FINAL

UNIFORM FEDERAL POLICY – QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Environmental Remediation Services Yakima Training Center Off-Installation Per- and Polyfluoroalkyl Substance Sampling, Yakima, Washington

May 2023

Prepared for:

United States Army Corps of Engineers Seattle District 4735 East Marginal Way South Seattle, Washington 98134-2385

FINAL

UNIFORM FEDERAL POLICY – QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Environmental Remediation Services Yakima Training Center Off-Installation Per- and Polyfluoroalkyl Substance Sampling, Yakima, Washington

May 2023

Prepared for:

United States Army Corps of Engineers Seattle District 4735 East Marginal Way South Seattle, Washington 98134-2385

In Accordance with:

Contract No. W912DW22D1006 Task Order No: W912DW22F2121

Prepared by:

Tanaq-Sundance 8(a) JV 3201 C Street, Suite 602 Anchorage, AK 99503-3971

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF ATTACHMENTS	iii
LIST OF ACRONYMS AND ABBREVIATIONS	v
INTRODUCTION	1
QAPP ADDENDUM WORKSHEET #1 & #2: TITLE AND APPROVAL PAGE	5
QAPP ADDENDUM WORKSHEET #3 & #5: PROJECT ORGANIZATION AND QAPP DISTRIBUTION	7
QAPP ADDENDUM WORKSHEET #4, 7 & 8: PERSONNEL QUALIFICATIONS AND SIGN-OFF SHEET	13
QAPP ADDENDUM WORKSHEET #6: COMMUNICATION PATHWAYS	15
QAPP ADDENDUM WORKSHEET #14 & 16: PROJECT TASKS & SCHEDULE	20
QAPP ADDENDUM WORKSHEET #17: SAMPLING DESIGN AND RATIONALE	22
QAPP ADDENDUM WORKSHEET #18: SAMPLING LOCATIONS AND METHODS	24
QAPP ADDENDUM WORKSHEET #20: FIELD QC SUMMARY	26
QAPP ADDENDUM WORKSHEET #23: ANALYTICAL SOP REFERENCES	28
QAPP ADDENDUM WORKSHEET #31, 32 & 33: ASSESSMENTS AND CORRECTIVE ACTION	30
QAPP ADDENDUM WORKSHEET #35: DATA VERIFICATION PROCEDURES	35
QAPP ADDENDUM WORKSHEET #36: DATA VALIDATION PROCEDURES	37
REFERENCES	39

LIST OF TABLES

Table 1	Crosswalk: Off-Installation PQAPP to YTC QAPP and Off-Installation QAPP Addenda
Table 2	Contact Information for Government and JV Team Members
Table 3	Personnel Responsibilities and Qualifications Table

LIST OF FIGURES

- Figure 1 Installation Location Map
- Figure 2 Project Organization

LIST OF ATTACHMENTS

Attachment 1 Field Forms and Well Inventory Form

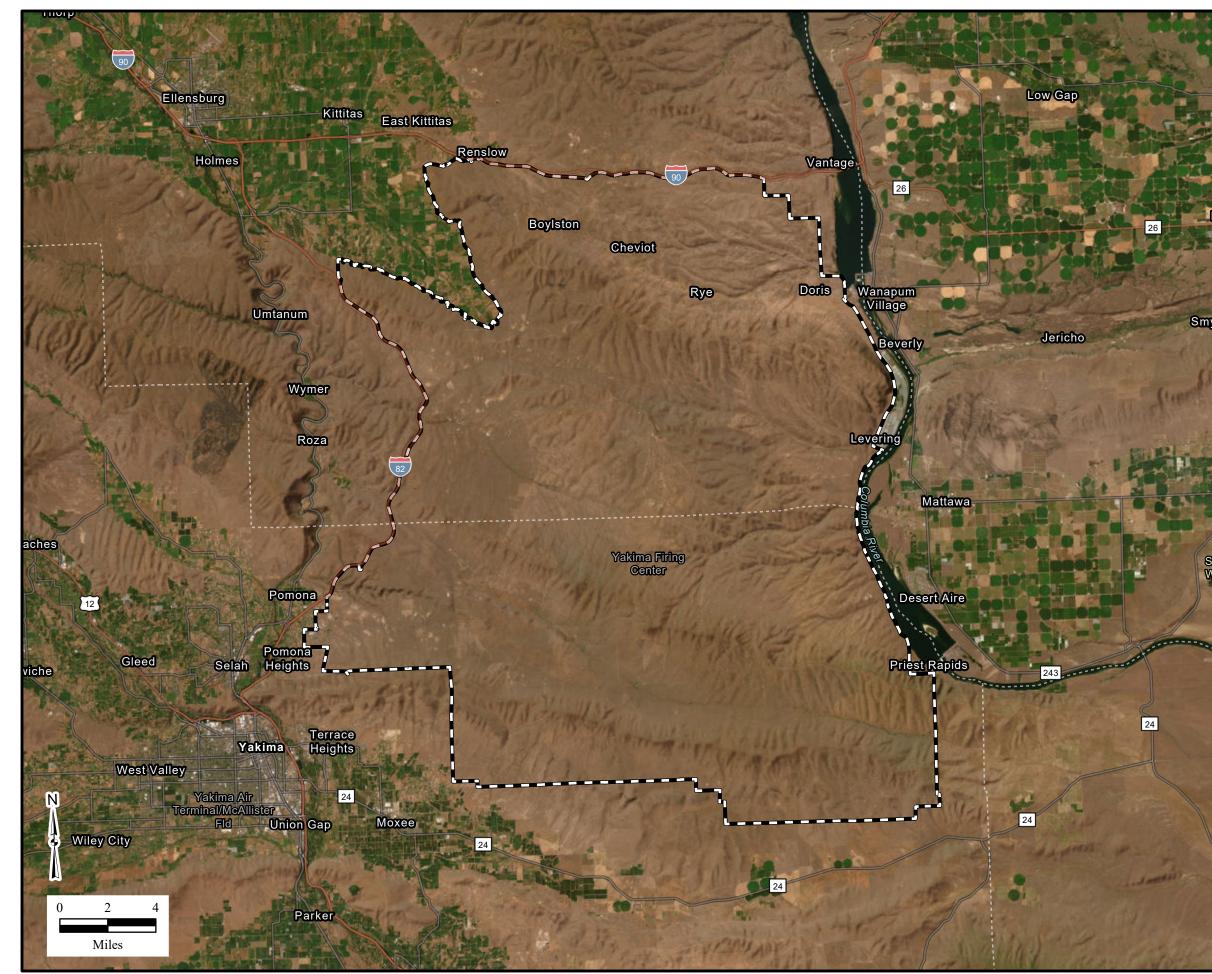
Attachment 2 Analytical Laboratory Quality Assurance Plans and SOPs

LIST OF ACRONYMS AND ABBREVIATIONS

APP	Accident Prevention Plan
Army	U.S. Army
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COC	Chain of Custody
DERP	Defense Environmental Restoration Program
DoD	Department of Defense
DQO	Data Quality Objectives
ELAP	Environmental Laboratory Accreditation Program
ELLE	Eurofins Lancaster Laboratories Environmental
EPA	United States Environmental Protection Agency
HA	Health Advisory
IRP	Installation Restoration Program
JBLM	Joint Base Lewis-McChord
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
NDAA	National Defense Authorization Act
PA	Preliminary Assessment
PE	Professional Engineer
PFAS	Per- and Polyfluoroalkyl Substance
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonate
PG	Professional Geologist
PM	Project Manager
PDM	Parts per Million
PQAPP	Programmatic Quality Assurance Project Plan
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
QSM	Quality Systems Manual
RI	Remedial Investigation
ROD	Record of Decision

SOP	Standard Operating Procedure
SI	Site Inspection
TBD	To Be Determined
ТО	Task Order
TSJV	Tanaq-Sundance 8(a) Joint Venture
YTC	Yakima Training Center
UFP	Uniform Federal Policy
USACE	U.S. Army Corps of Engineers
USAEC	U.S. Army Environmental Command

INTRODUCTION

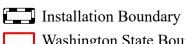

Tanaq-Sundance 8(a) Joint Venture (TSJV) has prepared this Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) Addendum for the Environmental Remediation Program Services, Off-Installation Per- and Polyfluoroalkyl Substance (PFAS) Sampling project that will be conducted in the vicinity of Yakima Training Center (YTC), located in Yakima County, Washington. This document was prepared under the United States Army Corps of Engineers (USACE) Contract W912DW-22-D-1006, Task Order W912DW22F2121.

YTC is a sub-installation of Joint Base Lewis-McChord (JBLM), operated by the United States Army (Army). Since the early 1940's, YTC has been used for artillery, infantry, and engineering unit training by the Army, Army Reserve, and the Washington National Guard. Prior to 1941, the land was privately owned and used for ranching and mining (USACE, 2012). YTC is located approximately five miles northeast of Yakima, Washington in Yakima County, covering 327,231 acres within Yakima and Kittitas Counties (Figure 1).

The United States Army Environmental Command (USAEC) operates the Installation Restoration Program (IRP) at Yakima Training Center in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Defense Environmental Restoration Program (DERP) 10 USC 160, §2700, et. seq.: Department of Defense (DoD) Manual 4715.20, DERP Management, 9 March 2012; Model Toxics Control Act, November 2007; and Washington Administrative Code 246-290. Regulatory oversight is led by the U.S. Environmental Protection Agency (EPA) and the Washington State Department of Ecology.

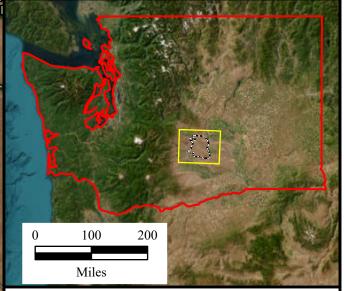
An Off-Installation Programmatic UFP-QAPP, referred to as the PQAPP herein (SERES-Arcadis, 2021), was developed and finalized in May 2021 to address the general procedures and methods for off-Installation residential drinking water sampling for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) at active U.S. Army installations nationwide. The objectives of the PQAPP and this PQAPP Addendum are to generate project data that are technically defensible and useful in meeting the Army's project goals of identifying presence or absence of PFAS at off-Installation private wells downgradient of areas of potential interest identified during the Preliminary Assessment (PA)/Site Inspection (SI).

The purpose of this installation-specific PQAPP Addendum is to supplement the nationwide PQAPP, detail the planning processes for collecting data and the sampling design, and describe the implementation of the activities developed under this task order for residential drinking water sampling off-Installation of YTC which includes collection of groundwater samples at private, residential potable wells.


Path: Z:\GIS\Yakima\Project_Files\001_Yakima_Off_Base\Yakima.aprx / Yakima / 01.01_Regional_Location

Tanaq-Sundance 8a JV - PQAPP Addendum Yakima Training Center, Washington

Figure 1 Installation Location Map


Yakima Training Center, Washington

Legend

Washington State Boundary

Smy

12/6/2022 GW Source: Tanaq, Earthstar Geographics, City of Yakima, County of Kittitas, WA State Parks GIS, Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, USDA

Optimized UFP-QA	NPP Worksheets	Off- Installation PQAPP	YTC Off- Installation QAPP Addendum	
1 & 2	Title and Approval Page	х	x	
3 & 5	Project Organization and QAPP Distribution	х	x	
4,7&8	Personnel Qualifications and Sign-off Sheet		x	
6	Communication Pathways		x	
9	Project Planning Session Summary	Х		
10	Conceptual Site Model	Х		
11	Project/Data Quality Objectives	Х		
12	Measurement Performance Criteria	х		
13	Secondary Data Uses and Limitations	х		
14 & 16	Project Tasks & Schedule		х	
15	15 Project Action Limits and Laboratory-Specific X Detection / Quantitation Limits			
17	Sample Design and Rationale		х	
18	Sampling Locations and Methods		х	
19 & 30	Sample Containers, Preservation, and Hold Times	Х		
20	Field QC	х		
21	Field Standard Operating Procedures (SOPs)	Х		
22	Field Equipment Calibration, Maintenance, Testing, and Inspection	X		
23	Analytical SOPs		х	
24	Analytical Instrument Calibration	Х		
25	25 Analytical Instrument and Equipment Maintenance, X Testing, and Inspection			
26 & 27	Sample Handling, Custody, and Disposal	Х		
28	Analytical Quality Control and Corrective Action	х		
29	Project Documents and Records X			
31, 32 & 33	Assessments and Corrective Action		х	
34	Data Verification and Validation Inputs	х		
35	Data Verification Procedures		х	
36	Data Validation Procedures		х	
37	37 Data Usability Assessment			

Table 1: Crosswalk: Off-Installation PQAPP to Off-Installation QAPP Addendum

QAPP ADDENDUM WORKSHEET #1 & #2: TITLE AND APPROVAL PAGE

(UFP-QAPP Manual Section 2.1)

- 1) Project Identifying Information:
 - a) Site Name/Project Name: Environmental Remediation Services, Yakima Training Center Off-Installation Per- and Polyfluoroalkyl Substance Sampling
 - b) Site Location: Yakima Training Center, Yakima, Washington
 - c) Contract/task order number: Contract No. W912DW22D1006, Task Order W912DW22F2121
- 2) Lead Organizations: USACE, USAEC, and YTC
 - a) USACE Program Manager, Seattle District Jake Williams

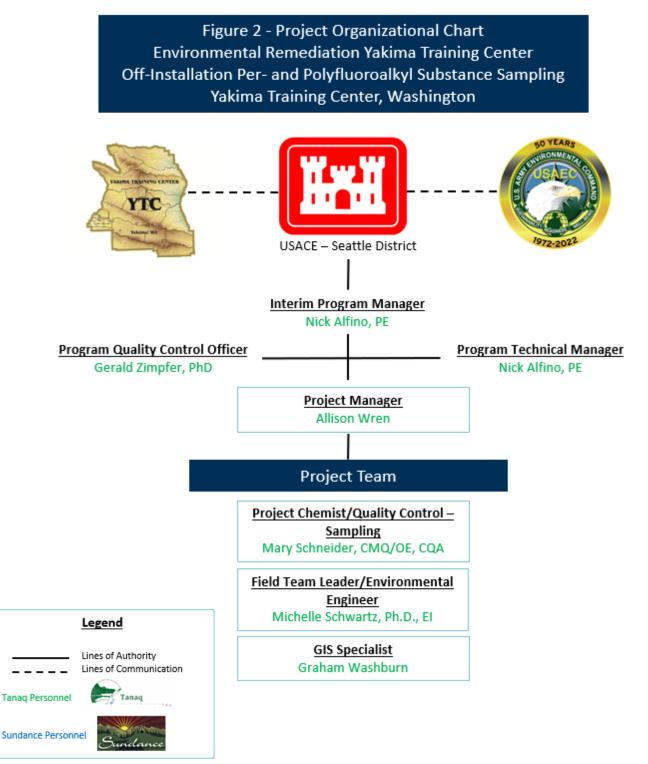
Date

Date

b) Army IRP Manager, JBLM – Mark Mettler

c) Army IRP Manager, YTC – Guadalupe Lara

d) USAEC Environmental Command Engineer, San Antonio – Mike Brown


Date

3) List plans and reports from previous investigations relevant to this project.

Author/Title	Date
Final Programmatic Uniform Federal Policy-Quality Assurance Project Plan, USAEC PFAS PA/SI Active Army Installations, Nationwide, USA, (Arcadis, 2019).	October 2019
Programmatic Uniform Federal Policy-Quality Assurance Project Plan Off-Post Private Well Investigations of Per- and Polyfluoroalkyl Substances (PFAS) In the Cleanup/Restoration Programs at Active Army Installations, Nationwide (SERES-Arcadis, 2021)	May 2021
Uniform Federal Policy-Quality Assurance Project Plan Addendum Off-Post Sampling USAEC Per- and Polyfluoroalkyl Substances Joint Base Lewis McChord – Yakima Training Center, Washington (SERES-Arcadis, 2022)	July 2022

QAPP ADDENDUM WORKSHEET #3 & #5: PROJECT ORGANIZATION AND QAPP DISTRIBUTION

(UFP-OAPP Manual Section 2.3 and 2.4)

Government Team Members			
Name	Phone/Email	Role/Responsibility	
Jake Williams USACE Seattle	(206) 316-3157 Jacob.a.williams@usace.army.mil	Project Manager/Contracting Officer Representative	
Guadalupe Lara Army YTC	<u>(509) 577-3544</u> guadalupe.a.lara3.civ@army.mil	IRP Program Manager	
Mark Mettle Army JBLM	(253) 966-8004 <u>mark.a.mettler2.civ@army.mil</u>	IRP Program Manager	
Mike Brown USAEC San Antonio	(210) 793-7896 michael.k.brown2.civ@army.mil	Environmental Command Engineer	
	Tanaq-Sundance 8	a JV Team Members	
Allison Wren	(619) 577-4134 <u>awren@tanaq.com</u>	Project Manager	
Nick Alfino, PE	(720) 277-2951 <u>nalfino@tanaq.com</u>	Program Technical Manager	
Gerald Zimpfer, Ph.D.	(303) 717-2831 gzimpfer@tanaq.com	Program Quality Control Officer	
Mary Schneider, CMQ/OE, CQA	(909) 782-8545 mary.schneider@inyainc.com	Project Chemist	
Michelle Schwartz, Ph.D.	(303)525-7108 <u>mschwartz@tanaq.com</u>	Field Team Leader	

Table 2: Contact Information for Government and JV Team Members

Table 3: Personnel Responsibilities and Qualifications Table

Name and Contact Information	Telephone/E-Mail	Roles/Responsibilities	
Allison Wren	(619) 577-4134 <u>awren@tanaq.com</u>	 Project Manager Project-dedicated POC Meet contractual obligations Develop, update, and maintain compliance with project work breakdown structure and schedule Prepare/submit daily/monthly/weekly progress and cost reporting and required periodic reports Implement procedures to eliminate conflicts, errors, and omissions and ensure accuracy of output Maintain communication and coordination with all government stakeholders, including USAEC and USACE Review all invoices and cost details Support/implement project controls on a day-to-day basis Perform day-to-day project communication tasks Lead day to day coordination of tasks, field work, and deliverables 	
Nick Alfino, PE	(720) 277-2951 <u>nalfino@tanaq.com</u>	 Lead day to day coordination of tasks, neid work, and deriverables Technical Manager Provide technical input on development of plans, templates, and reports Perform technical review of all project deliverables and verifying that technical and editorial comments regarding work products have been implemented 	
Gerald Zimpfer, Ph.D.	(303) 717-2831 gzimpfer@tanaq.com	 Program Quality Control Officer Establishing and maintaining the TSJV Quality Program Serving as a focal point for guidance and coordination for quality matters across all projects, and resolving quality issues Monitoring QC activities to ensure conformance with contract requirements, rules, regulations, policies, and procedures, and recommending improvements, as necessane Identifying nonconformances, and verifying and documenting appropriate corrective actions taken Stopping work or requiring re-performance of any nonconforming activity resulting from improper application of prescribed procedures 	

Mary Schneider	(909) 782-8545 mary.schneider@inyainc.com	 Project Chemist Ensures the project meets objectives from the standpoint of laboratory performance Provide technical input to the Project Team on data quality and project chemistry Ensuring appropriate methods are specified for obtaining data of known quality and integrity Monitors and evaluates performance of off-site laboratories Reviews laboratory data Reviews data validation reports Prepares data quality assessment report to ensure the quality of data meets the intended use of the data Recommends appropriate laboratory corrective actions
Michelle Schwartz	(303)525-7108 <u>mschwartz@tanaq.com</u>	 Field Team Leader Supervises, coordinates, and performs field sampling activities Ensures that all health and safety requirements applicable to the field work are implemented Coordinating and overseeing all field activities, including training, equipment maintenance, and recordkeeping Completing or directing completion of daily field sheets, checklists, log books, and other field documentation Overseeing implementation and enforcement of the PQAPP and QAPP addendum Directing field team members during sampling Identifies and resolves problems in the field; resolves difficulties through consultation with the Project Team; implements and documents corrective actions related to field work; and serves as communication link between the field team and project management

QAPP ADDENDUM WORKSHEET #4, 7 & 8: PERSONNEL QUALIFICATIONS AND SIGN-OFF SHEET

Organization: USACE, USAEC

Name	Agency	Project Title/Role	Signature*/Date
Jake Williams	USACE Seattle	Project Manager/Contracting Officer Representative	
Guadalupe Lara	Army YTC	IRP Program Manager	
Mark Mettler	Army JBLM	IRP Program Manager	
Mike Brown	Army San Antonio	Environmental Command Engineer	

Organization: Tanaq Sundance 8a JV

Name	Project Title/Role	Education/Experience	Signature*/Date
Allison Wren	PM	B.S. Physical Geography, Environmental Studies, and Methods of Geographical Analysis. 16 years of experience managing DoD Hazardous, Toxic, and Radioactive Waste projects and contracts.	
Nick Alfino	Technical Manager	B.S. Environmental Engineering. 6 years of experience with site characterization and emerging contaminants, including PFAS projects for USACE, USAEC, and Air Force Civil Engineer Center. Professional Engineer: Colorado	
Mary Schneider	Project Chemist	B.S. Chemistry. 33 years of environmental chemistry experience in coordination with Air Force Civil Engineer Center, USACE, and NAVFAC.	
Michelle Schwartz	Field Team Leader	B.S. Environmental Engineering, M.S. Civil and Environmental Engineering, Ph.D. Civil engineering with 5 years of experience in environmental engineering research and sociotechnical design.	

Organization: Eurofins Lancaster Laboratories Environmental (ELLE)

Name	Project Title/Role	Education/Experience	Signature*/Date
Stephen Gordon	Laboratory PM	B.S. Chemistry; 25 years of experience with analytical chemistry, and six years of experience as a project manager with ELLE handling DoD Projects.	
Kenneth Boley	Laboratory Quality Manager	B.S. Chemistry, 21 years of experience in the environmental laboratory.	

*Signatures indicate personnel have read and agree to implement this QAPP as written

QAPP ADDENDUM WORKSHEET #6: COMMUNICATION PATHWAYS

Communication Driver	Organization	Name	Contact Information	Procedure (timing, pathways, etc.)
Technical lead decisions and modifications	USACE	Jake Williams, PM	(206) 316-3157 jacob.a.williams@usace.army.mil	Primary point of contact for USACE and contact for stakeholders, as required. Communicate technical lead decisions and modifications to the USACE and/or JV, as necessary.
Aid in technical decisions and modifications	Army	Guadalupe Lara, YTC IRP Manager	(509) 577-3544 guadalupe.a.lara3.civ@army.mil	Aid in technical decisions and modifications.
		Mark Mettler, JBLM IRP Manager	(253) 966-8004 mark.a.mettler2.civ@army.mil	
		Mike Brown, JBLM Environmental Command Engineer	(210) 793-7896 michael.k.brown2.civ@army.mil	
Project issues	TSJV	Nick Alfino - Technical Manager	(720) 277-2951 nalfino@tanaq.com	The project team will notify USACE PM and ARMY team of any project issues.
		Allison Wren, PM	(619) 577-4134 <u>awren@tanaq.com</u>	
Minor field modifications not affecting data usability or quality	TSJV	see Worksheet #3 & 5	see Worksheet #3 & 5	Secure same-day verbal approval from the PM.

(UFP-QAPP Manual Section 2.4.2)

Communication Driver	Organization	Name	Contact Information	Procedure (timing, pathways, etc.)
Field modifications affecting drinking water data usability or quality	TSJV	see Worksheet #3 & 5	see Worksheet #3 & 5	Secure same-day verbal approval from the PM and Technical Manager. These will also include notification and/or approval from USACE PM. When the USACE PM cannot be reached for approval in a timely matter as to not affect the field schedule, notification may be sufficient via email and voicemail. The PM will secure approval for modifications to the PQAPP addendum as necessary from USACE. All approved modifications will be included in the amendments to the PQAPP addendum and approved within seven working days.
Field progress reports	TSJV	Michelle Schwartz, Field Team Leader	(303) 525-7108 mschwartz@tanaq.com	Field Team Leader will send field progress reports via email on a daily basis to the USACE and Army POCs.
Stop work due to safety issues	TSJV	Michelle Schwartz, Field Team Leader	(303) 525-7108 <u>mschwartz@tanaq.com</u>	Work may be stopped at any time for any safety concern. Refer to the APP submitted for specifics related to health and safety. Persons other than the responsible entity may also stop work for safety concerns. USACE will be notified by the PM within one hour of any significant safety-related work stoppages and will be consulted prior to re-starting work.
PQAPP and Addendum changes prior to field work	TSJV	Allison Wren, PM	(619) 577-4134 <u>awren@tanaq.com</u>	Submit documented amendments within 10 working days for transmittal to USACE and Army for approval.
PQAPP addendum changes during project execution	TSJV	Allison Wren, PM	(619) 577-4134 <u>awren@tanaq.com</u>	Secure same-day approval from PM. PM will secure approval for modifications to the PQAPP and Addendum as necessary from USACE.

Communication Driver	Organization	Name	Contact Information	Procedure (timing, pathways, etc.)
Field corrective actions	TSJV	Michelle Schwartz, Field Team Leader	(303) 525-7108 mschwartz@tanaq.com	The Field Team communicates stop work immediately to the PM by phone followed by inclusion in daily field progress report.
		Allison Wren, PM	(619) 577-4134 <u>awren@tanaq.com</u>	Resolution of the corrective action will be determined by the PM in consultation with the USACE and may be documented on a non- conformance and/or corrective action report, depending on significance. Work will be allowed to start once all parties have agreed to the resolution.
Sample receipt variances	ELLE	Stephen Gordon, PM	(724) 597-2027 <u>StephenGordon@EurofinsUS.com</u>	All project field samples variance issues will be reported by the laboratory to the Project Chemist within two business days of identification of the technical concern.
Laboratory QC variances	ELLE	Stephen Gordon, PM	(724) 597-2027 StephenGordon@EurofinsUS.com	All QA/QC issues with project field samples will be reported by the laboratory to the Project Chemist within two business days of identification of the technical concern.
Analytical corrective actions	ELLE	Stephen Gordon, PM	(724) 597-2027 StephenGordon@EurofinsUS.com	The need for laboratory corrective actions will be determined by the Project Chemist and PM and/or Laboratory PM, as appropriate, and will be documented in a memorandum to the Technical Manager. The PM will notify USACE if the changes to the data impact reports/data that have already been submitted. Otherwise, the memorandum will be included with the validated data.

5.0 QAPP Addendum Worksheet #6: Communication Pathways

Communication Driver	Organization	Name	Contact Information	Procedure (timing, pathways, etc.)
Data verification issues, e.g., incomplete records	ELLE	Stephen Gordon, PM	(724) 597-2027 StephenGordon@EurofinsUS.com	All verification issues will be reported by the laboratory to the Project Chemist via e-mail within 24 hours of identification of the technical concern. The Technical Manager will be notified of the issue by the PM and will take appropriate action, if necessary.
Data validation issues, e.g., non- compliance with procedures	TSJV	INYA, Data Validator Mary Schneider, Project Chemist	626-755-3929 909-782-8545 <u>mary.schneider@inyainc.com</u>	All validation issues will be reported by the Data Validator to the Project Chemist and PM via email within 24 hours of identification of the technical concern. The Technical QC Manager will be notified of the issue by the Data Validator and will take appropriate action, if necessary.
Data review corrective actions	TSJV	INYA, Data Validator Mary Schneider, Project Chemist	626-755-3929 909-782-8545 <u>mary.schneider@inyainc.com</u>	The need for data review corrective actions will be determined by the Project Chemist and Laboratory PM, as appropriate, and will be documented in a memorandum to the PM. The Technical Manager will be notified of the issue by the PM and will take appropriate action, if necessary.

QAPP ADDENDUM WORKSHEET #14 & 16: PROJECT TASKS & SCHEDULE

Activity	Responsible Party	Planned Start Date ¹	Planned Completion Date	Deliverables(s)	Deliverable Due Date
Task 1	•				
Residential Mailings: Sampling Permission Letters (Task 1) (only required for new residences not previous sampled	USACE/Army	May 2023	May 2023	Sampling Permission Letter)	Timed Closely to Public Meeting (if scheduled by the installation)
Drinking Water Well Sampling (Task 1)	TSJV	May 2023	July 2023	Field notes	Included with the Off- Installation Private Well Investigation Annual Report
Data Analysis and Validation (Task 1)	TSJV	August 2023	October 2023	Electronic laboratory results, electronic data deliverables	Up to six weeks, expedited validation if results are greater than the USEPA lifetime HA
Reporting (Task 1)	TSJV	October 2023	November 2023	Electronic interim residential analytical results sheets and Off-Installation Private Well Investigation Letter Report	Upon receipt of validated data
Alternative Drinking Water Provision (Task 1)	TSJV	November 2023	December 2023	Alternative drinking water source provision may include bottled water delivery (and cooler dispenser rental)	Within one week of validated results above the LHA
Task 6a	•		I	Γ	
Residential Mailings: Sampling Permission Letters (Task 6a) (only required for new residences not previous sampled	USACE/Army	June 2023	July 2023	Sampling Permission Letter	Timed Closely to Public Meeting (if scheduled by the installation)

(UFP-QAPP Manual Section 2.8.2)

Activity	Responsible Party	Planned Start Date ¹	Planned Completion Date	Deliverables(s)	Deliverable Due Date
Drinking Water Well Sampling (Task 6a)	VLZT	July 2023	July 2023	Field notes	Included with the Off- Installation Private Well Investigation Annual Report
Data Analysis and Validation (Task 6a)	TSJV	August 2023	October 2023	Electronic laboratory results, electronic data deliverables	Up to six weeks, expedited validation if results are greater than the USEPA lifetime HA
Reporting (Task 6a)	VLZT	October 2023	November 2023	Electronic interim residential analytical results sheets and Off-Installation Private Well Investigation Letter Report	Upon receipt of validated data
Alternative Drinking Water Provision (Task 6a)	TSJV	November 2023	December 2023	Alternative drinking water source provision may include bottled water delivery (and cooler dispenser rental)	Within one week of validated results above the LHA

Notes:

1. Planned start dates are estimated. Exact dates are not established at this time.

QAPP ADDENDUM WORKSHEET #17: SAMPLING DESIGN AND RATIONALE

(UFP-QAPP Manual Section 3.1.1)

The data quality objectives (DQOs) for the off-Installation sampling are described in Worksheet #11 of the PQAPP (SERES-Arcadis, 2021). This worksheet provides the detailed rationale and approach for off-Installation private well sampling at YTC. The planned project schedule to complete the off-Installation private drinking water well sampling for YTC is provided in Worksheet #14 & 16 of this QAPP Addendum. Necessary permission letters, forms, or other project documentation, subcontracts, or project equipment will be procured before mobilization.

JBLM YTC SI Background

The Army conducted a combined PA/SI at YTC from 2018 to 2020 in accordance with CERCLA to assess potential impacts from per- and polyfluoroalkyl substances (PFAS) (Arcadis, 2021). PFOS and PFOA are two pollutants or contaminants included in the larger class of PFAS. The SI sampling at YTC indicated detections of PFOS and PFOA in groundwater at concentrations where analysis of hydrological conditions identified possible impacts to off-Installation drinking water wells. To evaluate possible PFOS/PFOA impacts from YTC to off-Installation drinking water sources, the Army conducted off-Installation sampling at private drinking water wells that appear to be hydrologically connected to groundwater beneath YTC based on the understood groundwater flow direction. The Army conducted three phases of sampling of 295 off-Installation drinking water wells between September 2021 and August 2022. The U.S. Environmental Protection Agency's (USEPA) lifetime health advisory (HA) is 70 nanograms per liter (or parts per trillion) individually or combined if both are detected in drinking water. The results of the sampling indicated that 61 wells (serving 79 locations) had detections of PFOS and/or PFOA which exceeded the USEPA lifetime HA. The Army is currently mitigating exposure to PFOS/PFOA greater than the USEPA lifetime HA in drinking water. Bottled water is being provided as an alternative drinking water source until PFOS/PFOA levels in drinking water from an Army source no longer exceed the USEPA lifetime HA.

Under this contract, drinking water samples will be collected from approximately 470 residential locations be determined prior to each sample event (including Class A and Class B wells).

- Task 1 Private Residence Well Monitoring sampling and analysis for up to 350 residential wells identified by the government.
- Task 6a Quarterly Private Residence Well Monitoring quarterly sampling and analysis for up to 120 wells identified by the government.

One sample will be collected per well and analyzed for PFAS compounds combined with sufficient quality control samples in accordance with the approved PQAPP (SERES-Arcadis, 2021). Validated sample results with associated data validation reports will be transmitted for government review and approval along with a draft sample results letter for USACE PM signature within 30 calendar days of receiving data. After the USACE PM signs the inspection/sample results letters, the Government will deliver the letter in person while offering bottled water to affected residents, if needed.

Private Residence Well Monitoring Sampling Procedures

Private Residential well monitoring samples will be raw samples collected from a tap or port closest to the well water, prior to the water flowing through a treatment system (if present) and prior to the conveyance lines entering the residence (if practicable) or purging and sampling after field parameters are stabilized using a pump. Samples will be collected in accordance with the field SOPs provided in Appendix B to the PQAPP. Field reagent blanks will also be collected in accordance with the PFAS Field Sampling Guidance. These SOPs were developed in accordance with applicable USEPA and DoD guidance for residential sampling and/or sampling for PFAS. All samples will be collected in laboratory-provided bottleware. Water samples collected from a chlorinated source will be collected in a laboratory provided container with Trizma® preservative.

Components of some SOPs may require modification or be superseded by the PFAS sampling technical guidance instruction (Appendix B to the PQAPP) to accommodate most current PFAS-specific sampling requirements. The sampling methods described in the SOPs establish procedures for containers before sampling; sampling procedures; equipment blank samples and field duplicate collection requirements; and requirements for storing samples to ensure that sample contamination does not occur during collection and transport. A private well sampling log (Attachment 1) will be completed for each sample collected. The sampling procedures include collection of water quality parameters prior to sample collection.

All field activities will be conducted in accordance with the approved Accident Prevention Plan and installation specific Site Safety and Health Plan (TSJV, 2023). A post-activity inspection will be conducted by the field team to ensure each location is left clean. The investigation team will demobilize once sampling is completed. Samples will be submitted for laboratory analysis, and the results will be compiled and summarized in the Sampling Letter Report, Quarterly Report, and Annual Report. The reports will present the validated sampling results, including for QA/QC samples.

Laboratories

ELLE will be the primary laboratory. This laboratory will analyze the drinking water samples for PFAS constituents (including PFOS/PFOA) using USEPA Method 537.1 and in accordance with the DoD Quality Systems Manual (QSM) version 5.4. The TSJV team will validate the data from the laboratory in accordance with DoD General Data Validation Guidelines (DoD, 2019) and DoD Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15 (DoD, 2020). The data validation reports will be included in the deliverable reports. The validated data will be provided in National Defense Authorization Act (NDAA) Section 345 within 3 days of receiving the validated data packages from the data validator.

QAPP ADDENDUM WORKSHEET #18: SAMPLING LOCATIONS AND METHODS

(UFP-QAPP Manual Section 3.1.1 and 3.1.2)

The residential wells to be sampled have not been identified by the government at this time. Samples for each resident location will be identified using the following scheme:

YTC-OFFI-XXX-DW-MMDDYY where:

YTC – Yakima Training Center, OFFI = Off Installation, XXX = resident location number, DW = drinking water, and MMDDYY = month, day and year of sample collection.

Site Location	Matrix	Sample ID	Sample Method	Sample Type	No. of Samples	
Task 1 – Private Residence Well Monitoring						
Resident XXX ¹ Drinking Water		YTC-OFFI-XXX-DW-MMDDYY	TBD ²	Ν	1	
Task 6 – Quarterly Private R	Task 6 – Quarterly Private Residence Well Monitoring					
Resident XXX ¹	Drinking Water	YTC-OFFI-XXX-DW-MMDDYY	TBD ²	N	1	

Notes:

1. Residential wells to be sampled have not been identified and will be assigned by the USACE and Army prior to each Task event. A three-digit resident location number will be assigned to each well. New sample IDs will begin in sequential order following the last sample ID from the most recent sample event. Repeat samples will use the same three-digit resident location number as previously assigned and the date will designate the sample phase.

2. Sample type to be determined based on the whether a port is available at each location.

QAPP ADDENDUM WORKSHEET #20: FIELD QC SUMMARY

(UFP-QAPP Manual Section 3.1.1 and 3.1.2)

Primary and QC samples will be collected at the frequencies noted below during field activities. Field duplicates, matrix spike (MS), and matrix spike duplicate (MSD) will be collected at a frequency of 1 per 20 primary samples. Field reagent blank will also be collected at a frequency of 1 per 20 samples.

Matrix	Analytical Group	Environmental Samples	Field Duplicates	MS/MSD	Field Reagent Blanks	Total # of Analyses
Task 1 – Private Residence Well Monitoring						
Drinking Water	Drinking Water PFAS		TBD	TBD	TBD	TBD
Task 6 – Quarterly Private Residence Well Monitoring						
Drinking Water	PFAS	Up to 120	TBD	TBD	TBD	TBD

Notes:

TBD = The number of field QC sample collected will be determined based on the number of environmental samples collected.

QAPP ADDENDUM WORKSHEET #23: ANALYTICAL SOP REFERENCES

SOP Reference Number	Title, Revision Date, and/or Number	Definitive or Screening Data	Matrix/Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
F-PFAS- WI25232	Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1, Version 8, 30 December 2022	Definitive	PFAS-Aqueous	LC/MS/MS	ELLE	Ν

Note: Copies of the laboratory SOPs are included in Attachment 2

QAPP ADDENDUM WORKSHEET #31, 32 & 33: ASSESSMENTS AND CORRECTIVE ACTION

Assessments								
Assessment Type	Responsible Party & Organization	Number/Frequency	Estimated Dates	Assessment Deliverable	Deliverable Due Date			
Data validation	TSJV	Per SDG	Following receipt of laboratory report	Data Validation Report	Three weeks after receipt of data.			

Assessment Response and Corrective Action									
Assessment Type Responsibility for Assessment Type Responding to Assessment Finding		Assessment Response Documentation	Timeframe for Response	Responsibility for Implementing Corrective Action	Responsible for Monitoring Corrective Action Implementation				
Review of PQAPP and SOPs with field staff	PM	Field progress report, non-conformance report, or CA report dependent on significance of finding	Within 24 hours	Field Team Leader	PM				
Daily logbook and field forms	Field Team Leader	Field progress report, non-conformance report, or CA report dependent on significance of finding	Within 24 hours	Field Team Leader	PM				
Laboratory assessment for appropriate certifications and capacity and PQAPP review with laboratory staff	ELLE PM	Response to email	Within 48 hours of notification	PM ELLE PM	Project Chemist				

UFP-QAPP Addendum Yakima Training Center, WA Task Order Number: W912DW22F2121

Assessment Type	Responsibility for Responding to Assessment Finding	Assessment Response Documentation	Timeframe for Response	Responsibility for Implementing Corrective Action	Responsible for Monitoring Corrective Action Implementation
Field sampling and chain or custody review against QAPP addendum requirements	PM	Response to email	Within 24 hours after sampling	Field Team Leader	PM
Laboratory report deliverables and analytical results review against QAPP addendum requirements	ELLE PM	If required, laboratory reports will be amended, and corrections noted in the case narrative.	Within 72 hours after notification	ELLE PM	INYA
Data verification	ELLE PM	If required, laboratory reports will be amended, and corrections noted in the case narrative and contained within the validation report.	Up to 7 days	ELLE PM	INYA
Data validation	ELLE PM	If required, laboratory reports will be amended, and corrections noted in the case narrative and contained within the validation report.	Up to 7 days	ELLE PM	INYA

QAPP ADDENDUM WORKSHEET #35: DATA VERIFICATION PROCEDURES

Records Reviewed	Requirement Documents	Process Description	Responsible Person, Organization
Field logbook	PQAPP	 Verify that records are present and complete for each day of activities. Verify that all planned samples including QC samples were collected and that sample collection locations are documented. Verify that meteorological data were provided for each day of field activities. Verify that changes/exceptions are documented and were reported in accordance with requirements. Verify that any required field monitoring was performed, and results are documented. 	Daily: Field Team Leader
Chain of Custody (COC) forms	PQAPP	 All samples to be analyzed by the laboratory will be shipped via overnight delivery or will be sent via the laboratory courier service. Upon receipt, the laboratory sample custodian will check the integrity of the custody seals and will sign and date the COC to acknowledge sample receipt. The laboratory is responsible for verifying that the COC and containers agree and that the sample containers are received in good condition. The sample receipt form will be sent to the PM prior to preparation for analysis. The Laboratory Information Management System will provide evidence of sample custody form receipt by the laboratory until appropriate disposal. 	Daily: Field Team Leader Upon receipt: ELLE PM

Records Reviewed	Requirement Documents	Process Description	Responsible Person, Organization
Laboratory Non- conformance/CA and report procedure	PQAPP	 Routine corrective actions apply to all analytical quality control parameters and analytical system specifications as defined in the laboratory SOPs. Analysts have full responsibility and authority for performing routine CAs, which are documented as part of the analytical record. Defective processes, holding time violations, systematic errors and quality defects that occur are to be reported by the analyst to the laboratory supervisor and a non-conformance record initiated. The laboratory PM will then notify the PM and/or Project Chemist. All notifications must be made in a timely manner. The non-conformance record must become part of the analytical record. 	Before release: Kenneth Boley Upon receipt: Mary Schneider
Analytical Data Package – Laboratory	PQAPP Lab QA Manual, Lab SOP	 All data produced by the laboratory will be required to undergo several levels of review, which will include two levels of management review at the laboratory. The laboratory will review the data packages internally for completeness and verify that all of the required forms and raw data are included for each data package type. 	Before release: Stephen Gordon
Analytical Data Package/Laboratory QC	PQAPP Lab QA Manual, Lab SOPs	 The Data Validator will verify that data have been received for all samples sent to the laboratory. An evaluation of this data will be performed to determine whether the laboratory met the QC requirements as stated in this PQAPP, DoD QSM 5.4, analytical methods and laboratory SOPs. 	Stephen Gordon
Laboratory EDD	PQAPP	• The laboratory will provide EDDs. The database manager or designee will review these files for correctness and completeness.	Julianne Ryan

Note: All required data deliverables must be present in the data package to proceed to the next step of data validation (Worksheet # 36).

QAPP ADDENDUM WORKSHEET #36: DATA VALIDATION PROCEDURES

(UFP-QAPP Manual Sections 5.2.2)

Data Validator: INYA

Analytical Group/Method:	PFAS/EPA method 537.1
Data deliverable requirements:	Stage 4 Data Package(pdf); SEDD Version 5.2 Stage 4
Analytical specifications:	PFAS per EPA Method 537.1
Measurement performance criteria:	PQAPP Worksheets 12 and 28
Percent of data packages to be validated:	100% (10% Stage IV and 90% Stage 2B)
Percent of raw data reviewed:	10%
Percent of results to be recalculated	10%
Validation procedure:	PQAPP, DoD QSM 5.4, DoD General Data Validation Guidelines, DoD Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, USACE Engineer Manual 200-1-10

REFERENCES

- Arcadis, 2021. Final Preliminary Assessment and Site Inspection of Per- and Polyfluoroalkyl Substances, Yakima Training Center. October.
- Department of Defense (DoD), 2020. Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15. May.
- DoD, 2021. Quality System Manual, Version 5.4. December.
- SERES-Arcadis 8(a) JV (SERES-Arcadis). 2021. Final Programmatic Uniform Federal Policy-Quality Assurance Project Plan, Off-Post Private Well Investigation of Per- and Polyfluoroalkyl Substances (PFAS) In the Cleanup/Restoration Programs at Active Army Installations, Nationwide. May.
- SERES-Arcadis. 2022. Uniform Federal Policy- Quality Assurance Project Plan Addendum Off-Post Sampling USAEC Per- and Polyfluoroalkyl Substances Joint Base Lewis-McChord – Yakima Training Center, Washington. July 2022.
- Tanaq-Sundance 8(a) JV (TSJV), 2023. Final Project Management Plan, Environmental Remediation Services Yakima Training Center Off-Installation Per- and Polyfluoroalkyl Substance Sampling, Yakima, Washington. February.
- USACE, 2012. Periodic Review Report, Yakima Training Center, Yakima, Washington. September.
- USEPA. 2018. Data Review and Validation Guidelines for PFAS Analyzed Using for EPA Method 537. November.

ATTACHMENT 1

Field Forms and Well Inventory Form

Tailgate/Safety Meeting Attendance Form

Facility Name:	Date:
Project Number:	
Project/Task Order Manager:	
Field Operations Leader:	
Site Safety and Health Officer:	
Type of Tasks Being Conducted Today:	

	ltem Number	Topic discussed	Presenter	Action Item	Responsible Party (Correction)	Completion Date for Corrective Measure
Comments:						
Comments:						
Comments:						
Comments:						

ATTENDEE'S NAME	JOB TITLE	AFFILIATION	SIGNATURE

DOCUMENTATION OF FIELD CALIBRATION									
SITE I	NAME					PROJE			
Date of Calibration	Instrument Name and Model	Instrument Identification Number	Person Performing Calibration	Instrumen Pre- Calibration			Calibration Standard (Lot Number)	Remarks/ Comments	

GROUNDWATER LEVEL MEASUREMENTS LOG

Type of organic vapor meter used (circle): PID FID

	Organic Vapor Water Level Information										
	Inform	nation				Depth	n to Groundwater	Information			
Well Identification Number	PID/FID Reading (ppm)	Date	Well previously equilibrated? (Yes/No)	If not previously equilibrated, pressure detected when cap removed? (NA/Yes/No)	Time	Date	Depth to Groundwater ¹ from Pump Platform or Riser, if present (feet)	Thickness of Pump Platform or Riser, if present (feet)	Depth to Groundwater ¹ from Top of PVC Casing (feet)	Depth to Well Bottom from Top of PVC Casing ² (feet)	Well Diameter and Casing Measurements
Notes: 1 When 2 Note	 Notes: 1 Where bladder pump sampling platform or riser is present, depth to water must be corrected to depth from top of PVC casing. 2 Note if access to well bottom is limited by presence of dedicated bladder pump. 										
Field Staff:							Field Stat	ff Signature:			
Page No.:								Date:			

RESIDENTIAL WELL SAMPLING SHEET

Site Name:			Date/Time of Sample C			
Depth to Well Bottor						
Depth to Wat	er:	_ft. below TOC				
Well diameter and casing	details:					
Location of Sample:						
Minimum Purge Volume C [Length of tubing (ft) x 9.5 (/ 1000 mL/L = Total req	uired purge volume (L) b	pefore collection	n of parameters	
Minimum Purge Volume: Pump Control Box Setting	Rs: Refill =	Discharge=	 =	le=		
Total Purged:			e Goal = 0.5 L/min. Ac			
PHYSIO-CHEMICAL PARA	METERS DURI	NG PURGING				
Measure in order listed:	Initial				Stabilization Criteria	Final
Time						
Water Level (ft. below TOC)						
Flow (mL/min)						
Temperature (°C)					+/- 1.0 °C	
рН					+/- 0.1	
Spec. Cond. (mS/cm)					+/- 10%	
Turbidity (NTU)					+/- 10%	
ORP (mV)					+/- 10%	
DO (mg/L)					+/- 10%	
Total Volume Purged (L)						
QA/QC Sample Collected Sample(s) collected by: Comments (odors, colors,		plicate 🗌 MS/MSD	☐ Equipment Blank	□ No QA/QC	Sample	

Resident Questionnaire: Well Inventory Update

Contact Information

Contact Name	Email Address				
	Phone Number	cell	home		
 Property Address City, State, Zip Code 	Do you prefer to speak in English, Spanish, or other?				
Are you the property owner or renting?	Would you like a translator for the home site visit?				
 If renting, provide the owner's name and phone number 	 To help plan for the home site visit, indicate your availability (yes or no) 	M-F January 23-27, 20 M-F January 30-Februa M-F February 6-10, 20 M-F February 13-17, 20	ay 01, 2023 23	Yes Yes Yes Yes	No No No No
 Number of Full-Time residents living at the property serviced by the well 	 Number of Part-Time residents living at the property serviced by the well, and what seasons they are present 				

Well Information

Note: These questions are presented to the well owner to provide key information that will be used to assist the government in evaluating drinking water solutions at your property. Site visits will be scheduled following receipt of this questionnaire to confirm the information provided and collect any information you might not have an answer to at this time.

Please provide as much detail as possible. If you do not know the detailed information for a specific item, please indicate it as unknown. Unknown information will be collected during the site visit.

 Well Location: Describe where your well is located, in relation to your 	
property. For example, "northwest corner, 30 feet (ft) from the home" or draw	
a diagram of the home and well location.	
Where is your pump system located (for example, a pump house, below	
ground, inside residence)?	
Where is your pressure tank located?	
Number of buildings on your property connected to your well (garage or	
storage buildings with water connection)?	
Number of other properties or parcels connected to your well?	
Year your home was constructed?	
Date your well was originally installed?	
Do you have a copy of the Well Completion Report (Log) Form?	
Well Construction:	
What is the diameter of your well?	Diameter (in)
What is the total depth of your well?	Depth (ft)
What is the screened interval of your well?	Screen interval (ft)
Well Maintenance:	
Has your well ever been serviced or inspected?	
Has the water level in your well been measured recently?	
Is the well accessible for water level gauging?	
What is the best location to collect a water sample from your well? (for	
example, a hose bib, or sampling port)?	
Do you currently operate any type of water treatment system (ultra-violet	
light, sediment filter, water softener, etc)?	
If treatment is present, is there a spigot or other sampling point available	
before treatment?	

Resident Questionnaire: Well Inventory Update

Well Information (continued)

What is your well yield (gallons per minute)?	
What is your well demand and total water use?	
•Are you satisfied with your water pressure (is your well yield sufficient)?	
•What is the working pressure of your water system?	
Is your well water used for livestock on the property?	
If well water is used for livestock, what are the types and number of animals on the property?	
Is your well water used for agriculture and/or gardening on the property?	

Potential Treatment System Location

Note: These questions do not commit the government to the installation of a treatment system at the residence. These questions are presented to the well owner to provide key information that will be used in part to assist the government in determining if a treatment system is an appropriate solution for your well.

Point of Entry Treatment (POET) Systems generally include a Granular Activated Carbon (GAC) tank, sediment filter, UV filtration, and other large components (such as system piping, water softener, treatment tank, etc.), which collectively encompass approximately 50 square ft (5 ft by 10 ft area).

Is there space within a utility room, garage, basement, or another enclosed structure where the system could be installed?	
 Please provide a detailed description or diagram of the area identified above. If possible, please include the location of the well in the diagram. 	
 Is the area identified above weatherproof and/or temperature controlled (maintained above 50° F)? 	
•What is the distance (in feet) between the location identified above and the well?	
Is power available at the location identified?	
Is the area easily accessible?	
•Are there other considerations that the government should be aware of when determining a potential location for a treatment system?	

ATTACHMENT 2

Analytical Laboratory Quality Assurance Plans and SOPs

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

EUROFINS LANCASTER LABORATORIES ENVIRONMENT TESTING LLC 2425 New Holland Pike Lancaster, PA 17601 Kenneth Boley Phone: 717-556-9413

ENVIRONMENTAL

Valid To: November 30, 2024

Certificate Number: 0001.01

In recognition of the successful completion of the A2LA evaluation process (including an assessment of the laboratory's compliance with the 2009 TNI Environmental Testing Laboratory Standard, and the requirements of the DoD Environmental Laboratory Accreditation Program (DoD ELAP) as detailed in version 5.4 of the DoD/DOE Quality Systems Manual for Environmental Laboratories, accreditation is granted to this laboratory to perform recognized EPA methods using the following testing technologies and in the analyte categories identified below:

Testing Technologies

Atomic Absorption/ICP-AES Spectrometry, ICP-MS Spectrometry, Gas Chromatography, Gas Chromatography/Mass Spectrometry, Gravimetry, High Performance Liquid Chromatography, Ion Chromatography, Misc.-Electronic Probes (pH, F⁻, O₂), Oxygen Demand, Spectrophotometry (Visible), Spectrophotometry (Automated), Titrimetry, TCLP, Total Organic Carbon, Turbidity, Liquid Chromatography/Mass Spectrometry/Mass Spectrometry, High Resolution Gas Chromatography/Mass Spectrometry

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	<u>Solid</u>
Demands		·	·	
COD		EPA 410.4	EPA 410.4	
Total Organic Carbon		EPA 9060A SM 5310C-2014	EPA 9060A SM 5310C-2014	EPA 9060A Lloyd Kahn
Anions				
Ammonia		EPA 350.1	EPA 350.1	SM 4500-NH3 B/C- 2011
Fluoride		EPA 300.0 EPA 9056A	EPA 300.0 EPA 9056A	EPA 300.0 EPA 9056A
Nitrate (as N)		EPA 300.0 EPA 353.2 EPA 9056A	EPA 300.0 EPA 353.2 EPA 9056A	EPA 300.0 EPA 9056A
Nitrite (as N)		EPA 300.0 EPA 353.2 EPA 9056A	EPA 300.0 EPA 353.2 EPA 9056A	EPA 300.0 EPA 9056A

Page 1 of 26

(A2LA Cert No. 0001.01) Revised 02/14/2023

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8398 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Haza	ardous Waste
			Aqueous	<u>Solid</u>
Nitrate Nitrite Total		EPA 300.0	EPA 300.0	EPA 300.0
		EPA 353.2	EPA 353.2	EPA 9056A
		EPA 9056A	EPA 9056A	
Bromide		EPA 300.0	EPA 300.0	
		EPA 9056A	EPA 9056A	
Chloride		EPA 300.0	EPA 300.0	EPA 300.0
		EPA 9056A	EPA 9056A	EPA 9056A
Sulfate		EPA 300.0	EPA 300.0	EPA 300.0
		EPA 9056A	EPA 9056A	EPA 9056A
Wet Chemistry		•		
Acid Volatile Sulfide			EPA-821-R-91-100	EPA-821-R-91-100
AVS-SEM Distillation			EPA-821-R-91-100	EPA-821-R-91-100
Alkalinity		SM 2320B-2011	SM 2320B-2011	
Biochemical Oxygen Demand (BOD)		SM 5210B-2016	SM 5210B-2016	
Carbonaceous Biochemical		SM 5210B-2016	SM 5210B-2016	
Oxygen Demand (CBOD				
Corrosivity			SW-846 Chapter 7	SW-846 Chapter 7
Conductivity		SM 2510B-2011	SM 2510B-2011	
Cyanide		EPA 9012B	EPA 9012B	EPA 9012B
Ferrous Iron		SM 3500Fe B-2011	SM 3500Fe B-2011	
Filterable Residue (TDS)		SM 2540C-2015	SM 2540C-2015	
Flashpoint		EPA 1010A/B	EPA 1010A/B	EPA 1010A/B
Grain Size				ASTM D422 MOD
Hardness		EPA 130.2	EPA 130.2	
		SM 2340B-2011	SM 2340B-2011	
		SM 2340C-2011	SM 2340C-2011	
HEM (Oil&Grease)		EPA 1664B	EPA 1664B	EPA 9071B
Hexavalent Chromium				EPA 3060A
Digestion				
Hexavalent Chromium		EPA 218.6	EPA 7196A	EPA 7196A
		EPA 7196A	EPA 7199	EPA 7199
T 1, 1 11,		EPA 7199	40 CED 2(1 21	40 CED 2(1.21
Ignitability			40 CFR 261.21	40 CFR 261.21
Non-filterable Residue (TSS)		SM 2540D-2015	SM 2540D-2015	
Orthophosphate		EPA 365.3	EPA 365.3	
Paint Filter				EPA 9095B
pН		SM 4500 H+B-2011 EPA 9040B/C	EPA 9040B/C	EPA 9045C/D
Phenol		EPA 9066	EPA 9066	
Reactivity Prep			SW-846 Chapter 7.3	SW-846 Chapter 7.3
Reactive Cyanide			EPA 9012B	EPA 9012B
Reactive Sulfide			EPA 9034	EPA 9034

Parameter/Analyte	Drinking Water Non-Potable Water		Solid Hazardous Waste		
			Aqueous	Solid	
SGT-HEM (Total Petroleum Hydrocarbons)		EPA 1664B	EPA 1664B	EPA 9071B	
Sulfide		EPA 376.1 EPA 376.2 SM 4500 S2D-2011 SM 4500 S2F-2011	EPA 376.1 EPA 376.2 SM 4500 S2D-2011 SM 4500 S2F-2011		
Total Kjeldahl Nitrogen (TKN)		EPA 351.2	EPA 351.2	EPA 351.2	
Total Phosphorus		EPA 365.1 SM 4500P F-2011	EPA 365.1 SM 4500P F-2011	EPA 365.1 SM 4500P F-2011	
Total Residue		SM 2540B-2015	SM 2540B-2015	SM 2540G-2015	
Metals Metals Digestion		EPA 3005A	EPA 3005A	EPA 3050B	
Aluminum	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Antimony	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Arsenic	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Barium	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Beryllium	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Boron		EPA 200.7 EPA 6010D	EPA 6010D	EPA 6010D	
Cadmium	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	
Calcium	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	

Page 3 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Ha	azardous Waste
			Aqueous	<u>Solid</u>
Chromium	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Cobalt	EPA 200.7	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Copper	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Iron	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Lead	EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Lithium	EPA 200.7	EPA 200.7 EPA 6010D	EPA 6010D	EPA 6010D
Molybdenum		EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Magnesium	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Manganese	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Mercury	EPA 245.1	EPA 245.1 EPA 7470A	EPA 245.1 EPA 7470A	EPA 7471B
Nickel	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B
Potassium	EPA 200.7 EPA 200.8	EPA 200.7 EPA 200.8 EPA 6010D EPA 6020B	EPA 6010D EPA 6020B	EPA 6010D EPA 6020B

Page 4 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Ha	Solid Hazardous Waste		
			Aqueous	Solid		
Selenium	EPA 200.8	EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Silicon		EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 6010D				
Silver	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
	EPA 200.8	EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Sodium	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
	EPA 200.8	EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Strontium	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
	EPA 200.8	EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Sulfur	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 6010D				
Thallium	EPA 200.8	EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Thorium		EPA 6010D	EPA 6010D	EPA 6010D		
Tin	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 6010D				
Titanium		EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 200.8				
		EPA 6010D				
Tungsten		EPA 6010D	EPA 6010D	EPA 6010D		
Uranium		EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6020B				
Vanadium	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
		EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Zinc	EPA 200.7	EPA 200.7	EPA 6010D	EPA 6010D		
	EPA 200.8	EPA 200.8	EPA 6020B	EPA 6020B		
		EPA 6010D				
		EPA 6020B				
Zirconium		EPA 6010D	EPA 6010D	EPA 6010D		
Purgeable Organics (Volatiles)						
Volatile Preparation		EPA 5030C	EPA 5030C	EPA 5035A		
Acetone	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D		

Page 5 of 26

Parameter/Analyte	Drinking Water	<u>Non-Potable Water</u>	Solid Ha	azardous Waste
			Aqueous	Solid
Acetonitrile		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Acrolein		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Acrylonitrile		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Allyl chloride		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
tert-Amyl Alcohol		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
tert-Amyl Methyl Ether		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
tert-Butyl Alcohol		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
tert-Butyl Formate		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Benzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Bromobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Bromochloromethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Bromodichloromethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Bromoform	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Bromomethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
2-Butanone	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
n-Butylbenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
sec-Butylbenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
tert-Butylbenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Carbon disulfide	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Carbon tetrachloride	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
2-Chloro-1,3-butadiene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chloroacetonitrile	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chlorobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1-Chlorobutane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chlorodifluoromethane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
2-Chloroethyl Vinyl Ether		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chloroform	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1-Chlorohexane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Chloromethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
2-Chlorotoluene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
4-Chlorotoluene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Cyclohexane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Cyclohexanone		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Di-Isopropyl ether	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Dibromochloromethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2-Dibromo-3-	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
chloropropane		EPA 8011	EPA 8011	
Dibromomethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2-Dibromoethane (EDB)		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
		EPA 8011	EPA 8011	

Page 6 of 26

Parameter/Analyte	Drinking Water Non-Potable Wat	Non-Potable Water	Solid Hazardous Waste		
			Aqueous	Solid	
1,2-Dichlorobenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,3-Dichlorobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,4-Dichlorobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
trans-1,4-dichloro-2-butene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Dichlorodi-fluoromethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,1-Dichloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,2-Dichloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,1-Dichloroethene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
cis-1,2-Dichloroethene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
trans-1,2-Dichloroethene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Dichlorofluoromethane	EPA 524.2				
1,2-Dichloropropane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,3-Dichloropropane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
2,2-Dichloropropane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,1-Dichloropropene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
cis-1,3-Dichloropropene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
trans-1,3-Dichloropropene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,4-Dioxane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
I, I DIOMune		EPA 8260C/D SIM	EPA 8260C/D SIM	EPA 8260C/D SIM	
Ethanol		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Ethylbenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Ethyl ether	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Ethyl Methacrylate	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Ethyl Tert-Butyl Ether	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Freon-113	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Gasoline Range Organics		EPA 8015C	EPA 8015C	EPA 8015C	
(GRO)		EPA 8015D	EPA 8015D	EPA 8015D	
[Volatile Petroleum		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Hydrocarbons (VPH)]		NW TPH-Gx	NW TPH-Gx	NW TPH-Gx	
		MAVPH	MAVPH	MA VPH	
II		AK101	AK101	AK101	
Heptane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Hexane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
2-Hexanone	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Hexachlorobutadiene	EPA 524.2				
Hexachloroethane	EPA 524.2				
Isopropyl Alcohol		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Isopropylbenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
1,4-Isopropyltoluene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Methylacrylonitrile	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	
Methyl Acetate		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D	

Page 7 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	Solid
Methyl Acrylate	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Methyl Iodide	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Methylene Chloride	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Methyl Methacrylate	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Methyl Tert-Butyl Ether	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
4-Methyl-2-pentanone	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Methylcyclohexane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
2-Nitropropane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Naphthalene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Pentachloroethane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Propionitrile		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
n-Propylbenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Styrene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Tert-Amyl Ethyl Ether		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,1,1,2-Tetrachloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,1,2,2-Tetrachloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Tetrachloroethene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Tetrahydrofuran	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Toluene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2,3-Trichlorobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2,4-Trichlorobenzene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,1,1-Trichloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,1,2-Trichloroethane	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Trichloroethene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Trichlorofluoromethane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2,3-Trichloropropane		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2,4-Trimethylbenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,3,5-Trimethylbenzene		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
130BVinyl Acetate		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Vinyl Chloride	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
Xylenes, Total		EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
1,2-Xylene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
(o-Xylene)				
1,3+1,4-Xylene	EPA 524.2	EPA 8260C/D	EPA 8260C/D	EPA 8260C/D
(m+p Xylene)				
Extractable Organics Semivolatiles)				
Acenaphthene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2 reenuprimene		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Acenaphthylene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
* *		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Acetophenone		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E

Page 8 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	Solid
2-Acetylaminofluorene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Alkylated PAHs		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
4-Aminobiphenyl		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Amino-4,6-dinitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
4-Amino-2,6-dinitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
Aniline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Anthracene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Antiliacene		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Atrazine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Benzaldehyde		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Benzidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Benzoic acid			EPA 8270D/E EPA 8270D/E	
		EPA 8270D/E		EPA 8270D/E
Benzo (a) anthracene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Benzo (b) fluoranthene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Benzo (k) fluoranthene		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
Dange (ali) namelana				
Benzo (ghi) perylene		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
		EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E
Benzo (a) pyrene		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
Benzo (e) pyrene		EPA 8270D/E SIM	EPA 8270D/E SIM EPA 8270D/E SIM	EPA 8270D/E SIM EPA 8270D/E SIM
Benzyl Alcohol		EPA 8270D/E SIW	EPA 8270D/E SIM	EPA 8270D/E SIM
2		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Biphenyl				
bis (2-Chloroethoxy) Methane		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
bis (2-Chloroethyl) Ether		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
bis (2-Chioroethyr) Euler		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
bis (2-Ethylhexyl) Phthalate		EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E
ois (2-Eurymexyr) i nulaiate		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
4-Bromophenylphenyl Ether		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Butyl benzyl Phthalate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Butyr benzyr i ninalate		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Caprolactam		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Carbazole		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Carbon Range Organics C8-		EPA 8015C	EPA 8015C	EPA 8015C
<u>C44 (including subsets of</u>		EPA 8015C EPA 8015D	EPA 8015C EPA 8015D	EPA 8015C EPA 8015D
this range i.e. HRO, MRO,		EFA 8015D	EFA 8015D	EFA 8015D
ORO, RRO)				
4-Chloroaniline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Chloro-3-methylphenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Chlorobenzilate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
ChiorobenZilate		EFA 02/UD/E	EFA 02/0D/E	EFA 02/UD/E

Page 9 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	Solid
1-Chloronaphthalene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Chloronaphthalene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Chlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Chlorophenyl phenyl ether		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Chrysene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Cresols (Methyl phenols)		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
cis-/trans-Diallate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2,4-Diamino-6-nitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
2,6-Diamino-4-nitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
Dibenzo (a,h) acridine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Dibenzo (a,h) anthracene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Dibenzofuran		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
1,2-Dichlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1,3-Dichlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1,4-Dichlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
3,3-Dichlorobenzidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Diesel Range Organics		EPA 8015C	EPA 8015C	EPA 8015C
(DRO)		EPA 8015D	EPA 8015D	EPA 8015D
[Extractable Petroleum		NWTPH DX	NWTPH DX	NWTPH DX
Hydrocarbons (EPH)]		MA EPH	MA EPH	MA EPH
		TX1005	TX1005	TX1005
		AK102/103	AK102/103	AK102/103
2,4-Dichlorophenol		AK102/103-SV EPA 8270D/E	AK102/103-SV EPA 8270D/E	EPA 8270D/E
· •				
2,6-Dichlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Diethyl Phthalate		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
Dimethoate		EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E	EPA 8270D/E SIM EPA 8270D/E
p-Dimethylaminoazobenze		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
				EPA 8270D/E EPA 8270D/E
7,12-Dimethylbenz (a) anthracene		EPA 8270D/E	EPA 8270D/E	EPA 82/0D/E
2,4-Dimethylphenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Dimethyl Phthalate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Dimetry Thundrate		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
3,3'-Dimethylbenzidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Di-n-butyl Phthalate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Di-n-octyl phthalate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
3,5-Dinitroaniline		EPA 8330B	EPA 8330B	EPA 8330B MOD

Page 10 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	Solid
1,3-Dinitrobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8330B	EPA 8330B	EPA 8330B MOD
1,4-Dinitrobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2,4-Dinitrophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2,4-Dinitrotoluene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8330B	EPA 8330B	EPA 8330B MOD
2,6-Dinitrotoluene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1.4.5		EPA 8330B	EPA 8330B	EPA 8330B MOD
1,4-Dioxane		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
Diphenylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Diphenyl ether		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1,2-Diphenylhydrazine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Ethyl Methanesulfonate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Fluoroanthene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1 horountilene		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Fluorene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Hexachlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Hexachlorobutadiene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Hexachlorocyclo-		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
pentadiene		EDA 0270D/E		
Hexachloroethane		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Hexachloropropene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)		EPA 8330B	EPA 8330B	EPA 8330B MOD
Indeno (1,2,3-cd) Pyrene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Isodrin		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Isophorone		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Isosafrole		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
3-Methycholanthrene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Methyl-4,6-dinitrophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Methyl methane sulfonate		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
1-Methylnaphthalene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
2-Methylnaphthalene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2 Made Later 1		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
2-Methylphenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Methylphenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Naphthalene		EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM	EPA 8270D/E EPA 8270D/E SIM
1,4-Naphthoquinone		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM

Page 11 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	Solid
1-Naphthylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Naphthylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Nitroquinoline-1-oxide		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Nitroaniline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
3-Nitroaniline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Nitroaniline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Nitrobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8330B	EPA 8330B	EPA 8330B MOD
Nitroglycerin		EPA 8330B	EPA 8330B	EPA 8330B MOD
2-Nitrophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
4-Nitrophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Nitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
3-Nitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
4-Nitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD
5-Nitro-o-toluidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitroso-di-n-butylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosodiethylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosodimethylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
n-Nitrosomethylethylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosomorpholine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosodi-n-propylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosodiphenylamine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosopiperidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
n-Nitrosopyrrolidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Octahydro-1,3,5,7-tetranitro-		EPA 8330B	EPA 8330B	EPA 8330B MOD
1,3,5,7-tetrazocine (HMX)				
2,2-Oxybis (1-chloropropane)		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pentachlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pentachloronitrobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pentachlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pentaerythritol Tetranitrate (PETN)		EPA 8330B	EPA 8330B	EPA 8330B MOD
Perylene		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Phenacetin		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Phenanthrene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Phenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
2-Picoline		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pronamide		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
Pyrene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E
D 11		EPA 8270D/E SIM	EPA 8270D/E SIM	EPA 8270D/E SIM
Pyridine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E

Page 12 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste		
			Aqueous	Solid	
Safrole		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
1,2,4,5- Tetrachlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
2,3,4,6-Tetrachlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
Tetraethyl		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
dithiopyrophosphate		211102/02/2			
Tetraethy lead		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
Tetryl		EPA 8330B	EPA 8330B	EPA 8330B MOD	
Thionazin		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
o-Toluidine		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
1,2,4-Trichlorobenzene		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
1,3,5-Trinitrobenzene		EPA 8330B	EPA 8330B	EPA 8330B MOD	
2,4,5-Trichlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
2,4,6-Trichlorophenol		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
0,0,0-Tri-		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
ethylphosphorothioate					
2,4,6-Trinitrotoluene		EPA 8330B	EPA 8330B	EPA 8330B MOD	
Organochlorine Pesticides					
Aldrin		EPA 8081B	EPA 8081B	EPA 8081B	
alpha-BHC		EPA 8081B	EPA 8081B	EPA 8081B	
beta-BHC		EPA 8081B	EPA 8081B	EPA 8081B	
delta-BHC		EPA 8081B	EPA 8081B	EPA 8081B	
gamma-BHC (Lindane)		EPA 8081B	EPA 8081B	EPA 8081B	
alpha-Chlordane		EPA 8081B	EPA 8081B	EPA 8081B	
Chlordane (Technical)		EPA 8081B	EPA 8081B	EPA 8081B	
2,4'-DDD		EPA 8081B	EPA 8081B	EPA 8081B	
2,4'-DDE		EPA 8081B	EPA 8081B	EPA 8081B	
2,4'-DDT		EPA 8081B	EPA 8081B	EPA 8081B	
4,4'-DDD		EPA 8081B	EPA 8081B	EPA 8081B	
4,4'-DDE		EPA 8081B	EPA 8081B	EPA 8081B	
4,4'-DDT		EPA 8081B	EPA 8081B	EPA 8081B	
Dieldrin		EPA 8081B	EPA 8081B	EPA 8081B	
Dinoseb		EPA 8270D/E	EPA 8270D/E	EPA 8270D/E	
Endosulfan I (alpha)		EPA 8081B	EPA 8081B	EPA 8081B	
Endosulfan II (beta)		EPA 8081B	EPA 8081B	EPA 8081B	
Endosulfan Sulfate		EPA 8081B	EPA 8081B	EPA 8081B	
Endrin		EPA 8081B	EPA 8081B	EPA 8081B	
Endrin Aldehyde		EPA 8081B	EPA 8081B	EPA 8081B	
Endrin Ketone		EPA 8081B	EPA 8081B	EPA 8081B	
gamma-Chlordane		EPA 8081B	EPA 8081B	EPA 8081B	
Heptachlor		EPA 8081B	EPA 8081B	EPA 8081B	
Heptachlor Epoxide		EPA 8081B	EPA 8081B	EPA 8081B	
Hexachlorobenzene		EPA 8081B	EPA 8081B	EPA 8081B	
Hexachlorocyclopentadiene		EPA 8081B	EPA 8081B	EPA 8081B	
Methoxychlor		EPA 8081B	EPA 8081B	EPA 8081B	
Mirex		EPA 8081B	EPA 8081B	EPA 8081B	
Toxaphene		EPA 8081B	EPA 8081B	EPA 8081B	

Page 13 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste		
			Aqueous	Solid	
PCBs (Aroclors)					
PCB-1016 (Arochlor)		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1221		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1232		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1242		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1248		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1254		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1260		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1262		EPA 8082A	EPA 8082A	EPA 8082A	
PCB-1268		EPA 8082A	EPA 8082A	EPA 8082A	
PCB congeners (209)		EPA 1668A	EPA 1668A	EPA 1668A	
r eb congeners (20))		EPA 1668C	EPA 1668C	EPA 1668C	
Herbicides			LITTIO	LIMIOOOC	
2,4,5-T		EPA 8151A	EPA 8151A	EPA 8151A	
2,4,5-TP (Silvex)		EPA 8151A	EPA 8151A	EPA 8151A	
2,4-D		EPA 8151A	EPA 8151A	EPA 8151A	
2,4-DB		EPA 8151A	EPA 8151A	EPA 8151A	
Dalapon		EPA 8151A	EPA 8151A	EPA 8151A	
Dicamba		EPA 8151A	EPA 8151A	EPA 8151A	
Dichlorprop		EPA 8151A	EPA 8151A	EPA 8151A	
Dinoseb		EPA 8151A	EPA 8151A	EPA 8151A	
MCPA		EPA 8151A	EPA 8151A	EPA 8151A	
MCPP		EPA 8151A	EPA 8151A	EPA 8151A	
Pentachlorophenol		EPA 8151A	EPA 8151A	EPA 8151A	
PCB Homologues					
Monochlorobiphenyls		EPA 680	EPA 680	EPA 680	
Dichlorobiphenyls		EPA 680	EPA 680	EPA 680	
Trichlorobiphenyls		EPA 680	EPA 680	EPA 680	
Tetrachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Pentachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Hexachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Heptachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Octachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Nonachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Decachlorobiphenyls		EPA 680	EPA 680	EPA 680	
Dioxins/Furans					
2,3,7,8-TCDD	EPA 1613B	EPA 8290A	EPA 8290A	EPA 8290A	
2,3,7,8-TCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,7,8-PeCDF		EPA 8290A	EPA 8290A	EPA 8290A	
2,3,4,7,8-PeCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,7,8-PeCDD		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,4,7,8-HxCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,6,7,8-HxCDF		EPA 8290A	EPA 8290A	EPA 8290A	
2,3,4,6,7,8-HxCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,7,8,9-HxCDF		EPA 8290A	EPA 8290A	EPA 8290A	

Page 14 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste		
			Aqueous	Solid	
1,2,3,6,7,8-HxCDD		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,7,8,9-HxCDD		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,4,6,7,8-HpCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,4,7,8,9-HpCDF		EPA 8290A	EPA 8290A	EPA 8290A	
1,2,3,4,6,7,8-HpCDD		EPA 8290A	EPA 8290A	EPA 8290A	
OCDF		EPA 8290A	EPA 8290A	EPA 8290A	
OCDD		EPA 8290A	EPA 8290A	EPA 8290A	
Total HpCDD		EPA 8290A	EPA 8290A	EPA 8290A	
Total HpCDF		EPA 8290A	EPA 8290A	EPA 8290A	
Total HxCDD		EPA 8290A	EPA 8290A	EPA 8290A	
Total HxCDF		EPA 8290A	EPA 8290A	EPA 8290A	
Total PeCDD		EPA 8290A	EPA 8290A	EPA 8290A	
Total PeCDF		EPA 8290A	EPA 8290A	EPA 8290A	
Total TCDD		EPA 8290A	EPA 8290A	EPA 8290A	
Total TCDF		EPA 8290A	EPA 8290A	EPA 8290A	
Misc. Headspace Analysis					
Carbon dioxide		RSK-175	RSK-175		
Ethane		RSK-175	RSK-175		
Ethene		RSK-175	RSK-175		
Methane		RSK-175	RSK-175		
Acetylene		RSK-175	RSK-175		
Propane		RSK-175	RSK-175		
Hazardous Waste		4			
Characteristics					
Toxicity Characteristic			EPA 1311	EPA 1311	
Leaching Procedure					
Synthetic Precipitation			EPA 1312	EPA 1312	
Leaching Procedure					
ASTM Leaching			ASTM D3987-12	ASTM D3987-12	
Procedure					
Other			·		
Perchlorate		EPA 6850	EPA 6850	EPA 6850	
Hydrazine		EPA 8315A MOD	EPA 8315A MOD	EPA 8315A MOD	
Formaldehyde			EPA 8315A	EPA 8315A	
Methylhydrazine		EPA 8315A MOD	EPA 8315A MOD	EPA 8315A MOD	
1,1-Dimethylhydrazine		EPA 8315A MOD	EPA 8315A MOD	EPA 8315A MOD	
Acetic Acid		EPA 8015D	EPA 8015D		
Butryic acid		EPA 8015D	EPA 8015D		
Lactic Acid		EPA 8015D	EPA 8015D		
Propionic Acid		EPA 8015D	EPA 8015D		
Pyruvic Acid		EPA 8015D	EPA 8015D		
Citric Acid		EPA 8015D	EPA 8015D		
Formic Acid		EPA 8015D	EPA 8015D		
Oxalic Acid		EPA 8015D	EPA 8015D		
Quinic Acid		EPA 8015D	EPA 8015D		
Succinic Acid		EPA 8015D	EPA 8015D		

Page 15 of 26

Parameter/Analyte	Drinking Water	Non-Potable Water	Solid Hazardous Waste	
			Aqueous	<u>Solid</u>
Tartaric Acid		EPA 8015D	EPA 8015D	
Volatile Preparation		EPA 5030C	EPA 5030C	EPA 5035A
Organic Extraction/Cleanup		EPA 3510C EPA 3511 EPA 3660B, 3620C, 3665A	EPA 3510C EPA 3511 EPA 3660B, 3620C, 3665A	EPA 3546 EPA 3550C EPA 3660B, 3620C, 3665A, 3640A

Parameter/Analyte	Drinking Water	Nonpotable Water	Solid Haz.Waste	Tissue
Per and Polyfluoroalkyl Substances (I
N-ethyl	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
Perfluorooctanesulfonamidoacetic	EPA 537.1	Compliant with QSM	Compliant with QSM	
Acid (NEtFOSAA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
N-methyl	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
perfluoroctanesulfonamidoacetic	EPA 537.1	Compliant with QSM	Compliant with QSM	
Acid (NMeFOSAA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorobutanesulfonic Acid (PFBS)		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorodecanoic Acid (PFDA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
335-76-2		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorododecanoic Acid (PFDoA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluoroheptanoic Acid (PFHpA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
375-85-9		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorohexanesulfonic Acid	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFHxS)	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN: 355-46-4		EPA Draft Method 1633	EPA Draft Method 1633	
333-40-4				

Page 16 of 26

Parameter/Analyte	Drinking Water	Nonpotable Water	Solid Haz.Waste	Tissue
Perfluorohexanoic Acid (PFHxA)				
	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorononanoic Acid (PFNA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorooctanesulfonic Acid (PFOS)		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorooctanoic Acid (PFOA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
Perfluorotetradecanoic Acid	EDA 527	EPA Draft Method 1633	EPA Draft Method 1633	EPA Draft Method 1633
(PFTeDA)	EPA 537 EPA 537.1	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(ITTEDA)	LFA 557.1	Compliant with QSM	Compliant with QSM	
CASRN:		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
376-06-7		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorotridecanoic Acid (PFTrDA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	Li A Dian Method 1055
	211100711	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:		5.575.7 Tuble D -15	5.575.4 Tuble D-15	
72629-94-8		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluoroundecanoic Acid (PFUnA)	EPA 537	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
	EPA 537.1	Compliant with QSM	Compliant with QSM	
	EPA 533	5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
2058-94-8		EPA Draft Method 1633	EPA Draft Method 1633	
Hexafluoropropylene oxide dimer	EPA 537.1	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
acid (HF- PODA)	EPA 533	Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
4,8-Dioxa-3 <i>H</i> -	EPA 537.1	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
perfluorononanoic acid	EPA 533	Compliant with QSM	Compliant with QSM	
(ADONA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	

Page 17 of 26

WaterWaterProductProduct9-Chlorohexadecafluoro-3- oxanonane-1- sulfonic acid (9Cl- PF3ONS)EPA 533FAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 163311-Chloroeicosafluoro-3- oxaundecane-1- sulfonic acid (11Cl-PF3OUdS)EPA 537.1 EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 163311-Chloroeicosafluoro-3- oxaundecane-1- sulfonic acid (11Cl-PF3OUdS)EPA 537.1 EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633Perfluoropentanoic Acid (PFPeA)EPA 533PFAS by LCMSMS EPA 533PFAS by LCMSMS EPA Draft Method 1633EPA Draft Method 1633Perfluoropentanoic Acid (PFPeA)EPA 533PFAS by LCMSMS EPA 533EPA Draft Method 1633EPA Draft Method 1633	od 1633 1 1633
oxanonane-1- sulfonic acid (9Cl- PF3ONS)EPA 533Compliant with QSM 5.3/5.4 Table B-15Compliant with QSM 5.3/5.4 Table B-1511-Chloroeicosafluoro-3- 	1 1633
EPA Draft Method 1633EPA Draft Method 163311-Chloroeicosafluoro-3- oxaundecane-1- sulfonic acid (11Cl-PF3OUdS)EPA 537.1 EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS S.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633	1 1633
11-Chloroeicosafluoro-3- oxaundecane-1- sulfonic acid (11Cl-PF3OUdS)EPA 537.1 EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method S.3/5.4 Table B-15EPA Draft Method S	1 1633
oxaundecane-1- sulfonic acid (11C1-PF3OUdS)EPA 533Compliant with QSM 5.3/5.4 Table B-15Compliant with QSM 5.3/5.4 Table B-15Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS SourceEPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633	1 1633
(11Cl-PF3OUdS)5.3/5.4 Table B-155.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633	
EPA Draft Method 1633EPA Draft Method 1633Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633	
Perfluorobutanoic Acid (PFBA)EPA 533PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15PFAS by LCMSMS Compliant with QSM 5.3/5.4 Table B-15EPA Draft MethodEPA Draft Method 1633EPA Draft Method 1633EPA Draft Method 1633	
Compliant with QSM 5.3/5.4 Table B-15Compliant with QSM 5.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633	
5.3/5.4 Table B-155.3/5.4 Table B-15EPA Draft Method 1633EPA Draft Method 1633	<u>)d 1633</u>
EPA Draft Method 1633 EPA Draft Method 1633	vd 1633
	od 1633
Perfluoropentanoic Acid (PFPeA) EPA 533 PFAS by LCMSMS PFAS by LCMSMS EPA Draft Metho	od 1633
Compliant with QSM Compliant with QSM	
5.3/5.4 Table B-15 5.3/5.4 Table B-15 CASRN: 5.3/5.4 Table B-15	
CASKN.2706-90-3EPA Draft Method 1633EPA Draft Method 1633	
1H,1H, 2H, 2H-Perfluorohexane EPA 533 PFAS by LCMSMS PFAS by LCMSMS EPA Draft Method	od 1633
sulfonic acid (4:2FTS) Compliant with QSM Compliant with QSM	
5.3/5.4 Table B-15 5.3/5.4 Table B-15	
EPA Draft Method 1633 EPA Draft Method 1633	
1H,1H, 2H, 2H-PerfluorodecaneEPA 533PFAS by LCMSMSPFAS by LCMSMSEPA Draft Method	od 1633
sulfonic acid (8:2-FTS) Compliant with QSM Compliant with QSM	
5.3/5.4 Table B-15 5.3/5.4 Table B-15	
CASRN:	
39108-34-4 EPA Draft Method 1633 EPA Draft Method 1633	11(22
Perfluoropentanesulfonic Acid EPA 533 PFAS by LCMSMS PFAS by LCMSMS (FFD 6) (FFD 6) (FFD 6) (FFD 6)	od 1633
(PFPeS)Compliant with QSMCompliant with QSM5.3/5.4 Table B-155.3/5.4 Table B-15	
5.3/5.4 Table B-15 5.3/5.4 Table B-15	
EPA Draft Method 1633 EPA Draft Method 1633	
1H,1H, 2H, 2H-Perfluorooctane EPA 533 PFAS by LCMSMS PFAS by LCMSMS EPA Draft Method	od 1633
sulfonic acid Compliant with QSM Compliant with QSM	
(6:2-FTS) 5.3/5.4 Table B-15 5.3/5.4 Table B-15	
CASRN: 27619-97-2 EPA Draft Method 1633 EPA Draft Method 1633	
Perfluoroheptanesulfonic AcidEPA 533PFAS by LCMSMSPFAS by LCMSMSEPA Draft Method	od 1633
(PFHpS) Compliant with QSM Compliant with QSM	
CASRN: 5.3/5.4 Table B-15 5.3/5.4 Table B-15	
CASINI375-92-8EPA Draft Method 1633EPA Draft Method 1633	

Page 18 of 26

Parameter/Analyte	Drinking Water	Nonpotable Water	Solid Haz.Waste	Tissue
Perfluorononanesulfonic Acid		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFNS)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorodecanesulfonic Acid		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFDS)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
10:2 Fluorotelomersulfonic Acid		PFAS by LCMSMS	PFAS by LCMSMS	
(10:2-FTS)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
Perfluorododecanesulfonic Acid		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFDoS)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluorohexadecanoic Acid		PFAS by LCMSMS	PFAS by LCMSMS	
(PFHxDA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
Perfluorooctadecanoic Acid		PFAS by LCMSMS	PFAS by LCMSMS	
(PFODA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
Perfluorooctanesulfonamide		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFOSA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
N-methyl		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
perfluorooctanesulfonamidoetha		Compliant with QSM	Compliant with QSM	
nol (NMeFOSE)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN: 24448-09-7		EPA Draft Method 1633	EPA Draft Method 1633	
N-methyl		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
perfluorooctanesulfonami		Compliant with QSM	Compliant with QSM	
de (NMeFOSA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
N-ethyl		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
perfluorooctanesulfonamidoeth		Compliant with QSM	Compliant with QSM	
anol (NEtFOSE)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	

Page 19 of 26

Parameter/Analyte	Drinking	Nonpotable Water	Solid Haz.Waste	Tissue
N-ethylperfluorooctanesulfonamide	Water	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(NEtFOSA)		Compliant with QSM	Compliant with QSM	El A Dian menou 1055
(NEU OSA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		5.575.4 Table D-15	5.575.4 Table D-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Nonafluoro-3,6-dioxaheptanoic acid	EPA 533	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(NFDHA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluoro-3-methoxypropanoic acid	EPA 533	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFMPA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
377-73-1		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluoro-4-methoxybutanoic acid	EPA 533	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
(PFMBA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
Perfluoro(2-	EPA 533	PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
ethoxyethane)sulfonic acid		Compliant with QSM	Compliant with QSM	
(PFEESA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
3-Perfluoropropylpropanoic acid (3:3		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
FTCA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
356-02-5		EPA Draft Method 1633	EPA Draft Method 1633	
2 <i>H</i> ,2 <i>H</i> ,3 <i>H</i> ,3 <i>H</i> -		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
Perfluorooctanoic acid		Compliant with QSM	Compliant with QSM	
(5:3 FTCA)		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
		EPA Draft Method 1633	EPA Draft Method 1633	
3-Perfluoroheptylpropanoic acid (7:3		PFAS by LCMSMS	PFAS by LCMSMS	EPA Draft Method 1633
FTCA)		Compliant with QSM	Compliant with QSM	
		5.3/5.4 Table B-15	5.3/5.4 Table B-15	
CASRN:				
812-70-4		EPA Draft Method 1633	EPA Draft Method 1633	

End of DoD ELAP section of scope

Page 20 of 26

In addition, in recognition of the successful completion of the A2LA evaluation process (including an assessment of the laboratory's compliance with ISO IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, and for the test methods applicable to Kentucky Statute KRS 224.60-130(2)(a), and for the test methods applicable to the Wyoming Storage Tank Remediation Laboratory Accreditation Program), accreditation is granted to this laboratory to perform recognized EPA methods using the following testing technologies and in the analyte categories identified below:

Testing Technologies

Atomic Absorption/ICP-AES Spectrometry, ICP-MS Spectrometry, Gas Chromatography, Gas Chromatography/Mass Spectrometry, Gravimetry, High Performance Liquid Chromatography, Ion Chromatography, Misc.-Electronic Probes (pH, F⁻, O₂), Oxygen Demand, Spectrophotometry (Visible), Spectrophotometry (Automated), Titrimetry, TCLP, Total Organic Carbon, Turbidity, Liquid Chromatography/Mass Spectrometry/Mass Spectrometry, High Resolution Gas Chromatography/Mass Spectrometry

Parameter/Analyte	Tissue	Nonpotable	Solid Haz	ardous Waste
		Water	Aqueous	<u>Solid</u>
Other				
Perchlorate	Food &	EPA 6850	EPA 6850	EPA 6850
	Food			
	Products			
	EPA 6850			
Hydrazine		EPA 8315A	EPA 8315A	EPA 8315A
		MOD	MOD	MOD
Methylhydrazine		EPA 8315A	EPA 8315A	EPA 8315A
		MOD	MOD	MOD
1,1-Dimethylhydrazine		EPA 8315A	EPA 8315A	EPA 8315A
		MOD	MOD	MOD
Volatile Preparation		EPA 5030C	EPA 5030C	EPA 5035A
Organic Extraction/ Cleanup	EPA 3546	EPA 3510C	EPA 3510C	EPA 3546
	EPA 3550C	EPA 3511	EPA 3511	EPA 3550C
	EPA 3660B	EPA 3660B	EPA 3660B	EPA 3660B
	EPA 3620C	EPA 3620C	EPA 3620C	EPA 3620C
	EPA 3665A	EPA 3665A	EPA 3665A	EPA 3665A
	EPA 3640A			EPA 3640A

Parameter/Analvte	Tissue	Nonpotable	Solid H	azardous Waste
		Water	Aqueous	Solid
Kentucky UST Program				
Metals				
Arsenic			EPA 6010B	EPA 6010B
Barium			EPA 6010B	EPA 6010B
Cadmium			EPA 6010B	EPA 6010B
Chromium			EPA 6010B	EPA 6010B
Lead			EPA 6010B	EPA 6010B
Mercury			EPA 7470A	EPA 7471A
Selenium			EPA 6010B	EPA 6010B
Silver			EPA 6010B	EPA 6010B
Purgeable Organics (Volatiles)			·	

Parameter/Analyte	Tissue	Nonpotable	Solid Ha	zardous Waste
		Water	Aqueous	Solid
Diesel Range Organics (DRO)		EPA 8015C	EPA 8015C	EPA 8015C
		EPA 8015D	EPA 8015D	EPA 8015D
Gasoline Range Organics (GRO)		EPA 8015C	EPA 8015C	EPA 8015C
		EPA 8015D	EPA 8015D	EPA 8015D
Wyoming Storage Tank Program				
Metals				
Cadmium			EPA 6010C	EPA 6010C
Chromium			EPA 6010C	EPA 6010C
Chromium (Total, hexavalent)			EPA 7196A	EPA 7196A
Lead			EPA 6010C	EPA 6010C
Purgeable Organics (Volatiles)		1		
Volatile Preparation			EPA 5030C	EPA 5035A
Benzene			EPA 8260D	EPA 8260D
1,2-Dichloroethane			EPA 8260D	EPA 8260D
1,2-Dibromoethane			EPA 8011	EPA 8011
,			EPA 8260D	EPA 8260D
Diisopropyl Ether			EPA 8200D	EPA 8200D
Ethyl Benzene			EPA 8260D	EPA 8260D
Ethyl tert-butyl Ether			EPA 8260D	EPA 8260D
Methyl tert-butyl Ether			EPA 8260D	EPA 8260D
Naphthalene			EPA 8260D	EPA 8260D
Toluene			EPA 5030C	EPA 8260D
			EPA 8260D	
Tert-amyl Methyl Ether			EPA 8260D	EPA 8260D
Tert-butyl Alcohol			EPA 8260D	EPA 8260D
Xylenes, total			EPA 8260D	EPA 8260D
Gasoline Range Organics (GRO C6-C10)			EPA 8260D	EPA 8260D
Extractable Organics (Semivolatiles)				
Diesel Range Organics (DRO C10-			EPA 8015C	EPA 8015C
C32)			w/ EPA 3630	w/ EPA 3630
			cleanup	cleanup

End of KY, WY, and ISO 17025 section of scope

Page 22 of 26

In recognition of the successful completion of the A2LA evaluation process, including an assessment of the laboratory's compliance with ISO/IEC 17025:2017 accreditation is granted to this laboratory to perform recognized EPA methods using the following testing technologies and, in the analyte, categories identified below:

Food and Feed	Food/Feed
(WHO 29)	
2,3,7,8-TCDD	EPA 1613B
2,3,7,8-TCDF	EPA 1613B
1,2,3,7,8-PeCDF	EPA 1613B
2,3,4,7,8-PeCDF	EPA 1613B
1,2,3,7,8-PeCDD	EPA 1613B
1,2,3,4,7,8-HxCDF	EPA 1613B
1,2,3,6,7,8-HxCDF	EPA 1613B
2,3,4,6,7,8-HxCDF	EPA 1613B
1,2,3,7,8,9-HxCDF	EPA 1613B
1,2,3,4,7,8-HxCDD	EPA 1613B
1,2,3,6,7,8-HxCDD	EPA 1613B
1,2,3,7,8,9-HxCDD	EPA 1613B
1,2,3,4,6,7,8-HpCDF	EPA 1613B
1,2,3,4,7,8,9-HpCDF	EPA 1613B
1,2,3,4,6,7,8-HpCDD	EPA 1613B
OCDF	EPA 1613B
OCDD	EPA 1613B
Food and Feed (WHO 29)	Food/Feed
6 marker PCBs	EPA 1668C
(PCB28, PCB52,	
PCB101, PCB138, PCB153, and	
PCB180)	
(PCB77, PCB81,	EPA 1668C
PCB105, PCB114, PCB118,	
PCB123, PCB126, PCB156,	
PCB157, PCB167, PCB169, and	
PCB189)	

Parameter/Analyte	Tissue	Nonpotable	Solid Haza	rdous Waste
		Water	Aqueous	Solid
12 Dioxin-like PCBs	EPA 1668C			
(dl-PCBs)/coplanar				
PCBs (PCB77, PCB81,				
PCB105, PCB114,				
PCB118, PCB123,				
PCB126, PCB156,				
PCB157, PCB167,				
PCB169, & PCB189)				

Ann Pag

(A2LA Cert No. 0001.01) Revised 02/14/2023

Parameter/Analyte	Drinking Water	Nonpotable Water	<u>Solid Haz.Waste</u>
Per and Polyfluoroalkyl Substances (P	PFAS)	I	
N-ethyl perfluorooctane- sulfonamidoacetic acid (NetFOSAA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
N-methyl perfluoroctane- sulfonamidoacetic acid (NMeFOSAA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorobutanesulfonic acid (PFBS)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorodecanoic acid (PFDA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorododecanoic acid (PFDoDA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoroheptanoic acid (PFHpA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorohexanesulfonic acid (PFHxS)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorohexanoic acid (PFHxA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorononanoic acid (PFNA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorooctanesulfonic acid (PFOS)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorooctanoic acid (PFOA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorotetradecanoic acid (PFTeDA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorotridecanoic acid (PFTrDA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoroundecanoic acid (PFUnDA)	EPA 537 Ver. 1.1 EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3- heptafluoropropoxy)-propanoic acid (HFPODA)	EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9Cl-PF3ONS)	EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	EPA 537.1	EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoro-n-butanoic acid (PFBA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoro-n-pentanoic acid (PFPeA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod

Page 24 of 26

Parameter/Analyte	Drinking Water	Nonpotable Water	Solid Haz.Waste
8:2 Fluorotelomersulfonic acid (8:2FTS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
4:2 Fluorotelomersulfonic acid (4:2- FTS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoropentanesulfonic acid (PFPeS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
6:2 Fluorotelomersulfonic acid (6:2- FTS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluoroheptanesulfonic acid (PFHpS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorononanesulfonic acid (PFNS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorodecanesulfonic acid (PFDS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
10:2 Fluorotelomersulfonic acid (10:2-FTS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorododecanesulfonic acid (PFDoDS)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorohexadecanoic acid (PFHxDA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorooctadecanoic acid (PFODA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
Perfluorooctanesulfonamide (PFOSA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
2-(N-methylperfluoro-1- octanesulfonamido)-ethanol (NMePFOSAE)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
N-methylperfluoro-1- octanesulfonamide (NMePFOSA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
2-(N-ethylperfluoro-1- octanesulfonamido)-ethanol (NEtPFOSAE)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod
N-ethylperfluoro-1- octanesulfonamide (NEtPFOSA)		EPA 537 Ver.1.1 Mod	EPA 537 Ver.1.1 Mod

Accredited Laboratory

A2LA has accredited

EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC Lancaster, PA

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, and the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP) as detailed in version 5.4 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 21st day of November 2022.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 1.01 Valid to November 30, 2024

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.

	Always check on-line for validity.	Level:	A
🔅 eurofins	Perfluorinated Alkyl Substances (PFASs) in Drinking		
Document number:	Water by Method 537.1 Version 1.0	Work Instruction	
T-PFAS-WI25232			
Old Reference:			
Version:		Organisation level:	
8		5-Sub-BU	
Approved by: XL3S	Document users:	Responsible:	
Effective Date: 30-	5_EUUSLA_PFAS_Manager, 6_EUUSLA_PFAS_Analyst,	5_EUUSLA_PFAS_M	Manager
DEC-2022	6_EUUSLA_PFAS_Data_Reviewers,		
	6_EUUSLA_PFAS_Management_Team, 6_EUUSLA_PFAS_Sample_Prep		

PROPRIETARY AND COMPANY CONFIDENTIAL

This documentation has been prepared by Eurofins Lancaster Laboratories Environment Testing, LLC and its affiliates ("Eurofins"), solely for their own use. The user of this document agrees by its acceptance to return it to Eurofins upon request and not to reproduce, copy, lend, or otherwise disclose its contents, directly or indirectly, and not to use if for any other purpose other than that for which it was specifically provided. The user also agrees that where consultants or other outside parties are involved in the evaluation process, access to these documents shall not be given to said parties unless those parties also specifically agree to these conditions.

THIS DOCUMENT CONTAINS VALUABLE CONFIDENTIAL AND PROPRIETARY INFORMATION. DISCLOSURE, USE OR REPRODUCTION OF THESE MATERIALS WITHOUT THE WRITTEN AUTHORIZATION OF EUROFINS IS STRICTLY PROHIBITED. THIS UNPUBLISHED WORK BY EUROFINS IS PROTECTED BY STATE AND FEDERAL LAW OF THE UNITED STATES.

Revision Log Reference **Cross Reference** Scope **Basic Principles** Interferences Safety Precautions and Waste Handling Personnel Training and Qualifications Sample Collection, Preservation, and Handling Apparatus and Equipment Reagents and Standards Preparation of Glassware Calibration Procedure Calculations Statistical Information/Method Performance Quality Assurance/Quality Control

Revision Log

Revision:	8	Effective date: This version	
Section	Justification	Changes	
Revision Log	Formatting requirement	Removed revision logs up to the previous version	
Header	Enhancement	Updated company name to Eurofins Lancaster Laboratories Environment Testing, LLC	
Cross reference	Enhancement	Add G-DC-FRM23907	

Revision:	8	Effective date: This version	
Section	Justification	Changes	
Apparatus and Equipment	Enhancement	Add note about 9mm vial cap testing to #19. added promochrom unit,	
Reagents and Standards	Reflect current practice	expiration of 20mM ammonium acetate solution is 1 week. not 48 hours. updated attachments 5-7 to reflect current prep	
Procedure	Reflect current practice	Add promochrom option, spike changes for is/ss	

Revision:	7	Effective date: 11-JAN-2022
Section	Justification	Changes
Revision Log	Formatting requirement	Removed revision logs up to the previous version
Reagents and standards/referenced attachments	Reflect current procedure	Updated SMT to Reagent in all instances, added option for syringes to prepare standards
Procedure	Enhancement	A.19. update to reconstitute, then add the 10ul of IS

Reference

- 1. Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LCMSMS), USEPA Method 537.1 Version 1, November 2018.
- Manual for the Certification of Laboratories Analyzing Drinking Water, EPA-815-R-05-004 (January 2005). (*G-EXT-FRM23905*)
- 3. Chemical Hygiene Plan, current version.

Cross Reference

Document	Document Title
T-PEST-W19847	Common Equations Used During Chromatographic Analyses
G-DC -FRM23907	Redacted SOPs
G-EXT-FRM23905	EPA Drinking Water Manual
QA-SOP11892	Determining Method Detection Limits and Limits of Quantitation
Q-EQA-FRM6830	Sampling Collection Instructions

Scope

The method is applicable for the determination of PFAS compounds in drinking water samples. The compounds analyzed in this method are listed below. The most current MDLs and LOQs are listed in the LIMS.

Analyte	Acronym	CAS#
Hexafluoropropylene oxide dimer acid	HFPODA	13252-13-6
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9
Perfluorobutanesulfonic acid	PFBS	375-73-5
Perfluorodecanoic acid	PFDA	335-76-2
Perfluorododecanoic acid	PFDoDA	307-55-1
Perfluoroheptanoic acid	PFHpA	375-85-9
Perfluorohexanesulfonic acid	PFHxS	355-46-4
Perfluorohexanoic acid	PFHxA	307-24-4
Perfluorononanoic acid	PFNA	375-95-1
Perfluorooctanesulfonic acid	PFOS	1763-23-1
Perfluorooctanoic acid	PFOA	335-67-1
Perfluorotetradecanoic acid	PFTeDA	376-06-7
Perfluorotridecanoic acid	PFTrDA	72629-94-8
Perfluoroundecanoic acid	PFUnDA	2058-94-8
11-chloroeicosafluoro-3-oxaundecane-1- sulfonic acid	11CI-PF3OUdS	763051-92-9 *
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid	9CI-PF3ONS	756426-58-1 *
4,8-dioxa-3H-perfluorononanoic acid	DONA **	919005-14-4 *

*These are the CAS numbers for the free acid form of the analyte.

**DONA is the Acronym for the free acid form of this analyte.

Basic Principles

A 250-mL aqueous sample fortified with surrogates is passed through a solid phase extraction (SPE) cartridge to extract the method analytes and surrogates. The resulting solution is analyzed by LC/MS/MS operated in negative electrospray ionization (ESI) mode for detection and quantification of the analytes. Quantitative analysis is performed using internal standard method.

Interferences

Compounds which have similar structures to the compounds of interest, and similar molecular weights would potentially interfere. Method interferences may be caused by coeluting peaks, contaminants in solvents, reagents (including reagent water), sample bottles and caps, and other sample processing hardware that lead to discrete artifacts and/or elevated baselines in the chromatograms. The analytes in this method can also be found in many common laboratory supplies and equipment, such as PTFE

(polytetrafluoroethylene) products, LC solvent lines, methanol, aluminum foil, etc. A laboratory reagent water blank is performed with each batch of samples to demonstrate that the extraction system is free of contaminants.

Precaution to minimize method interference:

- 1. Proprietary Content.
- 2. Proprietary Content.
- 3. PFAS standards, extracts and samples should not come in contact with any glass containers as these analytes can potentially adsorb to glass surfaces. PFAS analytes and internal standards commercially purchased in glass ampules are acceptable; however, all subsequent transfers or dilutions performed by the analyst must be stored in polypropylene containers.
- 4. All equipment used for sample extraction and analysis must be meticulously cleaned. The equipment must not be covered with aluminum foil because perfluorinated carboxylic acids can be potentially transferred from the aluminum foil to the glassware.

Safety Precautions and Waste Handling

All laboratory waste is accumulated, managed, and disposed of in accordance with all federal, state and local laws and regulations.

See *Chemical Hygiene Plan* for general information **regarding employee** safety, waste management, and pollution prevention.

The toxicity or carcinogenicity of each reagent used in this method has not been precisely defined. Health advisories have been issued for both PFOA and PFOS. Each chemical must be treated as a potential health hazard, and exposure to these chemicals must be minimized. Exposure to these chemicals must be reduced to the lowest possible level by whatever means available, such as fume hoods, lab coats, safety glasses, and gloves. Gloves, lab coats, and safety glasses must be worn when preparing standards and handling samples. Avoid inhaling solvents and chemicals and getting them on the skin. Wear gloves when handling neat materials. When working with acids and bases, take care not to come in contact, and to wipe any spills. Always add acid to water when preparing reagents containing concentrated acids. Gloves and safety glasses must be worn at all times.

All solvent waste and extracts are collected in approved solvent waste containers in the laboratory and subsequently emptied by personnel trained in hazardous waste disposal into the lab-wide disposal facility. All samples, standards, and extracts must be collected for incineration. HPLC vials are disposed of in the lab container for waste vials, and subsequently lab packed. Any solid waste material (disposable pipettes and broken glassware, etc.) may be disposed of in the normal solid waste collection containers.

Personnel Training and Qualifications

All personnel performing this procedure must have documentation of reading, understanding, and agreeing to follow the current version of this SOP and an annual documented Demonstration of Capability (DOC).

Each chemist performing the extraction must work with an experienced employee for a period of time until they can independently perform the extraction. Also, several batches of sample extractions must be performed under the direct observation of another experienced chemist to assure the trainee is capable of independent preparation. Proficiency is measured through a documented Initial Demonstration of Capability (IDOC).

Each LC/MS/MS analyst must work with an experienced employee for a period of time until they can independently calibrate the LC/MS/MS, review and process data, and perform maintenance procedures. Proficiency is measured through a documented Initial Demonstration of Capability (IDOC).

The IDOC is performed to meet the requirements listed in sections 9.2.3 and 9.2.4 of the method (four LFBs spiked near the midrange of the calibration, 70-130% mean recovery, and %RSD <20%). In addition, the IDOC includes the preparation (Extraction chemist) and analysis (LC/MS/MS analyst) of a 7 replicate MDL study.

The DOC consist of four laboratory control samples (or alternatively, one blind sample) that is carried through all steps of the extraction and meets the defined acceptance criteria. The criteria include the calculation of mean accuracy and standard deviation.

Sample Collection, Preservation, and Handling

A. Sample Collection

1. The sample handler must wash their hands before sampling and wear nitrile gloves while filling and sealing the sample bottles.

NOTE: PFAS contamination during sampling can occur from a number of common sources, such as food packaging and certain foods and beverages. Proper hand washing and wearing nitrile gloves will aid in minimizing this type of accidental contamination of the samples.

2. Collect samples in 250-mL polyethylene bottles fitted with a polypropylene screw cap containing 1.25 grams of Trizma, resulting in a Trizma concentration of 5.0 g/L. Samples do not need to be collected headspace-free. Keep the sample sealed from time of collection until extraction.

3. A field reagent blank must be collected with each sample set. See *Q-EQA-FRM6830* for sampling instructions.

B. Sample Storage and Shipment

1. Samples must be chilled during shipment and must not exceed 10°C during the first 48 hours after collection. Sample temperature must be confirmed to be at or below 10°C when the samples are received at the laboratory. If samples are received with a temperature above 10°C, the samples are rejected and the client must recollect and resubmit samples to the laboratory.

2. When samples are received, a pH check is performed. The pH must be 7 ± 0.5 . This is performed by the sample storage group prior to bottles being available to the lab for analysis. If samples are received with a pH outside of the 7 ± 0.5 pH range, the samples are rejected and the client must recollect and resubmit samples to the laboratory.

3. Samples stored in the lab must be held at or below 6°C until extraction, but must not be frozen.

4. Water samples must be extracted within 14 days. Extracts must be analyzed within 28 days after extraction. Store extracts at room temperature.

Apparatus and Equipment

- 1. Centrifuge tubes 15-mL conical polypropylene with polypropylene screw caps; Fisher Scientific, Cat. No. 05-539-5 or equivalent
- 2. 10-mL polypropylene volumetric flask, Class A Fisher Scientific, Cat. No. S02288, or equivalent.
- 3. Polypropylene bottles for reagent storage: 1000-mL, Fisher; Cat. No. 02896F.
- 4. Analytical Balance Capable of weighing to 0.0001 g

- 5. Top-Loading Balance Capable of weighing to 0.01 g
- 6. Solid phase extraction (SPE) cartridge, styrene divinylbenzene polymetric sorbent Agilent Mega Bond Elut Plexa, 6 cc cartridge, 500 mg Sorbent per cartridge, Cat. No. 12259506,or equivalent.
- SPE vacuum extraction manifold "Resprep" 24-port manifold; Restek Corp catalogue # 26080, or equivalent.
- 8. Polypropylene SPE delivery needles Agilent; Cat. No. 12234511.
- 9. Polypropylene SPE Reservoirs, 25-mL Sigma Aldrich Cat. No. 24258-U.
- 10. Centrifuge "Q-Sep 3000"; Restek Corp. Cat. No. 26230, or equivalent, capable of 3000 rpm.
- 11. Disposable polyethylene pipette Fisher Scientific, Cat. No. S30467-1 or equivalent
- 12. Auto Pipettes Eppendorf; capable of accurately dispensing 10µl 1000µl.
- 13. Polypropylene pipette tips: 0-200µl. Fisher; Cat. No. 02-681-135
- 14. Polypropylene pipette tips: 101-1000µl. Fisher, Cat. No. 02-707-508
- 15. Pipettes Disposable transfer. Fisher Scientific, Cat. No. 13-711-7M
- 16. Vortex mixer, variable speed, Fisher Scientific or equivalent
- 17. N-Evap sample extract concentrator with N₂ supply and water bath for temperature control.
- 18. Reagent Water Purification System: Capable of producing ultrapure "Type 1/Milli-Q"-grade water from in-house deionized water system. Millipore SAS; Cat. No. FTPF08831.
- 19. Thermo Target PP Polyspring inserts, catalog number C4010-630P
- 20. Waters 9mm vial kit pack, catalog number 186005660CV, or equivalent (Note: Caps are tested to show they are PFAS free by soaking in Mehtanol and analyzing for PFAS.)
- 21. Centrifuge tubes 50-mL conical polypropylene with polypropylene screw caps; Fisher Scientific, Cat. No. 06-443-21 or equivalent
- 22. Polypropylene bottles for standard storage 4 mL; Fisher Scientific, Cat. No. 2006-9125
- 23. 250-mL HDPE bottle with 1.25g Trizma added, Scientific Specialties Catalog # 334008-1.25Triz.
- 24. Promochrom sample extraction system
- 25. Bottle; HDPE; natural; wide mouth; QC; 125 ml; 38-415; 48 EA, Environmental sampling supply inc. cat#0125-1060-QC
- 26. AB Sciex Triple Quad 4500 Turbo V Ion Source or AB Sciex API 4000 Turbo V Ion Source LC/MS/MS or equivalent

ExionLC Controller ExionLC AC Pump ExionLC AC Autosampler Exion AC Column Oven Data system – Analyst 1.6.3

27. HPLC columns

- a. Proprietary Content
- b. Proprietary Content

Reagents and Standards

All solvents, acids, and bases are stored in glass bottles in flammable proof cabinets or pressure resistant steel drums. Solvents, acids, and bases are stored at ambient temperature for up to 1 year. All non-solvents are stored according to manufacturer's storage conditions.

A. Reagents

- 1. Methanol Honeywell, Chromasolv LC-MS or equivalent.
- 2. Milli-Q Water
- 3. Ammonium acetate Sigma Aldrich or equivalent.
- 4. 20 mM ammonium acetate solution Weigh 1.54 ± 0.01 g ammonium acetate into a 1-L bottle. Add 1 L Milli-Q water and mix well. Ammonium acetate is volatile and this solution must be replaced weekly or more frequently if degradation is observed. This solution may be prepared in larger or smaller volumes as long as final concentrations are equivalent. Store at room temperature.
- 5. 20 mM ammonium acetate solution in 0.5% Milli-Q water/methanol Weigh 1.54 ± 0.01g ammonium acetate into a 2-L glass mobile phase bottle. Add 5 mL of Milli-Q water to dissolve the Ammonium Acetate. Bring up to 1 L with methanol and mix well. Store at room temperature for up to one week or until degredation is observed. Different volumes can be prepared as long as final concentrations are equivalent.
- 6. Trizma Pre-set crystals Sigma catalog # T-7193 or equivalent, reagent grade or equivalent.
- B. Standards Preparation

Standards are prepared using calibrated syringes or pipettes, polypropylene microcentrifuge tubes, polypropylene bottles, and 10 ml Class A PP volumetric flasks to create solutions at desired concentrations. The concentrated solution is injected below the surface of the diluting solvent. After preparation is completed, standards should be vortexed to ensure complete mixing. Measurement of volumes less than 5 μ l should be avoided in routine production operations.

Calibration standards and intermediate solutions are stored at room temperature in labeled 4-mL polypropylene bottles or 15-mL polypropylene centrifuge tubes with screw caps.

Expiration dates are managed through TALS Reagent. All stocks transferred from sealed glass ampules to screw-capped vials are given expiration dates of 1 year from the date opened or the expiration date provided by the vendor, whichever occurs sooner. All intermediate solutions are given an expiration date of 6 months from the preparation date, or the expiration date from the ampule provided by the vendor, whichever occurs sooner. Working calibration standards are given an expiration date of 1 month, or the expiration date of the solutions used to prepare the working solution, whichever occurs sooner. Standards are prepared prior to the expiration date if degradation is observed.

Working native and labeled (surrogate and internal standard) compound spiking solutions are given an expiration date of 2 months, or the expiration date of the solutions used to prepare the working solution, whichever occurs sooner. The solutions are stored in labeled polypropylene (PP) screw-top vials or PP centrifuge tubes at room temperature. When these solutions are prepared they must be tested prior to use in the PFAS extraction lab and verified monthly until

they are consumed by operations or expire. Records of the standard verification are stored in TALS Reagent. Prior to use, the working spiking solution must meet recovery windows of 85-115% for all compounds that will be analyzed using that solution. Should a standard fail to meet these criteria, it should be reanalyzed in duplicate on a second LC/MS/MS system. If the reanalysis meets acceptance criteria, the solution can be used. If the reanalysis does not meet acceptance criteria, the solution must be discarded, re-prepared, and analyzed.

1. Standard Solutions and Ordering information

<u>Attachment 4</u> describes the required standard solutions and associated ordering information. The primary/preferred standard vendor is Wellington Laboratories, Inc. Ontario, Canada. Listed catalog numbers are taken from Wellington product lists. Equivalent standards may be substituted, if the listed standards are unavailable. The solution concentration listed is as presented on the certificate of analysis and includes adjustment for purity and the salt form of the compound used.

NOTE: The concentrations referenced for the sulfonate salts, (for example PFBS, PFHxS and PFOS) have already been corrected to the acid form by the standards supplier as noted in the example Certificate of Analysis (CofA). See <u>Attachment 8</u>.

If the compound purity is assayed to be 96% or greater, weight can be used without correction to calculate concentrations. Ampules are stored in the refrigerator.

2. TALS Reagent database:

Log purchased standards into TALS Reagent. Select the solution category SOURCE for purchased mixes and/or single-compound ampules. TALS Reagent system will assign formatted names to the purchased standard solutions. The automatically-generated name can be overwritten with a manually created name if desired. Use labels printed through the TALS Reagent to identify and track standard solutions after transfer from original ampule to storage vial. The CofA for the ampulated stock standard is attached in TALS Reagent for reference.

- 3. Preparation of intermediate-concentration solution mixes is necessary to prepare the working initial calibration standards. <u>Attachment 5</u> describes the Intermediate solutions required for preparation of working calibration standards, ICV, and linear branched standard solutions. Enter the appropriate information into TALS Reagent as the intermediate solutions are prepared.
- 4. All working calibration solutions are prepared in 96% methanol/water and are stable for at least 1 month if stored at room temperature. The working calibration standards are prepared using ampulated stocks(see <u>Attachment 4</u>), as well as the intermediate solutions (see <u>Attachment 5</u>) The preparation of the working calibration standards are described in <u>Attachment 6</u>.

Calibration standards consist of five levels of increasing native-compound concentration and constant concentrations of mass-labeled compounds functioning as internal standards. Also included in the initial calibration are: a Method Detection Limit (MDL)-level standard, a linear and branched standard for T-PFOA, and an Initial Calibration Verification (ICV) standard. The ICV should be from an alternate vendor ("2nd source"), if possible, other than the primary source. For PFAS analysis, it is common to use mixes from the same vendor (Wellington Labs), but from a separate/different manufactured lot number.

The following represents an example of standard naming/codes generated from TALS Reagent for an initial 5-point (level) PFAS calibration, with MDL, linear and branched standard for T-PFOA, and ICV standards:

537_DW-B_MDL_00051 (MDL) 537_DW-B_CAL1_00051 (CAL1) 537_DW-B_CAL2_00051 (CAL2) 537_DW-B_CAL3_00051 (CAL3) 537_DW-B_CAL4_00051 (CAL4) 537_DW-B_CAL5_00051 (CAL5) 537_DW-B_ICV_00051 (ICV) Preparation of working native spike solutions (for spiked batch QC; LLFB/LFB/LFBD; LFSM/LFSMD), mass-labeled surrogate spike solution, and internal spike solution are described in <u>Attachment 7</u>.

Preparation of Glassware

Not applicable

Calibration

See Procedure section B.4 through B.5.

Procedure

- A. Manual Sample Extraction
 - 1. Weigh full sample container on a calibrated top loading balance and record the first reading in the automated prep entry system.

- 2. Use a 250ml HDPE bottle with 1.25g Trizma added(see Apparatus and Equipment 23.) for the extraction blank and the LFB. Fill each bottle with 250 +/- 0.4 grams of Milli-Q water.
- 3. Assemble the SPE extraction apparatus and attach the SPE cartridges. Label each cartridge with the appropriate sample number.
- 4. Condition each SPE cartridge with 15 mL methanol followed by 18 mL of Milli-Q water. Discard the eluent. Add 4-5 mL of reagent water to each cartridge. Do not let the cartridge go dry at any point during the conditioning process.
- 5. Vortex all spike solutions prior to use.
- Spike QC samples (LFB/LFBD/LFSM/LFSMD) with 40 μl of native spike. Rotate the native spike for each batch prepped between the mid-level(537_SW-B_MID_), and highlevel(537_SW-B_High_) spikes. Spike QC and all samples with 1ml of surrogate spike(537_DW-B_SURL_). Vortex to thoroughly mix.
- Spike LLFB with 20 µl of Low-Level Native Spike(537_DW-B_LOW_) and 1 mL of surrogate spike(537_DW-B_SURL_). Vortex to thoroughly mix.
- 8. Attach a 25-mL SPE adaptor to each cartridge. Load the spiked samples/QC to the respective cartridges. Allow full volume to pass the each cartridge by gravity, if possible. Apply light vacuum if necessary. The flow rate should be approximately 10-15 mL per minute.
- 9. After the sample has fully eluted, rinse the sample bottle with 7.5 mL of Milli-Q water and add to the cartridge. Rinse the sample bottle with a second 7.5 mL of Milli-Q water and add to the cartridge.
- 10. After full volume and water rinses have passed through the cartridges, discard all waste from the reservoir.
- 11. Wipe each SPE needle with a Kim-wipe/methanol.
- 12. Dry cartridges with vacuum. No more than 15" Hg for approximately five minutes. Inspect the cartridge to ensure it is dry. Use of a visual standard is done to ensure that the cartridge has reached dryness.

- 13. Place labeled 15-mL polypropylene centrifuge collection tubes under each respective SPE cartridge.
- 14. Add 4 mL of methanol to each empty sample bottles and shake well.
- 15. Transfer the methanol from the bottles to the SPE reservoir.
- 16. Elute each cartridge with the 4 mL of methanol. Collect the 4 mL into the polypropylene centrifuge tubes. Repeat steps 13 and 14 a second time.
- 17. Repeat steps 14 16 a second time, collecting into the same polypropylene centrifuge tubes.
- 18. Concentrate on the N-Evap at no more than 40°C to dryness.
- 19. Add 1 mL of internal standard spike(537_DW-B_ISL_) to each extract. Extracts should be stored at room temperature in polypropylene centrifuge tubes until analysis.
- 20. Place each empty sample bottle on the top-loading balance and weigh. Record the second reading in the automated prep entry system. The prep entry system will calculate the sample weight. Record the calculated weight as the sample volume on the batchlog.

B. Automated Sample Extraction using Promochrom

This procedure can be used in place of the manual extraction described above.

- 1. Weigh full sample container on a calibrated top loading balance and record the first reading in the automated prep entry system.
- 2. Use a 250ml HDPE bottle with 1.25g Trizma added(see Apparatus and Equipment 23.) for the extraction blank and the LFB. Fill each bottle with 250 +/- 0.4 grams of Milli-Q water.
- 3. Fill the bottle on top of the promochrom with methanol and water, select clean sys from drop down menu, press the green check mark then select start. A window showing how much of each solvent that is needed will pop up, select ok.
- 4. Vortex all spike solutions prior to use.
- Spike QC samples (LFB/LFBD/LFSM/LFSMD) with 40 μl of native spike. Rotate the native spike for each batch prepped between the mid-level(537_SW-B_MID_), and highlevel(537_SW-B_High_) spikes. Spike QC and all samples with 1ml of surrogate spike(537_DW-B_SURL_). Vortex to thoroughly mix.
- Spike LLFB with 20 µl of Low-Level Native Spike(537_DW-B_LOW_) and 1 mL of surrogate spike(537_DW-B_SURL_). Vortex to thoroughly mix.
- 7. Remove clean cartridges and attach the cartridges that will be used when running the samples. Disconnect the clean bottles then attach the sample bottle being sure to twist the bottle and not the cap, then place sample bottle upside down in corresponding numbered location on shaker. Poke two holes into the lip of each bottle. Load labeled centrifuge tubes in the moving tray beneath the cartridges.
- 8. Select EPA 537 from drop down menu, press the green check mark, and then press start. Select okay on pop-up menu after assuring there is enough of the solvents needed.
- Once the cycle is complete remove centrifuge tubes and discard the used cartridges and bottles. Reattach clean bottles and cartridges, select clean sys from menu, select start (this must be done between each batch and the beginning and end of the day).
- 10. Concentrate on the N-Evap at no more than 40°C to dryness.
- 11. Add 1 mL of internal standard spike(537_DW-B_ISL_) to each extract. Extracts should be stored at room temperature in polypropylene centrifuge tubes until analysis.

- 12. Place each empty sample bottle on the top-loading balance and weigh. Record the second reading in the automated prep entry system. The prep entry system will calculate the sample weight. Record the calculated weight as the sample volume on the batchlog.
- C. LC/MS/MS Analysis

Tuning and calibration for the LC/MS/MS: Refer to the instrument manufacturer's instructions for tuning and conditions. These values are stored in the tune file for future reference, and may not need to be changed unless loss of response is noted.

1. Chromatographic conditions

Below are the recommended chromatographic conditions for the reversed-phase separation. Modifications to these conditions can be made at the discretion of the analyst to improve resolution or the chromatographic process. Proprietary Content

- 2. Example acquisition method: See Proprietary Content
- 3. Load sample vials containing standards, quality control samples, and sample extracts into autosampler tray. Allow the instrument adequate time to equilibrate to ensure the mass spec

and LC have reached operating conditions (approximately 5 minutes) before the first injection. Analyze several solvent blanks to clean the instrument prior to sample acquisition. An example sequence would be:

Initial Calibration Sequence:

Solvent
 Solvent
 Solvent
 Solvent
 Solvent
 CAL1
 CAL2
 CAL3
 CAL4
 CAL5
 Solvent
 MDL
 ICV
 L+B CAL3
 CCC-CAL3

If the initial calibration passes, schedule a solvent blank followed by batch QC and samples.

Sample Sequence:

- 1. Solvent
- 2. Solvent
- 3. Solvent
- 4. Solvent
- 5. CCC1-CAL1
- 6. Method Blank (LRB)
- 7. LFB
- 8. LFBD
- 9. LLFB
- 10. LFSM
- 11. LFSMD
- 12. Sample
- 13. Sample
- 14. Sample
- 15. Sample 16. Sample
- 17. CCC2-CAL3

CCC's are acquired after every 10 samples. See C.6.a for more information.

Solvent = 96% methanol in water

If the system is acquiring data overnight, schedule four solvent blanks at the end of the sequence prior to the system going into standby mode

- 4. Initial Calibration
 - a. Inject a minimum of 5 calibration standards. The low concentration standard must be at or near the MRL (See *Attachment 3*). The curve must be forced through zero and may be concentration weighted 1/x.
 - b. Back calculated concentrations for each analyte in each calibration level must be within 70% to 130% of its true value with the exception of the low calibration standard, CAL 1, where the back calculated concentration must be within 50% to 150% of its true value.

- c. The relative percent difference (RPD) between the high and low areas for each internal standard must be <20%.
- d. Analyze a Linear and Branched-standard that contains linear and branch chained isomers of PFOA. The analysis of this standard is used to demonstrate where the branch chained isomers elute and not included in the calibration curve. This will assist the chemist in identifying and properly integrating these compounds in samples.
- e. Peak asymmetry factor: Must be calculated with each ICAL. The factor for the first two eluting peaks in the mid-level CAL standard must fall in the range of 0.8-1.5.
- f. See *Attachment 2* for relationship between injection standard, extraction standard, and native compound.
- g. After the initial calibration, inject a solvent blank to demonstrate that there is no carryover.
- 5. Calibration confirmation by second source standards

Once the calibration curve has been established, analyze second source mid-level standard as QCS to confirm the validity of the calibration curve/standard. A different lot of the standard or standard from a second vendor could be used. The calculated amount for each analyte must be \pm 30% of the true value

- 6. Continuing calibration check
 - a. The continuing accuracy must be verified by analysis of a continuing calibration Check (CCC) standard up to every ten samples and at the beginning and the end of each group of analyses. The opening CCC of the sequence must be at or below the MRL (See *Attachment 3*) in order to verify instrument sensitivity prior to sample analysis. All subsequent CCCs should alternate between the medium and high concentration CAL standards.
 - b. The absolute areas of the quantitation ions for the internal standards (IS) must be within 70%-140% of the areas measured in the most recent CCC and within $\pm 50\%$ of the average areas measured during the most recent ICAL.
 - c. The calculated amount for each target analyte and surrogate must be within $\pm 30\%$ of the true value for all CCCs except the low concentration CCC. For the low concentration CCC, each target compound must be within $\pm 50\%$ of the true value and each surrogate percent recovery must be within $\pm 30\%$ of the true value.
 - d. Samples that are not bracketed by acceptable CCC runs must be reanalyzed. If the CCC recoveries are running high indicating increased sensitivity, and no detections of target analytes are observed, the data may be reported with a comment.
- 7. Sample analysis
 - a. Usually the LFB and matrix spike samples are analyzed at the beginning of the analytical set, samples are analyzed next. Bracket each set of up to ten samples with a continuing calibration Check (CCC) standard.
 - b. Process each sample and review the chromatogram closely. Evaluate all integrations, baseline anomalies, and retention time differences.
 - c. All internal standard recoveries in QC and field samples must be within 70%-140% of the response in the most recent CCC and within ± 50% difference of the average response from the most recent ICAL. If the internal standard areas do not meet these criteria, a second aliquot of the sample may be analyzed. If the analysis of the second aliquot is acceptable, report those results. If the analysis of the second aliquot still yields internal standard responses that do not meet criteria, the sample may need reextracted if it is still within holding time or flagged with a comment on the analysis report.

- d. All surrogate recoveries in QC and field samples must within the range of 70%-130%. If the recoveries fall outside this range the sample must be re-extracted.
- e. Evaluate laboratory reagent blank (LRB). No target analytes can be detected above the MDL, which is less than 1/3 the MRL. If there are positive detections in the LRB but no detections in the associated samples the data may be reported. If there are positive detections in the LRB above the MDL, and detections of the same target analytes in the associated samples, the samples must be re-extracted.
- f. Evaluate the laboratory fortified blank (LFB). All native recoveries should be within 70%-130% except the low fortified LFB. The acceptance criteria for the low fortified LFB is 50%-150%. If recoveries fall outside these acceptance ranges for the LFB (native recoveries), re-inject all samples with the LFB. If issue persists, further evaluation of the system and possible re-extraction may be required. If re-extraction is required, all associated samples must also be re-extracted.
- g. Evaluate the laboratory fortified sample matrix and matrix duplicate (LFSM/LFSMD). All native recoveries should be within 70%-130%. The RPD's should be less than or equal to 30%.
- h. If any targets are detected above the reporting limit in a sample, evaluate the field reagent blank (FRB). If any targets found in the field samples are also found in the FRB at concentrations > 1/3 the MRL, all field samples associated with the FRB must be recollected and reanalyzed. If a FRB is not submitted with a field sample, a comment will be added to the analysis report. The FRB must contain the same lot number of Trizma as the associated sample set.

Calculations

1. Internal standards

Calculating the %D

```
%D for CAL standards = ((IS Area - AVG Area from the Calibration)/AVG Area from the Calibration) * 100
```

For samples:

```
%Recovery IS =(((IS Area –IS area CCC)/ IS Area CCC) + 1) * 100
```

Where CCC = most recent/opening bracket CCC

2. Surrogate Standards; Target Compounds

Combo factor = Dilution factor * Prep factor * (Sample Volume/Sample Weight)

Note: Prep factor = 1

SUR Actual Concentration = Expected Concentration (for a sample with a final volume of 1 mL) * Combo factor

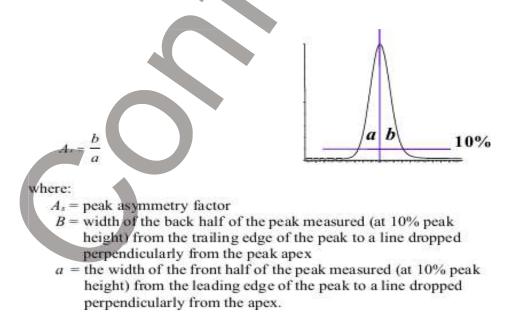
Calculated Concentration = (Area Ratio/Slope of the curve) * IS Conc * DF

For surrogates: Slope of the curve = Average area from the calibration standards

IS Conc varies depending on the associated IS: 13C2-PFOA = 10 ng/mL, 13C4-PFOS = 28.68 ng/mL, d3-NMeFOSAA = 40 ng/mL.

Sample Result = Calculated Concentration * Combo factor

% REC for surrogates = [((Sample Result-SUR Actual Concentration)/SUR Actual Concentration)+1] *100


See *T-PEST-WI9847* for details on all calculations/equations used to evaluate the initial and continuing calibration and QC samples.

Statistical Information/Method Performance

The LFB should contain all compounds of interest. LFB, MS/Ds, surrogate standard recoveries, and RPD are compared to the limits stored in the LIMS. These limits are defined in the method. Historical data for MS/Ds, LFD/Ds, measurement of uncertainty, is reviewed at least annually. Reporting limits including method detection limits (MDLs) and limits of quantitation (LOQs) are set according to EPA method requirements and are evaluated annually. Refer to *QA-SOP11892* for specific guidelines and procedures. Updates to the LIMS are made as needed by the QA Department and only as directed by the supervisor.

The initial demonstration of capability for this method has been carried out as listed in Section 9.2 of the reference method. See below for items not addressed elsewhere in the SOP.

- 1. Initial Demonstration of Low System Background Performed any time a new lot of SPE cartridges, solvents, centrifuge tubes, disposable pipets and autosampler vials are used.
 - a. No peaks are present within the retention time window of any analyte that would prevent the determination of that analyte. If any peaks are present, determine the source of the contamination and eliminate the interference before sample analysis.
 - b. Background from method analytes must be below 1/3 of the MRL.
- 2. Initial Demonstration of Peak Asymmetry factor- Performed during the IDC and every time a new calibration curve is generated.
 - a. Calculate the peak asymmetry factors for the first two eluting peaks in a mid-level CAL standard using the following equation:

- b. Peak asymmetry factors must fall in the range of 0.8 to 1.5
- c. If the criteria are not met, corrective action must be taken prior to sample analysis.

- 3. Minimum Reporting Level (MRL) confirmation
 - a. Fortify, extract, and analyze seven replicate LFBs at the proposed MRL concentration.
 - b. Calculate the mean measured concentration and standard deviation of the replicates.
 - c. Determine the Half Range for the prediction interval of results (HR_{PIR}) using the equation below:

$$HR_{PIR} = 3.963s$$

where

s = the standard deviation
3.963 = a constant value for seven replicates.

d. The Upper PIR limit must be less than or equal to 150% recovery using the equation below:

 $\frac{Mean + HR_{PIR}}{Fortified Concentration} \times 100\% \le 150\%$

e. The Lower PIR Limit must be greater than or equal to 50% recovery using the equation below:

 $\frac{Mean - HR_{PIR}}{Fortified Concentration} \times 100\% \ge 50\%$

- f. The MRL is validated if both the Upper and Lower PIR limits meet the criteria
- g. If the criteria is not met, the MRL is too low and must be determined again at a higher concentration.

Quality Assurance/Quality Control

For each batch of samples extracted, an LRB, an LLFB (Milli-Q water spiked with all compounds to be determined carried through the entire procedure spiked at the MRL), an LFB (Milli-Q water spiked with all compounds to be determined carried through the entire procedure), and an LFSM/LFSMD must be extracted. If there is limited sample that prevents the preparation of an LFSM/LFSMD then an LFBD may be prepared instead. However, the final report must then include a comment indicating the method specified LFSM/LFSMD was not analyzed due to insufficient sample submission. A batch is defined as the samples to be extracted on any given day, but not to exceed 20 field samples. If more than 20 samples are prepared in a day, an additional batch must be prepared. A field reagent blank (FRB) must be analyzed for each set of client samples submitted. This is to ensure no PFAS compounds are being introduced in the field. If one is not submitted, a comment will be added to the analysis report.

Note: If residual chlorine is present in regulated drinking water samples from PA, the sample is rejected.

If any client, state, or agency has more stringent QC or batching requirements, these must be followed instead.

Attachment:

Attachment 1 – Proprietary Content

Attachment 2 - IS-SS-Target Compound Associations (.docx)

US Eurofins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page 16 of 52 Version 1.0 Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST Attachment 3 - MRLs (.doc) Attachment 4 - Ampulated Standards (.doc) Attachment 5 - Intermediate Solutions (.doc) Attachment 6 - Working Calibration Standards (.doc) Attachment 7 - Spiking Solutions (.doc) Attachment 8 - Example CofA (.pdf)

11892 Determining Method Detection Limits and Limits of Quantitation 23905 EPA Drinking Water Manual 23907 Redacted SOPs 6830 Sampling Collection Instructions 9847 Common Equations Used During Chromatographic Analyses Attachment: Attachment 1 – Proprietary Content Attachment: Attachment 2 - IS-SS-Target Compound Associations (docx) Attachment: Attachment 3 - MRLs (doc) Attachment: Attachment 4 - Ampulated Standards (doc) Attachment: Attachment 5 - Intermediate Solutions (doc) Attachment: Attachment 6 - Working Calibration Standards (doc) Attachment: Attachment 7 - Spiking Solutions (doc) Attachment: Attachment 8 - Example CofA (pdf)

End of document

Version history

Version	Approval	Revision information	
6	16.NOV.2020		
7	28.DEC.2021		
8	30.DEC.2022		

Γ	Internal
	Standards
Γ	13C2-PFOA
ſ	13C4-PFOS
	d3-NMeFOSAA

Surrogates	Internal Standard
13C2-PFHxA	13C2-PFOA
13C2-PFDA	13C2-PFOA
13d5-NEtFOSAA	d3-NMeFOSAA
13C3-HFPODA	13C2-PFOA

Target Compounds

13C3-HFPODA	13C2-PFOA	
Target Compounds		
Target Compound	Internal Standard	
PFHxA	13C2-PFOA	
PFHpA		
PFOA		
PFNA		
PFDA		
PFUnDA		
PFDoDA		
PFTrDA		
PFTeDA		
HFPODA		
DONA		
PFBS	13C4-PFOS	
PFHxS		
PFOS		
9CI-PF3ONS		
11CI-PF3OUdS		
NMeFOSAA	d3-NMeFOSAA	
NEtFOSAA		

List of MRLs for Method Constituents

Compound	MRL (ng/l)	
•		
NEtFOSAA	2	
NMeFOSAA	2	
PFBS	2	
PFDA	2	
PFDoDA	2	
PFHpA	2	
PFHxA	2	
PFHxS	2	
PFNA	2	
PFOA	2	
PFOS	2	
PFTeDA	2	
PFTrDA	2	
PFUnDA	2	
HFPODA	2	
DONA	2	
9CI-PF3ONS	2	
11CI-PF3OUdS	2	

Attachment "Attachment 3 - MRLs" to "US Eurofins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water Page 20 of 52 by Method 537.1 Version 1.0" Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST

Single compound Ampulated solutions (natives)

Analyte (Wellington Cat. #)	CAS No	Conc. (µg/mL)	Acronym
N-methylperfluoro-1-octanesulfonamidoacetic acid (N-MeFOSAA)	2355-31-9	50	NMeFOSAA
N-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA)	2991 -50- 6	50	NEtFOSAA
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	83329-89-9	47.1	11CI- PF3OUdS
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	958445-44-8	47.1	DONA
Hexafluoropropylene oxide dimer acid (HFPODA)	13252-13-6	50	HFPODA
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	73606-19-6	46.6	9CI-PF3ONS

NATIVE BRANCHED/LINEAR ISOMERS

Single-compound ampoulated solutions

Analyte (Wellington Cat. #)	CAS No	Conc. (µg/mL)
Technical Ammonium Perfluorooctanoate (T- PFOA)	95328-99-7TG	50

Mixture ampoulated solutions

Native PFAS Primary Dilution Standard(PDS) Mix, Wellington Cat. #: EPA-537PDS-R1.

This 1.2 ml ampoulated mix contains the following Native PFCA/PFAS compounds:

Analyte (Wellington Cat. #)	CAS No	Conc. (ng/mL)	Acronym
N-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA)*	2991-50-6	2000	NEtFOSAA
N-methylperfluoro-1-octanesulfonamidoacetic acid (N-MeFOSAA)*	2355-31-9	2000	NMeFOSAA
Potassium perfluoro-1-butanesulfonate (PFBS)	375-73-5	1770	PFBS
Perfluoro-n-decanoic acid (PFDA)	335-76-2	2000	PFDA
Perfluoro-n-dodecanoic acid (PFDoDA)	307-55-1	2000	PFDoDA
Perfluoro-n-heptanoic acid (PFHPA)	375-85-9	2000	PFHpA
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	2000	PFHxA
Sodium perfluoro-1-hexanesulfonate (PFHxS)*	355-46-4	1824	PFHxS
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	2000	PFNA
Perfluoro-n-octanoic acid (PFOA)	335-67-1	2000	PFOA
Sodium perfluoro-1-octanesulfonate (PFOS)*	1763-23-1	1851	PFOS
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	2000	PFTeDA
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	2000	PFTrDA
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	2000	PFUnDA
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	83329-89-9	1860	11CI- PF3OUdS
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	958445-44-8	1890	DONA
Hexafluoropropylene oxide dimer acid (HFPODA)	13252-13-6	2000	HFPODA
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	73606-19-6	1860	9CI-PF3ONS

*Note: NEtFOSAA, NMEFOSAA, PFHxS, and PFOS concentration includes the branched and linear isomers.

MASS-LABELED SURROGATE STOCKS

MASS-LABELED SURROGATE STOCKS			
Single-compound ampoulated solutions			
Analyte (Wellington Cat. #)	CAS No	Conc. (µg/mL)	Acronym
Perfluoro-n-[1,2-13C2]decanoic acid (MPFDA)	335-76-2L	50	13C2-PFDA
N-ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (d5-N-EtFOSAA)	2991-50-6L	50	d5- NEtFOSAA
Perfluoro-n-[1,2,3,4,6-13C5]hexanoic acid (MPFHxA)	307-24-4L	50	13C2-PFHxA
2,3,3,3,-Tetrafluoro-2-(1,1,2,2,3,3,3- heptafluoropropoxy)-13C3-propanoic Acid (M3HFPO-DA)	13252-13- 6LC3	50	13C3- HFPODA

MASS-LABELED INTERNAL STANDARD STOCKS

Single-compound ampoulated solutions

Analyte (Wellington Cat. #)	CAS No	Conc. (µg/mL)	Acronym
N-methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (d3-N-MeFOSAA)	2355-31-9L	50	d3- NMeFOSAA
Sodium perfluoro-1-[1,2,3,4-13C4]- octanesulfonate (MPFOS)	1763-23-1L	50	13C8-PFOS
Perfluoro-n-[1,2-13C2]octanoic acid (M2PFOA)	335-67-1L	50	13C8-PFOA

NATIVE PERFLUOROALKYLCARBOXYLIC ACIDS

(Used for preparation of Initial Calibration Verification (ICV) standard)

Wellington Cat. #: PFC-MXA 1.2ml

Analytes in Wellington Cat #: PFC-MXA(1.2ml)	CAS No	Conc. (ug/mL)	Acronym
Perfluoro-n-hexanoic acid	307-24-4	2	PFHxA
Perfluoro-n-heptanoic acid	375-85-9	2	PFHpA
Perfluoro-n-octanoic acid	335-67-1	2	PFOA
Perfluoro-n-nonanoic acid	375-95-1	2	PFNA
Perfluoro-n-decanoic acid	335-76-2	2	PFDA
Perfluoro-n-undecanoic acid	2058-94-8	2	PFUnDA
Perfluoro-n-dodecanoic acid	307-55-1	2	PFDoDA
Perfluoro-n-tridecanoic acid	72629-94-8	2	PFTrDA
Perfluoro-n-tetradecanoic acid	376-06-7	2	PFTeDA
Perfluoro-n-butanoic acid	375-22-4	2	PFBA
Perfluoro-n-pentanoic acid	2706-90-3	2	PFPeA

NATIVE PERFLUOROALKYLSULFONATES

(Used for preparation of Initial Calibration Verification (ICV) standard)

Weinington Oat. #. 11 O-WXA 1.2 mi			
Analytes in Wellington Cat. # PFS-MXA (1.2 ml)	CAS No	Conc. (ug/mL)	Acronym
Potassium perfluoro-1-butanesulfonate	375-73-5	1.77	PFBS
Sodium perfluoro-1-hexanesulfonate	355-46-4	1.89	PFHxS
Sodium perfluoro-1-octanesulfonate	1763-23-1	1.91	PFOS

Wellington Cat. #: PFS-MXA 1.2 ml

Page 4

Intermediate solutions

537 Drinking water Intermediate (DW-AB_PDSL_)

- 1. Using a calibrated syringe or an autopipette with a PP tip, add add 1.8 ml 96% methanol/water to a 4ml polypropylene (PP) bottle.
- 2. Using a calibrated syringe or an autopipette with a PP tip, add 0.2 ml (200ul) of 537_DW-B_High (see Attachment 7) to the PP bottle.
- 3. Invert several times to mix.
- 4. Vortex to mix thoroughly. Store at room temperature. Stable for 6 months unless degredation is observed.

Analyte	CAS No	Conc. (ppb)
N-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA)*	2991-50-6	50
N-methylperfluoro-1- octanesulfonamidoacetic acid (N-MeFOSAA)*	2355-31-9	50
Potassium perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	44.25
Perfluoro-n-decanoic acid (PFDA)	335-76-2	50
Perfluoro-n-dodecanoic acid (PFDoDA)	307-55-1	50
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	50
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	50
Sodium perfluoro-1-hexansulfonic acid(PFHxS)*	355-46-4	45.6
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	50
Perfluoro-n-octanoic acid (PFOA)	335-67-1	50
Sodium perfluoro-1-octanesulfonic acid (PFOS)*	1763-23-1	46.28
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	50
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	50
Perfluoro-n-undecanoic acid (PFUnDA)	2058-94-8	50
11-chloroeicosafluoro-3-oxaundecane-1- sulfonic acid (11Cl-PF3OUdS)	763051-92-9	46.5
4,8-dioxa-3H-perfluorononanoic acid (DONA)	919005-14-4	47.25
Hexafluoropropylene oxide dimer acid (HFPODA)	13252-13-6	50

Page 1

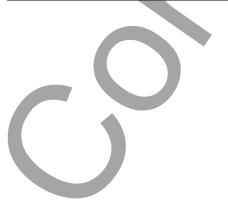
Analyte	CAS No	Conc. (ppb)
9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid (9CI-PF3ONS)	73606-19-6	46.5

*Note: NEtFOSAA, NMEFOSAA, PFHxS, and PFOS concentrations includes the branched and linear isomers.

537 Drinking Waters Linear Branched PFOA Intermediate (537_DW_B_TI)

- 1. Using a calibrated syringe or an autopipette with a PP tip, add 1.98 ml of 96% methanol/water to a 4 ml polypropylene (PP) bottle.
- 2. Using a calibrated syringe or an autopipette with a PP tip, add 0.02 ml (20 ul) of Technical Ammonium Perfluorooctanoate (T-PFOA) stock to the polypropylene bottle. (final volume of solutions is 2ml)
- 3. Mix thoroughly. Store at room temperature. Stable for 6 months unless degredation is observed.

Compound	Concentration (ppb)
T-PFOA	500


537 Drinking Water ICV intermediate A (537_DW-B_ICVI_)

1. Using a calibrated syringe or an autopipette with a PP tip, add 0.44 ml of 96% methanol/water to 4 ml polypropylene (PP) bottle. Using a calibrated syringe or an autopipette with a PP tip, add the following solutions to the same bottle.

Stock Solution	Volume (ml)
Stock Solution	Volume (iiii)
11CI-PF3OUdS stock	0.01
9CI-PF3ONS stock	0.01
DONA stock	0.01
HFPODA stock	0.01
NEtFOSAA stock	0.01
NMeFOSAA stock	0.01
PFC-MXA	0.25
PFS-MXA	0.25

- 2. Invert several times to mix.
- 3. Vortex to mix thoroughly. Store at room temperature. Stable for 6 months unless degredation is observed.

Compound	Concentration (ppb) in intermediate standard
NEtFOSAA	500
NMeFOSAA	500
PFBS	442.25
PFDA	500
PFDoDA	500
PFHpA	500
PFHxA	500
PFHxS	472.75
PFNA	500
PFOA	500
PFOS	478
PFTeDA	500
PFTrDA	500
PFUnDA	500
11CI-PF3OUdS	471
9CI-PF3ONS	466
DONA	471
HFPODA	500

Working initial calibration standards

All standards are prepared using calibrated syringes or an autopipette with a PP tip. All standards are prepared in 4 ml polypropylene (PP) bottles using 96% methanol/water. Final volume(s) for all /each standard(s) is 2 ml.

A. Calibration Standards-Volumes

Calibration Stan	dards-Vol	umes			•	7)
Solution	C	Calibratio	n Standa	rds - Volu	ımes (ml		
Solution	MDL	CAL1	CAL2	CAL3	CAL4	CAL5	
537 Drinking water intermediate	0.005	0.02	0.04	NA	NA	NA	
537_DW- B_High	NA	NA	NA	0.01	0.02	0.08	
Surrogate (537_DW- B_SUR_)	0.02	0.02	0.02	0.02	0.02	0.02	
Internal Standard (537_DW- B_IS_)	0.02	0.02	0.02	0.02	0.02	0.02	
96% methanol/water	1.955	1.94	1.92	1.95	1.94	1.88	

B. Calibration Standards-Concentrations

Compound	Calibration Standards – Concentrations (ppb)					
	MDL	CAL1	CAL2	CAL3	CAL4	CAL5
NEtFOSAA	0.125	0.5	1	2.5	5	20
NMeFOSAA	0.125	0.5	1	2.5	5	20
PFBS	0.111	0.443	0.885	2.21	4.42	17.7
PFDA	0.125	0.5	1	2.5	5	20
PFDoDA	0.125	0.5	1	2.5	5	20

Compound	Calibration Standards – Concentrations (ppb)					
	MDL	CAL1	CAL2	CAL3	CAL4	CAL5
PFHpA	0.125	0.5	1	2.5	5	20
PFHxA	0.125	0.5	1	2.5	5	20
PFHxS	0.114	0.456	0.912	2.28	4.56	18.24
PFNA	0.125	0.5	1	2.5	5	20
PFOA	0.125	0.5	1	2.5	5	20
PFOS	0.116	0.463	0.926	2.31	4.63	18.51
PFTeDA	0.125	0.5	1	2.5	5	20
PFTrDA	0.125	0.5	1	2.5	5	20
PFUnDA	0.125	0.5	1	2.5	5	20
11CI- PF3OUdS	0.116	0.465	0.93	2.325	4.65	18.6
DONA	0.118	0.4725	0.945	2.363	4.725	18.9
HFPODA	0.125	0.5	1	2.5	5	20
9CI- PF3ONS	0.116	0.465	0.93	2.325	4.65	18.6
13C2-PFDA	10	10	10	10	10	10
13C2- PFHxA	10	10	10	10	10	10
d5- NEtFOSAA	40	40	40	40	40	40
13C2-PFOA	10	10	10	10	10	10
13C4-PFOS	28.68	28.68	28.68	28.68	28.68	28.68
d3- NMeFOSAA	40	40	40	40	40	40

.

C. Linear and Branched Standard (537_DW-B_LB_) – Volumes

Solution	Linear and Branched Standard Volumes (mL)	
537 Drinking water Linear and Branched PFOA intermediate (537_DW-B_TI_)	0.01	
Surrogate (537_DW-B_SUR_)	0.02	
Internal Standard (537_DW-B_IS_)	0.02	
96% methanol/water	1.95	

D. Linear and Branched Standard - concentrations

Compound	Concentration (ppb)
13C2-PFDA	10
13C2-PFHxA	10
d5-NEtFOSAA	40
13C2-PFOA	10
13C4-PFOS	28.68
d3-NMeFOSAA	40
T-PFOA	2.5
13C3-HFPODA	10
	· · · · · · · · · · · · · · · · · · ·

E. ICV(537_DW-B_ICV_) - Volumes

Solution	ICV Volumes (mL)	
537 drinking water ICV intermediate B (537_DW-B_ICVI_)	0.01	
Surrogate (537_DW-B_SUR_)	0.02	
Internal Standard (537_DW-B_IS_)	0.02	
96% methanol/water	1.95	
ICV- Concentrations		

F. ICV- Concentrations

Concentration (ppb)
2.5
2.5
2.21
2.5
2.5
2.5
2.5
2.36
2.5
2.5
2.39
2.5
2.5

Concentration (ppb)					
2.5					
2.355					
2.33					
2.355					
2.5					
2.5					
2.5					
40					
10					
28.68					
40					
	2.5 2.355 2.33 2.355 2.5 2.5 2.5 40 10 28.68 40				

Preparation of Working Native Spike Solution (for spiked batch QC; LFB/LFBD; LFSM/LFSMD)

Working Native Spike Solutions

These are prepared using the Native PFAS PDS Mix (CAT # EPA-537PDS-R1).

Method requires alternating between low-, mid- and high-level spike concentrations for Native compounds.

- A. Low-Level Native Spike (537_DW-B_LOW_):
 - 1) Using a calibrated syringe or an autopipette with a PP tip, add 1.976 ml of 96% methanol/water to a 4 mL polypropylene(PP) vial with a screw cap.
 - 2) Using a calibrated syringe or an autopipette with a PP tip, add 0.024 ml Native PFAS PDS Mix to the PP container.
 - 3) Invert several times to mix.
 - 4) Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Compound	Concentration
	(ppb)
PFOA	24
PFNA	24
PFDA	24
PFUnDA	24
PFDoDA	24
PFTrDA	24

Compound	Concentration	
PFOA	(ppb) 24	
PFNA	24	
PFDA	24	
PFTeDA	24	+.0
PFHxA	24	
PFHpA	24	
PFBS	21.24	
PFHxS	21.89	
PFOS	22.21	
NEtFOSAA	24	
11CI-PF3OUdS	22.32	
9CI-PF3ONS	22.32	
DONA	22.68	
HFPODA	24	
NMeFOSAA	24	

- B. Mid-Level Native Spike (537_DW-B_MID_):
 - 1) Using a calibrated syringe or an autopipette with a PP tip, add 2.808 ml of 96% methanol/water to a 4 mL polypropylene(PP) vial with a screw cap.
 - 2) Using a calibrated syringe or an autopipette with a PP tip, add 0.192 ml Native PFAS PDS Mix to the PP container.

- 3) Invert several times to mix.
- 4) Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

PFOA 128 PFNA 128 PFDA 128 PFUnDA 128 PFDoDA 128 PFTrDA 128 PFTrDA 128 PFTeDA 128 PFHxA 128 PFHpA 128 PFHS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128			
PFNA 128 PFDA 128 PFUnDA 128 PFDoDA 128 PFTrDA 128 PFTrDA 128 PFTrDA 128 PFHxA 128 PFHpA 128 PFHpS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	Compound	Concentration (ppb)	
PFDA 128 PFUnDA 128 PFDoDA 128 PFTrDA 128 PFTeDA 128 PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFOA	128	
PFUnDA 128 PFDoDA 128 PFTrDA 128 PFTeDA 128 PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFNA	128	
PFDoDA 128 PFTrDA 128 PFTeDA 128 PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFDA	128	
PFTrDA 128 PFTeDA 128 PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 9CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 HFPODA 128	PFUnDA	128	
PFTeDA 128 PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFDoDA	128	
PFHxA 128 PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFTrDA	128	
PFHpA 128 PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFTeDA	128	
PFBS 113.28 PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFHxA	128	
PFHxS 116.74 PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFHpA	128	
PFOS 118.46 NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFBS	113.28	
NEtFOSAA 128 11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFHxS	116.74	
11CI-PF3OUdS 119.04 9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	PFOS	118.46	
9CI-PF3ONS 119.04 DONA 120.96 HFPODA 128	NEtFOSAA	128	
DONA 120.96 HFPODA 128	11CI-PF3OUdS	119.04	
HFPODA 128	9CI-PF3ONS	119.04	• •
	DONA	120.96	
	HFPODA	128	
	NMeFOSAA	128	

- C. High-Level Native Spike (537_DW-B_High_):
 - 1) Using a calibrated syringe or an autopipette with a PP tip, add 1.5 ml of 96% methanol/water to a 4 mL polypropylene(PP) vial with a screw cap.
 - 2) Using a calibrated syringe or an autopipette with a PP tip, add 0.5 ml Native PFAS PDS Mix to the PP container.
 - 3) Invert several times to mix.
 - 4) Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Compound	Concentration (ppb)
PFOA	500
PFNA	500
PFDA	500
PFUnDA	500
PFDoDA	500
PFTrDA	500
PFTeDA	500
PFHxA	500
PFHpA	500
PFBS	442.5
PFHxS	456
PFOS	462.75
NEtFOSAA	500
11CI-PF3OUdS	465
9CI-PF3ONS	465
DONA	472.5
HFPODA	500
NMeFOSAA	500

Preparation of Intermediate Mass-Labeled Surrogate Spike Solution (537_DW-B_SUR_).

- 1) Using a PP transfer pipette, add approximately 5-6ml 96% methanol/water to a 10ml Class A polypropylene (PP) volumetric flask.
- 2) Using a calibrated syringe or an autopipette with a PP tip, add the following aliquots of the stocks listed in the table below to the flask.

Aliquot	Concentration
of	(ppb)
Stock	
(ml)	
0.8	4000
0.2	1000
0.2	1000
0.2	1000
	of Stock (ml) 0.8 0.2 0.2

3) Bring the flask to volume using 96% methanol/water. Invert several times to mix.

 Transfer to a labeled 15 mL polypropylene centrifuge tube with a screw cap. Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Preparation of Working Mass-Labeled Surrogate Spike Solution (537_DW-B_SURL_).

This solution is added to all samples and batch QC; LFB/LFBD; LFSM/LFSMD.

- 1) Using a PP transfer pipette, add approximately 50-60ml 96% methanol/water to a 100ml Class A volumetric flask.
- Using a calibrated syringe or an autopipette with a PP tip, add 1 mL of Intermediate Mass-Labeled Surrogate Spike Solution (537_SW-B_SUR_) to the flask.
- 3) Bring the flask to volume using 96% methanol/water. Invert several times to mix.
- 4) Transfer to a labeled 125 mL polypropylene bottle. Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Compound	Concentration
	(ppb)
d5-NEtFOSAA	40
13C2-PFHxA	10
13C2-PFDA	10
13C3-HFPODA	10

Preparation of Intermediate Internal Standard Spike (537_DW-B_IS_):

- 1) Using a PP transfer pipette, add approximately 5-6ml 96% methanol/water to a 10ml Class A PP volumetric flask.
- 2) Using a calibrated syringe or an **autopipette with a PP** tip, add the following aliquots of the stocks listed in the table below to the flask.

Aliquot	Concentration
of	(ppb)
Stock	
(ml)	
0.8	4000
0.2	1000
0.6	2868
	of Stock (ml) 0.8 0.2

- 3) Bring the flask to volume using 96% methanol/water. Invert several times to mix.
- Transfer to a labeled 15 mL polypropylene centrifuge tube with a screw cap. Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Preparation of Working Internal Standard Spike (537_DW-B_ISL_):

This solution is added to all extracts prior to analysis/injection on the LC/MS/MS system.

Page 6

0

- 1) Using a PP transfer pipette, add approximately 50-60ml 96% methanol/water to a 100ml Class A volumetric flask.
- 2) Using a calibrated syringe or an autopipette with a PP tip, add 1 mL of Intermediate Internal Standard Spike(537_DW-B_IS_) to the flask.
- 3) Bring the flask to volume using 96% methanol/water. Invert several times to mix.
- 4) Transfer to a labeled 125 mL polypropylene bottle. Vortex to thoroughly mix. Store at room temperature. Stable for 2 months unless degredation is observed.

Compound	Concentration	
-	(ppb)	
d3-NMeFOSAA	4000	
13C2-PFOA	1000	
13C4-PFOS	2868	

5/6/2021

CERTIFICATE OF ANALYSIS DOCUMENTATION

EPA-537PDS-R1 410-1337460 **Native PFAS Primary Dilution** Standard Solution/Mixture 410-1484801 **PRODUCT CODE:** EPA-537PDS-R1 537PDSR10119 LOT NUMBER: SOLVENT(S): Methanol/Water (<1%) DATE PREPARED: (mmldd/yyyy) 02/14/2019 410-1304922 LAST TESTED: (mmlddlyyyy) 02/10/2021 02/10/2024 EXPIRY DATE: (mm/ddlyyyy) **RECOMMENDED STORAGE:** Refrigerate ampoule **DESCRIPTION:** 410-1346475

EPA-537PDS-R1 is a solution/mixture of native linear perfluoroalkylcarboxylic acids (PFCAs; C $_{6}$ $_{1}$ hative perfluoroalkylsulfonates (PFSAs; C linear; C and C. linear and branched), native N-substituted perfluoro-octanesulfonamidoacetic acids (N-MeFOSAA and N-EtFOSAA; linear and branched), GenX (HFPO-DA), the main components of F-53B (9CI-PF3ONS and 11CI-PF3OUdS), and the sodium salt of ADONA (NaDONA). The components and their concentrations are given in Table A.

The components of this solution/mixture all have chemical purities of >98%.

DOCUMENTATION/ DATA ATTACHED:

Table A: Components and Concentrations of the Solution/MixtureTable B: Isomeric Components and Percent Composition of N-MeFOSAATable C: Isomeric Components and Percent Composition of N-EtFOSAATable D: Isomeric Components and Percent Composition of PFHxSKTable E: Isomeric Components and Percent Composition of PFOSKFigure 1: LC/MS Data (SIR)Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acids to their respective methyl esters.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Form#:13, Issued 2004-11-10

537PDSR10119J1 p(11)

*Attaining Revisor USE Lirôfins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page 4 of 52 Version 1.0"

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS/ CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, u/y), of a value v and the uncertainty of the independent parameters *x*,, *x*,...,x'' on which it depends is:

$$uc(y(x_1, x_2, \dots, x_n)) = Iu(y, xY)$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAi Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A1226), and ISO 17034 by ANSI National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Form#:13. Issued 2004-11-10 Revision#:9, Revised 2020-12-23 537PDSR10119 (2 of 11) revs

EPA-537PDS-R1; Components and Concentrations (± 5% in methanol/water (<1%)) Table A:

Compound	Acronym		ntration* /ml)	Peak Assignment in Figure 1	
Perfluoro-n-hexanoic acid	PFHxA	20	000	В	
Perfluoro-n-heptanoic acid	PFHpA	20	000	D	
Perfluoro-n-octanoic acid	PFOA	20	000	н	
Perfluoro-n-nonanoic acid	PFNA	20	000	I	
Perfluoro-n-decanoic acid	PFDA	20	000	М	
Perfluoro-n-undecanoic acid	PFUdA	20	000	R	
Perfluoro-n-dodecanoic acid	PFDoA	20	000	Т	
Perfluoro-n-tridecanoic acid	PFTrDA	20	000	u	
Perfluoro-n-tetradecanoic acid	PFTeDA	20	000	V	
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3- heptafluoropropoxy)-propanoic acid	HFPO-DA	20	000	С	
	N-MeFOSM: linear isomer	1520		0	
N-methylperfluorooctanesulfonamidoacetic acid '	N-MeFOSM: I: branched isomers	480		N	
	N-EtFOSAA: linear isomer	1550		Q	
N-ethylperfluorooctanesulfonamidoacetic acid b	N-EtFOSAA: I: branched isomers	4	50	р	
		Concentration* (ng/ml)		Peak	
Compound	Acronym	as the salt	as the acid	Assignment in Figure 1	
Potassium perfluoro-1-butanesulfonate	L-PFBS	2000	1770	А	
	PFHxSK: linear isomer	1620	1480	G	
Potassium perfluorohexanesulfonate '	PFHxSK: I: branched isomers	378	345	F	
	PFOSK: linear isomer	1580	1460	K	
Potassium perfluorooctanesulfonated	PFOSK: I; branched isomers	422	392	J	
Sodium dodecafluoro-3H-4,8-dioxanonanoate	NaDONA	2000	1890	E	
Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate	9CI-PF30NS	2000	1870	L	
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate	11CI-PF3OUdS	2000	1890	s	

* Concentrations have been rounded to three significant figures.

See Table B for percent composition of linear and branched N-MeFOSAA isomers.
 See Table C for percent composition of linear and branched N-EtFOSAA isomers.
 See Table D for percent composition of linear and branched PFHxSK isomers.
 See Table E for percent composition of linear and branched PFOSK isomers.

lsomer	Compound	Structure	Percent Composition by ¹ •F-NMR	
1	N-methylperfluoro-1-octanesulfonamidoacetic acid	CF ₃ (CF ₂ hS0 ₂ NCH ₂ C0 ₂ H CH ₃	76.0	76.0
2	N-methylperfluoro-3-methylheptanesulfonamidoacetic acid	$CF_{3}(CF_{2})_{3}CF(CF_{2})_{2}S0_{2}NCH_{2}C0_{2}H$ CF ₃ CH ₃	0.7	
3	N-methylperfluoro-4-methylheptanesulfonamidoacetic acid	$CF_{3}(CF_{2})_{2}CF(CF_{2})_{3}S0_{2}NCH_{2}C0_{2}H$ CF_{3} CH_{3}	2.0	
4	N-methylperfluoro-5-methylheptanesulfonamidoacetic acid	СF ₃ CF ₂ уF(CF ₂₎₄ S0 ₂ CH ₂ C0 ₂ H CF ₃ CH ₃	6.0	24.0
5	N-methylperfluoro-6-methylheptanesulfonamidoacetic acid	СF ₃ уF(CF ₂₎₅ S0 ₂ CH ₂ C0 ₂ H CF ₃ CH ₃	14.0	24.0
6	N-methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid	CF ₃ I CF ₃ C(CF ₂₎₄ S0 ₂ NCH ₂ C0 ₂ H CF ₃ CH ₃	0.2	
7	Other Unidentified Isomers		1.1	

Table B: N-MeFOSAA; Isomeric Components and Percent Composition (by ¹⁹F-NMR)*

* Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

Isomer	Compound	Structure	Compo	cent osition ⁻ -NMR
1	N-ethylperfluoro-1-octanesulfonamidoacetic acid	CFiCF ₂ I?SO ₂ NCH ₂ C0 ₂ H C2Hs	77.5	77.5
2	N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid	$\begin{array}{c} CF_3(CF_2)_3CF(CF_2)_2SO_2NCH_2CO_2H\\I\\CF_3\\CF_3\\CH_5\\CH_5\\CH_2$	2.3	
3	N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid	CF ₃ (CF ₂) ₂ CF(CF ₂ hSO ₂ NCH ₂ CO ₂ H CF ₃ C2H5	2.2	
4	N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid	CF ₃ CF ₂ CF(CF ₂) ₄ SO ₂ NCH ₂ CO ₂ H CF ₃ C2H5	5.4	
5	N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid	CF ₃ yF(CF ₂) ₅ SO ₂ CH ₂ CO ₂ H CF ₃ C2H5	10.4	22.5
6	N-ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid	$\begin{array}{c} CF_3\\ F_3\\ CF_3C(CF_2)_4SO_2NCH_2CO_2H\\ I\\ CF_3\\ CF_3\\ C2H5 \end{array}$	0.3	
7	N-ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid	$ C, F_3$ CF ₃ CFCF(CF ₂) ₃ SO ₂ NCH ₂ CO ₂ H I CF ₃ C2H5	0.3	
8	N-ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid	CF_3 $CF_3CFCF_2CF(CF_2)_2S0_2NCH_2C0_2H$ CF_3 C2H5	0.3	
9	Other Unidentified Isomers		1.3	

Table C: N-EtFOSAA; Isomeric Components and Percent Composition (by ¹⁹F-NMR)*

1.340

· Percent of total N-ethylperfluorooctanesulfonamidoacetic acid isomers only.

Form#:13, Issued 2004-11-10

Religentient Religentient Religenties US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page 45 of 52 Version 1.0" Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST

lsomer	Compound	Structure	Percent Composition by ¹ •F-NMR	
1	Potassium perfluoro-1-hexanesulfonate	CF3CF2CF2CF2CF2CF2SO3-K+	81.1	81.1
2	Potassium 1-trifluoromethylperfluoropentanesulfonate**	CF ₃ CF ₂ CF ₂ CF ₂ CFSO ₃ -K+ I CF ₃	2.9	
3	Potassium 2-trifluoromethylperfluoropentanesulfonate	CF ₃ CF ₂ CF ₂ CFCF ₂ so ₃ -K+ CF ₃	1.4	
4	Potassium 3-trifluoromethylperfluoropentanesulfonate	$CF_3CF_2CFCF_2CF_2So_3-K+ CF_3CF_3$	5.0	18.9
5	Potassium 4-trifluoromethylperfluoropentanesulfonate	CF ₃ CFCF ₂ CF ₂ CF ₂ SO ₃ -K+ CF ₃	8.9	10.9
6	Potassium 3,3-di(trifluoromethyl)perfluorobutanesulfonate	CF_3 I CF ₃ CCF ₂ CF ₂ So ₃ -K+ I CF ₃	0.2	
7	Other Unidentified Isomers		0.5	

PFHxSK; Isomeric Components and Percent Composition (by ¹⁹F-NMR)* <u>Table D</u>:

* Percent of total perfluorohexanesulfonate isomers only. ** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Contracting and the contraction of the second

<u>Table E:</u> PFOSK; Isomeric Components and Percent Composition (by ¹⁹ F-NMR)*					
lsomer	Compound	Structure	cture Percent Composition by ¹⁹ F-NMR		
1	Potassium perfluoro-1-octanesulfonate	CF ₃ CF ₂ SO ₃ -K+	78.8	78.8	
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**	$CF_3CF_2CF_2CF_2CF_2CF_2CF_3C_3-K+CF_3CF_3CF_3CF_3CF_3CF_3CF_3$	1.2		
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate	$CF_3CF_2CF_2CF_2CF_2CF_2SO_3 + I CF_3$	0.6		
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate	$CF_3CF_2CF_2CF_2CFCF_2CF_2SO_3-K+$ CF $_3$	1.9		
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate	$\begin{array}{c} CF_3CF_2CF_2CF_2CF_2CF_2CF_2SO_3\text{*}K\text{+}\\ CF_3\\ \end{array}$	2.2		
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate	$\begin{array}{c} CF_3CF_2CFCF_2CF_2CF_2CF_2So_3-K+\\ I\\ CF_3 \end{array}$	4.5		
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate	$CF_3CFCF_2CF_2CF_2CF_2CF_2So_3-K+$ I CF_3	10.0	21.1	
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate	CF_3 I CF ₃ CCF ₂ CF ₂ CF ₂ CF ₂ SO ₃ -K+ I CF ₃	0.2		
9	Potassium 4,4-di(trifluorom ethyl)perfluorohexanesulfon ate	$\begin{array}{c} CF_3\\ I\\CF_3CF_2CCF_2CF_2CF_2So_3\text{-}K\text{+}\\ I\\CF_3\end{array}$	0.03		
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate	CF_3 I $CF_3CFCFCF_2CF_2CF_2SO_3 \cdot K+$ I CF_3	0.4		
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate	CF_3 $CF_3CFCF_2CFCF_2CF_2SO_3*K+$ CF_3 CF_3	0.07		

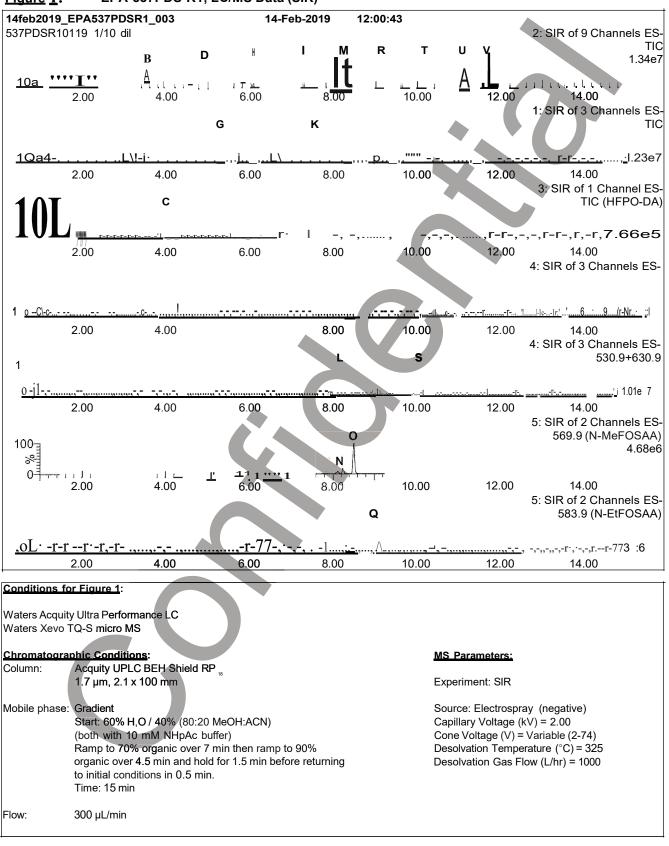
_ . . _ ------ -

And the first of the first sector of the sec

1.94

* Percent of total perfluorooctanesulfonate isomers only. ** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:


02/11/2021 Date:

B.G. Chittim, General Manager

(mmldd/yyyy)

Form#:13, Issued 2004-11-10

Attachment Revised 302 Eurofins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page^r47 of 52 Version 1.0" Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST

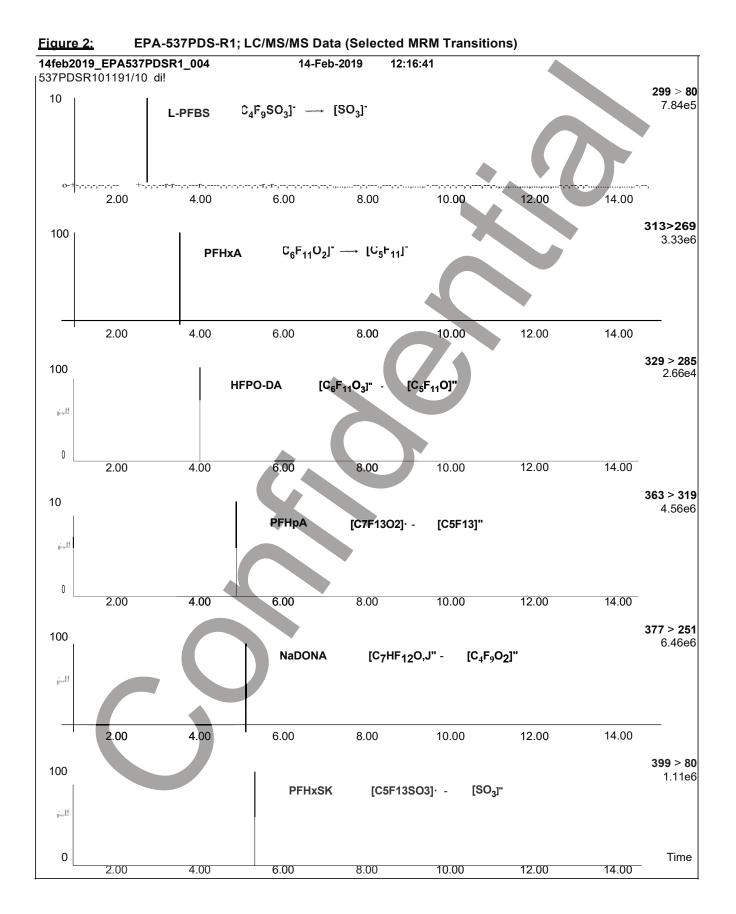


Figure 1: EPA-537PDS-R1; LC/MS Data (SIR)

Form#:13, Issued 2004-11-10

Attachment 8

Farmett. 12 lanuar 2004 14 40

Attachment "" to "US Eurofins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page 49 of 52 Version 1.0"

Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST

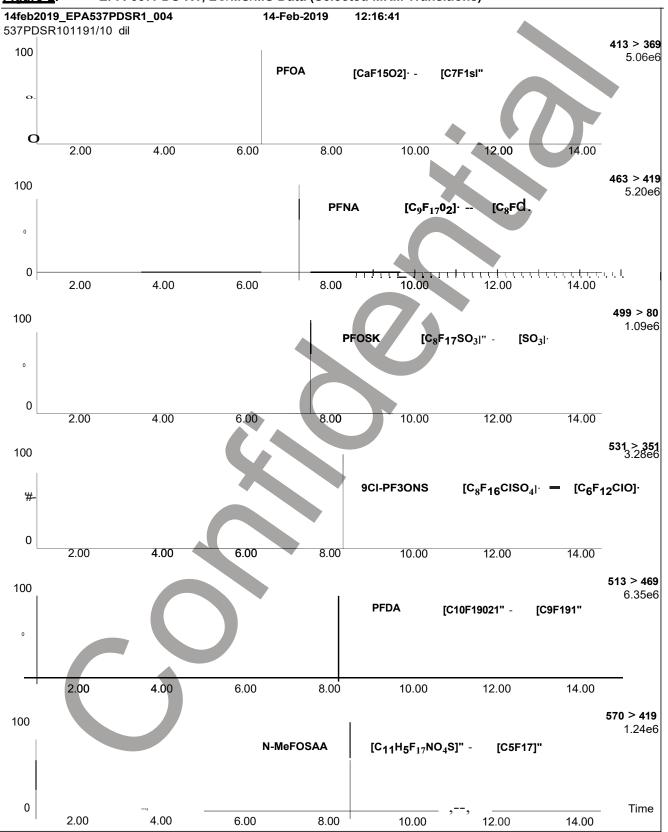
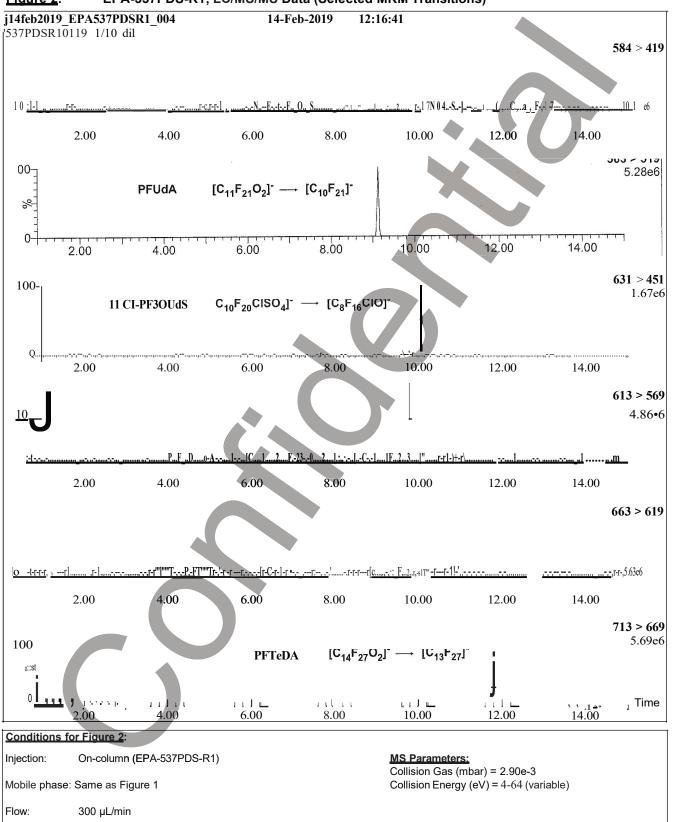



Figure 2: EPA-537PDS-R1; LC/MS/MS Data (Selected MRM Transitions)

<u>Figure 2</u>: EPA-537PDS-R1; LC/MS/MS Data (Selected MRM Transitions)

Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST

Attachment "" to "US Eurofins US Lancaster Laboratories Environmental - Perfluorinated Alkyl Substances (PFASs) in Drinking Water by Method 537.1 Page 52 of 52 Version 1.0" Printed by Lisa Cooke, d. Wed 04 Jan 2023 11:50 EST