFOSAA	92		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C8 FOSA	74		50 - 150			02/20/23 07:09	02/23/23 07:34	
13C4 PFBA	65		50 - 150				02/23/23 07:34	
13C5 PFPeA	62		50 - 150			02/20/23 07:09	02/23/23 07:34	
Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4. Table	B-15 - DL					
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Perfluorohexanoic acid	530	D	17	8.5	4.3	ng/L	02/25/23 03:50	10
Perfluoroheptanoic acid	180		17	8.5		ng/L	02/25/23 03:50	10

Client Sample ID: YTC-MMP-2-GW-020823 Date Collected: 02/08/23 15:16 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-6

Matrix: Water

Job ID: 410-115153-1

Method: DOD 5.4 QSM B15 - Analyte	PFAS for QSM 5.4, Table Result Qualifier	e B-15 - DL (Co LOQ	Dintinued) LOD	וח	Unit D	Analyzed	Dil Fac
Perfluoroheptanesulfonic acid		- <u> </u>	8.5		ng/L	02/25/23 03:50	10
Perfluoropentanoic acid	360 D	17	8.5		ng/L	02/25/23 03:50	10
6:2 Fluorotelomer sulfonic acid	630 D	26	17		ng/L	02/25/23 03:50	10
8:2 Fluorotelomer sulfonic acid	110 D	26	17		ng/L	02/25/23 03:50	10
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-8:2 FTS	127 guainer	50 - 150				02/25/23 03:50	10
M2-6:2 FTS	130	50 - 150 50 - 150				02/25/23 03:50	10
13C5 PFHxA	130	50 - 150 50 - 150				02/25/23 03:50	10
13C4 PFHpA	118	50 - 150 50 - 150				02/25/23 03:50	10
13C3 PFHxS	128 cn	50 - 150				02/25/23 03:50	10
13C8 PFOS	115	50 - 150				02/25/23 03:50	10
13C5 PFPeA	143	50 - 150				02/25/23 03:50	10
	140	00 - 100			02/20/20 07:00	02/20/20 00.00	10
Method: DOD 5.4 QSM B15 -	PFAS for QSM 5.4, Table	e B-15 - DL2					
Analyte	Result Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanesulfonic acid	1400 D	170	85	43	ng/L	02/25/23 04:01	100
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C3 PFHxS	160 Q cn	50 - 150				02/25/23 04:01	100
Method: DOD 5.4 QSM B15 -	PFAS for QSM 5.4, Table	e B-15 - RE					
Analyte	Result Qualifier				Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	530 H J1	1.9	0.95	0.48	•	03/03/23 14:05	1
Perfluoroheptanoic acid	180 H J1 M	1.9	0.95	0.48	ng/L	03/03/23 14:05	1
Perfluorooctanoic acid	190 H J1	1.9	0.95	0.48		03/03/23 14:05	1
Perfluorononanoic acid	6.2 H M	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorodecanoic acid	1.3 JHM	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorotridecanoic acid	0.95 UH	1.9	0.95	0.48		03/03/23 14:05	1
Perfluorotetradecanoic acid	0.95 UH	1.9	0.95	0.48	•	03/03/23 14:05	1
Perfluorobutanesulfonic acid	170 H	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorohexanesulfonic acid	860 H J1 J	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorooctanesulfonic acid	1500 H J1	2.0	1.9	0.95	•	03/03/23 14:05	1
NELEOSAA	0.95 UH	2.9	0.95	0.48	•	03/03/23 14:05	1
NMeFOSAA	1.1 UH	1.9	1.1	0.57		03/03/23 14:05	1
Perfluoropentanesulfonis acid	180 H M	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluoroheptanesulfonic acid	78 H	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorononanesulfonic acid	0.62 JHM	1.9	0.95	0.48	-	03/03/23 14:05	1
Perfluorodecanesulfonic acid	0.95 UH	1.9	0.95	0.48		03/03/23 14:05	1
Perfluorooctanesulfonamide	11 H	1.9	1.3	0.67	-	03/03/23 14:05	1
Perfluorobutanoic acid	110 H	4.8	3.8		ng/L	03/03/23 14:05	1
Perfluoropentanoic acid	380 H J1	1.9	0.95	0.48		03/03/23 14:05	1
Perfluoroundecanoic acid	0.95 UH	1.9	0.95	0.48		03/03/23 14:05	1
Perfluorododecanoic acid	0.95 U H	1.9	0.95		ng/L	03/03/23 14:05	1
6:2 Fluorotelomer sulfonic acid	540 H J1	2.9	1.9	0.95		03/ 03 /23 14:05	1
8:2 Fluorotelomer sulfonic acid	100 H	2.9	1.9	0.95	-	03/03/23 14:05	1
4:2 Fluorotelomer sulfonic acid	0.74 JHM	1.9	0.95	0.48	ng/L	03/03/23 14.05	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-4:2 FTS	86	50 - 150			03/01/23 08:26	03/03/23 14:05	1
M2-8:2 FTS	123	50 - 150			03/01/23 08:26	03/03/23 14:05	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-MMP-2-GW-020823 Date Collected: 02/08/23 15:16 Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE (Continued)

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFHxA	77		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C4 PFHpA	66		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C8 PFOA	97		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C9 PFNA	86		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C6 PFDA	114		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C7 PFUnA	126		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C2-PFDoDA	129		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C2 PFTeDA	122		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C3 PFBS	103		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C3 PFHxS	77		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C8 PFOS	77		50 - 150	03/01/23 08:26	03/03/23 14:05	1
d3-NMeFOSAA	125		50 - 150	03/01/23 08:26	03/03/23 14:05	1
d5-NEtFOSAA	120		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C8 FOSA	105		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C4 PFBA	99		50 - 150	03/01/23 08:26	03/03/23 14:05	1
13C5 PFPeA	81		50 - 150	03/01/23 08:26	03/03/23 14:05	1

Client Sample ID: YTC-MMP-1-GW-020823 Date Collected: 02/08/23 16:36 Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 **Result Qualifier** LOQ Analyte LOD DL Unit D Analyzed Dil Fac 0.42 ng/L 0.85 4 30 17 02/23/23 07:45 Perfluorononanoic acid 0.85 Perfluorodecanoic acid 4.6 M 1.7 0.42 ng/L 02/23/23 07:45 1 0.85 U Perfluorotridecanoic acid 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 Perfluorotetradecanoic acid 0.85 U 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 Perfluorobutanesulfonic acid 120 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 **NEtFOSAA** 0.85 U 2.5 0.85 0.42 ng/L 02/23/23 07:45 1 **NMeFOSAA** 1.0 U 1.7 1.0 0.51 ng/L 02/23/23 07:45 1 0.85 Perfluoropentanesulfonic acid 180 17 0.42 ng/L 02/23/23 07:45 1 Perfluorononanesulfonic acid 0.85 U 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 Perfluorodecanesulfonic acid 0.91 -J+M- MJ 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 Perfluorooctanesulfonamide 1.7 1.2 0.59 ng/L 18 02/23/23 07:45 1 Perfluorobutanoic acid 140 4.2 3.4 1.7 ng/L 02/23/23 07:45 1 Perfluoroundecanoic acid 0.85 U 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 Perfluorododecanoic acid 0.85 U 1.7 0.85 0.42 ng/L 02/23/23 07:45 1 2.4 17 0.85 0.42 ng/L 02/23/23 07:45 1 4:2 Fluorotelomer sulfonic acid %Recovery Isotope Dilution Qualifier Limits Prepared Dil Fac Analyzed M2-4:2 FTS 79 50 - 150 02/20/23 07:09 02/23/23 07:45 1 M2-8:2 FTS 76 50 - 150 02/20/23 07:09 02/23/23 07:45 1 M2-6:2 FTS 52 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C5 PFHxA 65 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C4 PFHpA 40 Q cn 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C8 PFOA 56 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C9 PFNA 38 Q cn 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C6 PFDA 86 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C7 PFUnA 100 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C2-PFDoDA 94 50 - 150 02/20/23 07:09 02/23/23 07:45 1 13C2 PFTeDA 02/20/23 07:09 02/23/23 07:45 86 50 - 150 1

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115153-6 Matrix: Water

Matrix: Water

Lab Sample ID: 410-115153-7

Client Sample ID: YTC-MMP-1-GW-020823 Date Collected: 02/08/23 16:36 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-7 Matrix: Water

Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C3 PFBS	71		50 - 150			02/20/23 07:09	02/23/23 07:45	1
13C3 PFHxS	38	Q cn	50 - 150			02/20/23 07:09	02/23/23 07:45	1
13C8 PFOS	30	Q cn	50 - 150			02/20/23 07:09	02/23/23 07:45	1
d3-NMeFOSAA	120	Q cn	50 - 150			02/20/23 07:09	02/23/23 07:45	1
d5-NEtFOSAA	113		50 - 150			02/20/23 07:09	02/23/23 07:45	1
13C8 FOSA	86		50 - 150			02/20/23 07:09	02/23/23 07:45	1
13C4 PFBA	65		50 - 150			02/20/23 07:09	02/23/23 07:45	1
13C5 PFPeA	60		50 - 150			02/20/23 07:09	02/23/23 07:45	1
Method: DOD 5.4 QSM B1	5 - PFAS for QS	M 5.4, Tab	le B-15 - DL					
Analyte	Resu	ult Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	52	20 D	17	8.5	4.2	ng/L	02/25/23 04:12	10
Perfluoroheptanoic acid		30 D	17	8.5	4.2	ng/L	02/25/23 04:12	10

Isotope Dilution M2-8:2 FTS	%RecoveryQualifier149	Limits 50 - 150		Prepared 02/20/23 07	Analyzed 09 02/25/23 04:12	Dil Fac 10
8:2 Fluorotelomer sulfonic acid	300 D	25	17	8.5 ng/L	02/25/23 04:12	10
6:2 Fluorotelomer sulfonic acid	1300 🔏 DJ	25	17	8.5 ng/L	02/25/23 04:12	10
Perfluoropentanoic acid	450 D	17	8.5	4.2 ng/L	02/25/23 04:12	10
Perfluoroheptanesulfonic acid	120 D	17	8.5	4.2 ng/L	02/25/23 04:12	10
Perfluorooctanoic acid	340 D	17	8.5	4.2 ng/L	02/25/23 04:12	10

112 0.21 10	110	00 - 100	02/20/20 07:00 0	02/20/20 01.12	
M2-6:2 FTS	124	50 - 150	02/20/23 07:09 0	02/25/23 04:12	10
13C5 PFHxA	146	50 - 150	02/20/23 07:09 (02/25/23 04:12	10
13C4 PFHpA	106 cn	50 - 150	02/20/23 07:09 (02/25/23 04:12	10
13C8 PFOA	136	50 - 150	02/20/23 07:09 0	02/25/23 04:12	10
13C3 PFHxS	117 cn	50 - 150	02/20/23 07:09 0	02/25/23 04:12	10
13C5 PFPeA	141	50 - 150	02/20/23 07:09 (02/25/23 04:12	10

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - DL2

Analyte	Result Qualifie	er LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanesulfonic acid	2000 D	170	85	42	ng/L	02/25/23 04:23	100
Perfluorooctanesulfonic acid	5600 D	180	170	85	ng/L	02/25/23 04:23	100
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Isotope Dilution 13C3 PFHxS		Limits 50 - 150				Analyzed 02/25/23 04:23	Dil Fac 100

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result Qualifie	er LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	580 H J1	1.9	0.95	0.47 ng/L	<u></u>	
Perfluoroheptanoic acid	320 H J1 M	• MJ 1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorooctanoic acid	320 H J1	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorononanoic acid	29 🖌 M	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorodecanoic acid	4.7 H	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorotridecanoic acid	0.95 U H	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorotetradecanoic acid	0.95 U H	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorobutanesulfonic acid	110 H	1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorohexanesulfonic acid	1100 H J1	J 1.9	0.95	0.47 ng/L	03/03/23 14:16	1
Perfluorooctanesulfonic acid	2700 II J1	2.0	1.9	0.95 ng/L	03/03/23 14:16	
NETFOSAA	0.95 U H	2.8	0.95	0.47 ng/L	03/03/23 14:16	1
NMeFOSAA	1.1 UH	1.9	1.1	0.57 ng/L	03/03/23 14:16	1
Perfluoropentanesulfonic acid	160 H M	1.9	0.95	0.47 ng/L	03/03/23 14:16	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-MMP-1-GW-020823 Date Collected: 02/08/23 16:36 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-7

Matrix: Water

Job ID: 410-115153-1

Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4, Tabl	e B-15 - F	RE (O	Continued)				
Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluoroheptanesulfonic acid	150	н		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Perfluorononanesulfonic acid	2.0	нм		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Perfluorodecanesulfonic acid	0.80	JH		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Perfluorooctanesulfonamide	17	н		1.9	1.3	0.66	ng/L	03/03/23 14:16	1
Perfluorobutanoic acid	130	#		4.7	3.8	1.9	ng/L	03/03/23 14:16	1
Perfluoropentanoic acid	460	H J1		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Perfluoroundecanoic acid	0.95	UΗ		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Perfluorododecanoic acid	0.95	UΗ		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
6:2 Fluorotelomer sulfonic acid	990	H J1		2.8	1.9	0.95	ng/L	03/03/23 14:16	1
8:2 Fluorotelomer sulfonic acid	300	H J1		2.8	1.9	0.95	ng/L	0 3/03 /23 14:16	1
4:2 Fluorotelomer sulfonic acid	2.5	НМ		1.9	0.95	0.47	ng/L	03/03/23 14:16	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	86		50 - 150				03/01/23 08:26	03/03/23 14:16	1
M2-8:2 FTS	109		50 - 150				03/01/23 08:26	03/03/23 14:16	1
M2-6:2 FTS	66		50 - 150				03/01/23 08:26	03/03/23 14:16	1

M2-6:2 FTS	66	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C5 PFHxA	74	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C4 PFHpA	57	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C8 PFOA	81	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C9 PFNA	63	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C6 PFDA	104	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C7 PFUnA	107	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C2-PFDoDA	115	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C2 PFTeDA	107	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C3 PFBS	101	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C3 PFHxS	64	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C8 PFOS	53	50 - 150	03/01/23 08:26 03/03/23 14:16	1
d3-NMeFOSAA	109	50 - 150	03/01/23 08:26 03/03/23 14:16	1
d5-NEtFOSAA	108	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C8 FOSA	105	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C4 PFBA	98	50 - 150	03/01/23 08:26 03/03/23 14:16	1
13C5 PFPeA	78	50 - 150	03/01/23 08:26 03/03/23 14:16	1

Client Sample ID: YTC-EB-3-020823 Date Collected: 02/08/23 17:15

Date Received: 02/10/23 09:54

Method: DOD 5.4 QSM B15 - P	FAS for QSM	5.4, Table B	-15						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluoroheptanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorooctanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorononanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorodecanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorotridecanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorotetradecanoic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorobutanesulfonic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorohexanesulfonic acid	0.84	U	1.7	0.84	0.42	ng/L		02/23/23 07:56	1
Perfluorooctanesulfonic acid	2.7		1.8	1.7	0.84	ng/L		02/23/23 07:56	1
NEtFOSAA	0.84	U	2.5	0.84	0.42	ng/L		02/23/23 07:56	1
NMeFOSAA	1.0	U	1.7	1.0	0.51	ng/L		02/23/23 07:56	1

Lab Sample ID: 410-115153-8

Matrix: Water

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-EB-3-020823

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

118

92

102

99

Date Collected: 02/08/23 17:15 Date Received: 02/10/23 09:54

Analyte	Result	Qualifier	Ľ	OQ	LOD	DL	Unit [Analyzed	Dil Fac
Perfluoropentanesulfonic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluoroheptanesulfonic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluorononanesulfonic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluorodecanesulfonic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluorooctanesulfonamide	1.2	U		1.7	1.2	0.59	ng/L	02/23/23 07:56	1
Perfluorobutanoic acid	3.4	U		4.2	3.4	1.7	ng/L	02/23/23 07:56	1
Perfluoropentanoic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluoroundecanoic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Perfluorododecanoic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
6:2 Fluorotelomer sulfonic acid	1.7	U		2.5	1.7	0.84	ng/L	02/23/23 07:56	1
8:2 Fluorotelomer sulfonic acid	1.7	U		2.5	1.7	0.84	ng/L	02/23/23 07:56	1
4:2 Fluorotelomer sulfonic acid	0.84	U		1.7	0.84	0.42	ng/L	02/23/23 07:56	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	86		50 - 150	-			02/20/23 07:0	02/23/23 07:56	1
M2-8:2 FTS	87		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
M2-6:2 FTS	91		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C5 PFHxA	110		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C4 PFHpA	97		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C8 PFOA	109		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C9 PFNA	99		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C6 PFDA	100		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C7 PFUnA	104		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C2-PFDoDA	101		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C2 PFTeDA	86		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C3 PFBS	98		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C3 PFHxS	95		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
13C8 PFOS	98		50 - 150				02/20/23 07:0	0 02/23/23 07:56	1
d3-NMeFOSAA	122 Q	cn	50 - 150				02/20/23 07:0	0 02/23/23 07:56	1

Date Collected: 02/08/23 17:20 Date Received: 02/10/23 09:54

Client Sample ID: YTC-FB-3-020823

d5-NEtFOSAA

13C8 FOSA

13C4 PFBA

13C5 PFPeA

Method: DOD 5.4 QSM B15 - P	FAS for QSM	5.4, Table B	-15					
Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluoroheptanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorooctanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorononanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorodecanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorotridecanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorotetradecanoic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorobutanesulfonic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorohexanesulfonic acid	0.93	U	1.9	0.93	0.46 ng/L		03/04/23 02:21	1
Perfluorooctanesulfonic acid	1.9	U	2.0	1.9	0.93 ng/L		03/04/23 02:21	1
NEtFOSAA	0.93	U	2.8	0.93	0.46 ng/L		03/04/23 02:21	1

50 - 150

50 - 150

50 - 150

50 - 150

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115153-8 Matrix: Water

Matrix:	Water

1

1

1

1

02/20/23 07:09 02/23/23 07:56

02/20/23 07:09 02/23/23 07:56

02/20/23 07:09 02/23/23 07:56

02/20/23 07:09 02/23/23 07:56

Lab Sample ID: 410-115153-9

13C3 PFBS

13C3 PFHxS

13C8 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C8 FOSA

13C4 PFBA

Client Sample ID: YTC-FB-3-020823 Date Collected: 02/08/23 17:20 Date Received: 02/10/23 09:54

Lab Sample ID: 410-115153-9 Matrix: Water

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

02/20/23 08:57 03/04/23 02:21

1

1

1

1

1

1

1

1

Analyte	Result	Qualifier	LOQ	LOD) DL	Unit D	Analyzed	Dil Fac
NMeFOSAA	1.1	U	1.9	1.1	0.56	ng/L	03/04/23 02:21	1
Perfluoropentanesulfonic acid	0.93	U	1.9	0.93	3 0.46	ng/L	03/04/23 02:21	1
Perfluoroheptanesulfonic acid	0.93	U	1.9	0.93	0.46	ng/L	03/04/23 02:21	1
Perfluorononanesulfonic acid	0.93	U	1.9	0.93	0.46	ng/L	03/04/23 02:21	1
Perfluorodecanesulfonic acid	0.93	U	1.9	0.93	3 0.46	ng/L	03/04/23 02:21	1
Perfluorooctanesulfonamide	1.3	U	1.9	1.3	3 0.65	ng/L	03/04/23 02:21	1
Perfluorobutanoic acid	3.7	U	4.6	3.7	<u> </u>	ng/L	03/04/23 02:21	
Perfluoropentanoic acid	0.93	U	1.9	0.93) 0.40	ng/Ľ	03/04/23 02.21	1
Perfluoroundecanoic acid	0.93	U	1.9	0.93	0.46	ng/L	03/04/23 02:21	1
Perfluorododecanoic acid	0.93	U	1.9	0.93	0.46	ng/L	03/04/23 02:21	1
6:2 Fluorotelomer sulfonic acid	1.9	U	2.8	1.9	0.93	ng/L	03/04/23 02:21	1
8:2 Fluorotelomer sulfonic acid	1.9	U	2.8	1.9	0.93	ng/L	03/04/23 02:21	1
4:2 Fluorotelomer sulfonic acid	0.93	U	1.9	0.93	.46 0.46 0	ng/L	03/04/23 02:21	
Isotope Dilution	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
Isotope Dilution M2-4:2 FTS	_ <u>%Recovery</u> Qu 144 Q	ualifier	Limits 50 - 150			Prepared 02/20/23 08:57		Dil Fac
		ualifier					03/04/23 02:21	Dil Fac 1 1
M2-4:2 FTS	144 Q	ualifier	50 - 150			02/20/23 08:57	03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1
M2-4:2 FTS M2-8:2 FTS	144 Q 121		50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS	144 Q 121 139		50 - 150 50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS 13C5 PFHxA	144 Q 121 139 147 Q	cn	50 - 150 50 - 150 50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	<u>Dil Fac</u> 1 1 1 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS 13C5 PFHxA 13C4 PFHpA	144 Q 121 139 147 Q 136	cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1 1 1 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS 13C5 PFHxA 13C4 PFHpA 13C8 PFOA	144 Q 121 139 147 Q 136 143 cn	cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1 1 1 1 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS 13C5 PFHxA 13C4 PFHpA 13C8 PFOA 13C9 PFNA	144 Q 121 139 147 Q 136 143 cn 142	cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	Dil Fac 1 1 1 1 1 1 1 1 1 1 1
M2-4:2 FTS M2-8:2 FTS M2-6:2 FTS 13C5 PFHxA 13C4 PFHpA 13C8 PFOA 13C9 PFNA 13C6 PFDA	144 Q 121 139 147 Q 136 143 cn 142 123	cn	50 - 150 50 - 150			02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57 02/20/23 08:57	03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21 03/04/23 02:21	1 1 1 1 1 1 1 1 1

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

13C5 PFPeA	145 Q cn	50 - 150	
_ Method: DOD 5.4 QSM B15 - PFA	AS for QSM 5.4, Ta	ble B-15 - RE	

148 Q cn

145 cn

138

124

130

109

142 Q cn

Method. DOD 3.4 GOM D13 - 1		J. - , Table D	-13-11						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.93	U M	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
-Perfluoroheptanoic acid	0.93	UН	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluoreoctanoic acid	0.93	UH	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorononanoic acid	0.93	UH	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorodecanoic acid	0.93	UH	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorotridecanoic acid	0.93	UH	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorotetradecanoic acid	0.93	UH	1.9	0.93	0.47	ng/L		03/09/23 09:37	4
Perfluorobutanesulfonic acid	0.93	Πħ	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorohexanesulfonic acid	0.93	UΗ	1.9	0.93	0.47	ng/L		03/09/23 09:37	1
Perfluorooctanesulfonic acid	1.9	UH	2.0	1.9	0.93	ng/L		03/09/23 09:37	1
NEtFOSAA	0.93	UH	2.8	0.93	0.47	ng/L		03/09/23 09:37	1
NMeFOSAA	1.1	UH	1.9	1.1	0.56	ng/L		03/09/23 09:37	1
Perfluoropentanesulfonic acid	0.93	UН	1.9	0.93	0.47	ng/L		03/09/23 09:37	

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-FB-3-020823 Date Collected: 02/08/23 17:20

Date Received: 02/10/23 09:54

Job ID: 410-115153-1

Lab Sample ID: 410-115153-9 Matrix: Water

Analyte	Result	Qualifier	LO	Q	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluoroheptanesulfonic acid	0.93	UII		.9	0.93	0.47	ng/L	03/09/23 09:37	1
Perfluorononanesulfonic acid	0.93	UH	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
Perfluorodecanesulfonic acid	0.93	UH	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
Perfluorooctanesulfonamide	1.3	UII	1	.9	1.3	0.65	ng/L	03/09/23 09.37	1
Perfluorobutanoic acid	3.7	U 🗗	4	.7	3.7	1.9	ng/L	03/09/23 09:37	1
Perfluoropentanoic acid	0.93	U₩	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
Perfluoroundecanoic acid	0.93	UH	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
Perfluorododecanoic acid	0.93	UH	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
6:2 Fluorotelomer sulfonic acid	1.9	UH	2	.8	1.9	0.93	ng/L	03/09/23 09:37	1
8:2 Fluorotelomer sulfonic acid	1.9	UН	2	.8	1.9	0.93	ng/L	03/09/23 09:37	1
4:2 Fluorotelomer sulfonic acid	0.93	U 🖌	1	.9	0.93	0.47	ng/L	03/09/23 09:37	1
Isotope Dilution	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	159 Q		50 - 150				03/07/23 08:36	03/09/23 09:37	1
M2-8:2 FTS	148 Q		50 - 150				03/07/23 08:36	03/09/23 09:37	1
M2-6:2 FTS	163 Q		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C5 PFHxA	145		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C4 PFHpA	133		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C8 PFOA	140		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C9 PFNA	130		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C6 PFDA	135		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C7 PFUnA	140		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C2-PFDoDA	127		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C2 PFTeDA	130 Q		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C3 PFBS	130		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C3 PFHxS	139		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C8 PFOS	128		50 - 150				03/07/23 08:36	03/09/23 09:37	1
d3-NMeFOSAA	129		50 - 150				03/07/23 08:36	03/09/23 09:37	1
d5-NEtFOSAA	128		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C8 FOSA	125		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C4 PFBA	131		50 - 150				03/07/23 08:36	03/09/23 09:37	1
13C5 PFPeA	126		50 - 150				03/07/23 08:36	03/09/23 09:37	

Yakima Training Center PFAS RI

DATA REVIEW

Yakima, Washington

Per- and Polyfluoroalkyl Substances (PFAS) Analysis

SDG #410-115009-1

Analyses Performed By: Eurofins Lancaster Laboratories Environmental Lancaster, Pennsylvania

Report #48943R Review Level: Stage 2b/4 Project: 30124009.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 410-115009-1 for samples collected in association with the Yakima Training Center (YTC) site. The review was conducted as 100 percent Stage 2B and 10% Stage 3/4 evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Comple ID	Lab ID	Matrix	Sample Collection	Derent Semple	Analysis
Sample ID		watrix	Date	Parent Sample	PFAS
YTC-MTS-3-GW-020623	410-115009-1	Water	02/06/2023		x
YTC-TVR-6-GW-020623	410-115009-2	Water	02/06/2023		x
YTC-FB-1-020623	410-115009-3	Water	02/06/2023		х
YTC-EB-1-020623	410-115009-4	Water	02/06/2023		X
YTC-SOURCE-1-020723	410-115009-5	Water	02/07/2023		X
YTC-TVR-3-GW-020723	410-115009-6	Water	02/07/2023		x
YTC-FB-2-020723	410-115009-7	Water	02/07/2023		X
YTC-EB-2-020723	410-115009-8	Water	02/07/2023		x
YTC-SW-08-020723	410-115009-9	Water	02/07/2023		X
YTC-SED-01-020723	410-115009-10	Soil	02/07/2023		X
YTC-SED-02-020723	410-115009-11	Soil	02/07/2023		x
YTC-SED-03-020723	410-115009-12	Soil	02/07/2023		Х
YTC-SED-04-020723	410-115009-13	Soil	02/07/2023		x
YTC-FD-01-SED-020723	410-115009-14	Soil	02/07/2023	YTC-SED-04-020723	x
YTC-SW-04-020723	410-115009-15	Water	02/07/2023		x
YTC-FD-01-SW-020723	410-115009-16	Water	02/07/2023	YTC-SW-04-020723	x
YTC-SED-05-020723	410-115009-17	Soil	02/07/2023		x
YTC-SED-06-020723	410-115009-18	Soil	02/07/2023		X
YTC-SED-07-020723	410-115009-19	Soil	02/07/2023		X
YTC-SED-08-020723	410-115009-20	Soil	02/07/2023		x

Notes:

- 1. Stage 4 validation was performed on sample location YTC-SW-04-020723.
- 2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations YTC-TVR-3-GW-020723, YTC-SW-08-020723, and YTC-SED-03-020723.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Items Reviewed		Reported		rmance ptable	Not	
			Yes	No	Yes	Required	
1.	Sample receipt condition		Х		Х		
2.	Requested analyses and sample results		Х		X		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		Х		Х		
12.	Data Package Completeness and Compliance		Х		Х		

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories (QSM) conducted using Liquid Chromatography Tandem Mass Spectrometry compliant with Table B-15 of QSM 5.4. Data were reviewed in accordance with Eurofins Lancaster Laboratories Environmental (ELLE) SOP T-PFAS-WI36458 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Revision 1.1 Modified QSM 5.4 Table B-15 Using /LC/MS/MS, Version 3 (2022), SOP T-PFAS-WI36459 Polyfluorinated Alkyl Substances (PFASs) in Solids by Method 537 Version 1.1 Modified QSM 5.4 Table B-15 Using LC/MS/MS, Version 2 (2022), Department of Defense (DoD) Quality Systems Manual (QSM) 5.4, DoD General Data Validation Guidelines, November 2019, DoD Final Data Validation Guidelines Module 3: PFAS, May 2020, and Final Programmatic Uniform Federal Policy-Quality Assurance Project Plan USAEC PFAS PA/SI Active Army Installations, October 2019 (Arcadis).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified, and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Per DoD General Data Validation Guidelines November 2019 Revision 1 Section 4.8 states; "The following provides a brief explanation of the DoD data validation qualifiers assigned to results during the data review process by a data validator. The reviewer should use these qualifiers, as applicable, unless other data qualifiers are specified in a project related document, such as a QAPP. If other qualifiers are used, a complete explanation of those qualifiers should accompany the data validation report." Below are the qualifier codes that may be applied in this validation report:

- Concentration (C) Qualifiers
 - U The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The reported result was an estimated value with an unknown bias.
 - J+ The result was an estimated quantity, but the result may be biased high.
 - J- The result was an estimated quantity, but the result may be biased low.
 - UJ The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.

X The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

A fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

PERFLUOROALKYL SUBSTANCES (PFAS) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
DoD QSM 5.4	Water	28 days to extraction; 28 days from extraction to analysis	Cool to <6 °C
Table B-15	Soil	28 days to extraction; 28 days from extraction to analysis	Cool to <6 °C

The holding time has been changed from the original holding time documented in EPA 537 of 14 days for extraction to 28 days. This was documented in EPA Technical Brief EPA/600/F-17/022h Updated January 2020. Utilizing the new guidance of 28 days all samples were analyzed within the specified holding time criteria.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, instrument, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Instrument blanks measure carryover in the instrument from one sample to another. Method blanks measure laboratory contamination. Equipment rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the detection limit (DL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the DL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Calibration

Mass calibration and system performance were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The percent relative standard deviation (%RSD) of the response factors (RF) must be less than 20%, or for linear calibration, $r^2 \ge 0.99$. Analytes must be within 70-130% recovery of their true value for each calibration standard. The initial calibration verification (ICV) standard recoveries must be within 70-130% recovery of their true value.

The initial calibration, calibration standards and ICV recoveries were within acceptable limits.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration verification (CCV) standards must exhibit a percent recovery (%R) within 70% to 130%.

All compounds associated with the CCVs were within the specified control limits.

4.3 Instrument Sensitivity Check (ISC)

The ISC concentration must be at the LOQ. All target compounds associated with the ISC must exhibit a percent recovery (%R) of 70 to 130%.

All compounds associated with ISC recoveries were within control limits.

4.4 Ion Transitions

Quantitation of analytes must use the ion transitions documented in DoD QSM 5.4 Table B-15.

The ion transitions were as specified in DoD QSM 5.4.

5. Extracted Internal Standards (EIS)

Labeled standards must be added to all field samples and QC samples prior to extraction. EIS recoveries must be within 50% to 150% of ICAL midpoint standard area or area measured in the initial CCV on days when ICAL not performed.

Sample locations associated with EIS exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	EIS	Associated Compounds	EIS %R	RE EIS %R
	M2-4:2 FTS	4:2 FTS	>150%	AC
YTC-TVR-6-GW-020623	M2-6:2 FTS	6:2 FTS	> 150%	AC
	13C8-FOSA	Perfluorooctanesulfonamide	< 50 but >20%	< 50 but >20%
YTC-SOURCE-1-020723	M2-4:2 FTS	4:2 FTS	>150%	AC
YTC-TVR-3-GW-020723	13C3 PFHxS	Perfluorohexanesulfonic acid (PFHxS)	>150% (DL)	AC
110-111-5-644-620725	13C8 PFOS	Perfluorooctanesulfonic acid (PFOS)	>150% (DL)	AC
	M2-4:2 FTS	4:2 FTS	>150%	
		Perfluorododecanoic acid (PFDoDA)		
YTC-SW-08-020723	13C2-PFDoDA	Perfluorotridecanoic acid (PFTrDA)	< 20%	Not Analyzed
	13C2 PFTeDA	Perfluorotetradecanoic acid (PFTeDA)	< 20%	
	13C8-FOSA	Perfluorooctanesulfonamide	< 50 but >20%	< 50 but >20%
YTC-SW-04-020723	13C4 PFBA	Perfluorobutanoic acid (PFBA)	< 50 but >20%	AC
YTC-FD-01-SW-020723	13C9 PFNA	Perfluorononanoic acid (PFNA)	< 50 but >20%	AC

Sample Locations	EIS	Associated Compounds	EIS %R	RE EIS %R
	13C8-FOSA	Perfluorooctanesulfonamide	< 50 but >20%	< 50 but >20%
	13C4 PFBA	Perfluorobutanoic acid (PFBA)	< 50 but >20%	AC

Notes:

AC Acceptable

DL Dilution

Where a re-extracted analysis was performed, results are reported from the analysis in bold above.

The analytical report lists the EIS recoveries based on true value. Form VIII was reviewed for area counts between the sample location and the initial CCV for EIS recovery exceedances. The recoveries reported on the analytical result pages can be slightly different when calculated using area.

The criteria used to evaluate the EIS recoveries are presented in the following table. In the case of an EIS deviation, the sample results associated with the EIS are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
4500/	Non-detect	No Action
> 150%	Detect	J-
- 50% huts 00%	Non-detect	UJ
< 50% but > 20%	Non-detect Detect	J+
- 2001/	Non-detect	UX
< 20%	Detect	Х

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the DoD QSM 5.4 acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must be \leq 30%.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis was performed on sample locations YTC-TVR-3-GW-020723, YTC-SW-08-020723, and YTC-SED-03-020723.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compounds	MS Recovery	MSD Recovery
	Perfluorohexanesulfonic acid	SR>4X	SR>4X
YTC-TVR-3-GW-020723	Perfluorooctanesulfonic acid	SR>4X	SR>4X
	Perfluoroheptanesulfonic acid	>UL	AC

Sample Location	Compounds	MS Recovery	MSD Recovery
Notes:			

Notes:

AC Acceptable

UL Upper control limit

SR>4X Sample result greater than 4 times added spike

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
	Non-detect	No Action	
> the upper control limit (UL)	Detect	J+	
	Non-detect	UJ	
< the lower control limit (LL) but > 10%	Detect	J-	
100/	Non-detect	UX	
< 10%	Detect	J-	
SR>4X: Parent sample concentration > four times the MS/MSD	Detect		
spiking solution concentration.	Non-detect	No Action	

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the DoD QSM 5.4 acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. For sample results greater than five times the LOQ, control limits of 30% for water matrices and 50% for soils are applied to the RPD between the parent sample and the field duplicate sample results. For sample results less than five times the LOQ, a control limit of two times the LOQ is applied for water matrices and a control limit of three times the LOQ is applied for soil matrices. The table below presents analytical results for each parent/duplicate sample pair, either an RPD value or an absolute difference value (as applicable), the applicable control limit (as either a percentage or a multiplier of the LOQ), and determination of whether the parent/duplicate sample results differences meet the applicable control limits.

Sample ID / Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD/ Absolute Difference	LOQ CL/ RPD CL	AC/ NC
YTC-SED-04-020723 / YTC-FD-01-SED-	Perfluorohexanoic acid	0.26 J	0.47 J	0.21	2.31	AC
	Perfluorooctanoic acid	0.77 U	0.25 J	0.25	2.31	AC
020723	Perfluorodecanoic acid	0.77 U	0.25 J	0.25	2.31	AC

Sample ID / Duplicate ID	Compounds	Sample Result	Duplicate Result	RPD/ Absolute Difference	LOQ CL/ RPD CL	AC/ NC
	Perfluorohexanesulfonic acid	0.37 J	0.68	0.31	2.31	AC
	Perfluorooctanesulfonic acid	5.2	9.4	57.5%	50%	NC
	Perfluoropentanoic acid	0.59 J	1.1	0.51	2.31	AC
	Perfluorododecanoic acid	0.77 U	0.39 J	0.39	2.31	AC
	Perfluorohexanoic acid	160	170	6.1%	30%	AC
	Perfluoroheptanoic acid	59	59	0.0%	30%	AC
	Perfluorooctanoic acid	78	83	6.2%	30%	AC
	Perfluorononanoic acid	12	12	0.0%	30%	AC
	Perfluorodecanoic acid	11	11	0.0%	30%	AC
	Perfluorobutanesulfonic acid	26	29	10.9%	30%	AC
	Perfluoropentanesulfonic acid	39	41	5%	30%	AC
	Perfluoroheptanesulfonic acid	41	43	4.8%	30%	AC
	Perfluorononanesulfonic acid	3.8	3.4	0.4	3.6	AC
YTC-SW-04-020723 /	Perfluorodecanesulfonic acid	2.5	2.4	0.1	3.6	AC
YTC-FD-01-SW- 020723	Perfluorooctanesulfonamide	11	12	8.7%	30%	AC
	Perfluorobutanoic acid	22	21	4.7%	30%	AC
	Perfluoropentanoic acid	79	78	1.3%	30%	AC
	Perfluoroundecanoic acid	2.3	2.4	0.1	3.6	AC
	Perfluorododecanoic acid	1.9	1.9	0.0	3.6	AC
	4:2 FTS	0.60 J	0.61 J	0.01	3.6	AC
	Perfluorohexanesulfonic acid	360	360	0.0%	30%	AC
	Perfluorooctanesulfonic acid	2900	2900	0.0%	30%	AC
	6:2 FTS	180	200	10.5%	30%	AC
	8:2 FTS	81	80	1	54	AC

Notes:

AC Acceptable

NC Not compliant

CL Control limit

The compound perfluorooctanesulfonic acid associated with sample locations YTC-SED-04-020723 and YTC-FD-01-SED-020723 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

9. Compound Identification

PFC analytes are identified by using the compound's ion abundance ratios, signal-to-noise values, and relative retention times.

Sample locations associated with ion ratios outside of the control limits of 50% to 150% recovery (%R) are presented in the following table.

Sample Location	Compounds	Ion Ratio %R
YTC-TVR-3-GW-020723	Perfluorodecanesulfonic acid	399.2%
YTC-SW-04-020723	Perfluorododecanoic acid	162.7%

In the case of an ion ratio deviation, the sample results are qualified as documented in the table below.

Control limit	Sample Result	Qualification
< 50% or > 150% R	Detect	J

Note a number of results were manually integrated which were spot checked. The manual quantitation (M) laboratory qualifier has been preserved with the data as informational data for the end user; there was no impact on the data usability. The manual quantitation (M) laboratory qualifier associated with data reported as non-detect have been removed.

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compounds	Original Analysis	Diluted Analysis	Reported Analysis
	Perfluorohexanesulfonic acid		360	360 D
	Perfluorooctanesulfonic acid		2900	2900 D
YTC-SW-04-020723	6:2 FTS		180	180 D
	8:2 FTS		360	360 D
	Perfluorohexanesulfonic acid		360	360 D
	Perfluorooctanesulfonic acid		2900	2900 D
YTC-FD-01-SW-020723	6:2 FTS		200	200 D
	8:2 FTS		80	80 D

Note: The laboratory did not report the original analysis, only the diluted result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range.	D

10. System Performance and Overall Assessment

The case narrative OR sample preparation log indicated that the sample YTC-SW-08-020723 required centrifugation prior to extraction, due to excessive solids present in the sample. Centrifugation was performed following the PFAS Aqueous Centrifuge Protocol; sample was spiked with Surrogate (SUR; Extracted Internal Standard/EIS) and shaken vigorously before being poured into a conical bottle and centrifuged. The centrifuged aqueous sample was decanted back into the original sample bottle, off of the condensed solids remaining in the centrifuge bottle. Original sample bottle was rinsed as normal and centrifuge bottle was rinsed with 4mL of methanol each. Centrifuge bottle rinsate was added to the elution. Samples concentrated to <10mL and reconstituted to 10mL using methanol by transfer pipet. Hence, the target compounds were not qualified for the sample preparation modification.

Some of the compound results were qualified 'cn' which is defined as Refer to the Case Narrative for further detail. The case narrative was reviewed, and associated data qualified if appropriate. The case narrative noted the EIS and MS/MSD recoveries outside control limits as listed in Section 5 and 6, and the data was qualified. The "cn" qualifier has been removed from the database.

Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PFAS

PFAS: DoD QSM 5.4	Rep	orted		rmance ptable	Not	
	No	Yes	No	Yes	Required	
LIQUID CHROMATOGRAPHY/MASS SPECTROME	TRY (LC/	MS/MS)				
Stage 2B Validation						
Holding times		х		Х		
Reporting limits (units)		х		Х		
Blanks		1		1	1	
A. Method blanks		х		Х		
B. Equipment blanks		х		Х		
C. Field blanks		х		Х		
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R	х				Х	
LCS/LCSD Precision (RPD)	х				Х	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate (MSD) %R		Х	Х			
MS/MSD Precision (RPD)		Х		Х		
Field Duplicate (RPD)		X	Х			
Extracted Internal Standard %R		X	Х			
Dilution Factor		Х		Х		
Moisture Content		X		Х		
Stage 3/4 Validation		1		1	1	
Instrument tune and performance check		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration %Rs		Х		Х		
Instrument sensitivity check		Х		Х		
Ion transitions used		Х		Х		
Compound identification and quantitation	1	1		1	1	
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		х		x		
D. Ion Ratio %R		Х	X			

Rep	oorted			Not	
No	Yes	No	Yes	Required	
LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY (LC/MS/MS)					
	x		Х		
	х		x		
	No	TRY (LC/MS/MS)	Reported Acce No Yes No TRY (LC/MS/MS) X Image: Compare the second	No Yes No Yes TRY (LC/MS/MS) X X	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Pruthvi Kumar C, Arcadis

SIGNATURE:

DATE: March 16, 2023

PEER REVIEW: Dennis Capria, Arcadis

DATE: March 28, 2023

Stage 3 / 4 PFAS Calibration Standards %D

 SDG #:
 410-115009-1

 Lab:
 Eurofins Lancaster

 Project:
 Yakima Training Center PFAS RI

03/16/2023
1
PK

Method: EPA modified 537 per DoD QSM 5.4

PFHxA 02/	18/2023 Calib	oration		Instrument	t: 30728			Page 2246	-2259		
Cal Conc					Calculated		Calc		Calculated	Reported	
ng/ml	Std Area	EIS Area	EIS Conc	Area Ratio	RF	Avg RF	Amount	Tvalue	% D	% D	
0.2	51463	2837033	10	0.01814	0.9069863	0.8496	0.213509	0.2	6.755	6.8	MATCH
0.5	116600	2968613	10	0.039278	0.785552	0.8496	0.462307	0.5	-7.539	-7.5	MATCH
2	496309	2804367	10	0.176977	0.884886	0.8496	2.083065	2	4.153	4.1	MATCH
8	1623652	2525900	10	0.642801	0.8035017	0.8496	7.56593	8	-5.426	-5.4	MATCH
20	3884118	2312864	10	1.679354	0.8396771	0.8496	19.76641	20	-1.168	-1.2	MATCH
50	7991388	1912448	10	4.178617	0.8357234	0.8496	49.18335	50	-1.633	-1.6	MATCH
100	15244340	1710753	10	8.910895	0.8910895	0.8496	104.8834	100	4.883	4.9	MATCH
				Avg RF	0.8496309	MATCH					

Concentration ng/ml = (Peak area ratio/Avg RF) x EIS concentration

Stage 3 / 4 PFAS ICV CCV Standards %D

SDG #:	410-115009-1	Date: 03/16/2023
Lab:	Eurofins Lancaster	Page: 2
Project:	Yakima Training Center PFAS RI	Validated by: PK

Method: EPA modified 537 per DoD QSM 5.3

Instrument: 30728 ICV 410-345861/9 02/18/2023 13:09 File ID: 23FEB18DCAL-09.d Page 3113 of SDG 410-115009-1

	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFHpA	656668	2988309	10.00	0.219746	1.0328	2.1277	2.00	6.383	6.4	Match
PFHxS	394929	1794566	9.46	0.220069	1.0806	1.9266	1.82	5.856	5.6	Match
PFHxA	462552	2690653	10.00	0.171911	0.8496	2.0234	2.00	1.172	1.2	Match

Instrument: 30728

File ID: 23FEB20-06.d

CCVIS 410-346104/1 02/20/2023 11:57 Page 3188 of SDG 410-115009-1 This CCVIS is applicable for the sample YTC-SW-04-020723 (410-115009-15)

					== (== ==					
	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFHpA	154303	2850612	10.00	0.05413	1.0328	0.5241	0.500	4.821	4.8	Match
PFHxS	80095	1597893	9.46	0.050125	1.0806	0.4388	0.456	-3.768	-3.8	Match
PFHxA	111827	2523882	10.00	0.044308	0.8496	0.5215	0.500	4.302	4.3	Match

Instrument: 30728

File ID: 23FEB20-111.d

CCV 410-346104/106 02/21/2023 07:21 Pa

Page 3224 of SDG 410-115009-1

This CCVIS is applicable for the sample YTC-SW-04-020723 (410-115009-15)

	Analyte					Calc		Calculated	Reported	
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	Amount	Tvalue	% D	% D	
PFHpA	156670	2900999	10.00	0.054006	1.0328	0.5229	0.500	4.581	4.6	Match
PFHxS	82581	1655326	9.46	0.049888	1.0806	0.4367	0.456	-4.224	-4.2	Match
PFHxA	107160	2578091	10.00	0.041566	0.8496	0.4892	0.500	-2.152	-2.2	Match

Concentration ng/ml = (Peak area ratio/Avg RF) x EIS concentration

Stage 3 / 4 PFAS LCS

SDG #:	410-115009-1			Date:	03/16/2023
Lab:	Eurofins Lancaster			Page	3
Project:	Yakima Training Center	PFAS RI	V	alidated by	РК
Method:	EPA modified 537 per D	oD QSM 5.4			
	LCS ID 410-345843			Page 1011	l of SDG 410-115009-1
	ANALYTE Perfluorobut	tanesulfonic acid			
REPOR	TED LCS %R 94				
REPORT	ED LCSD %R NA				
REP	ORTED RPD NA				
	%R = 100 * LCS Co	oncentration	RPD =	= 100 * LC	S %R - LCSD %R
	LCS 1	ΓV		Average o	f LCS LCSD %R
LCS Co	ncentration 21.3		LCS %R	93.8326	5 MATCH
LCSD Co	ncentration NA		LCSD %R	NA	MATCH
	LCS TV 22.7		RPD	NA	MATCH
	LCSD TV NA				

Differences in %R may be due to rounding of the true value

This LCS is applicable for the sample YTC-SW-04-020723 (410-115009-15)

Stage 3 / 4 PFAS MS/MSD

SDG #: Lab: Project:	410-115009-1 Eurofins Lancaster Yakima Training Center PFAS RI	Date: 03/16/2023 Page: 4 Validated by: PK
Method:	EPA modified 537 per DoD QSM 5.4	
REPO REPOR	SD Sample IDYTC-TVR-3-GW-020723ANALYTEPerfluorobutanoic acidRTED MS %R93TED MSD %R92PORTED RPD2	Page 1023 & 1033 of SDG 410-115009-1
	%R = <u>100 * MS Concentration</u>	RPD = 100 * MS % R - MSD % R
	MS TV	Average of MS MSD %R
	Sample Concentration11MS Concentration30.7MSD Concentration30.2MS TV21.1MSD TV20.7	MS %R 93.36 MATCH MSD %R 92.75 MATCH RPD 1.64 MATCH

Differences in %R may be due to rounding of the true value

Stage 3 / 4 PFAS Sample Concentration

SDG #:410-115009-1Lab:Eurofins LancasterProject:Yakima Training Center PFAS RI

Date:	03/16/2023
Page:	5
Validated by:	РК

Method: EPA modified 537 per DoD QSM 5.4

YTC-SW-04-020723 Lab ID: 410-115009-15

Instrument: 30728

Instrumen	t: 30728				FV= 1ml							
						Calculated						
	Analyte					Amount	Sample	Calculated	Reported			
Analyte	Area	EIS Area	EIS Conc	Area Ratio	Avg RF	ng/ml	Volume mls	ng/L	Value ng/L			
PFHpA	2900963	1706325	10.00	1.700123	1.0328	16.46	276.7	59.49	59	Match		
PFHxS	7495857	662667	9.46	11.31165	1.0806	99.03	276.7	357.88	360	Match		
PFHxA	6168712	1614089	10.00	3.821792	0.8496	44.98	276.7	162.57	160	Match		

Concentration ng/ml = (Peak area ratio/Avg RF) x DF x EIS concentration Concentration ng/L = concentration ng/ml / (sample volume/1000)

Page 1427 & 1469 of SDG 410-115009-1

Stage 3 / 4 PFAS EIS

SDG #:	410-11500	9-1			Date:	03/16/2023
Lab:	Eurofins La	incaster			– Page:	6
Project:	Yakima Tra	ining Cente	r PFAS RI	١	/alidated by:	РК
Method:	EPA modifi	ed 537 per	DoD QSM	5.3		
YTC-SW-0	4-020723		Lab ID: 41	0-115009-15		
	EIS	13C3 PFBS		-		
REPOR	RTED EIS %R	62		-		
				-		
	%R =	100 * EIS C	oncentrati	ion		
		EIS	TV	-		
EIS Co	ncentration	5.75		Page 1429 of SDG 42	10-115009-1	
	EIS TV	9.3		Lab Reports EIS %R b	based on true	value
	%R	61.8	MATCH			
	%R =	100 * EIS A	rea	_		
		CCVIS EIS A	rea			
	EIS Area	1072177	Page 1147	7 and 1429 of SDG 410	0-115009-1	
CC	VIS EIS Area	1603759	Page 1147	7 and 3190 of SDG 410	0-115009-1	
	%R	66.9				

DoD QSM 5.3 specifies EIS %R calculated from area compared to initial CCV. Lab supplies area counts on Form VIII in Stage 4 data package. Form VIII is reviewed for EIS %R exceedances.

CHAIN OF CUSTODY SAMPLE ANALYSIS DATA SHEETS

ivironme

Chain of Custody Record

🔅 eurofins	
	Environment Testing

410-115009 Chain of Custody ab PM Carrier Tracking No(s): COC No: A.Balson J. Pellared Martin, Elizabeth 410-80232-22040.1 Client Contact: Phone E-Mail: State of Origin: age; 717.940.8808 of 2 Pagetofs Pale Courtney Bigelow Elizabeth.Martin@et.eurofinsus.com Company: Job # Environmental Chemical Corp Analysis Requested Address Due Date Requested: Preservation Codes: 1304 Governors Court Suites 101 & 102 M - Hexane A - HCL Compounds) N - None TAT Requested (days): Cily: B - NaOH O - AsNaO2 Abingdon 15 day TAT C - Zn Acetate P · Na2O4S State, Zip: D - Nitric Acid Q - Na2S03 Compliance Project: 🛆 Yes 🛆 No E - NaHSO4 MD, 21009 R - Na2S2O3 F - MeOH PO #: S · H2SO4 PFC_IDA_D5.3 - PFC_IDA_D5.3 (List of 24 Phone: G - Amchlor T · TSP Dodecahydrate 410-671-2970(Tel) PO Pendina H - Ascorbic Acid U - Acetone WO #: Email: I-Ice V · MCAA 5 J - DI Water form MS/MSD (Yes or No) cbigelow@ecc.net W-pH4-5 containers K - EDTA Sample (Yes Project Name: Project # Y · Trizma Moisture - Percent Moisture L - EDA 41013850 Yakima PFAS Z - other (specify) SSOW#: Other: YTC -Baselme a **Total Number** Matrix Sample (wewater. Турв S=solid. Þ Sample (C=comp, Orwaste/ol, Sample Date Time G=grab) BT=Tissue, A=Air Sample Identification Special Instructions/Note: Preservation Code: N G 1 GW 4TC-MTS-3-GW-020623 High PRAS Expected 2-6-23 1006 M 4TC-TVR-6-GW-020623 G NZ * High PEAS Expected 2-6-23 1301 GW VTC- FB-1-020623 W 1630 A 2 2-6-23 NN S 11 4TC- ER-1- 020623 2-6-22 1635 G H 1 *High PEAS Expected my 1TC- Source-1-070723 0835 G S N 7 2-7-23 VTC- TVR-3-GW-020723 1311 GW 6 2-7-23 G M G 2 1,T(- FB-2-020723 1530 W 7-7-23 N 7 TC- EB- 2-020723 2-7-23 (535 G W N N 4TC-SW-08-020723 2-7-23 1505 SW 6 msmist NV ol Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lab Archive For Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Return To Client Months Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Method of Shipment: Empty Kit Relinquished by: Date: Time: Mia Relinquished by Company FedE) Company 1720 7 Relinguished by: Company Company Received by 3 1a123 1600 2 600 Company Relinguished by: Date/Time: Date/Tim Received by MET 10:25 Custody Seals Intact: Custody Seal No .: Cooler Tepiperature(s) *C and Other Remarks: 5 A No Yes Ver: 06/08/2021 Page 4203 of 4205

ıme

Eurofins Lancaste

51

2425 New Holland Pire

Lancaster, PA 17601

Chain of Custody Record

Environment Testing

Phone: 717-656-2300 Fav									_		1.					1			
Client Information	Sampler Aud	RaB	alson	Lab Mai	РМ: rtin, Eli	zabeti	h				Ca	Carrier Tracking No(s):				COC No: 410-80232-22040.4			
Client Contact: Courtney Bigelow	Phone: 717.	940.8	808	E-M	lail: zabeth.l	Martin	@et.	eurofin	sus co	m	Sta	State of Ongin.				Page: Pege 4	ors P	° 2	ofz
Company			PWSID		1		0				2000	quested						1	
Environmental Chemical Corp. Address.	Due Date Requeste	d:		-	10.00	1		-	Anai		ceque	ested		<u> </u>	10	Preserv	ation Cod	es:	
1304 Governors Court Suites 101 & 102					88	2			1						3	A - HCL	1999/12/22	M - Hexand	
City Abingdon	TAT Requested (da	ys):				Compounds)										B - NaOH C - Zn Au		N - None O - AsNaO P - Na2O4	
State, Zip	Compliance Projec	t A Yes A	No		12 8	omp										D - Nitric E - NaHS		Q - Na2SO	3
MD, 21009 Phone	PO#				-11					11						F - MeOl G - Amcl		R - Na2S2 S - H2SO4	
410-671-2970(Tel)	PO Pending wo#:				- ĵ	D5.3 (List of 24		1								H - Asco		U - Aceton	decahydrate e
Email cbigelow@ecc.net					No!	5.3 (L										J - DI Wa		V - MCAA W - pH 4-5	
Project Name: Yakima PFAS	Project # 41013850				Ye.	IDA_D	ture							11		L-EDA	AL,	Y - Trizma Z - other (s	pecify)
Site	SSOW#				Sample (Yes or No SD (Yes or No)	0	Moisture								100	Other:			A
				nonativine.	d Sa		- Percent			1 1					10.10				
			Sample	Matrix (Wewster,	Itere MS	A_05.3									Total Mimbar				
		Sample	Type (C=comp,	S=solid, O=waste/oll,	Field F	PFC_IDA	Moisture								14				
Sample Identification	Sample Date	Time	G=grab)	the second s		1	-	-	_		_	-			4		pecial In	struction	s/Note:
	~	\geq	75	tion Code:	Y	N	N								-1	-			
YTC-SED-01-020723	2-7-23	0905	G	S	NK	11	1	X		+	_				_	_			
4TC-SED-02-020723	2-7-23	0940	6	5	NA	11	1					_							
4TC-SED-01-020723 4TC-SED-02-020723 4TC-SED-03-020723	2-7-23	1000	G	S	N	13	1		Y	P						ms	mos		
VTC- SED-04-020723	2-7-23	102	G	5	Ni	11	1			X									
4TC- FD-01-SED-020723	2-7-23	0000	G	5	MA	11	1				S	-							
4TC-SW-04-020723	2-7-23	1020	G	SW	Nr	11	1				K	5				*H	yh r	PRAS	Expect
YTC- FD-01-SW-020723	2-7-23	0000	G	SW	NA	11	1					N							
4TC-SED-05-020723	2-7-23	1055	G	S	140	11	1					1	S.			XH	4LAV	-AS E	Expect
4TC-SED-06-020723	2-7-23	1430	G	S	NA	11	1						1	St I			5		
YTC - SED-07-020723	2-7-23	1450	G	S	NA	1	1							N					
4TC-SED -08-020723	2-7-23	1510	6	S	Mr	11	1												
Possible Hazard Identification					S					may I						ned long	er than 1	month)	
110111100010	on B Unkn	iown 🖵 i	Radiological	-				To Cl		Require		posal E	By Lab	L	An	chive For		Month	S
Deliverable Requested: I, II, III, IV, Other (specify)						e seolitos	instr	uctions	nuc r	vequire	ments								
Empty Kit Relinquished by:		Date:	141.5		Time							Meth		nipment:			AF	Company	
Relinquished by	Dale/Time	224	tro	ECC		Rec	eived t	Fr	Ex					Date/Time	24	123	1720	Company	
Relinquished by	Date/Time.	3123	1600	Company		Rec	eived t	γ					C	ate/Time:	181	231	1602	Company	
Relinquished by:	Dale/Time:	ques		Company	_	Rec	eived t	y:	1	/	2		C	Date/Time:	11		125	Company	LLS T
Custody Seals Intact: Custody Seal No.:	<u> </u>			-		Coo	ler Ter	nperatur	e(s) °C	and Othe	r Rema	rks:			5.4		And in case of the local division of the loc	14	
Pes A No						_		_	_		-					1-	/	Ver: 06/0	10001

Qualifiers

LCMS	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
cn	Refer to Case Narrative for further detail
D	The reported value is from a dilution.
н	Sample was prepped or analyzed beyond the specified holding time
I	Value is EMPC (estimated maximum possible concentration).
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
М	Manual integrated compound.
Q	One or more quality control criteria failed.
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample ID: YTC-MTS-3-GW-020623 Date Collected: 02/06/23 10:06 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-1 Matrix: Water

Method: DOD 5.4 QSM B15 - Analyte		Qualifier	L	OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	1.5	J		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluoroheptanoic acid	0.50	J		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorooctanoic acid	1.3	J		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorononanoic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorodecanoic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorotridecanoic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorotetradecanoic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorobutanesulfonic acid	2.5			1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorohexanesulfonic acid	14			1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorooctanesulfonic acid	3.4			1.7	1.6	0.82	ng/L		02/21/23 06:48	1
NEtFOSAA	0.82	U		2.5	0.82	0.41	ng/L		02/21/23 06:48	1
NMeFOSAA	0.99	U		1.6	0.99	0.49	ng/L		02/21/23 06:48	1
Perfluoropentanesulfonic acid	2.0			1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluoroheptanesulfonic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorononanesulfonic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorodecanesulfonic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluorooctanesulfonamide	1.2	U		1.6	1.2	0.58	ng/L		02/21/23 06:48	1
Perfluorobutanoic acid	3.3	U		4.1	3.3	1.6	ng/L		02/21/23 06:48	1
Perfluoropentanoic acid	0.99	J		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Perfluoroundecanoic acid	0.82			1.6	0.82	0.41	-		02/21/23 06:48	1
Perfluorododecanoic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
6:2 Fluorotelomer sulfonic acid	1.6	U		2.5	1.6	0.82	ng/L		02/21/23 06:48	1
8:2 Fluorotelomer sulfonic acid	1.6	U		2.5	1.6		ng/L		02/21/23 06:48	1
4:2 Fluorotelomer sulfonic acid	0.82	U		1.6	0.82	0.41	ng/L		02/21/23 06:48	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Pre	pared	Analyzed	Dil Fac
M2-4:2 FTS	115		50 - 150	-					02/21/23 06:48	1
M2-8:2 FTS	100		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
M2-6:2 FTS	110		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C5 PFHxA	114		50 - 150				02/18/	23 06:59	02/21/23 06:48	
13C4 PFHpA	99		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C8 PFOA	111		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C9 PFNA	102		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C6 PFDA	99		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C7 PFUnA	107		50 - 150				02/18/	23 06:59	02/21/23 06:48	1
13C2-PFDoDA	101		50 - 150				02/18/	23 06:59	02/21/23 06:48	
13C2 PFTeDA	93		50 - 150						02/21/23 06:48	1
13C3 PFBS	97		50 - 150						02/21/23 06:48	1
13C3 PFHxS	94		50 - 150						02/21/23 06:48	
13C8 PFOS	99		50 - 150						02/21/23 06:48	1
d3-NMeFOSAA	115		50 - 150						02/21/23 06:48	1
d5-NEtFOSAA	110		50 - 150						02/21/23 06:48	1
13C8 FOSA	94		50 - 150						02/21/23 06:48	1
13C4 PFBA	96		50 - 150						02/21/23 06:48	1
13C5 PFPeA	101		50 - 150						02/21/23 06:48	

Client Sample ID: YTC-TVR-6-GW-020623 Date Collected: 02/06/23 13:01 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-2 Matrix: Water

Method: DOD 5.4 QSM B15 -	PFAS for QSM 5	5.4, Table) B-15						
Analyte	Result	Qualifier	I	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	8.5			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluoroheptanoic acid	3.2			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorooctanoic acid	3.6			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorononanoic acid	1.8			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorodecanoic acid	2.8			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorotridecanoic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorotetradecanoic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorobutanesulfonic acid	4.1			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorohexanesulfonic acid	45			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorooctanesulfonic acid	100			1.8	1.7	0.83	ng/L	02/21/23 06:59	1
NEtFOSAA	0.83	U		2.5	0.83	0.42	ng/L	02/21/23 06:59	1
NMeFOSAA	1.0	U		1.7	1.0	0.50	ng/L	02/21/23 06:59	1
Perfluoropentanesulfonic acid	7.2			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluoroheptanesulfonic acid	1.4	J		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorononanesulfonic acid	0.83	UM		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorodecanesulfonic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorooctanesulfonamide	1.2	r nî		1.7	1.2	0.58	ng/L	02/21/23 06:59	1
Perfluorobutanoic acid	4.0	J		4.2	3.3	1.7	ng/L	02/21/23 06:59	1
Perfluoropentanoic acid	7.0			1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluoroundecanoic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Perfluorododecanoic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
-6:2 Fluorotelomer sulfonic acid	1.7	U		2.5	1.7	0.83	ng/L	02/21/23 06:59	1
8:2 Fluorotelomer sulfonic acid	1.7	U		2.5	1.7	0.83	ng/L	02/21/23 06:59	1
-4:2 Fluorotelomer sulfonic acid	0.83	U		1.7	0.83	0.42	ng/L	02/21/23 06:59	1
Isotope Dilution	%Recovery Qua	alifier	Limits	_			Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	123	Q cn	50 - 150	02/18/23 06:59	02/21/23 06:59	1
M2-8:2 FTS	92		50 - 150	02/18/23 06:59	02/21/23 06:59	1
M2-6:2 FTS	124	Q cn	50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C5 PFHxA	102		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C4 PFHpA	91		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C8 PFOA	104		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C9 PFNA	93		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C6 PFDA	93		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C7 PFUnA	95		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C2-PFDoDA	90		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C2 PFTeDA	62		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C3 PFBS	85		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C3 PFHxS	83		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C8 PFOS	83		50 - 150	02/18/23 06:59	02/21/23 06:59	1
d3-NMeFOSAA	97		50 - 150	02/18/23 06:59	02/21/23 06:59	1
d5-NEtFOSAA	92		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C8 FOSA	43	Q	50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C4 PFBA	85		50 - 150	02/18/23 06:59	02/21/23 06:59	1
13C5 PFPeA	85		50 - 150	02/18/23 06:59	02/21/23 06:59	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	8.3	НМ	1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluoroheptanoic acid	2.8	нм	1.7	0.86	0.43	ng/L	03/04/23 13:20	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-TVR-6-GW-020623 Date Collected: 02/06/23 13:01 Date Received: 02/09/23 10:25

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-2 Matrix: Water

Analyte		t Qualifier	L	.00			Unit D		Dil Fac
Perfluorooctanoic acid	3.6	; H		1.7	0.86	0.43	-ng/L	03/04/23 13:20	1
Perfluorononanoic acid	1.8	8 H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorodecanoic acid	2.8	вн		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorotridecanoic acid	0.86	3 U H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorotetradecanoic acid	0.86	6 UH		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorobutanesulfonic acid	4.2	2 H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorohexanesulfonic acid	49	н		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorooctanesulfonic acid	100	7 #		1.8	1.7	0.86	ng/L	03/04/23 13:20	1
NEtFOSAA	0.86	3 UH		2.6	0.86	0.43	ng/L	03/04/23 13:20	1
NMeFOSAA	1.0) U H		1.7	1.0	0.52	ng/L	03/04/23 13:20	1
Perfluoropentanesulfonic acid	6.4	ЬНМ		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluoroheptanesulfonic acid	1.6	5 J H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorononanesulfonic acid	0.86	3 UHM		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorodecanesulfonic acid	0.86	3 U H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorooctanesulfonamide	1.2	2 U H		1.7	1.2	0.60	ng/L	03/04/23 13:20	1
Perfluorobutanoic acid	4.0) J H		4.3	3.5	1.7	ng/L	03/04/23 13:20	1
Perfluoropentanoic acid	6.9	нм		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluoroundecanoic acid	0.86	3 U H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Perfluorododecanoic acid	0.86	HU H		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
6:2 Fluorotelomer sulfonic acid	1.7	7 UH+		2.6	1.7	0.86	ng/L	03/04/23 13:20	1
8.2 Fluorotelomer sulfonic acid	1.7	7 U H		2.6	1.7	0.86	ng/L	03/04/23 13:20	1
4:2 Fluorotelomer sulfonic acid	0.86	3 U H-		1.7	0.86	0.43	ng/L	03/04/23 13:20	1
Isotope Dilution	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS		·	50 - 150	-			· · ·	03/04/23 13:20	1
M2-8:2 FTS	62		50 - 150				02/25/23 15:16	03/04/23 13:20	1
M2-6:2 FTS	120 0	2	50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C5 PFHxA	120		50 - 150				02/25/23 15:16	03/04/23 13:20	
13C4 PFHpA	111		50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C8 PFOA	108		50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C9 PFNA	81		50 - 150				02/25/23 15:16	03/04/23 13:20	
13C6 PFDA	38 0	2	50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C7 PFUnA	8 0	2	50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C2-PFDoDA	0.7 0	2	50 - 150				02/25/23 15:16	03/04/23 13:20	
13C2 PFTeDA	0.02	2 M	50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C3 PFBS	125		50 - 150					03/04/23 13:20	1
13C3 PFHxS	123		50 - 150				02/25/23 15:16	03/04/23 13:20	1
13C8 PFOS	83		50 - 150					03/04/23 13:20	1
d3-NMeFOSAA	53 0	2	50 - 150					03/04/23 13:20	1
d5-NEtFOSAA	47 (50 - 150					03/04/23 13:20	
13C8 FOSA	40 0		50 - 150					03/04/23 13:20	1
13C4 PFBA	129 0		50 - 150					03/04/23 13:20	1
13C5 PFPeA	115	• • • • • • • • • • • •	50 - 150				02/25/23 15:16		

Client Sample ID: YTC-FB-1-020623

Date Collected: 02/06/23 16:30 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFA	AS for QSM (5.4, Table I	3-15						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.83	U	1.7	0.83	0.41	ng/L		02/14/23 14:15	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115009-3

Matrix: Water

Client Sample ID: YTC-FB-1-020623

Date Collected: 02/06/23 16:30 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

Method: DOD 5.4 QSM B15 Analyte	Result Qua		OQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluoroheptanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorooctanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorononanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorodecanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorotridecanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorotetradecanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorobutanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorohexanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorooctanesulfonic acid	1.7 U		1.7	1.7	0.83	ng/L	02/14/23 14:15	1
NEtFOSAA	0.83 U		2.5	0.83	0.41	ng/L	02/14/23 14:15	1
NMeFOSAA	0.99 U		1.7	0.99	0.50	ng/L	02/14/23 14:15	1
Perfluoropentanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluoroheptanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorononanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorodecanesulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorooctanesulfonamide	1.2 U		1.7	1.2	0.58	ng/L	02/14/23 14:15	1
Perfluorobutanoic acid	3.3 U		4.1	3.3	1.7	ng/L	02/14/23 14:15	1
Perfluoropentanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluoroundecanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Perfluorododecanoic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
6:2 Fluorotelomer sulfonic acid	1.7 U		2.5	1.7	0.83	ng/L	02/14/23 14:15	1
8:2 Fluorotelomer sulfonic acid	1.7 U		2.5	1.7	0.83	ng/L	02/14/23 14:15	1
4:2 Fluorotelomer sulfonic acid	0.83 U		1.7	0.83	0.41	ng/L	02/14/23 14:15	1
Isotope Dilution	%Recovery Qualifi	ier Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	124	50 - 150	-			02/13/23 18:19	02/14/23 14:15	1
M2-8:2 FTS	122	50 - 150				02/13/23 18:19	02/14/23 14:15	1
M2-6:2 FTS	113	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C5 PFHxA	126	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C4 PFHpA	117	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C8 PFOA	128	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C9 PFNA	112	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C6 PFDA	110	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C7 PFUnA	115	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C2-PFDoDA	109	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C2 PFTeDA	110	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C3 PFBS	114	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C3 PFHxS	115	50 - 150				02/13/23 18:19	02/14/23 14:15	1
13C8 PFOS	113	50 - 150				02/13/23 18:19	02/14/23 14:15	1
d3-NMeFOSAA	115	50 - 150				02/13/23 18:19	02/14/23 14:15	1
d5-NEtFOSAA	121	50 - 150				02/13/23 18:19	02/14/23 14:15	1
						02/13/23 18.10	02/14/23 14:15	1
13C8 FOSA	106	50 - 150				02/10/20 10.15	02/14/25 14.10	
13C8 FOSA 13C4 PFBA	106 118	50 - 150 50 - 150					02/14/23 14:15	1

Lab Sample ID: 410-115009-3 **Matrix: Water**

Client Sample ID: YTC-EB-1-020623

Date Collected: 02/06/23 16:35 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15

Analyte		Qualifier	LO	Q		DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.84	U	1.	7	0.84		ng/L	02/14/23 14:26	1
Perfluoroheptanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorooctanoic acid	0.84	U	1.	7	0.84		ng/L	02/14/23 14:26	1
Perfluorononanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorodecanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorotridecanoic acid	0.84	U	1.	7	0.84		ng/L	02/14/23 14:26	1
Perfluorotetradecanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorobutanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorohexanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorooctanesulfonic acid	1.7	U	1.	8	1.7	0.84	ng/L	02/14/23 14:26	1
NEtFOSAA	0.84	U	2.	5	0.84	0.42	ng/L	02/14/23 14:26	1
NMeFOSAA	1.0	U	1.	7	1.0	0.51	ng/L	02/14/23 14:26	1
Perfluoropentanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluoroheptanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorononanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorodecanesulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorooctanesulfonamide	1.2	U	1.	7	1.2	0.59	ng/L	02/14/23 14:26	1
Perfluorobutanoic acid	3.4	U	4.	2	3.4	1.7	ng/L	02/14/23 14:26	1
Perfluoropentanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluoroundecanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Perfluorododecanoic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
6:2 Fluorotelomer sulfonic acid	1.7	U	2.	5	1.7	0.84	ng/L	02/14/23 14:26	1
8:2 Fluorotelomer sulfonic acid	1.7	U	2.	5	1.7	0.84	ng/L	02/14/23 14:26	1
4:2 Fluorotelomer sulfonic acid	0.84	U	1.	7	0.84	0.42	ng/L	02/14/23 14:26	1
Isotope Dilution	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	145		50 - 150				02/13/23 18:19	02/14/23 14:26	1
M2-8:2 FTS	148		50 - 150				02/13/23 18:19	02/14/23 14:26	1
M2-6:2 FTS	122		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C5 PFHxA	136		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C4 PFHpA	123		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C8 PFOA	131		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C9 PFNA	115		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C6 PFDA	116		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C7 PFUnA	123		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C2-PFDoDA	118		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C2 PFTeDA	120		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C3 PFBS	120		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C3 PFHxS	126		50 - 150				02/13/23 18:19	02/14/23 14:26	1
13C8 PFOS	118		50 - 150				02/13/23 18:19	02/14/23 14:26	1
d3-NMeFOSAA	121		50 - 150				02/13/23 18:19	02/14/23 14:26	1
			50 - 150				02/13/23 18:19	02/14/23 14:26	1
d5-NEtFOSAA	131								
d5-NEtFOSAA 13C8 FOSA	131 112		50 - 150				02/13/23 18:19	02/14/23 14:26	1
d5-NEtFOSAA 13C8 FOSA 13C4 PFBA								02/14/23 14:26 02/14/23 14:26	1 1

Lab Sample ID: 410-115009-4 Matrix: Water

Client Sample ID: YTC-SOURCE-1-020723 Date Collected: 02/07/23 08:35

Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-5 Matrix: Water

Analyte	Result	Qualifier	LOC	1	LOD			Analyzed	Dil Fac
Perfluorohexanoic acid	0.82	U	1.6	;	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluoroheptanoic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorooctanoic acid	0.82	U	1.6	;	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorononanoic acid	0.82	U	1.6	1	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorodecanoic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorotridecanoic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorotetradecanoic acid	0.82	U	1.6	;	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorobutanesulfonic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorohexanesulfonic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorooctanesulfonic acid	1.6	U	1.7	,	1.6	0.82	ng/L	02/21/23 07:10	1
NEtFOSAA	0.82	U	2.5	i	0.82	0.41	ng/L	02/21/23 07:10	1
NMeFOSAA	0.99	U	1.6	5	0.99	0.49	ng/L	02/21/23 07:10	1
Perfluoropentanesulfonic acid	0.82	U	1.6	, ;	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluoroheptanesulfonic acid	0.82	U	1.6	5	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorononanesulfonic acid	0.82	U	1.6	5	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorodecanesulfonic acid	0.82	U	1.6	, ;	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorooctanesulfonamide	1.2	U	1.6	i	1.2	0.58	ng/L	02/21/23 07:10	1
Perfluorobutanoic acid	3.3	U	4.1		3.3	1.6	ng/L	02/21/23 07:10	1
Perfluoropentanoic acid	0.82	U	1.6		0.82	0.41	ng/L	02/21/23 07:10	1
Perfluoroundecanoic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
Perfluorododecanoic acid	0.82	U	1.6	i	0.82	0.41	ng/L	02/21/23 07:10	1
6:2 Fluorotelomer sulfonic acid	1.6	U	2.5	5	1.6	0.82	ng/L	02/21/23 07:10	
8:2 Fluorotelomer sulfonic acid	1.6	U	2.5	5	1.6	0.82	ng/L	02/21/23 07:10	1
4:2 Fluorotelomer sulfonic acid	0.82	U	1.€	;	0.82	0.41	ng/L	02/21/23 07:10	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS			50 - 150					9 02/21/23 07:10	1
M2-8:2 FTS	96		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
M2-6:2 FTS	112		50 - 150					9 02/21/23 07:10	1
13C5 PFHxA	120		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C4 PFHpA	106		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C8 PFOA	118		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C9 PFNA	106		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C6 PFDA	104		50 - 150					9 02/21/23 07:10	1
13C7 PFUnA	111		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C2-PFDoDA	101		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1
13C2 PFTeDA	91		50 - 150					9 02/21/23 07:10	1
13C3 PFBS	100		50 - 150					9 02/21/23 07:10	1
13C3 PFHxS	97		50 - 150					9 02/21/23 07:10	
13C8 PFOS	100		50 - 150					9 02/21/23 07:10	1
d3-NMeFOSAA	125		50 - 150					9 02/21/23 07:10	1
d5-NEtFOSAA	110		50 - 150					9 02/21/23 07:10	
13C8 FOSA	93		50 - 150				02/18/23 06:5	9 02/21/23 07:10	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

106

108

13C4 PFBA

13C5 PFPeA

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.85	ŪΗ	1.7	0.85	0.42	ng/L		03/04/23 13:30	1
Perfluoroheptanoic acid	0.85	UH	1.7	0.85	0.42	ng/L		03/04/23 13:30	1

50 - 150

50 - 150

Eurofins Lancaster Laboratories Environment Testing, LLC

02/18/23 06:59 02/21/23 07:10

02/18/23 06:59 02/21/23 07:10

1

1

Client Sample ID: YTC-SOURCE-1-020723 Date Collected: 02/07/23 08:35 Date Received: 02/09/23 10:25

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-5 Matrix: Water

Analyte		Qualifier	L	<u></u>	LOD		Unit D	Analyzed	Dil Fac
Perfluorooctanoic acid	0.85	UH		1.7	0.85	0.42	· · · · · · · · · · · · · · · · · · ·	03/04/23 13:30	1
Perfluorononanoic acid	0.85	UH		1.7	0.85		ng/L	03/04/23 13:30	1
Perfluorodecanoic acid		UH		1.7	0.85		ng/L	03/04/23 13:30	1
Perfluorotridecanoic acid	0.85	UH		1.7	0.85		ng/L	03/04/23 13:30	1
Perfluorotetradecanoic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorobutanesulfonic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorohexanesulfonic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorooctanesulfonic acid	1.7	UH		1.8	1.7	0.85	ng/L	03/04/23 13:30	1
NEtFOSAA	0.85	WН		2.5	0.85	0.42	ng/L	03/04/23 13:30	1
NMeFOSAA	1.0	UH		1.7	1.0	0.51	ng/L	03/04/23 13:30	1
Perfluoropentanesulfonic acid	0.85	UH	\sim	1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluoroheptanesulfonic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorononanesulfonic acid	0.85	UΗ		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorodecanesulfonic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorooctanesulfonamide	1.2	UΗ		1.7	1.2	0.59	ng/L	03/04/23 13:30	1
Perfluorobutanoic acid	3.4	UΗ		4.2	3.4	1.7	ng/L	03/04/23 13:30	1
Perfluoropentanoic acid	0.85	UH		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluoroundecanoic acid	0.85	UΗ		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Perfluorododecanoic acid	0.85	UΗ		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
6:2 Fluorotelomer sulfonic acid	1.7	UH		2.5	1.7	0.85	ng/L	03/04/23 13:30	1
8.2 Fluorotelomer sulfonic acid	1.7	υн		2.5	1.7	0.85	ng/L	03/04/23 13:30	1
4:2 Fluorotelomer sulfonic acid	0.85	UM		1.7	0.85	0.42	ng/L	03/04/23 13:30	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	118		50 - 150	_			02/25/23 15:16	03/04/23 13:30	1
M2-8:2 FTS	119		50 - 150				02/25/23 15:16	03/04/23 13:30	1
M2-6:2 FTS	125 Q		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C5 PFHxA	140		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C4 PFHpA	118		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C8 PFOA	126		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C9 PFNA	122		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C6 PFDA	111		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C7 PFUnA	114		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C2-PFDoDA	108		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C2 PFTeDA	89		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C3 PFBS	123		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C3 PFHxS	130		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C8 PFOS	115		50 - 150				02/25/23 15:16	03/04/23 13:30	1
d3-NMeFOSAA	124 Q		50 - 150				02/25/23 15:16	03/04/23 13:30	1
d5-NEtFOSAA	122		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C8 FOSA	100		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C4 PFBA	129 Q		50 - 150				02/25/23 15:16	03/04/23 13:30	1
13C5 PFPeA	127		50 - 150				02/25/23 15.16	03/04/23 13:30	

Client Sample ID: YTC-TVR-3-GW-020723

Date Collected: 02/07/23 13:11 Date Received: 02/09/23 10:25

 Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15							
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac	
Perfluorohexanoic acid	46	1.6	0.82	0.41 ng/L	02/21/23 07:32	1	

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115009-6

Matrix: Water

Client Sample ID: YTC-TVR-3-GW-020723 Date Collected: 02/07/23 13:11

Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

Method: DOD 5.4 QSM B15 - F			e B-15 (C	ontin					
Analyte		Qualifier	L	<u>.</u> 0Q	LOD		Unit D		Dil Fac
Perfluoroheptanoic acid	8.8			1.6	0.82		ng/L	02/21/23 07:32	1
Perfluorooctanoic acid	13			1.6	0.82		ng/L	02/21/23 07:32	1
Perfluorononanoic acid	0.73			1.6	0.82		ng/L	02/21/23 07:32	1
Perfluorodecanoic acid	0.82			1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorotridecanoic acid	0.82	U		1.6	0.82		ng/L	02/21/23 07:32	1
Perfluorotetradecanoic acid	0.82	U		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorobutanesulfonic acid	27			1.6	0.82	0.41	ng/L	02/21/23 07:32	1
NEtFOSAA	0.82	U		2.5	0.82	0.41	ng/L	02/21/23 07:32	1
NMeFOSAA	0.99	U		1.6	0.99	0.49	ng/L	02/21/23 07:32	1
Perfluoropentanesulfonic acid	49			1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluoroheptanesulfonic acid	11	+ل کلر		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorononanesulfonic acid	0.52	JM		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorodecanesulfonic acid	1.1	Jr J		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorooctanesulfonamide	0.80	J		1.6	1.2	0.58	ng/L	02/21/23 07:32	1
Perfluorobutanoic acid	11			4.1	3.3	1.6	ng/L	02/21/23 07:32	1
Perfluoropentanoic acid	21			1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluoroundecanoic acid	0.82	U		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Perfluorododecanoic acid	0.82	U		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
6:2 Fluorotelomer sulfonic acid	1.6	U		2.5	1.6	0.82	ng/L	02/21/23 07:32	1
8:2 Fluorotelomer sulfonic acid	1.6	U		2.5	1.6	0.82	ng/L	02/21/23 07:32	1
4:2 Fluorotelomer sulfonic acid	0.82	U		1.6	0.82	0.41	ng/L	02/21/23 07:32	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	113		50 - 150	-			02/18/23 06:59	02/21/23 07:32	1
M2-8:2 FTS	107		50 - 150				02/18/23 06:59	02/21/23 07:32	1
M2-6:2 FTS	102		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C5 PFHxA	103		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C4 PFHpA	74		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C8 PFOA	104		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C9 PFNA	82		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C6 PFDA	99		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C7 PFUnA	108		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C2-PFDoDA	104		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C2 PFTeDA	96		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C3 PFBS	88		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C3 PFHxS	73		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C8 PFOS	75		50 - 150				02/18/23 06:59	02/21/23 07:32	1
d3-NMeFOSAA	114 Q	cn	50 - 150				02/18/23 06:59	02/21/23 07:32	1
d5-NEtFOSAA	115		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C8 FOSA	91		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C4 PFBA	77		50 - 150				02/18/23 06:59	02/21/23 07:32	1
13C5 PFPeA	88		50 - 150				02/18/23 06:59	02/21/23 07:32	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - DL

Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Perfluorohexanesulfonic acid	380 D	16	8.2	4.1 ng/L	03/09/23 16:16	10
Perfluorooctanesulfonic acid	410 D	17	16	8.2 ng/L	03/09/23 16:16	10
Isotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Isotope Dilution 13C3 PFHxS	%RecoveryQualifier213Q	Limits		Prepared 02/18/23 06:		Dil Fac 10

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-6 **Matrix: Water**

Eurofins Lancaster Laboratories Environment Testing, LLC

Client Sample ID: YTC-TVR-3-GW-020723 Date Collected: 02/07/23 13:11 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-6 Matrix: Water

Analyte		Qualifier	L	<u>.</u> 0Q	LOD		Unit	D		Dil Fac
Perfluorohexanoic acid	44	H J1		1.6	0.82	0.41	ng/L		03/07/23 20.09	
Perfluorohept anoic acid	8.8	н		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorooctanoic acid	12	н		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorononanoic acid	0.73	JH		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorodecanoic acid	0.82	UH		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorotridecanoic acid	0.82	UH		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorotetradecanoic acid	0.82	UH		1.6	0.82	0.41	ng/L		03/07/23 20:09	
Perfluorobutanesulfonic acid	28	H		1.6	0.82	0.41	ng/L		03/07/23 20:09	
Perfluorohexanesulfonic acid	310	ЖН		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluorooctanesulfonic acid	370	J1 A		1.7	1.6	0.82	ng/L		03/07/23 20:09	1
NEtFOSAA	0.82	UH		2.5	0.82	0.41	ng/L		03/07/23 20:09	
NMEFOSAA	0.98	UΗ		1.6	0.98	0.49	ng/L		03/07/23 20:09	1
Perfluoropentanesulfonic acid	51	Н		1.6	0.82	0.41	ng/L		03/07/23 20:09	1
Perfluoroheptanesulfonic asid	9.6	н		1.6	0.82		ng/L		03/07/23 20:09	1
Perfluorononanesulfonic acid		JHM		1.6	0.82		ng/L		03/07/23 20:09	1
Perfluorodecanesulfonic acid	0.82	UHM		1.6	0.82		ng/L		03/07/23 20:09	
Perfluorooctanesulfonamide	0.85	JH		1.6	1.1		ng/L		03/07/23 20:09	1
Perfluorobutanoic acid	11			4.1	3.3		ng/L		03/07/23 20:09	
Perfluoropentanoic acid	20			1.6	0.82		ng/L		03/07/23 20:09	
Perfluoroundecanoic acid	0.82			1.6	0.82		ng/L		03/07/23 20:09	
Perfluorododecanoic acid	0.82	UН		1.6	0.82		ng/L	_	03/07/23 20:09	
6:2 Fluorotelomer sulfonic acid	1.6	UH		2.5	1.6		ng/L		03/07/23 20:09	
8:2 Fluorotelomer sulfonic acid		UΗ		2.5	1.6		ng/L		03/07/23 20:09	
4:2 Fluorotelomer sulfonic acid	0.82			1.6	0.82		ng/L		03/07/23 20:09	
Isotope Dilution	%Recovery Q	ualifior	Limits				Pro	pared	Analyzed	Dil Fa
M2-4:2 FTS	- <u></u>		50 - 150	-				/23 15:09		Birru
M2-8:2 FTS	108		50 - 150						03/07/23 20:09	
M2-6:2 FTS	121		50 - 150					/23 15:09		
13C5 PFHxA	105		50 - 150						03/07/23 20:09	
13C4 PFHpA	90		50 - 150						03/07/23 20:09	-
13C8 PFOA	111		50 - 150						03/07/23 20:09	-
13C9 PFNA	97		50 - 150						03/07/23 20:09	
13C6 PFDA	105		50 - 150 50 - 150						03/07/23 20:09	
13C7 PFUnA	103		50 - 150 50 - 150						03/07/23 20:09	
13C2-PFDoDA										
	91		50 - 150						03/07/23 20:09	
13C2 PFTeDA	64		50 - 150						03/07/23 20:09	1
13C3 PFBS	99		50 - 150						03/07/23 20:09	
13C3 PFHxS	101		50 - 150						03/07/23 20:09	Ĩ
13C8 PFOS	97		50 - 150						03/07/23 20:09	1
d3-NMeFOSAA	88		50 - 150						03/07/23 20:09	
d5-NEtFOSAA	98		50 - 150						03/07/23 20:09	1
13C8 FOSA	92		50 - 150						03/07/23 20:09	1
13C4 PFBA	93		50 - 150						03/07/23 20:09	
13C5 PFPeA	99		50 - 150				03/04	/23 15:09	03/07/23 20:09	1

Client Sample ID: YTC-FB-2-020723

Date Collected: 02/07/23 15:30 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15

Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluoroheptanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorooctanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorononanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorodecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorotridecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorotetradecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorobutanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorohexanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorooctanesulfonic acid	1.6	U		1.7	1.6	0.80	ng/L	02/21/23 08:05	1
NEtFOSAA	0.80	U		2.4	0.80	0.40	ng/L	02/21/23 08:05	1
NMeFOSAA	0.97	U		1.6	0.97	0.48	ng/L	02/21/23 08:05	1
Perfluoropentanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluoroheptanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorononanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorodecanesulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorooctanesulfonamide	1.1	U		1.6	1.1	0.56	ng/L	02/21/23 08:05	1
Perfluorobutanoic acid	3.2	U		4.0	3.2	1.6	ng/L	02/21/23 08:05	1
Perfluoropentanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluoroundecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Perfluorododecanoic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
6:2 Fluorotelomer sulfonic acid	1.6	U		2.4	1.6	0.80	ng/L	02/21/23 08:05	1
8:2 Fluorotelomer sulfonic acid	1.6	U		2.4	1.6	0.80	ng/L	02/21/23 08:05	1
4:2 Fluorotelomer sulfonic acid	0.80	U		1.6	0.80	0.40	ng/L	02/21/23 08:05	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	96		50 - 150				02/18/23 06:59	02/21/23 08:05	1
M2-8:2 FTS	100		50 - 150				02/18/23 06:59	02/21/23 08:05	1
M2-6:2 FTS	96		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C5 PFHxA	110		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C4 PFHpA	98		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C8 PFOA	108		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C9 PFNA	97		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C6 PFDA	96		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C7 PFUnA	105		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C2-PFDoDA	98		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C2 PFTeDA	86		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C3 PFBS	96		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C3 PFHxS	95		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C8 PFOS	95		50 - 150				02/18/23 06:59	02/21/23 08:05	1
d3-NMeFOSAA	114 Q	cn	50 - 150				02/18/23 06:59	02/21/23 08:05	1
d5-NEtFOSAA	108		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C8 FOSA	94		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C4 PFBA	98		50 - 150				02/18/23 06:59	02/21/23 08:05	1
13C5 PFPeA	100		50 - 150				02/18/23 06:59	02/21/23 08:05	1

Lab Sample ID: 410-115009-7 Matrix: Water

Client Sample ID: YTC-EB-2-020723

Date Collected: 02/07/23 15:35 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15

Analyte	Result Quali	fier LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluoroheptanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorooctanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorononanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorodecanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorotridecanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorotetradecanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorobutanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorohexanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorooctanesulfonic acid	1.6 U	1.7	1.6	0.82	ng/L	02/21/23 08:17	1
NEtFOSAA	0.82 U	2.5	0.82	0.41	ng/L	02/21/23 08:17	1
NMeFOSAA	0.98 U	1.6	0.98	0.49	ng/L	02/21/23 08:17	1
Perfluoropentanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluoroheptanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorononanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorodecanesulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorooctanesulfonamide	1.1 U	1.6	1.1	0.57	ng/L	02/21/23 08:17	1
Perfluorobutanoic acid	3.3 U	4.1	3.3	1.6	ng/L	02/21/23 08:17	1
Perfluoropentanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluoroundecanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Perfluorododecanoic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
6:2 Fluorotelomer sulfonic acid	1.6 U	2.5	1.6	0.82	ng/L	02/21/23 08:17	1
8:2 Fluorotelomer sulfonic acid	1.6 U	2.5	1.6	0.82	ng/L	02/21/23 08:17	1
4:2 Fluorotelomer sulfonic acid	0.82 U	1.6	0.82	0.41	ng/L	02/21/23 08:17	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-4:2 FTS	93	50 - 150			02/18/23 06:59	02/21/23 08:17	1
M2-8:2 FTS	86	50 - 150			02/18/23 06:59	02/21/23 08:17	1
M2-6:2 FTS	93	50 - 150			02/18/23 06:59	02/21/23 08:17	1
13C5 PFHxA	110	50 - 150			02/18/23 06:59	02/21/23 08:17	1
13C4 PFHpA	96	50 - 150			02/18/23 06:59	02/21/23 08:17	1
13C8 PFOA							1
13C9 PFNA	110	50 - 150			02/18/23 06:59	02/21/23 08:17	
	110 95	50 - 150 50 - 150				02/21/23 08:17 02/21/23 08:17	
13C6 PFDA					02/18/23 06:59		1 1
	95	50 - 150			02/18/23 06:59 02/18/23 06:59	02/21/23 08:17	1
13C6 PFDA	95 99	50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17	1 1
13C6 PFDA 13C7 PFUnA	95 99 104	50 - 150 50 - 150 50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA	95 99 104 99	50 - 150 50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA	95 99 104 99 84	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS	95 99 104 99 84 94	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS	95 99 104 99 84 94 93	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1 1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS	95 99 104 99 84 94 93 93 94	50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1 1 1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA	95 99 104 99 84 94 93 93 94 110 Q cn	50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	1 1 1 1 1 1 1 1 1 1
13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA d5-NEtFOSAA	95 99 104 99 84 94 93 94 110 Q cn 103	50 - 150 50 - 150			02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59 02/18/23 06:59	02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17 02/21/23 08:17	

Lab Sample ID: 410-115009-8 Matrix: Water

Client Sample ID: YTC-SW-08-020723

Date Collected: 02/07/23 15:05 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15

Analyte		It Qualifier	L	<u>oq</u>	LOD		Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.9	90 U ¢n		1.8	0.90	0.45	-	02/25/23 01:48	1
Perfluoroheptanoic acid	0.9	90 Ucn		1.8	0.90	0.45	-	02/25/23 01:48	1
Perfluorooctanoic acid	0.9	90 U <mark>c</mark> n		1.8	0.90	0.45	-	02/25/23 01:48	1
Perfluorononanoic acid	0.9	90 Ucn		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorodecanoic acid	0.9	90 Udn		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorotridecanoic acid	0.9	90 U en UX		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorotetradecanoic acid	0.9	90 U en UX		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorobutanesulfonic acid	0.9	90 Uc <mark>n</mark>		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorohexanesulfonic acid	0.9	90 Uc <mark>n</mark>		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorooctanesulfonic acid	1	.8 Ucn		1.9	1.8	0.90	ng/L	02/25/23 01:48	1
NEtFOSAA	0.9	90 Uc <mark>n</mark>		2.7	0.90	0.45	ng/L	02/25/23 01:48	1
NMeFOSAA	1	.1 Uc <mark>n</mark>		1.8	1.1	0.54	ng/L	02/25/23 01:48	1
Perfluoropentanesulfonic acid	0.9	90 Ucn		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluoroheptanesulfonic acid	0.9	90 Uc <mark>n</mark>		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorononanesulfonic acid	0.9	90 Uc <mark>n</mark>		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorodecanesulfonic acid	0.9	90 Ucn		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorooctanesulfonamide	1	.3 Ucn		1.8	1.3	0.63	ng/L	02/25/23 01:48	1
Perfluorobutanoic acid	3	.6 UMIcn		4.5	3.6	1.8	ng/L	02/25/23 01:48	1
Perfluoropentanoic acid	0.9	90 Ucn		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluoroundecanoic acid	0.9	90 Uch		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Perfluorododecanoic acid	0.9	90 U on UX		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
6:2 Fluorotelomer sulfonic acid	1	.8 Ucn		2.7	1.8	0.90	ng/L	02/25/23 01:48	1
8:2 Fluorotelomer sulfonic acid	1	.8 Uch		2.7	1.8	0.90	ng/L	02/25/23 01:48	1
4:2 Fluorotelomer sulfonic acid	0.9	90 Uch		1.8	0.90	0.45	ng/L	02/25/23 01:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	171	Q cn	50 - 150				02/20/23 07:09	02/25/23 01:48	1
M2-8:2 FTS	92	сп	50 - 150				02/20/23 07:09	02/25/23 01:48	1
M2-6:2 FTS	145	сп	50 - 150				02/20/23 07:09	02/25/23 01:48	1
13C5 PFHxA	144	cn							1
13C4 PFHpA		CII	50 - 150				02/20/23 07:09	02/25/23 01:48	
13C8 PFOA	122		50 ₋ 150 50 ₋ 150					02/25/23 01:48 02/25/23 01:48	1
							02/20/23 07:09		
	139	cn	50 - 150				02/20/23 07:09 02/20/23 07:09	02/25/23 01:48	1
	139 115	cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48	1 1
13C9 PFNA 13C6 PFDA	139 115 96	cn cn cn	50 - 150 50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1
13C9 PFNA 13C6 PFDA	139 115 96 54	cn cn cn cn	50 - 150 50 - 150 50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA	139 115 96 54 11	cn cn cn cn cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA	139 115 96 54 11	cn cn cn cn Q cn Q cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS	139 115 96 54 11 0.2	cn cn cn cn cn Q cn Q cn cn	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS	139 115 96 54 11 0.2 137	cn cn cn cn cn Q cn Q cn cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS	139 115 96 54 11 0.2 137 129	cn cn cn cn cn Q cn Q cn cn cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS	139 115 96 54 11 0.2 137 129 110	cn cn cn cn Q cn Q cn Q cn cn cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA d5-NEtFOSAA	139 115 96 54 11 0.2 137 129 110 74	cn cn cn cn Q cn Q cn cn cn cn cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48 02/25/23 01:48	1 1 1 1 1 1 1 1 1 1 1 1 1
13C9 PFNA 13C6 PFDA 13C7 PFUnA 13C2-PFDoDA 13C2 PFTeDA 13C3 PFBS 13C3 PFHxS 13C8 PFOS d3-NMeFOSAA	139 115 96 54 11 0.2 137 129 110 74 68	cn cn cn cn cn Q cn Q cn cn cn cn cn cn cn cn cn cn	50 - 150 50 - 150				02/20/23 07:09 02/20/23 07:09	02/25/23 01:48 02/25/23 01:48	1 1 1 1

Lab Sample ID: 410-115009-9 Matrix: Water

Job ID: 410-115009-1 SDG: YTC-Baseline

Matrix: Solid

Lab Sample ID: 410-115009-10

Client Sample ID: YTC-SED-01-020723 Date Collected: 02/07/23 09:05

Date Received: 02/09/23 10:25

22.2 D-01-020723	2	1.0		1.0	%		02/14/23 09:45	
D-01-020723	2							
				La	b San	nple II	D: 410-1150)09-1
							Matrix	
						1	Percent Solid	
FAS for QSM			1.00		11	_	A	
	-							Dil Fa
						¢		
						¢		
						¢		
						¢		
						¢		
0.49	U		0.49			₽		
0.49	U		0.49			¢		
0.49	U		0.49	0.24	ng/g	¢		
1.9	U	2.4	1.9	0.73	ng/g	☆	03/08/23 05:20	
0.49	U	0.73	0.49	0.24	ng/g	¢	03/08/23 05:20	
0.49	U	0.73	0.49	0.24	ng/g	¢	03/08/23 05:20	
0.49	U	0.73	0.49	0.24	ng/g	¢	03/08/23 05:20	
1.9	U	2.4	1.9	0.73	ng/g	₽	03/08/23 05:20	
1.9	U	3.6	1.9	0.73	ng/g	¢	03/08/23 05:20	
1.9	U	2.4	1.9	0.73	ng/g	¢	03/08/23 05:20	
%Recovery Q	ualifier	Limits			Pre	pared	Analyzed	Dil F
111		50 - 150			02/27/2	23 10:06	03/08/23 05:20	
110		50 - 150			02/27/2	23 10:06	03/08/23 05:20	
123		50 - 150			02/27/2	23 10:06	03/08/23 05:20	
121		50 - 150			02/27/2	23 10:06	03/08/23 05:20	
108		50 - 150			02/27/2	23 10:06	03/08/23 05:20	
119					02/27/2	23 10:06	03/08/23 05:20	
111					02/27/2	23 10:06	03/08/23 05:20	
105								
118								
	0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	110 123 121 108 119 111 105 118 111 100 109 114 111 73 80		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.49 U 0.73 0.49 0.24 ng/g 0.49 U 0.73 0.49 0.24 ng/g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49 0.24 ng/g 5 03/08/23 05:20 0.49 U 0.73 0.49

Job ID: 410-115009-1 SDG: YTC-Baseline

Client Sample ID: YTC-SE		3			La	ab Sample	ID: 410-1150	009-10
Date Collected: 02/07/23 09:05								k: Solid
Date Received: 02/09/23 10:25							Percent Solic	ds: 77.8
Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4, Table	e B-15 (Contin	ued)				
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	112		50 - 150			02/27/23 10:0	6 03/08/23 05:20	1
13C5 PFPeA	113		50 - 150			02/27/23 10:0	6 03/08/23 05:20	1
Client Sample ID: YTC-SE	D-02-02072	3			La	ab Sample	ID: 410-1150	009-11
Date Collected: 02/07/23 09:40							Matrix	k: Solid
Date Received: 02/09/23 10:25								
 General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD			D Analyzed	Dil Fac
Percent Moisture (EPA Moisture)	33.9		1.0		1.0	%	02/14/23 09:45	1
Client Sample ID: YTC-SE Date Collected: 02/07/23 09:40 Date Received: 02/09/23 10:25		3			Lä	ab Sample	ID: 410-1150 Matrix Percent Solid	k: Solid
_ Method: DOD 5.4 QSM B15 -	DEAS for OSM	5 4 Table	D 8 45					
Analyte		Qualifier	LOQ	LOD	וח	Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	0.58		0.87 -	0.58			03/08/23 05:31	1
Perfluoroheptanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 	1
Perfluorooctanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorononanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	
Perfluorodecanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorotridecanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorotetradecanoic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorobutanesulfonic acid	2.3		2.9	2.3			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorohexanesulfonic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorooctanesulfonic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	
NEtFOSAA	0.58		2.9	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
NMeFOSAA	0.58		2.9	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluoropentanesulfonic acid	0.58		4.4	0.58			 ○ 03/08/23 05:31 	
Perfluoroheptanesulfonic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 ○ 03/08/23 05:31 	1
Perfluorononanesulfonic acid	0.58		0.87	0.58			 ○ 03/08/23 05:31 	1
Perfluorodecanesulfonic acid	0.58		0.87	0.58		· · · · · · · · · · · · · · · · · · ·	© 03/08/23 05:31	1
Perfluorooctanesulfonamide	0.58		0.87	0.58			© 03/08/23 05:31	1
Perfluorobutanoic acid	2.3		2.9	2.3			 ○ 03/08/23 05:31 	1
Perfluoropentanoic acid	0.58		0.87	0.58			© 03/08/23 05:31	1
Perfluoroundecanoic acid	0.58		0.87	0.58			© 03/08/23 05:31	1
Perfluorododecanoic acid	0.58		0.87	0.58			© 03/08/23 05:31	1
6:2 Fluorotelomer sulfonic acid	2.3		2.9	2.3			© 03/08/23 05:31	1
8:2 Fluorotelomer sulfonic acid	2.3		4.4	2.3			© 03/08/23 05:31	1
4:2 Fluorotelomer sulfonic acid	2.3		2.9	2.3			© 03/08/23 05:31	1
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
M2-4:2 FTS	108		50 - 150				6 03/08/23 05:31	1
M2-8:2 FTS	116		50 - 150				6 03/08/23 05:31	1
M2-6:2 FTS	115		50 - 150				6 03/08/23 05:31	1
13C5 PFHxA	117		50 - 150				6 03/08/23 05:31	
			50 - 150				6 03/08/23 05:31	1
13C4 PFHpA	104		50 - 150					
13C4 РЕНРА 13C8 РЕОА	104 114		50 - 150 50 - 150			02/27/23 10:0	6 03/08/23 05:31	1
•							6 03/08/23 05:31 6 03/08/23 05:31	1

Client Sample ID: YTC-SED-02-020723

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

Date Collected: 02/07/23 09:40 Date Received: 02/09/23 10:25

Perfluorododecanoic acid 6:2 Fluorotelomer sulfonic acid

8:2 Fluorotelomer sulfonic acid

4:2 Fluorotelomer sulfonic acid

Lab Sample ID: 410-115009-11 Matrix: Solid Percent Solids: 66.1

Date Received: 02/09/23 10:25 General Chemistry Analyte Result Percent Moisture (EPA Moisture) Result 14.6 Qualifier 1.0 LOQ 1.0 DL 1.0 Unit % D Analyzed 02/14/23 09: Client Sample ID: YTC-SED-03-020723 Date Collected: 02/07/23 10:00 Date Received: 02/09/23 10:25 Lab Sample ID: 410-11 Mat Percent SC Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Result 0.46 Qualifier 0.69 LOQ 0.46 DL 0.23 Unit 0.30/09/23 11: 0 D Analyzed 03/09/23 11: 0 Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: 0 Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: 0 Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: 0 Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: 0 Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: 0 Perfluorohexanoic acid 0.46 <td< th=""><th></th><th>%Recovery Qualifier</th><th>Limits</th><th></th><th>Prep</th><th>ared</th><th>Analyzed</th><th>Dil Fa</th></td<>		%Recovery Qualifier	Limits		Prep	ared	Analyzed	Dil Fa
13C2 PFBDA 107 50.150 022723 10.06 030823 05: 13C3 PFBS 104 50.150 022723 10.06 030823 05: 13C3 PFBS 101 50.150 022723 10.06 030823 05: 13C3 PFDS 103 50.150 022723 10.06 030823 05: 13C4 PFDS 100 50.150 022723 10.06 030823 05: 13C4 PFDA 100 50.150 022723 10.06 030823 05: 13C4 PFBA 103 50.150 022723 10.06 030823 05: 13C4 PFBA 114 50.150 022723 10.06 030823 05: 13C4 PFBA 114 50.150 022723 10.06 030823 05: 13C5 PFPA 111 50.150 022723 10.06 030823 05: 13C4 PFBA 114 50.150 022723 10.06 030823 05: 13C5 PFPA 111 50.150 022723 10.06 030823 05: 13C4 PFBA 104 10 % 02/14/23 05: Mate Centent Sco 02/07/23 10:25 Nate Nate 02/14/23 05: Fereant Moisture (EPA Moisture) 14.6	7 PFUnA	111	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
3G3 PFBS 104 50.150 0227/23 10.06 03/08/23 05: 3G3 PFhXS 110 50.150 0227/23 10.06 03/08/23 05: 3G3 PFhXS 110 50.150 0227/23 10.06 03/08/23 05: 3GX PFOS 103 50.150 0227/23 10.06 03/08/23 05: IS-MEFOSAA 96 50.150 0227/23 10.06 03/08/23 05: 3GC FPSA 103 50.150 0227/23 10.06 03/08/23 05: 3GC FPSA 111 50.150 0227/23 10.06 03/08/23 05: SGC FPFAA 111 50.150 0227/23 10.06 03/08/23 05: SGC FPEAA 111 50.150 0227/23 10.06 03/08/23 05: SGC FPEAA 111 50.150 0227/23 10.06 03/08/23 05: SCE PFEAA 111 50.150 0227/23 10.06 03/08/23 05: Sceneral Chemistry Mait Lab Sample ID: H10-11 Mait Verfluorothexanolc acid 0.46 1.0 1.0 1.0 1.0 1.0 02/14/23 09:	2-PFDoDA	108	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
333 PFHXS 110 50.150 0227/23 10:06 03/08/23 05: 333 PFOS 103 50.150 0227/23 10:06 03/08/23 05: 33C8 PFOS 103 50.150 0227/23 10:06 03/08/23 05: 15-NEIFOSAA 100 50.150 0227/23 10:06 03/08/23 05: 15-NEIFOSAA 100 50.150 0227/23 10:06 03/08/23 05: 33C4 PFBA 114 50.150 0227/23 10:06 03/08/23 05: 33C5 PFPeA 111 50.150 0227/23 10:06 03/08/23 05: 13G5 PFPeA 111 50.150 0227/23 10:06 03/08/23 05: 13G5 PFPeA 111 50.150 0227/23 10:06 03/08/23 05: 13G5 PFPeA 111 50.150 0227/23 10:06 03/08/23 05: 100 10.0 10.0 02/07/23 10:00 Mat 110 10.0 10.0 % 02/14/23 09: 110 14.6 1.0 10.0 % 02/14/23 09: 110 14.6 1.0 1.0 % 02/14/23 09: 110 14.6 1.0 <	2 PFTeDA	107	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
3328 PFOS 103 50.150 0227/23 10:06 03/08/23 05: 33-MMe/FOSAA 96 50.150 0227/23 10:06 03/08/23 05: 33C6 PFSA 100 50.150 0227/23 10:06 03/08/23 05: 33C6 FOSA 103 50.150 0227/23 10:06 03/08/23 05: 33C6 FPBA 114 50.150 0227/23 10:06 03/08/23 05: 13C5 FPFeA 111 50.150 0227/23 10:06 03/08/23 05: 1ient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mai ate Collected: 02/07/23 10:00 Mai Mai Mai 02/14/23 08: Ceneral Chemistry Result Qualifier LOQ LOD DL Unit D Analyzed Cercent Moisture (EPA Moisture) 14.6 1.0 1.0 % 02/14/23 08: Mai/zed Itent Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mai/zed Mai/zed 02/14/23 08: Mai/zed Percent Moisture (EPA Moisture) 14.6 LOQ LOD Mai/zed 02/14/23 08: Mai/zed 02/14/23 08: 02/14/23 08: 02/14/23 08: 02/14/23 08:	3 PFBS	104	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
B3-MMeFOSAA 96 50.150 0227723 10.06 03/08/23 05: 0227723 10.06 03/08/23 05: 03/08/23 05: 03/08/23 05: 03/08/23 05: 03/08/23 05: 0227723 10.06 03/08/23 05: 03/08/23 05: 0227723 10.06 03/08/23 05: 03/08/23 05: 0227723 10.06 03/08/23 03/08/23 10: 021/123 05: 0227723 10.06 03/08/23 10: 021/123 05: 0227723 10.06 03/08/23 10: 021/123 05: 0227723 10.06 03/08/23 10: 03/08/23 11: 0267/1007064200023 10; 02/07/23 10:26 03/08/23 11: 02/07/23 10:26 03/08/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 10:26 03/08/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11: 02/07/23 11:	3 PFHxS	110	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
5-NEIFOSAA 100 50 - 150 02/27/23 10:06 03/08/23 05: 3/36 FOSA 103 50 - 150 02/27/23 10:06 03/08/23 05: 3/36 FPEA 114 50 - 150 02/27/23 10:06 03/08/23 05: 3/36 FPEA 111 50 - 150 02/27/23 10:06 03/08/23 05: Itient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mat ate Collected: 02/07/23 10:00 Mat Mat Mat ate Received: 02/09/23 10:25 LoQ LOD DL Unit D Analyzed General Chemistry Nalyte Result Qualifier LOQ LOD DL Unit D Analyzed Gercent Moisture (EPA Moisture) 14.6 1.0 1.0 % D2/14/23 09: Itient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mat Mat CO21/14/23 09: Mat ate Collected: 02/07/23 10:00 Kesuit Qualifier LOQ LOD DL Unit D Analyzed Gerfluoroheptanoic acid 0.46 0.23 ng/g<	8 PFOS	103	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
3328 FOSA 103 50 - 150 02/27/23 10:06 03/08/23 05: 3326 FPBA 114 50 - 150 02/27/23 10:06 03/08/23 05: 13326 FPFAA 111 50 - 150 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 02/27/23 10:07 111 02/07/23 10:00 14.6 1.0 1.0 Matyzed 02/27/23 10:07 02/27/23 0:07 111 50 - 150 02/27/23 10:07 14.6 1.0 1.0 Matyzed 02/14/23 09: 111 50 - 150 02/27/23 10:00 14.6 1.0 Matyzed 02/14/23 09: <td>VMeFOSAA</td> <td>96</td> <td>50 - 150</td> <td></td> <td>02/27/2</td> <td>3 10:06</td> <td>03/08/23 05:31</td> <td></td>	VMeFOSAA	96	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
3328 FOSA 103 50 - 150 02/27/23 10:06 03/08/23 05: 3326 FPBA 114 50 - 150 02/27/23 10:06 03/08/23 05: 13326 FPFAA 111 50 - 150 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 03/08/23 05: 111 50 - 150 02/27/23 10:06 03/08/23 05: 02/27/23 10:06 02/27/23 10:07 111 02/07/23 10:00 14.6 1.0 1.0 Matyzed 02/27/23 10:07 02/27/23 0:07 111 50 - 150 02/27/23 10:07 14.6 1.0 1.0 Matyzed 02/14/23 09: 111 50 - 150 02/27/23 10:00 14.6 1.0 Matyzed 02/14/23 09: <td>VEtFOSAA</td> <td>100</td> <td>50 - 150</td> <td></td> <td>02/27/2</td> <td>3 10:06</td> <td>03/08/23 05:31</td> <td></td>	VEtFOSAA	100	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
I324 PFBA 114 50 - 150 0227/23 10:06 03/08/23 05: Ising S PFPA 111 50 - 150 0227/23 10:06 03/08/23 05: Ilient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mat ate Collected: 02/07/23 10:00 Ilient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mat Seneral Chemistry Nahyte Result Qualifier LOQ LOD DL Unit D Analyzed Percent Moisture (EPA Moisture) 14.6 1.0 0 1.0 % D Analyzed Itent Sample ID: YTC-SED-03-020723 Lab Sample ID: 4110-11 Mat Mat Mat Percent Sc Vethod: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Nahyte Nahyte Nat Perfluoroheptanoic acid 0.46 0.23 ng/g 0/3/09/23 11: Perfluoroheptanoic acid 0.46 0 0.69 0.46 0.23 ng/g 0/3/09/23 11: Perfluorohezanoic acid 0.46 0 0.69 0.46 0.23 ng/g 0/3/09/23 11:	8 FOSA	103	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
Lient Sample ID: YTC-SED-03-020723 ate Collected: 02/07/23 10:00 Lab Sample ID: 410-11 Mai Seneral Chemistry Analyte Result Qualifier LOQ D DL Unit D Analyzed Percent Moisture (EPA Moisture) 14.6 1.0 1.0 % D Analyzed Percent Moisture (EPA Moisture) 14.6 1.0 1.0 % D Analyzed Dercent Moisture (EPA Moisture) 14.6 1.0 1.0 % D Analyzed Dercent Moisture (EPA Moisture) 14.6 1.0 1.0 % D Analyzed Percent Sc Main Main Main Percent Sc Main Percent Sc Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Main Main Analyzed O O/09/23 11: Percent Sc Perfluoroheptanoic acid 0.46 0.69 0.46 0.23 ng/g 0/09/23 11: Perfluorodacanoic acid 0.46 0.69 0.46 0.23 ng/g 0/09/23 11: Perfluorodecanoic acid 0.46 0.	4 PFBA	114	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
Mai Mai General Chemistry Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Percent Moisture (EPA Moisture) 14.6 1.0 1.0 % 02/14/23 09: Ilient Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mai ate Collected: 02/07/23 10:00 Mai Mai ate Received: 02/09/23 10:25 Percent Sc Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Percent Sc Parfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorochanoic acid 0.46 0.23 ng/g 03/09/23 11: 2 Perfluorochanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorochanoic acid 0.46 0 0.69 0.46 0.23 ng/g	5 PFPeA	111	50 - 150		02/27/2	3 10:06	03/08/23 05:31	
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Percent Moisture (EPA Moisture) 14.6 1.0 1.0 % 0 02/14/23 09: Client Sample ID: YTC-SED-03-020723 Lab Sample ID: 410-11 Mai Mai Mai ate Collected: 02/07/23 10:00 Mai Collected: 02/09/23 10:25 Mai Mai Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorotidecanoic acid 0.46 U 0.69 0.46 0.23 ng/g <th>Collected: 02/07/23 10:00 Received: 02/09/23 10:25</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Matrix</th> <th></th>	Collected: 02/07/23 10:00 Received: 02/09/23 10:25						Matrix	
Percent Moisture (EPA Moisture) 14.6 1.0 1.0 % 02/14/23 09: Elient Sample ID: YTC-SED-03-020723 ate Collected: 02/07/23 10:00 ate Received: 02/09/23 10:25 Lab Sample ID: 410-11 Mate Sample ID: 410-11 Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorotanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorotanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorotetradecanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorotetradecanoic acid 0.46 0.69	-	Result Qualifier	· LOO	LOD	DL Unit	D	Analyzed	Dil F
Lilent Sample ID: YTC-SED-03-020723 ate Collected: 02/07/23 10:00 ate Received: 02/09/23 10:25 Lab Sample ID: 410-11 Mat Percent So Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ DL Unit D Analyte Result Qualifier LOQ DL Unit D Perfuorohexanoic acid 0.46 U 0.1011 Mathod: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ DL Unit D Analyzed Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g 03/09/23 11: Perfluorohezanoic acid 0.46 0 0.46 0.23 ng/g 03/09/23 11: Perfluorodecanoic acid 0.46 0.23 ng/g 03/09/23 11: Perfluorodecanoic acid 0.46 0.23 ng/g							02/14/23 09:45	
ate Collected: 02/07/23 10:00 ate Received: 02/09/23 10:25 Mai Percent So Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte LOQ LOD DL Unit D Analyte Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 3//09/23 11: Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 3//09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 3//09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 3//09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 3//09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23								
Percent Sc Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluoroheptanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorohecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g ☆ 03/09/23 11:	-	D-03-020723			Lab Sam	pie II		
Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorononanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobetradecanoic acid	+ Collected: 02/07/23 10:00						Matrix	c: Soli
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorononanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotidecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotidecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobutanesulfonic acid 0.46 U 2.3 1.8 0.46 </th <th>Received: 02/09/23 10:25</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Percent Solic</th> <th>ls: 85.</th>	Received: 02/09/23 10:25						Percent Solic	ls: 85.
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Perfluorohexanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorononanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotidecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotidecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobutanesulfonic acid 0.46 U 2.3 1.8 0.46 </th <th>thad: DOD 5 4 OSM B15 - [</th> <th>PEAS for OSM 5.4 Tab</th> <th>0 B-15</th> <th></th> <th></th> <th></th> <th></th> <th></th>	thad: DOD 5 4 OSM B15 - [PEAS for OSM 5.4 Tab	0 B-15					
Perfluorohexanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobeptanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobecanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotetradecanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobetradecanoic acid 0.46 0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobetradecanoic acid 1.8 U 2.3 1.8 0.46				LOD	DI Unit	п	Analyzed	
Perfluoroheptanoic acid 0.46 U 0.69 0.46 0.23 ng/g ☆ 03/09/23 11: Perfluorooctanoic acid 0.46 U 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorodecanoic acid 0.24 J 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorodecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g ∞ 03/09/23 11: Perfluorooctanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: Perfluorooctanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g ∞ 03/09/23 11: NMeFOSAA	•	0.46 U				U		Dil Fa
Perfluorooctanoic acid 0.46 U 0.69 0.46 0.23 ng/g \$>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	iluorobentanoic acid		0.69	0.46			03/09/23 11:23	Dil F
Perfluorononanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanoic acid 0.24 J 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotridecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorotridecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g © 03/09/23 11: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobetanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11: NMEFOSAA 0.46 U 2.3 0.46 0.23 ng/g		0.46 U			0.23 ng/g	— -	03/09/23 11:23	Dil F
Perfluorodecanoic acid 0.24 J 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorotridecanoic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorotridecanoic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g \approx 03/09/23 11: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorooctanesulfonic acid 1.0 0.69 0.46 0.23 ng/g ∞ 03/09/23 11: NMEFOSAA 0.46 U 2.3 0.46 0.23 ng/g ∞ 03/09/23 11: <	•		0.69	0.46	0.23 ng/g 0.23 ng/g		03/09/23 11:23 03/09/23 11:23	Dil F
Perfluorotridecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g © 03/09/23 11:: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorobexanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropexanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: NetFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropentanesulfonic acid 0.46 U 0.69 0.46 0.23	fluorooctanoic acid	0.46 U	0.69 0.69	0.46 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	Dil F
Perfluorotetradecanoic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g © 03/09/23 11: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorobexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluoroctanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11: NEFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: NMEFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g <td< td=""><td>fluorooctanoic acid fluorononanoic acid</td><td>0.46 U 0.46 U</td><td>0.69 0.69 0.69</td><td>0.46 0.46 0.46</td><td>0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g</td><td>* * * *</td><td>03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23</td><td>Dil F</td></td<>	fluorooctanoic acid fluorononanoic acid	0.46 U 0.46 U	0.69 0.69 0.69	0.46 0.46 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g	* * * *	03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	Dil F
Perfluorobutanesulfonic acid 1.8 U 2.3 1.8 0.46 ng/g © 03/09/23 11: Perfluorohexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorohexanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorooctanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: NEFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: NMEFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g <t< td=""><td>fluorooctanoic acid fluorononanoic acid fluorodecanoic acid</td><td>0.46 U 0.46 U 0.24 J</td><td>0.69 0.69 0.69 0.69</td><td>0.46 0.46 0.46 0.46</td><td>0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g</td><td>* * * *</td><td>03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23</td><td>Dil F</td></t<>	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid	0.46 U 0.46 U 0.24 J	0.69 0.69 0.69 0.69	0.46 0.46 0.46 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g	* * * *	03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	Dil F
Perfluorohexanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorooctanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11:: NEtFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: NMEFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropentanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11:: Perfluoroheptanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11:: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g<	fluorooctanoic acid fluorononanoic acid <mark>fluorodecanoic acid</mark> fluorotridecanoic acid	0.46 U 0.46 U 0.24 J 0.46 U	0.69 0.69 0.69 0.69 0.69	0.46 0.46 0.46 0.46 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g	* * * *	03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	<u>Dil F</u>
Perfluorooctanesulfonic acid 1.0 0.69 0.46 0.23 ng/g © 03/09/23 11:: NEtFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: NMeFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropentanesulfonic acid 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11:: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11:: Perfluoroheptanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11:: Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:: <	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U	0.69 0.69 0.69 0.69 0.69 0.69	0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	<u>Dil F</u>
NEtFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: NMeFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: <	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U	0.69 0.69 0.69 0.69 0.69 0.69 2.3	0.46 0.46 0.46 0.46 0.46 0.46 1.8	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.24 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	<u>Dil F</u>
NMeFOSAA 0.46 U 2.3 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g © 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: </td <td>fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid</td> <td>0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U</td> <td>0.69 0.69 0.69 0.69 0.69 0.69 2.3 0.69</td> <td>0.46 0.46 0.46 0.46 0.46 0.46 1.8 0.46</td> <td>0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.24 ng/g 0.23 ng/g</td> <td></td> <td>03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23</td> <td>Dil F</td>	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U	0.69 0.69 0.69 0.69 0.69 0.69 2.3 0.69	0.46 0.46 0.46 0.46 0.46 0.46 1.8 0.46	0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.23 ng/g 0.24 ng/g 0.23 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	Dil F
Perfluoropentanesulfonic acid 0.46 U 3.4 0.46 0.23 ng/g \approx 03/09/23 11: Perfluoropentanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11: Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g \approx 03/09/23 11:	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid fluorooctanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.8 U 0.46 U	0.69 0.69 0.69 0.69 0.69 2.3 0.69 0.69 0.69	0.46 0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	<u>Dil F</u>
Perfluoroheptanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:1 Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:1 Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:1 Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:1 Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:1	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid fluorooctanesulfonic acid FOSAA	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U	0.69 0.69 0.69 0.69 0.69 2.3 0.69 0.69 0.69 2.3	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23 03/09/23 11:23	Dil F
Perfluorononanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11: Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g © 03/09/23 11:	fluorooctanoic acid fluoronanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U	0.69 0.69 0.69 0.69 0.69 2.3 0.69 0.69 0.69 2.3 2.3 2.3	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	_Dil F
Perfluorodecanesulfonic acid 0.46 U 0.69 0.46 0.23 ng/g * 03/09/23 11: Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g * 03/09/23 11:	fluorooctanoic acid fluoronanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorohexanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA fluoropentanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U	0.69 0.69 0.69 0.69 0.69 2.3 0.69 0.69 2.3 2.3 2.3 2.3 3.4	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	_Dil F
Perfluorooctanesulfonamide 0.46 U 0.69 0.46 0.23 ng/g 🌣 03/09/23 11.:	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobexanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA fluoropentanesulfonic acid fluoroheptanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U	$\begin{array}{c} 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 2.3 \\ 0.69 \\ 2.3 \\ 0.69 \\ 2.3 \\ 2.3 \\ 2.3 \\ 3.4 \\ 0.69 \end{array}$	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	_Dil F
	fluorooctanoic acid fluorononanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobutanesulfonic acid fluorobexanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA fluoropentanesulfonic acid fluorononanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U	$\begin{array}{c} 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 2.3 \\ 0.69 \\ 2.3 \\ 2.3 \\ 2.3 \\ 3.4 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \end{array}$	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	_Dil F
	fluorooctanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobutanesulfonic acid fluorobexanesulfonic acid fluoroctanesulfonic acid fluoropentanesulfonic acid fluoroheptanesulfonic acid fluorononanesulfonic acid fluorodecanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U	$\begin{array}{c} 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 2.3 \\ 0.69 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 3.4 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \end{array}$	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	_Dil F
	fluorooctanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobexanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA fluoropentanesulfonic acid fluoroheptanesulfonic acid fluorodecanesulfonic acid fluorodecanesulfonic acid fluorooctanesulfonic acid fluorooctanesulfonic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U 1.0 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U	$\begin{array}{c} 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 2.3 \\ 0.69 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 3.4 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \end{array}$	0.46 0.46 0.46 0.46 0.46 1.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.23 ng/g		03/09/23 11:23 03/09/23 11:23	
	fluorooctanoic acid fluoronanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobutanesulfonic acid fluorooctanesulfonic acid FOSAA eFOSAA fluoropentanesulfonic acid fluorononanesulfonic acid fluorodecanesulfonic acid fluorooctanesulfonic acid fluorooctanesulfonic acid fluorooctanesulfonic acid fluorooctanesulfonic acid fluorooctanesulfonamide fluorobutanoic acid	0.46 U 0.46 U 0.24 J 0.46 U 0.46 U 1.8 U 0.46 U	0.69 0.69 0.69 0.69 0.69 2.3 0.69 0.69 2.3 2.3 2.3 3.4 0.69	0.46 0.46	0.23 ng/g 0.23 <td></td> <td>03/09/23 11:23 03/09/23 11:23</td> <td></td>		03/09/23 11:23 03/09/23 11:23	
Perfluoroundecanoic acid 0.46 U 0.69 0.46 0.23 ng/g $^{\circ}$ 03/09/23 11::	fluorooctanoic acid fluoronanoic acid fluorodecanoic acid fluorotridecanoic acid fluorotridecanoic acid fluorotetradecanoic acid fluorobutanesulfonic acid fluorobexanesulfonic acid fluorooctanesulfonic acid fluoropentanesulfonic acid fluoroneptanesulfonic acid fluorodecanesulfonic acid fluorodecanesulfonic acid fluorobutanoic acid fluorobutanoic acid fluoropentanoic acid	$\begin{array}{ccccccc} 0.46 & U \\ 0.46 & U \\ \hline 0.24 & J \\ 0.46 & U \\ 0.46 & U \\ 1.8 & U \\ 0.46 & U \\ 1.8 & U \\ 0.46 & U $	0.69 0.69 0.69 0.69 0.69 2.3 0.69 2.3 2.3 2.3 3.4 0.69	0.46 0.46	0.23 ng/g 0.23 <td></td> <td>03/09/23 11:23 03/09/23 11:23</td> <td>IIF</td>		03/09/23 11:23 03/09/23 11:23	IIF

☆ 03/09/23 11:23

03/09/23 11:23

☆ 03/09/23 11:23

© 03/09/23 11:23

1

1

1

1

0.23 ng/g

0.69 ng/g

0.69 ng/g

0.69 ng/g

0.69

2.3

3.4

2.3

0.46

1.8

1.8

1.8

0.46 U

1.8 U

1.8 U

1.8 U

Client Sample ID: YTC-SED-03-020723 Date Collected: 02/07/23 10:00 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-12 Matrix: Solid Percent Solids: 85.4

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS		cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
M2-8:2 FTS	130	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
M2-6:2 FTS	127	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C5 PFHxA	133	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C4 PFHpA	115		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C8 PFOA	122	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C9 PFNA	117	сп	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C6 PFDA	115		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C7 PFUnA	123	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C2-PFDoDA	109	сп	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C2 PFTeDA	111	cn	50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C3 PFBS	117		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C3 PFHxS	125		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C8 PFOS	117		50 - 150	02/26/23 12:40	03/09/23 11:23	1
d3-NMeFOSAA	83		50 - 150	02/26/23 12:40	03/09/23 11:23	1
d5-NEtFOSAA	96		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C8 FOSA	106		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C4 PFBA	145		50 - 150	02/26/23 12:40	03/09/23 11:23	1
13C5 PFPeA	121		50 - 150	02/26/23 12:40	03/09/23 11:23	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Periluorohexanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluoroheptanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorooctanoic acid	0.45	U J1 Q cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorononanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorodecanoic acid	0.31	J cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorotridecanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorotetradecanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorobutanesulfonic acid	1.8	U cn	2.3	1.8	0.45	ng/g	¢	02/19/23 10:04	1
Perfluorohexanesulfonic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluorooctanesulfonic acid	0.83	cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
NEtFOSAA	0.45	U cn	2.3	0.45	0.23	ng/g	₽	02/19/23 10:04	1
NMeFOSAA	0.45	U cn	2.3	0.45	0.23	ng/g	¢	02/19/23 10:04	1
Perfluoropentanesulfonic acid	0.45	U cn	3.4	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluoroheptanesulfonic acid	0.45	U cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluorononanesulfonic acid	0.45	U cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluorodecanesulfonic acid	0.45	U cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluorooctanesulfonamide	0.45	U cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluorobutanoic acid	1.8	U cn	2.3	1.8	0.68	ng/g	₽	02/19/23 10:04	1
Perfluoropentanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	₽	02/19/23 10:04	1
Perfluoroundecanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	÷,	02/19/23 10:04	1
Perfluorododecanoic acid	0.45	U cn	0.68	0.45	0.23	ng/g	¢	02/19/23 10:04	1
6:2 Fluorotelomer sulfonic acid	1.8	U cn	2.3	1.8	0.68	ng/g	₽	02/19/23 10:04	1
8:2 Fluorotelomer sulfonic acid	1.8	U cn	3.4	1.8	0.68	ng/g	₽	02/19/23 10:04	1
4:2 Fluorotelomer sulfonic acid	1.8	U cn	2.3	1.8	0.68	ng/g	☆	02/19/23 10:04	4
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepare	d	Analyzed	Dil Fac
M2-4:2 FTS	155 Q	cn –	50 - 150			02/13/23 12	2:10	02/19/23 10:04	1
M2-8:2 FTS	155 Q	cn	50 - 150			02/13/23 12	2:10	02/19/23 10:04	1
M2-6:2 FTS	160 Q	cn	50 - 150			02/13/23 12	2:10	02/19/23 10:04	1

Client Sample ID: YTC-SED-03-020723

Date Collected: 02/07/23 10:00 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE (Continued)

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFHxA	155	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C4 PFHpA	137	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C8 PFOA	159	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C9 PFNA	153	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C6 PFDA	146	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C7 PFUnA	151	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C2-PFDoDA	163	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C2 PFTeDA	166	Q cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C3 PFBS	144	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C3 PFHxS	141	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C8 PFOS	145	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
d3-NMeFOSAA	121	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
d5-NEtFOSAA	119	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C8 FOSA	122	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C4 PFBA	144	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1
13C5 PFPeA	144	cn	50 - 150	02/13/23 12:10	02/19/23 10:04	1

Client Sample ID: YTC-SED-04-020723 Date Collected: 02/07/23 10:25 Date Received: 02/09/23 10:25

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analvzed	Dil Fac
Percent Moisture (EPA Moisture)	22.7		1.0					02/14/23 09:45	1
Client Sample ID: YTC-SED-	04-02072;	3			La	ab Sam	ple II	D: 410-1150	09-13
Date Collected: 02/07/23 10:25							•		: Solid
Date Received: 02/09/23 10:25								Percent Solid	
Method: DOD 5.4 QSM B15 - PFA	S for QSM	5.4, Table B	-15						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.26	JM	0.77	0.51	0.26	ng/g	<u> </u>	03/08/23 05:41	1
Perfluoroheptanoic acid	0.51	U	0.77	0.51	0.26	ng/g	¢	03/08/23 05:41	1
Perfluorooctanoic acid	0.51	U	0.77	0.51	0.26	na/a	÷Ċ	03/08/23 05.41	1

Periluoroneplanoic acid	0.51 0	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorooctanoic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorononanoic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/2	1
Perfluorodecanoic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/23 05/08/2	1
Perfluorotridecanoic acid	0.51 U	0.77	0.51	0.26 ng/g	3/08/23 05:41	1
Perfluorotetradecanoic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 05:4	1
Perfluorobutanesulfonic acid	2.0 U	2.6	2.0	0.51 ng/g	03/08/23 05:41	1
Perfluorohexanesulfonic acid	0.37 J	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorooctanesulfonic acid	5.2 J	0.77	0.51	0.26 ng/g	03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41 03/08/23 05:41	1
NEtFOSAA	0.51 U	2.6	0.51	0.26 ng/g	03/08/23 05:41	1
NMeFOSAA	0.51 U	2.6	0.51	0.26 ng/g	3/08/23 05:41	1
Perfluoropentanesulfonic acid	0.51 U	3.8	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluoroheptanesulfonic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorononanesulfonic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorodecanesulfonic acid	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorooctanesulfonamide	0.51 U	0.77	0.51	0.26 ng/g	03/08/23 05:41	1
Perfluorobutanoic acid	2.0 U	2.6	2.0	0.77 ng/g	03/08/23 05:41	1
Perfluoropentanoic acid	0.59 J	0.77	0.51	0.26 ng/g	03/08/23 05:41	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-12 Matrix: Solid

Lab Sample ID: 410-115009-13

Matrix: Solid

Percent Solids: 85.4

Client Sample ID: YTC-SED-04-020723

Date Collected: 02/07/23 10:25 Date Received: 02/09/23 10:25

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluoroundecanoic acid	0.51	U	0.77	0.51	0.26	ng/g	<u></u>	03/08/23 05:41	1
Perfluorododecanoic acid	0.51	U	0.77	0.51	0.26	ng/g	¢	03/08/23 05:41	1
6:2 Fluorotelomer sulfonic acid	2.0	U	2.6	2.0	0.77	ng/g	¢	03/08/23 05:41	1
8:2 Fluorotelomer sulfonic acid	2.0	U	3.8	2.0	0.77	ng/g	¢	03/08/23 05:41	1
4:2 Fluorotelomer sulfonic acid	2.0	U	2.6	2.0	0.77	ng/g	¢	03/08/23 05:41	1
Isotope Dilution	%Recovery Q	ualifier	Limits			Prep	ared	Analyzed	Dil Fac
M2-4:2 FTS	105		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
M2-8:2 FTS	116		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
M2-6:2 FTS	116		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C5 PFHxA	121		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C4 PFHpA	107		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C8 PFOA	115		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C9 PFNA	111		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C6 PFDA	107		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C7 PFUnA	117		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C2-PFDoDA	114		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C2 PFTeDA	109		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C3 PFBS	104		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C3 PFHxS	108		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C8 PFOS	108		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
d3-NMeFOSAA	97		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
d5-NEtFOSAA	106		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C8 FOSA	98		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C4 PFBA	118		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1
13C5 PFPeA	112		50 - 150			02/27/2	3 10:06	03/08/23 05:41	1

Client Sample Results

Client Sample ID: YTC-FD-01-SED-020723 Date Collected: 02/07/23 00:00

Date Received: 02/09/23 10:25

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Percent Moisture (EPA Moisture)	14.9		1.0		1.0	%		02/14/23 09:45	1

Client Sample ID: YTC-FD-01-SED-020723 Date Collected: 02/07/23 00:00 Date Received: 02/09/23 10:25

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.47	JM	0.66	0.44	0.22	ng/g	<u></u>	03/08/23 05:52	1
Perfluoroheptanoic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorooctanoic acid	0.25	JM	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorononanoic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorodecanoic acid	0.25	J	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorotridecanoic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorotetradecanoic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorobutanesulfonic acid	1.8	U	2.2	1.8	0.44	ng/g	¢	03/08/23 05:52	1
Perfluorohexanesulfonic acid	0.68		0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorooctanesulfonic acid	9.4	J	0.66	0.44	0.22	ng/g		03/08/23 05:52	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-13 Matrix: Solid

Lab Sample ID: 410-115009-14

Lab Sample ID: 410-115009-14

Matrix: Solid

Matrix: Solid

Percent Solids: 85.1

Percent Solids: 77.3

Client Sample ID: YTC-FD-01-SED-020723 Date Collected: 02/07/23 00:00 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-14 Matrix: Solid

Percent Solids: 85.1

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
NEtFOSAA	0.44	U	2.2	0.44	0.22	ng/g	₽	03/08/23 05:52	1
NMeFOSAA	0.44	U	2.2	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluoropentanesulfonic acid	0.44	U	3.3	0.44	0.22	ng/g	₽	03/08/23 05:52	1
Perfluoroheptanesulfonic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorononanesulfonic acid	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorodecanesulfonic acid	0.44	U	0.66	0.44	0.22	ng/g	₽	03/08/23 05:52	1
Perfluorooctanesulfonamide	0.44	U	0.66	0.44	0.22	ng/g	¢	03/08/23 05:52	1
Perfluorobutanoic acid	1.8	U	2.2	1.8	0.66	ng/g	¢	03/08/23 05:52	1
Perfluoropentanoic acid	1.1		0.66	0.44	0.22	ng/g	₽	03/08/23 05:52	1
Perfluoroundecanoic acid	0.44	U	0.66	0.44	0.22	ng/g	₽	03/08/23 05:52	1
Perfluorododecanoic acid	0.39	J	0.66	0.44	0.22	ng/g	₽	03/08/23 05:52	1
6:2 Fluorotelomer sulfonic acid	1.8	U	2.2	1.8	0.66	ng/g	₽	03/08/23 05:52	1
8:2 Fluorotelomer sulfonic acid	1.8	U	3.3	1.8	0.66	ng/g	¢	03/08/23 05:52	1
4:2 Fluorotelomer sulfonic acid	1.8	U	2.2	1.8	0.66	ng/g	☆	03/08/23 05:52	1
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepa	red	Analyzed	Dil Fac
M2-4:2 FTS	126		50 - 150			02/27/23	10:06	03/08/23 05:52	1
M2-8:2 FTS	138		50 - 150			02/27/23	10:06	03/08/23 05:52	1
M2-6:2 FTS	125		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C5 PFHxA	132		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C4 PFHpA	118		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C8 PFOA	127		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C9 PFNA	124		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C6 PFDA	123		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C7 PFUnA	128		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C2-PFDoDA	128		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C2 PFTeDA	124		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C3 PFBS	121		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C3 PFHxS	124		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C8 PFOS	126		50 - 150			02/27/23	10:06	03/08/23 05:52	1
d3-NMeFOSAA	104		50 - 150			02/27/23	10:06	03/08/23 05:52	1
d5-NEtFOSAA	119		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C8 FOSA	114		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C4 PFBA	129		50 - 150			02/27/23	10:06	03/08/23 05:52	1
13C5 PFPeA	131		50 - 150			00/07/00	10.06	03/08/23 05:52	

Client Sample ID: YTC-SW-04-020723 Date Collected: 02/07/23 10:20

Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte **Result Qualifier** LOQ LOD DL Unit D Analyzed 1.8 0.90 Perfluorohexanoic acid 160 0.45 ng/L 02/21/23 08:28 59 1.8 0.90 0.45 ng/L 02/21/23 08:28 Perfluoroheptanoic acid 0.90 Perfluorooctanoic acid 78 1.8 0.45 ng/L 02/21/23 08:28 0.90 0.45 ng/L Perfluorononanoic acid 12 1.8 02/21/23 08:28 Perfluorodecanoic acid 1.8 0.90 0.45 ng/L 02/21/23 08:28 11 Perfluorotridecanoic acid 0.90 U 1.8 0.90 0.45 ng/L 02/21/23 08:28 Perfluorotetradecanoic acid 0.90 U 1.8 0.90 0.45 ng/L 02/21/23 08:28 1.8 0.90 Perfluorobutanesulfonic acid 26 M 0.45 ng/L 02/21/23 08:28 **NEtFOSAA** 0.90 U 2.7 0.90 0.45 ng/L 02/21/23 08:28

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115009-15 Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

Client Sample ID: YTC-SW-04-020723

Date Collected: 02/07/23 10:20 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-15 Matrix: Water

Analyte	Result	Qualifier	L	.OQ	LOD	DL	Unit	D Analyzed	Dil Fac
NMeFOSAA	1.1	U		1.8	1.1	0.54	ng/L	02/21/23 08:28	1
Perfluoropentanesulfonic acid	39			1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluoroheptanesulfonic acid	41			1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluorononanesulfonic acid	3.8	Μ		1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluorodecanesulfonic acid	2.5	Μ		1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluorooctanesulfonamide	11	J+		1.8	1.3	0.63	ng/L	02/21/23 08:28	1
Perfluorobutanoic acid	27			4.5	3.6	1.8	ng/L	02/21/23 08:28	1
Perfluoropentanoic acid	79			1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluoroundecanoic acid	2.3	Μ		1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Perfluorododecanoic acid	1.9	I-M MJ		1.8	0.90	0.45	ng/L	02/21/23 08:28	1
4:2 Fluorotelomer sulfonic acid	0.60	JM		1.8	0.90	0.45	ng/L	02/21/23 08:28	1
Isotope Dilution	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	99		50 - 150	-			02/18/23 06:	59 02/21/23 08:28	1
M2-8:2 FTS	97		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
M2-6:2 FTS	95		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C5 PFHxA	66		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C4 PFHpA	58		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C8 PFOA	68		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C9 PFNA	47 Q	сп	50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C6 PFDA	75		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C7 PFUnA	85		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C2-PFDoDA	74		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C2 PFTeDA	68		50 - 150				02/18/23 06:5	59 02/21/23 08:28	1
13C3 PFBS	62		50 - 150				02/18/23 06:5	59 02/21/23 08:28	1
13C3 PFHxS	58		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C8 PFOS	37 Q		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
d3-NMeFOSAA	75 Q	сп	50 - 150				02/18/23 06:	59 02/21/23 08:28	1
d5-NEtFOSAA	80		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C8 FOSA	41 Q		50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C4 PFBA	50 Q	сп	50 - 150				02/18/23 06:	59 02/21/23 08:28	1
13C5 PFPeA	53		50 - 150				02/18/23 06:	59 02/21/23 08:28	1

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - DL

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanesulfonic acid	360	D	18	9.0	4.5	ng/L	03/07/23 18:55	10
Perfluorooctanesulfonic acid	2900	D	19	18	9.0	ng/L	03/07/23 18:55	10
6:2 Fluorotelomer sulfonic acid	180	D	27	18	9.0	ng/L	03/07/23 18:55	10
8:2 Fluorotelomer sulfonic acid	81	D	27	18	9.0	ng/L	03/07/23 18:55	10
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
Isotope Dilution M2-8:2 FTS	%Recovery Q 122	ualifier	Limits 50 - 150				Analyzed 03/07/23 18:55	Dil Fac 10
· · · ·		ualifier				02/18/23 06:59		
M2-8:2 FTS	122	ualifier	50 - 150			02/18/23 06:59 02/18/23 06:59	03/07/23 18:55	10

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Perfluorohexanoic acid	150	Н	1.8	0.88	0.44	ng/L	03/04/23 13:41	1
Perfluoroheptanoic acid	53	Н	1.8	0.88	0.44	ng/L	03/04/23 13:41	1
Perfluorooctanoic acid	70	H J1	1.8	0.88	0.44	ng/L	03/04/23 13:41	1

Client Sample ID: YTC-SW-04-020723

Date Collected: 02/07/23 10:20 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 - RE (Continued)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorononanoic acid	12	HM	1.8	0.88	0.44	ng/L		03/04/23 13:41	
Perfluorodecanoic acid	11	Н	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorotridecanoic acid	0.88	UH	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorotetradecanoic acid	0.88	UH	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorobutanesulfonic acid	27	н	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorohexanesulfonic acid	290	H	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorooctanesulfonic acid	2000	H J1	1.8	1.8	0.88	ng/L		03/04/23 13:41	1
NEtFOSAA	0.88	UH	2.6	0.88	0.44	ng/L		03/04/23 13:41	1
NMeFOSAA	1.1	UH	1.8	1.1	0.53	ng/L		03/04/23 13:41	1
Perfluoropentanesulfonic acid	36	НМ	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluoroheptanesulfonic acid	36	н	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorononanesulfonic acid	2.6	нм	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorodecanesulfonic acid	0.86	JHM	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorooctanesulfonamide	12	Н	1.8	1.2	0.61	ng/L		03/04/23 13:41	
Perfluorobutanoic acid	22	H M-	4.4	3.5	1.8	ng/L		03/04/23 13:41	1
-Perfluoropentanoic acid	73	HM	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluoroundecanoic acid	2.2	нм	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
Perfluorododecanoic acid	1.7	JHM	1.8	0.88	0.44	ng/L		03/04/23 13:41	1
6:2 Fluorotelomer sulfonic acid	170	H J1	2.6	1.8	0.88	ng/L		03/04/23 13:41	1
8:2 Fluorotelomer sulfonic acid	71	н	2.6	1.8	0.88	ng/L		03/04/23 13:41	1
-4:2 Fluorotelomer sulfonic acid	0.62	JHM	1.8	0.88	0.44	ng/L		03/04/23 13:41	

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	103		50 - 150	02/25/23 15:16	03/04/23 13:41	1
M2-8:2 FTS	87		50 - 150	02/25/23 15:16	03/04/23 13:41	1
M2-6:2 FTS	97	Q	50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C5 PFHxA	89		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C4 PFHpA	89		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C8 PFOA	90		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C9 PFNA	62		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C6 PFDA	68		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C7 PFUnA	55		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C2-PFDoDA	28	Q	50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C2 PFTeDA	3	Q	50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C3 PFBS	97		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C3 PFHxS	101		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C8 PFOS	53		50 - 150	02/25/23 15:16	03/04/23 13:41	1
d3-NMeFOSAA	52	Q	50 - 150	02/25/23 15:16	03/04/23 13:41	1
d5-NEtFOSAA	54		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C8 FOSA	34	Q	50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C4 PFBA	122		50 - 150	02/25/23 15:16	03/04/23 13:41	1
13C5 PFPeA	84		50 - 150	02/25/23 15:16	03/04/23 13:41	1

Client Sample ID: YTC-FD-01-SW-020723 Date Collected: 02/07/23 00:00 Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac D 1.7 0.86 02/21/23 08:39 Perfluorohexanoic acid 170 0.43 ng/L 1 59 1.7 0.86 0.43 ng/L 02/21/23 08:39 1 Perfluoroheptanoic acid

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-115009-15 Matrix: Water

Lab Sample ID: 410-115009-16

Client Sample ID: YTC-FD-01-SW-020723 Date Collected: 02/07/23 00:00 Date Received: 02/09/23 10:25

Job ID: 410-115009-1 SDG: YTC-Baseline

Lab Sample ID: 410-115009-16 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Perfluorooctanoic acid	83		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorononanoic acid	12		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorodecanoic acid	11		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorotridecanoic acid	0.86	U	1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorotetradecanoic acid	0.86	U	1.7	0.86	0.43	ng/L		02/21/23 08:39	• • • • • • •
Perfluorobutanesulfonic acid	29		1.7	0.86	0.43	ng/L		02/21/23 08:39	
NEtFOSAA	0.86	U	2.6	0.86	0.43	ng/L		02/21/23 08:39	
NMeFOSAA	1.0	U	1.7	1.0	0.52	ng/L		02/21/23 08:39	• • • • • • •
Perfluoropentanesulfonic acid	41		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluoroheptanesulfonic acid	43		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorononanesulfonic acid	3.4	Μ	1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorodecanesulfonic acid	2.4	Μ	1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorooctanesulfonamide	12	J+	1.7	1.2	0.60	ng/L		02/21/23 08:39	
Perfluorobutanoic acid	27		4.3	3.4	1.7	ng/L		02/21/23 08:39	
Perfluoropentanoic acid	78		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluoroundecanoic acid	2.4		1.7	0.86	0.43	ng/L		02/21/23 08:39	
Perfluorododecanoic acid	1.9		1.7	0.86	0.43	ng/L		02/21/23 08:39	• • • • • •
4:2 Fluorotelomer sulfonic acid	0.61	J	1.7	0.86	0.43	ng/L		02/21/23 08:39	
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepar	ed	Analyzed	Dil Fa
M2-4:2 FTS	101		50 - 150			02/18/23 (6:59	02/21/23 08:39	· · · ·
M2-8:2 FTS	93		50 - 150			02/18/23 (6:59	02/21/23 08:39	
M2-6:2 FTS	87		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C5 PFHxA	64		50 - 150			02/18/23 (06:59	02/21/23 08:39	
13C4 PFHpA	58		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C8 PFOA	67		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C9 PFNA	46 Q	сп	50 - 150			02/18/23 (06:59	02/21/23 08:39	
13C6 PFDA	76		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C7 PFUnA	79		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C2-PFDoDA	70		50 - 150			02/18/23 (06:59	02/21/23 08:39	
13C2 PFTeDA	58		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C3 PFBS	63		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C3 PFHxS	59		50 - 150			02/18/23 (06:59	02/21/23 08:39	
13C8 PFOS	36 Q		50 - 150			02/18/23 (6:59	02/21/23 08:39	
d3-NMeFOSAA	72 Q	сп	50 - 150			02/18/23 (6:59	02/21/23 08:39	
d5-NEtFOSAA	73		50 - 150			02/18/23 (06:59	02/21/23 08:39	
13C8 FOSA	38 Q		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C4 PFBA	49 Q		50 - 150			02/18/23 (6:59	02/21/23 08:39	
13C5 PFPeA	54		50 - 150			02/18/23 (06:59	02/21/23 08:39	
Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4. Table	e B-15 - DL						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Perfluorohexanesulfonic acid	360	D	17	8.6	4.3	ng/L		03/07/23 19:16	10
Perfluorooctanesulfonic acid	2900	D	18	17	8.6	ng/L		03/07/23 19:16	10
6:2 Fluorotelomer sulfonic acid	200	D	26	17	8.6	ng/L		03/07/23 19:16	10
		· <u>-</u> · · · · · · · · ·	26	47	0.6			02/07/22 10.16	10

8:2 Fluorotelomer sulfonic acid	80 E	D	26	17	8.6	ng/L	03/07/23 19:16	10
Isotope Dilution	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
M2-8:2 FTS	115	50 - 150				02/18/23 06:59	03/07/23 19:16	10
M2-6:2 FTS	120	50 - 150				02/18/23 06:59	03/07/23 19:16	10
13C3 PFHxS	121	50 - 150				02/18/23 06:59	03/07/23 19:16	10

Client Sample ID: YTC-FD-01-SW-020723 Date Collected: 02/07/23 00:00 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-16 Matrix: Water

Isotope Dilution	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fa
13C8 PFOS	108		50 - 150			02/18/23 06:59	03/07/23 19:16	10
Method: DOD 5.4 QSM B15 - I	PEAS for OSM	5.4 Table	8-15 - RE					
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Perfluorohexanoic acid	<u> </u>	H	1.7	0.86	0.43	ng/L	03/04/23 14:02	1
Perfluoroheptanoic acid	54	н	1.7	0.86	0.43	ng/L	03/04/23 14:02	1
Perfluorooctanoic acid	70	H J1	1.7	0.86	0.43	-ng/L	03/04/23 14:02	1
Perfluorononanoic acid	12	NМ	1.7	0.86	0.43	ng/L	03/04/23 14:02	1
Perfluorodecanoic acid	10		1.7	0.86	0.43	-ng/L	03/04/23 14:02	
Perfluorotridecanoic acid	0.86	UН	1.7	0.86		ng/L	03/04/23 14:02	1
Perfluorotetradecanoic acid	0.86	UΗ	1.7	0.86	0.43	ng/L	03/04/23 14:02	1
Perfluorobutanesulfonic acid	31	н	1.7	0.86		ng/L	03/04/23 14:02	1
Perfluorohexanesulfonic acid	290	н	1.7	0.86	0.43	•	03/04/23 14:02	1
Perfluorooctanesulfonic acid	1500		1.8	1.7		ng/L	03/04/23 14:02	1
NEtFOSAA	0.86		2.6	0.86		ng/L	03/04/23 14:02	1
NMeFOSAA	1.0		1.7	1.0		ng/L	03/04/23 14:02	1
Perfluoropentanesulfonic acid	41		1.7	0.86		ng/L	03/04/23 14:02	1
Perfluoroheptanesulfonic acid	39		1.7	0.86		ng/L	03/04/23 14:02	
Perfluorononanesulfonic acid	3.3		1.7	0.86		ng/L	03/04/23 14:02	
Perfluorodecanesulfonic acid	1.9		1.7	0.86		ng/L	03/04/23 14.02	
Perfluorooctanesulfonamide			1.7	1.2		ng/L	03/04/23 14:02	
Perfluorobutanoic acid		л ИМ	4.3	3.4		ng/L	03/04/23 14:02	
Perfluoropentanoic acid			1.7	0.86		ng/L	03/04/23 14:02	
Perflueroundecanoic acid	1.9		1.7	0.86		ng/L	03/04/23 14:02	
Perfluorododecanoic acid		JHM	1.7	0.86		ng/L	03/04/23 14:02	
6:2 Fluorotelomer sulfonic acid		H J1	2.6	1.7	0.45		03/04/23 14:02	
8:2 Fluorotelomer sulfonic acid	63		2.6	1.7		ng/L	03/04/23 14:02	
4:2 Fluorotelomer sulfonic acid		п ЈНМ	2.0	0.86	0.80	-	03/04/23 14:02	
				0.00	0.40	0		
Isotope Dilution	%Recovery Qu	alifier	Limits			Prepared	Analyzed 03/04/23 14:02	Dil Fa
M2-4:2 FTS	115		50 - 150					1
M2-8:2 FTS	138		50 - 150				03/04/23 14:02	1
M2-6:2 FTS	118		50 - 150				03/04/23 14:02	
13C5 PFHxA	87		50 - 150				03/04/23 14:02	1
13C4 PFHpA	92		50 - 150				03/04/23 14:02	1
13C8 PFOA	104		50 - 150				03/04/23 14:02	1
13C9 PFNA	78		50 - 150				03/04/23 14:02	1
13C6 PFDA	111		50 - 150				03/04/23 14:02	1
13C7 PFUnA	114		50 - 150				03/04/23 14:02	
13C2-PFDoDA	91		50 - 150				03/04/23 14:02	1
13C2 PFTeDA	57		50 - 150				03/04/23 14:02	
13C3 PFBS	100		50 - 150				03/04/23 14:02	
	112		50 - 150				03/04/23 14:02	
13C3 PFHxS	74		50 - 150			02/25/23 15:16	03/04/23 14:02	-
13C8 PFOS	71							
	71 90 Q d	cn	50 - 150			02/25/23 15:16	03/04/23 14:02	
13C8 PFOS		cn	50 - 150 50 - 150				03/04/23 14:02 03/04/23 14:02	
13C8 PFOS d3-NMeFOSAA	90 Q d					02/25/23 15:16		1

d5-NEtFOSAA

13C8 FOSA

Client Sample ID: YTC-SED-05-020723 Lab Sample ID: 410-115009-17 Date Collected: 02/07/23 10:55 Matrix: Solid Date Received: 02/09/23 10:25 **General Chemistry** LOQ LOD Analyte **Result Qualifier** DL Unit D Analyzed Dil Fac 1.0 % 11.7 1.0 02/14/23 09:45 Percent Moisture (EPA Moisture) 1 Client Sample ID: YTC-SED-05-020723 Lab Sample ID: 410-115009-17 Date Collected: 02/07/23 10:55 Matrix: Solid Date Received: 02/09/23 10:25 Percent Solids: 88.3 Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 D Analyte **Result Qualifier** LOQ LOD DL Unit Analyzed **Dil Fac** 0.22 0.44 UM 0.67 0.44 ng/g ₽ 03/08/23 06:02 Perfluorohexanoic acid 1 Perfluoroheptanoic acid 0.44 U 0.67 0.44 0.22 ng/g Å 03/08/23 06:02 1 Perfluorooctanoic acid 0.44 U 0.67 0 44 0.22 ÷ĊF 03/08/23 06:02 ng/g 1 Perfluorononanoic acid 0.44 U 0.67 0.44 0.22 ng/g ₽ 03/08/23 06:02 1 Perfluorodecanoic acid 0.67 0 4 4 0.22 ng/g ÷ 03/08/23 06:02 044 U 1 Perfluorotridecanoic acid 044 U 0.67 0 44 0.22 ng/g ÷Ċŕ 03/08/23 06:02 1 03/08/23 06:02 Perfluorotetradecanoic acid 044 U 0.67 0 4 4 0.22 ng/g ÷Ċŕ 1 Perfluorobutanesulfonic acid 1.8 U 2.2 1.8 0.44 ng/g ÷ 03/08/23 06:02 1 Perfluorohexanesulfonic acid 0.29 0.67 0 4 4 0.22 ng/g Ċ 03/08/23 06:02 1 J 0.67 0.44 0.22 ₽ 03/08/23 06:02 1 Perfluorooctanesulfonic acid ng/g 1.4 **NEtFOSAA** 0.44 U 2.2 0.44 0.22 ng/g ÷Ċŕ 03/08/23 06:02 1 **NMeFOSAA** 2.2 0.44 044 U 0.22 ng/g ÷ 03/08/23 06:02 1 Perfluoropentanesulfonic acid 0.44 U 3.3 0.44 0.22 ng/g Ċ 03/08/23 06:02 1 Perfluoroheptanesulfonic acid 044 11 0.67 0 44 0.22 ng/g ÷ 03/08/23 06:02 1 Perfluorononanesulfonic acid 0.44 03/08/23 06:02 044 U 0 67 0.22 ng/g Ċ 1 Perfluorodecanesulfonic acid 03/08/23 06:02 044 U 0.67 0 4 4 0.22 ng/g ÷ 1 Perfluorooctanesulfonamide 044 U 0.67 0 44 0.22 ng/g Ċ 03/08/23 06:02 1 Perfluorobutanoic acid 1.8 U 2.2 18 0.67 ng/g ÷Ċŕ 03/08/23 06:02 1 Perfluoropentanoic acid 0.44 U 0.67 0.44 0.22 ng/g ÷ 03/08/23 06:02 1 Perfluoroundecanoic acid 0.44 U 0.67 0 4 4 0.22 ng/g ÷ 03/08/23 06:02 1 0.67 0.44 03/08/23 06:02 Perfluorododecanoic acid 0.30 J 0.22 ng/g ÷Ċŕ 1 6:2 Fluorotelomer sulfonic acid 1.8 UM 2.2 1.8 0.67 ng/g Ċ 03/08/23 06:02 1 8:2 Fluorotelomer sulfonic acid 03/08/23 06:02 18 U 33 18 0.67 ng/g ÷Ċŕ 1 4:2 Fluorotelomer sulfonic acid 1.8 U 2.2 1.8 0.67 ng/g Ċ 03/08/23 06:02 1 Isotope Dilution %Recovery Qualifier Limits Analyzed Dil Fac Prepared M2-4:2 FTS 110 50 - 150 02/27/23 10:06 03/08/23 06:02 1 M2-8:2 FTS 126 50 - 150 02/27/23 10.06 03/08/23 06:02 1 M2-6:2 FTS 117 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C5 PFHxA 120 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C4 PFHpA 113 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C8 PFOA 114 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C9 PFNA 114 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C6 PFDA 110 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C7 PFUnA 128 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C2-PFDoDA 115 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C2 PFTeDA 116 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C3 PFBS 111 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C3 PFHxS 118 50 - 150 02/27/23 10:06 03/08/23 06:02 1 13C8 PFOS 120 50 - 150 02/27/23 10:06 03/08/23 06:02 1 d3-NMeFOSAA 88 50 - 150 02/27/23 10:06 03/08/23 06:02 1

Eurofins Lancaster Laboratories Environment Testing, LLC

02/27/23 10:06 03/08/23 06:02

02/27/23 10:06 03/08/23 06:02

1

1

50 - 150

50 - 150

112

100

Job ID: 410-115009-1 SDG: YTC-Baseline

Client Sample ID: YTC-SE	D-05-02072	3			La	ab Sample	ID: 410-1150	009-17
Date Collected: 02/07/23 10:55							Matrix	x: Solid
Date Received: 02/09/23 10:25							Percent Solic	ds: 88.3
Method: DOD 5.4 QSM B15 -	PFAS for QSM	5.4, Table	e B-15 (Contin	ued)				
Isotope Dilution	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	127		50 - 150			02/27/23 10:0	6 03/08/23 06:02	1
13C5 PFPeA	124		50 - 150			02/27/23 10:0	6 03/08/23 06:02	1
Client Sample ID: YTC-SE	D-06-02072	3			La	ab Sample	ID: 410-1150	009-18
Date Collected: 02/07/23 14:30							Matrix	x: Solid
Date Received: 02/09/23 10:25								
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD			D Analyzed	Dil Fac
Percent Moisture (EPA Moisture)	18.8		1.0		1.0	%	02/14/23 09:45	1
Client Sample ID: YTC-SE Date Collected: 02/07/23 14:30 Date Received: 02/09/23 10:25	D-06-02072	3			La	ab Sample	ID: 410-1150 Matrix Percent Solic	x: Solid
Method: DOD 5.4 QSM B15 - Analyte		5.4, Table Qualifier	B-15 LOQ	LOD	1	Unit) Analyzed	Dil Fac
Perfluorohexanoic acid	Result						Analyzed 03/09/23 19:27	
	0.46		0.68	0.46				1
Perfluoroheptanoic acid		-	0.68	0.46			⇒ 03/09/23 19:27	1
Perfluorooctanoic acid	0.46		0.68	0.46			03/09/23 19:27	1
Perfluorononanoic acid	0.46		0.68	0.46			⇒ 03/09/23 19:27	1
Perfluorodecanoic acid	0.46		0.68	0.46			⇒ 03/09/23 19:27	1
Perfluorotridecanoic acid	0.46		0.68	0.46			03/09/23 19:27	1
Perfluorotetradecanoic acid	0.46		0.68 2.3	0.46 1.8			 ⇒ 03/09/23 19:27 ⇒ 03/09/23 19:27 	1
Perfluorobutanesulfonic acid	1.8							1
Perfluorohexanesulfonic acid	0.46		0.68	0.46			⇒ 03/09/23 19:27	1
Perfluorooctanesulfonic acid NEtFOSAA	0.27 0.46		0.68	0.46 0.46			 ⇒ 03/09/23 19:27 ⇒ 03/09/23 19:27 	1
NMeFOSAA	0.46		2.3 2.3	0.46			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
	0.46		2.3 3.4	0.46			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	
Perfluoropentanesulfonic acid Perfluoroheptanesulfonic acid	0.46		0.68	0.46			÷ 03/09/23 19:27	1
Perfluorononanesulfonic acid	0.46		0.68	0.46		00	÷ 03/09/23 19:27	1
Perfluorodecanesulfonic acid	0.40		0.68	0.46				1
Perfluorooctanesulfonamide	0.46		0.68	0.46		00	 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
Perfluorobutanoic acid	1.8		2.3	1.8			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
Perfluoropentanoic acid	0.46		0.68	0.46			© 03/09/23 19:27	1
Perfluoroundecanoic acid	0.40		0.68	0.46			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
Perfluorododecanoic acid	0.40		0.68	0.46			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
6:2 Fluorotelomer sulfonic acid	1.8		2.3	1.8			© 03/09/23 19:27	1
8:2 Fluorotelomer sulfonic acid	1.8		3.4	1.8			 ○ 03/09/23 19:27 	1
4:2 Fluorotelomer sulfonic acid	1.8		2.3	1.8			 ○ 03/09/23 19:27 ○ 03/09/23 19:27 	1
					0.00			
Isotope Dilution M2-4:2 FTS	%Recovery Q 100	Jaimer	Limits 50 - 150			Prepared	6 Analyzed 03/09/23 19:27	Dil Fac
M2-4.2 FTS M2-8:2 FTS	99		50 - 150 50 - 150				6 03/09/23 19:27	1
M2-6:2 FTS	99 105		50 - 150 50 - 150				6 03/09/23 19:27	1
13C5 PFHxA	103		50 - 150 50 - 150				6 03/09/23 19:27	
	127						6 03/09/23 19:27	1
13C4 PEHpA	115		50 - 150					
13C4 PFHpA 13C8 PEOA	115 112		50 - 150 50 - 150					1
13C4 PFHpA 13C8 PFOA 13C9 PFNA	115 112 108		50 - 150 50 - 150 50 - 150			02/27/23 10:0	6 03/09/23 19:27 6 03/09/23 19:27	1

Client Sample ID: YTC-SED-06-020723

Date Collected: 02/07/23 14:30 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-18 Matrix: Solid Percent Solids: 81.2

Isotope Dilution	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
13C7 PFUnA		50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C2-PFDoDA	107	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C2 PFTeDA	93	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C3 PFBS	112	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C3 PFHxS	117	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C8 PFOS	107	50 - 150	02/27/23 10:06	03/09/23 19:27	1
d3-NMeFOSAA	92	50 - 150	02/27/23 10:06	03/09/23 19:27	1
d5-NEtFOSAA	93	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C8 FOSA	129	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C4 PFBA	113	50 - 150	02/27/23 10:06	03/09/23 19:27	1
13C5 PFPeA	121	50 - 150	02/27/23 10:06	03/09/23 19:27	1
lient Sample ID: Y	/TC-SED-07-020723	3	Lab Sample ID): 410-1150	09-19
Date Collected: 02/07/2					: Solid
ata Bassiyadı 02/00/2	2 40.25				

Date Received: 02/09/23 10:25

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Percent Moisture (EPA Moisture)	29.4		1.0		1.0	%		02/14/23 09:45	1
Client Sample ID: YTC-SED	07-020723	3			La	b Sam	ple II	D: 410-1150	09-19
Date Collected: 02/07/23 14:50 Date Received: 02/09/23 10:25									: Solid
Method: DOD 5.4 QSM B15 - PF		· ·							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	
Perfluoroheptanoic acid	0.55								1
renuoroneplanoic aciu	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorooctanoic acid	0.55		0.83 0.83	0.55 0.55		ng/g ng/g		03/08/23 06:24 03/08/23 06:24	1 1 1
		U			0.28	00		03/08/23 06:24	ו 1 1
Perfluorooctanoic acid	0.55	U U	0.83	0.55	0.28 0.28	ng/g	₽	03/08/23 06:24	1 1 1 1
Perfluorooctanoic acid Perfluorononanoic acid	0.55 0.55	U U U	0.83 0.83	0.55 0.55	0.28 0.28 0.28	ng/g ng/g	¢ ¢ ¢	03/08/23 06:24 03/08/23 06:24	י 1 1 1 1 1
Perfluorooctanoic acid Perfluorononanoic acid Perfluorodecanoic acid	0.55 0.55 0.55	U U U U	0.83 0.83 0.83	0.55 0.55 0.55	0.28 0.28 0.28 0.28	ng/g ng/g ng/g	¢ ¢ ¢	03/08/23 06:24 03/08/23 06:24 03/08/23 06:24	1 1 1 1 1 1 1 1

Fernuorobulariesunonic aciu	2.2	0	2.0	2.2	0.55	ny/y	74	03/00/23 00.24	
Perfluorohexanesulfonic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorooctanesulfonic acid	4.0		0.83	0.55	0.28	ng/g	₽	03/08/23 06:24	1
NEtFOSAA	0.55	U	2.8	0.55	0.28	ng/g	¢	03/08/23 06:24	1
NMeFOSAA	0.55	U	2.8	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluoropentanesulfonic acid	0.55	U	4.1	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluoroheptanesulfonic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorononanesulfonic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorodecanesulfonic acid	0.55	U	0.83	0.55	0.28	ng/g	₽	03/08/23 06:24	1
Perfluorooctanesulfonamide	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorobutanoic acid	2.2	U	2.8	2.2	0.83	ng/g	¢	03/08/23 06:24	1
Perfluoropentanoic acid	0.55	U	0.83	0.55	0.28	ng/g	₽	03/08/23 06:24	1
Perfluoroundecanoic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
Perfluorododecanoic acid	0.55	U	0.83	0.55	0.28	ng/g	¢	03/08/23 06:24	1
6:2 Fluorotelomer sulfonic acid	2.2	U	2.8	2.2	0.83	ng/g	₽	03/08/23 06:24	1
8:2 Fluorotelomer sulfonic acid	2.2	U	4.1	2.2	0.83	ng/g	¢	03/08/23 06:24	1
4:2 Fluorotelomer sulfonic acid	2.2	U	2.8	2.2	0.83	ng/g	¢	03/08/23 06:24	1

Client Sample Results

Client Sample ID: YTC-SED-07-020723 Date Collected: 02/07/23 14:50 Date Received: 02/09/23 10:25

Lab Sample ID: 410-115009-19 Matrix: Solid Percent Solids: 70.6

Lab Sample ID: 410-115009-20

Matrix: Solid

Percent Solids: 59.8

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	122	50 - 150	02/27/23 10:06	03/08/23 06:24	1
M2-8:2 FTS	135	50 - 150	02/27/23 10:06	03/08/23 06:24	1
M2-6:2 FTS	130	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C5 PFHxA	123	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C4 PFHpA	112	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C8 PFOA	115	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C9 PFNA	111	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C6 PFDA	106	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C7 PFUnA	121	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C2-PFDoDA	113	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C2 PFTeDA	110	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C3 PFBS	110	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C3 PFHxS	115	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C8 PFOS	115	50 - 150	02/27/23 10:06	03/08/23 06:24	1
d3-NMeFOSAA	95	50 - 150	02/27/23 10:06	03/08/23 06:24	1
d5-NEtFOSAA	103	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C8 FOSA	107	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C4 PFBA	134	50 - 150	02/27/23 10:06	03/08/23 06:24	1
13C5 PFPeA	113	50 - 150	02/27/23 10:06	03/08/23 06:24	1

Client Sample ID: YTC-SED-08-020723 Date Collected: 02/07/23 15:10 Date Received: 02/09/23 10:25

General Chemistry Analyte **Result Qualifier** LOQ LOD DL Unit Analyzed Dil Fac D 1.0 1.0 % 02/14/23 09:45 Percent Moisture (EPA Moisture) 40.2 1 Client Sample ID: YTC-SED-08-020723 Lab Sample ID: 410-115009-20 Matrix: Solid

Date Collected: 02/07/23 15:10 Date Received: 02/09/23 10:25

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorohexanoic acid	0.63	U	0.95	0.63	0.32	ng/g	<u> </u>	03/08/23 06:34	1
Perfluoroheptanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorooctanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorononanoic acid	0.63	U	0.95	0.63	0.32	ng/g	₽	03/08/23 06:34	1
Perfluorodecanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorotridecanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorotetradecanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorobutanesulfonic acid	2.5	U	3.2	2.5	0.63	ng/g	¢	03/08/23 06:34	1
Perfluorohexanesulfonic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorooctanesulfonic acid	0.63	U	0.95	0.63	0.32	ng/g	₽	03/08/23 06:34	1
NEtFOSAA	0.63	U	3.2	0.63	0.32	ng/g	¢	03/08/23 06:34	1
NMeFOSAA	0.63	U	3.2	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluoropentanesulfonic acid	0.63	U	4.7	0.63	0.32	ng/g	₽	03/08/23 06:34	1
Perfluoroheptanesulfonic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorononanesulfonic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorodecanesulfonic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorooctanesulfonamide	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1

Client Sample ID: YTC-SED-08-020723

Date Collected: 02/07/23 15:10

Date Received: 02/09/23 10:25

Method: DOD 5.4 QSM B15 - PFAS for QSM 5.4, Table B-15 (Continued)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perfluorobutanoic acid	2.5	U	3.2	2.5	0.95	ng/g	☆	03/08/23 06:34	1
Perfluoropentanoic acid	0.63	U	0.95	0.63	0.32	ng/g	₽	03/08/23 06:34	1
Perfluoroundecanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
Perfluorododecanoic acid	0.63	U	0.95	0.63	0.32	ng/g	¢	03/08/23 06:34	1
6:2 Fluorotelomer sulfonic acid	2.5	U	3.2	2.5	0.95	ng/g	¢	03/08/23 06:34	1
8:2 Fluorotelomer sulfonic acid	2.5	U	4.7	2.5	0.95	ng/g	¢	03/08/23 06:34	1
4:2 Fluorotelomer sulfonic acid	2.5	U	3.2	2.5	0.95	ng/g	¢	03/08/23 06:34	1
Isotope Dilution	%Recovery Q	ualifier	Limits			Prep	oared	Analyzed	Dil Fac
M2-4:2 FTS	116		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
M2-8:2 FTS	114		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
M2-6:2 FTS	127		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C5 PFHxA	112		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C4 PFHpA	103		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C8 PFOA	109		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C9 PFNA	105		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C6 PFDA	100		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C7 PFUnA	111		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C2-PFDoDA	98		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C2 PFTeDA	108		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C3 PFBS	100		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C3 PFHxS	109		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C8 PFOS	104		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
d3-NMeFOSAA	91		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
d5-NEtFOSAA	105		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C8 FOSA	96		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C4 PFBA	121		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1
13C5 PFPeA	109		50 - 150			02/27/2	23 10:06	03/08/23 06:34	1

Percent Solids: 59.8

Matrix: Solid

Lab Sample ID: 410-115009-20

Attachment 3

Basalt X-Ray Fluorescence Laboratory Results

Date	<u>үтс_мw-02_110</u> GAL-JH-145-1 23-May-23		vtc_mw-03_189 GAL-JH-145-3 23-May-23	
SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O K2O P2O5 Sum	Unnormalized Major Elements (Weight %): 51.50 1.66 14.54 10.99 0.18 6.90 10.61 2.33 0.65 0.23 99.67	9 0.904 17.15 5.83 0 0.108 0 2.60 5.73 3.53 5 1.30 8 0.182	51.80 1.602 14.64 10.69 0.173 6.71 10.16 2.25 0.71 0.215	$50.16 \\ 1.067 \\ 14.02 \\ 7.98 \\ 0.099 \\ 4.83 \\ 5.34 \\ 1.07 \\ 1.28 \\ 0.165 \\ 86.01$
LOI %	-0.08		98.95 1.04	13.95
	Normalized Major Elements (Weight %):			
SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O K2O P2O5 Total	51.68 51.68 1.67 14.55 11.03 0.18 6.92 10.66 2.33 0.62 100.00	0.92 17.55 5.97 0.11 2.66 5.86 3.62 1.33 0.19	$\begin{array}{c} 52.35\\ 1.62\\ 14.80\\ 10.80\\ 0.18\\ 6.79\\ 10.27\\ 2.28\\ 0.72\\ 0.22\\ 100.00\\ \end{array}$	$58.32 \\ 1.24 \\ 16.30 \\ 9.27 \\ 0.12 \\ 5.62 \\ 6.21 \\ 1.24 \\ 1.49 \\ 0.19 \\ 100.00$
	Unnormalized Trace Elements (ppm):	10	17	21
Ni Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce Th Nd U Sum m+t sum tr in % sum m+t M+Toxides w/LO if Fe3-	52 101 36 282 275 15 235 139 30 11. 18 53 96 6 15 235 139 30 10. 11. 18 53 96 6 15 37 3 215 139 30 10. 11. 18 53 26 19 20 5 139 20 5 142 10. 11. 18 53 20 5 19 20 5 19 20 5 19 20 5 10. 11. 18 5 20 5 19 20 5 10. 10. 10. 10. 11. 10. 10. 10.	5 6.6 18 17 74 6 11 31 3 17 1 1449 0.14 97.84 97.87 7 100.04 90.69 e basis, with		$\begin{array}{c} 31\\ 61\\ 26\\ 181\\ 199\\ 45\\ 132\\ 137\\ 24\\ 9.6\\ 17\\ 33\\ 85\\ 5\\ 16\\ 36\\ 4\\ 19\\ 1\\ 1061\\ 0.11\\ 86.11\\ 86.14\\ 100.99\\ 100.98\\ \textbf{essed as FeO.} \end{array}$
Nic	® denotes a duplicate bead made from the san 0 65.		er. 60.2	39.2
Cr203 Sc203 V203 Bad Rb204 Sr03 Zr03 V203 Cr03 Ca20 Ca203 Ca20 Ca2	3 147. 3 55. 3 414. 307. 16. 2 188. 3 37. 5 16. 3 24. 66. 119. 63. 18. 2 4.8. 2 24. 33. 24. 34. 66. 119. 6. 35. 24. 36. 18. 2 24. 36. 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 142.7\\ 54.2\\ 401.6\\ 285.1\\ 18.9\\ 266.5\\ 188.1\\ 37.6\\ 66.3\\ 117.0\\ 25.6\\ 66.3\\ 117.0\\ 6.9\\ 15.5\\ 39.3\\ 3.9\\ 22.0\\ 0.6\end{array}$	$\begin{array}{c} 89.0\\ 89.0\\ 39.2\\ 265.7\\ 221.7\\ 48.8\\ 156.0\\ 185.4\\ 30.3\\ 13.7\\ 23.1\\ 41.8\\ 105.4\\ 5.7\\ 19.3\\ 44.1\\ 4.8\\ 22.3\\ 1.6\end{array}$
sum tr. in %	1836 0.18	1771 0.18	1769 0.18	1357 0.14

Perform'X Run 0122, Jesse Hemmen, Arcadis

Date	USGS AGV-2 PV	AGV-2 USGS CRM-1 23-May-23	USGS BCR-2 PV	BCR-2 USGS CRM-2 23-May-23	USGS _{GSP-2} GeoRem	GSP-2 USGS CRM-3 23-May-23
Duit		20 May 20		20 May 20	Content	20 may 20
						Unnormalized Major Elements (Weight %):
SiO2	59.14	59.48	54.00	53.94	66.60	66.78
TiO2 Al2O3	1.051 17.03	1.047 17.03	2.265 13.48	2.265 13.46	0.660 14.90	0.678 14.96
FeO*	6.10	6.05	12.39	12.43	4.41	4.41
MnO	0.100	0.100	0.197	0.197	0.041	0.042
MgO	1.80	1.79	3.60	3.61	0.96	0.96
CaO Na2O	5.15 4.20	5.21 4.22	7.11 3.12	7.11 3.14	2.10 2.78	2.11 2.80
K20	2.90	2.88	1.77	1.76	5.38	5.42
P2O5	0.483	0.481	0.359	0.350	0.290	0.284
Sum	97.96	98.30	98.30	98.27	98.12	98.44
LOI %						
						Normalized Major Elements (Weight %):
SiO2 TiO2	60.37 1.07	60.51 1.07	54.93 2.30	54.89 2.30	67.88 0.67	67.83 0.69
AI2O3	17.39	17.33	13.71	13.70	15.19	15.20
FeO*	6.23	6.16	12.60	12.65	4.49	4.48
MnO	0.10	0.10	0.20	0.20	0.04	0.04
MgO CaO	1.84 5.26	1.82 5.30	3.66 7.24	3.68 7.23	0.98 2.14	0.98 2.15
Na2O	4.29	4.30	3.17	3.20	2.83	2.84
K20	2.96	2.93	1.80	1.79	5.48	5.50
P2O5 Total	0.49 100.00	0.49 100.00	0.37 100.00	0.36 100.00	0.30 100.00	0.29 100.00
TOLAI	100.00	100.00	100.00	100.00	100.00	100:00
	10	10	12	12	17	Unnormalized Trace Elements (ppm):
Ni Cr	19 16	19 17	13 16	13 13	17 20	17 20
Sc	13	13	34	32	-0	7
V	119	121	418	407	52	55
Ba Rb	1134 68	1124 68	684 46	682 47	1340 245	1326 245
Sr	660	660	337	331	240	242
Zr	232	235	187	182	550	570
Y Nb	19 14.1	21 13.9	36 12.4	35 13.0	28 27.0	26 26.0
Ga	20	20	22	21	27.0	23
Cu	52	54	20	21	43	44
Zn	87	89	130	132	120	113
Pb La	13 38	14 37	11 25	10 23	42 180	43 184
Ce	69	73	53	48	410	436
Th	6	6	6	5	105	108
Nd U	30 2	28 1	28 2	26 2	200 2	203 3
sum tr.	2611	2611	2078	2044	3650	3688
in %	0.26	0.26	0.21	0.20	0.36	0.37
sum m+tr M+Toxides	98.22 98.27	98.56 98.61	98.51 98.56	98.47 98.52	98.49 08.56	98.81 98.88
w/LOI	98.27	98.61	98.56	98.52	98.56 98.56	98.88
if Fe3+	98.95	99.28	99.93	99.90	99.04	99.37
						Major elements are normalized on a volatile-free basis, with total Fe expressed as FeO. ® denotes a duplicate bead made from the same rock powder.
NiO	24.0		16.0	16.7	21.6	21.0
Cr2O3	23.7	24.8	23.2	19.7	29.2	29.6
Sc2O3 V2O3	20.1 174.3	19.4 177.5	51.4 614.3	49.7 599.0	9.7 76.5	
BaO	1266.1	1254.7	763.6	761.1	1496.1	
Rb2O	74.1	74.1	50.3	51.6	267.9	268.1
SrO ZrO2	779.9 313.4		399.0 251.9	391.9 245.3	283.8 742.9	285.8 769.3
Y2O3	24.3		45.8	45.0	35.6	
Nb2O5	20.2	19.8	17.8	18.5	38.6	37.1
Ga2O3	27.4		29.7	27.9	29.6	30.6
CuO ZnO	64.5 107.9		24.6 161.2	26.4 163.9	53.8 149.4	
PbO	14.2	15.2	101.2	10.9	45.2	45.8
La2O3	44.8	43.4	29.4	27.5	211.1	216.3
CeO2 ThO2	85.3 7.0		65.3 6.6	58.5 5.5	504.0 119.5	
Nd2O3	35.6		33.0	30.2	233.3	
U2O3	2.1	1.2	1.9	2.1	2.6	2.9
sum tr. in %	3109 0.31	3111 0.31	2596 0.26	2551 0.26	4351 0.44	4402 0.44
/0			0.20	0.20	v .	····

sample_name	Formation	Member	Member (2)	Formation (2)	Member
YTC_MW-02_110	Saddle Mountains	Weippe-Pomona			
YTC_MW-02_210	Grande Ronde	Fields Spring	Mount Horrible		
YTC_MW-03_189	Saddle Mountains	Weippe-Pomona			
YTC_MW-06_235	Grande Ronde	Meyer Ridge	Sentinel Bluffs	Saddle Mountains	Buford

sample_name	Grande Ronde	Imnaha	Saddle Mountains	Wanapum
YTC_MW-02_110	0.0247	0.0007	0.9935	0
YTC_MW-02_210	1	0	0	0.0001
YTC_MW-03_189	0.0678	0.0004	0.9945	0
YTC_MW-06_235	1	0	1	0

sample_name	Armstrong Canyon Birch Creek	Brady Gulch	Buckhorn Sprin	ngs Buttermilk Canyo	n Center Creek	c China Creek	Cold Spring	s Ridge Downey Gul	lch Fiel	lds Spring
YTC_MW-02_210	0.0173	0.0001	0	0	0	0.707	0.9736	0.3765	0.0875	
YTC_MW-06_235	0.0046	0.0005	0 0.	.0003	0	0.0003	0.0115	0.2334	0.1469	0.

1

0.001

Frye Point	Grouse Cree	k Hoskin Gulc	h Kendrik Gra	de Meyer Ridge	Mount Horrible	Ortley	Rogersburg	Sentinel Bluffs	Skeleton Cr	eek Slack Canyo	on Teepee But	tte Wapshilla Ridge	Winter Water	
	0.002	0.0088	0.0411	0.0005	0	1	0.7088	0.9881	0	0.0011	0.0014	0.1384	0	0
	0.0267	0.0679	0.0015	0	1	0	0.0496	0.007	1	0.0078	0.002	0.0001	0 0	.0224

sample_name Asotin-V	/ilbur Creek Buford	Craigmont	Elepha	ant Mountain Esquatzel	Feary	Creek Ice Harbor	Lower	Monumental Swamp (Creek Tammany Creek	Umatilla	Weip	pe-Pomona	Weissenfels Ridge
YTC_MW-02_110	0.0755	0.0047	0.0001	0.0004	0.001	0.0002	0	0.0005	0.0007	0	0.0001	0.877	0.0168
YTC_MW-03_189	0.0865	0.0217	0.0001	0.0009	0.002	0.0002	0	0.0004	0.0007	0	0	0.9087	0.0067
YTC_MW-06_235	0.9449	0.9857	0	0.645	0.0027	0.0009	0	0	0	0	0.0001	0.9496	0