

Underground Storage Tank Removal and Closure Report

Seventh Avenue Service Site 701 South Jackson Street Seattle, Washington

for 701 South Jackson Partners, LLC c/o Housing Diversity Corp

February 20, 2024

2101 4th Avenue, Suite 950 Seattle, Washington 206.728.2674

Underground Storage Tank Removal and Closure Report

Seventh Avenue Service Site 701 South Jackson Street Seattle, Washington

File No. 24504-001-03

February 20, 2024

Prepared for:

701 S Jackson Partners, LLC c/o Housing Diversity Corp 159 South Jackson Street Seattle, Washington 98104

Attention: Brad Padden

Prepared by:

GeoEngineers, Inc. 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Robert S. Trahan, LG

Senior Environmental Scientist

Tim L. Syverson, LHG

Associate

RST:TLS:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRO	DUCTION	1
2.0	BACK	GROUND INFORMATION	1
	2.1.1.	Site/Property Description and Future Land Use	1
	2.1.2.	Site/Property History	
	2.1.3.	Geology and Hydrogeology	2
	2.1.4.	Environmental Conditions	3
	2.1.5.	Regulatory Framework	3
3.0	PURP	OSE AND SCOPE	3
4.0	UNDE	RGROUND STORAGE TANK REMOVAL AND CLOSURE	4
4.1.	Under	ground Storage Tank-1	4
	4.1.1.	Tank and Soil Condition	4
	4.1.2.	Sampling and Analysis	5
4.2.	Under	ground Storage Tank-2	6
	4.2.1.	Tank and Soil Condition	6
	4.2.2.	Sampling and Analysis	6
4.3.	Under	ground Storage Tank-3	7
	4.3.1.	Tank and Soil Condition	7
	4.3.2.	Sampling and Analysis	7
4.4.	Under	ground Storage Tank-4	8
	4.4.1.	Tank and Soil Condition	8
	4.4.2.	Sampling and Analysis	8
5.0	SUMN	//ARY	9
6.0	LIMIT	ATIONS	9
7.0	REFEI	RENCES	. 10

LIST OF TABLES

Table 1. Summary of Soil Field Screening and Chemical Analytical Results

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Environmental Investigation Sampling Locations
- Figure 4. Fill Soil Conditions
- Figure 5. Native Soil Conditions
- Figure 6. Groundwater Conditions
- Figure 7. UST-1 Removal Excavation and Soil Sampling Locations
- Figure 8. UST-2 Removal Excavation and Soil Sampling Locations
- Figure 9. UST-3 Removal Excavation and Soil Sampling Locations
- Figure 10. UST-4 Removal Excavation and Soil Sampling Locations

APPENDICES

Appendix A. Underground Storage Tank Closure Documents

Appendix B. Site Check/Site Assessment Checklist

Appendix C. Field Program

Appendix D. Chemical Analytical Program

Appendix E. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report summarizes GeoEngineers' observations and soil sampling results associated with the discovery, removal, and permanent closure of four previously undocumented underground storage tanks (USTs), designated as UST-1 through UST-4, encountered during redevelopment of the Seventh Avenue Service Site (Site) located at 701 South Jackson Street (Property) in the Chinatown-International District neighborhood of Seattle, Washington (Figure 1). Currently, remedial actions are being completed at the Site in accordance with the Washington State Department of Ecology (Ecology) Cleanup Action Plan (Ecology 2022), Ecology-approved Contaminated Media Management Plan (CMMP; GeoEngineers 2023), and Chapter 173-340 of the Washington Administrative Code (WAC) as part of the Property redevelopment. Redevelopment plans for the Property include a new eight-story building with affordable housing and ground level commercial retail space. As part of the redevelopment, the existing buildings and structures will be demolished followed by Property-line to Property-line excavation of soils to a depth of approximately 15 to 20 feet below ground surface (bgs; Elevation 85 to 80 feet¹) and subsequent construction of the new building.

To facilitate cleanup as part of project construction, 701 S Jackson Partners, LLC (South Jackson Partners) entered into Prospective Purchaser Consent Decree (PPCD) No. 22-2-15886-7 SEA with Ecology, and the Assistant Attorney General, Ecology Division (AGO), to facilitate cleanup as part of project construction. The Site is currently listed in Ecology's database of confirmed and suspected contaminated sites under Facility/Site No. 99187287 and Cleanup Site ID No. 11348.

The purpose of this report is to document the permanent removal and closure of each of the four previously unidentified USTs in accordance with WAC 173-360A-0810 and Ecology's UST Site Check/Site Assessment guidance document (Ecology 2021). The following sections provide a summary of Site conditions, historical land use and UST removal and closure activities. The approximate locations of the former USTs are shown on Figure 2 relative to the surrounding features. Specific remedial actions completed to address Site contaminates will be documented in a Cleanup Action Report following completion of the construction project.

2.0 BACKGROUND INFORMATION

2.1.1. Site/Property Description and Future Land Use

The Property is bounded by South Jackson Street to the north, 7th Avenue South to the west, a mixed-use retail and apartment building (currently vacant) to the south, and a restaurant building (House of Hong) to the east (Figure 2). The Property (currently being redeveloped) previously contained two single-story structures, including a former gasoline station building in the northwest portion and an "L"-shaped automobile repair garage along the east and south Property boundaries, and paved parking and drive areas. A former small building on the southwest corner of the Property was previously used as a storage room for "New Century Tea Gallery". These former structures have recently been demolished to facilitate Property redevelopment.

¹ Elevations in this document are referenced to North American Vertical Datum 1988 (NAVD88).

As noted above, future use of the Property will include a new apartment building with affordable housing and ground level commercial retail space.

2.1.2. Site/Property History

Since redevelopment following the Jackson Street regrading project in 1927, the Property has been used for automobile repair and fueling services. During redevelopment, the large "L"-shaped building was constructed along the southern and eastern portions of the Property. As early as 1932, a gasoline service station was added to the northwest portion of the Property until sales of gasoline ceased in the 1970s. The former gasoline service station operations included two gasoline USTs and an associated fuel dispenser/pump island, and vehicle service/repair. In 2010, the two gasoline USTs associated with the service station were decommissioned and removed from the Property (Global 2010). A summary of the UST decommissioning activities, including the associated soil characterization and laboratory analytical results, is presented in the Remedial Investigation/Feasibility Study Report (RI/FS; GeoEngineers 2022).

2.1.3. Geology and Hydrogeology

2.1.3.1. Local Geology

Previous investigations of the Site have identified varying depths of fill material overlying pre-Vashon deposits consisting of interbedded sand, gravel, silt, and poorly sorted mixtures that are of unspecified age and origin (GeoEngineers 2022). Previous drilling and sampling locations are shown on Figure 3. The previous investigations have identified the following:

- **Fill** Surficial fill was encountered at each exploration location. The fill is approximately 4 to 7 feet thick, and may extend to depths of up to 10 feet bgs (elevation ranging from approximately 96 to 85 feet) at some exploration locations. The fill consisted primarily of silty fine to fine sand with silt containing occasional debris (concrete, plastic, metal and brick debris).
- Glacial Deposits Interbedded fine sand with silt and clayey silt is present beneath the fill deposits to a depth of approximately 12 feet bgs. Fine to medium silty sand and sand with trace silt underlies the interbedded silt and clayey silt deposits to an approximate depth of 20 feet bgs (approximately Elevation 77 feet). The glacial deposits from approximately 20 feet to the maximum depth explored (76.5 feet bgs; Elevation 22 feet) consist of fine sand with varying amounts of silt and clayey silt.

2.1.3.2. Local Hydrogeology

Moist and/or wet soil interpreted as being the result of localized shallow perched groundwater was observed in 5 of the 25 explorations completed at the Site at depths ranging from approximately 12 to 20 feet bgs (approximately Elevation 90 to 75 feet) during previous investigations (GeoEngineers 2022). The previous investigation results indicate that the shallow perched groundwater is discontinuous and not widespread.

Deep regional groundwater is present beneath the Site at a depth ranging from approximately 61 to 69 feet bgs (approximately Elevation 31 to 34 feet), based on depths to groundwater measured in one deep temporary monitoring well (GEI-1) in the central portion of the Property (Figure 3), and two deep monitoring wells (GEI-11 and GEI-12) within the west adjacent 7th Avenue right-of-way (ROW). Based on the location of the Property to surrounding surface water bodies (i.e., Puget Sound) and local topography, the inferred groundwater flow direction is to the west-northwest.

2.1.4. Environmental Conditions

Based on the results of the previous environmental investigations, soil in the central and western portions of the Property contains gasoline-range total petroleum hydrocarbons, benzene, toluene, ethylbenzene, and xylenes (BTEX), and naphthalene at concentrations greater than the applicable Model Toxics Cleanup Act (MTCA) cleanup levels (CULs) between approximately 5 and 20 feet bgs (approximately Elevation 95 to 80 feet). Additionally, localized areas of the shallow fill soil imported to the Property during construction for the former structures contain lead (GEI-6) and carcinogenic polycyclic aromatic hydrocarbons (cPAHs; GEI-4) at concentrations greater than the MTCA CULs at a depth of approximately 2.5 feet bgs. Other contaminants of potential concern including diesel- and heavy oil-range total petroleum hydrocarbons, volatile organic compounds (VOCs; not including BTEX), halogenated VOCs (HVOCs), metals (not including lead) and polychlorinated biphenyls (PCBs) either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the corresponding MTCA CULs.

Analytical results for groundwater samples collected from the deep regional groundwater unit (GEI-1, GEI-11 and GEI-12) indicate that contaminants either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the MTCA CULs.

The previous soil and groundwater investigation results are presented in the RI/FS Report and are summarized on Figures 4 through 6.

2.1.5. Regulatory Framework

The Site is listed by Ecology with Facility/Site No. 99187287 and Cleanup Site ID No. 11348 and has been identified as a Leaking Underground Storage Tank (LUST) site (LUST Release No. 592055) for benzene, naphthalene, and gasoline-range total petroleum hydrocarbons confirmed in soil at concentrations greater than the MTCA CULs. As part of the planned redevelopment, South Jackson Partners entered a PPCD No. 22-2-15886-7 SEA with Ecology, and the AGO, to facilitate cleanup as part of Property redevelopment.

Prior to initiating the PPCD process, the Site was enrolled in Ecology's Voluntary Cleanup Program (VCP) to receive Ecology's technical advice and assistance on the independent RI/FS. The Site entered into the Expedited VCP on April 23, 2021 and was assigned a VCP No. XS0009. Upon initiating the PPCD process, the VCP agreement governing No. XS0009 was terminated.

3.0 PURPOSE AND SCOPE

The activities summarized in this report were performed during Property redevelopment to document the UST removal in general accordance with Ecology's Guidance for Site Checks and Site Assessments for Underground Storage Tanks. GeoEngineers' scope of services included the following:

- 1. Obtaining samples to characterize the contents of each UST. Samples were submitted to a subcontracted laboratory (Fremont Analytical in Seattle, Washington [Fremont]) for total petroleum hydrocarbon identification (HCID) analysis.
- Observed and documented the removal of UST-1 through UST-4 and performed a Site Check/Site
 Assessment for each UST during removal and permanent closure activities as required by the
 Washington UST regulations under WAC 173-360A.

- 3. Performed field screening of soil encountered during the UST removal excavation activities for evidence of petroleum hydrocarbons and VOCs. Field screening consisted of visual, water sheen, and headspace vapor methods using a photoionization detector (PID).
- 4. Obtained soil samples adjacent to and beneath each UST for field screening and chemical analysis in general accordance with the WAC 173-340 and related guidance documents. Soil samples were submitted to Fremont Analytical for a combination or the following chemical analysis in accordance with MTCA Table 830-1 based on the initial HCID analysis and field observations:
 - a. Total petroleum hydrocarbons as gasoline-range organics (GRO), diesel-range organics (DRO), and heavy oil-range organics (ORO) by NWTPH-G and NWTPH-Dx methods.
 - VOCs including BTEX, methyl tert-butyl ether (MTBE), ethylene dibromide (EDB) and ethylene dichloride (EDC) by United States Environmental Protection Agency (EPA) 8260/8021 methods.
 - c. PCBs by EPA Method 8082.
 - d. Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270/SIM.
 - e. Metals (lead) by EPA 6000/7000 method series.
- 5. Compared the soil sample analytical results to the MTCA CULs for unrestricted land use.
- 6. Prepared this summary report documenting the UST removal and closure.

4.0 UNDERGROUND STORAGE TANK REMOVAL AND CLOSURE

STS Construction (STS) arranged for the removal and permanent closure of each UST from the Property under oversight by a certified Marine Chemist and the Seattle Fire Department. During removal and closure of each tank, the liquid contents were removed (as necessary), the tank was then inerted, and removed from the ground for appropriate off-Property disposal. The UST removal permits, Marine Chemist certificate, and other documentation related to the UST removal and closure provided by STS are presented in Appendix A.

A representative of GeoEngineers was present to observe the UST removal and document the condition of each tank. A copy of the Site Check/Site Assessment Checklist forms are presented in Appendix B. Note that in accordance with WAC 173-360A-110(1)(a), UST-1 is exempt from the requirements of WAC 173-360A based on the volume of the tank (i.e., less than 1,100 gallons) and use of the tank (i.e., heating oil). Although exempt, GeoEngineers was on Site to collect samples for chemical analysis to 1) verify the contents of this tank, and 2) evaluate whether a release had occurred to the surrounding soil. The characterization of the UST contents, condition of the tanks during removal, and the soil analytical results for samples collected at the UST removal excavation limits are summarized in the following sections (Section 4.1 through 4.4).

4.1. Underground Storage Tank-1

4.1.1. Tank and Soil Condition

On June 29, 2023, UST-1 was encountered in the southern portion of the Property adjacent to a former boiler located within the basement of the former service ("L" shaped) building (Figure 7). The UST was a single-wall, steel, cylindrical tank measuring approximately 9 feet long by 4 feet in diameter (approximately

800 gallons) and was oriented north-south. The top of the UST was located at an approximate Elevation of 87 feet (approximately 11 feet bgs). Product lines were observed near the UST extending to the east toward the former boiler. At the time of removal, the UST appeared to be weathered with minor corrosion holes along its underside. When encountered the tank contained approximately 150 gallons of a black, semi-viscous liquid. Mar-Vac removed the tank contents on July 6, 2023.

Soil observed on the sidewalls and base of the UST removal excavation consisted of moist, dark brown and gray, fine to coarse sand with silt and occasional fine gravel. Field screening of the soil at the excavation limits yielded a slight to heavy sheen and headspace vapor measurements ranging from 89 to 947 parts per million² (ppm; Table 1). Field screening methods are described in Appendix C. Groundwater was not observed in the excavation at the time of the UST removal.

4.1.2. Sampling and Analysis

One product sample (UST-230629) was collected to characterize the contents of the tank and three discrete soil samples (UST-N-86, UST-E-86 and UST-B-83) were collected from the sidewalls and base of the UST removal excavation to evaluate soil conditions. Sidewall soil samples (UST-N-86 and UST-E-86) were collected from the northern and eastern limits of the UST removal excavation. Sample locations were selected based on field screening results and the location of the observed product line extending to the former boiler (i.e., east of the UST) in this vicinity. Sidewall samples were collected at an approximate Elevation of 86 feet (approximately 12 feet bgs). The base sample was collected from the central portion of the UST removal excavation directly beneath the former tank at an approximate Elevation of 83 feet (approximately 15 feet bgs). Soil sample locations relative to the removal excavation for UST-1 are shown on Figure 7.

The product sample (UST-230629) submitted for NWTPH-HCID analysis and the location of the tank relative to the former boiler indicated that this UST-1 was used as a heating oil tank. In accordance with MTCA Table 830-1, sidewall and base samples were submitted for NWTPH-Dx, BTEX and PAH analysis to evaluate soil conditions adjacent to the tank. Chemical analytical results are presented in Table 1 and summarized below:

- ORO was detected in the northern sidewall and base soil at a concentration greater than the MTCA CUL. ORO was not detected greater than the laboratory report limit in the eastern sidewall sample.
- DRO, BTEX and PAHs (carcinogenic PAHs [cPAHs] and naphthalene) either were not detected in any of the excavation soil samples at a concentration greater than the laboratory reporting limit or were detected at a concentration less than the MTCA CULs.

Laboratory analytical reports and the data quality review are presented in Appendix D.

² Note that the former use of the Property was a gasoline service station and that remedial excavation activities are being completed in conjunction with redevelopment to address previously identified contamination (predominantly GRO). Given the nature of the historical Property use and ongoing cleanup activities, soil sample PID measurements are generally elevated throughout the Site and are not necessarily an indication of release from the UST itself.

4.2. Underground Storage Tank-2

4.2.1. Tank and Soil Condition

UST-2 was encountered in the northwestern portion of the adjacent former service station (Figure 8). The UST was a single-wall, steel, cylindrical tank measuring approximately 14 feet long by 7 feet in diameter (approximately 4,000 gallons) and was oriented east-west. The top of the UST was located at an approximate Elevation of 95 feet (approximately 6 feet below the local ground surface [bgs]). At the time of removal, the UST had no obvious signs of weathering or corrosion. When encountered, the tank contained approximately 100 to 150 gallons of a clear liquid. Mar-Vac removed the tank contents on August 8, 2023.

Soil observed on the sidewalls and base of the UST removal excavation consisted of moist, dark brown and gray, fine to coarse sand with silt and occasional fine gravel. Field screening of the soil at the excavation limits yielded a medium to heavy sheen and headspace vapor measurements of 15,000 ppm (Table 1; see footnote above regarding elevated headspace vapor measurements at the Site). Field screening methods are described in Appendix C. Groundwater was not observed in the excavation at the time of the UST removal.

4.2.2. Sampling and Analysis

One product sample (UST-2-230802) was collected to characterize the contents of the tank and three discrete soil samples (UST2-NSW-93, UST2-WSW-93 and UST2-B-89) were collected from the sidewalls and base of the UST removal excavation to evaluate soil conditions. Sidewall soil samples (UST2-NSW-93 and UST2-WSW-93) were collected from the northern and western limits of the UST removal excavation. Sample locations were selected based on field screening results. Sidewalls samples were collected at an approximate Elevation of 93 feet (approximately 8 feet bgs). The base sample was collected from the central portion of the UST removal excavation directly beneath the former tank location at an approximate Elevation of 89 feet (approximately 12 feet bgs). Soil sample locations relative to the removal excavation for UST-2 are shown on Figure 8.

The product sample (UST-2-230802) was submitted for NWTPH-HCID analysis which identified gasolineand diesel-range petroleum hydrocarbons. Although the tank likely was used for gasoline based our visual observations, in accordance with MTCA Table 830-1, sidewall and base samples were submitted for NWTPH-G, NWTPH-Dx, BTEX, PAH and lead analysis to evaluate soil conditions adjacent to the tank based on the presence of both gasoline- and diesel-range petroleum hydrocarbons. Chemical analytical results are presented in Table 1 and summarized below:

- GRO was detected in the northern sidewall and base soil samples at a concentration greater than the MTCA CUL. GRO was not detected at a concentration greater than the laboratory reporting limit in the western sidewall sample.
- DRO, ORO, BTEX, lead and PAHs either were not detected in any of the excavation soil samples at a concentration greater than the laboratory reporting limit or were detected at a concentration less than the MTCA CULs.

Laboratory analytical reports and data quality review are presented in Appendix D.

4.3. Underground Storage Tank-3

4.3.1. Tank and Soil Condition

UST-3 was encountered in the western portion of the Property (Figure 9). The UST was a single-wall, steel, cylindrical tank measuring approximately 12 feet long by 4 feet in diameter (approximately 1,100-gallons) and was oriented east-west. The top of the UST was located at an approximate Elevation of 94 feet (approximately 7 feet below the local ground surface [bgs]). At the time of removal, the UST appeared to be corroded with holes at the seams of the butt joints. When encountered, the tank contained approximately 50 to 60 gallons of liquid. Mar-Vac removed the tank contents on August 8, 2023.

Soil observed on the sidewalls and base of the UST removal excavation consisted of moist, dark brown and gray, fine to coarse sand with silt and occasional fine gravel. Field screening of the soil at the excavation limits yielded no to heavy sheen and headspace vapor measurements ranging from 5,767 to 15,000 ppm (Table 1; see footnote above regarding elevated headspace vapor measurements at the Site). Field screening methods are described in Appendix C. Groundwater was not observed in the excavation at the time of the UST removal.

4.3.2. Sampling and Analysis

One product sample (UST-3-230804) was collected to characterize the contents of the tank and three discrete soil samples (UST3-NSW-93, UST3-WSW-93 and UST3-B-90) were collected from the sidewalls and base the UST removal excavation to evaluate soil conditions. Sidewall soil samples (UST3-NSW-93 and UST3-WSW-93) were collected from the northern and western limits of the UST removal excavation. Sample locations were selected based on field screening results. Sidewalls soil samples were collected at an approximate Elevation of 93 feet (approximately 8 feet bgs). The base sample was collected from the central portion of the UST removal excavation directly beneath the former tank location at an approximate Elevation of 90 feet (approximately 11 feet bgs). Sample locations relative to the removal excavation for UST-3 are shown on Figure 9.

The product sample (UST-3-230804) was submitted for NWTPH-HCID analysis which identified gasoline, diesel- and heavy oil-range petroleum hydrocarbons. In accordance with MTCA Table 830-1, sidewall and base samples were submitted for NWTPH-G, NWTPH-Dx, VOCs including BTEX, EDB, EDC and MTBE, PAHs, lead and PCB analysis to evaluate soil conditions adjacent to the tanks. Chemical analytical results are presented in Table 1 and summarized below:

- GRO, ORO and naphthalenes were detected in soil at the base of the UST removal excavation at concentrations greater than the MTCA CULs. GRO, ORO and naphthalenes were not detected at a concentration greater than the laboratory report limit in the other soil samples analyzed.
- DRO, BTEX, EDB, EDC, MTBE, PAHs and PCBs either were not detected in any of the excavation soil samples at a concentration greater than the laboratory reporting limit or were detected at a concentration less than the MTCA CULs.

Laboratory analytical reports and data quality review are presented in Appendix D.

4.4. Underground Storage Tank-4

4.4.1. Tank and Soil Condition

UST-4 was encountered in the northern portion of the Property (Figure 10). The UST was a single-wall, steel, cylindrical tank measuring approximately 8 feet long by 5 feet in diameter (approximately 1,100 gallons) and was oriented east-west. The top of the UST was located at an approximate Elevation of 95 feet (approximately 6 feet below the local ground surface [bgs]). At the time of removal on August 9, 2023, the UST had no obvious signs of weathering or corrosion. No liquids were observed inside the tank.

Soil observed on the sidewalls and base of the UST removal excavation consisted of moist, dark brown and gray, fine to coarse sand with silt and occasional fine gravel. Field screening of the soil at the excavation limits yielded slight to heavy sheen and headspace vapor measurements of 15,000 ppm (Table 1; see footnote above regarding elevated headspace vapor measurements at the Site). Field screening methods are described in Appendix C. Groundwater was not observed in the excavation at the time of the UST removal.

4.4.2. Sampling and Analysis

One product sample (UST-4-230808) was collected to characterize the contents of the tank and three discrete soil samples (UST4-NSW-94, UST4-SSW-93 and UST4-B-90) were collected from the sidewalls and base of the UST removal excavation to evaluate soil conditions. Sidewall soil samples (UST4-NSW-94 and UST4-SSW-93) were collected from the northern and southern limits of the UST removal excavation. Sample locations were selected based on field screening results. Sidewalls samples were collected at an approximate Elevation of 93 feet (approximately 8 feet bgs). The base sample was collected from the central portion of the UST removal excavation directly beneath the former tank location at an approximate Elevation of 90 feet (approximately 11 feet bgs). Sample locations relative to the removal excavation for UST-4 are shown on Figure 10.

The product sample (UST-4-230808) was submitted for NWTPH-HCID analysis, however, petroleum hydrocarbons were not detected at concentrations greater than the laboratory reporting limits. Due to the unknown use of this tank and inconclusive NWTPH-HCID results, sidewall and base samples were submitted for NWTPH-G, NWTPH-Dx, BTEX, PAH, lead and PCB analysis to evaluate soil conditions adjacent to the tank in accordance with MTCA Table 830-1. Chemical analytical results are presented in Table 1 and summarized below:

- GRO was detected in the southern sidewall soil at a concentration greater than the MTCA CUL. GRO was not detected greater than the laboratory report limit in the other samples analyzed.
- DRO, ORO, BTEX, EDB, EDC, MTBE, lead, PAHs and PCBs either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the MTCA CULs in the base and sidewall soil samples.

Laboratory analytical reports and data quality review are presented in Appendix D.

5.0 SUMMARY

Four previously undocumented single-wall, steel USTs (UST-1 through UST-4) were identified during redevelopment for the 701 South Jackson Street Property. In accordance with Washington UST regulations (WAC 173-360A), each of the USTs was decommissioned and removed from the Property. During UST removal activities, a Site Check/Site Assessment was performed for each tank to evaluate the contents and soil conditions at the limits of the tank removal excavations. Chemical analytical testing of the soil samples collected from the limits of the UST removal excavations identified one or more contaminants including GRO, ORO and/or naphthalenes at concentrations greater than the MTCA CULs adjacent to/beneath each of the USTs removed from the Property.

In accordance with the CAP, South Jackson Partners is conducting remedial activities during redevelopment of the Property to address the previously identified petroleum-related contamination. These remedial activities include the locations of the previously unidentified USTs and will address soil containing contaminants at concentrations greater than the MTCA CULs identified as part of the Site Check/Site Assessments. A Cleanup Action Report summarizing the remedial excavation and confirmation sample results verifying the removal of Site contamination will be prepared following the completion of the cleanup action. This UST Removal and Closure Report, including the attached UST removal and site check documentation in Appendix B, is being provided to meet Ecology's requirements for UST closure of the previously undocumented USTs encountered at the Site.

6.0 LIMITATIONS

We have prepared this report pertaining to the Seventh Avenue Service Site located at 701 South Jackson Street in Seattle, Washington, for the exclusive use of South Jackson Partners LLC and their authorized agents and regulatory agencies. Our interpretations of subsurface conditions are based on GeoEngineers' field observations and chemical analytical data for soil samples from specific sampling locations at the site. It is possible that petroleum hydrocarbons exist beneath portions of the site that were not explored, sampled or analyzed.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with our agreement with South Jackson Partners LLC dated September 1, 2022, and generally accepted environmental science and geotechnical engineering practices in this area at the time this plan was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix E, titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this plan.

We appreciate the opportunity to be of service on this project. Please call if you have questions regarding our report.

7.0 REFERENCES

- GeoEngineers Inc. (GeoEngineers) 2023. Contaminated Media Management Plan, 701 South Jackson Property. Prepared for South Jackson Partners LLC. File No. 24504-001-01. May 16, 2023.
- GeoEngineers Inc. (GeoEngineers) 2022. Remedial Investigation and Feasibility Study, 701 South Jackson Property. Prepared for South Jackson Partners LLC. File No. 24504-001-01. September 19, 2022.
- Troost, Kathy Goetz, Derek B. Booth, Aaron P. Wisher, and Scott A. Shimel (Trost et al.) 2005. The Geologic Map of Seattle A Progress Report. USGS Open File Report 2005-1252. 2005.
- Washington State Department of Ecology (Ecology) 2022. Cleanup Action Plan, Seventh Avenue Service, 701 South Jackson Street, Seattle, WA 98104 King, County Parcel #5247802725, CSID: 11348, FSID: 99187287. Prepared by the Washington State Department of Ecology. September 20, 2022.
- Washington State Department of Ecology (Ecology) 2021. Site Assessment Guidance for Underground Storage Tank Systems. Publication No. 21-09-050 prepared by the Washington State Department of Ecology. January 2021.

Table 1

Summary of Underground Storage Tank Site Check/Site Assessment Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹		UST-01 (Heating Oil)				UST-02 (Gasoline/Diesel)			
Sample Identification		UST-230629 UST-N-86		UST-E-86 UST-B-83		230802	93	93	UST2-B-89
Sampled By	14704	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI
Sample Date	MTCA Cleanup	06/29/23	07/06/23	07/06/23	07/06/23	08/02/23	08/08/23	08/08/23	08/08/23
Sample Depth (feet bgs)	Level ²	n/a	12.0	12.0	15.0	n/a	8.0	8.0	12.0
Field Screening	2010.	7 -		-		, -			-
Sheen	NE	n/a	HS	MS	MS	n/a	HS	MS	HS
Headspace Vapors (PPM)	NE	n/a	947	20.1	230	n/a	15,000	15,000	15,000
Petroleum Hydrocarbons by NWPTH-H	ICID	, ,				,	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Gasoline	n/a	ND				Detect			
Mineral Spirits	n/a	ND	-			ND			
Kerosene	n/a	ND				ND			
Diesel	n/a	Detect				Detect			
Heavy Oil	n/a	ND				ND			
Mineral Oil	n/a	ND	_	_		ND			
Petroleum Hydrocarbons by NWPTH-0	· · · · · · · · · · · · · · · · · · ·							ı	
Gasoline-Range	30	-					55.9	5.72 U	500
Diesel-Range			94.7	62.6 U	50.2 U		56.8 U	52.4 U	265
Heavy Oil-Range	2,000		6,910	125 U	2,900		114 U	105 U	105 U
Total Diesel and Heavy Oil-Range	2,000		7,004.7	125 U	2,900		114 U	105 U	265
Volatile Organic Compounds (VOCs) by	·	(mg/kg)	7		,			<u> </u>	1
Benzene	0.03		0.0173 U	0.0196 U	0.0200 U	_	0.0242 U	0.02 U	0.0195 U
Toluene	7		0.0297 U	0.0336 U	0.0343 U	_	0.0414 U	0.0343 U	0.0334 U
Ethylbenzene	6		0.0247 U	0.0280 U	0.0288 U	_	0.0345 U	0.0286 U	0.0607
Total Xylenes	9		0.0494 U	0.0560 U	0.0672 U		0.109	0.0572 U	0.0246
1,2 Dibromoethane (EDB)	0.005				-			-	-
1,2 Dichloroethane (EDC)	11								
Methyl tertiary-butyl ether (MTBE)	0.1								
Total Metals by EPA 6000 / 7000 Seri		-						<u> </u>	!
Lead	250			_			5.63	4.9	10.9
Polycyclic Aromatic Hydrocarbons (PA	AHs) by EPA 8270D	/SIM (mg/kg)							
1-Methylnaphthalene	34		0.023 U	0.023 U	0.0262		0.0256	0.0187 U	0.0204 U
2-Methylnaphthalene	320		0.023 U	0.023 U	0.0384		0.0482	0.0187 U	0.0204 U
Acenaphthene	4,800						0.0222 U	0.0187 U	0.0204 U
Acenaphthylene	NE						0.0222 U	0.0187 U	0.0204 U
Anthracene	24,000						0.0222 U	0.0187 U	0.0204 U
Benzo[a]anthracene	NE		0.023 U	0.0255 U	0.0202 U		0.0222 U	0.0187 U	0.0204 U
Benzo(a)pyrene	0.1		0.0244 U	0.0382 U	0.0303 U		0.0333 U	0.0280 U	0.0306 U
Benzo(b)fluoranthene	NE		0.0287 U	0.0319 U	0.0252 U		0.0277 U	0.0234 U	0.0255 U
Benzo(g,h,i)perylene	NE						0.0555 U	0.0467 U	0.0510 U
Benzo(k)fluoranthene	NE		0.0287 U	0.0319 U	0.0252 U		0.0277 U	0.0234 U	0.0255 U
Chrysene	NE		0.023 U	0.0255 U	0.0202 U		0.0222 U	0.0187 U	0.0204 U
Dibenzo(a,h)anthracene	NE		0.0574 U	0.0637 U	0.0504 U		0.0555 U	0.0467 U	0.0510 U
Fluoranthene	3,200				-		0.0222 U	0.0187 U	0.0204 U
Fluorene	3,200						0.0222 U	0.0187 U	0.0204 U
Indeno(1,2,3-cd)pyrene	NE		0.0459 U	0.0510 U	0.0403 U	_	0.0444 U	0.0374 U	0.0408 U
Naphthalene (total) ⁴	5		0.023 U	0.0255 U	0.0646		0.1087	0.0187 U	0.0204 U
Phenanthrene	NE NE					_	0.0222 U	0.0187 U	0.0204 U
Pyrene	2,400					_	0.0222 U	0.0187 U	0.0204 U
i grono	2,700							+	
cPAHs TFΩ ⁵	0.1		0 021 11	0 020 11	U U33 II		0.025411	0.021/11	U U333 II
cPAHs TEQ ⁵ Polychlorinated Biphenyls (PCBs) by E	0.1		0.021 U	0.029 U	0.023 U		0.0254 U	0.0214 U	0.0233 U

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

n/a = not applicable

NE = not established

"--" = not tested ND = not detected greater than the laboratory reporting limit

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the MTCA soil cleanup level.

¹ Approximate sample locations shown on Figures 4 through 7.

² Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

 $^{^{\}rm 3}$ Refer to Appendix B for a full list of compounds analyzed and their results.

 $^{^{4}}$ Total naphthalenes include the sum 1-methylnaphthalene, 2-methylnaphthalenes and naphthalene.

⁵ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Table 1

Summary of Soil Field Screening and Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹		UST-03 (Waste Oil)			UST-04 (Waste Oil)				
Sample Identification		230804	<u> </u>		UST3-B-90	230808	93	93	UST4-B-90
Sampled By	MTCA Cleanup	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI
Sample Date	Levels ²	08/04/23	08/08/23	08/08/23	08/08/23	08/08/23	08/09/23	08/09/23	08/09/23
Sample Depth (feet bgs)	207013	n/a	8.0	8.0	11.0	n/a	8.0	8.0	11.0
Field Screening		7 -			-	7 -			
Sheen	NE	n/a	HS	NS	HS	n/a	SS	MS	HS
Headspace Vapors (PPM)	NE	n/a	15,000	5,767	15,000	n/a	15,000	15,000	15,000
Petroleum Hydrocarbons by NWPTH-F	ICID					·			
Gasoline	n/a	Detect				ND			-
Mineral Spirits	n/a	ND				ND			
Kerosene	n/a	ND				ND			
Diesel	n/a	Detect				ND			
Heavy Oil	n/a	Detect				ND			
Mineral Oil	n/a	ND				ND			
Petroleum Hydrocarbons by NWPTH-0	S/NWTPH-Dx (mg/k	g)	l		l			l	
Gasoline-Range	30		5.98 U	5.09 U	1,970		5.16 U	96.9	5.72 U
Diesel-Range			63.6 U	50.5 U	985		55.2 U	74.3	51.7 U
Heavy Oil-Range	2,000		127 U	101 U	5,480		110 U	102 U	103 U
Total Diesel and Heavy Oil-Range	2,000		127 U	101 U	6,465		110 U	74.3	103 U
Volatile Organic Compounds (VOCs) b	!i	(mg/kg)	ı		,			ı	
Benzene	0.03		0.0209 U	0.0178 U	0.0194 U		0.0181 U	0.019 U	0.02 U
Toluene	7		0.0359 U	0.0306 U	0.0333 U		0.031 U	0.0325 U	0.0343 U
Ethylbenzene	6		0.0414	0.0255 U	0.491		0.0258 U	0.0271 U	0.0286 U
Total Xylenes	9		0.152	0.0509 U	1.7678		.0516 U	.0542 U	0.0572 U
1,2 Dibromoethane (EDB)	0.005		0.0120 U	0.0102 U	0.0111 U		0.0103 U	0.0108 U	0.0114 U
1,2 Dichloroethane (EDC)	11		0.0239 U	0.0204 U	0.0222 U		0.0206 U	0.0217 U	0.0229 U
Methyl tertiary-butyl ether (MTBE)	0.1		0.0239	0.0204 U	0.0222 U		0.0206 U	0.0217 U	0.0229 U
Total Metals by EPA 6000 /7000 Seri		<u> </u>	0.000						
Lead	250		5.53	1.78	3.21		7.96	2.85	2.7
Polycyclic Aromatic Hydrocarbons (PA		1							
1-Methylnaphthalene	34		0.0243 U	0.021 U	2.72		0.0241 U	0.206	0.0205 U
2-Methylnaphthalene	320		0.0243 U	0.021 U	4.39		0.0241 U	0.291	0.0205 U
Acenaphthene	4,800		0.0243 U	0.021 U	0.0618		0.0241 U	0.0222 U	0.0205 U
Acenaphthylene	NE		0.0243 U	0.021 U	0.0216 U		0.0241 U	0.0222 U	0.0205 U
Anthracene	24,000		0.0243 U	0.021 U	0.0697		0.0241 U	0.0222 U	0.0205 U
Benzo[a]anthracene	NE NE		0.0243 U	0.021 U	0.26		0.0241 U	0.0222 U	0.0205 U
Benzo(a)pyrene	0.1		0.0243 U	0.0315 U	0.0324 U		0.0361 U	0.0333 U	0.0308 U
Benzo(b)fluoranthene	NE		0.0243 U	0.0263 U	0.027 U	_	0.0301 U	0.0278 U	0.0257 U
Benzo(g,h,i)perylene	NE		0.0243 U	0.0526 U	0.108		0.0602 U	0.0555 U	0.0513 U
Benzo(k)fluoranthene	NE		0.0243 U	0.0263 U	0.027 U	_	0.0301 U	0.0278 U	0.0257 U
Chrysene	NE		0.0243 U	0.021 U	0.132		0.0241 U	0.0222 U	0.0205 U
Dibenzo(a,h)anthracene	NE		0.0243 U	0.0526 U	0.054 U	_	0.0602 U	0.0555 U	0.0513 U
Fluoranthene	3,200		0.0243 U	0.021 U	0.275		0.0241 U	0.0222 U	0.0205 U
Fluorene	3,200		0.0243 U	0.021 U	0.0934		0.0241 U	0.0222 U	0.0205 U
Indeno(1,2,3-cd)pyrene	NE NE		0.0243 U	0.0421 U	0.0432 U		0.0482 U	0.0444 U	0.0411 U
Naphthalene (total) ⁴	5		0.0243 U	0.021 U	7.11		0.0241 U	0.497	0.0205 U
Phenanthrene	NE NE		0.0243 U	0.021 U	0.318		0.0241 U	0.0222 U	0.0205 U
Pyrene	2,400		0.0243 U	0.0421 U	0.362		0.0482 U	0.0222 U	0.0203 U
cPAHs TEQ ⁵	0.1		0.0183 U	0.024 U	0.0617 U		0.0275 U	0.0254 U	0.0235 U
Polychlorinated Biphenyls (PCBs) by EPA 8082 (mg/kg)							3.32000		
Total PCB Aroclors	1		0.0252 U	0.0212 U	0.0221 U		0.0238 U	0.0221 U	0.0215 U
.00011 05700000		<u> </u>	0.02020	0.02120	0.02210		0.02000	0.02210	0.02100

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

n/a = not applicable

NE = not established

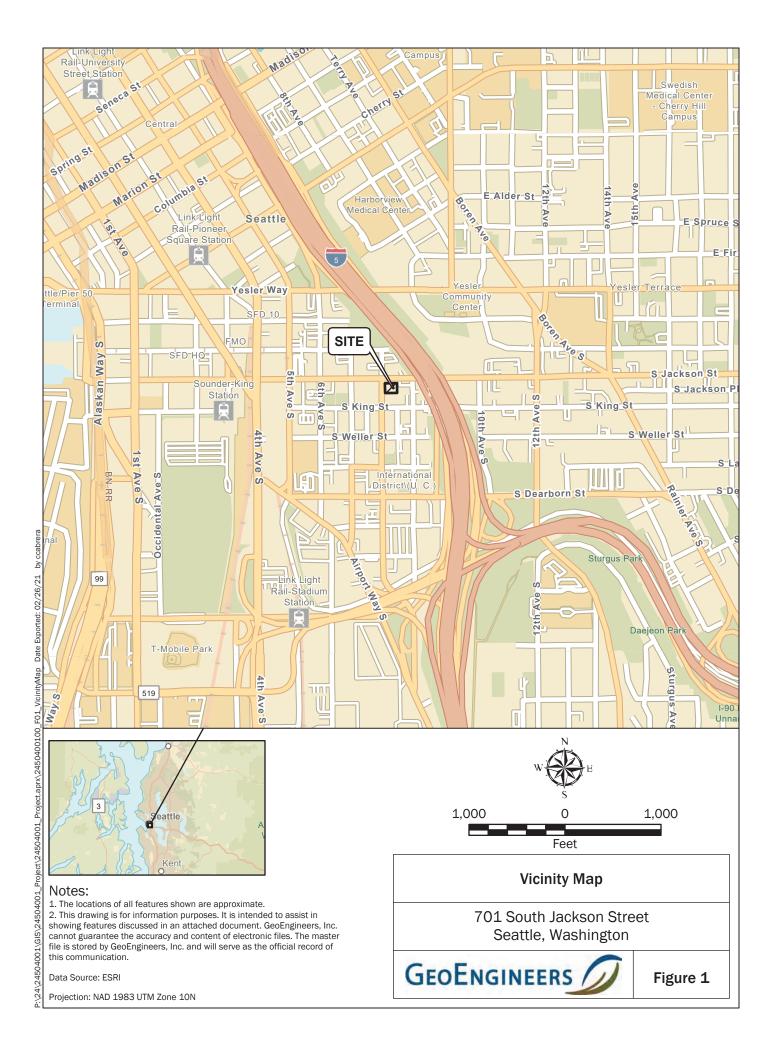
"--" = not tested

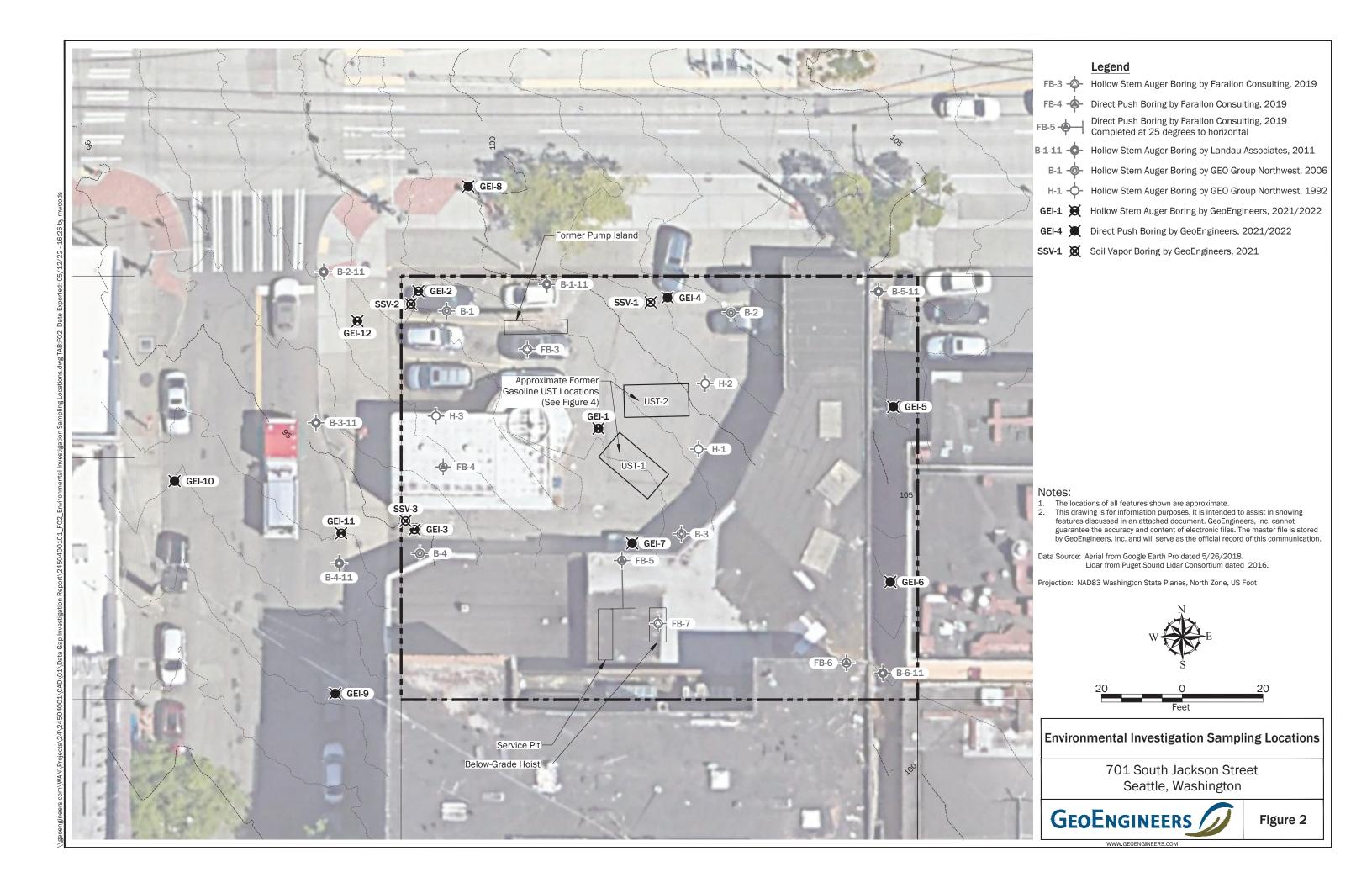
ND = not detected greater than the laboratory reporting limit

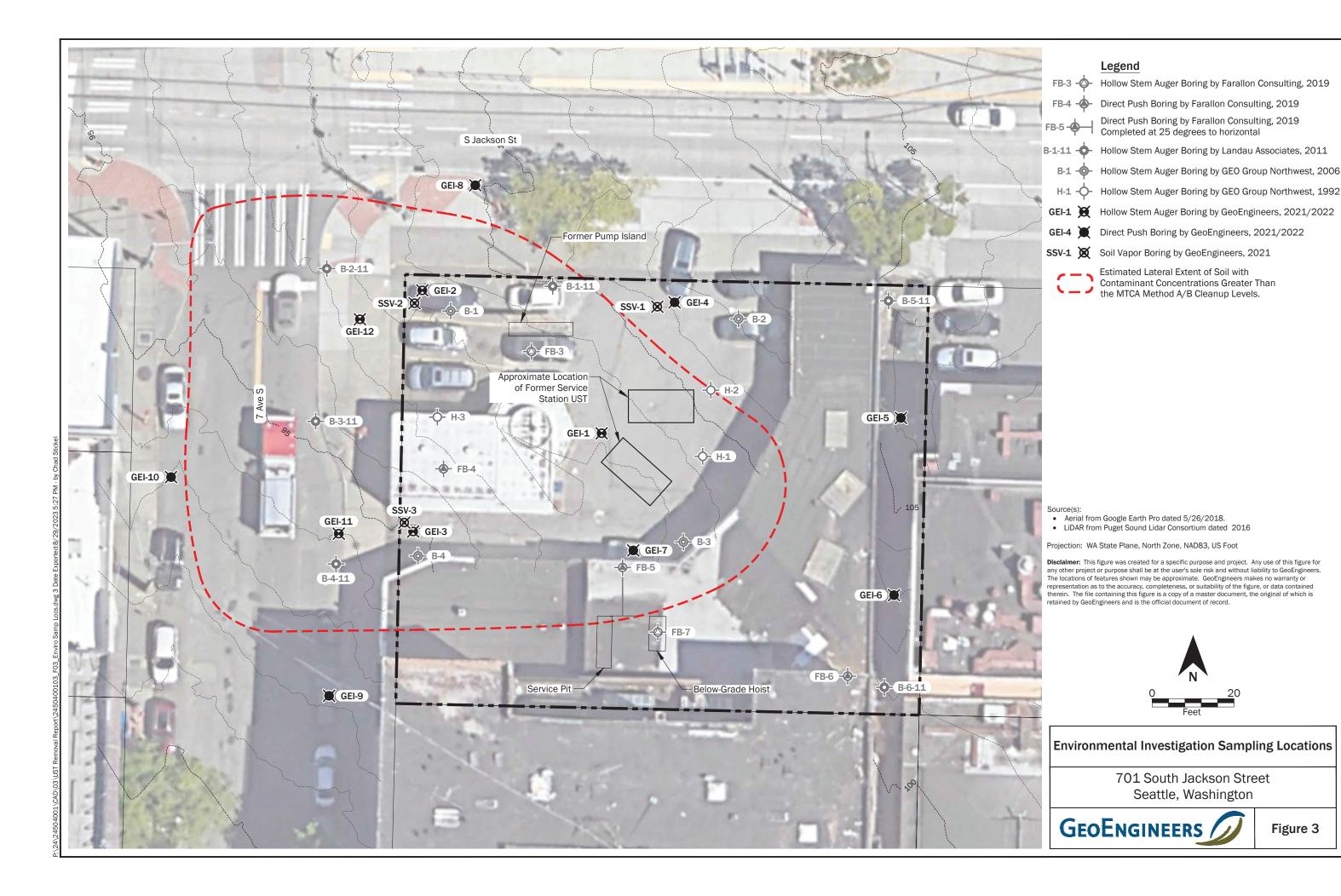
U = Analyte not detected above the reported sample quantization limit

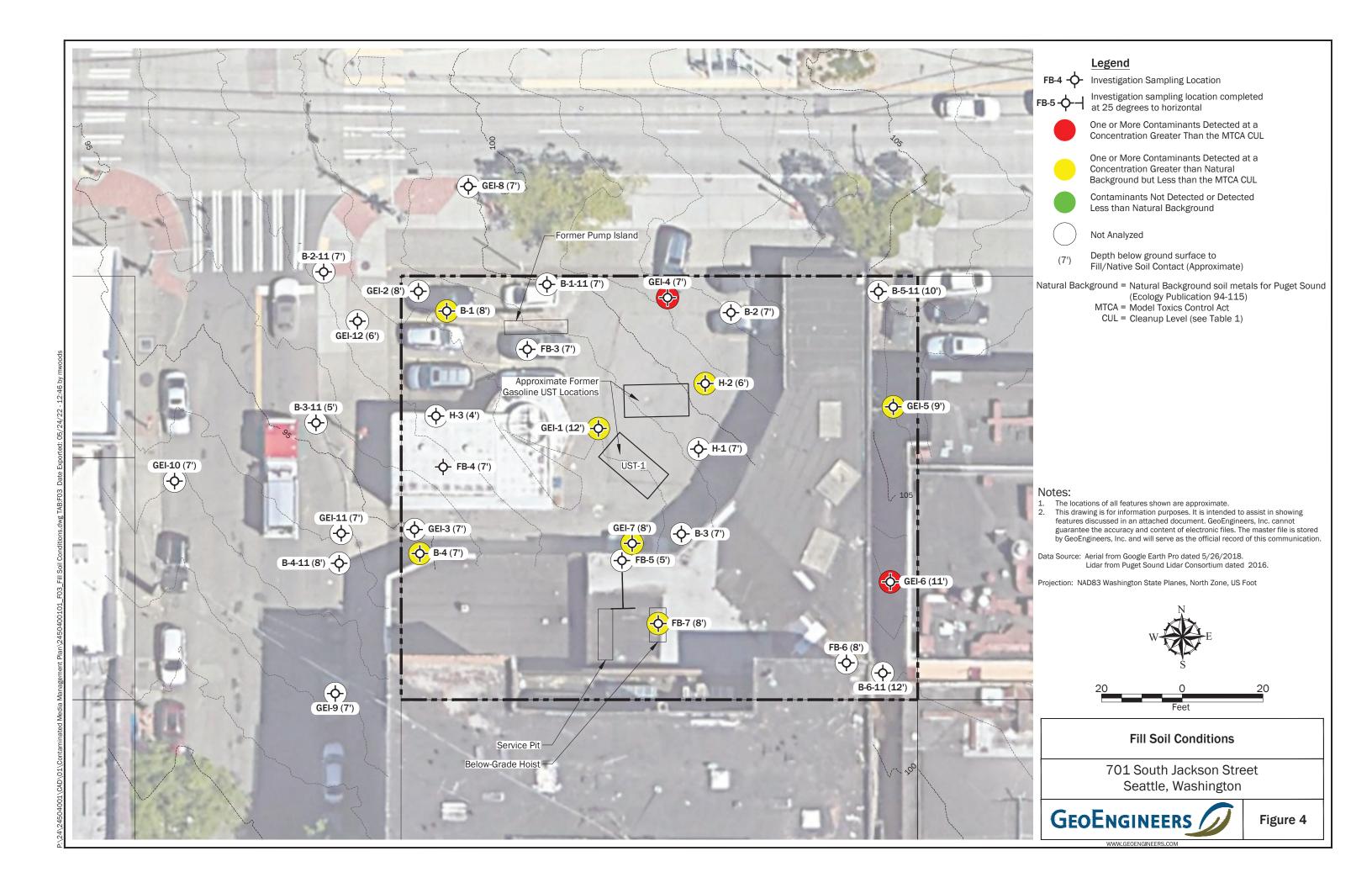
Bold indicates analyte was detected.

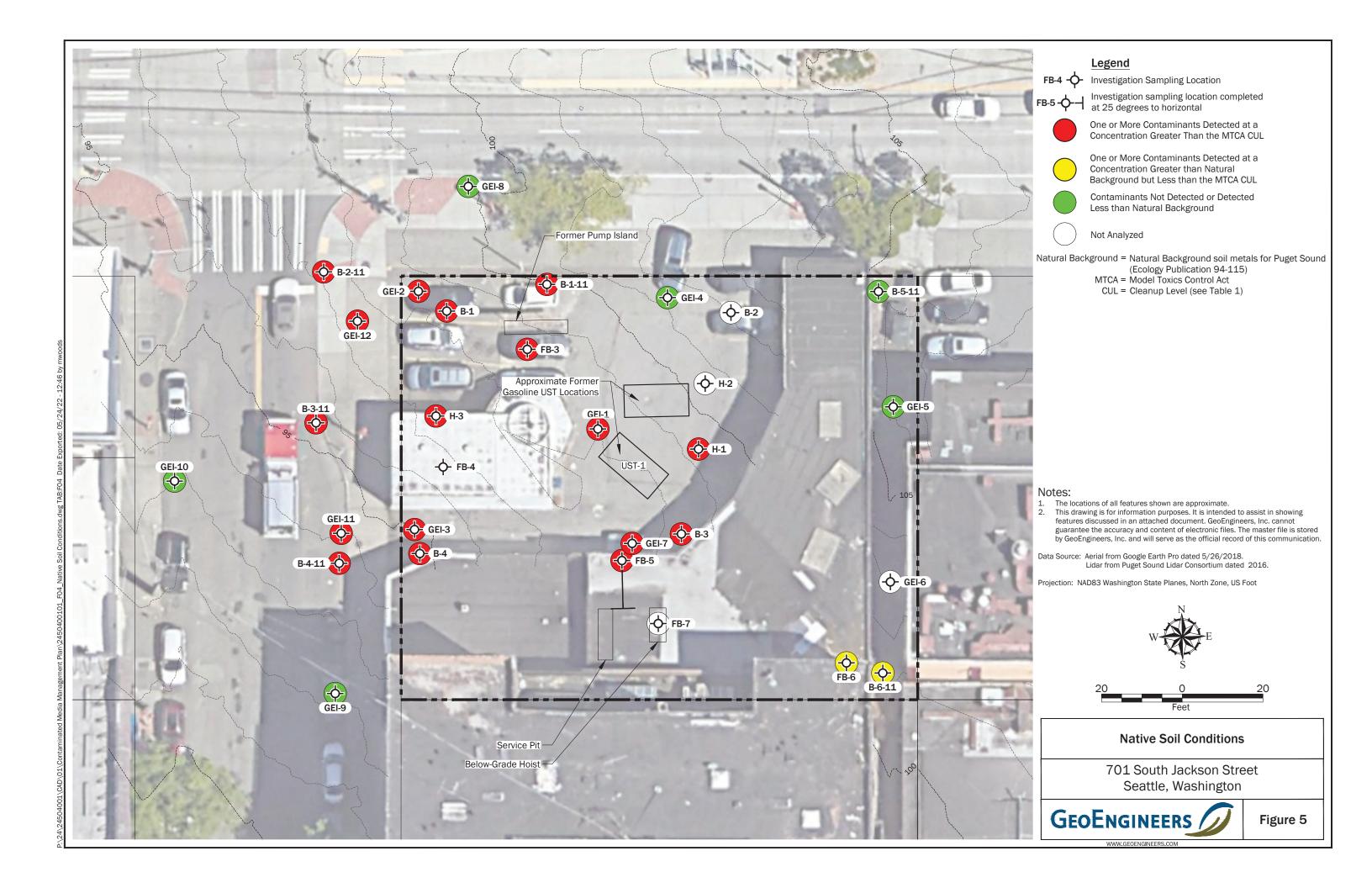
Shading indicates analyte was detected at a concentration greater than the MTCA soil cleanup level.

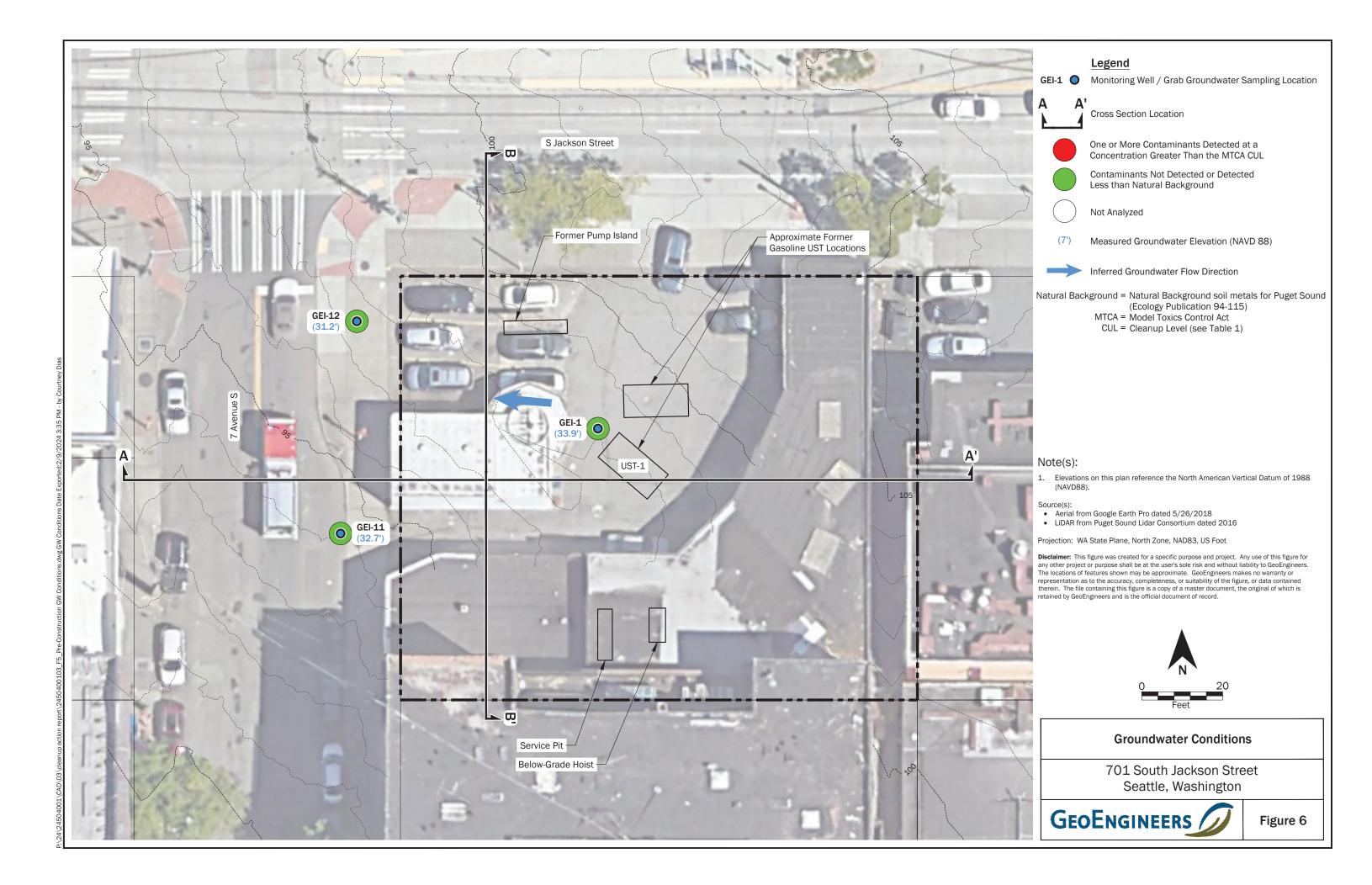

¹ Approximate sample locations shown on Figures 4 through 7.

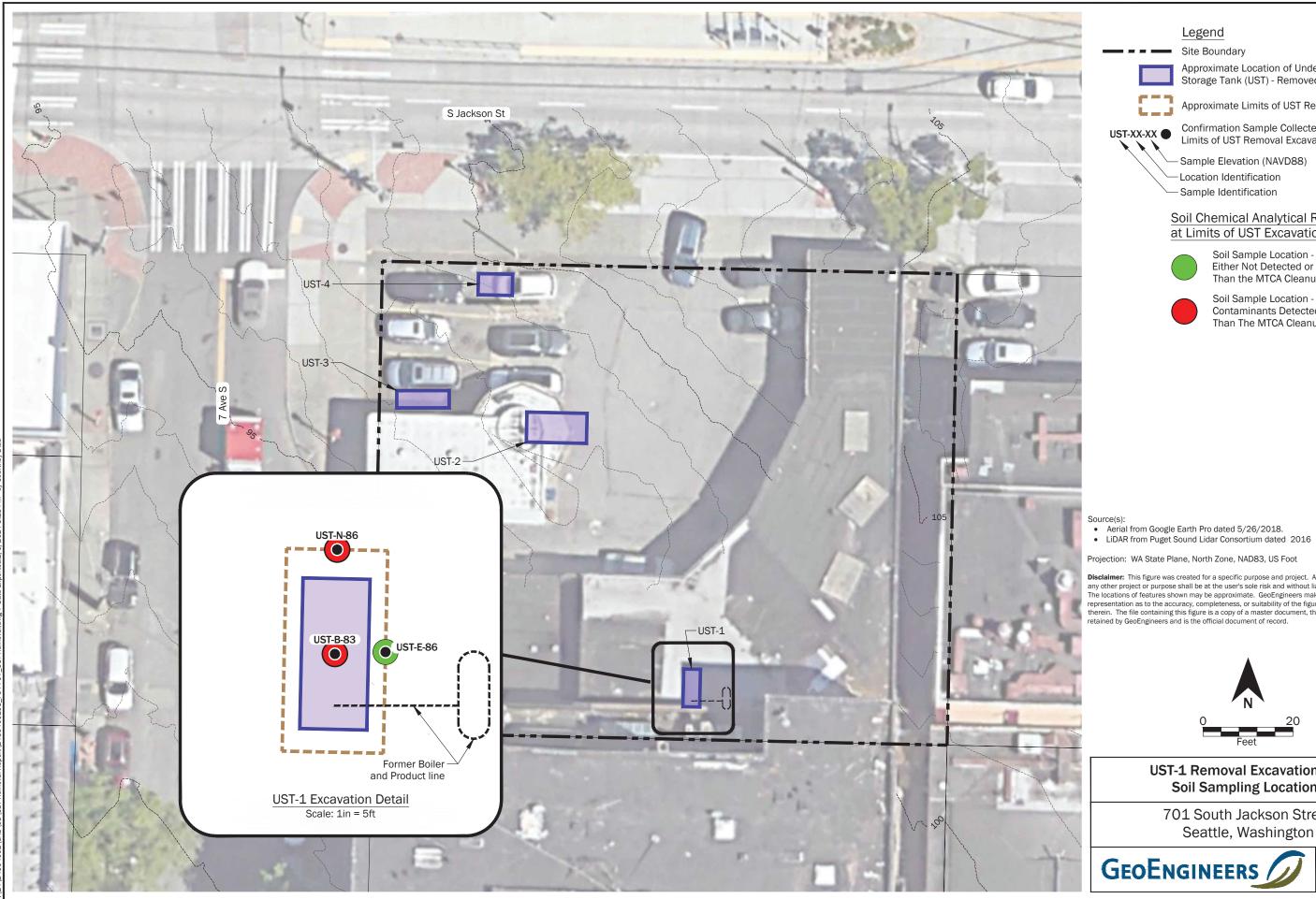

² Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.


 $^{^{\}rm 3}$ Refer to Appendix B for a full list of compounds analyzed and their results.


 $^{^{4}}$ Total naphthalenes include the sum 1-methylnaphthalene, 2-methylnaphthalenes and naphthalene.


⁵ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.





Approximate Location of Underground Storage Tank (UST) - Removed

Approximate Limits of UST Removal Excavation

UST-XX-XX Confirmation Sample Collected from Limits of UST Removal Excavation

-Sample Elevation (NAVD88) -Location Identification

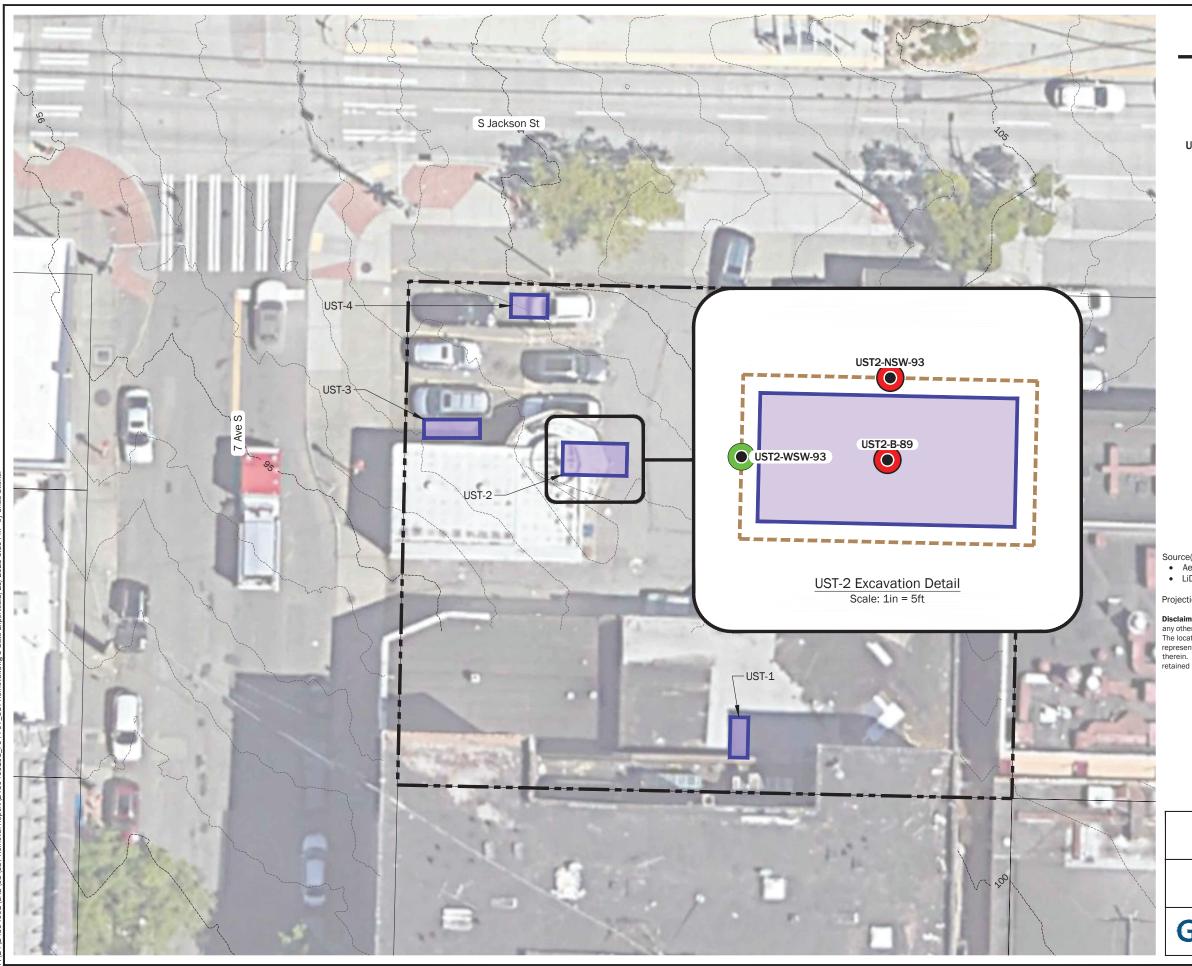
Soil Chemical Analytical Results at Limits of UST Excavation

Soil Sample Location - Contaminants Either Not Detected or Detected Less Than the MTCA Cleanup Level

Soil Sample Location - One or More Contaminants Detected Greater Than The MTCA Cleanup Level

Projection: WA State Plane, North Zone, NAD83, US Foot

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.



UST-1 Removal Excavation and **Soil Sampling Locations**

701 South Jackson Street Seattle, Washington

Figure 7

Legend

Site Boundary

Approximate Location of Underground Storage Tank (UST) - Removed

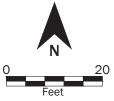
Approximate Limits of UST Removal Excavation

UST-XX-XX Confirmation Sample Collected from Limits of UST Removal Excavation

- Sample Elevation (NAVD88) -Location Identification Sample Identification

Soil Chemical Analytical Results at Limits of UST Excavation

Soil Sample Location - Contaminants Either Not Detected or Detected Less Than the MTCA Cleanup Level

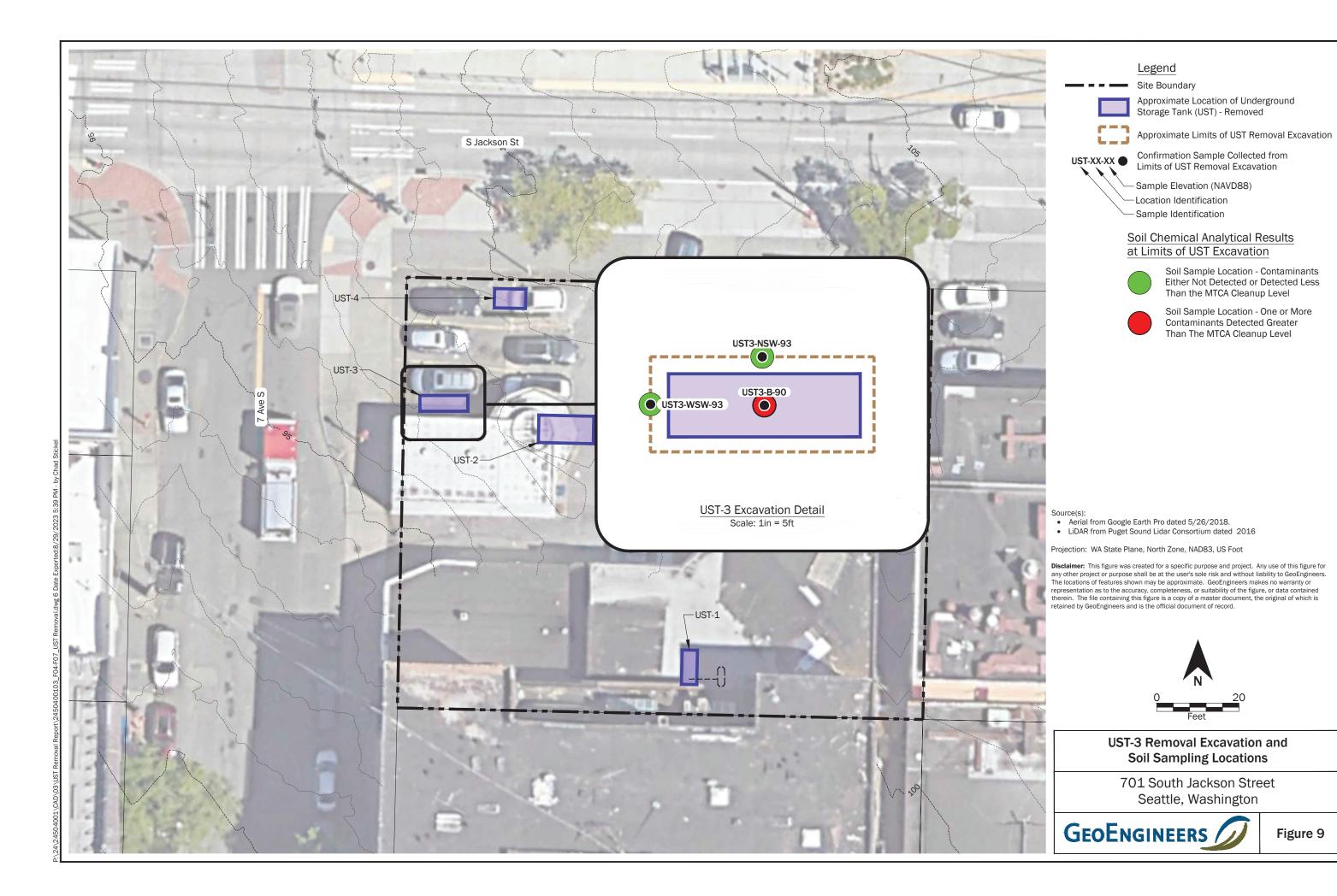


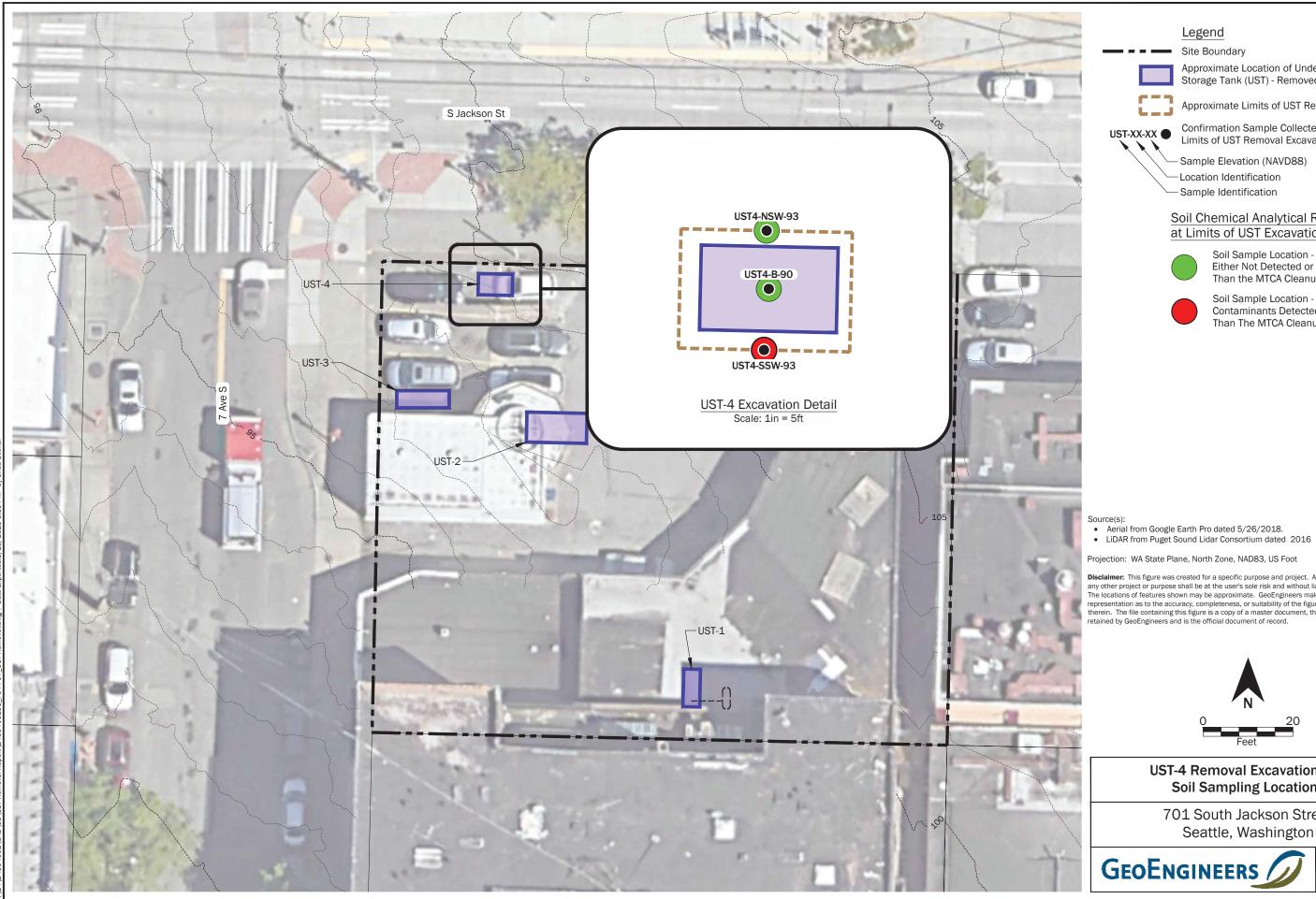
Soil Sample Location - One or More Contaminants Detected Greater Than The MTCA Cleanup Level

- Aerial from Google Earth Pro dated 5/26/2018.
 LiDAR from Puget Sound Lidar Consortium dated 2016

Projection: WA State Plane, North Zone, NAD83, US Foot

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.




UST-2 Removal Excavation and **Soil Sampling Locations**

701 South Jackson Street Seattle, Washington

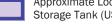


Figure 8

Site Boundary

Approximate Location of Underground Storage Tank (UST) - Removed

Approximate Limits of UST Removal Excavation

UST-XX-XX Confirmation Sample Collected from Limits of UST Removal Excavation

-Sample Elevation (NAVD88) -Location Identification

Soil Chemical Analytical Results at Limits of UST Excavation

Soil Sample Location - Contaminants Either Not Detected or Detected Less Than the MTCA Cleanup Level

Soil Sample Location - One or More Contaminants Detected Greater Than The MTCA Cleanup Level

Projection: WA State Plane, North Zone, NAD83, US Foot

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

UST-4 Removal Excavation and **Soil Sampling Locations**

701 South Jackson Street Seattle, Washington

Figure 10

APPENDIX A

Underground Storage Tank Closure Documents

Robert S. Trahan

From: Imke, Andrew (ECY) <aimk461@ECY.WA.GOV>

Sent: Tuesday, August 8, 2023 8:05 AM

To: Robert S. Trahan

Cc: Brad Padden; Robert Tiscareno; Paul D. Robinette; Tim L. Syverson; Song, Jing (ECY); Mark Sexauer;

Demesio Cedeno; JC Cunningham

Subject: RE: Seventh Avenue Service - Cleanup Site ID: 11348: USTs

You don't often get email from aimk461@ecy.wa.gov. Learn why this is important

CAUTION! THIS IS AN EXTERNAL EMAIL

If you suspect this is a phishing email, click the **Phish Alert Report** button.

Good morning Robert,

Under the circumstances I am willing to Waive the 30-Day Notice timeframe. Please ensure you follow ALL the regulatory requirements for Permanent Closure of these UST Systems, as well as all other applicable Local, State and Federal requirements. Ensure that there are pictures of the current "as found" status of the tanks, removal operations, EACH sample area and specific location included in the Permanent Closure Packet. Direct observation of decommissioning operations by the ICC certified Decommissioner and site assessment operations by the ICC Certified Site Assessor are mandatory.

Should you have any questions please email me immediately. Failure to comply with the above requirements will void your 30-Day Notice Waiver and result in further enforcement actions.

Respectfully,

Drew

Andrew A. Imke

Senior Underground Storage Tank Inspector (Interim UST Unit Supervisor)

Dept. of Ecology-NWRO: TCP/UST

Cell (425) 457-3142

andrew.imke@ecy.wa.gov

The above email may contain identifiable or confidential information. Because email is not secure, please be aware of associated risks of email transmissions. If you are communicating with a Department of Ecology employee via email, your acceptance of the risk and agreement to the conditions for email communications is implied.

The information contained herein is intended for the individual(s) named above. If you are not the intended recipient, any disclosure, copying, distribution or use of the contents of this information shall occur in accordance with Washington State Laws and Department of Ecology Policy. Please notify the sender by reply email if you receive this email in error.

From: Robert S. Trahan rtrahan@geoengineers.com

Sent: Monday, August 7, 2023 5:55 PM

To: Imke, Andrew (ECY) <aimk461@ECY.WA.GOV>

Cc: Brad Padden <brad@housingdiversity.com>; Robert Tiscareno <robertt@housingdiversity.com>; Paul D. Robinette <probinette@geoengineers.com>; Tim L. Syverson <tsyverson@geoengineers.com>; Song, Jing (ECY)

<JISO461@ECY.WA.GOV>; Robert S. Trahan <rtrahan@geoengineers.com>; Mark Sexauer <marks@stsconst.com>;
Demesio Cedeno <DemesioC@stsconst.com>; JC Cunningham <johnc@stsconst.com>

Subject: RE: Seventh Avenue Service - Cleanup Site ID: 11348: USTs

Drew,

Please see the attached 30-day notice for the recently encountered USTs as part of the Seventh Street Service Site. Given that these tanks were not previously identified and the ongoing construction activities, we are requesting on behalf of 701 South Jackson Partners a waiver to the 30-day notice. Currently, tank removal activities are anticipated for tomorrow (8/8) and will include flushing and rinsing the contents of the tanks followed by their removal. A marine chemist will inert the tanks prior to removal as appropriate under supervision of the Seattle Fire Department. GeoEngineers will be onsite to oversee the removal/decommissioning activities and perform an Ecology Site Check/Site Assessment. Note that these tanks are located within an active remedial excavation to address petroleum contamination and that ongoing remedial activities will address any potential releases to soil at the site.

Please don't hesitate to call with any questions or concerns. Thanks,

Robert S. Trahan

Senior Environmental Scientist | GeoEngineers, Inc.

Telephone: 206.239.3253 **Fax:** 206.728.2732

Mobile: 206.240.2300

Email: rtrahan@geoengineers.com

2101 4th Avenue, Suite 950 Seattle, WA 98121 www.geoengineers.com

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

From: Imke, Andrew (ECY) <aimk461@ECY.WA.GOV>

Sent: Monday, August 7, 2023 7:23 AM

To: Song, Jing (ECY) < JISO461@ECY.WA.GOV>; Tim L. Syverson < tsyverson@geoengineers.com>

Cc: Brad Padden < brad@housingdiversity.com >; Carly Hendricks < chendricks@geoengineers.com >; Robert Tiscareno

<robertt@housingdiversity.com>; Robert S. Trahan <rtrahan@geoengineers.com>; Paul D. Robinette

cprobinette@geoengineers.com>

Subject: RE: Seventh Avenue Service - Cleanup Site ID: 11348: USTs

Some people who received this message don't often get email from aimk461@ecy.wa.gov. Learn why this is important

CAUTION! THIS IS AN EXTERNAL EMAIL

If you suspect this is a phishing email, click the **Phish Alert Report** button.

Good morning Jing,

Thank you for including me in this correspondence. I look forward to receiving the 30 – Day Notice from Tim. That will get things rolling for the Permeant Closure Packet for these abandoned UST Systems. If Tim needs any guidance he can respond to this email.

Respectfully, Drew

Andrew A. Imke
Senior Underground Storage Tank Inspector (Interim UST Unit Supervisor)
Dept. of Ecology-NWRO: TCP/UST
Work (425) 649-7226
Cell (425) 457-3142
Fax (425) 649-7161
andrew.imke@ecy.wa.gov

The above email may contain identifiable or confidential information. Because email is not secure, please be aware of associated risks of email transmissions. If you are communicating with a Department of Ecology employee via email, your acceptance of the risk and agreement to the conditions for email communications is implied.

The information contained herein is intended for the individual(s) named above. If you are not the intended recipient, any disclosure, copying, distribution or use of the contents of this information shall occur in accordance with Washington State Laws and Department of Ecology Policy. Please notify the sender by reply email if you receive this email in error.

From: Song, Jing (ECY) < JISO461@ECY.WA.GOV

Sent: Thursday, August 3, 2023 11:55 AM

To: Tim L. Syverson <tsyverson@geoengineers.com>

Cc: Brad Padden <brad@housingdiversity.com>; Carly Hendricks <chendricks@geoengineers.com>; Robert Tiscareno

<robertt@housingdiversity.com>; Robert S. Trahan <rtrahan@geoengineers.com>; Paul D. Robinette

cprobinette@geoengineers.com; Imke, Andrew (ECY) <aimk461@ECY.WA.GOV</pre>

Subject: RE: Seventh Avenue Service - Cleanup Site ID: 11348: USTs

Tim,

Thank you for letting me know.

Are there products inside the tanks? Do you have photos of the tanks to share?

Also please contact Ecology UST inspector Andrew Imke (cc'd) if you need a waiver for 30-day notice to remove the tanks.

Jing

From: Tim L. Syverson < tsyverson@geoengineers.com >

Sent: Thursday, August 3, 2023 11:44 AM **To:** Song, Jing (ECY) < JISO461@ECY.WA.GOV>

Cc: Brad Padden < <u>brad@housingdiversity.com</u>>; Carly Hendricks < <u>chendricks@geoengineers.com</u>>; Robert Tiscareno

<robertt@housingdiversity.com>; Robert S. Trahan <rtrahan@geoengineers.com>; Paul D. Robinette

cprobinette@geoengineers.com>

Subject: Seventh Avenue Service - Cleanup Site ID: 11348: USTs

Hi Jing,

A brief email separate from our regular project status updates.

Yesterday (August 2, 2023) two underground storage tanks (USTs) were encountered during construction excavation in the north central portion of the property in the area where two other USTs had been removed in 2010 (see the RI/FS document). We are getting more details regarding the size and contents of the two unanticipated tanks.

Once the tanks were noted, the excavation was stopped and moved to another area of the property. There is no evidence that the tanks were damaged, or of a release associated with either of the tanks.

STS is coordinating for decommissioning of the tanks and preparation of the appropriate documentation, per the Ecology regulations, prior to removal.

Please let us know if you have any questions.

Thanks,

Tim

Tim L. Syverson, LHG

Associate Environmental Geologist | GeoEngineers, Inc.

Telephone: 206.448.4197

Fax: 206.728.2732 **Mobile:** 206.605.9236

Email: tsyverson@geoengineers.com

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Confidentiality: This message is confidential and intended solely for use of the individual or entity to whom it is addressed. If you are not the person for whom this message is intended, please delete it and notify me immediately, and please do not copy or send this message to anyone else.

Confidentiality: This message is confidential and intended solely for use of the individual or entity to whom it is addressed. If you are not the person for whom this message is intended, please delete it and notify me immediately, and please do not copy or send this message to anyone else.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 3, 2023

Tom Wise, Project Manager Tank Wise 5405 W Marginal Way SW Seattle, WA 98106

Dear Mr Wise:

Included are the results from the testing of material submitted on June 26, 2023 from the 701 S Jackson St, F&BI 306404 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Sludge Date Received: 06/26/23 Date Extracted: 06/27/23 Date Analyzed: 06/27/23 Matrix: Soil/Product Units: mg/kg (ppm)

Tank Wise Client: Project: 701 S Jackson St, F&BI 306404 Lab ID: 306404-01 Data File: 306404-01.153 ICPMS2 Instrument:

Operator:

SP

Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	73.9		
Mercury	<1		
Nickel	<1		
Selenium	<1		
Silver	<1		
Zinc	5.11		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Date Received: Not Applicable 06/27/23 Date Extracted: 06/27/23 Date Analyzed: Matrix: Soil/Product Units: mg/kg (ppm)

Client: Tank Wise 701 S Jackson St, F&BI 306404 Project: Lab ID: I3-510 mb2 I3-510 mb2.110 Data File:

ICPMS2 Instrument: SP

Operator:

Concentration mg/kg (ppm) Analyte:

<1 Arsenic Barium <1 <1 Cadmium <1 Chromium Copper <5 Lead <1 Mercury <1 Nickel <1 Selenium <1 Silver <1 <5 Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Sludge
Date Received: 06/26/23
Date Extracted: 06/29/23
Date Analyzed: 06/29/23
Matrix: Soil/Product
Units: mg/kg (ppm)

Client: Tank Wise Project: 701 S Jackson St, F&BI 306404

Lab ID: 306404-01 1/500

Data File: 062936.D Instrument: GCMS11 Operator: MD

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	114	79	128
Toluene-d8	100	84	121
4-Bromofluorobenzene	101	84	116

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	<25
Chloroethane	<250
1,1-Dichloroethene	<25
Methylene chloride	<250
trans-1,2-Dichloroethene	<25
1,1-Dichloroethane	<25
cis-1,2-Dichloroethene	<25
1,2-Dichloroethane (EDC)	<25
1,1,1-Trichloroethane	<25
Trichloroethene	<10
Tetrachloroethene	<12

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 06/29/23
Date Analyzed: 06/29/23
Matrix: Soil/product
Units: mg/kg (ppm)

Client: Tank Wise
Project: 701 S Jackson St, F&BI 306404
Lab ID: 03-1524 mb
Data File: 062909.D
Instrument: GCMS11

Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	79	128
Toluene-d8	100	84	121
4-Bromofluorobenzene	106	84	116

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/23 Date Received: 06/26/23

Project: 701 S Jackson St, F&BI 306404

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306424-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2	< 0.05	87	90	50-150	3
Chloroethane	mg/kg (ppm)	2	< 0.5	112	112	50-150	0
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	91	92	50-150	1
Methylene chloride	mg/kg (ppm)	2	< 0.5	97	97	50-150	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	95	96	50-150	1
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	95	95	50-150	0
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	92	95	50-150	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	98	99	50-150	1
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	96	97	50-150	1
Trichloroethene	mg/kg (ppm)	2	< 0.02	95	97	50-150	2
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	97	100	50-150	3

Laboratory Code: Laboratory Control Sample

,			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2	101	35-135
Chloroethane	mg/kg (ppm)	2	110	21-147
1,1-Dichloroethene	mg/kg (ppm)	2	100	49-138
Methylene chloride	mg/kg (ppm)	2	105	25-146
trans-1,2-Dichloroethene	mg/kg (ppm)	2	104	62-126
1,1-Dichloroethane	mg/kg (ppm)	2	105	64-131
cis-1,2-Dichloroethene	mg/kg (ppm)	2	102	62-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	107	73-123
1,1,1-Trichloroethane	mg/kg (ppm)	2	105	66-125
Trichloroethene	mg/kg (ppm)	2	103	62-116
Tetrachloroethene	mg/kg (ppm)	2	104	69-131

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/23 Date Received: 06/26/23

Project: 701 S Jackson St, F&BI 306404

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 306340-05 x5 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	mg/kg (ppm)	10	<5	95	91	75-125	4
Barium	mg/kg (ppm)	50	44.7	143 b	96 b	75-125	39 b
Cadmium	mg/kg (ppm)	10	<5	99	97	75-125	2
Chromium	mg/kg (ppm)	50	5.29	94	97	75-125	3
Copper	mg/kg (ppm)	50	<25	86	96	75-125	11
Lead	mg/kg (ppm)	50	874	0 b	374 b	75-125	200 b
Mercury	mg/kg (ppm	5	<5	95	91	75-125	4
Nickel	mg/kg (ppm)	25	5.43	85 b	91 b	75-125	7 b
Selenium	mg/kg (ppm)	5	<5	68 vo	62 vo	75-125	9
Silver	mg/kg (ppm)	10	<5	96	95	75-125	1
Zinc	mg/kg (ppm)	50	107	2 b	119 b	75-125	193 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	101	80-120
Barium	mg/kg (ppm)	50	99	80-120
Cadmium	mg/kg (ppm)	10	101	80-120
Chromium	mg/kg (ppm)	50	107	80-120
Copper	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	104	80-120
Mercury	mg/kg (ppm)	5	100	80-120
Nickel	mg/kg (ppm)	25	107	80-120
Selenium	mg/kg (ppm)	5	92	80-120
Silver	mg/kg (ppm)	10	101	80-120
Zinc	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		N.	a a						,						s **	ş:			ŕ	0
Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.			3 8	****		Solvants	Cloranated		Zinh	Copper Wiekelx	RCRA8+	Sample ID		City, State, ZIP Sea Wa Phone 7932425 Email	Address 7405 W. 1	15	306404 Report To 101m U
Received by:	Relinquished by:	Received by:	181	\$ de									•	10-	Lab ID		(a 781	Marginal	1/30)15%
	2.4.6	land		SIGNATURE					•	11	*			6-26	Date Sampled		Wise 26	Way The		
			/ \							1,				1,45 5h,1	Time Sampled		Project s	REMARKS	PROJECT 701	SAMPLERS (signature)
		AI	Tom						4.~	11.				Sludge	Sample Type		Me, (Project specific RLs? -	SS Rich	PROJECT NAME	SAMPLERS (signature)
		ANHPHAN	1	PRINT								5.0		1	# of Jars		· Yes		chson	The State of the s
		HO		N		· • · · ·									NWTPH-Dx		_			الم الم
	51	Ž	5	NAME	_	0			_	-	<u> </u>	-			NWTPH-Gx	$\ \ $	No.	-	7.5	1
					-	Sampl	-	╁.	• . ,	-	-	-		-	BTEX EPA 8021	$ \cdot $				} \
	•				-	D	+-	-	+	-	-	+-		×	NWTPH-HCID VOCs EPA 8260	AN		INV		[]
		_		H	-	6	+-		+	-	-	+	 		PAHs EPA 8270	SKT		INVOICE TO	PO#	
			2		\ <u></u>	es received									PCBs EPA 8082	ᄀᇙ		OT	٠	6 R
		F86	anha	COMPANY		B.					1			×	RCRA Mehls	EQUI				થ6/ <i>થ</i> ર
	,	0	8	PAN		=									+ C4, N1, 74	HISE			× 0 0	
			1150	1.		5									1	D	□ Archiv □ Other □ Default	·ro	O Standa O RUSH Rush cha	Pag
			,			1						,					r t: Di	AMP	dard t	JRNA
		06/26/23 15:4	6-26-23/5/4	DATE TIME				٠.						Sludge	Notes		☐ Archive samples ☐ Other	SAMPLE DISPOSAL	☐ Standard turnaround ☐ RUSH	Page # of TURNAROUND TIME

SOUND TESTING, INC.

WWW.SOUNDTESTINGING.COM

P.O. BOX 16204 SEATTLE, WA 98116 (206) 932-0206 FAX (206) 937-3848

MARINE CHEMIST CERTIFICATE

CRALL TRETTEVIK CH

This Certificate is based on conditions existing at the time the inspection herein set forth was completed

206-313-6933

and is issued subject to compliance with all qualifications and instructions.

SERIAL Nº

FOR EXCAUATION OR TRANSPORTATION In the event of changes adversely affecting conditions in the above spaces, or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist. Qualifications: Manipulation of valves or devices tending to alter conditions in pipe lines or tanks noted above, unless specifically approved in this certificate, will require re-inspection and a new Certificate for spaces so affected. All piping, heating coils, pumps and floating roof gaskets attached to or contained within spaces listed above shall be considered "NOT SAFE" unless otherwise specifically designated. STANDARD SAFETY DESIGNATIONS (These detail the minimum conditions for Safe Entry and Hot Work.) The Marine Chemist may request additional measures if workplace conditions so dictate. ATMOSPHERE SAFE FOR WORKERS means that in a space (a) the oxygen content is between 19.5% and 22% by volume, and (b) combustible gas is less than 10% of the Lower Explosive Limit, and (c) airborne toxic materials are within permissible concentrations as listed in OSHA's Subpart Z or in ACGIH's current list of Threshold Limit Values. SAFE FOR HOT WORK means that (a) oxygen within the space is less than 22% by volume; and (b) the combustible gas is less than 10% of the Lower Explosive Limit; and (c) cargo residues within the space will not combust during hot work; and (d) pipes that can deliver hazardous materials to the workspace have been separated, blanked, or locked out, and nearby hazardous spaces have been evaluated and noted on the certificate.

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot work is not permitted.

Tun Wise T.

ate and understands conditions and

"The undersigned acknowledges receipt of this climitations under which it was issued."

Signed

FMO STAFF USE - Inspection Date: 7/6Inspection Time:	14:00 Staff: II)
Your	Dan.
Seattle JUN 2 6 2023	
Fire Department	
AFFLICATION FOR TEMPORARY PE	RMIT
Code 7908 \$311 Commercial Tank Removal/Decommi	issioning
Permit Fee: \$288.00	Date Issued: 1/6/23
	m site on the same day as permit is issued!
BUSINESS NAME: TANK WISE LLC	
MAILING ADDRESS: 5405 W MARGINAL WAY SW	SUITE:
CITY: SEATTLE STATE: WA	ZIP: 98106
JOBSITE ADDRESS: 701 5 JACKSON.	
CONTACT PERSON: TOM WISE PHONE NUMBER:	(206) 793-2425
Number of Tank(s): Tank Size(s): / 2-40-	☐ Aboveground tank
Product(s) Previously Contained:	☐ Underground tank
Removal (Marine Chemist inspection and certificate required for all tanks regard	less of size or contents)
Abandonment-in-Place (Marine Chemist certificate required for tanks previously and/or unknowns)	
Hot work being conducted: No Yes (If yes, a separ	rate hot work permit is required)
Permit applications may be submitted in person weekdays from 8:00 a.m. to 4:30 p.m., or may	
Seattle Fire Department To pay with a Visa or Master Card, email this	s completed application to us,
Fire Marshal's Office – Permits and then visit www.seattle.gov/fire/permits 220 Third Ave S, 2 nd Floor Tel: (206) 386-1450	to make a payment.
Seattle, WA 98104-2608 E-mail: permits@seattle.gov	
WORK SHALL NOT COMMENCE UNTIL SFD INSPECTION HAN NO HOT WORK IS ALLOWED ON A TANK SYSTEM PRIOR TO ISSUANCE OF	AS BEEN COMPLETED.
Contact us at least 2 business days prior to intended start date t Email: permits@ seattle.gov Call: (206) 386-	o request an inspection
Permission is hereby granted to remove or decommission the tank(s) identified in this perm all noted special conditions, and all applicable provisions of the Seattle Fire Code, and federal	uit in accordance with the attached conditions, al, state, and local regulations.
I understand the conditions of this permit and will ensure all tank removal/decommissis	
I acknowledge that I received an inspection by a Seattle Fire Department inspector today.	
Print Name Signature	Title
Special permit conditions: Tank removal/decommissioning must be performed, or directly super	
THIS DEDAME IS AND A AND A OFFI	
FMO USE: THIS PERMIT IS NULL AND VOID IF PERMIT CONDITIONS A APPROVED BY:	ARE NOT ATTACHED
Check No.: 00026908062623 Inspector: After Final	SFD ID# 2343
Receipt No.: 5-350857 Name of Marine Chemist Crais Application ID#: 131149 Date: 7/6/23	SFD ID# 234 5 Certificate # 43065
Date. of Off	

(06/21)

715, Jackson

Licensed City Weigher

Certificate of Weight Issued under authority of City of Seattle Ord. 7.04580

601 S. Myrtle Street Seattle, WA 98108 206-682-0040

Date ghed For: Ticket # nmodity: Price: Gross lbs. Tare lbs. Net lbs. a undersigned, certify that the weights indicated hereon rue and correct. ghed By: __

(5/20)

ORIGINAL

			-
FMO STAFF USE - Inspection Date:	Inspection Time:	Staff:	
Your			6

Your Seattle

Fire Department

	APPLICATION FOR TEMPORARY PERMIT
(Code 7908 Commercial Tank Removal/Decommissioning
F	Permit Fee: \$311.00 Date Issued: 48/23
A	PPLICANT TO COMPLETE PAGES 1 AND 2 Tank(s) must be removed from site on the same day as permit is issued!
	BUSINESS NAME: Tank Wise LLC
	MAILING ADDRESS: 5405 W Marginal Way SA SUITE:
	CITY: Seattle STATE: WA ZIP: 98104
	JOBSITE ADDRESS: 701 S Jackson Street Seattle WA 206 937-3995
	CONTACT PERSON: Monica Vijarro PHONE NUMBER: (206) 937-3995
	Number of Tank(s): 3 Tank Size(s): 675 1500 1500 Aboveground tank
	Product(s) Previously Contained: Gasoline Underground tank
	Removal (Marine Chemist inspection and certificate required for all tanks regardless of size or contents)
	Abandonment in-Place (Marine Chemist certificate required for tanks previously containing Class I flammable liquids and/or unknowns)
	Hot work being conducted: No Yes (If yes, a separate hot work permit is required)
P	ermit applications may be submitted in person weekdays from 8:00 a.m. to 4:30 p.m., or mailed to:
	Seattle Fire Department To pay with a Visa or Master Card, email this completed application to us,
	Fire Marshal's Office - Permits and then visit www.seattle.gov/fire/permits to make a payment.
	220 Third Ave S, 2nd Floor Tel: (206) 386-1450
	Seattle, WA 98104-2608 E-mail: permits@seattle.gov
	WORK SHALL NOT COMMENCE UNTIL SFD INSPECTION HAS BEEN COMPLETED. NO HOT WORK IS ALLOWED ON A TANK SYSTEM PRIOR TO ISSUANCE OF THIS FIRE DEPARTMENT PERMIT! Contact us at least 2 business days prior to intended start date to request an inspection. Email: permits@seattle.gov Call: (206) 386-1450
P	ermission is hereby granted to remove or decommission the tank(s) identified in this permit in accordance with the attached conditions, il noted special conditions, and all applicable provisions of the Seattle Fire Code, and federal, state, and local regulations.
	understand the conditions of this permit and will ensure all tank removal/decommissioning operations are conducted accordingly acknowledge that I received an inspection by a Seattle Fire Department inspector today.
_	Monica Vijagro, Monica L'Vijagro 8-2-23
	rint Name Signature Signature Title pecial permit conditions: Tank removal/decommissioning must be performed, or directly supervised, by an IEC cerufied individual (WAC 173-360-60)
8	Per Conia 1. It Sound Teste 2-1 + kale 1 1 comment acon state

THIS PERMIT IS NULL	AND VOID IF PERMIT CONDITIONS ARE NOT ATTACHED
FMO USE:	APPROVED BY;
Check No.:	Inspector: Alan than SFD ID# 2343
Receipt No.:	Name of Marine Chemist Certificate #
Application ID#:	Date: 8/9/25

STRAIGHT BILL OF LADING ORIGINAL—NOT NEGOTIABLE

22022

Shipper No.	_	JU	
	W-10-11-11	North Course	

						Carrier No		
Page o	. /1		Marine Vacuun	n Service Inc.		Date	5-5	3-2
Page o	4	L .	(Name of	carrier)	(SCAC)	<i>t</i> -		
TO:		"COD" must appear before consignee's name or	as otherwise provided in Itam 430, Sec.1.	FROM: GAR	V			1
Consignee Ma	rine V	acuum Service Inc.		Street 701	South	Jack Sc	W.	SF
Street 1516	1516 South Graham Street				te .	State LUH	Zip Code	
city Seattle		State WA	Zip Code 98108	24 hr. Emergency Co	ntact Tel. No	ChemTel 1-800- Contract MIS36		24
Route		The second of the designation is the second of the second		ACCESS OF THE PROPERTY OF THE		Vehicle Numbe	r 0 4	19
No. of Units & Container Type	HM	6	ASIC DESCRIPTION Shipping Name, Hazard Class	, Packing Group	TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	Y WEIGHT (Subject to Correction)	RATE	CHARGES (For Carrier Use Only)
1TT	Х	(DOT Spec Tank Requir UN1863 Fuel, Aviati		Class 3, PG I				
1 TT	Х	(DOT Spec Tank Requir UN1203 Gasoline, N	red)	*				
1 TT	Х	(DOT Spec Tank Requir UN1203 Gasoline, C	ed)					
1 TT	Х	NA1993 Diesel Mixtu						
1 TT	X	NA1993 Diesel, Clas	s 3, PG III	The second se				
1 TT	Х	NA1270 Petroleum C	il, Class 3, PG I					
1 TT	Х	NA1270 Petroleum C	il, Mixture, Class 3	, PG I		1.		
1 TT		Oily Waste Water No	on Reg by DOT		100	Gall		Assessment of the second of th
1 TT		Waste Water Non R	eg by DOT			11		
1 TT		Used Oil Non Reg b	y DOT		¥			
1 TT		Used Coolant Non F	Reg by DOT					
								NO.
					ş.			
					The second secon			
Note — (1) Where the rai	e is decende	NDERED: YES NO	I horeby declare that the contents of this	REMIT C.O.D. TO: ADDRESS		area Comment i suri municipi, manerica a compositari porte.	I	
agreed or declared value of be not exceeding (2) Where the applicable tari	the property	ared value of the property, as follows: "The is hereby specifically stated by the shipper to per "" become a limitation of the carrier's liability absent	consignment are fully and accurately described above by the proper shipping name and are classified, packaged, marked and labelled/placarded, and are	COD	Amt: \$	C.O.D. F PREPAIL		
the carrier's liability or decla provided by such provisions.	re a value, the See NMFC It	shipper and the shipper does not release e carrier's liability shall be limited to the extent em 172. Itonal care or attention in handling or stowing	in all respects in proper condition for transport according to applicable international and national governmental		nditions, if this shipment is to be the consigner, the consigner	e delivered to the r shall sign the CHARGE		
must be so marked and pac	kaged as to e eight Bills an	nsure sale transportation. See Section 2(e) of d Statements of Charges and Section 1(a) of	regulations. Signature	The carrier shall not make freight and all other lawful charge	delivery of this shipment will es.	hout payment of FREI FREIGHT PF except when right is check	GHT CHARG	GES k box If charges are to be collect
the pro tents o (the wo posses nation,	perty describe f packages un ord carrier bein sion of the pro if on its route,	o the classifications and tariffs in offect on the date d above in apparent good order, except as noted known), marked, consigned, and desilined as indi- ig understood throughout this contract as meaning party under the contract) agrees to carry to its usus otherwise to deliver to another carrier on the route to carrier of all or any of, said property over all or a	(contents and condition of con- cated above which said carrier ig any person or corporation in il place of delivery at said desti- to said destination. Il is mutu-	tination and as to each p be performed hereunder sh sification on the date of s Shipper hereby cer	arty at any time interested in nall be subject to all the bill of la hipment. Itifies that he is familiar with and the said terms and condit	all or any said property, that ending terms and conditions in the and in all the lading terms and continues are hereby agreed to by the same terms are hereby agreed to be same terms and the same terms are the same terms and the same terms are the same ter	very service to governing clas-	
SHIPPER \	DAN U	h (CARRIER MH	-R, 1)	AP		
PER 5	127			PER _	Jolen	meel		_
V	1	V		DATE -	0.5	17		

SOUND TESTING, INC.	
P.O. BOX 16204 SEATTLE, WA 98116	MARINE CHEMIST CERTIFICATE
(206) 932-0206 FAX (206) 937-3848	WITHING CHEWIST CERTIFICATE
WWW.SOUNDTESTINGINC.COM	SERIAL Nº 48152
TANK WISE	TANK WISE/GARY 8/8/23
Survey Requested by	Vessel Owner or Agent Date
UST	UST 701 S JARKSON ST
Vessel	Type of Vessel Specific Location of Vesses
GASOLINES &3	Visual, Oz 1/20 HRS
Last Three (3) Loadings	Tests Performed Time Survey Complete:
AU AUD	
1,000 gal UST #1	INERTEN COT
1200 1167 块刀	
1,000 gal UST #2	SAFE FOR EXCAVATION
. 0	
2.500 ga UST	SAFE FOR TRANSPORT
7,000	
	ALL TANKS:
	02 45%
	1
REQUIRENTS: KEE	P ALL OPENING TO THE UST'S
PLUC	35.53
	ely affecting conditions in the above spaces, or if in any doubt,
	work and contact the undersigned Marine Chemist. nditions in pipe lines or tanks noted above, unless specifically approved in this certificate, will
require re-inspection and a new Certificate for spaces so affected. A	Il piping, heating coils, pumps and floating roof gaskets attached to or contained within spaces
listed above snail be considered "NOT SAFE" unless otherwise spec	ifically designated.
	ANDARD SAFETY DESIGNATIONS
	of Work.) The Marine Chemist may request additional measures if workplace conditions so dictate.
ATMOSPHERE SAFE FOR WORKERS means that in a space (a) the ox Explosive Limit, and (c) airborne toxic materials are within permissible cor	ygen content is between 19.5% and 22% by volume, and (b) combustible gas is less than 10% of the Lower neentrations as listed in OSHA's Subpart Z or in ACGIH's current list of Threshold Limit Values.

"The undersigned acknowledges receipt of this Certificate and understands conditions and limitations under which it was issued."

This Certificate is based on conditions existing at the time the inspection herein set forth was completed and is jesued subject to compliance with all qualifications and instructions.

SAFE FOR HOT WORK means that (a) oxygen within the space is less than 22% by volume; and (b) the combustible gas is less than 10% of the Lower Explosive Limit; and (c) cargo residues within the space will not combust during hot work; and (d) pipes that can deliver hazardous materials to the workspace have been separated, blanked, or locked out, and nearby hazardous spaces have been evaluated and noted on the certificate.

Signed__

POSTING

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot work is not permitted.

Signed Alarine Chemist Certificate No

SOUND TESTING, INC. P.O. BOX 16204 SEATTLE, WA 98116 MARINE CHEMIST CERTIFICATE (206) 932-0206 FAX (206) 937-3848 SERIAL Nº WWW.SOUNDTESTINGING.COM Tonkwise 2500 Gal UST 1420 Time Survey Completed -2500 Gal In the event of changes adversely affecting conditions in the above spaces, or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist. Qualifications: Manipulation of valves or devices tending to alter conditions in pipe lines or tanks noted above, unless specifically approved in this certificate, will require re-inspection and a new Certificate for spaces so affected. All piping, heating coils, pumps and floating roof gaskets attached to or contained within spaces listed above shall be considered "NOT SAFE" unless otherwise specifically designated. STANDARD SAFETY DESIGNATIONS (These detail the minimum conditions for Safe Entry and Hot Work.) The Marine Chemist may request additional measures if workplace conditions so dictate. ATMOSPHERE SAFE FOR WORKERS means that in a space (a) the oxygen content is between 19.6% and 22% by volume, and (b) combustible gas is less than 10% of the Lower Explosive Limit, and (c) airborne toxic materials are within permissible concentrations as listed in SHA's Subpart Z or in ACGIH's current list of Threshold Limit Values. SAFE FOR HOT WORK means that (a) oxygen within the space is less than 22% by volume; and (b) the combustible gas is less than 10% of the Lower Explosive Limit; and (c) cargo residues within the space will not combust during not work; and (d) pipes that can deliver hazardous materials to the workspace have been separated, blanked, or locked out, and nearby hazardous spaces have been evaluated and noted on the Lucas Kuebler work is not permitted. "The undersigned acknowledges receipt of this C e and understands conditions and This Certificate is based on conditions existing at the time the hisportant limitations under which it was issued and is issued subject to compliance with all a

POSTING

Signed

Name

Certificate of Weight Issued under authority of City of Seattle Ord. 7.04.580

Weighed By: _

Licensed City Weigher

SEATTLE IRONEMETALS CORP.
601 S. Myrtle Street Seattle, WA 98108 206-682-0040

	2-1	
	Date()8/22/23	09:37 am
ished For	Ticket # 1328	18.3
ighed For: Price:		
mmodity:	Gross lbs.	15210 lb
	Tare lbs.	11620 lb
1400	Net lbs.	3590 lb
he undersigned, certify that the weights indicated hereon	PAID	
e true and correct.	AUG 2 2 2023	
Licensed City Weigher	SEATFLE IRON & METAL	SCORP
	M.	4
SFATTLE IRON	e of Weight City of Seattle Ord. 7.04.58	30
Certificat Issued under authority of		30
Certificat Issued under authority of SEATTLE IRO 601 S. Myrtle Street Seat	e of Weight City of Seattle Ord. 7.04.58	50 40
Certificat Issued under authority of	e of Weight City of Seattle Ord. 7.04.58 EMETALS CORP. tle, WA 98108 206-682-00	50 40
Certificat Issued under authority of SEATTLE IRO 601 S. Myrtle Street Seat	e of Weight City of Seattle Ord. 7.04.58 IEMETALS CORP. tle, WA 98108 206-682-00 Date 18/22/ Ticket #	30 40 23 02:14 P
Certificat Issued under authority of SEATTLE IRON 601 S. Myrtle Street Seat Weighed For:	e of Weight City of Seattle Ord. 7.04.58 IEMETALS CORP. tle, WA 98108 206-682-00. Date 18/22/	00 40 23 02:14 P 132629 14000 1b
Certificat Issued under authority of SEATTLE IRON 601 S. Myrtle Street Seat Weighed For:	e of Weight City of Seattle Ord. 7.04.58 IEMETALS CORP. tle, WA 98108 206-682-00 Date 18/22/ Ticket #	30 40 23 02:14 P
Certificat Issued under authority of SEATTLE IRON 601 S. Myrtle Street Seat Weighed For:	e of Weight City of Seattle Ord. 7.04.58 IEMETALS CORP. tle, WA 98108 206-682-00 Date 12/ Ticket # Gross lbs.	00 40 23 02:14 P 132629 14000 1b
Certificat Issued under authority of SEATTLE IRO 601 S. Myrtle Street Seat Weighed For:	e of Weight City of Seattle Ord. 7.04.58 IEMETALS CORP. tle, WA 98108 206-682-004 Date 18/22/ Ticket # Gross lbs. Tare lbs.	14000 lb 11620 lb 2380 lb

30-DAY NOTICEFOR UNDERGROUND STORAGE TANK SYSTEMS

UST ID #: 9017

County: King

This form provides Ecology 30-days' advanced notice for projects, as required by Chapter 173-360A WAC. Instructions are on the back page.

Please ✓ the ap	opropriate box:	Intent to	Install X Ir	itent to Close [Change-in-Service			
	I. SITE INFO	RMATION		II. Own	er/Operator Information			
Tag or UBI # (i	if applicable): No	ot Applicable		Owner/Operator Name: 701 South Jackson Partners LLC				
UST ID # (if ap	plicable): 9017			Business Name: 70	1 South Jackson Partners LLC			
Site Name: S	eventh Avenue S	Service		Mailing Address: 15	59 South Jackson Street			
Site Address:	701 South Jack	son Street		City: Seattle	State: WA Zip: 98104			
City: Seattle				Phone: 206-915-970	02			
Phone: 206-9	915-9702			Email: robertt@hou	singdiversity.com			
		ck the appropri	ate boxes. If more for this project, fill	VICE PROVIDER(S) than one service prov out both sections.				
			-	es MUST be ICC-cert ed by the Departme	ified or have passed nt of Ecology.			
1)	taller 🔀 Dec	commissioner	☐ Site Asses	sor				
Company Nan	ne: Tank Wise	LLC		Certification Type: U2				
Service Provid	ler Name: Seatt	le Oil Solution		Cert. No.: 9408330	0-U2 Exp. Date: 6/15/2025			
Provider Phor	ne: 206-937-39	95		Provider Email: _{wtan}	kwise@gmail.com office@hotlineheating.ne			
2)	taller 🗌 Ded	commissioner	☐ Site Asses	sor				
Company Nan	ne:			Certification Type:				
Service Provid	ler Name:			Cert. No.:	Exp. Date:			
Provider Phor	ne:			Provider Email:				
		IV. 1	TANK AND/OR P	PING INFORMATION	ı			
TANK ID	TANK CAPACITY	SUBSTANCE STORED	PIPING INSTALLATION OR REPLACEMENT ONLY (Y/N)	DATE PROJECT IS EXPECTED TO BEGIN	COMMENTS			
T2	1,000 gallon	Gas	N	8/8/2023	Previously unidentified tanks			
T3	1,000 gallon	Waste Oil	N	8/8/2023	encountered during site clean/property redevelopment			
T4	1,000 gallon	Waste Oil	N	8/8/2023	(Site ID 11348). Tanks will be permanently decommissioned			
					and removed from the property.			

30-DAY NOTICE

FOR UNDERGROUND STORAGE TANK SYSTEMS

GENERAL INSTRUCTIONS

Under WAC 173-360A-0300, 173-360A-0810 and 173-360A-0820, owners and/or operators are required to notify the Department of Ecology (Ecology) **at least 30 days prior** to beginning underground storage tank (UST) and/or piping installation, decommissioning, or change-in-service projects by mailing this notice to the address below. A separate form must be used for each project type (e.g. install, removal). Once this form is received by Ecology, it is date-stamped and returned to the owner/operator listed on the form. Installation and decommissioning projects cannot begin within the first 30 days after the date stamped on this form <u>unless the wait-period has been waived</u> by a regional Ecology UST inspector. If a project cannot meet the deadlines described below, an additional 30-Day Notice may be required.

Department of Ecology Underground Storage Tank Section PO Box 47655 Olympia, WA 98504-7655

SITE AND OWNER/OPERATOR INFORMATION

Fill in the site/owner information completely. The contact person listed on this form <u>must</u> confirm the exact date an installation or decommissioning project will begin by contacting the regional UST inspector at least 3 business days before proceeding.

INSTALLATION/REPLACEMENT OF TANK AND/OR PIPING

Installation projects must begin within 90 days of the date stamped on this notice. Complete the Tank Information section by assigning Tank ID numbers that have not previously been used at the facility. Once processed, this form allows a one-time drop of product for UST system testing purposes only. The fuel drop is not required to occur within the 90-day period. Once your tank(s) store more than one inch of product, leak detection equipment and monitoring must be in place.

To receive additional deliveries and operate the new tanks/piping, you must submit the <u>Business License application</u>, <u>UST Addendum</u>, and the tank/piping Manufacturer's Installation Checklists to the Department of Revenue (DOR) within 30 days of completing the installation. This activates the mailing of your Business License with tank endorsement(s) from DOR and the facility compliance tag from Ecology.

If <u>only</u> piping is being installed or replaced piping, the ICC-certified installer must certify the installation by completing the <u>Retrofit/Repair Checklist</u> with the Manufacturer's Installation Checklist and submitting it to the owner/operator. The form packet must be submitted by the owner/operator to Ecology **within 30 days** of completing the piping installation.

PERMANENT CLOSURE OF TANK AND/OR PIPING

Decommissioning projects must be completed within 90 days after the date stamped on this returned notice. Complete the Tank Information section using Tank ID numbers listed on the Business License. Use the Comments box to include additional information, such as the date when product was removed from both the piping and the tank to less than one inch.

Contact your local fire marshal and planning department prior to tank closure to procure any permits required by county or other local jurisdictions. Compliance with the State Environmental Policy Act (SEPA) Rules, Chapter 197-11 WAC may also apply.

A site assessment is required at the time of closure. If contamination is <u>not</u> discovered, a site assessment report must be submitted to the above address **within 30 days**. If contamination <u>is</u> discovered or confirmed, it must be reported to the appropriate Ecology regional office **within 24 hours** and a site characterization report must be submitted to the above address **within 90 days**.

The following are some examples of tanks that are exempt from the UST regulations.

- ❖ Farm or residential tanks, 1,100 gallons or less, used to store motor fuel for personal or farm use only. The fuel must be used for farm purposes and cannot be for resale.
- * Tanks used for storing heating oil that is used solely for the purpose of heating the premises.
- * Tanks with a capacity of 110 gallons or less.
- * Emergency overflow tanks, catch basins, or sumps.

PERMANENT CLOSURE NOTICE

FOR UNDERGROUND STORAGE TANKS

This notice certifies that permanent closure activities were performed and conducted in accordance with Chapter 173-360A WAC. Instructions are found on the back page.

UST ID #: 9017

County: King

	I. UST FACILITY		i	II. Owner/Operator Information				
Facility Compliance Ta	ag #: Not Applicabl	e	Owner/Op	erator Name: 7	01 South Jackson	Partners LLC		
UST ID #: 9017			Business N	Business Name: 701 South Jackson Partners LLC				
Site Name: Seventh A	venue Service		Address: 1	59 South Jackso	n Street			
Site Address: 701 Sou	uth Jackson Street		City: Seatt	le	State: WA	Zip: 98104		
City: Seattle	1400	X 1134 W.	Phone: 20	6-915-9702				
Phone: 206-915-9702	2		Email: robe	ertt@housingdive	ersity.com			
		III. CERTIFIED U	ST DECOMMIS	SIONER				
Company Name: Tan	k Wise LLC		Service Pro	vider Name: Se	eattle Oil Solution			
Address: 5405 W Ma	rginal Way SW		Certificatio	n Type: U2		D. S. CO. WHILE WAS DESCRIBED AND THE SECOND STREET		
City: Seattle	State:	WA Zip: 98106	Cert. No.: 9	9408330-U2	Exp. Date: 6/	15/2025		
Provider Phone: 206	-937-3995		Provider Er	mail: wtankwise@	gmail.com office@ho	tlineheating.net		
Provider Signature:	raw .	WEST STATES	→ Date: FÉ	13 Hm 2	024			
		IV. TANK	Information					
TANK ID	TANK CAPACITY	LAST SUBSTANCE		CLOSURE METHOD CLOSURE DA				
		STORED	removal	closed-in-place	change-in-service	JEGGGRE DATE		
T2	1,000 gallon	Gas	X					
T3	1,000 gallon	Waste Oil	. 🛚					
T4	1,000 gallon	Waste Oil	☒ ,					
					. 🗆			

			RED SIGNATURE					
Signature ackno	owledges UST(s) cor	mply with UST regulo	ation WAC 173-3	60A-0810 Permai	nent Closure Require	ements.		
2-16-24	of w	Var Jeen		Gary Van	Cleave			
Date	Signature of Tank (Representative	Owner/Operator or /		Print or T	ype Name			

APPENDIX B Site Check/Site Assessment Checklists

SITE CHECK/SITE ASSESSMENT CHECKLIST

FOR UNDERGROUND STORAGE TANKS

UST ID #: 9017

County: King

This checklist certifies that site check or site assessment activities were performed in accordance with Chapter 173-360A WAC. Instructions are found on the last page.

I. UST F	ACILITY	II. OWNER/OPERA	ATOR INFORMA	TION		
Facility Compliance Tag #:		Owner/Operator Name:701 South Jackson Partners LLC				
UST ID #: FSID # 99187287		Business Name: 701 South J	Business Name: 701 South Jackson Partners LLC			
Site Name: Seventh Avenue Se	ervice	Address: 159 South Jackson	Street			
Site Address: 701 South Jackson	on Street	City: Seattle	State: WA	Zip: 98104		
City: Seattle		Phone: 206-915-9702				
Phone: 206-915-9702		Email: robertt@housingdivers	sity.com			
	III. CERTIFIED	SITE ASSESSOR				
Service Provider Name: Robert	Trahan	Company Name: GeoEngine	eers			
Cell Phone:206.240.2300 Email	rtrahan@geoengineers.com	Address: 2101 4th Avenue				
Certification #: 5242654	Exp. Date: Aug 2024	City: Seattle	State:WA	Zip: 98121		
	IV. TANK IN	IFORMATION				
TANK ID	TANK CAPACITY	LAST SUBSTANCE STORED		E CHECK OR T CONDUCTED		
T2	4,000 gallon	Gasoline	8/8	3/2023		
Т3	1,100 gallon	Waste Oil	8/8/2023			
T4	1,100 gallon	Waste Oil 8/8/2023				
V. REA	SON FOR CONDUCTING SITE	CHECK/SITE ASSESSMENT (che	ck one)			
☑ Release investigation follows:	owing permanent UST system	closure (i.e. tank removal or c	losure-in-place)			
☐ Release investigation follo	owing a failed tank and/or line	e tightness test.				
☐ Release investigation follo	owing discovery of contamina	ted soil and/or groundwater.				
☐ Release investigation dire	cted by Ecology to determine	e if the UST system is the sourc	e of offsite impa	acts.		
1 1 1	a "change-in-service", which regulated substance (e.g. wa	is changing from storing a reg	ulated substanc	e (e.g.		
☐ Directed by Ecology for US	ST system permanently close	d or abandoned before 12/22/	1988.			
☐ Other (describe):						

	VI. CHECKLIST			
	The site assessor must check each of the following items and include it in the report. Sections referenced below can be found in the Ecology publication Guidance for Site Checks and Site Assessments for Underground Storage Tanks.	YES	NO	
1.	The location of the UST site is shown on a vicinity map.	X		
2.	A brief summary of information obtained during the site inspection is provided (Section 3.2)	X		
3.	A summary of UST system data is provided (Section 3.1)	X		
4.	The soils characteristics at the UST site are described. (Section 5.2)	X		
5.	Is there any apparent groundwater in the tank excavation?		X	
6.	A brief description of the surrounding land use is provided. (Section 3.1)	X		
7.	The name and address of the laboratory used to perform analyses is provided. The methods used to collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report.	×		
8.	The following items are provided in one or more sketches:			
	Location and ID number for all field samples collected	X		
	If applicable, groundwater samples are distinguished from soil samples			n/a
	Location of samples collected from stockpiled excavated soil			n/a
	Tank and piping locations and limits of excavation pit	X		
	Adjacent structures and streets	X		
	Approximate locations of any on-site and nearby utilities	X		
9.	If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4)			n/a
10	. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded.	X		
11	. Any factors that may have compromised the quality of the data or validity of the results are described.	X		
12	. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372.	×		
	VII. REQUIRED SIGNATURES			
	Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360A-0730 through			
Dri	Robert Trahan nt or Type Name Signature of Certified Site Assessor Date	23		-
	or type traine of certified site Assessor			1

SITE CHECK/SITE ASSESSMENT CHECKLIST

FOR UNDERGROUND STORAGE TANKS

Instructions

This checklist must accompany the results of a Site Check Report, which is performed if a release of petroleum or other regulated substance is suspected. It is also required to accompany a Site Assessment Report, which is required following the permanent closure or "change-in-service" of an underground storage tank system. This form is required to be filled out whether or not contamination is found. This checklist is to be completed by the Site Assessor and submitted within thirty days of completing these activities to the following address:

Dept. of Ecology UST Section PO Box 47655 Olympia, WA 98504-7655

- **I./II. UST Facility and Owner/Operator Information:** Fill out these sections completely. If you do not know your UST ID number, include the facility compliance tag number.
- III. Service Provider Information: It is the responsibility of the ICC-certified Site Assessor to ensure that sampling and documentation procedures are completed in accordance with Ecology's *Guidance for Site Checks and Site Assessment for Underground Storage Tanks*.
- **IV. Tank Information:** Use the same Tank identification numbers listed on the facility's Business License which is based on the most recent UST Addendum on file with Ecology. List the last substance stored in each tank, the tank sizes and the date the site check or site assessment was completed.
- V. Required Signature: The Site Assessor signature certifies these procedures were followed.

All confirmed releases must be reported to Ecology by the owner within 24 hours and by service providers within 72 hours of discovery. A Site Characterization Report must be submitted to Ecology within 90 days after confirming a release.

Further questions? Please contact your regional office below and ask for a tank inspector to assist you.

Regional Office	Counties Served
Central (509) 575-2490	Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima
Eastern (509) 329-3400	Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman
HQ (360) 407-7170	Federal facilities in Western Washington
Northwest (425) 649-7000	Island, King, Kitsap, San Juan, Skagit, Snohomish, Whatcom
Southwest (360) 407-6300	Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum

or find a complete list of UST inspectors at:

www.ecy.wa.gov/programs/tcp/ust-lust/people.html

APPENDIX CField Methods

APPENDIX C FIELD PROGRAM

Sample Collection and Handling

Soil samples from Seventh Avenue Service Site (Site) located at 701 South Jackson Street, Seattle, Washington, were obtained using a clean nitrile-gloved hand and placed in a 4- or 8-oz. laboratory-prepared jar filled to minimize headspace. Gloves were changed between samples to prevent cross-contamination. United States Environmental Protection Agency (EPA) Method 5035 was used to obtain soil samples for chemical analysis of volatile organic compounds. The samples were placed in an iced cooler pending transport to the analytical laboratory.

Each sample that was submitted for analysis was identified by a unique sample designation that corresponded to its mapped sample location and elevation. Standard chain-of-custody procedures were followed in transporting the samples to the laboratory.

Field Screening of Soil Samples

A representative from our staff performed field screening of soil samples obtained from the excavation. Field screening results are used as a general guideline to delineate areas with possible petroleum hydrocarbon concentrations. In addition, screening results are used to aid in the selection of soil samples for chemical analysis. The screening methods used include: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening.

Visual screening consists of inspecting the soil for stains indicative of petroleum hydrocarbons. Visual screening is generally more effective when hydrocarbons are heavier, such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup levels. However, field screening results are site-specific. The effectiveness of field screening varies with temperature, moisture content, organic content, soil type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen (NS) No visible sheen on water surface.

Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates

rapidly. Natural organic matter in the soil may produce a slight sheen.

Moderate Sheen (MS) Light to heavy sheen; may have some color/iridescence; spread is irregular to

flowing, may be rapid; few remaining areas of no sheen on water surface.

Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water surface may

be covered with sheen.

Headspace vapor screening may identify volatile petroleum hydrocarbon compounds and involves placing a soil sample in a plastic sample bag. Air is captured in the bag, and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a photoionization detector (PID) is inserted into the bag, and the PID then measures the concentration of volatile organic vapors present within the sample bag headspace. The PID measures photoionizable vapor concentrations in parts per million (ppm) and is calibrated to isobutylene. The PID is designed to quantify concentrations up to 15,000 ppm. A lower threshold of significance of 1 ppm was used in this application.

APPENDIX DChemical Analytical Program

APPENDIX D CHEMICAL ANALYTICAL PROGRAM

Analytical Methods

Chain-of-custody procedures were followed during the transport of the field samples to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory quality control records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and no exceptions were noted in the laboratory report.

Analytical Data Review Summary

No data quality issues were identified, and no data qualification was necessary.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2306502

July 05, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 1 sample(s) on 6/29/2023 for the analyses presented in the following report.

Hydrocarbon Identification by NWTPH-HCID

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 07/05/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street

Work Order: 2306502

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2306502-001 UST-230629 06/29/2023 7:30 AM 06/29/2023 11:55 AM

Case Narrative

WO#: **2306502**Date: **7/5/2023**

CLIENT: GeoEngineers
Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2306502**

Date Reported: 7/5/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

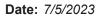
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2306502**Date Reported: **7/5/2023**


Client: GeoEngineers Collection Date: 6/29/2023 7:30:00 AM

Project: S Jackson Street

Lab ID: 2306502-001 **Matrix:** Product

Client Sample ID: UST-230629

Analyses	Result	Result RL		Units	DF	Date Analyzed
Hydrocarbon Identification b	oy NWTPH-HCID			Batc	h ID: 40	797 Analyst: AP
Gasoline	ND	566		mg/Kg	1	6/30/2023 4:50:04 PM
Mineral Spirits	ND	943		mg/Kg	1	6/30/2023 4:50:04 PM
Kerosene	ND	943		mg/Kg	1	6/30/2023 4:50:04 PM
Diesel (Fuel Oil)	DETECT	943		mg/Kg	1	6/30/2023 4:50:04 PM
Heavy Oil	ND	1,890		mg/Kg	1	6/30/2023 4:50:04 PM
Mineral Oil	ND	1,890		mg/Kg	1	6/30/2023 4:50:04 PM
Surr: 2-Fluorobiphenyl	69.9	50 - 150		%Rec	1	6/30/2023 4:50:04 PM
Surr: o-Terphenyl	76.0	50 - 150		%Rec	1	6/30/2023 4:50:04 PM

Work Order: 2306502

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Hydrocarbon Identification by NWTPH-HCID

Sample ID: MB-40797	SampType: MBLK			Units: mg/Kg		Prep Da	te: 6/29/20	23	RunNo: 850)90	
Client ID: MBLKS	Batch ID: 40797					Analysis Da	te: 6/30/20	23	SeqNo: 177	76250	
Analyte	Result	RL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	30.0									
Mineral Spirits	ND	50.0									
Kerosene	ND	50.0									
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Mineral Oil	ND	100									
Surr: 2-Fluorobiphenyl	8.53		10.00		85.3	50	150				
Surr: o-Terphenyl	8.44		10.00		84.4	50	150				

Sample ID: LCS-40797 SampType: LCS				Units: mg/Kg	Prep Date: 6/29/2023		23	RunNo: 85090			
Client ID: LCSS Batch ID: 40797						Analysis Da	te: 6/30/20	23	SeqNo: 177	6251	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	458	50.0	500.0	0	91.6	74.5	125				
Surr: 2-Fluorobiphenyl	8.12		10.00		81.2	50	150				
Surr: o-Terphenyl	10.7		10.00		107	50	150				

Original Page 6 of 8

Sample Log-In Check List

Clien	nt Name:	GEI			Work Order Numb	ber: 2306502		
Logg	ged by:	Morgan Wilson			Date Received:	6/29/2023	11:55:00 AM	
Chain	of Custo	ody						
		ustody complete?			Yes 🗸	No 🗌	Not Present	
2. Ho	ow was the	sample delivered?			<u>Client</u>			
Log In	<u>1</u>							
		s present on shipping containe ments for Custody Seals not in			Yes	No 🗌	Not Present 🗹	
4. Wa	as an attem	pt made to cool the samples?			Yes	No 🗸	NA 🗌	
				<u>Unk</u>	known prior to red	ceipt.		
5. We	ere all items	received at a temperature of	>2°C to 6°C	*	Yes	No 🗌	NA 🗸	
6. Sai	ımple(s) in p	proper container(s)?			Yes 🗹	No 🗌		
7. Sut	ifficient sam	ple volume for indicated test(s	s)?		Yes 🗸	No 🗌		
8. Are	e samples p	properly preserved?			Yes 🗸	No 🗌		
9. Wa	as preserva	tive added to bottles?			Yes	No 🗸	NA 🗌	
10. ls t	there heads	space in the VOA vials?			Yes	No 🗌	NA 🗸	
11. Did	d all sample	s containers arrive in good co	ndition(unbroke	en)?	Yes 🗸	No 🗌		
12. Do	es paperwo	ork match bottle labels?			Yes 🗸	No 🗌		
13. Are	e matrices o	correctly identified on Chain of	Custody?		Yes 🗹	No 🗌		
14. ls i	it clear wha	t analyses were requested?			Yes 🗸	No \square		
15. We	ere all holdi	ng times able to be met?			Yes 🗸	No 🗌		
<u>Speci</u>	ial Handl	ing (if applicable)						
16. <u>W</u>	Vas client n	otified of all discrepancies with	this order?		Yes	No 🗌	NA 🗹	_
	Person	Notified:		Date:				
	By Who	om:		Via:	eMail Pr	hone Fax	In Person	
	Regard	ing:						
	Client In	nstructions:						
17. A	dditional re	marks:						1
Item In	formation							
		Item #	Temp °C					
9	Sample		20.6					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Oato/Time									1		
6/19/23 1155	Kafeler	May Mame	x 20 C	1853 × Rece	6/59/27	1	ent Robinste	Print Name	W	Thaturg)	x Land (Signature
	d Client's agreement	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	the Client named ab	dytical on behalf of	Fremont Ana	eement.	his Agreen of this Agr	nd backside	I represent that I am authorized to enter into this Agreement wit to each of the terms on the front and backside of this Agreement.	that I am a	to each of th
Day Same Day			Nitrate+Nitrite	nate Fluoride	O-Phosphate	Bromide	Sulfate	Chloride	e Nitrite	e): Nitrate	**Anions (Circle):
☐ Standard ☐ Next Day	Sn Ti Ti V Zn	Mg Mn Mo Na Ni Pb Sb Se Sr	Cu Fe Hg K	Ba Be Ca Cd Co Cr	Individual: Ag Al As B Ba Be	Individual	ints TAL	Priority Pollutants	RCRA-8): MICA-S	"Metals (Circle): MICA-5
3	W	SW = Storm	rinking Water,	Water,	SD = Sediment, St = Solid,	Soil, SD = Se	Product, S =	O = Other, P = Product, S = Soil,	B = Bulk,	AQ = Aqueo	*Matrix: A = Air, AQ = Aqueous,
											10
											7
											6
											ω.
											2
		×		_	-	4	offe s	6/12/28	29	230629	VST-
Comments			34. (24 65 18 0 18 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18		cont.	ple ple	Sample	Sample Date			Sample Name
							1	ers.com	eoengine	nan@ge	Email(s): rtrahan@geoengineers.com
in 30 days unless otherwise re) Return to client	Disposal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client	Dispo	an	Report To (PM): Robert Trahan	Report To (PM)		0.000	**************************************	2674	5.861.2	Telephone: 425.861.2674
			100 mm m	Location: Seattle, WA	Location: Se			121	, WA 98	Seattle,	city, State, Zip: Seattle, WA 98121
		***************************************		collected by: Paul Robinette	Collected by:			50	ve Ste 9	1 4th A	Address: 2101 4th Ave Ste 950
				24504-001-01	Project No:			***************************************	SIS	GeoEngineers	client: GeoE
	Special Remarks:	Speci	e †	Project Name: S Jackson Street	Project Name:			Es munum	Grand	An Allegace Technique	
1306 501	Laboratory Project No (internal): 1306 501	of: Labo	Page.	6/20/23	Date: 6	22/0/1	Tel: 206-352-3790		O CONTRACTOR OF THE PARTY OF TH		
						75105	Seattle VV				

www.fremontanalytical.com

COC 1.3 - 11.06.20

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2307040

July 14, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 5 sample(s) on 7/6/2023 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 07/14/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street

Work Order: 2307040

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2307040-001	UST-N-86	07/06/2023 1:10 PM	07/06/2023 2:26 PM
2307040-002	UST-S-86	07/06/2023 1:25 PM	07/06/2023 2:26 PM
2307040-003	UST-E-86	07/06/2023 1:15 PM	07/06/2023 2:26 PM
2307040-004	UST-W-86	07/06/2023 1:20 PM	07/06/2023 2:26 PM
2307040-005	UST-B-83	07/06/2023 1:30 PM	07/06/2023 2:26 PM

Case Narrative

WO#: **2307040**Date: **7/14/2023**

CLIENT: GeoEngineers
Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2307040**

Date Reported: 7/14/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2307040**Date Reported: **7/14/2023**

Date Analyzed

Client: GeoEngineers Collection Date: 7/6/2023 1:10:00 PM

RL

Qual

Units

DF

Project: S Jackson Street

Analyses

Lab ID: 2307040-001 **Matrix**: Soil

Result

Client Sample ID: UST-N-86

	1100011		Qua. 00		24107111419204
Diesel and Heavy Oil by NWTPH-D	Dx/Dx Ext.		Bate	ch ID:	40883 Analyst: AP
Diesel Range Organics	94.7	56.7	mg/Kg-dry	/ 1	7/12/2023 3:21:34 PM
Heavy Oil	6,910	113	mg/Kg-dry		7/12/2023 3:21:34 PM
Total Petroleum Hydrocarbons	7,000	170	mg/Kg-dry	/ 1	7/12/2023 3:21:34 PM
Surr: 2-Fluorobiphenyl	105	50 - 150	%Rec	1	7/12/2023 3:21:34 PM
Surr: o-Terphenyl	115	50 - 150	%Rec	1	7/12/2023 3:21:34 PM
NOTES:					
Chromatographic pattern indicates the prese	nce of two overl	apping products	, divided into diesel and	oil rang	ges
Polyaromatic Hydrocarbons by El	PA Method	8270 (SIM)	Bato	ch ID:	40884 Analyst: SH
Naphthalene	ND	23.0	μg/Kg-dry	, 1	7/12/2023 4:51:33 PM
2-Methylnaphthalene	ND	23.0	μg/Kg-dry		7/12/2023 4:51:33 PM
1-Methylnaphthalene	ND	23.0	μg/Kg-dry		7/12/2023 4:51:33 PM
Benz(a)anthracene	ND	23.0	μg/Kg-dry		7/12/2023 4:51:33 PM
Chrysene	ND	23.0	μg/Kg-dry		7/12/2023 4:51:33 PM
Benzo(b)fluoranthene	ND	28.7	μg/Kg-dry	/ 1	7/12/2023 4:51:33 PM
Benzo(k)fluoranthene	ND	28.7	μg/Kg-dry	/ 1	7/12/2023 4:51:33 PM
Benzo(a)pyrene	ND	34.4	μg/Kg-dry	/ 1	7/12/2023 4:51:33 PM
Indeno(1,2,3-cd)pyrene	ND	45.9	μg/Kg-dry	/ 1	7/12/2023 4:51:33 PM
Dibenz(a,h)anthracene	ND	57.4	μg/Kg-dry	/ 1	7/12/2023 4:51:33 PM
Surr: 2-Fluorobiphenyl	88.4	22.2 - 146	%Rec	1	7/12/2023 4:51:33 PM
Surr: Terphenyl-d14 (surr)	112	20.2 - 159	%Rec	1	7/12/2023 4:51:33 PM
Volatile Organic Compounds by E	PA Method	1 8260D	Bato	ch ID:	40900 Analyst: KJ
Benzene	ND	0.0173	mg/Kg-dry	/ 1	7/13/2023 3:56:46 PM
Toluene	ND	0.0297	mg/Kg-dry	/ 1	7/13/2023 3:56:46 PM
Ethylbenzene	ND	0.0247	mg/Kg-dry	/ 1	7/13/2023 3:56:46 PM
m,p-Xylene	ND	0.0494	mg/Kg-dry	/ 1	7/13/2023 3:56:46 PM
o-Xylene	ND	0.0247	mg/Kg-dry	/ 1	7/13/2023 3:56:46 PM
Surr: Dibromofluoromethane	109	79.5 - 124	%Rec	1	7/13/2023 3:56:46 PM
Surr: Toluene-d8	105	77.5 - 124	%Rec	1	7/13/2023 3:56:46 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	60.5 - 139	%Rec	1	7/13/2023 3:56:46 PM
Sample Moisture (Percent Moistur	re)		Bato	ch ID:	R85231 Analyst: MP
Percent Moisture	14.2	0.500	wt%	1	7/12/2023 8:19:45 AM

Work Order: **2307040**Date Reported: **7/14/2023**

Client: GeoEngineers Collection Date: 7/6/2023 1:15:00 PM

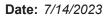
Project: S Jackson Street

Lab ID: 2307040-003 **Matrix:** Soil

Client Sample ID: UST-E-86

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batch	ı ID:	40883 Analyst: AP
Diesel Range Organics	ND	62.6		mg/Kg-dry	1	7/12/2023 3:10:40 PM
Heavy Oil	ND	125		mg/Kg-dry	1	7/12/2023 3:10:40 PM
Total Petroleum Hydrocarbons	ND	188		mg/Kg-dry	1	7/12/2023 3:10:40 PM
Surr: 2-Fluorobiphenyl	107	50 - 150		%Rec	1	7/12/2023 3:10:40 PM
Surr: o-Terphenyl	113	50 - 150		%Rec	1	7/12/2023 3:10:40 PM
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ı ID:	40884 Analyst: SH
Naphthalene	ND	25.5		μg/Kg-dry	1	7/12/2023 5:20:02 PM
2-Methylnaphthalene	ND	25.5		μg/Kg-dry	1	7/12/2023 5:20:02 PM
1-Methylnaphthalene	ND	25.5		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Benz(a)anthracene	ND	25.5		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Chrysene	ND	25.5		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Benzo(b)fluoranthene	ND	31.9		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Benzo(k)fluoranthene	ND	31.9		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Benzo(a)pyrene	ND	38.2		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Indeno(1,2,3-cd)pyrene	ND	51.0		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Dibenz(a,h)anthracene	ND	63.7		μg/Kg-dry	1	7/12/2023 5:20:02 PM
Surr: 2-Fluorobiphenyl	87.8	22.2 - 146		%Rec	1	7/12/2023 5:20:02 PM
Surr: Terphenyl-d14 (surr)	111	20.2 - 159		%Rec	1	7/12/2023 5:20:02 PM
Volatile Organic Compounds by	EPA Method	1 8260D		Batch	ı ID:	40900 Analyst: KJ
Benzene	ND	0.0196		mg/Kg-dry	1	7/13/2023 2:56:31 PM
Toluene	ND	0.0336		mg/Kg-dry	1	7/13/2023 2:56:31 PM
Ethylbenzene	ND	0.0280		mg/Kg-dry	1	7/13/2023 2:56:31 PM
m,p-Xylene	ND	0.0560		mg/Kg-dry	1	7/13/2023 2:56:31 PM
o-Xylene	ND	0.0280		mg/Kg-dry	1	7/13/2023 2:56:31 PM
Surr: Dibromofluoromethane	97.7	79.5 - 124		%Rec	1	7/13/2023 2:56:31 PM
Surr: Toluene-d8	104	77.5 - 124		%Rec	1	7/13/2023 2:56:31 PM
Surr: 1-Bromo-4-fluorobenzene	99.8	60.5 - 139		%Rec	1	7/13/2023 2:56:31 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID:	R85231 Analyst: MP
Percent Moisture	24.8	0.500		wt%	1	7/12/2023 8:19:45 AM

Work Order: **2307040**Date Reported: **7/14/2023**

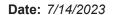

Client: GeoEngineers Collection Date: 7/6/2023 1:30:00 PM

Project: S Jackson Street

Lab ID: 2307040-005 **Matrix**: Soil

Client Sample ID: UST-B-83

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPh	I-Dx/Dx Ext.			Batch	ı ID:	40883 Analyst: AP
Diesel Range Organics	ND	50.2		mg/Kg-dry	1	7/12/2023 3:43:39 PM
Heavy Oil	2,900	100		mg/Kg-dry	1	7/12/2023 3:43:39 PM
Total Petroleum Hydrocarbons	2,900	151		mg/Kg-dry	1	7/12/2023 3:43:39 PM
Surr: 2-Fluorobiphenyl	135	50 - 150		%Rec	1	7/12/2023 3:43:39 PM
Surr: o-Terphenyl	146	50 - 150		%Rec	1	7/12/2023 3:43:39 PM
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ı ID:	40884 Analyst: SH
Naphthalene	ND	20.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
2-Methylnaphthalene	38.4	20.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
1-Methylnaphthalene	26.2	20.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Benz(a)anthracene	ND	20.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Chrysene	ND	20.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Benzo(b)fluoranthene	ND	25.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Benzo(k)fluoranthene	ND	25.2		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Benzo(a)pyrene	ND	30.3		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Indeno(1,2,3-cd)pyrene	ND	40.3		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Dibenz(a,h)anthracene	ND	50.4		μg/Kg-dry	1	7/12/2023 5:48:22 PM
Surr: 2-Fluorobiphenyl	91.2	22.2 - 146		%Rec	1	7/12/2023 5:48:22 PM
Surr: Terphenyl-d14 (surr)	124	20.2 - 159		%Rec	1	7/12/2023 5:48:22 PM
Volatile Organic Compounds by	y EPA Method	8260D		Batch	ı ID:	40900 Analyst: KJ
Benzene	ND	0.0200		mg/Kg-dry	1	7/13/2023 3:26:40 PM
Toluene	ND	0.0343		mg/Kg-dry	1	7/13/2023 3:26:40 PM
Ethylbenzene	ND	0.0286		mg/Kg-dry	1	7/13/2023 3:26:40 PM
m,p-Xylene	ND	0.0572		mg/Kg-dry	1	7/13/2023 3:26:40 PM
o-Xylene	ND	0.0286		mg/Kg-dry	1	7/13/2023 3:26:40 PM
Surr: Dibromofluoromethane	107	79.5 - 124		%Rec	1	7/13/2023 3:26:40 PM
Surr: Toluene-d8	103	77.5 - 124		%Rec	1	7/13/2023 3:26:40 PM
Surr: 1-Bromo-4-fluorobenzene	102	60.5 - 139		%Rec	1	7/13/2023 3:26:40 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	R85231 Analyst: MP
Percent Moisture	6.10	0.500		wt%	1	7/12/2023 8:19:45 AM

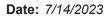

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Troject. O Jackson &	Street										
Sample ID: MB-40883	SampType: MBLK			Units: mg/Kg		Prep Date	e: 7/12/20	23	RunNo: 852	244	
Client ID: MBLKS	Batch ID: 40883					Analysis Date	e: 7/12/20	23	SeqNo: 177	78999	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	150									
Surr: 2-Fluorobiphenyl	11.2		10.00		112	50	150				
Surr: o-Terphenyl	11.9		10.00		119	50	150				
Sample ID: LCS-40883	SampType: LCS			Units: mg/Kg		Prep Date	e: 7/12/2 0	23	RunNo: 852	244	
Client ID: LCSS	Batch ID: 40883					Analysis Date	e: 7/12/20	23	SeqNo: 177	79000	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	615	150	500.0	0	123	76.8	124				
Surr: 2-Fluorobiphenyl	12.5		10.00		125	50	150				
Surr: o-Terphenyl	14.5		10.00		145	50	150				
Sample ID: 2307109-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 7/12/20	23	RunNo: 852	244	
Client ID: BATCH	Batch ID: 40883					Analysis Date	e: 7/12/20	23	SeqNo: 177	79002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Petroleum Hydrocarbons	574	166	553.7	0	104	21.8	165				
Surr: 2-Fluorobiphenyl	12.3		11.07		111	50	150				
Surr: o-Terphenyl	15.0		11.07		136	50	150				
Comple ID: 2207400 004 AMCD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 7/12/20	23	RunNo: 852	244	
Sample ID: 2307109-001AMSD											
Client ID: BATCH	Batch ID: 40883					Analysis Date	e: 7/12/20	23	SeqNo: 17 7	79003	
Client ID: BATCH		RL	SPK value	SPK Ref Val	%REC	,		RPD Ref Val	SeqNo: 17 7	79003 RPDLimit	Qua
	Batch ID: 40883	RL 166	SPK value	SPK Ref Val	%REC	,			·		Qua
Client ID: BATCH Analyte	Batch ID: 40883 Result					LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua

Original Page 8 of 16


QC SUMMARY REPORT

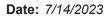
CLIENT: GeoEngineers
Project: S Jackson Street

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 2307109-002ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 7/12/20)23	RunNo: 852	244	
Client ID: BATCH	Batch ID: 40883					Analysis Da	te: 7/12/20)23	SeqNo: 177	79005	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	ND	51.9						0		30	
Heavy Oil	ND	104						0		30	
Total Petroleum Hydrocarbons	ND	156						0		30	
Surr: 2-Fluorobiphenyl	10.8		10.37		104	50	150		0		
Surr: o-Terphenyl	11.7		10.37		113	50	150		0		

Original Page 9 of 16

QC SUMMARY REPORT


CLIENT: GeoEngineers
Project: S Jackson Street

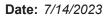
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-40884	SampType: MBLK			Units: µg/Kg		Prep Date:			RunNo: 852		
Client ID: MBLKS	Batch ID: 40884					Analysis Date:	7/12/20	23	SeqNo: 177	9723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	20.0									
Benzo(b)fluoranthene	ND	25.0									
Benzo(k)fluoranthene	ND	25.0									
Benzo(a)pyrene	ND	30.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	50.0									
Surr: 2-Fluorobiphenyl	955		1,000		95.5	22.2	146				
Surr: Terphenyl-d14 (surr)	1,170		1,000		117	20.2	159				

Sample ID: LCS-40884	SampType: LCS			Units: µg/Kg		Prep Da	te: 7/12/20	23	RunNo: 852	290	
Client ID: LCSS	Batch ID: 40884					Analysis Da	te: 7/12/20	23	SeqNo: 17 7	79724	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,920	20.0	2,000	0	95.8	59.3	114				
2-Methylnaphthalene	1,790	20.0	2,000	0	89.6	55.5	115				
1-Methylnaphthalene	1,810	20.0	2,000	0	90.5	57.2	116				
Benz(a)anthracene	1,950	20.0	2,000	0	97.6	59.5	123				
Chrysene	1,910	20.0	2,000	0	95.3	51.5	115				
Benzo(b)fluoranthene	1,840	25.0	2,000	0	92.1	50	122				
Benzo(k)fluoranthene	1,950	25.0	2,000	0	97.4	51	117				
Benzo(a)pyrene	2,090	30.0	2,000	0	105	53.2	123				
Indeno(1,2,3-cd)pyrene	1,760	40.0	2,000	0	87.8	49.5	122				
Dibenz(a,h)anthracene	1,790	50.0	2,000	0	89.6	51	120				
Surr: 2-Fluorobiphenyl	1,010		1,000		101	22.2	146				
Surr: Terphenyl-d14 (surr)	1,190		1,000		119	20.2	159				

Original Page 10 of 16

QC SUMMARY REPORT


CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2307040-005AMS	SampType: MS			Units: µg/l	Kg-dry	Prep Da	te: 7/12/20	123	RunNo: 852	290	
Client ID: UST-B-83	Batch ID: 40884					Analysis Da	te: 7/12/20	23	SeqNo: 177	79728	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,970	20.2	2,025	9.828	96.8	44	114				
2-Methylnaphthalene	1,890	20.2	2,025	38.37	91.6	46.9	106				
1-Methylnaphthalene	1,890	20.2	2,025	26.25	92.2	47.3	109				
Benz(a)anthracene	2,320	20.2	2,025	8.793	114	41.7	126				
Chrysene	1,820	20.2	2,025	0	90.0	40.4	108				
Benzo(b)fluoranthene	2,020	25.3	2,025	0	99.6	30.9	124				
Benzo(k)fluoranthene	1,930	25.3	2,025	0	95.3	32.8	115				
Benzo(a)pyrene	2,180	30.4	2,025	0	108	25.9	129				
Indeno(1,2,3-cd)pyrene	1,730	40.5	2,025	0	85.2	14.3	126				
Dibenz(a,h)anthracene	1,730	50.6	2,025	0	85.3	18.6	121				
Surr: 2-Fluorobiphenyl	1,050		1,012		104	22.2	146				
Surr: Terphenyl-d14 (surr)	1,250		1,012		124	20.2	159				

Sample ID: 2307040-005AMSD	SampType: MSD			Units: µg/l	(g-dry	Prep Da	te: 7/12/20	23	RunNo: 852	290	
Client ID: UST-B-83	Batch ID: 40884					Analysis Da	te: 7/12/20	23	SeqNo: 177	79729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,020	20.2	2,025	9.828	99.4	44	114	1,969	2.68	30	
2-Methylnaphthalene	1,950	20.2	2,025	38.37	94.7	46.9	106	1,893	3.23	30	
1-Methylnaphthalene	1,950	20.2	2,025	26.25	94.8	47.3	109	1,893	2.73	30	
Benz(a)anthracene	2,340	20.2	2,025	8.793	115	41.7	126	2,321	0.849	30	
Chrysene	1,850	20.2	2,025	0	91.2	40.4	108	1,823	1.33	30	
Benzo(b)fluoranthene	2,080	25.3	2,025	0	102	30.9	124	2,016	2.91	30	
Benzo(k)fluoranthene	1,960	25.3	2,025	0	96.7	32.8	115	1,929	1.46	30	
Benzo(a)pyrene	2,240	30.4	2,025	0	110	25.9	129	2,185	2.34	30	
Indeno(1,2,3-cd)pyrene	1,720	40.5	2,025	0	84.9	14.3	126	1,726	0.372	30	
Dibenz(a,h)anthracene	1,740	50.6	2,025	0	85.7	18.6	121	1,727	0.492	30	
Surr: 2-Fluorobiphenyl	1,020		1,012		100	22.2	146		0		
Surr: Terphenyl-d14 (surr)	1,220		1,012		120	20.2	159		0		

Original Page 11 of 16


QC SUMMARY REPORT

CLIENT: GeoEngineers Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Project: S Jackson S	treet						3		,		
Sample ID: LCS-40900	SampType: LCS			Units: µg/L		Prep Date	e: 7/13/20	23	RunNo: 852	295	
Client ID: LCSS	Batch ID: 40900					Analysis Date	e: 7/13/20	23	SeqNo: 17	79779	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	0.894	0.0175	1.000	0	89.4	80	120				
Toluene	0.975	0.0300	1.000	0	97.5	80	120				
Ethylbenzene	0.968	0.0250	1.000	0	96.8	80	120				
m,p-Xylene	1.95	0.0500	2.000	0	97.4	80	120				
o-Xylene	0.963	0.0250	1.000	0	96.3	80	120				
Surr: Dibromofluoromethane	1.33		1.250		106	79.5	124				
Surr: Toluene-d8	1.26		1.250		100	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.23		1.250		98.6	60.5	139				
Sample ID: MB-40900	SampType: MBLK			Units: mg/Kg		Prep Date	e: 7/13/20	23	RunNo: 852	 295	
Client ID: MBLKS	Batch ID: 40900					Analysis Date	e: 7/13/20	23	SeqNo: 17	79772	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0175									
Toluene	ND	0.0300									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.25		1.250		99.7	79.5	124				
Surr: Toluene-d8	1.28		1.250		102	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.16		1.250		92.9	60.5	139				
Sample ID: 2307139-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 7/13/20	23	RunNo: 852	 295	
Client ID: BATCH	Batch ID: 40900					Analysis Date	e: 7/13/20	23	SeqNo: 17	79774	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.321						0		30	D
Toluene	ND	0.551						0		30	D
Ethylbenzene	ND	0.459						0		30	D
m,p-Xylene	ND	0.918						0		30	D
o-Xylene	ND	0.459						0		30	D

Original Page 12 of 16

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2307139-002BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 7/13/20	23	RunNo: 852	295	
Client ID: BATCH	Batch ID: 40900					Analysis Da	te: 7/13/20	23	SeqNo: 177	9774	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	22.3		22.94		97.4	79.5	124		0		D
Surr: Toluene-d8	23.5		22.94		102	77.5	124		0		D
Surr: 1-Bromo-4-fluorobenzene	22.3		22.94		97.4	60.5	139		0		D

Sample ID: 2307040-003BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 7/13/20	23	RunNo: 852	295	
Client ID: UST-E-86	Batch ID: 40900					Analysis Da	te: 7/13/20	23	SeqNo: 17 7	79778	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.17	0.0196	1.121	0	104	52.3	147				
Toluene	1.05	0.0336	1.121	0	93.6	50.1	147				
Ethylbenzene	0.979	0.0280	1.121	0	87.4	51.7	143				
m,p-Xylene	1.97	0.0560	2.241	0	87.9	54.5	144				
o-Xylene	0.978	0.0280	1.121	0	87.3	57.1	141				
Surr: Dibromofluoromethane	1.46		1.401		104	79.5	124				
Surr: Toluene-d8	1.46		1.401		104	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.37		1.401		98.0	60.5	139				

Original Page 13 of 16

Sample Log-In Check List

Clie	ent Name:	GEI		Work Order Num	nber: 2307040		
Log	ged by:	Morgan Wilson		Date Received:	7/6/2023 2	2:26:00 PM	
Chair	n of Custo	ody					
		ustody complete?		Yes 🗸	No 🗌	Not Present	
2. ⊦	low was the	sample delivered?		<u>Client</u>			
Log I	<u>In</u>						
		s present on shipping container ments for Custody Seals not in		Yes	No 🗌	Not Present ✓	
4. W	/as an attem	pt made to cool the samples?		Yes	No 🗸	na 🗆	
				Unknown prior to re	eceipt.		
5. W	ere all items	s received at a temperature of	>2°C to 6°C *	Yes	No \square	NA 🗹	
6. S	ample(s) in p	proper container(s)?		Yes 🗸	No 🗌		
-		ple volume for indicated test(s)?	Yes 🗸	No 🗌		
8. A	re samples p	properly preserved?		Yes 🗸	No 🗌		
9. W	/as preserva	tive added to bottles?		Yes	No 🗸	NA 🗆	
10 ls	there heads	space in the VOA vials?		Yes	No 🗌	NA 🗹	
_		· es containers arrive in good cor	ndition(unbroken)	? Yes ✓	No 🗌		
		ork match bottle labels?	,	Yes 🗹	No 🗌		
13 A	re matrices o	correctly identified on Chain of	Custody?	Yes 🗸	No 🗌		
_		t analyses were requested?	,	Yes 🗹	No 🗌		
		ng times able to be met?		Yes 🗸	No \square		
Spec	cial Handl	ing (if applicable)					
16. \	Was client n	otified of all discrepancies with	this order?	Yes	No 🗌	NA 🗸	
	Person	Notified:		Date:			
	By Who	om:		Via: eMail F	Phone Fax	In Person	
	Regard	ing:					
	Client I	nstructions:					
17.	Additional re	marks:					
Item I	<u>nformation</u>						
<u></u>		Item #	Temp °C				
	Sample		26.6				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fremont	ω	3600 Fremont Ave N. Seattle, WA 98103	03 ×	Chain of Cu	Chain of Custody Record &	Laboratory Services Agreement	es Agreement
An Arrange Technical Lines to	disass		Proje	Project Name: S Jackson Street	eet	Special Remarks: 1/610	
client: GeoEngineers			Proj	Project No: 24504-001-01	94	ASSERVMENTE	JE BY THE
Address: 2101 4th Ave Ste 950	0		Coll	collected by: Paul Robinette	***************************************		
city, state, zip: Seattle, WA 98121	21		Loca	Location: Seattle, WA		***************************************	
Telephone: 425.861.2674			Rep	Report To (PM): Robert Trahan	han	Disposal: Samples will be disposed in Retain volume (specify above)	Disposal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client
Email(s): rtrahan@geoengineers.com	ers.com						
		Sa	Sample	24 S. C.			
	Date	_	rix)*	20 87 60 4	2	\$	Comments
1 UST-N-86	1/6/25	5 OR				5 3	
2 UST- 5-86		1325	w			<i>y</i>	
3 UST-E-86		1315	W			The state of the s	
" UST-W-86	,	1320	3			*	
5 UST-B-83	4	1530	to Vo			~	
6							
7							
00							
9							
10							
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O	O = Other, P = Proc	duct, S = Soil	l, SD = Sedimei Individual: Ag	SL = Solid, W = Water, As B Ba Be Ca Cd	DW = Drinking Water, GW = Ground Water, Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	Water, SW = Storm Water, WW = Waste Water Na Ni Pb Sb Se Sr Sn Ti Tl V Zn	Standard Next Day
Nitrate Nitrite	Chloride	Sulfate	Bramide	O-Phosphate Fluoride	Nitrate+Nitrite		☐ 3 Day ☐ Same Day
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	enter into thi d backside of	s Agreemen this Agreen	t with Fre	mont Analytical on behal	f of the Client named above, t	hat I have verified Client's agreem	☐ 2 Day
Relingatished (Signature)	Print Name	May Leighos TE	1.	16/23/32K	Received (Signature)	Enuma Tuck	7/435 14:2
Relinquished (Signature)	Print Name				Received (Signature)	Print Name	Date/Time

	36	00 Fremont	Ave N.		Cha	in c	of Cu	ısto	dy	Rec	ord	& L	abc	rat	ory	Services	Agree	ment
Fremo	ant s	Seattle, WA Tel: 206-35		Date:					1	nge:		of:				Project No (internal):		•
(A)	V= 10 = 0 1 5			Project	Name: S	3 Jack	kson S	treet							al Rem	TIOLU.	FOL T	BST
Client: GeoEngineers				Project	No: 2	4504	I-001	-01		.01		200	200		1552	bornesse	BY To	Ţ
Address: 2101 4th Ave Ste 9	50	Pagasaa (212a+a PII 282P+444+4					obinet		. 6									
City, State, Zip: Seattle, WA 981		>=a, 1a= fa fa++1>++4+#####	***************************************		"Sea			hha-hidde 1917-			174-277/777777774444			****				
Telephone: 425.861.2674							ert Tr	ahan	**********		ыниципеч-		************	_ i		imples will be disposed in volume (specify above)		therwise requested.
Email(s): rtrahan@geoengine	ore com		***** *** ***** ***	Report	To (PM):							SIM				1000		
	Sample	Sample	Sample Type	# of	/35°/	Paren lay	dire karie	dendering dendering	Range Of Real Page	De la	Maleres Segiles	Discount of the second					Commen	rt<
Sample Name	7/4/25	1318	(Matrix)	Cont.	X		X		_ ັ _ X	Ť	Ť		5			Updated 7/		
UST-5-56	1/1	1325	1	3								1	y					
UST-E-GL		1315		3	X		X		X				11					
UST-W-86	1 1	1320	1	3									又					
2 UST-5-86 3 UST-E-86 4 UST-W-B6 5 UST-B-83	W.	1330	1	3	X		X		X				X					
6																		
7										1								
8																		
9										1								
10																		
*Matrix: A = Air, AQ = Aqueous, B = Bulk,	0 = Other, P = I	Product, S = :	Soil, SD =	Sediment	, SL = So	lid, W=	Water,	DW = Dri	nking \	Water, G	W = Grou	nd Wate	r, SW=	Storm V	Vater,	WW = Waste Water		-around Time:
**Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	nts TAL	indívid	ual: Ag i	Al As 8	Ва Ве	Ca Cd	Co Cr C	u Fe	Hg K M	g Mn M	lo Na	Ni Pb S	Sb Se S	r Sn	Ti 11 V Zn	☐ Standar	d 🗌 Next Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromi		O-Phosph		Fluoride			Nitrite							💢 З Дау	Same Day
I represent that I am authorized t to each of the terms on the front a					ont Ana	lytical	on beha	alf of th	e Cli	ent nam	ed abov	ve, tha	t I hav	e verifi	ed CI	ient's agreement	☐ 2 Day	(specify)
Relingstand (Signature)	Print Name			Date/Tir	TIE /23 /	132	6	Receive	ed (Sig	nature)			Em	int Name	Tu	ok Fi	Time 6/23	14:21
Relinquished (Signature)	Print Name			Date/Tir	ne			Receive x	ed (Sig	nature)			Pri	int Name		Date	/Time	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2308021

August 11, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 1 sample(s) on 8/2/2023 for the analyses presented in the following report.

Gasoline by NWTPH-Gx
Hydrocarbon Identification by NWTPH-HCID
Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/11/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street

Work Order: 2308021

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2308021-001 UST-2-230802 08/02/2023 10:40 AM 08/02/2023 11:19 AM

Case Narrative

WO#: **2308021**Date: **8/11/2023**

CLIENT: GeoEngineers

Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

8/11/23 - Revision 1 includes an updated client Sample ID and additional analyses per client request.

Qualifiers & Acronyms

WO#: **2308021**

Date Reported: **8/11/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

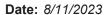
SPK - Spike

Surr - Surrogate

Work Order: **2308021**Date Reported: **8/11/2023**

Client: GeoEngineers Collection Date: 8/2/2023 10:40:00 AM

Project: S Jackson Street


Lab ID: 2308021-001 **Matrix:** Water

Client Sample ID: UST-2-230802

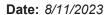
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Hydrocarbon Identification by	/ NWTPH-HCID			Bato	h ID: 411	23 Analyst: AP
Gasoline	ND	2,410		μg/L	1	8/9/2023 12:31:26 PM
Gasoline Range Organics	DETECT	2,410			1	8/9/2023 12:31:26 PM
Mineral Spirits	ND	2,410		μg/L	1	8/9/2023 12:31:26 PM
Kerosene	ND	2,410		μg/L	1	8/9/2023 12:31:26 PM
Diesel (Fuel Oil)	NON-DETECT	2,410		μg/L	1	8/9/2023 12:31:26 PM
Diesel Range Organics (C12-C24)	DETECT	2,410		μg/L	1	8/9/2023 12:31:26 PM
Heavy Oil	ND	4,810		μg/L	1	8/9/2023 12:31:26 PM
Mineral Oil	ND	4,810		μg/L	1	8/9/2023 12:31:26 PM
Surr: 2-Fluorobiphenyl	182	50 - 150	S	%Rec	1	8/9/2023 12:31:26 PM
Surr: o-Terphenyl	91.8	50 - 150		%Rec	1	8/9/2023 12:31:26 PM
NOTES:						
S - Outlying surrogate recovery attrib	outed to TPH interferer	nce.				
Gasoline by NWTPH-Gx				Bato	h ID: 410	56 Analyst: KJ
Gasoline Range Organics	128,000	10,000	D	μg/L	200	8/3/2023 11:44:19 AM
Surr: Toluene-d8	97.6	65 - 135	D	%Rec	200	8/3/2023 11:44:19 AM
Surr: 4-Bromofluorobenzene	104	65 - 135	D	%Rec	200	8/3/2023 11:44:19 AM
Volatile Organic Compounds	by EPA Method 8	3260D		Bato	h ID: 410	56 Analyst: KJ
Benzene	14,100	440	D	μg/L	1000	8/3/2023 11:14:07 AM
Toluene	13,400	1,000	D	μg/L	1000	8/3/2023 11:14:07 AM
Ethylbenzene	993	40.0	D	μg/L	100	8/3/2023 9:46:01 AM
m,p-Xylene	3,810	100	D	μg/L	100	8/3/2023 9:46:01 AM
o-Xylene	1,680	50.0	D	μg/L	100	8/3/2023 9:46:01 AM
Surr: Dibromofluoromethane	124	80 - 120	DS	%Rec	100	8/3/2023 9:46:01 AM
Surr: Toluene-d8	109	80 - 120	D	%Rec	100	8/3/2023 9:46:01 AM
Surr: 1-Bromo-4-fluorobenzene	106	80 - 120	D	%Rec	100	8/3/2023 9:46:01 AM
NOTES:	.30	0	_	,		2, 2, 2020 0

NOTES:

S - Outlying surrogate recovery(ies) observed (high bias). Outlying surrogate is not associated with reported analytes.

CLIENT:

GeoEngineers


Project: S Jackson Street

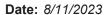
QC SUMMARY REPORT

Hydrocarbon Identification by NWTPH-HCID

Project: 5 Jackson	Sireei						•				
Sample ID: DX-CCV-41152A	SampType: CCV			Units: µg/L		Prep Dat	e: 8/8/202	23	RunNo: 858	849	
Client ID: CCV	Batch ID: 41123					Analysis Dat	e: 8/8/202	23	SeqNo: 17 9	91502	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	477	250	500.0	0	95.3	80	120				
Surr: 2-Fluorobiphenyl	9.86		10.00		98.6	50	150				
Surr: o-Terphenyl	12.6		10.00		126	50	150				
Sample ID: MB-41123	SampType: MBLK			Units: µg/L		Prep Dat	e: 8/7/202	23	RunNo: 858	849	
Client ID: MBLKW	Batch ID: 41123					Analysis Dat	e: 8/8/202	23	SeqNo: 179	91503	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	238									
Mineral Spirits	ND	238									
Kerosene	ND	238									
Diesel (Fuel Oil)	ND	238									
Heavy Oil	ND	476									
Mineral Oil	ND	476									
Surr: 2-Fluorobiphenyl	20.0		23.78		84.1	50	150				
Surr: o-Terphenyl	21.2		23.78		89.3	50	150				
Sample ID: LCS-41123	SampType: LCS			Units: µg/L		Prep Dat	e: 8/7/202	23	RunNo: 858	849	
Client ID: LCSW	Batch ID: 41123					Analysis Dat	e: 8/8/202	23	SeqNo: 17 9	91504	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	878	234	1,171	0	75.0	45.7	115				
Surr: 2-Fluorobiphenyl	19.8		23.41		84.6	50	150				
Surr: o-Terphenyl	21.6		23.41		92.3	50	150				
Sample ID: LCSD-41123	SampType: LCSD			Units: µg/L		Prep Dat	e: 8/7/202	23	RunNo: 858	849	
Client ID: LCSW02	Batch ID: 41123					Analysis Dat	e: 8/8/202	23	SeqNo: 179	91505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	960	235	1,173	0	81.9	45.7	115	878.4	8.87	30	

Revision v1 Page 6 of 16

CLIENT: GeoEngineers


Project: S Jackson Street

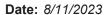
QC SUMMARY REPORT

Hydrocarbon Identification by NWTPH-HCID

Froject. S Jackson	Street							•	•	
Sample ID: LCSD-41123	SampType: I	CSD			Units: µg/L		Prep Date	e: 8/7/2023	RunNo: 85849	
Client ID: LCSW02	Batch ID:	41123					Analysis Date	e: 8/8/2023	SeqNo: 1791505	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Surr: 2-Fluorobiphenyl	2	3.2		23.45		99.1	50	150	0	
Surr: o-Terphenyl	2	7.0		23.45		115	50	150	0	
Sample ID: DX-CCV-41152C	SampType: (ccv			Units: µg/L		Prep Date	e: 8/9/2023	RunNo: 85849	
Client ID: CCV	Batch ID:	41123					Analysis Date	e: 8/9/2023	SeqNo: 1791509	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Diesel (Fuel Oil)	4	470	250	500.0	0	94.0	80	120		
Surr: 2-Fluorobiphenyl	1	0.9		10.00		109	50	150		
Surr: o-Terphenyl	1	2.5		10.00		125	50	150		
Sample ID: DX-CCV-41152D	SampType: (CCV			Units: μg/L		Prep Date	e: 8/9/2023	RunNo: 85849	
Client ID: CCV	Batch ID:	41123					Analysis Date	e: 8/9/2023	SeqNo: 1791512	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Diesel (Fuel Oil)	4	480	250	500.0	0	96.0	80	120		
Surr: 2-Fluorobiphenyl	1	1.1		10.00		111	50	150		
Surr: o-Terphenyl	1	2.8		10.00		128	50	150		

Revision v1 Page 7 of 16

CLIENT: GeoEngineers


Project: S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: S Jackson S	otreet								
Sample ID: GX 85465 MIDPOINT	SampType: CCV			Units: µg/L		Prep Date	7/22/2023	RunNo: 85697	
Client ID: CCV	Batch ID: R85697					Analysis Date	7/22/2023	SeqNo: 1788173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qua
Gasoline Range Organics	522	50.0	500.0	0	104	80	120		
Surr: Toluene-d8	25.2		25.00		101	65	135		
Surr: 4-Bromofluorobenzene	24.8		25.00		99.4	65	135		
Sample ID: GX ICB	SampType: ICB			Units: µg/L		Prep Date	7/22/2023	RunNo: 85465	
Client ID: ICB	Batch ID: R85465					Analysis Date	7/22/2023	SeqNo: 1783152	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qua
Gasoline Range Organics	ND	50.0							
Surr: Toluene-d8	24.5		25.00		97.9	65	135		
Surr: 4-Bromofluorobenzene	25.0		25.00		100	65	135		
Sample ID: GX ICV	SampType: ICV			Units: µg/L		Prep Date	7/22/2023	RunNo: 85465	
Client ID: ICV	Batch ID: R85465					Analysis Date	7/22/2023	SeqNo: 1783153	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref Val	%RPD RPDLimit	Qua
Gasoline Range Organics	617	50.0	500.0	0	123	70	130		
Surr: Toluene-d8	25.0		25.00		100	65	135		
Surr: 4-Bromofluorobenzene	25.0		25.00		100	65	135		
Sample ID: LCS-41056	SampType: CCV			Units: µg/L		Prep Date	8/2/2023	RunNo: 85697	
Client ID: CCV	Batch ID: 41056					Analysis Date	8/2/2023	SeqNo: 1788174	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qua
Gasoline Range Organics	457	50.0	500.0	0	91.4	80	120		
Surr: Toluene-d8	24.6		25.00		98.4	65	135		

Revision v1 Page 8 of 16

CLIENT: GeoEngineers

Project: S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Troject: O Jackson (
Sample ID: GX-CCV-85697A	SampType: CCV			Units: µg/L		Prep Da	te: 8/2/202	23	RunNo: 856	697	
Client ID: CCV	Batch ID: R85697					Analysis Da	te: 8/2/202	23	SeqNo: 178	38171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	457	50.0	500.0	0	91.4	80	120				
Surr: Toluene-d8	24.6		25.00		98.4	65	135				
Surr: 4-Bromofluorobenzene	25.2		25.00		101	65	135				
Sample ID: MB-41056	SampType: MBLK			Units: µg/L		Prep Da	te: 8/2/202	23	RunNo: 856	697	
Client ID: MBLKW	Batch ID: 41056					Analysis Da	te: 8/2/202	23	SeqNo: 178	38172	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	ND	50.0									
Surr: Toluene-d8	24.5		25.00		97.9	65	135				
Surr: 4-Bromofluorobenzene	24.4		25.00		97.8	65	135				
Sample ID: 2308021-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 8/2/202	23	RunNo: 856	697	
Client ID: UST-2-230802	Batch ID: 41056					Analysis Da	te: 8/3/202	23	SeqNo: 178	38167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	60,600	50.0						55,350	9.00	30	Е
Surr: Toluene-d8	32.4		25.00		130	65	135		0		
Surr: 4-Bromofluorobenzene	28.2		25.00		113	65	135		0		
Sample ID: GX-CCV-85697B	SampType: CCV			Units: µg/L		Prep Da	te: 8/3/202	23	RunNo: 856	697	
Client ID: CCV	Batch ID: R85697					Analysis Da	te: 8/3/202	23	SeqNo: 178	38170	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	732	50.0	500.0	0	146	80	120				S
Surr: Toluene-d8	25.0		25.00		99.9	65	135				
Surr: 4-Bromofluorobenzene NOTES:	26.2		25.00		105	65	135				

S - Outlying spike recovery observed (high bias). Samples are non-detect/non-reporting; result meets QC requirements.

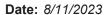
Revision v1 Page 9 of 16

Date: 8/11/2023

Work Order: 2308021

CLIENT:

GeoEngineers

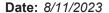

Project: S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Sample ID: GX-CCV-85697C	SampType: CCV			Units: µg/L		Prep Da	te: 8/3/202	3	RunNo: 856	97	
Client ID: CCV	Batch ID: R85697					Analysis Da	te: 8/3/202	:3	SeqNo: 178	8168	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	401	50.0	500.0	0	80.2	80	120				
Surr: Toluene-d8	24.4		25.00		97.6	65	135				
Surr: 4-Bromofluorobenzene	26.5		25.00		106	65	135				

Revision v1 Page 10 of 16


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-41056	SampType:	LCS			Units: µg/L		Prep Date	e: 8/2/202	3	RunNo: 856	883	
Client ID: LCSW	Batch ID:	41056					Analysis Date	e: 8/2/202	3	SeqNo: 178	38032	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	2	20.6	0.440	20.00	0	103	80	120				
Toluene	2	21.1	1.00	20.00	0	105	80	120				
Ethylbenzene	2	20.0	0.400	20.00	0	99.8	80	120				
m,p-Xylene	3	39.5	1.00	40.00	0	98.6	80	120				
o-Xylene	1	19.8	0.500	20.00	0	98.8	80	120				
Surr: Dibromofluoromethane	2	29.6		25.00		118	80	120				
Surr: Toluene-d8	2	26.5		25.00		106	80	120				
Surr: 1-Bromo-4-fluorobenzene	2	27.0		25.00		108	80	120				
Sample ID: VOC-CCV-85683A	SampType:	CCV			Units: µg/L		Prep Date	e: 8/2/202	3	RunNo: 856	683	
Client ID: CCV	Batch ID:	R85683					Analysis Date	e: 8/2/202	3	SeqNo: 178	37833	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	2	20.6	0.440	20.00	0	103	80	120				
Toluene	2	21.1	1.00	20.00	0	105	80	120				
Ethylbenzene	2	20.0	0.400	20.00	0	99.8	80	120				
m,p-Xylene	3	39.5	1.00	40.00	0	98.6	80	120				
o-Xylene	1	19.8	0.500	20.00	0	98.8	80	120				
Surr: Dibromofluoromethane	2	29.6		25.00		118	80	120				
Surr: Toluene-d8	2	26.5		25.00		106	80	120				
Surr: 1-Bromo-4-fluorobenzene	2	27.0		25.00		108	80	120				
Sample ID: MB-41056	SampType:	MBLK			Units: µg/L		Prep Date	e: 8/2/202	3	RunNo: 856	883	
Client ID: MBLKW	Batch ID:	41056					Analysis Date	e: 8/2/202 :	3	SeqNo: 178	38030	
Analyte	Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.440									
Toluene		ND	1.00									
Ethylbenzene		ND	0.400									
m,p-Xylene		ND	1.00									
o-Xylene		ND	0.500									

Revision v1 Page 11 of 16

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: MB-41056	SampType: MBLK			Units: µg/L		Prep Da	te: 8/2/202	23	RunNo: 856	683	
Client ID: MBLKW	Batch ID: 41056			. •		Analysis Da	te: 8/2/202	23	SeqNo: 178	88030	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	27.5		25.00		110	80	120				
Surr: Toluene-d8	26.8		25.00		107	80	120				
Surr: 1-Bromo-4-fluorobenzene	25.2		25.00		101	80	120				

Sample ID: 2308021-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 8/2/202	3	RunNo: 856	583	
Client ID: UST-2-230802	Batch ID: 41056					Analysis Da	te: 8/3/202	:3	SeqNo: 178	38029	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	815	0.440						14,130	178	30	RE
Toluene	1,080	1.00						13,350	170	30	RE
Ethylbenzene	263	0.400						1,043	119	30	RE
m,p-Xylene	730	1.00						3,946	138	30	RE
o-Xylene	524	0.500						1,734	107	30	RE
Surr: Dibromofluoromethane	30.6		25.00		122	80	120		0		S
Surr: Toluene-d8	35.4		25.00		142	80	120		0		S
Surr: 1-Bromo-4-fluorobenzene	27.0		25.00		108	80	120		0		

NOTES:

R,E - High RPD due to high analyte concentration. In this range, high RPD's may be expected.

Sample ID: VOC-CCV-85683B	SampType: CCV			Units: μg/L		Prep Da	te: 8/3/202	23	RunNo: 856	883	
Client ID: CCV	Batch ID: R85683					Analysis Da	te: 8/3/202	23	SeqNo: 178	38031	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	22.6	0.440	20.00	0	113	80	120				
Toluene	22.3	1.00	20.00	0	111	80	120				
Ethylbenzene	19.8	0.400	20.00	0	98.9	80	120				
m,p-Xylene	39.6	1.00	40.00	0	99.1	80	120				
o-Xylene	19.4	0.500	20.00	0	96.9	80	120				
Surr: Dibromofluoromethane	31.2		25.00		125	80	120				S
Surr: Toluene-d8	27.7		25.00		111	80	120				
Surr: 1-Bromo-4-fluorobenzene	26.5		25.00		106	80	120				

Revision v1 Page 12 of 16

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Date: 8/11/2023

Work Order: 2308021

Sample ID: VOC-CCV-85683B

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Project: S Jackson Street

Units: μg/L Prep Date: 8/3/2023 RunNo: 85683

Client ID: **CCV** Batch ID: **R85683** Analysis Date: **8/3/2023** SeqNo: **1788031**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying surrogate recovery(ies) observed (high bias). Outlying surrogate is not associated with reported analytes.

SampType: CCV

Revision v1 Page 13 of 16

Sample Log-In Check List

Clien	nt Name:	GEI			Work Order Nun	nber: 2308021		
Logg	ged by:	Morgan Wilson			Date Received:	8/2/2023	11:19:00 AM	
Chain	of Custo	ody						
1. ls	Chain of C	ustody complete?			Yes 🗸	No 🗌	Not Present	
2. Ho	ow was the	sample delivered?			Client			
Log In	<u>1</u>							
		s present on shipping container ments for Custody Seals not in			Yes	No 🗌	Not Present 🗹	
4. Wa	as an attem	pt made to cool the samples?			Yes 🗸	No 🗌	NA 🗌	
5. We	ere all items	received at a temperature of	>2°C to 6°C	*	Yes 🗸	No 🗌	NA 🗆	
6. Sa	ımple(s) in p	proper container(s)?			Yes 🗸	No 🗌		
_		ple volume for indicated test(s)?		Yes 🗸	No 🗌		
8. Are	e samples p	properly preserved?			Yes 🗸	No 🗌		
9. Wa	as preserva	tive added to bottles?			Yes	No 🗸	NA \square	
10. ls t	there heads	space in the VOA vials?			Yes	No 🗸	NA 🗆	
11. Did	d all sample	s containers arrive in good cor	ndition(unbroke	en)?	Yes 🗸	No \square		
12. Do	es paperwo	ork match bottle labels?			Yes 🗸	No 🗌		
13. Are	e matrices o	correctly identified on Chain of	Custody?		Yes 🗸	No 🗌		
14. ls i	it clear wha	t analyses were requested?			Yes 🗹	No 🗌		
15. We	ere all holdi	ng times able to be met?			Yes 🗸	No 🗌		
<u>Speci</u>	ial Handl	ing (if applicable)						
16. _W	Vas client no	otified of all discrepancies with	this order?		Yes	No 🗆	NA 🗹	_
	Person	Notified:		Date:				
	By Who	om:		Via:	eMail F	Phone Fax	☐ In Person	
	Regard	ing:						
	Client Ir	nstructions:						
17. A	dditional re	marks:						
Item In	formation							
		Item #	Temp °C					
9	Sample		21./					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

人が近所の	3	3600 Fremont Ave N.	ve N.	Chai	n of Cu	ustody Reco	ord & Labora	Chain of Custody Record & Laboratory Services Agreement	es Agreen	nent
	S	Seattle, WA 98103 Tel: 206-352-3790		Date:	2/23	S Page: /	of:	Laboratory Project No (internal):	# 23081	22
an alliance Technical Group Lombani	0 00 0 00 00			Project Name: S Jackson Street	Jackson S			Special Remarks: 28 REARS	ARRE GAR/8	13
client: GeoEngineers				Project No: 24504-001-01	504-001	-01				o 15
Address: 2101 4th Ave Ste 950	0			collected by: Paul Robinette	ul Robinett	le				Pan
city, State, zip: Seattle, WA 98121	21			Location: Seattle, WA	tle, WA					
Telephone: 425.861.2674				Report To (PM): Robert Trahan	obert Tr	ahan		Disposal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client	sed in 30 days unless otherwise re ove) Return to client	rwise requested.
Email(s): rtrahan@geoengineers.com	ers.com									
Sample Name	Sample	Sample	Sample	# of CS ling a State of State						
UST-1-230802	8/2/23	0		×					Commence	
4										
6										
10										
ous, B = Bulk,	O = Other, P = Product, S = Soil, SD = Sediment,	duct, S = Soil	, SD = Sedi		SL = Solid, W = Water, D	DW = Drinking Water, GW =	GW = Ground Water, SW = Storm Water,	n Water, WW = Waste Water		Turn-around Time:
**Metals (Circle): MTCA-5 RCRA-8 Pr	Priority Pollutants	TAL	Individual:	Individual: Ag Al As B Ba	Be Ca Cd Co	Cr Cu Fe Hg K	Mg Mn Mo Na Ni Pb Sb Se	Sr Sn Ti Ti V Zn	☐ Standard	Next Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromide	O-Phosphate	Fluoride	Nitrate+Nitrite			☐ 3 Day	Same Day
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	nter into this backside of	Agreemer	nt with Fi	remont Analyt	ical on behal	If of the Client named	above, that I have ver	ified Client's agreemen	□ 2 Day	(specify)
relinguished (Signature)		BALLER		Date/Tipre	1119	Received (Signature)	Emma.	Tuck	Date/Time 872133	11:19
telinquished (Signature)	Print Name		Dat	Date/Time		Received (Signature)	Print Name		Date/Time	

COC 1.3 - 11.06.20

	ω	3600 Fremont Ave N.) Z	Chain	of Cust	ody Recor	d & Labor	Chain of Custody Record & Laboratory Services Agreement	es Agreer	nent
	v	Tel: 206-352-3790	90 Date:		123	Page:	of:	Laboratory Project No (internal):	mal): 2308	
an Alliance Technical Group Lombani	D 95 D 2871 +		Pro	Project Name: S Jackson Street	kson Stree			Special Remarks: 2B REPORT	हिस्टेड ब्रिस्ड	Ex.
client: GeoEngineers			Pro	Project No: 24504-001-01	1-001-01			X = Run on 3 day TAT, edits per RT 8/8/23 -cg	AT, edits per RT	8/8/23 -cg
Address: 2101 4th Ave Ste 950	0		C)	collected by: Paul Robinette	obinette					Pan
city, State, Zip: Seattle, WA 98121	21		Loc	Location: Seattle, WA	WA					
Telephone: 425.861.2674			Rep	Report To (PM): Robert Trahan	ert Traha	5		Disposal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client	bosed in 30 days unless otherwise re above) Return to client	nerwise requested.
Email(s): rtrahan@geoengineers.com	ers.com	CELOCIC PERSONNEL SERVICES								
Sample Name	Sample	Sample Time (Asset	Sample Type # of	St. Itana						
155-1-30802	8/2/23	10401	R S	×					Comment	
UST-2-230802										
6										
10										
ous, B = Bulk,	O = Other, P = Product, S = Soil, SD = Sediment,	uct, S = Soil, 9	SD = Sedime	nt, SL = Solid, W = Water,		DW = Drinking Water, GW = Gr	GW = Ground Water, SW = Storm Water,	n Water, WW = Waste Water		Turn-around Time:
MICA-5 RCRA-8	Priority Pollutants	TAL Ind	Individual: Ag Al As B	ва ве	Ca Cd Co Cr	Cu Fe Hg K Mg Mn	Mg Mn Mo Na Ni Pb Sb Se	Sr Sn Ti Tl V Zn	☐ Standard	Next Day
I represent that I am authorized to e	Chloride	Sulfate Bi	Bromide f with Free	O-Phosphate	Fluoride N	Nitrate+Nitrite			□ 3 Day	☐ Same Day
to each of the terms on the front and backside of this Agreement.	backside of t	Agreement his Agreeme	with Frei	nont Analytical	on behalf of t	he Client named al	oove, that I have ver	ified Client's agreem	_	(specify)
relinguished (Signature)		Blusto	Date/Tipe	123	///9 ×	Received (Signature)	Emma.	a tuck	Date/Time 872123	11:19
telinquished (Signature)	Print Name		Date/Time	lime	Receiv	Received (Signature)	Print Name	me	Date/Time	

COC 1.3 - 11.06.20

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2308065

August 08, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 1 sample(s) on 8/4/2023 for the analyses presented in the following report.

Hydrocarbon Identification by NWTPH-HCID

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/08/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street

Work Order: 2308065

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2308065-001 UST-3-230804 08/04/2023 9:45 AM 08/04/2023 10:22 AM

Case Narrative

WO#: **2308065**Date: **8/8/2023**

CLIENT: GeoEngineers
Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2308065**

Date Reported: 8/8/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

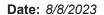
SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2308065**Date Reported: **8/8/2023**


Client: GeoEngineers Collection Date: 8/4/2023 9:45:00 AM

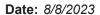
Project: S Jackson Street

Lab ID: 2308065-001 **Matrix:** Product

Client Sample ID: UST-3-230804

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Hydrocarbon Identification I	oy NWTPH-HCID			Batc	h ID: 41	094 Analyst: AP
Gasoline	DETECT	600		mg/Kg	1	8/4/2023 6:23:36 PM
Mineral Spirits	ND	1,000		mg/Kg	1	8/4/2023 6:23:36 PM
Kerosene	ND	1,000		mg/Kg	1	8/4/2023 6:23:36 PM
Diesel (Fuel Oil)	DETECT	1,000		mg/Kg	1	8/4/2023 6:23:36 PM
Heavy Oil	DETECT	2,000		mg/Kg	1	8/4/2023 6:23:36 PM
Mineral Oil	ND	2,000		mg/Kg	1	8/4/2023 6:23:36 PM
Surr: 2-Fluorobiphenyl	86.5	50 - 150		%Rec	1	8/4/2023 6:23:36 PM
Surr: o-Terphenyl	102	50 - 150		%Rec	1	8/4/2023 6:23:36 PM

CLIENT: GeoEngineers


Project: S Jackson Street

QC SUMMARY REPORT

Hydrocarbon Identification by NWTPH-HCID

Sample ID: DX-CCV-41094A	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/4/2023	RunNo: 85777	
Client ID: CCV	Batch ID: 41094					Analysis Date	e: 8/4/2023	SeqNo: 1789916	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	569	50.0	500.0	0	114	80	120		
Surr: 2-Fluorobiphenyl	11.8		10.00		118	50	150		
Surr: o-Terphenyl	14.2		10.00		142	50	150		
Sample ID: MB-41094	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/3/2023	RunNo: 85777	
Client ID: MBLKS	Batch ID: 41094					Analysis Date	e: 8/4/2023	SeqNo: 1789917	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	ND	30.0							
Mineral Spirits	ND	50.0							
Kerosene	ND	50.0							
Diesel (Fuel Oil)	ND	50.0							
Heavy Oil	ND	100							
Mineral Oil	ND	100							
Surr: 2-Fluorobiphenyl	9.42		10.00		94.2	50	150		
Surr: o-Terphenyl	9.61		10.00		96.1	50	150		
Sample ID: LCS-41094	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/3/2023	RunNo: 85777	
Client ID: LCSS	Batch ID: 41094					Analysis Date	e: 8/4/2023	SeqNo: 1789918	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Petroleum Hydrocarbons	454	50.0	500.0	0	90.8	74.5	125		
Surr: 2-Fluorobiphenyl	9.70		10.00		97.0	50	150		
Surr: o-Terphenyl	11.3		10.00		113	50	150		
Sample ID: DX-CCV-41094B	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/4/2023	RunNo: 85777	
Client ID: CCV	Batch ID: 41094					Analysis Date	e: 8/4/2023	SeqNo: 1789920	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	479	50.0	500.0	0	95.8	80	120		

Original Page 6 of 9

QC SUMMARY REPORT

CLIENT: GeoEngineers

Hydrocarbon Identification by NWTPH-HCID

Project: S Jackson	Street					١	lydroca	rbon Ident	ification b	y NWTPH	1-HCIE
Sample ID: DX-CCV-41094B	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/4/202	3	RunNo: 857	777	
Client ID: CCV	Batch ID: 41094					Analysis Date	e: 8/4/202	3	SeqNo: 178	39920	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	9.20		10.00		92.0	50	150				
Surr: o-Terphenyl	12.1		10.00		121	50	150				
Sample ID: 2308037-012ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/3/202	3	RunNo: 857	777	
Client ID: BATCH	Batch ID: 41094					Analysis Date	e: 8/4/202	3	SeqNo: 178	39922	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	30.1						0		30	
Mineral Spirits	ND	50.2						0		30	
Kerosene	ND	50.2						0		30	
Diesel (Fuel Oil)	ND	50.2						0		30	
Heavy Oil	ND	100						0		30	
Mineral Oil	ND	100						0		30	
Surr: 2-Fluorobiphenyl	8.84		10.03		88.1	50	150		0		
Surr: o-Terphenyl	8.80		10.03		87.7	50	150		0		
Sample ID: DX-CCV-41094C	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/4/202	3	RunNo: 857	777	
Client ID: CCV	Batch ID: 41094					Analysis Date	e: 8/4/202	3	SeqNo: 178	39925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	481	50.0	500.0	0	96.2	80	120				
Surr: 2-Fluorobiphenyl	10.3		10.00		103	50	150				
Surr: o-Terphenyl	12.0		10.00		120	50	150				

Original Page 7 of 9

Sample Log-In Check List

Clie	ent Name:	GEI			Work Order Num	ber: 2308065		
Log	gged by:	Morgan Wilson			Date Received:	8/4/2023	10:22:00 AM	
Chai	in of Custo	ody						
		ustody complete?			Yes 🗸	No 🗌	Not Present	
2. H	How was the	sample delivered?			Client			
<u>Log</u>	<u>In</u>							
		s present on shipping container ments for Custody Seals not in			Yes	No 🗌	Not Present 🗹	
4. V	Vas an attem	pt made to cool the samples?			Yes	No 🗸	NA 🗌	
				<u>Unk</u>	known prior to re	eceipt.		
5. V	Were all items	received at a temperature of	>2°C to 6°C	*	Yes	No \square	NA 🗸	
6. S	Sample(s) in p	proper container(s)?			Yes 🗸	No 🗌		
7. S	Sufficient sam	ple volume for indicated test(s)?		Yes 🗸	No 🗌		
8. A	Are samples p	properly preserved?			Yes 🗸	No 🗌		
9. V	Vas preserva	tive added to bottles?			Yes	No 🗸	NA 🗆	
10 ls	s there heads	space in the VOA vials?			Yes	No 🗌	NA 🗸	
		es containers arrive in good cor	ndition(unbroke	en\2	Yes ✓	No \square	IVA 💌	
		ork match bottle labels?	idition(dribrok	CII):	Yes ✓	No \square		
12	раропи							
13. A	Are matrices o	correctly identified on Chain of	Custody?		Yes 🗹	No 🗌		
14. ls	s it clear wha	t analyses were requested?			Yes 🗸	No 🗌		
15. V	Vere all holdi	ng times able to be met?			Yes 🗸	No 🗌		
Spe	cial Handl	ing (if applicable)						
16.	Was client no	otified of all discrepancies with	this order?		Yes	No 🗌	NA 🗸	_
	Person	Notified:		Date:				
	By Who	om:		Via:	eMail P	hone Fax	In Person	
	Regard	ing:						
	Client In	nstructions:						
17.	Additional re	marks:						<u> </u>
<u>Item</u>	<u>Information</u>							
		Item #	Temp °C					
	Sample		2/1 1					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

5	10.66	Bate/Time	Print Name	(Budgetel)	Received (Signature	1201	(v)	Date/Time	31.03.	asur	Print Name	A	ure)	Relinquished (Signature)	Reling
1	5	Date/Time	Print Name	ignature)	Received (Signature)					>	Print Name	1	West 1	Relinguished (Signature)	Reling
	(specify)	greement A 2 Day	nave verified Client's ag	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each/of the terms on the front and backside of this Agreement.	If of the C	tical on beha	ont Analy	ith Frem t.	ement w greemen	nis Agre of this A	enter into t d backside	I represent that I am authorized to enter into this Agreement wit to each/of the terms on the front and backside of this Agreement.	at I am ai terms on	epresent th	t I
Оау	☐ Same Day	☐ 3 Day		Nitrate+Nitrite	Nitrate	te Fluoride	O-Phosphate	Bromide	Bro	Sulfate	Chloride	Nitrite	Nitrate	***Anions (Circle):	***An
ay	□ Next Day	Zn U Standard	Pb Sb Se Sr Sn Ti Ti V Z	Hg K Mg Mn Mo Na Ni	Co Cr Cu Fe	Ba Be Ca Cd C	Al As B B	Individual: Ag		its TAL	Priority Pollutants	RCRA-8 F	MTCA-5	**Metals (Circle):	**Me
19	0	WW = Waste Water Turn-au	SW = Storm Water, WW = Wa	GW = Ground Water,	DW = Drinking Water,	SL = Solid, W = Water, D		= Sedimen	= Soil, SD	roduct, S	O = Other, P = Product, S = Soil, SD = Sediment,	B = Bulk,	AQ = Aqueous,	Matrix: A = Air, A	*Matr
															10
															9
															00
															7
															6
															5
															4
															w
						X		1	P	546	8/4/83	-23080t	1-23	357-3	2 8
					-		/							神事	-
		Comments		\$\\ \text{10} \\ \text{2} \\ \text{10} \\ \text{2} \\ \text{10} \\ \text{2} \\	12 100 18 1/4 1	17. 12. 1	EQS (EQ 4 EQ	e # of Cont.	Sample Type (Matrix)*	Sample Time	Sample Date			Sample Name	Sam
1		111		cess com	rainece	geoca	problacized	VE73	opra.	191	ers.com	Email(s): rtrahan@geoengineers.com	n@ge	s): rtraha	Email(
e c	Return to client	n 30 days un	Disposal: Samples will be disposed in Retain volume (specify above)		han	Report To (PM): Robert Trahan	t To (PM): R	Repor				674	861.26	Telephone: 425.861.2674	Teleph
				***************************************		Location: Seattle, WA	on: Seat	Location			23	city, state, Zip: Seattle, WA 98121	attle, \	tate, Zip: Se	City, S
				***************************************		collected by: Paul Robinette	ted by: Pat	Collect			0	Address: 2101 4th Ave Ste 950	4th Av	ss: 2101	Addre
			61		01	24504-001-01	t No: 24	Project No:				S	gineer	client: GeoEngineers	Client
		emarks:	Special Remarks:			Project Name: S Jackson Street	t Name: S	Projec			Lungary	e Autance Technical Group Company	Lance Tech		
	265	Laboratory Project No (internal): 2308065	Laboratory Project No	Page: 7 of: (4/23	do	Date:	A 98103 152-3790	Tel: 206-352-3790			9		-
	nent	d & Laboratory Services Agreement	oratory Ser	/ Record & Lak	stody	Chain of Custody Recor	Chai		it Ave N.	3600 Fremont Ave N.	w	3	5		
								1							

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2308151

August 28, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 12 sample(s) on 8/10/2023 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA Method 8082

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020B

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/28/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street

Work Order: 2308151

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2308151-001	R1-NSW-98	08/08/2023 9:00 AM	08/10/2023 11:11 AM
2308151-002	UST2-NSW-93	08/08/2023 2:00 PM	08/10/2023 11:11 AM
2308151-003	UST2-WSW-93	08/08/2023 1:55 PM	08/10/2023 11:11 AM
2308151-004	UST2-SSW-93	08/08/2023 2:05 PM	08/10/2023 11:11 AM
2308151-005	UST2-B-89	08/08/2023 1:50 PM	08/10/2023 11:11 AM
2308151-006	UST3-NSW-93	08/08/2023 3:15 PM	08/10/2023 11:11 AM
2308151-007	UST3-SSW-93	08/08/2023 3:25 PM	08/10/2023 11:11 AM
2308151-008	UST3-WSW-93	08/08/2023 3:30 PM	08/10/2023 11:11 AM
2308151-009	UST3-B-90	08/08/2023 3:20 PM	08/10/2023 11:11 AM
2308151-010	UST4-NSW-93	08/09/2023 7:45 AM	08/10/2023 11:11 AM
2308151-011	UST4-SSW-93	08/09/2023 7:50 AM	08/10/2023 11:11 AM
2308151-012	UST4-B-90	08/09/2023 7:55 AM	08/10/2023 11:11 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2308151**Date: **8/28/2023**

CLIENT: GeoEngineers
Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (2308151-006A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (2308151-006A) required Florisil Cleanup Procedure (Using Method No 3620C).

Rev 1: Additional analyses requested by the client.

Rev 2: Additional analyses requested by the client.

Qualifiers & Acronyms

WO#: **2308151**

Date Reported: 8/28/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 9:00:00 AM

Project: S Jackson Street

Lab ID: 2308151-001 **Matrix**: Soil

Client Sample ID: R1-NSW-98

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020B				Batcl	n ID: 41	172 Analyst: JR
Lead	4.48	0.997		mg/Kg-dry	1	8/11/2023 1:46:00 PM
Sample Moisture (Percent Moisture).			Batcl	n ID: R	35861 Analyst: MP
Percent Moisture	23.8	0.500		wt%	1	8/11/2023 8:37:20 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 2:00:00 PM

Project: S Jackson Street

Lab ID: 2308151-002 **Matrix**: Soil

Client Sample ID: UST2-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diesel Range Organics	ND	56.8		mg/Kg-dry	1	8/10/2023 6:10:41 PM
Heavy Oil	ND	114		mg/Kg-dry	1	8/10/2023 6:10:41 PM
Total Petroleum Hydrocarbons	ND	171		mg/Kg-dry	1	8/10/2023 6:10:41 PM
Surr: 2-Fluorobiphenyl	112	50 - 150		%Rec	1	8/10/2023 6:10:41 PM
Surr: o-Terphenyl	114	50 - 150		%Rec	1	8/10/2023 6:10:41 PM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	ı ID:	41251 Analyst: RG
Naphthalene	34.9	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
2-Methylnaphthalene	48.2	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
1-Methylnaphthalene	25.6	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Acenaphthylene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Acenaphthene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Fluorene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Phenanthrene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Anthracene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Fluoranthene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Pyrene	ND	44.4		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Benz(a)anthracene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Chrysene	ND	22.2		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Benzo(b)fluoranthene	ND	27.7		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Benzo(k)fluoranthene	ND	27.7		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Benzo(a)pyrene	ND	33.3		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Indeno(1,2,3-cd)pyrene	ND	44.4		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Dibenz(a,h)anthracene	ND	55.5		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Benzo(g,h,i)perylene	ND	55.5		μg/Kg-dry	1	8/21/2023 2:10:40 PM
Surr: 2-Fluorobiphenyl	84.2	22.2 - 146		%Rec	1	8/21/2023 2:10:40 PM
Surr: Terphenyl-d14 (surr)	80.9	20.2 - 159		%Rec	1	8/21/2023 2:10:40 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	41166 Analyst: CC
Gasoline Range Organics	55.9	6.90		mg/Kg-dry	1	8/12/2023 4:59:08 PM
Surr: Toluene-d8	101	65 - 135		%Rec	1	8/12/2023 4:59:08 PM
Surr: 4-Bromofluorobenzene	98.5	65 - 135		%Rec	1	8/12/2023 4:59:08 PM
Volatile Organic Compounds b	y EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Benzene	ND	0.0242		mg/Kg-dry	1	8/12/2023 4:59:08 PM
Toluene	ND	0.0414		mg/Kg-dry	1	8/12/2023 4:59:08 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 2:00:00 PM

Project: S Jackson Street

Lab ID: 2308151-002 **Matrix:** Soil

Client Sample ID: UST2-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA	A Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Ethylbenzene	ND	0.0345		mg/Kg-dry	1	8/12/2023 4:59:08 PM
m,p-Xylene	0.109	0.0690		mg/Kg-dry	1	8/12/2023 4:59:08 PM
o-Xylene	ND	0.0345		mg/Kg-dry	1	8/12/2023 4:59:08 PM
Surr: Dibromofluoromethane	100	79.5 - 124		%Rec	1	8/12/2023 4:59:08 PM
Surr: Toluene-d8	98.3	77.5 - 124		%Rec	1	8/12/2023 4:59:08 PM
Surr: 1-Bromo-4-fluorobenzene	98.2	60.5 - 139		%Rec	1	8/12/2023 4:59:08 PM
Total Metals by EPA Method 6020B				Batch	ı ID:	41271 Analyst: SLL
Lead	5.63	0.877		mg/Kg-dry	1	8/23/2023 1:47:00 PM
Sample Moisture (Percent Moisture)	1			Batch	ı ID:	R85861 Analyst: MP
Percent Moisture	12.9	0.500		wt%	1	8/11/2023 8:37:20 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 1:55:00 PM

Project: S Jackson Street

Lab ID: 2308151-003 **Matrix**: Soil

Client Sample ID: UST2-WSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diesel Range Organics	ND	52.4		mg/Kg-dry	1	8/10/2023 6:32:43 PM
Heavy Oil	ND	105		mg/Kg-dry	1	8/10/2023 6:32:43 PM
Total Petroleum Hydrocarbons	ND	157		mg/Kg-dry	1	8/10/2023 6:32:43 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	8/10/2023 6:32:43 PM
Surr: o-Terphenyl	103	50 - 150		%Rec	1	8/10/2023 6:32:43 PM
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	ı ID:	41251 Analyst: RG
Naphthalene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
2-Methylnaphthalene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
1-Methylnaphthalene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Acenaphthylene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Acenaphthene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Fluorene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Phenanthrene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Anthracene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Fluoranthene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Pyrene	ND	37.4		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Benz(a)anthracene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Chrysene	ND	18.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Benzo(b)fluoranthene	ND	23.4		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Benzo(k)fluoranthene	ND	23.4		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Benzo(a)pyrene	ND	28.0		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Indeno(1,2,3-cd)pyrene	ND	37.4		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Dibenz(a,h)anthracene	ND	46.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Benzo(g,h,i)perylene	ND	46.7		μg/Kg-dry	1	8/21/2023 3:35:09 PM
Surr: 2-Fluorobiphenyl	75.3	22.2 - 146		%Rec	1	8/21/2023 3:35:09 PM
Surr: Terphenyl-d14 (surr)	73.3	20.2 - 159		%Rec	1	8/21/2023 3:35:09 PM
Gasoline by NWTPH-Gx				Batch	ID:	41166 Analyst: CC
Gasoline Range Organics	ND	5.72		mg/Kg-dry	1	8/12/2023 5:31:00 PM
Surr: Toluene-d8	99.7	65 - 135		%Rec	1	8/12/2023 5:31:00 PM
Surr: 4-Bromofluorobenzene	98.2	65 - 135		%Rec	1	8/12/2023 5:31:00 PM
Volatile Organic Compounds b	y EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Benzene	ND	0.0200		mg/Kg-dry	1	8/12/2023 5:31:00 PM
Toluene	ND	0.0343		mg/Kg-dry	1	8/12/2023 5:31:00 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 1:55:00 PM

Project: S Jackson Street

Lab ID: 2308151-003 **Matrix:** Soil

Client Sample ID: UST2-WSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA	A Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Ethylbenzene	ND	0.0286		mg/Kg-dry	1	8/12/2023 5:31:00 PM
m,p-Xylene	ND	0.0572		mg/Kg-dry	1	8/12/2023 5:31:00 PM
o-Xylene	ND	0.0286		mg/Kg-dry	1	8/12/2023 5:31:00 PM
Surr: Dibromofluoromethane	99.8	79.5 - 124		%Rec	1	8/12/2023 5:31:00 PM
Surr: Toluene-d8	98.9	77.5 - 124		%Rec	1	8/12/2023 5:31:00 PM
Surr: 1-Bromo-4-fluorobenzene	98.0	60.5 - 139		%Rec	1	8/12/2023 5:31:00 PM
Total Metals by EPA Method 6020B				Batch	ı ID:	41271 Analyst: SLL
Lead	4.90	0.889		mg/Kg-dry	1	8/23/2023 1:50:00 PM
Sample Moisture (Percent Moisture)	1			Batch	ı ID:	R85861 Analyst: MP
Percent Moisture	7.77	0.500		wt%	1	8/11/2023 8:37:20 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 1:50:00 PM

Project: S Jackson Street

Lab ID: 2308151-005 **Matrix**: Soil

Client Sample ID: UST2-B-89

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 41	170 Analyst: AP
Diesel Range Organics	265	52.6		mg/Kg-dry	1	8/10/2023 6:43:40 PM
Heavy Oil	ND	105		mg/Kg-dry	1	8/10/2023 6:43:40 PM
Total Petroleum Hydrocarbons	265	158		mg/Kg-dry	1	8/10/2023 6:43:40 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	8/10/2023 6:43:40 PM
Surr: o-Terphenyl	105	50 - 150		%Rec	1	8/10/2023 6:43:40 PM
NOTES:						
Detection is due to overlap with gasoli	ne-range material					
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	n ID: 41	251 Analyst: RG
Naphthalene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
2-Methylnaphthalene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
1-Methylnaphthalene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Acenaphthylene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Acenaphthene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Fluorene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Phenanthrene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Anthracene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Fluoranthene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Pyrene	ND	40.8		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Benz(a)anthracene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Chrysene	ND	20.4		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Benzo(b)fluoranthene	ND	25.5		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Benzo(k)fluoranthene	ND	25.5		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Benzo(a)pyrene	ND	30.6		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Indeno(1,2,3-cd)pyrene	ND	40.8		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Dibenz(a,h)anthracene	ND	51.0		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Benzo(g,h,i)perylene	ND	51.0		μg/Kg-dry	1	8/21/2023 4:03:20 PM
Surr: 2-Fluorobiphenyl	64.7	22.2 - 146		%Rec	1	8/21/2023 4:03:20 PM
Surr: Terphenyl-d14 (surr)	53.6	20.2 - 159		%Rec	1	8/21/2023 4:03:20 PM
Gasoline by NWTPH-Gx				Batch	n ID: 41	166 Analyst: CC
Gasoline Range Organics	500	111	D	mg/Kg-dry	20	8/14/2023 3:54:32 PM
Surr: Toluene-d8	99.3	65 - 135	D	%Rec	20	8/14/2023 3:54:32 PM
Surr: 4-Bromofluorobenzene	98.3	65 - 135	D	%Rec	20	8/14/2023 3:54:32 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 1:50:00 PM

Project: S Jackson Street

Lab ID: 2308151-005 **Matrix:** Soil

Client Sample ID: UST2-B-89

Analyses	Result	PQL	Qual	Units	DI	Date Analyzed
Volatile Organic Compounds by EP	A Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Benzene	ND	0.0195		mg/Kg-dry	1	8/12/2023 6:02:44 PM
Toluene	ND	0.0334		mg/Kg-dry	1	8/12/2023 6:02:44 PM
Ethylbenzene	0.0607	0.0279		mg/Kg-dry	1	8/12/2023 6:02:44 PM
m,p-Xylene	0.246	0.0557		mg/Kg-dry	1	8/12/2023 6:02:44 PM
o-Xylene	ND	0.0279		mg/Kg-dry	1	8/12/2023 6:02:44 PM
Surr: Dibromofluoromethane	102	79.5 - 124		%Rec	1	8/12/2023 6:02:44 PM
Surr: Toluene-d8	90.1	77.5 - 124		%Rec	1	8/12/2023 6:02:44 PM
Surr: 1-Bromo-4-fluorobenzene	100	60.5 - 139		%Rec	1	8/12/2023 6:02:44 PM
Total Metals by EPA Method 6020B				Batch	ı ID:	41271 Analyst: SLL
Lead	10.9	0.875		mg/Kg-dry	1	8/23/2023 1:57:00 PM
Sample Moisture (Percent Moisture)			Batch	ı ID:	R85861 Analyst: MP
Percent Moisture	11.4	0.500		wt%	1	8/11/2023 8:37:20 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:15:00 PM

Project: S Jackson Street

Lab ID: 2308151-006 **Matrix**: Soil

Client Sample ID: UST3-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Met	hod 8082		Batch	ı ID:	41197 Analyst: SK
Aroclor 1016	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1221	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1232	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1242	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1248	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1254	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1260	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1262	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Aroclor 1268	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Total PCBs	ND	0.0252		mg/Kg-dry	1	8/15/2023 12:36:03 PM
Surr: Decachlorobiphenyl	35.8	5 - 160		%Rec	1	8/15/2023 12:36:03 PM
Surr: Tetrachloro-m-xylene	68.1	57.3 - 159		%Rec	1	8/15/2023 12:36:03 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diesel Range Organics	ND	63.6		mg/Kg-dry	1	8/10/2023 6:54:37 PM
Heavy Oil	ND	127		mg/Kg-dry	1	8/10/2023 6:54:37 PM
Total Petroleum Hydrocarbons	ND	191		mg/Kg-dry	1	8/10/2023 6:54:37 PM
Surr: 2-Fluorobiphenyl	106	50 - 150		%Rec	1	8/10/2023 6:54:37 PM
Surr: o-Terphenyl	108	50 - 150		%Rec	1	8/10/2023 6:54:37 PM
Polyaromatic Hydrocarbons by	/ EPA Method 8	3270 (SIM)		Batch	ı ID:	41191 Analyst: SH
Naphthalene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
2-Methylnaphthalene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
1-Methylnaphthalene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Acenaphthylene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Acenaphthene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Fluorene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Phenanthrene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Anthracene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Fluoranthene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Pyrene	ND	48.7		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Benz(a)anthracene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Chrysene	ND	24.3		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Benzo(b)fluoranthene	ND	30.4		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Benzo(k)fluoranthene	ND	30.4		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Benzo(a)pyrene	ND	36.5		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Indeno(1,2,3-cd)pyrene	ND	48.7		μg/Kg-dry	1	8/14/2023 12:09:56 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:15:00 PM

Project: S Jackson Street

Lab ID: 2308151-006 **Matrix**: Soil

Client Sample ID: UST3-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	41191 Analyst: SH
Dibenz(a,h)anthracene	ND	60.9		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Benzo(g,h,i)perylene	ND	60.9		μg/Kg-dry	1	8/14/2023 12:09:56 PM
Surr: 2-Fluorobiphenyl	105	22.2 - 146		%Rec	1	8/14/2023 12:09:56 PM
Surr: Terphenyl-d14 (surr)	121	20.2 - 159		%Rec	1	8/14/2023 12:09:56 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	41166 Analyst: CC
Gasoline Range Organics	ND	5.98		mg/Kg-dry	1	8/14/2023 11:34:13 AM
Surr: Toluene-d8	98.8	65 - 135		%Rec	1	8/14/2023 11:34:13 AM
Surr: 4-Bromofluorobenzene	98.5	65 - 135		%Rec	1	8/14/2023 11:34:13 AM
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Dichlorodifluoromethane (CFC-12)	ND	0.0179		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Chloromethane	ND	0.0598		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Vinyl chloride	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Bromomethane	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Trichlorofluoromethane (CFC-11)	ND	0.0239		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Chloroethane	ND	0.0897		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,1-Dichloroethene	ND	0.120		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Acetone	ND	0.299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Methylene chloride	ND	0.0418		mg/Kg-dry	1	8/12/2023 6:34:29 PM
trans-1,2-Dichloroethene	ND	0.0120		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Methyl tert-butyl ether (MTBE)	ND	0.0239		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,1-Dichloroethane	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
cis-1,2-Dichloroethene	ND	0.0179		mg/Kg-dry	1	8/12/2023 6:34:29 PM
(MEK) 2-Butanone	ND	0.359		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Chloroform	ND	0.0209		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,1,1-Trichloroethane (TCA)	ND	0.0239		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,1-Dichloropropene	ND	0.0239		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Carbon tetrachloride	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,2-Dichloroethane (EDC)	ND	0.0239		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Benzene	ND	0.0209		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Trichloroethene (TCE)	ND	0.0179		mg/Kg-dry	1	8/12/2023 6:34:29 PM
1,2-Dichloropropane	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Bromodichloromethane	ND	0.0299		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Dibromomethane	ND	0.0149		mg/Kg-dry	1	8/12/2023 6:34:29 PM
cis-1,3-Dichloropropene	ND	0.0179		mg/Kg-dry	1	8/12/2023 6:34:29 PM
Toluene	ND	0.0359		mg/Kg-dry	1	8/12/2023 6:34:29 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:15:00 PM

Project: S Jackson Street

Lab ID: 2308151-006 **Matrix:** Soil

Client Sample ID: UST3-NSW-93

Units DF **Analyses** Result **PQL** Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260D** Batch ID: 41166 Analyst: KJ Trans-1,3-Dichloropropylene ND 0.0239 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND Methyl Isobutyl Ketone (MIBK) 0.0717 mg/Kg-dry 1 8/12/2023 6:34:29 PM 1,1,2-Trichloroethane ND 0.0149 mg/Kg-dry 8/12/2023 6:34:29 PM 1 ND 1,3-Dichloropropane 0.0120 mg/Kg-dry 1 8/12/2023 6:34:29 PM Tetrachloroethene (PCE) ND 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND Dibromochloromethane 0.0179 8/12/2023 6:34:29 PM mg/Kg-dry 1 1,2-Dibromoethane (EDB) ND 0.0120 mg/Kg-dry 1 8/12/2023 6:34:29 PM 2-Hexanone (MBK) ND 0.0747 mg/Kg-dry 1 8/12/2023 6:34:29 PM Chlorobenzene ND 0.0179 1 8/12/2023 6:34:29 PM mg/Kg-dry 1,1,1,2-Tetrachloroethane ND 0.0299 mg/Kg-dry 1 8/12/2023 6:34:29 PM Ethylbenzene 0.0414 0.0299 8/12/2023 6:34:29 PM mg/Kg-dry 1 m,p-Xylene 0.152 0.0598 mg/Kg-dry 1 8/12/2023 6:34:29 PM o-Xylene ND mg/Kg-dry 8/12/2023 6:34:29 PM 0.0299 1 Styrene ND 0.0120 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND Isopropylbenzene 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND 0.0179 8/12/2023 6:34:29 PM Bromoform mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.239 mg/Kg-dry 1 8/12/2023 6:34:29 PM 0.0524 n-Propylbenzene 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM Bromobenzene ND 0.0149 mg/Kg-dry 1 8/12/2023 6:34:29 PM 0.0316 1,3,5-Trimethylbenzene 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM 2-Chlorotoluene ND 0.0197 1 8/12/2023 6:34:29 PM mg/Kg-dry 4-Chlorotoluene ND 0.0197 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND tert-Butylbenzene 0.0179 8/12/2023 6:34:29 PM mg/Kg-dry 1 1.2.3-Trichloropropane ND 0.0359 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND 1,2,4-Trichlorobenzene 0.0717 mg/Kg-dry 1 8/12/2023 6:34:29 PM sec-Butylbenzene ND 0.179 mg/Kg-dry 1 8/12/2023 6:34:29 PM ND 4-Isopropyltoluene 0.239 mg/Kg-dry 1 8/12/2023 6:34:29 PM 1.3-Dichlorobenzene ND 0.0239 8/12/2023 6:34:29 PM mg/Kg-dry 1 1.4-Dichlorobenzene ND 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM 0.0276 n-Butylbenzene 0.0239 mg/Kg-dry 1 8/12/2023 6:34:29 PM 1,2-Dichlorobenzene ND 0.0239 mg/Kg-dry 1 8/12/2023 6:34:29 PM 1,2-Dibromo-3-chloropropane ND 1 0.0359 mg/Kg-dry 8/12/2023 6:34:29 PM 1,2,4-Trimethylbenzene 0.122 0.0179 mg/Kg-dry 1 8/12/2023 6:34:29 PM Hexachloro-1,3-butadiene ND mg/Kg-dry 1 8/12/2023 6:34:29 PM 0.0478 ND Naphthalene 0.120 mg/Kg-dry 1 8/12/2023 6:34:29 PM 1,2,3-Trichlorobenzene ND 0.0717 mg/Kg-dry 1 8/12/2023 6:34:29 PM Surr: Dibromofluoromethane 99.0 79.5 - 124 %Rec 1 8/12/2023 6:34:29 PM Surr: Toluene-d8 97.8 77.5 - 124 %Rec 1 8/12/2023 6:34:29 PM Surr: 1-Bromo-4-fluorobenzene 97.7 60.5 - 139 %Rec 1 8/12/2023 6:34:29 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:15:00 PM

Project: S Jackson Street

Lab ID: 2308151-006 **Matrix:** Soil

Client Sample ID: UST3-NSW-93

Analyses Result PQL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260D

Batch ID: 41166 Analyst: KJ

NOTES:

Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Total Metals by EPA Method 6020B Batch ID: 41192 Analyst: JR

Lead 5.53 1.02 mg/Kg-dry 1 8/14/2023 2:23:00 PM

Sample Moisture (Percent Moisture)

Batch ID: R85887 Analyst: MP

Percent Moisture 22.5 0.500 wt% 1 8/14/2023 8:21:46 AM

Revision v2

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:30:00 PM

Project: S Jackson Street

Lab ID: 2308151-008 **Matrix**: Soil

Client Sample ID: UST3-WSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Met	hod 8082		Batch	ı ID:	41176 Analyst: SK
Aroclor 1016	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1221	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1232	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1242	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1248	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1254	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1260	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1262	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Aroclor 1268	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Total PCBs	ND	0.0212		mg/Kg-dry	1	8/10/2023 8:18:48 PM
Surr: Decachlorobiphenyl	40.1	5 - 160		%Rec	1	8/10/2023 8:18:48 PM
Surr: Tetrachloro-m-xylene	91.0	57.3 - 159		%Rec	1	8/10/2023 8:18:48 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diesel Range Organics	ND	50.5		mg/Kg-dry	1	8/10/2023 7:05:33 PM
Heavy Oil	ND	101		mg/Kg-dry	1	8/10/2023 7:05:33 PM
Total Petroleum Hydrocarbons	ND	151		mg/Kg-dry	1	8/10/2023 7:05:33 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	8/10/2023 7:05:33 PM
Surr: o-Terphenyl	104	50 - 150		%Rec	1	8/10/2023 7:05:33 PM
Polyaromatic Hydrocarbons by	/ EPA Method 8	3270 (SIM)		Batch	ı ID:	41173 Analyst: SH
Naphthalene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
2-Methylnaphthalene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
1-Methylnaphthalene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Acenaphthylene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Acenaphthene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Fluorene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Phenanthrene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Anthracene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Fluoranthene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Pyrene	ND	42.1		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Benz(a)anthracene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Chrysene	ND	21.0		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Benzo(b)fluoranthene	ND	26.3		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Benzo(k)fluoranthene	ND	26.3		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Benzo(a)pyrene	ND	31.5		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Indeno(1,2,3-cd)pyrene	ND	42.1		μg/Kg-dry	1	8/10/2023 11:19:30 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:30:00 PM

Project: S Jackson Street

Lab ID: 2308151-008 **Matrix**: Soil

Client Sample ID: UST3-WSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	270 (SIM)		Batch	ı ID:	41173 Analyst: SH
Dibenz(a,h)anthracene	ND	52.6		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Benzo(g,h,i)perylene	ND	52.6		μg/Kg-dry	1	8/10/2023 11:19:30 PM
Surr: 2-Fluorobiphenyl	103	22.2 - 146		%Rec	1	8/10/2023 11:19:30 PM
Surr: Terphenyl-d14 (surr)	123	20.2 - 159		%Rec	1	8/10/2023 11:19:30 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	41166 Analyst: CC
Gasoline Range Organics	ND	5.09		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Surr: Toluene-d8	99.3	65 - 135		%Rec	1	8/12/2023 7:06:14 PM
Surr: 4-Bromofluorobenzene	97.8	65 - 135		%Rec	1	8/12/2023 7:06:14 PM
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Dichlorodifluoromethane (CFC-12)	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Chloromethane	ND	0.0509		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Vinyl chloride	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Bromomethane	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Trichlorofluoromethane (CFC-11)	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Chloroethane	ND	0.0764		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1-Dichloroethene	ND	0.102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Acetone	ND	0.255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Methylene chloride	ND	0.0357		mg/Kg-dry	1	8/12/2023 7:06:14 PM
trans-1,2-Dichloroethene	ND	0.0102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Methyl tert-butyl ether (MTBE)	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1-Dichloroethane	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
cis-1,2-Dichloroethene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
(MEK) 2-Butanone	ND	0.306		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Chloroform	ND	0.0178		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1,1-Trichloroethane (TCA)	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1-Dichloropropene	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Carbon tetrachloride	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2-Dichloroethane (EDC)	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Benzene	ND	0.0178		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Trichloroethene (TCE)	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2-Dichloropropane	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Bromodichloromethane	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Dibromomethane	ND	0.0127		mg/Kg-dry	1	8/12/2023 7:06:14 PM
cis-1,3-Dichloropropene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Toluene	ND	0.0306		mg/Kg-dry	1	8/12/2023 7:06:14 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:30:00 PM

Project: S Jackson Street

Lab ID: 2308151-008 **Matrix**: Soil

Client Sample ID: UST3-WSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	n ID: 41	166 Analyst: KJ
Trans-1,3-Dichloropropylene	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Methyl Isobutyl Ketone (MIBK)	ND	0.0611		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1,2-Trichloroethane	ND	0.0127		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,3-Dichloropropane	ND	0.0102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Tetrachloroethene (PCE)	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Dibromochloromethane	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2-Dibromoethane (EDB)	ND	0.0102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
2-Hexanone (MBK)	ND	0.0637		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Chlorobenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1,1,2-Tetrachloroethane	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Ethylbenzene	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
m,p-Xylene	ND	0.0509		mg/Kg-dry	1	8/12/2023 7:06:14 PM
o-Xylene	ND	0.0255		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Styrene	ND	0.0102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Isopropylbenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Bromoform	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,1,2,2-Tetrachloroethane	ND	0.204	Q	mg/Kg-dry	1	8/12/2023 7:06:14 PM
n-Propylbenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Bromobenzene	ND	0.0127		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,3,5-Trimethylbenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
2-Chlorotoluene	ND	0.0168		mg/Kg-dry	1	8/12/2023 7:06:14 PM
4-Chlorotoluene	ND	0.0168		mg/Kg-dry	1	8/12/2023 7:06:14 PM
tert-Butylbenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2,3-Trichloropropane	ND	0.0306		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2,4-Trichlorobenzene	ND	0.0611		mg/Kg-dry	1	8/12/2023 7:06:14 PM
sec-Butylbenzene	ND	0.153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
4-Isopropyltoluene	ND	0.204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,3-Dichlorobenzene	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,4-Dichlorobenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
n-Butylbenzene	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2-Dichlorobenzene	ND	0.0204		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2-Dibromo-3-chloropropane	ND	0.0306		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2,4-Trimethylbenzene	ND	0.0153		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Hexachloro-1,3-butadiene	ND	0.0407		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Naphthalene	ND	0.102		mg/Kg-dry	1	8/12/2023 7:06:14 PM
1,2,3-Trichlorobenzene	ND	0.0611		mg/Kg-dry	1	8/12/2023 7:06:14 PM
Surr: Dibromofluoromethane	98.5	79.5 - 124		%Rec	1	8/12/2023 7:06:14 PM
Surr: Toluene-d8	97.5	77.5 - 124		%Rec	1	8/12/2023 7:06:14 PM
Surr: 1-Bromo-4-fluorobenzene	97.6	60.5 - 139		%Rec	1	8/12/2023 7:06:14 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:30:00 PM

Project: S Jackson Street

Lab ID: 2308151-008 **Matrix:** Soil

Client Sample ID: UST3-WSW-93

Analyses Result PQL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260D

Batch ID: 41166 Analyst: KJ

NOTES:

Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Total Metals by EPA Method 6020B Batch ID: 41172 Analyst: JR

Lead 1.78 0.852 mg/Kg-dry 1 8/11/2023 1:49:00 PM

Sample Moisture (Percent Moisture)

Batch ID: R85861 Analyst: MP

Percent Moisture 7.76 0.500 wt% 1 8/11/2023 8:37:20 AM

Revision v2

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:20:00 PM

Project: S Jackson Street

Lab ID: 2308151-009 **Matrix:** Soil

Client Sample ID: UST3-B-90

nalyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Met	hod 8082		Batch	ı ID:	41176 Analyst: SK
Aroclor 1016	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1221	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1232	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1242	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1248	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1254	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1260	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1262	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Aroclor 1268	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Total PCBs	ND	0.0221		mg/Kg-dry	1	8/10/2023 8:28:34 PM
Surr: Decachlorobiphenyl	38.3	5 - 160		%Rec	1	8/10/2023 8:28:34 PM
Surr: Tetrachloro-m-xylene	76.2	57.3 - 159		%Rec	1	8/10/2023 8:28:34 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diesel Range Organics	985	55.9		mg/Kg-dry	1	8/10/2023 7:16:28 PM
Heavy Oil	5,480	112		mg/Kg-dry	1	8/10/2023 7:16:28 PM
Total Petroleum Hydrocarbons	6,470	168		mg/Kg-dry	1	8/10/2023 7:16:28 PM
Surr: 2-Fluorobiphenyl	98.7	50 - 150		%Rec	1	8/10/2023 7:16:28 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	8/10/2023 7:16:28 PM
NOTES:						
Diesel range detection is due to overla	p with gasoline-ran	ge material				
Polyaromatic Hydrocarbons by	/ EPA Method 8	3270 (SIM)		Batch	า ID:	41173 Analyst: SH
						
Naphthalene	ND	21.6		μg/Kg-dry	1	8/10/2023 11:47:35 PN
Naphthalene 2-Methylnaphthalene				μg/Kg-dry μg/Kg-dry		8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN
	ND	21.6			1	
2-Methylnaphthalene	ND 4,390	21.6 21.6		μg/Kg-dry	1	8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene	ND 4,390 2,720	21.6 21.6 21.6		μg/Kg-dry μg/Kg-dry	1 1 1	8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	ND 4,390 2,720 ND	21.6 21.6 21.6 21.6		μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1 1	8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	ND 4,390 2,720 ND 61.8	21.6 21.6 21.6 21.6 21.6		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	ND 4,390 2,720 ND 61.8 93.4	21.6 21.6 21.6 21.6 21.6 21.6		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	ND 4,390 2,720 ND 61.8 93.4 318	21.6 21.6 21.6 21.6 21.6 21.6 21.6		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND 4,390 2,720 ND 61.8 93.4 318 69.7	21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6		μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1 1 1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	ND 4,390 2,720 ND 61.8 93.4 318 69.7 275	21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6		μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1 1 1 1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ND 4,390 2,720 ND 61.8 93.4 318 69.7 275 362	21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1	8/10/2023 11:47:35 PM 8/10/2023 11:47:35 PM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	ND 4,390 2,720 ND 61.8 93.4 318 69.7 275 362 260	21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1 1	8/10/2023 11:47:35 PN 8/10/2023 11:47:35 PN

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:20:00 PM

Project: S Jackson Street

Lab ID: 2308151-009 **Matrix:** Soil

Client Sample ID: UST3-B-90

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	n ID: 41	173 Analyst: SH
Benzo(a)pyrene	ND	32.4		μg/Kg-dry	1	8/10/2023 11:47:35 PM
Indeno(1,2,3-cd)pyrene	ND	43.2		μg/Kg-dry	1	8/10/2023 11:47:35 PM
Dibenz(a,h)anthracene	ND	54.0		μg/Kg-dry	1	8/10/2023 11:47:35 PM
Benzo(g,h,i)perylene	108	54.0		μg/Kg-dry	1	8/10/2023 11:47:35 PM
Surr: 2-Fluorobiphenyl	119	22.2 - 146		%Rec	1	8/10/2023 11:47:35 PM
Surr: Terphenyl-d14 (surr)	146	20.2 - 159		%Rec	1	8/10/2023 11:47:35 PM
Gasoline by NWTPH-Gx				Batch	n ID: 41	178 Analyst: CC
Gasoline Range Organics	1,970	277	D	mg/Kg-dry	50	8/14/2023 2:15:59 PM
Surr: Toluene-d8	100	65 - 135	D	%Rec	50	8/14/2023 2:15:59 PM
Surr: 4-Bromofluorobenzene	98.4	65 - 135	D	%Rec	50	8/14/2023 2:15:59 PM
Volatile Organic Compounds by	EPA Method	8260D		Batch	n ID: 41	178 Analyst: MS
Dichlorodifluoromethane (CFC-12)	ND	0.0166		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Chloromethane	ND	0.0554		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Vinyl chloride	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Bromomethane	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Trichlorofluoromethane (CFC-11)	ND	0.0222		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Chloroethane	ND	0.0832		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,1-Dichloroethene	ND	0.111		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Acetone	ND	0.277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Methylene chloride	ND	0.0388		mg/Kg-dry	1	8/12/2023 7:38:03 PM
trans-1,2-Dichloroethene	ND	0.0111		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Methyl tert-butyl ether (MTBE)	ND	0.0222		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,1-Dichloroethane	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
cis-1,2-Dichloroethene	ND	0.0166		mg/Kg-dry	1	8/12/2023 7:38:03 PM
(MEK) 2-Butanone	ND	0.333		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Chloroform	ND	0.0194		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,1,1-Trichloroethane (TCA)	ND	0.0222		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,1-Dichloropropene	ND	0.0222		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Carbon tetrachloride	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,2-Dichloroethane (EDC)	ND	0.0222		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Benzene	ND	0.0194		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Trichloroethene (TCE)	ND	0.0166		mg/Kg-dry	1	8/12/2023 7:38:03 PM
1,2-Dichloropropane	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Bromodichloromethane	ND	0.0277		mg/Kg-dry	1	8/12/2023 7:38:03 PM
Dibromomethane	ND	0.0139		mg/Kg-dry	1	8/12/2023 7:38:03 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:20:00 PM

Project: S Jackson Street

Lab ID: 2308151-009 **Matrix:** Soil

Client Sample ID: UST3-B-90

Units DF **Analyses** Result **PQL** Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260D** Batch ID: 41178 Analyst: MS cis-1,3-Dichloropropene ND 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM ND Toluene 0.0333 mg/Kg-dry 1 8/12/2023 7:38:03 PM Trans-1,3-Dichloropropylene ND 0.0222 8/12/2023 7:38:03 PM mg/Kg-dry 1 ND Methyl Isobutyl Ketone (MIBK) 0.0665 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1,1,2-Trichloroethane ND 0.0139 mg/Kg-dry 1 8/12/2023 7:38:03 PM ND 1,3-Dichloropropane 0.0111 8/12/2023 7:38:03 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM Dibromochloromethane ND 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1,2-Dibromoethane (EDB) ND 0.0111 1 8/12/2023 7:38:03 PM mg/Kg-dry 2-Hexanone (MBK) ND 0.0693 mg/Kg-dry 1 8/12/2023 7:38:03 PM Chlorobenzene ND 0.0166 8/12/2023 7:38:03 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0277 mg/Kg-dry 1 8/12/2023 7:38:03 PM Ethylbenzene 0.491 mg/Kg-dry 8/12/2023 7:38:03 PM 0.0277 1 m,p-Xylene 1.70 0.0554 1 8/12/2023 7:38:03 PM mg/Kg-dry 0.0678 o-Xylene 0.0277 mg/Kg-dry 1 8/12/2023 7:38:03 PM Styrene ND 8/12/2023 7:38:03 PM 0.0111 mg/Kg-dry 1 1.10 Isopropylbenzene 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM Bromoform ND 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1,1,2,2-Tetrachloroethane ND 0.222 Q mg/Kg-dry 1 8/12/2023 7:38:03 PM n-Propylbenzene 2.76 0.832 mg/Kg-dry 50 8/14/2023 2:15:59 PM Bromobenzene ND 0.0139 8/12/2023 7:38:03 PM mg/Kg-dry 1 1,3,5-Trimethylbenzene 0.304 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM 2-Chlorotoluene ND 0.0183 8/12/2023 7:38:03 PM mg/Kg-dry 1 4-Chlorotoluene ND 0.0183 mg/Kg-dry 1 8/12/2023 7:38:03 PM ND tert-Butylbenzene 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1,2,3-Trichloropropane ND 0.0333 mg/Kg-dry 1 8/12/2023 7:38:03 PM ND 1,2,4-Trichlorobenzene 0.0665 mg/Kg-dry 1 8/12/2023 7:38:03 PM sec-Butylbenzene 1.40 8/12/2023 7:38:03 PM 0.166 mg/Kg-dry 1 4-Isopropyltoluene 1.32 0.222 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1.3-Dichlorobenzene ND 0.0222 mg/Kg-dry 1 8/12/2023 7:38:03 PM 1,4-Dichlorobenzene ND 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM 2.25 1.11 50 n-Butylbenzene mg/Kg-dry 8/14/2023 2:15:59 PM ND 0.0222 1,2-Dichlorobenzene mg/Kg-dry 1 8/12/2023 7:38:03 PM ND 1,2-Dibromo-3-chloropropane 0.0333 mg/Kg-dry 8/12/2023 7:38:03 PM 1 0.760 1,2,4-Trimethylbenzene 0.0166 mg/Kg-dry 1 8/12/2023 7:38:03 PM Hexachloro-1,3-butadiene ND 0.0444 mg/Kg-dry 1 8/12/2023 7:38:03 PM Naphthalene ND 0.111 mg/Kg-dry 1 8/12/2023 7:38:03 PM ND 1,2,3-Trichlorobenzene 0.0665 mg/Kg-dry 1 8/12/2023 7:38:03 PM Surr: Dibromofluoromethane 103 79.5 - 124 %Rec 1 8/12/2023 7:38:03 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/8/2023 3:20:00 PM

Project: S Jackson Street

Lab ID: 2308151-009 **Matrix:** Soil

Client Sample ID: UST3-B-90

Analyses Result **PQL** Qual **Units** DF **Date Analyzed** Volatile Organic Compounds by EPA Method 8260D Batch ID: 41178 Analyst: MS Surr: Toluene-d8 86.5 77.5 - 124 %Rec 8/12/2023 7:38:03 PM Surr: 1-Bromo-4-fluorobenzene 117 60.5 - 139 %Rec 8/12/2023 7:38:03 PM Q - Associated calibration verification is below acceptance criteria. Result may be low-biased. Batch ID: 41172 Analyst: JR **Total Metals by EPA Method 6020B** Lead 8/11/2023 1:57:00 PM 3.21 0.852 mg/Kg-dry **Sample Moisture (Percent Moisture)** Batch ID: R85861 Analyst: MP Percent Moisture 0.500 wt% 8/11/2023 8:37:20 AM 11.4 1

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:45:00 AM

Project: S Jackson Street

Lab ID: 2308151-010 **Matrix:** Soil

Client Sample ID: UST4-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Metl	hod 8082		Batch	ı ID:	41176 Analyst: SK
Aroclor 1016	ND	0.0238		ma/l/a dm/	1	8/10/2023 8:57:59 PM
Aroclor 1010 Aroclor 1221	ND ND	0.0238		mg/Kg-dry	1	8/10/2023 8:57:59 PM
Aroclor 1221 Aroclor 1232	ND ND	0.0238		mg/Kg-dry	1	8/10/2023 8:57:59 PM
Aroclor 1232 Aroclor 1242	ND ND	0.0238		mg/Kg-dry	1 1	8/10/2023 8:57:59 PM
Aroclor 1242 Aroclor 1248	ND	0.0238		mg/Kg-dry mg/Kg-dry	1	8/10/2023 8:57:59 PM
Aroclor 1248 Aroclor 1254	ND	0.0238		mg/Kg-dry	1	8/10/2023 8:57:59 PM
Aroclor 1260	ND ND	0.0238			1	8/10/2023 8:57:59 PM
Aroclor 1260 Aroclor 1262	ND ND	0.0238		mg/Kg-dry		8/10/2023 8:57:59 PM
Aroclor 1262 Aroclor 1268		0.0238		mg/Kg-dry	1	
	ND			mg/Kg-dry	1	8/10/2023 8:57:59 PM
Total PCBs	ND	0.0238 5 - 160		mg/Kg-dry %Rec	1	8/10/2023 8:57:59 PM 8/10/2023 8:57:59 PM
Surr: Decachlorobiphenyl	23.7	5 - 160			1	8/10/2023 8:57:59 PM
Surr: Tetrachloro-m-xylene	60.3	57.5 - 159		%Rec	1	6/10/2023 6.57.59 PW
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	41170 Analyst: AP
Diocal Banga Organica	ND	55.2		ma/Ka day	1	8/11/2023 9:12:22 AM
Diesel Range Organics	ND ND	110		mg/Kg-dry	1	8/11/2023 9:12:22 AM
Heavy Oil	ND ND	166		mg/Kg-dry		8/11/2023 9:12:22 AM
Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl	113	50 - 150		mg/Kg-dry %Rec	1	8/11/2023 9:12:22 AM
Surr: o-Terphenyl	116	50 - 150 50 - 150		%Rec	1	8/11/2023 9:12:22 AM
Surf. 0-Terphenyi	110	30 - 130		70Rec	'	0/11/2023 9.12.22 AIVI
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	ı ID:	41173 Analyst: SH
Naphthalene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
2-Methylnaphthalene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
1-Methylnaphthalene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Acenaphthylene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Acenaphthene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Fluorene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Phenanthrene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Anthracene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Fluoranthene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Pyrene	ND	48.2		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Benz(a)anthracene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Chrysene	ND	24.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Benzo(b)fluoranthene	ND	30.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Benzo(k)fluoranthene	ND	30.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Benzo(a)pyrene	ND	36.1		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Indeno(1,2,3-cd)pyrene	ND	48.2		μg/Kg-dry	1	8/11/2023 12:15:42 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:45:00 AM

Project: S Jackson Street

Lab ID: 2308151-010 **Matrix**: Soil

Client Sample ID: UST4-NSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	270 (SIM)		Batch	ı ID:	41173 Analyst: SH
Dibenz(a,h)anthracene	ND	60.2		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Benzo(g,h,i)perylene	ND	60.2		μg/Kg-dry	1	8/11/2023 12:15:42 AM
Surr: 2-Fluorobiphenyl	115	22.2 - 146		%Rec	1	8/11/2023 12:15:42 AM
Surr: Terphenyl-d14 (surr)	136	20.2 - 159		%Rec	1	8/11/2023 12:15:42 AM
Gasoline by NWTPH-Gx				Batch	ı ID:	41166 Analyst: CC
Gasoline Range Organics	ND	5.16		mg/Kg-dry	1	8/14/2023 12:06:25 PM
Surr: Toluene-d8	98.3	65 - 135		%Rec	1	8/14/2023 12:06:25 PM
Surr: 4-Bromofluorobenzene	98.1	65 - 135		%Rec	1	8/14/2023 12:06:25 PM
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Dichlorodifluoromethane (CFC-12)	ND	0.0155		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Chloromethane	ND	0.0516		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Vinyl chloride	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Bromomethane	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Trichlorofluoromethane (CFC-11)	ND	0.0206		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Chloroethane	ND	0.0774		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,1-Dichloroethene	ND	0.103		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Acetone	ND	0.258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Methylene chloride	ND	0.0361		mg/Kg-dry	1	8/12/2023 8:10:10 PM
trans-1,2-Dichloroethene	ND	0.0103		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Methyl tert-butyl ether (MTBE)	ND	0.0206		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,1-Dichloroethane	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
cis-1,2-Dichloroethene	ND	0.0155		mg/Kg-dry	1	8/12/2023 8:10:10 PM
(MEK) 2-Butanone	ND	0.310		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Chloroform	ND	0.0181		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,1,1-Trichloroethane (TCA)	ND	0.0206		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,1-Dichloropropene	ND	0.0206		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Carbon tetrachloride	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,2-Dichloroethane (EDC)	ND	0.0206		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Benzene	ND	0.0181		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Trichloroethene (TCE)	ND	0.0155		mg/Kg-dry	1	8/12/2023 8:10:10 PM
1,2-Dichloropropane	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Bromodichloromethane	ND	0.0258		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Dibromomethane	ND	0.0129		mg/Kg-dry	1	8/12/2023 8:10:10 PM
cis-1,3-Dichloropropene	ND	0.0155		mg/Kg-dry	1	8/12/2023 8:10:10 PM
Toluene	ND	0.0310		mg/Kg-dry	1	8/12/2023 8:10:10 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:45:00 AM

Project: S Jackson Street

Lab ID: 2308151-010 **Matrix:** Soil

Client Sample ID: UST4-NSW-93

Units DF **Analyses** Result **PQL** Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260D** Batch ID: 41166 Analyst: KJ Trans-1,3-Dichloropropylene ND 0.0206 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND Methyl Isobutyl Ketone (MIBK) 0.0619 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1,1,2-Trichloroethane ND 0.0129 mg/Kg-dry 8/12/2023 8:10:10 PM 1 ND 1,3-Dichloropropane 0.0103 mg/Kg-dry 1 8/12/2023 8:10:10 PM Tetrachloroethene (PCE) ND 0.0155 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND Dibromochloromethane 0.0155 8/12/2023 8:10:10 PM mg/Kg-dry 1 1,2-Dibromoethane (EDB) ND 0.0103 mg/Kg-dry 1 8/12/2023 8:10:10 PM 2-Hexanone (MBK) ND 0.0645 mg/Kg-dry 1 8/12/2023 8:10:10 PM Chlorobenzene ND 0.0155 1 8/12/2023 8:10:10 PM mg/Kg-dry 1,1,1,2-Tetrachloroethane ND 0.0258 mg/Kg-dry 1 8/12/2023 8:10:10 PM Ethylbenzene ND 0.0258 8/12/2023 8:10:10 PM mg/Kg-dry 1 m,p-Xylene ND 0.0516 mg/Kg-dry 1 8/12/2023 8:10:10 PM o-Xylene ND mg/Kg-dry 8/12/2023 8:10:10 PM 0.0258 1 Styrene ND 0.0103 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND Isopropylbenzene 0.0155 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND 8/12/2023 8:10:10 PM Bromoform 0.0155 mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.206 mg/Kg-dry 1 8/12/2023 8:10:10 PM 0.0190 n-Propylbenzene 0.0155 mg/Kg-dry 1 8/14/2023 12:06:25 PM Bromobenzene ND 0.0129 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1,3,5-Trimethylbenzene ND 0.0155 mg/Kg-dry 1 8/12/2023 8:10:10 PM 2-Chlorotoluene ND 0.0170 8/12/2023 8:10:10 PM mg/Kg-dry 1 4-Chlorotoluene ND 0.0170 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND tert-Butylbenzene 0.0155 8/12/2023 8:10:10 PM mg/Kg-dry 1 1.2.3-Trichloropropane ND 0.0310 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1,2,4-Trichlorobenzene ND 0.0619 mg/Kg-dry 1 8/12/2023 8:10:10 PM sec-Butylbenzene ND 0.155 mg/Kg-dry 1 8/12/2023 8:10:10 PM 4-Isopropyltoluene ND 0.206 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1.3-Dichlorobenzene ND 0.0206 8/12/2023 8:10:10 PM mg/Kg-dry 1 1,4-Dichlorobenzene ND 0.0155 1 8/12/2023 8:10:10 PM mg/Kg-dry ND n-Butylbenzene 0.0206 mg/Kg-dry 1 8/14/2023 12:06:25 PM 1,2-Dichlorobenzene ND 0.0206 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1,2-Dibromo-3-chloropropane ND 1 8/12/2023 8:10:10 PM 0.0310 mg/Kg-dry 1,2,4-Trimethylbenzene 0.0232 0.0155 mg/Kg-dry 1 8/12/2023 8:10:10 PM Hexachloro-1,3-butadiene ND 0.0413 mg/Kg-dry 1 8/12/2023 8:10:10 PM ND Naphthalene 0.103 mg/Kg-dry 1 8/12/2023 8:10:10 PM 1,2,3-Trichlorobenzene ND 0.0619 mg/Kg-dry 1 8/12/2023 8:10:10 PM Surr: Dibromofluoromethane 96.8 79.5 - 124 %Rec 1 8/12/2023 8:10:10 PM Surr: Toluene-d8 96.6 77.5 - 124 %Rec 1 8/12/2023 8:10:10 PM Surr: 1-Bromo-4-fluorobenzene 97.8 60.5 - 139 %Rec 1 8/12/2023 8:10:10 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:45:00 AM

Project: S Jackson Street

Lab ID: 2308151-010 **Matrix:** Soil

Client Sample ID: UST4-NSW-93

Analyses Result PQL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260D

Batch ID: 41166 Analyst: KJ

NOTES:

Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Total Metals by EPA Method 6020B Batch ID: 41172 Analyst: JR

Lead 7.96 0.943 mg/Kg-dry 1 8/11/2023 1:59:00 PM

Sample Moisture (Percent Moisture)

Batch ID: R85861 Analyst: MP

Percent Moisture 17.0 0.500 wt% 1 8/11/2023 8:37:20 AM

Revision v2

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:50:00 AM

Project: S Jackson Street

Lab ID: 2308151-011 **Matrix:** Soil

Client Sample ID: UST4-SSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Meth	<u>10d 8082</u>		Batch	ID:	41176 Analyst: SK
Aroclor 1016	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1221	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1232	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1242	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1248	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1254	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1260	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1262	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Aroclor 1268	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Total PCBs	ND	0.0221		mg/Kg-dry	1	8/10/2023 9:07:47 PM
Surr: Decachlorobiphenyl	68.1	5 - 160		%Rec	1	8/10/2023 9:07:47 PM
Surr: Tetrachloro-m-xylene	105	57.3 - 159		%Rec	1	8/10/2023 9:07:47 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ID:	41170 Analyst: AP
Diesel Range Organics	74.3	51.0		mg/Kg-dry	1	8/10/2023 8:22:17 PM
Heavy Oil	ND	102		mg/Kg-dry	1	8/10/2023 8:22:17 PM
Total Petroleum Hydrocarbons	ND	153		mg/Kg-dry	1	8/10/2023 8:22:17 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	8/10/2023 8:22:17 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	8/10/2023 8:22:17 PM
NOTES:						
Detection is due to overlap with gasolii	ne-range material					
Polyaromatic Hydrocarbons by	/ EPA Method 8	270 (SIM)		Batch	ID:	41173 Analyst: SH
Nonthalana						0////0000 /0 /0 00 00
rvapntnaterie	ND	22.2		μg/Kg-dry	1	8/11/2023 12:43:39 AN
Naphthalene 2-Methylnaphthalene	ND 291	22.2 22.2		μg/Kg-dry μg/Kg-dry	1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene				μg/Kg-dry		
2-Methylnaphthalene 1-Methylnaphthalene	291	22.2		μg/Kg-dry μg/Kg-dry	1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	291 206	22.2 22.2		μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene	291 206 ND ND	22.2 22.2 22.2 22.2		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1	8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	291 206 ND	22.2 22.2 22.2 22.2 22.2		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1	8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	291 206 ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1	8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM 8/11/2023 12:43:39 AM
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	291 206 ND ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2 22.2		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	291 206 ND ND ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	291 206 ND ND ND ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2 22.2 44.4		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	291 206 ND ND ND ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2 22.2 44.4 22.2		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1	8/11/2023 12:43:39 AN 8/11/2023 12:43:39 AN
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	291 206 ND ND ND ND ND ND	22.2 22.2 22.2 22.2 22.2 22.2 22.2 44.4		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1	8/11/2023 12:43:39 AN

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:50:00 AM

Project: S Jackson Street

Lab ID: 2308151-011 **Matrix:** Soil

Client Sample ID: UST4-SSW-93

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID: 41	173 Analyst: SH
Benzo(a)pyrene	ND	33.3		μg/Kg-dry	1	8/11/2023 12:43:39 AM
Indeno(1,2,3-cd)pyrene	ND	44.4		μg/Kg-dry	1	8/11/2023 12:43:39 AM
Dibenz(a,h)anthracene	ND	55.5		μg/Kg-dry	1	8/11/2023 12:43:39 AM
Benzo(g,h,i)perylene	ND	55.5		μg/Kg-dry	1	8/11/2023 12:43:39 AM
Surr: 2-Fluorobiphenyl	108	22.2 - 146		%Rec	1	8/11/2023 12:43:39 AM
Surr: Terphenyl-d14 (surr)	122	20.2 - 159		%Rec	1	8/11/2023 12:43:39 AM
Gasoline by NWTPH-Gx				Batch	1D: 41	166 Analyst: CC
Gasoline Range Organics	96.9	54.2	D	mg/Kg-dry	10	8/14/2023 1:43:27 PM
Surr: Toluene-d8	98.8	65 - 135	D	%Rec	10	8/14/2023 1:43:27 PM
Surr: 4-Bromofluorobenzene	98.9	65 - 135	D	%Rec	10	8/14/2023 1:43:27 PM
Volatile Organic Compounds by	EPA Method	8260D		Batch	1D: 41	166 Analyst: KJ
Dichlorodifluoromethane (CFC-12)	ND	0.0163		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Chloromethane	ND	0.0542		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Vinyl chloride	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Bromomethane	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Trichlorofluoromethane (CFC-11)	ND	0.0217		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Chloroethane	ND	0.0813		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,1-Dichloroethene	ND	0.108		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Acetone	ND	0.271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Methylene chloride	ND	0.0379		mg/Kg-dry	1	8/12/2023 8:42:17 PM
trans-1,2-Dichloroethene	ND	0.0108		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Methyl tert-butyl ether (MTBE)	ND	0.0217		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,1-Dichloroethane	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
cis-1,2-Dichloroethene	ND	0.0163		mg/Kg-dry	1	8/12/2023 8:42:17 PM
(MEK) 2-Butanone	ND	0.325		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Chloroform	ND	0.0190		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,1,1-Trichloroethane (TCA)	ND	0.0217		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,1-Dichloropropene	ND	0.0217		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Carbon tetrachloride	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,2-Dichloroethane (EDC)	ND	0.0217		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Benzene	ND	0.0190		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Trichloroethene (TCE)	ND	0.0163		mg/Kg-dry	1	8/12/2023 8:42:17 PM
1,2-Dichloropropane	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Bromodichloromethane	ND	0.0271		mg/Kg-dry	1	8/12/2023 8:42:17 PM
Dibromomethane	ND	0.0135		mg/Kg-dry	1	8/12/2023 8:42:17 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:50:00 AM

Project: S Jackson Street

Lab ID: 2308151-011 **Matrix:** Soil

Client Sample ID: UST4-SSW-93

Units DF **Analyses** Result **PQL** Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260D** Batch ID: 41166 Analyst: KJ cis-1,3-Dichloropropene ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM ND Toluene 0.0325 mg/Kg-dry 1 8/12/2023 8:42:17 PM Trans-1,3-Dichloropropylene ND 0.0217 mg/Kg-dry 8/12/2023 8:42:17 PM 1 ND Methyl Isobutyl Ketone (MIBK) 0.0650 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,1,2-Trichloroethane ND 0.0135 mg/Kg-dry 1 8/12/2023 8:42:17 PM ND 1,3-Dichloropropane 0.0108 8/12/2023 8:42:17 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM Dibromochloromethane ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,2-Dibromoethane (EDB) ND 0.0108 1 8/12/2023 8:42:17 PM mg/Kg-dry 2-Hexanone (MBK) ND 0.0677 mg/Kg-dry 1 8/12/2023 8:42:17 PM Chlorobenzene ND 0.0163 8/12/2023 8:42:17 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0271 mg/Kg-dry 1 8/12/2023 8:42:17 PM Ethylbenzene ND mg/Kg-dry 8/12/2023 8:42:17 PM 0.0271 1 m,p-Xylene ND 0.0542 1 8/12/2023 8:42:17 PM mg/Kg-dry ND o-Xylene 0.0271 mg/Kg-dry 1 8/12/2023 8:42:17 PM Styrene ND 0.0108 8/12/2023 8:42:17 PM mg/Kg-dry 1 0.0167 Isopropylbenzene 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM Bromoform ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.217 Q 1 8/12/2023 8:42:17 PM 0.0684 n-Propylbenzene 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM Bromobenzene ND 0.0135 1 8/12/2023 8:42:17 PM mg/Kg-dry 1,3,5-Trimethylbenzene 0.0267 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM 2-Chlorotoluene ND 8/12/2023 8:42:17 PM 0.0179 mg/Kg-dry 1 4-Chlorotoluene ND 0.0179 mg/Kg-dry 1 8/12/2023 8:42:17 PM tert-Butylbenzene ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,2,3-Trichloropropane ND 0.0325 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,2,4-Trichlorobenzene ND 0.0650 mg/Kg-dry 1 8/12/2023 8:42:17 PM sec-Butylbenzene ND 8/12/2023 8:42:17 PM 0.163 mg/Kg-dry 1 4-Isopropyltoluene ND 0.217 1 8/12/2023 8:42:17 PM mg/Kg-dry 1.3-Dichlorobenzene ND 0.0217 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,4-Dichlorobenzene ND 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM 0.0996 1 n-Butylbenzene 0.0217 mg/Kg-dry 8/12/2023 8:42:17 PM ND 1,2-Dichlorobenzene 0.0217 mg/Kg-dry 1 8/12/2023 8:42:17 PM ND 1,2-Dibromo-3-chloropropane 0.0325 mg/Kg-dry 1 8/12/2023 8:42:17 PM 0.107 1,2,4-Trimethylbenzene 0.0163 mg/Kg-dry 1 8/12/2023 8:42:17 PM Hexachloro-1,3-butadiene ND 0.0434 mg/Kg-dry 1 8/12/2023 8:42:17 PM Naphthalene 0.116 0.108 mg/Kg-dry 1 8/12/2023 8:42:17 PM 1,2,3-Trichlorobenzene ND 0.0650 mg/Kg-dry 1 8/12/2023 8:42:17 PM Surr: Dibromofluoromethane 97.8 79.5 - 124 %Rec 1 8/12/2023 8:42:17 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:50:00 AM

Project: S Jackson Street

Lab ID: 2308151-011 **Matrix:** Soil

Client Sample ID: UST4-SSW-93

Analyses Result **PQL** Qual **Units** DF **Date Analyzed** Volatile Organic Compounds by EPA Method 8260D Batch ID: 41166 Analyst: KJ 96.2 77.5 - 124 %Rec 8/12/2023 8:42:17 PM Surr: Toluene-d8 Surr: 1-Bromo-4-fluorobenzene 97 4 60.5 - 139 %Rec 8/12/2023 8:42:17 PM Q - Associated calibration verification is below acceptance criteria. Result may be low-biased. Batch ID: 41172 Analyst: JR **Total Metals by EPA Method 6020B** Lead 2.85 0.890 8/11/2023 2:02:00 PM mg/Kg-dry **Sample Moisture (Percent Moisture)** Batch ID: R85861 Analyst: MP Percent Moisture 9.96 0.500 wt% 8/11/2023 8:37:20 AM 1

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:55:00 AM

Project: S Jackson Street

Lab ID: 2308151-012 **Matrix:** Soil

Client Sample ID: UST4-B-90

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA Met	hod 8082		Batch	n ID: 41	176 Analyst: SK
Aroclor 1016	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1221	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1232	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1242	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1248	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1254	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1260	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1262	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Aroclor 1268	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Total PCBs	ND	0.0215		mg/Kg-dry	1	8/10/2023 9:17:35 PM
Surr: Decachlorobiphenyl	40.6	5 - 160		%Rec	1	8/10/2023 9:17:35 PM
Surr: Tetrachloro-m-xylene	88.5	57.3 - 159		%Rec	1	8/10/2023 9:17:35 PM
•						
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	1D: 41	170 Analyst: AP
Diesel Range Organics	ND	51.7		mg/Kg-dry	1	8/10/2023 8:33:10 PM
Heavy Oil	ND	103		mg/Kg-dry	1	8/10/2023 8:33:10 PM
Total Petroleum Hydrocarbons	ND	155		mg/Kg-dry	1	8/10/2023 8:33:10 PM
Surr: 2-Fluorobiphenyl	101	50 - 150		%Rec	1	8/10/2023 8:33:10 PM
Surr: o-Terphenyl	103	50 - 150		%Rec	1	8/10/2023 8:33:10 PM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	n ID: 41	173 Analyst: SH
Naphthalene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
2-Methylnaphthalene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
1-Methylnaphthalene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Acenaphthylene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Acenaphthene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Fluorene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Phenanthrene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Anthracene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Fluoranthene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Pyrene	ND	41.1		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Benz(a)anthracene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Chrysene	ND	20.5		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Benzo(b)fluoranthene	ND	25.7		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Benzo(k)fluoranthene	ND	25.7		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Benzo(a)pyrene	ND	30.8		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Indeno(1,2,3-cd)pyrene	ND	41.1		μg/Kg-dry	1	8/11/2023 1:11:38 AM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:55:00 AM

Project: S Jackson Street

Lab ID: 2308151-012 **Matrix:** Soil

Client Sample ID: UST4-B-90

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by E	EPA Method 8	3270 (SIM)		Batch	ı ID:	41173 Analyst: SH
Dibenz(a,h)anthracene	ND	51.3		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Benzo(g,h,i)perylene	ND	51.3		μg/Kg-dry	1	8/11/2023 1:11:38 AM
Surr: 2-Fluorobiphenyl	102	22.2 - 146		%Rec	1	8/11/2023 1:11:38 AM
Surr: Terphenyl-d14 (surr)	121	20.2 - 159		%Rec	1	8/11/2023 1:11:38 AM
Gasoline by NWTPH-Gx				Batch	ı ID:	41166 Analyst: CC
Gasoline Range Organics	ND	5.72		mg/Kg-dry	1	8/14/2023 12:38:41 PM
Surr: Toluene-d8	98.4	65 - 135		%Rec	1	8/14/2023 12:38:41 PM
Surr: 4-Bromofluorobenzene	98.0	65 - 135		%Rec	1	8/14/2023 12:38:41 PM
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	41166 Analyst: KJ
Dichlorodifluoromethane (CFC-12)	ND	0.0172		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Chloromethane	ND	0.0572		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Vinyl chloride	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Bromomethane	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Trichlorofluoromethane (CFC-11)	ND	0.0229		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Chloroethane	ND	0.0858		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,1-Dichloroethene	ND	0.114		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Acetone	ND	0.286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Methylene chloride	ND	0.0400		mg/Kg-dry	1	8/12/2023 9:14:13 PM
trans-1,2-Dichloroethene	ND	0.0114		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Methyl tert-butyl ether (MTBE)	ND	0.0229		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,1-Dichloroethane	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
cis-1,2-Dichloroethene	ND	0.0172		mg/Kg-dry	1	8/12/2023 9:14:13 PM
(MEK) 2-Butanone	ND	0.343		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Chloroform	ND	0.0200		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,1,1-Trichloroethane (TCA)	ND	0.0229		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,1-Dichloropropene	ND	0.0229		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Carbon tetrachloride	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,2-Dichloroethane (EDC)	ND	0.0229		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Benzene	ND	0.0200		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Trichloroethene (TCE)	ND	0.0172		mg/Kg-dry	1	8/12/2023 9:14:13 PM
1,2-Dichloropropane	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Bromodichloromethane	ND	0.0286		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Dibromomethane	ND	0.0143		mg/Kg-dry	1	8/12/2023 9:14:13 PM
cis-1,3-Dichloropropene	ND	0.0172		mg/Kg-dry	1	8/12/2023 9:14:13 PM
Toluene	ND	0.0343		mg/Kg-dry	1	8/12/2023 9:14:13 PM

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:55:00 AM

Project: S Jackson Street

Lab ID: 2308151-012 **Matrix:** Soil

Client Sample ID: UST4-B-90

Units DF **Analyses** Result **PQL** Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260D** Batch ID: 41166 Analyst: KJ Trans-1,3-Dichloropropylene ND 0.0229 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND Methyl Isobutyl Ketone (MIBK) 0.0687 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,1,2-Trichloroethane ND 0.0143 mg/Kg-dry 8/12/2023 9:14:13 PM 1 ND 1,3-Dichloropropane 0.0114 mg/Kg-dry 1 8/12/2023 9:14:13 PM Tetrachloroethene (PCE) ND 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND Dibromochloromethane 0.0172 8/12/2023 9:14:13 PM mg/Kg-dry 1 1,2-Dibromoethane (EDB) ND 0.0114 mg/Kg-dry 1 8/12/2023 9:14:13 PM 2-Hexanone (MBK) ND 0.0715 mg/Kg-dry 1 8/12/2023 9:14:13 PM Chlorobenzene ND 0.0172 1 8/12/2023 9:14:13 PM mg/Kg-dry 1,1,1,2-Tetrachloroethane ND 0.0286 mg/Kg-dry 1 8/12/2023 9:14:13 PM Ethylbenzene ND 0.0286 8/12/2023 9:14:13 PM mg/Kg-dry 1 m,p-Xylene ND 0.0572 mg/Kg-dry 1 8/12/2023 9:14:13 PM o-Xylene ND mg/Kg-dry 8/12/2023 9:14:13 PM 0.0286 1 Styrene ND 0.0114 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND Isopropylbenzene 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND 0.0172 8/12/2023 9:14:13 PM Bromoform mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.229 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND n-Propylbenzene 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM Bromobenzene ND 0.0143 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,3,5-Trimethylbenzene ND 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM 2-Chlorotoluene ND 0.0189 8/12/2023 9:14:13 PM mg/Kg-dry 1 4-Chlorotoluene ND 0.0189 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND tert-Butylbenzene 0.0172 8/12/2023 9:14:13 PM mg/Kg-dry 1 1.2.3-Trichloropropane ND 0.0343 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,2,4-Trichlorobenzene ND 0.0687 mg/Kg-dry 1 8/12/2023 9·14·13 PM sec-Butylbenzene ND 0.172 mg/Kg-dry 1 8/12/2023 9:14:13 PM 4-Isopropyltoluene ND 0.229 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1.3-Dichlorobenzene ND 0.0229 8/12/2023 9:14:13 PM mg/Kg-dry 1 1.4-Dichlorobenzene ND 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND n-Butylbenzene 0.0229 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,2-Dichlorobenzene ND 0.0229 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,2-Dibromo-3-chloropropane ND 1 8/12/2023 9:14:13 PM 0.0343 mg/Kg-dry 1,2,4-Trimethylbenzene ND 0.0172 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND Hexachloro-1,3-butadiene 0.0458 mg/Kg-dry 1 8/12/2023 9:14:13 PM ND Naphthalene 0.114 mg/Kg-dry 1 8/12/2023 9:14:13 PM 1,2,3-Trichlorobenzene ND 0.0687 mg/Kg-dry 1 8/12/2023 9:14:13 PM Surr: Dibromofluoromethane 97.8 79.5 - 124 %Rec 1 8/12/2023 9:14:13 PM Surr: Toluene-d8 97.3 77.5 - 124 %Rec 1 8/12/2023 9:14:13 PM Surr: 1-Bromo-4-fluorobenzene 98.6 60.5 - 139 %Rec 1 8/12/2023 9:14:13 PM

Analytical Report

Work Order: **2308151**Date Reported: **8/28/2023**

Client: GeoEngineers Collection Date: 8/9/2023 7:55:00 AM

Project: S Jackson Street

Lab ID: 2308151-012 **Matrix:** Soil

Client Sample ID: UST4-B-90

Analyses Result PQL Qual Units DF Date Analyzed

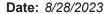
Volatile Organic Compounds by EPA Method 8260D

Batch ID: 41166 Analyst: KJ

NOTES:

Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Total Metals by EPA Method 6020B Batch ID: 41172 Analyst: JR


Lead 2.70 0.865 mg/Kg-dry 1 8/11/2023 2:04:00 PM

Sample Moisture (Percent Moisture)

Batch ID: R85862 Analyst: MP

Percent Moisture 7.83 0.500 wt% 1 8/11/2023 8:39:11 AM

Revision v2

GeoEngineers

Project: S Jackson Street

QC SUMMARY REPORT

Total Metals by EPA Method 6020B

Sample ID: MB-41172	SampType: MBLK	Units: mg/Kg	Prep Date: 8/10/2023	RunNo: 85882
----------------------------	-----------------------	--------------	----------------------	--------------

Client ID: **MBLKS** Batch ID: 41172 Analysis Date: 8/11/2023 SeqNo: 1792210

Analyte RL SPK value SPK Ref Val Result %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

ND Lead 1.00

Sample ID: 2308095-013AMS SampType: MS Prep Date: 8/10/2023 RunNo: 85882 Units: mg/Kg-dry

Client ID: **BATCH** Batch ID: 41172 Analysis Date: 8/11/2023 SeqNo: 1792214

SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result %REC Qual Lead 148 0.820 20.51 172.8 -123 75 125 ES

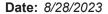
NOTES:

CLIENT:

S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

Sample ID: 2308095-013AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 8/10/2 0	23	RunNo: 858	382	
Client ID: BATCH	Batch ID: 41172					Analysis Da	te: 8/11/20	23	SeqNo: 179	92215	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	164	0.845	21.13	172.8	-39.8	75	125	147.6	10.8	20	ES

NOTES:


S/R - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected. High RPD observed.

Sample ID: LCS-41172	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/10/20	23	RunNo: 858	382	
Client ID: LCSS	Batch ID: 41172					Analysis Da	te: 8/14/20	23	SeqNo: 179	2813	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	26.6	1.00	25.00	0	106	80	120				

Sample ID: MB-41192	SampType: MBLK		Units: mg/Kg		Prep Date:	8/14/2023	RunNo: 859	06	
Client ID: MBLKS	Batch ID: 41192				Analysis Date:	8/14/2023	SeqNo: 179	2845	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

Lead ND 1.00

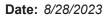
Page 36 of 99 Revision v2

CLIENT: GeoEngineers

QC SUMMARY REPORT

Total Metals by EPA Method 6020B

Project: S Jackson S	Street							Total Wet	iis by Li A	Wiethou	00201
Sample ID: LCS-41192	SampType: LCS			Units: mg/k	(g	Prep Dat	te: 8/14/202	3	RunNo: 859	906	
Client ID: LCSS	Batch ID: 41192					Analysis Dat	te: 8/14/202	3	SeqNo: 179	2846	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.18	0.794	1.984	0	110	80	120				
Sample ID: 2308151-006AMS	SampType: MS			Units: mg/h	Kg-dry	Prep Dat	te: 8/14/202	3	RunNo: 859	906	
Client ID: UST3-NSW-93	Batch ID: 41192					Analysis Dat	te: 8/14/202	3	SeqNo: 179	2849	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead NOTES: S - Spiked amount was low related.	9.76	1.03 on. Outlyina	2.583	5.529 es may be expect	164 ed.	75	125				S
Sample ID: 2308151-006AMSD	SampType: MSD	, ,	·	Units: mg/k		Prep Dat	te: 8/14/202	3	RunNo: 859	906	
Client ID: UST3-NSW-93	Batch ID: 41192					Analysis Dat	te: 8/14/202	3	SeqNo: 179	92850	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	9.12	1.03	2.583	5.529	139	75	125	9.756	6.74	20	S


NOTES:

S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

Sample ID: MB-41271	SampType: MBLK		Units: mg/Kg	Prep Date: 8/22/2023	RunNo: 86088
Client ID: MBLKS	Batch ID: 41271			Analysis Date: 8/23/2023	SeqNo: 1796352
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	ND	1.00			

Sample ID: LCS-41271	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/22/20	23	RunNo: 860)88	
Client ID: LCSS	Batch ID: 41271					Analysis Da	te: 8/23/20	23	SeqNo: 179	96353	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	23.3	0.800	20.00	0	116	80	120	_			

Page 37 of 99 Revision v2

CLIENT: GeoEngineers

Project: S Jackson Street

QC SUMMARY REPORT

Total Metals by EPA Method 6020B

Sample ID: CCV-41271A	SampType: CCV			Units: µg/L		Prep Date:	8/23/2023	3	RunNo: 860	088	
Client ID: CCV	Batch ID: 41271					Analysis Date	8/23/2023	3	SeqNo: 17 9	96356	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	55.0	1.00	50.00	0	110	90	110				
Sample ID: CCB-41271A	SampType: CCB			Units: µg/L		Prep Date:	8/23/2023	3	RunNo: 860	088	
Client ID: CCB	Batch ID: 41271					Analysis Date	8/23/2023	3	SeqNo: 17 9	96357	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	1.00									
Sample ID: 2308276-002AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date:	8/22/2023	3	RunNo: 860	088	
Client ID: BATCH	Batch ID: 41271					Analysis Date	8/23/2023	3	SeqNo: 17 9	96358	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	25.4	0.923	23.07	1.666	103	75	125				
Sample ID: 2308276-002AMSD	SampType: MSD			Units: mg/Kg	-dry	Prep Date:	8/22/2023	3	RunNo: 860	088	
Client ID: BATCH	Batch ID: 41271					Analysis Date	8/23/2023	3	SeqNo: 17 9	96359	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	23.3	0.878	21.96	1.666	98.5	75	125	25.36	8.52	20	
Sample ID: CCV-41271B	SampType: CCV			Units: µg/L		Prep Date:	8/23/2023	3	RunNo: 860	088	
						Analysis Date	8/23/2023	3	SeqNo: 179	96368	
Client ID: CCV	Batch ID: 41271					,			•		
Client ID: CCV Analyte	Batch ID: 41271 Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD		Qual

Revision v2 Page 38 of 99

Date: 8/28/2023

Work Order: 2308151

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Total Metals by EPA Method 6020B

Sample ID: CCB-41271B SampType: CCB Units: μg/L Prep Date: 8/23/2023 RunNo: 86088

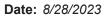
Client ID: **CCB** Batch ID: **41271** Analysis Date: **8/23/2023** SeqNo: **1796369**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Lead ND 1.00

Revision v2 Page 39 of 99

CLIENT: GeoEngineers


Project: S Jackson Street

QC SUMMARY REPORT

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: S Jackson 8	Street										
Sample ID: DX-CCV-41170A	SampType: CCV			Units: mg/Kg		Prep Dat	e: 8/10/2 0)23	RunNo: 85	867	
Client ID: CCV	Batch ID: 41170					Analysis Dat	e: 8/10/2 0)23	SeqNo: 17 9	91935	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	484	50.0	500.0	0	96.7	85	115				
Surr: 2-Fluorobiphenyl	10.6		10.00		106	50	150				
Surr: o-Terphenyl	13.1		10.00		131	50	150				
Sample ID: MB-41170	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 8/10/2 0)23	RunNo: 85	867	
Client ID: MBLKS	Batch ID: 41170					Analysis Dat	e: 8/10/2 0)23	SeqNo: 17	91936	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	150									
Surr: 2-Fluorobiphenyl	10.4		10.00		104	50	150				
Surr: o-Terphenyl	10.6		10.00		106	50	150				
Sample ID: LCS-41170	SampType: LCS			Units: mg/Kg		Prep Dat	e: 8/10/2 0)23	RunNo: 85	867	
Client ID: LCSS	Batch ID: 41170					Analysis Dat	e: 8/10/2 0)23	SeqNo: 17 9	91937	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	520	150	500.0	0	104	76.8	124				
Surr: 2-Fluorobiphenyl	9.23		10.00		92.3	50	150				
Surr: o-Terphenyl	12.0		10.00		120	50	150				
Sample ID: 2308151-002ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 8/10/2 0)23	RunNo: 85	867	
Client ID: UST2-NSW-93	Batch ID: 41170					Analysis Dat	e: 8/10/2 0)23	SeqNo: 179	91941	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	ND	57.0						0		30	
Heavy Oil	ND	114						0		30	
	ND									00	
Total Petroleum Hydrocarbons	ND	171						0		30	

Revision v2 Page 40 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers

Project: S. Jackson Street

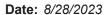
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: S Jackson S	Street						D10001 0	and neavy	On by NVV		
Sample ID: 2308151-002ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	e: 8/10/20	23	RunNo: 858	867	
Client ID: UST2-NSW-93	Batch ID: 41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	1941	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	11.9		11.39		105	50	150		0		
Sample ID: DX-CCV-41170B	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/10/20	23	RunNo: 858	867	
Client ID: CCV	Batch ID: 41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	1948	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	488	50.0	500.0	0	97.6	85	115				
Surr: 2-Fluorobiphenyl	11.1		10.00		111	50	150				
Surr: o-Terphenyl	13.1		10.00		131	50	150				
Sample ID: 2308139-001AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date	e: 8/10/20	23	RunNo: 858	367	
Client ID: BATCH	Batch ID: 41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	1957	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	561	157	524.1	54.61	96.6	21.8	165				
Surr: 2-Fluorobiphenyl	9.11		10.48		86.9	50	150				
Surr: o-Terphenyl	12.5		10.48		119	50	150				
Sample ID: 2308139-001AMSD	SampType: MSD			Units: mg/Kg	-dry	Prep Date	e: 8/10/20	23	RunNo: 858	367	
Client ID: BATCH	Batch ID: 41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	1958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	578	157	524.1	54.61	99.9	21.8	165	561.0	2.99	30	
Surr: 2-Fluorobiphenyl	9.46		10.48		90.2	50	150		0		
' '											

Revision v2 Page 41 of 99

Date: 8/28/2023

Work Order: 2308151

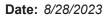

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: DX-CCV-41170D	SampType: CCV			Units: mg/Kg		Prep Da	te: 8/11/20	23	RunNo: 858	367	
Client ID: CCV	Batch ID: 41170					Analysis Da	te: 8/11/20	23	SeqNo: 179	1971	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics	551	50.0	500.0	0	110	85	115				
Surr: 2-Fluorobiphenyl	10.4		10.00		104	50	150				
Surr: o-Terphenyl	14.1		10.00		141	50	150				

Revision v2 Page 42 of 99


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

1,010 20 936 20 971 20 922 20 1,020 20 961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	/alue 3,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 101 93.6 97.1 92.2 102 96.1 96.1 96.8 103 99.6	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	SeqNo: 179 %RPD	RPDLimit	Qual
1,010 20 936 20 971 20 922 20 1,020 20 961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000 ,000 ,000 ,00	0 0 0 0 0 0 0	101 93.6 97.1 92.2 102 96.1 96.1 96.8 103	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	%RPD	RPDLimit	Qual
936 20 971 20 922 20 1,020 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000 ,000 ,000 ,00	0 0 0 0 0 0 0	93.6 97.1 92.2 102 96.1 96.1 96.8 103	80 80 80 80 80 80 80	120 120 120 120 120 120 120			
971 20 922 20 1,020 20 961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000 ,000	0 0 0 0 0 0	97.1 92.2 102 96.1 96.1 96.8 103	80 80 80 80 80 80	120 120 120 120 120 120			
922 20 1,020 20 961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000 ,000	0 0 0 0 0 0	92.2 102 96.1 96.1 96.8 103	80 80 80 80 80	120 120 120 120 120			
1,020 20 961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000	0 0 0 0 0	102 96.1 96.1 96.8 103	80 80 80 80	120 120 120 120			
961 20 961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000 ,000 ,000	0 0 0 0	96.1 96.1 96.8 103	80 80 80 80	120 120 120			
961 20 968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000	0 0 0	96.1 96.8 103	80 80 80	120 120			
968 20 1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1 0.0 1	,000 ,000 ,000	0 0 0	96.8 103	80 80	120			
1,030 20 996 40 981 20 983 20	0.0 1 0.0 1 0.0 1	,000,	0	103	80				
996 40 981 20 983 20	0.0 1 0.0 1	,000	0			120			
981 20 983 20	0.0 1			90.6					
983 20		,000	_	33.0	80	120			
	0.0 1		0	98.1	80	120			
967 25		,000	0	98.3	80	120			
20.	5.0 1	,000	0	96.7	80	120			
978 25	5.0 1	,000	0	97.8	80	120			
1,020 30	0.0 1	,000	0	102	80	120			
943 40	0.0 1	,000	0	94.3	80	120			
941 50	0.0 1	,000	0	94.1	80	120			
937 50	0.0 1	,000	0	93.7	80	120			
487	5	0.00		97.4	69.5	150			
535	5	0.00		107	71.6	145			
e: MBLK			Units: μg/Kg		Prep Date:	8/10/2023	RunNo: 859	10	
41173					Analysis Date:	8/10/2023	SeqNo: 179	3001	
Result F	RL SPK v	/alue :	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
ND 20	0.0								
ND 20									
	: MBLK 41173 Result ND 20	: MBLK 41173 Result RL SPK v ND 20.0 ND 20.0	: MBLK 41173 Result RL SPK value ND 20.0 ND 20.0	E: MBLK Units: μg/Kg 41173 Result RL SPK value SPK Ref Val ND 20.0 ND 20.0	E: MBLK Units: μg/Kg 41173 Result RL SPK value SPK Ref Val %REC ND 20.0	E MBLK 41173 Result Result RD 20.0 ND 20.0	E MBLK 41173 Result RE Dunits: μg/Kg Analysis Date: 8/10/2023 Analysis Date: 8/10/2023	E MBLK Units: μg/Kg Prep Date: 8/10/2023 RunNo: 859 Analysis Date: 8/10/2023 SeqNo: 179 Result RL SPK value SPK Ref Val WREC LowLimit HighLimit RPD Ref Val WRPD ND 20.0 ND 20.0	E: MBLK 41173 Result RESULT ROUGH ROUG

Revision v2 Page 43 of 99

Project:

Benz(a)anthracene

Chrysene

2,240

2,290

20.0

20.0

2,000

2,000

QC SUMMARY REPORT

CLIENT: GeoEngineers S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-41173	SampType: MBLK			Units: µg/Kg		Prep Dat	e: 8/10/2 0	23	RunNo: 859	910	
Client ID: MBLKS	Batch ID: 41173					Analysis Dat	e: 8/10/2 0	23	SeqNo: 179	3001	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	ND	20.0									
Anthracene	ND	20.0									
Fluoranthene	ND	20.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	20.0									
Benzo(b)fluoranthene	ND	25.0									
Benzo(k)fluoranthene	ND	25.0									
Benzo(a)pyrene	ND	30.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	1,020		1,000		102	22.2	146				
Surr: Terphenyl-d14 (surr)	1,220		1,000		122	20.2	159				
Sample ID: LCS-41173	SampType: LCS			Units: μg/Kg		Prep Dat	e: 8/10/2 0	23	RunNo: 859	910	
Client ID: LCSS	Batch ID: 41173					Analysis Dat	e: 8/10/2 0	23	SeqNo: 179	3002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,090	20.0	2,000	0	104	59.3	114				
2-Methylnaphthalene											
	1,980	20.0	2,000	0	99.2	55.5	115				
1-Methylnaphthalene	1,980 2,020	20.0 20.0	2,000 2,000	0	99.2 101	55.5 57.2	115 116				
1-Methylnaphthalene Acenaphthylene	•										
	2,020	20.0	2,000	0	101	57.2	116				
Acenaphthylene	2,020 2,040	20.0 20.0	2,000 2,000	0 0	101 102	57.2 58.2	116 120				
Acenaphthylene Acenaphthene	2,020 2,040 2,140	20.0 20.0 20.0	2,000 2,000 2,000	0 0 0	101 102 107	57.2 58.2 56.6	116 120 114				
Acenaphthylene Acenaphthene Fluorene	2,020 2,040 2,140 2,080	20.0 20.0 20.0 20.0	2,000 2,000 2,000 2,000	0 0 0	101 102 107 104	57.2 58.2 56.6 57.7	116 120 114 117				
Acenaphthylene Acenaphthene Fluorene Phenanthrene	2,020 2,040 2,140 2,080 2,090	20.0 20.0 20.0 20.0 20.0	2,000 2,000 2,000 2,000 2,000	0 0 0 0	101 102 107 104 104	57.2 58.2 56.6 57.7 53.2	116 120 114 117 118				

Page 44 of 99 Revision v2

0

0

112

115

59.5

51.5

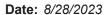
123

115

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)


Sample ID: LCS-41173	SampType: LCS			Units: µg/Kg					RunNo: 859	910	
Client ID: LCSS	Batch ID: 41173					Analysis Da	te: 8/10/20)23	SeqNo: 17 9	93002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	2,200	25.0	2,000	0	110	50	122				
Benzo(k)fluoranthene	2,270	25.0	2,000	0	113	51	117				
Benzo(a)pyrene	2,470	30.0	2,000	0	124	53.2	123				S
Indeno(1,2,3-cd)pyrene	2,110	40.0	2,000	0	105	49.5	122				
Dibenz(a,h)anthracene	2,130	50.0	2,000	0	106	51	120				
Benzo(g,h,i)perylene	2,080	50.0	2,000	0	104	46.8	122				
Surr: 2-Fluorobiphenyl	1,180		1,000		118	22.2	146				
Surr: Terphenyl-d14 (surr)	1,370		1,000		137	20.2	159				
NOTES:											

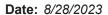
NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect; result meets QC requirements.

Sample ID: 2308151-012AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 8/10/20)23	RunNo: 859	910	
Client ID: UST4-B-90	Batch ID: 41173					Analysis Da	te: 8/11/2 0)23	SeqNo: 179	3008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,250	20.5	2,049	0	110	48.9	121				
2-Methylnaphthalene	2,120	20.5	2,049	0	103	45.9	118				
1-Methylnaphthalene	2,160	20.5	2,049	0	106	48.5	121				
Acenaphthylene	2,210	20.5	2,049	0	108	49.2	126				
Acenaphthene	2,290	20.5	2,049	0	112	46	122				
Fluorene	2,250	20.5	2,049	0	110	49	123				
Phenanthrene	2,250	20.5	2,049	0	110	40.5	126				
Anthracene	2,350	20.5	2,049	0	115	46.3	124				
Fluoranthene	2,510	20.5	2,049	0	123	49.1	129				
Pyrene	2,450	41.0	2,049	0	119	48.8	130				
Benz(a)anthracene	2,390	20.5	2,049	0	117	53.9	130				
Chrysene	2,430	20.5	2,049	0	118	41.2	126				
Benzo(b)fluoranthene	2,370	25.6	2,049	0	116	37.2	132				
Benzo(k)fluoranthene	2,420	25.6	2,049	0	118	32.8	131				
Benzo(a)pyrene	2,660	30.7	2,049	0	130	28.8	145				
Indeno(1,2,3-cd)pyrene	2,250	41.0	2,049	0	110	3.36	151				
Dibenz(a,h)anthracene	2,270	51.2	2,049	0	111	6.99	152				

Revision v2 Page 45 of 99

QC SUMMARY REPORT

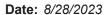

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2308151-012AMS	SampType: MS			Units: µg/Kg	j-dry	Prep Da	te: 8/10/20	23	RunNo: 859	010	
Client ID: UST4-B-90	Batch ID: 41173					Analysis Da	te: 8/11/20	23	SeqNo: 179	3008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	2,220	51.2	2,049	0	108	5.86	143				
Surr: 2-Fluorobiphenyl	1,210		1,025		119	22.2	146				
Surr: Terphenyl-d14 (surr)	1,420		1,025		138	20.2	159				

Sample ID: 2308151-012AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 8/10/2 0	123	RunNo: 859	910	
Client ID: UST4-B-90	Batch ID: 41173					Analysis Da	te: 8/11/20	23	SeqNo: 179	93009	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,210	20.5	2,049	0	108	48.9	121	2,249	1.58	30	
2-Methylnaphthalene	2,090	20.5	2,049	0	102	45.9	118	2,120	1.27	30	
1-Methylnaphthalene	2,130	20.5	2,049	0	104	48.5	121	2,162	1.26	30	
Acenaphthylene	2,170	20.5	2,049	0	106	49.2	126	2,212	2.06	30	
Acenaphthene	2,270	20.5	2,049	0	111	46	122	2,288	0.908	30	
Fluorene	2,230	20.5	2,049	0	109	49	123	2,252	0.893	30	
Phenanthrene	2,240	20.5	2,049	0	109	40.5	126	2,246	0.257	30	
Anthracene	2,310	20.5	2,049	0	113	46.3	124	2,353	1.74	30	
Fluoranthene	2,470	20.5	2,049	0	121	49.1	129	2,511	1.47	30	
Pyrene	2,410	41.0	2,049	0	118	48.8	130	2,445	1.33	30	
Benz(a)anthracene	2,360	20.5	2,049	0	115	53.9	130	2,390	1.09	30	
Chrysene	2,410	20.5	2,049	0	117	41.2	126	2,425	0.746	30	
Benzo(b)fluoranthene	2,370	25.6	2,049	0	116	37.2	132	2,369	0.137	30	
Benzo(k)fluoranthene	2,370	25.6	2,049	0	116	32.8	131	2,424	2.04	30	
Benzo(a)pyrene	2,640	30.7	2,049	0	129	28.8	145	2,661	0.683	30	
Indeno(1,2,3-cd)pyrene	2,230	41.0	2,049	0	109	3.36	151	2,255	1.04	30	
Dibenz(a,h)anthracene	2,240	51.2	2,049	0	109	6.99	152	2,269	1.50	30	
Benzo(g,h,i)perylene	2,200	51.2	2,049	0	107	5.86	143	2,220	1.06	30	
Surr: 2-Fluorobiphenyl	1,210		1,025		118	22.2	146		0		
Surr: Terphenyl-d14 (surr)	1,400		1,025		137	20.2	159		0		

Revision v2 Page 46 of 99


QC SUMMARY REPORT

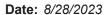
CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

SampType	: CCV			Units: µg/L		Prep Date:	8/14/2023	RunNo: 859	903	
Batch ID:	41191					Analysis Date:	8/14/2023	SeqNo: 179	92816	
F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
	1,110	20.0	1,000	0	111	80	120			
	964	20.0	1,000	0	96.4	80	120			
	965	20.0	1,000	0	96.5	80	120			
	1,120	20.0	1,000	0	112	80	120			
	923	20.0	1,000	0	92.3	80	120			
	1,080	20.0	1,000	0	108	80	120			
	1,060	20.0	1,000	0	106	80	120			
	1,060	20.0	1,000	0	106	80	120			
	1,150	20.0	1,000	0	115	80	120			
	1,110	40.0	1,000	0	111	80	120			
	1,100	20.0	1,000	0	110	80	120			
	1,150	20.0	1,000	0	115	80	120			
	1,140	25.0	1,000	0	114	80	120			
	1,130	25.0	1,000	0	113	80	120			
	1,180	30.0	1,000	0	118	80	120			
	1,100	40.0	1,000	0	110	80	120			
	1,090	50.0	1,000	0	109	80	120			
	1,110	50.0	1,000	0	111	80	120			
	1,270		1,000		127	14	136			
	496		500.0		99.2	69.5	150			
	595		500.0		119	71.6	145			
SampType	: MBLK			Units: µg/Kg		Prep Date:	8/14/2023	RunNo: 859	903	
Batch ID:	41191					Analysis Date:	8/14/2023	SeqNo: 17 9	92817	
F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
	ND	20.0								
	ND	20.0								
	ND	20.0								
	ND	20.0								
	ND	20.0								
	Batch ID: F SampType Batch ID:	Result 1,110 964 965 1,120 923 1,080 1,060 1,060 1,150 1,110 1,150 1,1140 1,130 1,140 1,130 1,140 1,130 1,140 1,270 496 595 SampType: MBLK Batch ID: 41191 Result ND ND ND	Batch ID: 41191 Result RL 1,110 20.0 964 20.0 965 20.0 1,120 20.0 923 20.0 1,080 20.0 1,060 20.0 1,060 20.0 1,150 20.0 1,110 40.0 1,110 20.0 1,150 20.0 1,140 25.0 1,140 25.0 1,180 30.0 1,140 25.0 1,180 30.0 1,100 40.0 1,090 50.0 1,110 50.0 1,270 496 595 SampType: MBLK Batch ID: 41191 Result RL ND 20.0 ND 20.0 ND 20.0 ND 20.0	Result RL SPK value	Batch ID: 41191 Result RL SPK value SPK Ref Val 1,110 20.0 1,000 0 964 20.0 1,000 0 965 20.0 1,000 0 1,120 20.0 1,000 0 1,180 20.0 1,000 0 1,060 20.0 1,000 0 1,150 20.0 1,000 0 1,110 40.0 1,000 0 1,110 20.0 1,000 0 1,1110 40.0 1,000 0 1,1150 20.0 1,000 0 1,1150 20.0 1,000 0 1,1160 20.0 1,000 0 1,1110 40.0 1,000 0 1,1110 20.0 1,000 0 1,1110 25.0 1,000 0 1,1180 30.0 1,000 0 1,1180 30.0 1,000 0 1,1190 40.0 1,000 0 1,1100 40.0 1,000 0 1,1100 40.0 1,000 0 1,1270 1,000 0 1,270 1,000 0 SampType: MBLK Batch ID: 41191 Result RL SPK value SPK Ref Val ND 20.0	Batch ID: 41191 Result RL SPK value SPK Ref Val %REC 1,110 20.0 1,000 0 111 964 20.0 1,000 0 96.4 965 20.0 1,000 0 96.5 1,120 20.0 1,000 0 92.3 1,080 20.0 1,000 0 108 1,060 20.0 1,000 0 108 1,060 20.0 1,000 0 106 1,060 20.0 1,000 0 106 1,150 20.0 1,000 0 115 1,110 40.0 1,000 0 111 1,100 20.0 1,000 0 114 1,130 25.0 1,000 0 113 1,180 30.0 1,000 0 118 1,100 40.0 1,000 0 118 1,110 50.0	Batch ID: 41191 Result RL SPK value SPK Ref Val %REC LowLimit FRESULT RESULT RESUL	Result RL SPK value SPK Ref Val SPK C LowLimit HighLimit RPD Ref Val	Batch Discrete Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD	Batch ID: 41191

Revision v2 Page 47 of 99

QC SUMMARY REPORT

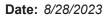

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-41191	SampType: MBLK			Units: µg/Kg		Prep Da	te: 8/14/2 0)23	RunNo: 859	903	
Client ID: MBLKS	Batch ID: 41191					Analysis Da	te: 8/14/2 0)23	SeqNo: 179	92817	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	ND	20.0									
Fluorene	ND	20.0									
Anthracene	ND	20.0									
Fluoranthene	ND	20.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	20.0									
Benzo(b)fluoranthene	ND	25.0									
Benzo(k)fluoranthene	ND	25.0									
Benzo(a)pyrene	ND	30.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	1,010		1,000		101	22.2	146				
Surr: Terphenyl-d14 (surr)	1,270		1,000		127	20.2	159				

Sample ID: LCS-41191	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/14/2023	RunNo: 85903	
Client ID: LCSS	Batch ID: 41191					Analysis Dat	e: 8/14/2023	SeqNo: 1792818	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD F	Ref Val %RPD RPDLim	it Qual
Naphthalene	1,960	20.0	2,000	0	98.2	59.3	114		
2-Methylnaphthalene	1,870	20.0	2,000	0	93.5	55.5	115		
1-Methylnaphthalene	1,890	20.0	2,000	0	94.3	57.2	116		
Acenaphthene	2,020	20.0	2,000	0	101	56.6	114		
Acenaphthylene	1,920	20.0	2,000	0	95.8	58.2	120		
Phenanthrene	1,970	20.0	2,000	0	98.5	53.2	118		
Fluorene	1,950	20.0	2,000	0	97.5	57.7	117		
Anthracene	1,990	20.0	2,000	0	99.4	54.7	118		
Fluoranthene	2,140	20.0	2,000	0	107	56	120		
Pyrene	2,100	40.0	2,000	0	105	56.9	120		
Benz(a)anthracene	2,070	20.0	2,000	0	103	59.5	123		

Revision v2 Page 48 of 99


QC SUMMARY REPORT

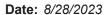
CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-41191	SampType: LCS			Units: µg/Kg		Prep Da	te: 8/14/20	23	RunNo: 859	903	
Client ID: LCSS	Batch ID: 41191					Analysis Da	te: 8/14/20	23	SeqNo: 179	92818	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	2,110	20.0	2,000	0	106	51.5	115				
Benzo(b)fluoranthene	2,020	25.0	2,000	0	101	50	122				
Benzo(k)fluoranthene	2,100	25.0	2,000	0	105	51	117				
Benzo(a)pyrene	2,250	30.0	2,000	0	112	53.2	123				
Indeno(1,2,3-cd)pyrene	1,990	40.0	2,000	0	99.5	49.5	122				
Dibenz(a,h)anthracene	2,000	50.0	2,000	0	99.9	51	120				
Benzo(g,h,i)perylene	2,000	50.0	2,000	0	100	46.8	122				
Surr: 2-Fluorobiphenyl	1,140		1,000		114	22.2	146				
Surr: Terphenyl-d14 (surr)	1,290		1,000		129	20.2	159				
Sample ID: 2308174-001AMS	SampType: MS			Units: µg/Kg-	dry	Prep Da	te: 8/14/20	23	RunNo: 859	903	
Client ID: BATCH	Batch ID: 41191					Analysis Da	te: 8/14/20	23	SeqNo: 179	92821	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,070	20.2	2,017	62.03	99.6	48.9	121				
2-Methylnaphthalene	2,210	20.2	2,017	187.6	100	45.9	118				
1-Methylnaphthalene	2,160	20.2	2,017	160.3	99.1	48.5	121				
Acenaphthene	2,080	20.2	2,017	0	103	46	122				
Acenaphthylene	1,980	20.2	2,017	0	98.4	49.2	126				
Phenanthrene	2,180	20.2	2,017	174.7	99.3	40.5	126				
Fluorene	2,010	20.2	2,017	54.18	97.0	49	123				
Anthracene	2,010	20.2	2,017	14.12	99.0	46.3	124				
Fluoranthene	2,370	20.2	2,017	117.3	112	49.1	129				
Pyrene	2,270	40.3	2,017	131.1	106	48.8	130				
Benz(a)anthracene	2,320	20.2	2,017	67.67	112	53.9	130				
Chrysene	2,100	20.2	2,017	87.63	99.7	41.2	126				
Benzo(b)fluoranthene	2,210	25.2	2,017	0	109	37.2	132				
Benzo(k)fluoranthene	2,130	25.2	2,017	0	106	32.8	131				
Benzo(a)pyrene	2,370	30.2	2,017	85.49	113	28.8	145				
Indeno(1,2,3-cd)pyrene	1,830	40.3	2,017	29.21	89.3	3.36	151				
Dibenz(a,h)anthracene	1,830	50.4	2,017	0	90.6	6.99	152				

Revision v2 Page 49 of 99

QC SUMMARY REPORT

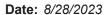

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2308174-001AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 8/14/20)23	RunNo: 859	903	
Client ID: BATCH	Batch ID: 41191					Analysis Da	te: 8/14/20)23	SeqNo: 179	92821	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	1,640	50.4	2,017	48.98	79.1	5.86	143				
Surr: 2-Fluorobiphenyl	1,180		1,008		117	22.2	146				
Surr: Terphenyl-d14 (surr)	1,330		1,008		131	20.2	159				

Sample ID: 2308174-001AMSD	SampType: MSD			Units: µg/l	Kg-dry	Prep Da	te: 8/14/20	23	RunNo: 859	003	
Client ID: BATCH	Batch ID: 41191					Analysis Da	te: 8/14/20	23	SeqNo: 179	2822	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,150	20.2	2,017	62.03	104	48.9	121	2,071	3.97	30	
2-Methylnaphthalene	2,310	20.2	2,017	187.6	105	45.9	118	2,210	4.27	30	
1-Methylnaphthalene	2,260	20.2	2,017	160.3	104	48.5	121	2,159	4.59	30	
Acenaphthene	2,180	20.2	2,017	0	108	46	122	2,078	4.66	30	
Acenaphthylene	2,060	20.2	2,017	0	102	49.2	126	1,984	3.96	30	
Phenanthrene	2,290	20.2	2,017	174.7	105	40.5	126	2,176	5.23	30	
Fluorene	2,140	20.2	2,017	54.18	103	49	123	2,011	6.10	30	
Anthracene	2,110	20.2	2,017	14.12	104	46.3	124	2,011	4.58	30	
Fluoranthene	2,480	20.2	2,017	117.3	117	49.1	129	2,366	4.76	30	
Pyrene	2,380	40.3	2,017	131.1	111	48.8	130	2,273	4.50	30	
Benz(a)anthracene	2,440	20.2	2,017	67.67	118	53.9	130	2,319	5.14	30	
Chrysene	2,200	20.2	2,017	87.63	105	41.2	126	2,098	4.52	30	
Benzo(b)fluoranthene	2,320	25.2	2,017	0	115	37.2	132	2,205	4.87	30	
Benzo(k)fluoranthene	2,180	25.2	2,017	0	108	32.8	131	2,129	2.20	30	
Benzo(a)pyrene	2,420	30.2	2,017	85.49	116	28.8	145	2,370	2.12	30	
Indeno(1,2,3-cd)pyrene	1,710	40.3	2,017	29.21	83.6	3.36	151	1,831	6.59	30	
Dibenz(a,h)anthracene	1,740	50.4	2,017	0	86.3	6.99	152	1,827	4.86	30	
Benzo(g,h,i)perylene	1,480	50.4	2,017	48.98	71.2	5.86	143	1,644	10.2	30	
Surr: 2-Fluorobiphenyl	1,210		1,008		120	22.2	146		0		
Surr: Terphenyl-d14 (surr)	1,360		1,008		135	20.2	159		0		

Revision v2 Page 50 of 99


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

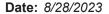
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: CCV-41251A	SampType: CCV			Units: %Rec		Prep Da	te: 8/21/2023	RunNo: 86059	
Client ID: CCV	Batch ID: R86059					Analysis Da	te: 8/21/2023	SeqNo: 1795760	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	1,220		1,000		122	14	136		
Surr: 2-Fluorobiphenyl	434		500.0		86.8	69.5	150		
Surr: Terphenyl-d14 (surr)	469		500.0		93.9	71.6	145		
Sample ID: MB-41251	SampType: MBLK			Units: μg/Kg		Prep Da	te: 8/21/2023	RunNo: 86059	
Client ID: MBLKS	Batch ID: 41251					Analysis Da	te: 8/21/2023	SeqNo: 1795761	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Naphthalene	ND	20.0							
2-Methylnaphthalene	ND	20.0							
1-Methylnaphthalene	ND	20.0							
Acenaphthene	ND	20.0							
Acenaphthylene	ND	20.0							
Phenanthrene	ND	20.0							
Fluorene	ND	20.0							
Anthracene	ND	20.0							
Fluoranthene	ND	20.0							
Pyrene	ND	40.0							
Benz(a)anthracene	ND	20.0							
Chrysene	ND	20.0							
Benzo(b)fluoranthene	ND	25.0							
Benzo(k)fluoranthene	ND	25.0							
Benzo(a)pyrene	ND	30.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	50.0							
Benzo(g,h,i)perylene	ND	50.0							
Surr: 2-Fluorobiphenyl	912		1,000		91.2	22.2	146		
Surr: Terphenyl-d14 (surr)	865		1,000		86.5	20.2	159		

Revision v2 Page 51 of 99

CLIENT: GeoEngineers

Project: S Jackson Street


QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-41251	SampType: LCS	·		Units: µg/Kg	·	Prep Da	te: 8/21/20 2	23	RunNo: 860)59	
Client ID: LCSS	Batch ID: 41251					Analysis Da	te: 8/21/20 2	23	SeqNo: 179	5762	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,750	20.0	2,000	0	87.7	59.3	114				
2-Methylnaphthalene	1,690	20.0	2,000	0	84.7	55.5	115				
1-Methylnaphthalene	1,700	20.0	2,000	0	84.8	57.2	116				
Acenaphthene	1,720	20.0	2,000	0	86.0	56.6	114				
Acenaphthylene	1,830	20.0	2,000	0	91.6	58.2	120				
Phenanthrene	1,660	20.0	2,000	0	83.0	53.2	118				
Fluorene	1,700	20.0	2,000	0	85.0	57.7	117				
Anthracene	1,670	20.0	2,000	0	83.3	54.7	118				
Fluoranthene	1,650	20.0	2,000	0	82.3	56	120				
Pyrene	1,680	40.0	2,000	0	84.1	56.9	120				
Benz(a)anthracene	1,610	20.0	2,000	0	80.5	59.5	123				
Chrysene	1,710	20.0	2,000	0	85.6	51.5	115				
Benzo(b)fluoranthene	1,640	25.0	2,000	0	81.9	50	122				
Benzo(k)fluoranthene	1,730	25.0	2,000	0	86.6	51	117				
Benzo(a)pyrene	1,850	30.0	2,000	0	92.4	53.2	123				
Indeno(1,2,3-cd)pyrene	1,610	40.0	2,000	0	80.7	49.5	122				
Dibenz(a,h)anthracene	1,620	50.0	2,000	0	81.0	51	120				
Benzo(g,h,i)perylene	1,630	50.0	2,000	0	81.5	46.8	122				
Surr: 2-Fluorobiphenyl	973		1,000		97.3	22.2	146				
Surr: Terphenyl-d14 (surr)	927		1,000		92.7	20.2	159				

Sample ID: 2308151-002AMS	SampType: MS			Units: µg/K	(g-dry	Prep Da	te: 8/21/2023		RunNo: 860)59	
Client ID: UST2-NSW-93	Batch ID: 41251					Analysis Da	te: 8/21/2023		SeqNo: 179	95764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	O Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,300	21.9	2,185	34.87	57.7	48.9	121				
2-Methylnaphthalene	1,220	21.9	2,185	48.24	53.4	45.9	118				
1-Methylnaphthalene	1,230	21.9	2,185	25.59	55.0	48.5	121				
Acenaphthene	1,240	21.9	2,185	0	56.7	46	122				
Acenaphthylene	1,260	21.9	2,185	0	57.8	49.2	126				
Phenanthrene	1,180	21.9	2,185	0	54.2	40.5	126				

Revision v2 Page 52 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2308151-002AMS	SampType: MS			Units: µg/h	(g-dry	Prep Da	te: 8/21/20	23	RunNo: 860)59	
Client ID: UST2-NSW-93	Batch ID: 41251					Analysis Da	te: 8/21/20	23	SeqNo: 179	95764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	1,220	21.9	2,185	0	55.9	49	123				
Anthracene	1,170	21.9	2,185	0	53.5	46.3	124				
Fluoranthene	1,150	21.9	2,185	0	52.9	49.1	129				
Pyrene	1,190	43.7	2,185	0	54.4	48.8	130				
Benz(a)anthracene	1,130	21.9	2,185	0	51.6	53.9	130				S
Chrysene	1,220	21.9	2,185	0	55.6	41.2	126				
Benzo(b)fluoranthene	1,180	27.3	2,185	0	53.9	37.2	132				
Benzo(k)fluoranthene	1,180	27.3	2,185	0	54.1	32.8	131				
Benzo(a)pyrene	1,300	32.8	2,185	0	59.6	28.8	145				
Indeno(1,2,3-cd)pyrene	1,150	43.7	2,185	0	52.8	3.36	151				
Dibenz(a,h)anthracene	1,140	54.6	2,185	0	52.2	6.99	152				
Benzo(g,h,i)perylene	1,140	54.6	2,185	0	52.1	5.86	143				
Surr: 2-Fluorobiphenyl	563		1,093		51.5	22.2	146				
Surr: Terphenyl-d14 (surr)	543		1,093		49.7	20.2	159				
NOTES:											

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2308151-002AMSD	SampType: MSD			Units: µg/k	(g-dry	Prep Da	te: 8/21/20	23	RunNo: 860)59	
Client ID: UST2-NSW-93	Batch ID: 41251					Analysis Da	te: 8/21/20	23	SeqNo: 179	95765	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,050	21.9	2,193	34.87	46.1	48.9	121	1,296	21.3	30	S
2-Methylnaphthalene	963	21.9	2,193	48.24	41.7	45.9	118	1,216	23.2	30	S
1-Methylnaphthalene	979	21.9	2,193	25.59	43.5	48.5	121	1,228	22.5	30	S
Acenaphthene	1,010	21.9	2,193	0	45.9	46	122	1,238	20.6	30	S
Acenaphthylene	1,010	21.9	2,193	0	45.9	49.2	126	1,262	22.5	30	S
Phenanthrene	965	21.9	2,193	0	44.0	40.5	126	1,185	20.5	30	
Fluorene	990	21.9	2,193	0	45.1	49	123	1,222	21.0	30	S
Anthracene	937	21.9	2,193	0	42.7	46.3	124	1,170	22.1	30	S
Fluoranthene	919	21.9	2,193	0	41.9	49.1	129	1,155	22.7	30	S
Pyrene	815	43.9	2,193	0	37.2	48.8	130	1,190	37.4	30	RS
Benz(a)anthracene	907	21.9	2,193	0	41.4	53.9	130	1,126	21.6	30	S

Revision v2 Page 53 of 99

Date: 8/28/2023

S Jackson Street

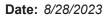
Work Order: 2308151

QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2308151-002AMSD	SampType: MSD			Units: μg/K	g-dry	Prep Da	te: 8/21/2 0)23	RunNo: 860)59	
Client ID: UST2-NSW-93	Batch ID: 41251					Analysis Da	te: 8/21/2 0)23	SeqNo: 179	95765	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	981	21.9	2,193	0	44.7	41.2	126	1,215	21.3	30	
Benzo(b)fluoranthene	850	27.4	2,193	0	38.7	37.2	132	1,177	32.3	30	R
Benzo(k)fluoranthene	894	27.4	2,193	0	40.8	32.8	131	1,182	27.7	30	
Benzo(a)pyrene	944	32.9	2,193	0	43.0	28.8	145	1,302	31.9	30	R
Indeno(1,2,3-cd)pyrene	1,020	43.9	2,193	0	46.3	3.36	151	1,153	12.7	30	
Dibenz(a,h)anthracene	1,000	54.8	2,193	0	45.7	6.99	152	1,142	13.0	30	
Benzo(g,h,i)perylene	996	54.8	2,193	0	45.4	5.86	143	1,138	13.3	30	
Surr: 2-Fluorobiphenyl	462		1,097		42.1	22.2	146		0		
Surr: Terphenyl-d14 (surr)	407		1,097		37.1	20.2	159		0		

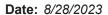

NOTES:

Project:

Revision v2 Page 54 of 99

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed.


QC SUMMARY REPORT

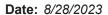
CLIENT: GeoEngineers

Polychlorinated Biphenyls (PCB) by EPA Method 8082

Sample ID: 1660-CCV-41176A	SampType: CCV			Units: mg/Kg		Pren Da	te: 8/10/2 0	123	RunNo: 858	392	
Client ID: CCV				Onits. Ing/Kg							
Client ID: CCV	Batch ID: 41176					Analysis Da			SeqNo: 179		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	0.967	0.0200	1.000	0	96.7	80	120				
Aroclor 1260	0.942	0.0200	1.000	0	94.2	80	120				
Surr: Decachlorobiphenyl	207		200.0		103	30.2	155				
Surr: Tetrachloro-m-xylene	191		200.0		95.3	58.8	143				
Sample ID: MB-41176	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/2 0)23	RunNo: 858	392	
Client ID: MBLKS	Batch ID: 41176					Analysis Da	te: 8/10/2 0)23	SeqNo: 179	32487	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.0200									
Aroclor 1221	ND	0.0200									
Aroclor 1232	ND	0.0200									
Aroclor 1242	ND	0.0200									
Aroclor 1248	ND	0.0200									
Aroclor 1254	ND	0.0200									
Aroclor 1260	ND	0.0200									
Aroclor 1262	ND	0.0200									
Aroclor 1268	ND	0.0200									
Total PCBs	ND	0.0200									
Surr: Decachlorobiphenyl	141		200.0		70.4	5	160				
Surr: Tetrachloro-m-xylene	231		200.0		115	57.3	159				
Sample ID: LCS-41176	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/10/2 0)23	RunNo: 858	392	
Client ID: LCSS	Batch ID: 41176					Analysis Da	te: 8/10/2 0)23	SeqNo: 179	92488	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	0.956	0.0200	1.000	0	95.6	67.1	142				
Aroclor 1260	0.883	0.0200	1.000	0	88.3	71	140				
Surr: Decachlorobiphenyl	108		200.0		54.0	5	160				
Surr: Tetrachloro-m-xylene	185		200.0		92.7	57.3	159				

Revision v2 Page 55 of 99

QC SUMMARY REPORT


CLIENT: GeoEngineers

Project: S. Jackson Street

Polychlorinated Biphenyls (PCB) by EPA Method 8082

Project: S Jackson S	511001										
Sample ID: 2308151-009AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 8/10/20	23	RunNo: 858	392	
Client ID: UST3-B-90	Batch ID: 41176					Analysis Date	e: 8/10/20	23	SeqNo: 179	2504	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	0.908	0.0221	1.105	0	82.2	64.1	141				
Aroclor 1260	0.757	0.0221	1.105	0	68.5	51.1	146				
Surr: Decachlorobiphenyl	85.2		221.0		38.6	5	160				
Surr: Tetrachloro-m-xylene	177		221.0		80.0	57.3	159				
Sample ID: 2308151-009AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 8/10/2 0	23	RunNo: 858	392	
Client ID: UST3-B-90	Batch ID: 41176					Analysis Date	e: 8/10/2 0	23	SeqNo: 179	2505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	0.870	0.0221	1.103	0	78.9	64.1	141	0.9085	4.27	30	
Aroclor 1260	0.712	0.0221	1.103	0	64.6	51.1	146	0.7572	6.14	30	
Surr: Decachlorobiphenyl	84.9		220.6		38.5	5	160		0		
Surr: Tetrachloro-m-xylene	161		220.6		72.8	57.3	159		0		
Sample ID: 1660-CCV-41197A	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/14/2 0	23	RunNo: 859	31	
Client ID: CCV	Batch ID: 41197					Analysis Date	e: 8/14/2 0	23	SeqNo: 179	3366	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	0.992	0.0200	1.000	0	99.2	80	120				
Aroclor 1260	0.928	0.0200	1.000	0	92.8	80	120				
Surr: Decachlorobiphenyl	97.9		200.0		48.9	30.2	155				
Surr: Tetrachloro-m-xylene	193		200.0		96.4	58.8	143				
Sample ID: MB-41197	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/14/2 0	23	RunNo: 859	31	
Client ID: MBLKS	Batch ID: 41197					Analysis Date	e: 8/14/20	23	SeqNo: 179	3367	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.0200									
Aroclor 1221	ND	0.0200									
Aroclor 1232	ND	0.0200									

Revision v2 Page 56 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Polychlorinated Biphenyls (PCB) by EPA Method 8082

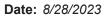
Sample ID: MB-41197	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 8/14/2 0)23	RunNo: 859	31	
Client ID: MBLKS	Batch ID: 41197					Analysis Dat	e: 8/14/2 0)23	SeqNo: 179	3367	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1242	ND	0.0200									
Aroclor 1248	ND	0.0200									
Aroclor 1254	ND	0.0200									
Aroclor 1260	ND	0.0200									
Aroclor 1262	ND	0.0200									
Aroclor 1268	ND	0.0200									
Total PCBs	ND	0.0200									
Surr: Decachlorobiphenyl	103		200.0		51.4	5	160				
Surr: Tetrachloro-m-xylene	204		200.0		102	57.3	159				
Sample ID: LCS-41197	SampType: LCS			Units: mg/Kg		Prep Dat	e: 8/14/2 0)23	RunNo: 859	31	
Client ID: LCSS	Batch ID: 41197					Analysis Dat	e: 8/14/2 0)23	SeqNo: 179	3368	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.08	0.0200	1.000	0	108	67.1	142				
Aroclor 1260	0.998	0.0200	1.000	0	99.8	71	140				
Surr: Decachlorobiphenyl	106		200.0		52.8	5	160				
Surr: Tetrachloro-m-xylene	205		200.0		103	57.3	159				
Sample ID: 2308151-006AMS	SampType: MS			Units: mg/Kg-	dry	Prep Dat	e: 8/14/2 0)23	RunNo: 859)31	
Client ID: UST3-NSW-93	Batch ID: 41197					Analysis Dat	e: 8/14/2 0)23	SeqNo: 179	3370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.36	0.0253	1.265	0	107	64.1	141				
Aroclor 1260	1.29	0.0253	1.265	0	102	51.1	146				
Surr: Decachlorobiphenyl	73.4		253.0		29.0	5	160				

Revision v2 Page 57 of 99

Date: 8/28/2023

Work Order: 2308151

QC SUMMARY REPORT


CLIENT: GeoEngineers
Project: S Jackson Street

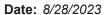
Polychlorinated Biphenyls (PCB) by EPA Method 8082

Sample ID: 2308151-006AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	8/14/202	23	RunNo: 859	931	
Client ID: UST3-NSW-93	Batch ID: 41197					Analysis Date:	8/14/202	23	SeqNo: 179	3371	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.38	0.0253	1.264	0	109	64.1	141	1.357	1.69	30	
Aroclor 1260	1.31	0.0253	1.264	0	104	51.1	146	1.288	1.69	30	
Surr: Decachlorobiphenyl	77.3		252.7		30.6	5	160		0		
Surr: Tetrachloro-m-xylene	167		252.7		66.0	57.3	159		0		
Sample ID: 1660-CCV-41197C	SampType: CCV			Units: mg/Kg		Prep Date:	8/15/202	23	RunNo: 859	931	
Client ID: CCV	Batch ID: 41197					Analysis Date:	8/15/202	23	SeqNo: 179	3444	

Sample ID: 1660-CCV-41197C	SampType: CCV			Units: mg/Kg		Prep Da	te: 8/15/20	23	RunNo: 859	31	
Client ID: CCV	Batch ID: 41197					Analysis Da	te: 8/15/20	23	SeqNo: 179	3444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.19	0.0200	1.000	0	119	80	120				
Aroclor 1260	1.17	0.0200	1.000	0	117	80	120				
Surr: Decachlorobiphenyl	127		200.0		63.3	30.2	155				
Surr: Tetrachloro-m-xylene	228		200.0		114	58.8	143				

Revision v2 Page 58 of 99

CLIENT: GeoEngineers


Project: S Jackson Street

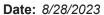
QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: 5 Jackson	Street							<u> </u>	
Sample ID: CCV-41166A	SampType: CCV			Units: mg/Kg		Prep Date	8/10/2023	RunNo: 85905	
Client ID: CCV	Batch ID: 41166					Analysis Date	8/10/2023	SeqNo: 1792909	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Gasoline Range Organics	442	5.00	500.0	0	88.4	80	120		
Surr: Toluene-d8	25.1		25.00		101	65	135		
Surr: 4-Bromofluorobenzene	24.8		25.00		99.2	65	135		
Sample ID: MB-41166	SampType: MBLK			Units: mg/Kg		Prep Date	: 8/10/2023	RunNo: 85905	
Client ID: MBLKS	Batch ID: 41166					Analysis Date	8/10/2023	SeqNo: 1792914	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Gasoline Range Organics	ND	5.00							
Surr: Toluene-d8	1.26		1.250		101	65	135		
Surr: 4-Bromofluorobenzene	1.25		1.250		99.8	65	135		
Sample ID: LCS-41178	SampType: LCS			Units: mg/Kg		Prep Date	8/10/2023	RunNo: 85880	
Client ID: LCSS	Batch ID: 41178					Analysis Date	8/10/2023	SeqNo: 1792151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Gasoline Range Organics	22.0	5.00	25.00	0	87.9	65	135		
Surr: Toluene-d8	1.25		1.250		99.7	65	135		
Surr: 4-Bromofluorobenzene	1.24		1.250		99.1	65	135		
Sample ID: CCV-41178A	SampType: CCV			Units: %Rec		Prep Date	: 8/10/2023	RunNo: 85880	
Client ID: CCV	Batch ID: R85880)				Analysis Date	8/10/2023	SeqNo: 1792148	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Surr: Toluene-d8	24.9		25.00		99.7	65	135		
Surr: 4-Bromofluorobenzene	24.8		25.00		99.1	65	135		

Revision v2 Page 59 of 99

CLIENT: GeoEngineers Project:


S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: S Jackson ?	Street									• •	
Sample ID: MB-41178	SampType: MBLK			Units: mg/Kg		Prep Date	8/10/202	3	RunNo: 858	380	
Client ID: MBLKS	Batch ID: 41178					Analysis Date	8/11/202	3	SeqNo: 179	92150	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	ND	5.00									
Surr: Toluene-d8	1.25		1.250		99.9	65	135				
Surr: 4-Bromofluorobenzene	1.24		1.250		99.0	65	135				
Sample ID: 2308159-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	8/10/202	3	RunNo: 858	380	
Client ID: BATCH	Batch ID: 41178					Analysis Date	8/11/202	3	SeqNo: 179	92138	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	ND	71.5						0		30	D
Surr: Toluene-d8	17.9		17.87		100	65	135		0		D
Surr: 4-Bromofluorobenzene	17.7		17.87		99.3	65	135		0		D
Sample ID: 2308159-002BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	8/10/202	3	RunNo: 858	380	
Client ID: BATCH	Batch ID: 41178					Analysis Date	8/11/202	3	SeqNo: 179	92141	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	555	66.1	330.5	149.1	123	65	135				D
Surr: Toluene-d8	16.4		16.52		99.3	65	135				D
Surr: 4-Bromofluorobenzene	16.2		16.52		97.8	65	135				D
Sample ID: CCV-41166C	SampType: CCV			Units: mg/Kg		Prep Date	8/12/202	3	RunNo: 859	905	
Client ID: CCV	Batch ID: 41166					Analysis Date	8/12/202	3	SeqNo: 179	92905	
	Dalcii ID. 41166							DDD D-61/-1	%RPD		Qua
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ret val	70KFD	RPDLimit	Qua
Analyte Gasoline Range Organics		RL 5.00	SPK value 500.0	SPK Ref Val	%REC 103	LowLimit F	HighLimit 1	RPD Ref val	70KFD	RPDLimit	Qua
	Result							RPD Ret Val	70KFD	RPDLimit	Que

Page 60 of 99 Revision v2

CLIENT: GeoEngineers Project:

S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

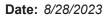
Project: S Jackson ?	Street									• •	
Sample ID: LCS-41166	SampType: LCS			Units: mg/Kg		Prep Date	: 8/10/2023		RunNo: 859	905	
Client ID: LCSS	Batch ID: 41166					Analysis Date	e: 8/12/2023		SeqNo: 179	92933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	25.8	5.00	25.00	0	103	65	135				
Surr: Toluene-d8	1.25		1.250		99.6	65	135				
Surr: 4-Bromofluorobenzene	1.21		1.250		96.9	65	135				
Sample ID: 2308044-014BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 8/10/2023		RunNo: 859	905	
Client ID: BATCH	Batch ID: 41166					Analysis Date	e: 8/12/2023		SeqNo: 179	92891	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	ND	5.57						0		30	
Surr: Toluene-d8	1.38		1.393		99.0	65	135		0		
Surr: 4-Bromofluorobenzene	1.36		1.393		98.0	65	135		0		
Sample ID: 2308044-023BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 8/10/2023		RunNo: 859	905	
Client ID: BATCH	Batch ID: 41166					Analysis Date	e: 8/12/2023		SeqNo: 179	2893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	ND	6.60						0		30	
Surr: Toluene-d8	1.65		1.651		100	65	135		0		
Surr: 4-Bromofluorobenzene	1.62		1.651		98.2	65	135		0		
Sample ID: 2308111-001BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 8/10/2023		RunNo: 859	905	
Client ID: BATCH	Batch ID: 41166					Analysis Date	e: 8/12/2023		SeqNo: 179	92895	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics	32.5	5.30	26.50	5.741	101	65	135				
Gasoline Range Organics Surr: Toluene-d8	32.5 1.32	5.30	26.50 1.325	5.741	101 99.5	65 65	135 135				

Page 61 of 99 Revision v2

Date: 8/28/2023

Work Order: 2308151

CLIENT: GeoEngineers

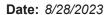

Project: S Jackson Street

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Sample ID: CCV-41166E	SampType: CCV	Units: mg/Kg				Prep Da	te: 8/14/2 0)23	RunNo: 859	005	
Client ID: CCV	Batch ID: 41166					Analysis Da	te: 8/14/2 0)23	SeqNo: 1793078		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics	459	5.00	500.0	0	91.9	80	120				
Surr: Toluene-d8	24.6		25.00		98.5	65	135				
Surr: 4-Bromofluorobenzene	24.2		25.00		96.7	65	135				

Revision v2 Page 62 of 99

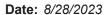

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178A	SampType: CCV			Units: µg/L	•			23	RunNo: 85876		
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/10/20	23	SeqNo: 179	92084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	20.6	0.0150	20.00	0	103	80	120				
Chloromethane	18.3	0.0500	20.00	0	91.4	80	120				
Vinyl chloride	19.0	0.0250	20.00	0	95.1	80	120				
Bromomethane	18.8	0.0250	20.00	0	93.9	80	120				
Trichlorofluoromethane (CFC-11)	20.5	0.0200	20.00	0	103	80	120				
Chloroethane	21.4	0.0750	20.00	0	107	80	120				
1,1-Dichloroethene	18.9	0.100	20.00	0	94.7	80	120				
Acetone	47.2	0.250	50.00	0	94.4	80	120				
Methylene chloride	19.0	0.0350	20.00	0	95.0	80	120				
trans-1,2-Dichloroethene	19.5	0.0100	20.00	0	97.5	80	120				
Methyl tert-butyl ether (MTBE)	19.9	0.0200	20.00	0	99.3	80	120				
1,1-Dichloroethane	19.3	0.0250	20.00	0	96.3	80	120				
cis-1,2-Dichloroethene	19.3	0.0150	20.00	0	96.6	80	120				
(MEK) 2-Butanone	48.0	0.300	50.00	0	96.0	80	120				
Chloroform	20.3	0.0175	20.00	0	101	80	120				
1,1,1-Trichloroethane (TCA)	20.1	0.0200	20.00	0	101	80	120				
1,1-Dichloropropene	19.7	0.0200	20.00	0	98.6	80	120				
Carbon tetrachloride	20.7	0.0250	20.00	0	104	80	120				
1,2-Dichloroethane (EDC)	20.0	0.0200	20.00	0	99.9	80	120				
Benzene	19.4	0.0175	20.00	0	97.1	80	120				
Trichloroethene (TCE)	19.0	0.0150	20.00	0	95.0	80	120				
1,2-Dichloropropane	19.8	0.0250	20.00	0	99.1	80	120				
Bromodichloromethane	19.9	0.0250	20.00	0	99.4	80	120				
Dibromomethane	20.0	0.0125	20.00	0	100	80	120				
cis-1,3-Dichloropropene	19.7	0.0150	20.00	0	98.6	80	120				
Toluene	20.7	0.0300	20.00	0	103	80	120				
Trans-1,3-Dichloropropylene	19.7	0.0200	20.00	0	98.6	80	120				
Methyl Isobutyl Ketone (MIBK)	51.8	0.0600	50.00	0	104	80	120				
1,1,2-Trichloroethane	19.8	0.0125	20.00	0	98.8	80	120				
1,3-Dichloropropane	19.7	0.0100	20.00	0	98.4	80	120				
Tetrachloroethene (PCE)	20.3	0.0150	20.00	0	101	80	120				
Dibromochloromethane	19.8	0.0150	20.00	0	98.8	80	120				

Revision v2 Page 63 of 99


QC SUMMARY REPORT

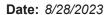
CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178A	SampType: CCV			Units: µg/L	,)23	RunNo: 85	376	
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/10/2 0)23	SeqNo: 179	92084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	21.0	0.0100	20.00	0	105	80	120				
2-Hexanone (MBK)	46.4	0.0625	50.00	0	92.7	80	120				
Chlorobenzene	19.7	0.0150	20.00	0	98.4	80	120				
1,1,1,2-Tetrachloroethane	20.9	0.0250	20.00	0	104	80	120				
Ethylbenzene	19.6	0.0250	20.00	0	97.8	80	120				
m,p-Xylene	41.7	0.0500	40.00	0	104	80	120				
o-Xylene	20.4	0.0250	20.00	0	102	80	120				
Styrene	19.8	0.0100	20.00	0	99.0	80	120				
Isopropylbenzene	21.2	0.0150	20.00	0	106	80	120				
Bromoform	20.9	0.0150	20.00	0	104	80	120				
1,1,2,2-Tetrachloroethane	20.7	0.200	20.00	0	104	80	120				
n-Propylbenzene	21.0	0.0150	20.00	0	105	80	120				
Bromobenzene	19.8	0.0125	20.00	0	99.2	80	120				
1,3,5-Trimethylbenzene	19.4	0.0150	20.00	0	96.8	80	120				
2-Chlorotoluene	19.0	0.0165	20.00	0	95.1	80	120				
4-Chlorotoluene	20.6	0.0165	20.00	0	103	80	120				
tert-Butylbenzene	19.8	0.0150	20.00	0	99.0	80	120				
1,2,3-Trichloropropane	20.1	0.0300	20.00	0	100	80	120				
1,2,4-Trichlorobenzene	20.5	0.0600	20.00	0	102	80	120				
sec-Butylbenzene	21.0	0.150	20.00	0	105	80	120				
4-Isopropyltoluene	20.7	0.200	20.00	0	104	80	120				
1,3-Dichlorobenzene	19.2	0.0200	20.00	0	95.9	80	120				
1,4-Dichlorobenzene	20.9	0.0150	20.00	0	104	80	120				
n-Butylbenzene	20.8	0.0200	20.00	0	104	80	120				
1,2-Dichlorobenzene	19.7	0.0200	20.00	0	98.3	80	120				
1,2-Dibromo-3-chloropropane	19.9	0.0300	20.00	0	99.5	80	120				
1,2,4-Trimethylbenzene	20.6	0.0150	20.00	0	103	80	120				
Hexachloro-1,3-butadiene	19.6	0.0400	20.00	0	98.0	80	120				
Naphthalene	19.7	0.100	20.00	0	98.6	80	120				
1,2,3-Trichlorobenzene	19.8	0.0600	20.00	0	99.1	80	120				
Surr: Dibromofluoromethane	25.0		25.00		99.8	80	120				
Surr: Toluene-d8	25.0		25.00		100	80	120				

Revision v2 Page 64 of 99

QC SUMMARY REPORT

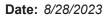

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178A	SampType: CCV			Units: µg/L		Prep Da	te: 8/10/20	23	RunNo: 858	376	
Client ID: CCV	Batch ID: 41178					Analysis Da	ite: 8/10/20	23	SeqNo: 179	2084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Bromo-4-fluorobenzene	24.4		25.00		97.5	80	120				

Sample ID: LCS-41178	SampType: LCS			Units: µg/L	. •			23	RunNo: 858	376	
Client ID: LCSS	Batch ID: 41178					Analysis Da	te: 8/10/20	23	SeqNo: 179	2085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.03	0.0150	1.000	0	103	80	120				
Chloromethane	0.914	0.0500	1.000	0	91.4	80	120				
Vinyl chloride	0.951	0.0250	1.000	0	95.1	80	120				
Bromomethane	0.939	0.0250	1.000	0	93.9	80	120				
Trichlorofluoromethane (CFC-11)	1.03	0.0200	1.000	0	103	80	120				
Chloroethane	1.07	0.0750	1.000	0	107	80	120				
1,1-Dichloroethene	0.947	0.100	1.000	0	94.7	80	120				
Acetone	2.36	0.250	2.500	0	94.4	80	120				
Methylene chloride	0.950	0.0350	1.000	0	95.0	80	120				
trans-1,2-Dichloroethene	0.975	0.0100	1.000	0	97.5	80	120				
Methyl tert-butyl ether (MTBE)	0.993	0.0200	1.000	0	99.3	80	120				
1,1-Dichloroethane	0.963	0.0250	1.000	0	96.3	80	120				
cis-1,2-Dichloroethene	0.966	0.0150	1.000	0	96.6	80	120				
(MEK) 2-Butanone	2.40	0.300	2.500	0	96.0	80	120				
Chloroform	1.01	0.0175	1.000	0	101	80	120				
1,1,1-Trichloroethane (TCA)	1.01	0.0200	1.000	0	101	80	120				
1,1-Dichloropropene	0.986	0.0200	1.000	0	98.6	80	120				
Carbon tetrachloride	1.04	0.0250	1.000	0	104	80	120				
1,2-Dichloroethane (EDC)	0.999	0.0200	1.000	0	99.9	80	120				
Benzene	0.971	0.0175	1.000	0	97.1	80	120				
Trichloroethene (TCE)	0.950	0.0150	1.000	0	95.0	80	120				
1,2-Dichloropropane	0.991	0.0250	1.000	0	99.1	80	120				
Bromodichloromethane	0.994	0.0250	1.000	0	99.4	80	120				
Dibromomethane	1.00	0.0125	1.000	0	100	80	120				
cis-1,3-Dichloropropene	0.986	0.0150	1.000	0	98.6	80	120				

Revision v2 Page 65 of 99

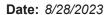

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-41178	SampType: LCS			Units: µg/L		Prep Da	te: 8/10/20	23	RunNo: 858	376	
Client ID: LCSS	Batch ID: 41178					Analysis Da	te: 8/10/2 0	23	SeqNo: 179	2085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.03	0.0300	1.000	0	103	80	120				
Trans-1,3-Dichloropropylene	0.986	0.0200	1.000	0	98.6	80	120				
Methyl Isobutyl Ketone (MIBK)	2.59	0.0600	2.500	0	104	80	120				
1,1,2-Trichloroethane	0.988	0.0125	1.000	0	98.8	80	120				
1,3-Dichloropropane	0.984	0.0100	1.000	0	98.4	80	120				
Tetrachloroethene (PCE)	1.01	0.0150	1.000	0	101	80	120				
Dibromochloromethane	0.988	0.0150	1.000	0	98.8	80	120				
1,2-Dibromoethane (EDB)	1.05	0.0100	1.000	0	105	80	120				
2-Hexanone (MBK)	2.32	0.0625	2.500	0	92.7	80	120				
Chlorobenzene	0.984	0.0150	1.000	0	98.4	80	120				
1,1,1,2-Tetrachloroethane	1.04	0.0250	1.000	0	104	80	120				
Ethylbenzene	0.978	0.0250	1.000	0	97.8	80	120				
m,p-Xylene	2.09	0.0500	2.000	0	104	80	120				
o-Xylene	1.02	0.0250	1.000	0	102	80	120				
Styrene	0.990	0.0100	1.000	0	99.0	80	120				
Isopropylbenzene	1.06	0.0150	1.000	0	106	80	120				
Bromoform	1.04	0.0150	1.000	0	104	80	120				
1,1,2,2-Tetrachloroethane	1.04	0.200	1.000	0	104	80	120				
n-Propylbenzene	1.05	0.0150	1.000	0	105	80	120				
Bromobenzene	0.992	0.0125	1.000	0	99.2	80	120				
1,3,5-Trimethylbenzene	0.968	0.0150	1.000	0	96.8	80	120				
2-Chlorotoluene	0.951	0.0165	1.000	0	95.1	80	120				
4-Chlorotoluene	1.03	0.0165	1.000	0	103	80	120				
tert-Butylbenzene	0.990	0.0150	1.000	0	99.0	80	120				
1,2,3-Trichloropropane	1.00	0.0300	1.000	0	100	80	120				
1,2,4-Trichlorobenzene	1.02	0.0600	1.000	0	102	80	120				
sec-Butylbenzene	1.05	0.150	1.000	0	105	80	120				
4-Isopropyltoluene	1.04	0.200	1.000	0	104	80	120				
1,3-Dichlorobenzene	0.959	0.0200	1.000	0	95.9	80	120				
1,4-Dichlorobenzene	1.04	0.0150	1.000	0	104	80	120				
n-Butylbenzene	1.04	0.0200	1.000	0	104	80	120				
1,2-Dichlorobenzene	0.983	0.0200	1.000	0	98.3	80	120				

Revision v2 Page 66 of 99

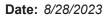

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-41178	SampType: LCS			Units: µg/L		Prep Da	te: 8/10/2 0)23	RunNo: 858	876	
Client ID: LCSS	Batch ID: 41178					Analysis Da	te: 8/10/2 0)23	SeqNo: 179	92085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	0.995	0.0300	1.000	0	99.5	80	120				
1,2,4-Trimethylbenzene	1.03	0.0150	1.000	0	103	80	120				
Hexachloro-1,3-butadiene	0.980	0.0400	1.000	0	98.0	80	120				
Naphthalene	0.986	0.100	1.000	0	98.6	80	120				
1,2,3-Trichlorobenzene	0.991	0.0600	1.000	0	99.1	80	120				
Surr: Dibromofluoromethane	1.25		1.250		99.8	79.5	124				
Surr: Toluene-d8	1.25		1.250		100	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.22		1.250		97.5	60.5	139				
Sample ID: MB-41178	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/2 ()23	RunNo: 858	876	
Client ID: MBLKS	Batch ID: 41178					Analysis Da	te: 8/11/2 0)23	SeqNo: 17 9	92083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0150									
Chloromethane	ND	0.0500									
Vinyl chloride	ND	0.0250									
Bromomethane	ND	0.0250									
Trichlorofluoromethane (CFC-11)	ND	0.0200									
Chloroethane	ND	0.0750									
1,1-Dichloroethene	ND	0.100									
Acetone	ND	0.250									
Methylene chloride	ND	0.0350									
trans-1,2-Dichloroethene	ND	0.0100									
Methyl tert-butyl ether (MTBE)	ND	0.0200									
1,1-Dichloroethane	ND	0.0250									
cis-1,2-Dichloroethene	ND	0.0150									
(MEK) 2-Butanone	ND	0.300									
Chloroform	ND	0.0175									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0250									

Revision v2 Page 67 of 99


QC SUMMARY REPORT

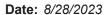
CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: MB-41178	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/2 0	123	RunNo: 858	76	·
Client ID: MBLKS	Batch ID: 41178					Analysis Da	te: 8/11/2 0	123	SeqNo: 179	2083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	ND	0.0200									
Benzene	ND	0.0175									
Trichloroethene (TCE)	ND	0.0150									
1,2-Dichloropropane	ND	0.0250									
Bromodichloromethane	ND	0.0250									
Dibromomethane	ND	0.0125									
cis-1,3-Dichloropropene	ND	0.0150									
Toluene	ND	0.0300									
Trans-1,3-Dichloropropylene	ND	0.0200									
Methyl Isobutyl Ketone (MIBK)	ND	0.0600									
1,1,2-Trichloroethane	ND	0.0125									
1,3-Dichloropropane	ND	0.0100									
Tetrachloroethene (PCE)	ND	0.0150									
Dibromochloromethane	ND	0.0150									
1,2-Dibromoethane (EDB)	ND	0.0100									
2-Hexanone (MBK)	ND	0.0625									
Chlorobenzene	ND	0.0150									
1,1,1,2-Tetrachloroethane	ND	0.0250									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Styrene	ND	0.0100									
Isopropylbenzene	ND	0.0150									
Bromoform	ND	0.0150									
1,1,2,2-Tetrachloroethane	ND	0.200									
n-Propylbenzene	ND	0.0150									
Bromobenzene	ND	0.0125									
1,3,5-Trimethylbenzene	ND	0.0150									
2-Chlorotoluene	ND	0.0165									
4-Chlorotoluene	ND	0.0165									
tert-Butylbenzene	ND	0.0150									
1,2,3-Trichloropropane	ND	0.0300									

Revision v2 Page 68 of 99

QC SUMMARY REPORT

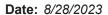

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: MB-41178	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/20	8/10/2023 RunNo: 85876			
Client ID: MBLKS	Batch ID: 41178					Analysis Da	te: 8/11/2 0	023	SeqNo: 179	92083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	0.0600									
sec-Butylbenzene	ND	0.150									
4-Isopropyltoluene	ND	0.200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0150									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0150									
Hexachloro-1,3-butadiene	ND	0.0400									
Naphthalene	ND	0.100									
1,2,3-Trichlorobenzene	ND	0.0600									
Surr: Dibromofluoromethane	1.20		1.250		96.2	79.5	124				
Surr: Toluene-d8	1.23		1.250		98.1	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.23		1.250		98.8	60.5	139				

Sample ID: 2308159-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 8/10/2 0)23	RunNo: 858	376	•
Client ID: BATCH	Batch ID: 41178					Analysis Dat	e: 8/11/2 0)23	SeqNo: 179	92082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.214						0		30	D
Chloromethane	ND	0.715						0		30	D
Vinyl chloride	ND	0.357						0		30	D
Bromomethane	ND	0.357						0		30	D
Trichlorofluoromethane (CFC-11)	ND	0.286						0		30	D
Chloroethane	ND	1.07						0		30	D
1,1-Dichloroethene	ND	1.43						0		30	D
Acetone	ND	3.57						0		30	D
Methylene chloride	ND	0.500						0		30	D
trans-1,2-Dichloroethene	ND	0.143						0		30	D
Methyl tert-butyl ether (MTBE)	ND	0.286						0		30	D

Revision v2 Page 69 of 99


QC SUMMARY REPORT

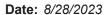
CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308159-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	ite: 8/10/20	23	RunNo: 858	376	
Client ID: BATCH	Batch ID: 41178					Analysis Da	ite: 8/11/20	23	SeqNo: 179	2082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	ND	0.357						0		30	D
cis-1,2-Dichloroethene	ND	0.214						0		30	D
(MEK) 2-Butanone	ND	4.29						0		30	D
Chloroform	ND	0.250						0		30	D
1,1,1-Trichloroethane (TCA)	ND	0.286						0		30	D
1,1-Dichloropropene	ND	0.286						0		30	D
Carbon tetrachloride	ND	0.357						0		30	D
1,2-Dichloroethane (EDC)	ND	0.286						0		30	D
Benzene	ND	0.250						0		30	D
Trichloroethene (TCE)	ND	0.214						0		30	D
1,2-Dichloropropane	ND	0.357						0		30	D
Bromodichloromethane	ND	0.357						0		30	D
Dibromomethane	ND	0.179						0		30	D
cis-1,3-Dichloropropene	ND	0.214						0		30	D
Toluene	ND	0.429						0		30	D
Trans-1,3-Dichloropropylene	ND	0.286						0		30	D
Methyl Isobutyl Ketone (MIBK)	ND	0.858						0		30	D
1,1,2-Trichloroethane	ND	0.179						0		30	D
1,3-Dichloropropane	ND	0.143						0		30	D
Tetrachloroethene (PCE)	ND	0.214						0		30	D
Dibromochloromethane	ND	0.214						0		30	D
1,2-Dibromoethane (EDB)	ND	0.143						0		30	D
2-Hexanone (MBK)	ND	0.893						0		30	D
Chlorobenzene	ND	0.214						0		30	D
1,1,1,2-Tetrachloroethane	ND	0.357						0		30	D
Ethylbenzene	ND	0.357						0		30	D
m,p-Xylene	ND	0.715						0		30	D
o-Xylene	ND	0.357						0		30	D
Styrene	ND	0.143						0		30	D
Isopropylbenzene	ND	0.214						0		30	D
Bromoform	ND	0.214						0		30	D
1,1,2,2-Tetrachloroethane	ND	2.86						0		30	D

Revision v2 Page 70 of 99

QC SUMMARY REPORT

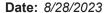

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308159-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 8/10/20	23	RunNo: 85	876	
Client ID: BATCH	Batch ID: 41178					Analysis Da	te: 8/11/20	23	SeqNo: 17	92082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Propylbenzene	ND	0.214						0		30	D
Bromobenzene	ND	0.179						0		30	D
1,3,5-Trimethylbenzene	ND	0.214						0		30	D
2-Chlorotoluene	ND	0.236						0		30	D
4-Chlorotoluene	ND	0.236						0		30	D
tert-Butylbenzene	ND	0.214						0		30	D
1,2,3-Trichloropropane	ND	0.429						0		30	D
1,2,4-Trichlorobenzene	ND	0.858						0		30	D
sec-Butylbenzene	ND	2.14						0		30	D
4-Isopropyltoluene	ND	2.86						0		30	D
1,3-Dichlorobenzene	ND	0.286						0		30	D
1,4-Dichlorobenzene	ND	0.214						0		30	D
n-Butylbenzene	ND	0.286						0		30	D
1,2-Dichlorobenzene	ND	0.286						0		30	D
1,2-Dibromo-3-chloropropane	ND	0.429						0		30	D
1,2,4-Trimethylbenzene	ND	0.214						0		30	D
Hexachloro-1,3-butadiene	ND	0.572						0		30	D
Naphthalene	ND	1.43						0		30	D
1,2,3-Trichlorobenzene	ND	0.858						0		30	D
Surr: Dibromofluoromethane	18.4		17.87		103	79.5	124		0		D
Surr: Toluene-d8	17.6		17.87		98.3	77.5	124		0		D
Surr: 1-Bromo-4-fluorobenzene	17.7		17.87		99.1	60.5	139		0		D
Sample ID: 2308139-002BMS	SampType: MS			Units: ma/	Ka-dry	Prep Da	te: 8/10/20	22	RunNo: 85	976	

Sample ID: 2308139-002BMS	SampType: MS		Units: mg/k	nits: mg/Kg-dry Prep Date: 8/10/2023					RunNo: 85876		
Client ID: BATCH	Batch ID: 41178					Analysis Da	te: 8/11/20	23	SeqNo: 179	2079	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.35	0.0140	0.9358	0	144	5	160				
Chloromethane	1.06	0.0468	0.9358	0	113	17.7	160				
Vinyl chloride	1.20	0.0234	0.9358	0	128	21.7	160				
Bromomethane	1.19	0.0234	0.9358	0	128	20	160				

Revision v2 Page 71 of 99


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

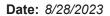
Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308139-002BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 8/10/2023	RunNo: 85876
Client ID: BATCH	Batch ID: 41178					Analysis Da	te: 8/11/2023	SeqNo: 1792079
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	ıl %RPD RPDLimit Qual
Trichlorofluoromethane (CFC-11)	1.12	0.0187	0.9358	0	120	5	160	
Chloroethane	1.59	0.0702	0.9358	0	170	5	160	S
1,1-Dichloroethene	0.952	0.0936	0.9358	0	102	21.7	160	
Acetone	3.44	0.234	2.339	0	147	20.7	160	
Methylene chloride	1.02	0.0328	0.9358	0.02662	106	46.7	154	
trans-1,2-Dichloroethene	0.954	0.00936	0.9358	0	102	41.9	160	
Methyl tert-butyl ether (MTBE)	0.941	0.0187	0.9358	0	101	70.3	138	
1,1-Dichloroethane	0.927	0.0234	0.9358	0	99.0	45.4	160	
cis-1,2-Dichloroethene	0.917	0.0140	0.9358	0	98.0	52.6	151	
(MEK) 2-Butanone	2.99	0.281	2.339	0	128	44.3	160	
Chloroform	0.969	0.0164	0.9358	0	104	52.7	148	
1,1,1-Trichloroethane (TCA)	0.947	0.0187	0.9358	0	101	39.7	160	
1,1-Dichloropropene	0.950	0.0187	0.9358	0	102	40.1	160	
Carbon tetrachloride	1.01	0.0234	0.9358	0	108	34.2	160	
1,2-Dichloroethane (EDC)	0.936	0.0187	0.9358	0	100	64.6	137	
Benzene	0.913	0.0164	0.9358	0	97.6	52.3	147	
Trichloroethene (TCE)	0.916	0.0140	0.9358	0	97.9	43.1	160	
1,2-Dichloropropane	0.933	0.0234	0.9358	0	99.7	59.5	142	
Bromodichloromethane	0.935	0.0234	0.9358	0	99.9	61.4	146	
Dibromomethane	0.919	0.0117	0.9358	0	98.2	72.4	140	
cis-1,3-Dichloropropene	0.917	0.0140	0.9358	0	98.0	59.6	136	
Toluene	0.964	0.0281	0.9358	0	103	50.1	147	
Trans-1,3-Dichloropropylene	0.916	0.0187	0.9358	0	97.9	59.3	139	
Methyl Isobutyl Ketone (MIBK)	2.44	0.0561	2.339	0	104	48	160	
1,1,2-Trichloroethane	0.916	0.0117	0.9358	0	97.9	70.4	140	
1,3-Dichloropropane	0.899	0.00936	0.9358	0	96.0	69.2	140	
Tetrachloroethene (PCE)	0.982	0.0140	0.9358	0	105	44.6	160	
Dibromochloromethane	0.912	0.0140	0.9358	0	97.5	64.7	141	
1,2-Dibromoethane (EDB)	0.958	0.00936	0.9358	0	102	70.4	143	
2-Hexanone (MBK)	3.01	0.0585	2.339	0	129	33	160	
Chlorobenzene	0.931	0.0140	0.9358	0	99.4	59.6	134	
1,1,1,2-Tetrachloroethane	0.966	0.0234	0.9358	0	103	58	141	

Revision v2 Page 72 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

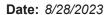

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308139-002BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 8/10/20	23	RunNo: 85876		
Client ID: BATCH	Batch ID: 41178					Analysis Da	te: 8/11/20	23	SeqNo: 17 9	92079	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	0.947	0.0234	0.9358	0.02173	98.9	51.7	143				
m,p-Xylene	2.10	0.0468	1.872	0.1113	106	54.5	144				
o-Xylene	0.955	0.0234	0.9358	0	102	57.1	141				
Styrene	0.928	0.00936	0.9358	0	99.2	63.4	135				
Isopropylbenzene	1.00	0.0140	0.9358	0	107	47.8	152				
Bromoform	0.988	0.0140	0.9358	0	106	70.1	134				
1,1,2,2-Tetrachloroethane	0.919	0.187	0.9358	0	98.2	43.2	157				
n-Propylbenzene	1.02	0.0140	0.9358	0.01500	108	47.5	152				
Bromobenzene	0.916	0.0117	0.9358	0	97.8	66.9	133				
1,3,5-Trimethylbenzene	0.957	0.0140	0.9358	0.03813	98.2	51.5	146				
2-Chlorotoluene	0.912	0.0154	0.9358	0	97.5	54.5	137				
4-Chlorotoluene	0.975	0.0154	0.9358	0	104	56.5	138				
tert-Butylbenzene	0.926	0.0140	0.9358	0	99.0	41.8	152				
1,2,3-Trichloropropane	0.887	0.0281	0.9358	0	94.8	64.3	132				
1,2,4-Trichlorobenzene	0.940	0.0561	0.9358	0	100	58.1	135				
sec-Butylbenzene	1.00	0.140	0.9358	0	107	44.2	155				
4-Isopropyltoluene	0.999	0.187	0.9358	0	107	46	156				
1,3-Dichlorobenzene	0.924	0.0187	0.9358	0	98.8	62.6	132				
1,4-Dichlorobenzene	0.984	0.0140	0.9358	0	105	62.7	125				
n-Butylbenzene	1.04	0.0187	0.9358	0	111	43.4	155				
1,2-Dichlorobenzene	0.934	0.0187	0.9358	0	99.8	67.9	128				
1,2-Dibromo-3-chloropropane	0.874	0.0281	0.9358	0	93.4	61.9	135				
1,2,4-Trimethylbenzene	1.13	0.0140	0.9358	0.1440	105	55.5	144				
Hexachloro-1,3-butadiene	0.991	0.0374	0.9358	0	106	38.7	158				
Naphthalene	0.883	0.0936	0.9358	0	94.4	56.6	148				
1,2,3-Trichlorobenzene	0.899	0.0561	0.9358	0	96.1	58.1	142				
Surr: Dibromofluoromethane	1.19		1.170		101	79.5	124				
Surr: Toluene-d8	1.17		1.170		100	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.13		1.170		96.3	60.5	139				
NOTES:											

NOTES

Revision v2 Page 73 of 99

S - Outlying spike recoveries were associated with this sample.

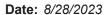

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41166A	SampType: CCV			Units: µg/L		Prep Da	te: 8/12/20	23	RunNo: 858	399	
Client ID: CCV	Batch ID: 41166					Analysis Da	te: 8/12/20	23	SeqNo: 179	92692	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	18.4	0.0150	20.00	0	91.8	80	120				
Chloromethane	18.1	0.0500	20.00	0	90.5	80	120				
Vinyl chloride	18.1	0.0250	20.00	0	90.7	80	120				
Bromomethane	19.4	0.0250	20.00	0	97.0	80	120				
Trichlorofluoromethane (CFC-11)	21.2	0.0200	20.00	0	106	80	120				
Chloroethane	19.6	0.0750	20.00	0	97.8	80	120				
1,1-Dichloroethene	18.5	0.100	20.00	0	92.5	80	120				
Acetone	55.1	0.250	50.00	0	110	80	120				
Methylene chloride	18.7	0.0350	20.00	0	93.4	80	120				
trans-1,2-Dichloroethene	19.2	0.0100	20.00	0	96.0	80	120				
Methyl tert-butyl ether (MTBE)	19.0	0.0200	20.00	0	95.0	80	120				
1,1-Dichloroethane	19.3	0.0250	20.00	0	96.3	80	120				
cis-1,2-Dichloroethene	19.1	0.0150	20.00	0	95.3	80	120				
(MEK) 2-Butanone	51.0	0.300	50.00	0	102	80	120				
Chloroform	20.0	0.0175	20.00	0	100	80	120				
1,1,1-Trichloroethane (TCA)	19.1	0.0200	20.00	0	95.7	80	120				
1,1-Dichloropropene	19.4	0.0200	20.00	0	97.2	80	120				
Carbon tetrachloride	19.4	0.0250	20.00	0	97.1	80	120				
1,2-Dichloroethane (EDC)	19.9	0.0200	20.00	0	99.5	80	120				
Benzene	19.2	0.0175	20.00	0	96.0	80	120				
Trichloroethene (TCE)	19.9	0.0150	20.00	0	99.6	80	120				
1,2-Dichloropropane	19.6	0.0250	20.00	0	97.9	80	120				
Bromodichloromethane	19.2	0.0250	20.00	0	95.9	80	120				
Dibromomethane	19.9	0.0125	20.00	0	99.5	80	120				
cis-1,3-Dichloropropene	18.7	0.0150	20.00	0	93.3	80	120				
Toluene	20.1	0.0300	20.00	0	100	80	120				
Trans-1,3-Dichloropropylene	18.7	0.0200	20.00	0	93.3	80	120				
Methyl Isobutyl Ketone (MIBK)	51.7	0.0600	50.00	0	103	80	120				
1,1,2-Trichloroethane	19.7	0.0125	20.00	0	98.3	80	120				
1,3-Dichloropropane	19.6	0.0100	20.00	0	98.1	80	120				
Tetrachloroethene (PCE)	19.6	0.0150	20.00	0	98.0	80	120				
Dibromochloromethane	18.9	0.0150	20.00	0	94.4	80	120				

Revision v2 Page 74 of 99


QC SUMMARY REPORT

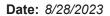
CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41166A	SampType: CCV			Units: µg/L		Prep Da	te: 8/12/20	123	RunNo: 858	399	·
Client ID: CCV	Batch ID: 41166					Analysis Da	te: 8/12/20	23	SeqNo: 179	92692	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	20.7	0.0100	20.00	0	103	80	120				
2-Hexanone (MBK)	49.5	0.0625	50.00	0	99.0	80	120				
Chlorobenzene	19.1	0.0150	20.00	0	95.3	80	120				
1,1,1,2-Tetrachloroethane	20.1	0.0250	20.00	0	101	80	120				
Ethylbenzene	19.0	0.0250	20.00	0	94.9	80	120				
m,p-Xylene	40.2	0.0500	40.00	0	101	80	120				
o-Xylene	19.7	0.0250	20.00	0	98.6	80	120				
Styrene	19.2	0.0100	20.00	0	96.0	80	120				
Isopropylbenzene	20.3	0.0150	20.00	0	102	80	120				
Bromoform	19.4	0.0150	20.00	0	96.9	80	120				
1,1,2,2-Tetrachloroethane	18.7	0.200	20.00	0	93.4	80	120				
n-Propylbenzene	20.1	0.0150	20.00	0	101	80	120				
Bromobenzene	19.3	0.0125	20.00	0	96.3	80	120				
1,3,5-Trimethylbenzene	18.5	0.0150	20.00	0	92.5	80	120				
2-Chlorotoluene	18.4	0.0165	20.00	0	91.9	80	120				
4-Chlorotoluene	19.8	0.0165	20.00	0	98.9	80	120				
tert-Butylbenzene	19.0	0.0150	20.00	0	94.9	80	120				
1,2,3-Trichloropropane	19.2	0.0300	20.00	0	95.8	80	120				
1,2,4-Trichlorobenzene	20.5	0.0600	20.00	0	103	80	120				
sec-Butylbenzene	20.1	0.150	20.00	0	101	80	120				
4-Isopropyltoluene	19.9	0.200	20.00	0	99.4	80	120				
1,3-Dichlorobenzene	18.7	0.0200	20.00	0	93.6	80	120				
1,4-Dichlorobenzene	20.6	0.0150	20.00	0	103	80	120				
n-Butylbenzene	20.0	0.0200	20.00	0	100	80	120				
1,2-Dichlorobenzene	19.2	0.0200	20.00	0	95.9	80	120				
1,2-Dibromo-3-chloropropane	18.5	0.0300	20.00	0	92.3	80	120				
1,2,4-Trimethylbenzene	19.9	0.0150	20.00	0	99.4	80	120				
Hexachloro-1,3-butadiene	18.9	0.0400	20.00	0	94.5	80	120				
Naphthalene	20.4	0.100	20.00	0	102	80	120				
1,2,3-Trichlorobenzene	20.0	0.0600	20.00	0	99.9	80	120				
Surr: Dibromofluoromethane	25.1		25.00		100	80	120				
Surr: Toluene-d8	25.3		25.00		101	80	120				
Surr: Toluene-d8	25.3		25.00		101	80	120				

Revision v2 Page 75 of 99

QC SUMMARY REPORT


CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

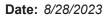
Sample ID: CCV-41166A	SampType: CCV			Units: µg/L		Prep Da	te: 8/12/20	23	RunNo: 858	399	
Client ID: CCV	Batch ID: 41166					Analysis Da	te: 8/12/20	23	SeqNo: 179	2692	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Bromo-4-fluorobenzene	24.0		25.00		96.1	80	120				

Sample ID: LCS-41166	SampType: LCS			Units: µg/L		Prep Da	te: 8/10/20	23	RunNo: 858	399	
Client ID: LCSS	Batch ID: 41166					Analysis Da	te: 8/12/20	23	SeqNo: 179	92720	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.918	0.0150	1.000	0	91.8	80	120				
Chloromethane	0.905	0.0500	1.000	0	90.5	80	120				
Vinyl chloride	0.907	0.0250	1.000	0	90.7	80	120				
Bromomethane	0.970	0.0250	1.000	0	97.0	80	120				
Trichlorofluoromethane (CFC-11)	1.06	0.0200	1.000	0	106	80	120				
Chloroethane	0.978	0.0750	1.000	0	97.8	80	120				
1,1-Dichloroethene	0.925	0.100	1.000	0	92.5	80	120				
Acetone	2.75	0.250	2.500	0	110	80	120				
Methylene chloride	0.934	0.0350	1.000	0	93.4	80	120				
trans-1,2-Dichloroethene	0.960	0.0100	1.000	0	96.0	80	120				
Methyl tert-butyl ether (MTBE)	0.950	0.0200	1.000	0	95.0	80	120				
1,1-Dichloroethane	0.963	0.0250	1.000	0	96.3	80	120				
cis-1,2-Dichloroethene	0.953	0.0150	1.000	0	95.3	80	120				
(MEK) 2-Butanone	2.55	0.300	2.500	0	102	80	120				
Chloroform	1.00	0.0175	1.000	0	100	80	120				
1,1,1-Trichloroethane (TCA)	0.957	0.0200	1.000	0	95.7	80	120				
1,1-Dichloropropene	0.972	0.0200	1.000	0	97.2	80	120				
Carbon tetrachloride	0.971	0.0250	1.000	0	97.1	80	120				
1,2-Dichloroethane (EDC)	0.995	0.0200	1.000	0	99.5	80	120				
Benzene	0.960	0.0175	1.000	0	96.0	80	120				
Trichloroethene (TCE)	0.996	0.0150	1.000	0	99.6	80	120				
1,2-Dichloropropane	0.979	0.0250	1.000	0	97.9	80	120				
Bromodichloromethane	0.959	0.0250	1.000	0	95.9	80	120				
Dibromomethane	0.995	0.0125	1.000	0	99.5	80	120				
cis-1,3-Dichloropropene	0.933	0.0150	1.000	0	93.3	80	120				

Revision v2 Page 76 of 99

CLIENT:

GeoEngineers

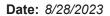

Project: S Jackson Street

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-41166	SampType: LCS			Units: µg/L		Prep Date	e: 8/10/2 0	23	RunNo: 858	399	
Client ID: LCSS	Batch ID: 41166					Analysis Date	e: 8/12/2 0	23	SeqNo: 179	2720	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.00	0.0300	1.000	0	100	80	120				
Trans-1,3-Dichloropropylene	0.933	0.0200	1.000	0	93.3	80	120				
Methyl Isobutyl Ketone (MIBK)	2.58	0.0600	2.500	0	103	80	120				
1,1,2-Trichloroethane	0.983	0.0125	1.000	0	98.3	80	120				
1,3-Dichloropropane	0.981	0.0100	1.000	0	98.1	80	120				
Tetrachloroethene (PCE)	0.980	0.0150	1.000	0	98.0	80	120				
Dibromochloromethane	0.944	0.0150	1.000	0	94.4	80	120				
1,2-Dibromoethane (EDB)	1.03	0.0100	1.000	0	103	80	120				
2-Hexanone (MBK)	2.47	0.0625	2.500	0	99.0	80	120				
Chlorobenzene	0.953	0.0150	1.000	0	95.3	80	120				
1,1,1,2-Tetrachloroethane	1.01	0.0250	1.000	0	101	80	120				
Ethylbenzene	0.949	0.0250	1.000	0	94.9	80	120				
m,p-Xylene	2.01	0.0500	2.000	0	101	80	120				
o-Xylene	0.986	0.0250	1.000	0	98.6	80	120				
Styrene	0.960	0.0100	1.000	0	96.0	80	120				
Isopropylbenzene	1.02	0.0150	1.000	0	102	80	120				
Bromoform	0.969	0.0150	1.000	0	96.9	80	120				
1,1,2,2-Tetrachloroethane	0.934	0.200	1.000	0	93.4	80	120				
n-Propylbenzene	1.01	0.0150	1.000	0	101	80	120				
Bromobenzene	0.963	0.0125	1.000	0	96.3	80	120				
1,3,5-Trimethylbenzene	0.925	0.0150	1.000	0	92.5	80	120				
2-Chlorotoluene	0.919	0.0165	1.000	0	91.9	80	120				
4-Chlorotoluene	0.989	0.0165	1.000	0	98.9	80	120				
tert-Butylbenzene	0.949	0.0150	1.000	0	94.9	80	120				
1,2,3-Trichloropropane	0.958	0.0300	1.000	0	95.8	80	120				
1,2,4-Trichlorobenzene	1.03	0.0600	1.000	0	103	80	120				
sec-Butylbenzene	1.01	0.150	1.000	0	101	80	120				
4-Isopropyltoluene	0.994	0.200	1.000	0	99.4	80	120				
1,3-Dichlorobenzene	0.936	0.0200	1.000	0	93.6	80	120				
1,4-Dichlorobenzene	1.03	0.0150	1.000	0	103	80	120				
n-Butylbenzene	1.00	0.0200	1.000	0	100	80	120				
1,2-Dichlorobenzene	0.959	0.0200	1.000	0	95.9	80	120				

Revision v2 Page 77 of 99

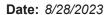

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-41166	SampType: LCS			Units: µg/L		Prep Da	te: 8/10/2 0	023	RunNo: 858	399	
Client ID: LCSS	Batch ID: 41166					Analysis Da	te: 8/12/2 0	023	SeqNo: 179	92720	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	0.923	0.0300	1.000	0	92.3	80	120				
1,2,4-Trimethylbenzene	0.994	0.0150	1.000	0	99.4	80	120				
Hexachloro-1,3-butadiene	0.945	0.0400	1.000	0	94.5	80	120				
Naphthalene	1.02	0.100	1.000	0	102	80	120				
1,2,3-Trichlorobenzene	0.999	0.0600	1.000	0	99.9	80	120				
Surr: Dibromofluoromethane	1.25		1.250		100	79.5	124				
Surr: Toluene-d8	1.27		1.250		101	77.5	124				
Surr: 1-Bromo-4-fluorobenzene	1.20		1.250		96.1	60.5	139				
Sample ID: MB-41166	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/2 (023	RunNo: 858	B99	
Client ID: MBLKS	Batch ID: 41166					Analysis Da	te: 8/12/2 0	023	SeqNo: 179	92693	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0150									
Chloromethane	ND	0.0500									
Vinyl chloride	ND	0.0250									
Bromomethane	ND	0.0250									
Trichlorofluoromethane (CFC-11)	ND	0.0200									
Chloroethane	ND	0.0750									
1,1-Dichloroethene	ND	0.100									
Acetone	ND	0.250									
Methylene chloride	ND	0.0350									
trans-1,2-Dichloroethene	ND	0.0100									
Methyl tert-butyl ether (MTBE)	ND	0.0200									
1,1-Dichloroethane	ND	0.0250									
cis-1,2-Dichloroethene	ND	0.0150									
(MEK) 2-Butanone	ND	0.300									
(IVILIX) 2-DUIATIONE											
Chloroform	ND	0.0175									
	ND ND	0.0175 0.0200									
Chloroform											

Revision v2 Page 78 of 99

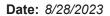

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: MB-41166	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 8/10/2 0	123	RunNo: 858	399	
Client ID: MBLKS	Batch ID: 41166					Analysis Dat	e: 8/12/2 0	123	SeqNo: 179	92693	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	ND	0.0200									
Benzene	ND	0.0175									
Trichloroethene (TCE)	ND	0.0150									
1,2-Dichloropropane	ND	0.0250									
Bromodichloromethane	ND	0.0250									
Dibromomethane	ND	0.0125									
cis-1,3-Dichloropropene	ND	0.0150									
Toluene	ND	0.0300									
Trans-1,3-Dichloropropylene	ND	0.0200									
Methyl Isobutyl Ketone (MIBK)	ND	0.0600									
1,1,2-Trichloroethane	ND	0.0125									
1,3-Dichloropropane	ND	0.0100									
Tetrachloroethene (PCE)	ND	0.0150									
Dibromochloromethane	ND	0.0150									
1,2-Dibromoethane (EDB)	ND	0.0100									
2-Hexanone (MBK)	ND	0.0625									
Chlorobenzene	ND	0.0150									
1,1,1,2-Tetrachloroethane	ND	0.0250									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Styrene	ND	0.0100									
Isopropylbenzene	ND	0.0150									
Bromoform	ND	0.0150									
1,1,2,2-Tetrachloroethane	ND	0.200									
n-Propylbenzene	ND	0.0150									
Bromobenzene	ND	0.0125									
1,3,5-Trimethylbenzene	ND	0.0150									
2-Chlorotoluene	ND	0.0165									
4-Chlorotoluene	ND	0.0165									
tert-Butylbenzene	ND	0.0150									
1,2,3-Trichloropropane	ND	0.0300									

Revision v2 Page 79 of 99

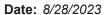

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: MB-41166	SampType	: MBLK			Units: mg/Kg		Prep Dat	e: 8/10/2 0)23	RunNo: 858	399	
Client ID: MBLKS	Batch ID:	41166					Analysis Dat	te: 8/12/2 0)23	SeqNo: 179	92693	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene		ND	0.0600									
sec-Butylbenzene		ND	0.150									
4-Isopropyltoluene		ND	0.200									
1,3-Dichlorobenzene		ND	0.0200									
1,4-Dichlorobenzene		ND	0.0150									
n-Butylbenzene		ND	0.0200									
1,2-Dichlorobenzene		ND	0.0200									
1,2-Dibromo-3-chloropropane		ND	0.0300									
1,2,4-Trimethylbenzene		ND	0.0150									
Hexachloro-1,3-butadiene		ND	0.0400									
Naphthalene		ND	0.100									
1,2,3-Trichlorobenzene		ND	0.0600									
Surr: Dibromofluoromethane		1.21		1.250		97.1	79.5	124				
Surr: Toluene-d8		1.24		1.250		98.8	77.5	124				
Surr: 1-Bromo-4-fluorobenzene		1.23		1.250		98.1	60.5	139				
Sample ID: CCV-41166B	SampType	e: CCV			Units: μg/L		Prep Dat	e: 8/12/20)23	RunNo: 858	399	
Client ID: CCV	Batch ID:	41166					Analysis Dat	te: 8/12/2 0)23	SeqNo: 179	92701	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		20.6	0.0150	20.00	0	103	80	120				
Chloromethane		17.5	0.0500	20.00	0	87.5	80	120				
Vinyl chloride		17.9	0.0250	20.00	0	89.7	80	120				
Bromomethane		21.9	0.0250	20.00	0	109	80	120				
Trichlorofluoromethane (CFC-11)		21.0	0.0200	20.00	0	105	80	120				
Chloroethane		20.2	0.0750	20.00	0	101	80	120				
1,1-Dichloroethene		17.7	0.100	20.00	0	88.4	80	120				
Acetone		50.0	0.250	50.00	0	100	80	120				
Methylene chloride		19.5	0.0350	20.00	0	97.3	80	120				
trans-1,2-Dichloroethene		18.7	0.0100	20.00	0	93.4	80	120				
Methyl tert-butyl ether (MTBE)		47.0	0.0000		0	00.0		400				
		17.8	0.0200	20.00	0	89.2	80	120				

Revision v2 Page 80 of 99


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

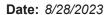
Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41166B	SampType: CCV			Units: µg/L		Prep Dat	e: 8/12/20	23	RunNo: 858	399	
Client ID: CCV	Batch ID: 41166					Analysis Dat	e: 8/12/20	23	SeqNo: 179	92701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	18.9	0.0250	20.00	0	94.4	80	120				
cis-1,2-Dichloroethene	19.0	0.0150	20.00	0	94.9	80	120				
(MEK) 2-Butanone	46.2	0.300	50.00	0	92.4	80	120				
Chloroform	20.0	0.0175	20.00	0	100	80	120				
1,1,1-Trichloroethane (TCA)	18.9	0.0200	20.00	0	94.3	80	120				
1,1-Dichloropropene	18.5	0.0200	20.00	0	92.6	80	120				
Carbon tetrachloride	19.4	0.0250	20.00	0	97.1	80	120				
1,2-Dichloroethane (EDC)	19.8	0.0200	20.00	0	98.9	80	120				
Benzene	19.1	0.0175	20.00	0	95.6	80	120				
Trichloroethene (TCE)	21.2	0.0150	20.00	0	106	80	120				
1,2-Dichloropropane	19.5	0.0250	20.00	0	97.3	80	120				
Bromodichloromethane	19.2	0.0250	20.00	0	95.8	80	120				
Dibromomethane	19.4	0.0125	20.00	0	97.1	80	120				
cis-1,3-Dichloropropene	17.1	0.0150	20.00	0	85.7	80	120				
Toluene	19.9	0.0300	20.00	0	99.3	80	120				
Trans-1,3-Dichloropropylene	17.1	0.0200	20.00	0	85.7	80	120				
Methyl Isobutyl Ketone (MIBK)	47.5	0.0600	50.00	0	95.1	80	120				
1,1,2-Trichloroethane	19.2	0.0125	20.00	0	95.8	80	120				
1,3-Dichloropropane	19.2	0.0100	20.00	0	96.2	80	120				
Tetrachloroethene (PCE)	18.9	0.0150	20.00	0	94.4	80	120				
Dibromochloromethane	18.6	0.0150	20.00	0	92.8	80	120				
1,2-Dibromoethane (EDB)	20.0	0.0100	20.00	0	100	80	120				
2-Hexanone (MBK)	44.3	0.0625	50.00	0	88.7	80	120				
Chlorobenzene	19.0	0.0150	20.00	0	95.0	80	120				
1,1,1,2-Tetrachloroethane	19.9	0.0250	20.00	0	99.7	80	120				
Ethylbenzene	18.7	0.0250	20.00	0	93.6	80	120				
m,p-Xylene	39.8	0.0500	40.00	0	99.4	80	120				
o-Xylene	19.6	0.0250	20.00	0	98.2	80	120				
Styrene	19.1	0.0100	20.00	0	95.6	80	120				
Isopropylbenzene	19.9	0.0150	20.00	0	99.5	80	120				
Bromoform	18.4	0.0150	20.00	0	92.0	80	120				
1,1,2,2-Tetrachloroethane	15.1	0.200	20.00	0	75.5	80	120				S

Revision v2 Page 81 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers S Jackson Street Project:


Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41166B	SampType: CCV			Units: µg/L		Prep Dat	te: 8/12/20	23	RunNo: 858	199	
Client ID: CCV	Batch ID: 41166					Analysis Dat	te: 8/12/20	23	SeqNo: 179	2701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Propylbenzene	19.6	0.0150	20.00	0	97.9	80	120				
Bromobenzene	18.8	0.0125	20.00	0	93.8	80	120				
1,3,5-Trimethylbenzene	18.3	0.0150	20.00	0	91.6	80	120				
2-Chlorotoluene	18.3	0.0165	20.00	0	91.4	80	120				
4-Chlorotoluene	19.7	0.0165	20.00	0	98.3	80	120				
tert-Butylbenzene	18.4	0.0150	20.00	0	91.8	80	120				
1,2,3-Trichloropropane	17.3	0.0300	20.00	0	86.5	80	120				
1,2,4-Trichlorobenzene	19.3	0.0600	20.00	0	96.5	80	120				
sec-Butylbenzene	19.4	0.150	20.00	0	97.2	80	120				
4-Isopropyltoluene	19.1	0.200	20.00	0	95.4	80	120				
1,3-Dichlorobenzene	18.6	0.0200	20.00	0	93.1	80	120				
1,4-Dichlorobenzene	20.4	0.0150	20.00	0	102	80	120				
n-Butylbenzene	19.1	0.0200	20.00	0	95.7	80	120				
1,2-Dichlorobenzene	19.0	0.0200	20.00	0	94.9	80	120				
1,2-Dibromo-3-chloropropane	17.4	0.0300	20.00	0	86.8	80	120				
1,2,4-Trimethylbenzene	19.7	0.0150	20.00	0	98.5	80	120				
Hexachloro-1,3-butadiene	17.9	0.0400	20.00	0	89.6	80	120				
Naphthalene	18.5	0.100	20.00	0	92.5	80	120				
1,2,3-Trichlorobenzene	18.7	0.0600	20.00	0	93.6	80	120				
Surr: Dibromofluoromethane	25.3		25.00		101	80	120				
Surr: Toluene-d8	25.5		25.00		102	80	120				
Surr: 1-Bromo-4-fluorobenzene	24.0		25.00		96.1	80	120				
NOTES:											

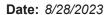
S - Outlying spike recovery observed (low bias). Samples will be qualified with a Q.

Sample ID: CCV-41178B	SampType: CCV					Prep Date: 8/12/2023				RunNo: 85876		
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/12/2 0)23	SeqNo: 179	2953		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dichlorodifluoromethane (CFC-12)	20.6	0.0150	20.00	0	103	80	120					
Chloromethane	17.5	0.0500	20.00	0	87.5	80	120					
Vinyl chloride	17.9	0.0250	20.00	0	89.7	80	120					

Page 82 of 99 Revision v2

CLIENT:

GeoEngineers

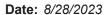

Project: S Jackson Street

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178B	SampType: CCV			Units: µg/L		Prep Dat	te: 8/12/20)23	RunNo: 858	376	
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/12/2 0)23	SeqNo: 179	92953	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromomethane	21.9	0.0250	20.00	0	109	80	120				
Trichlorofluoromethane (CFC-11)	21.0	0.0200	20.00	0	105	80	120				
Chloroethane	20.2	0.0750	20.00	0	101	80	120				
1,1-Dichloroethene	17.7	0.100	20.00	0	88.4	80	120				
Acetone	50.0	0.250	50.00	0	100	80	120				
Methylene chloride	19.5	0.0350	20.00	0	97.3	80	120				
trans-1,2-Dichloroethene	18.7	0.0100	20.00	0	93.4	80	120				
Methyl tert-butyl ether (MTBE)	17.8	0.0200	20.00	0	89.2	80	120				
1,1-Dichloroethane	18.9	0.0250	20.00	0	94.4	80	120				
cis-1,2-Dichloroethene	19.0	0.0150	20.00	0	94.9	80	120				
(MEK) 2-Butanone	46.2	0.300	50.00	0	92.4	80	120				
Chloroform	20.0	0.0175	20.00	0	100	80	120				
1,1,1-Trichloroethane (TCA)	18.9	0.0200	20.00	0	94.3	80	120				
1,1-Dichloropropene	18.5	0.0200	20.00	0	92.6	80	120				
Carbon tetrachloride	19.4	0.0250	20.00	0	97.1	80	120				
1,2-Dichloroethane (EDC)	19.8	0.0200	20.00	0	98.9	80	120				
Benzene	19.1	0.0175	20.00	0	95.6	80	120				
Trichloroethene (TCE)	21.2	0.0150	20.00	0	106	80	120				
1,2-Dichloropropane	19.5	0.0250	20.00	0	97.3	80	120				
Bromodichloromethane	19.2	0.0250	20.00	0	95.8	80	120				
Dibromomethane	19.4	0.0125	20.00	0	97.1	80	120				
cis-1,3-Dichloropropene	17.1	0.0150	20.00	0	85.7	80	120				
Toluene	19.9	0.0300	20.00	0	99.3	80	120				
Trans-1,3-Dichloropropylene	17.1	0.0200	20.00	0	85.7	80	120				
Methyl Isobutyl Ketone (MIBK)	47.5	0.0600	50.00	0	95.1	80	120				
1,1,2-Trichloroethane	19.2	0.0125	20.00	0	95.8	80	120				
1,3-Dichloropropane	19.2	0.0100	20.00	0	96.2	80	120				
Tetrachloroethene (PCE)	18.9	0.0150	20.00	0	94.4	80	120				
Dibromochloromethane	18.6	0.0150	20.00	0	92.8	80	120				
1,2-Dibromoethane (EDB)	20.0	0.0100	20.00	0	100	80	120				
2-Hexanone (MBK)	44.3	0.0625	50.00	0	88.7	80	120				
Chlorobenzene	19.0	0.0150	20.00	0	95.0	80	120				

Revision v2 Page 83 of 99

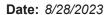

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178B	SampType: CCV			Units: µg/L		Prep Da	te: 8/12/20)23	RunNo: 858	376	
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/12/20)23	SeqNo: 17 9	2953	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	19.9	0.0250	20.00	0	99.7	80	120				
Ethylbenzene	18.7	0.0250	20.00	0	93.6	80	120				
m,p-Xylene	39.8	0.0500	40.00	0	99.4	80	120				
o-Xylene	19.6	0.0250	20.00	0	98.2	80	120				
Styrene	19.1	0.0100	20.00	0	95.6	80	120				
Isopropylbenzene	19.9	0.0150	20.00	0	99.5	80	120				
Bromoform	18.4	0.0150	20.00	0	92.0	80	120				
1,1,2,2-Tetrachloroethane	15.1	0.200	20.00	0	75.5	80	120				S
n-Propylbenzene	19.6	0.0150	20.00	0	97.9	80	120				
Bromobenzene	18.8	0.0125	20.00	0	93.8	80	120				
1,3,5-Trimethylbenzene	18.3	0.0150	20.00	0	91.6	80	120				
2-Chlorotoluene	18.3	0.0165	20.00	0	91.4	80	120				
4-Chlorotoluene	19.7	0.0165	20.00	0	98.3	80	120				
tert-Butylbenzene	18.4	0.0150	20.00	0	91.8	80	120				
1,2,3-Trichloropropane	17.3	0.0300	20.00	0	86.5	80	120				
1,2,4-Trichlorobenzene	19.3	0.0600	20.00	0	96.5	80	120				
sec-Butylbenzene	19.4	0.150	20.00	0	97.2	80	120				
4-Isopropyltoluene	19.1	0.200	20.00	0	95.4	80	120				
1,3-Dichlorobenzene	18.6	0.0200	20.00	0	93.1	80	120				
1,4-Dichlorobenzene	20.4	0.0150	20.00	0	102	80	120				
n-Butylbenzene	19.1	0.0200	20.00	0	95.7	80	120				
1,2-Dichlorobenzene	19.0	0.0200	20.00	0	94.9	80	120				
1,2-Dibromo-3-chloropropane	17.4	0.0300	20.00	0	86.8	80	120				
1,2,4-Trimethylbenzene	19.7	0.0150	20.00	0	98.5	80	120				
Hexachloro-1,3-butadiene	17.9	0.0400	20.00	0	89.6	80	120				
Naphthalene	18.5	0.100	20.00	0	92.5	80	120				
1,2,3-Trichlorobenzene	18.7	0.0600	20.00	0	93.6	80	120				
Surr: Dibromofluoromethane	25.3		25.00		101	80	120				
Surr: Toluene-d8	25.5		25.00		102	80	120				
Surr: 1-Bromo-4-fluorobenzene	24.0		25.00		96.1	80	120				

Revision v2 Page 84 of 99


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

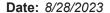
Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-014BDUP	SampType: DUP	· ·		Units: mg/	Kg-dry	Prep Da	ite: 8/10/20	123	RunNo: 858	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	ite: 8/12/20	23	SeqNo: 179	92703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0167						0		30	
Chloromethane	ND	0.0557						0		30	
Vinyl chloride	ND	0.0279						0		30	
Bromomethane	ND	0.0279						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0223						0		30	
Chloroethane	ND	0.0836						0		30	
1,1-Dichloroethene	ND	0.111						0		30	
Acetone	ND	0.279						0		30	
Methylene chloride	ND	0.0390						0		30	
trans-1,2-Dichloroethene	ND	0.0111						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0223						0		30	
1,1-Dichloroethane	ND	0.0279						0		30	
cis-1,2-Dichloroethene	ND	0.0167						0		30	
(MEK) 2-Butanone	ND	0.334						0		30	
Chloroform	ND	0.0195						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0223						0		30	
1,1-Dichloropropene	ND	0.0223						0		30	
Carbon tetrachloride	ND	0.0279						0		30	
1,2-Dichloroethane (EDC)	ND	0.0223						0		30	
Benzene	ND	0.0195						0		30	
Trichloroethene (TCE)	ND	0.0167						0		30	
1,2-Dichloropropane	ND	0.0279						0		30	
Bromodichloromethane	ND	0.0279						0		30	
Dibromomethane	ND	0.0139						0		30	
cis-1,3-Dichloropropene	ND	0.0167						0		30	
Toluene	ND	0.0334						0		30	
Trans-1,3-Dichloropropylene	ND	0.0223						0		30	
Methyl Isobutyl Ketone (MIBK)	ND	0.0669						0		30	
1,1,2-Trichloroethane	ND	0.0139						0		30	
1,3-Dichloropropane	ND	0.0111						0		30	
Tetrachloroethene (PCE)	ND	0.0167						0		30	
Dibromochloromethane	ND	0.0167						0		30	

Revision v2 Page 85 of 99

CLIENT:

GeoEngineers


Project: S Jackson Street

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-014BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 8/10/2 0	023	RunNo: 858	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	te: 8/12/2 0	023	SeqNo: 179	92703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.0111						0		30	
2-Hexanone (MBK)	ND	0.0697						0		30	
Chlorobenzene	ND	0.0167						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0279						0		30	
Ethylbenzene	ND	0.0279						0		30	
m,p-Xylene	ND	0.0557						0		30	
o-Xylene	ND	0.0279						0		30	
Styrene	ND	0.0111						0		30	
Isopropylbenzene	ND	0.0167						0		30	
Bromoform	ND	0.0167						0		30	
1,1,2,2-Tetrachloroethane	ND	0.223						0		30	Q
n-Propylbenzene	ND	0.0167						0		30	
Bromobenzene	ND	0.0139						0		30	
1,3,5-Trimethylbenzene	ND	0.0167						0		30	
2-Chlorotoluene	ND	0.0184						0		30	
4-Chlorotoluene	ND	0.0184						0		30	
tert-Butylbenzene	ND	0.0167						0		30	
1,2,3-Trichloropropane	ND	0.0334						0		30	
1,2,4-Trichlorobenzene	ND	0.0669						0		30	
sec-Butylbenzene	ND	0.167						0		30	
4-Isopropyltoluene	ND	0.223						0		30	
1,3-Dichlorobenzene	ND	0.0223						0		30	
1,4-Dichlorobenzene	ND	0.0167						0		30	
n-Butylbenzene	ND	0.0223						0		30	
1,2-Dichlorobenzene	ND	0.0223						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0334						0		30	
1,2,4-Trimethylbenzene	ND	0.0167						0		30	
Hexachloro-1,3-butadiene	ND	0.0446						0		30	
Naphthalene	ND	0.111						0		30	
1,2,3-Trichlorobenzene	ND	0.0669						0		30	
Surr: Dibromofluoromethane	1.40		1.393		100	79.5	124	_	0		
Surr: Toluene-d8	1.37		1.393		98.3	77.5	124		0		

Revision v2 Page 86 of 99

QC SUMMARY REPORT

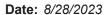
CLIENT: GeoEngineers S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-014BDUP	SampType: DUP	Units: mg/Kg-dry	Prep Date:	8/10/2023	RunNo: 85899
Client ID: BATCH	Batch ID: 41166		Analysis Date:	8/12/2023	SegNo: 1792703

Analyte Result SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Surr: 1-Bromo-4-fluorobenzene 1.36 1.393 97.8 60.5 139 0

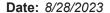

NOTES:

Project:

Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Sample ID: 2308044-023BDUP	SampType: DUP			Units: mg	/Kg-dry	Prep Da	te: 8/10/2 0)23	RunNo: 858	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	te: 8/12/2 0)23	SeqNo: 179	2707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0198						0		30	
Chloromethane	ND	0.0660						0		30	
Vinyl chloride	ND	0.0330						0		30	
Bromomethane	ND	0.0330						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0264						0		30	
Chloroethane	ND	0.0990						0		30	
1,1-Dichloroethene	ND	0.132						0		30	
Acetone	ND	0.330						0		30	
Methylene chloride	ND	0.0462						0		30	
trans-1,2-Dichloroethene	ND	0.0132						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0264						0		30	
1,1-Dichloroethane	ND	0.0330						0		30	
cis-1,2-Dichloroethene	ND	0.0198						0		30	
(MEK) 2-Butanone	ND	0.396						0		30	
Chloroform	ND	0.0231						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0264						0		30	
1,1-Dichloropropene	ND	0.0264						0		30	
Carbon tetrachloride	ND	0.0330						0		30	
1,2-Dichloroethane (EDC)	ND	0.0264						0		30	
Benzene	ND	0.0231						0		30	
Trichloroethene (TCE)	ND	0.0198						0		30	
1,2-Dichloropropane	ND	0.0330						0		30	
Bromodichloromethane	ND	0.0330						0		30	
Dibromomethane	ND	0.0165						0		30	

Page 87 of 99 Revision v2


QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

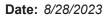
Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-023BDUP	SampType: DUP			Units: mg/K	(g-dry	Prep Da	te: 8/10/2 0	123	RunNo: 858	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	te: 8/12/2 0	23	SeqNo: 179	2707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	ND	0.0198						0		30	
Toluene	ND	0.0396						0		30	
Trans-1,3-Dichloropropylene	ND	0.0264						0		30	
Methyl Isobutyl Ketone (MIBK)	ND	0.0792						0		30	
1,1,2-Trichloroethane	ND	0.0165						0		30	
1,3-Dichloropropane	ND	0.0132						0		30	
Tetrachloroethene (PCE)	ND	0.0198						0		30	
Dibromochloromethane	ND	0.0198						0		30	
1,2-Dibromoethane (EDB)	ND	0.0132						0		30	
2-Hexanone (MBK)	ND	0.0825						0		30	
Chlorobenzene	ND	0.0198						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0330						0		30	
Ethylbenzene	ND	0.0330						0		30	
m,p-Xylene	ND	0.0660						0		30	
o-Xylene	ND	0.0330						0		30	
Styrene	ND	0.0132						0		30	
Isopropylbenzene	ND	0.0198						0		30	
Bromoform	ND	0.0198						0		30	
1,1,2,2-Tetrachloroethane	ND	0.264						0		30	Q
n-Propylbenzene	ND	0.0198						0		30	
Bromobenzene	ND	0.0165						0		30	
1,3,5-Trimethylbenzene	ND	0.0198						0		30	
2-Chlorotoluene	ND	0.0218						0		30	
4-Chlorotoluene	ND	0.0218						0		30	
tert-Butylbenzene	ND	0.0198						0		30	
1,2,3-Trichloropropane	ND	0.0396						0		30	
1,2,4-Trichlorobenzene	ND	0.0792						0		30	
sec-Butylbenzene	ND	0.198						0		30	
4-Isopropyltoluene	ND	0.264						0		30	
1,3-Dichlorobenzene	ND	0.0264						0		30	
1,4-Dichlorobenzene	ND	0.0198						0		30	
n-Butylbenzene	ND	0.0264						0		30	

Revision v2 Page 88 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers S Jackson Street Project:


Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-023BDUP	SampType: DUP			Units: mg	ı/Kg-dry	Prep Da	te: 8/10/2 0)23	RunNo: 858	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	te: 8/12/2 0)23	SeqNo: 179	2707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	ND	0.0264						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0396						0		30	
1,2,4-Trimethylbenzene	ND	0.0198						0		30	
Hexachloro-1,3-butadiene	ND	0.0528						0		30	
Naphthalene	ND	0.132						0		30	
1,2,3-Trichlorobenzene	ND	0.0792						0		30	
Surr: Dibromofluoromethane	1.64		1.651		99.4	79.5	124		0		
Surr: Toluene-d8	1.63		1.651		98.9	77.5	124		0		
Surr: 1-Bromo-4-fluorobenzene	1.62		1.651		98.0	60.5	139		0		
NOTES:											

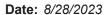
Q - Associated calibration verification is below acceptance criteria. Result may be low-biased.

Sample ID: 2308044-017BMS	SampType:	MS			Units: mg	g/Kg-dry	Prep Date	e: 8/10/20	23	RunNo: 858	99	
Client ID: BATCH	Batch ID:	41166					Analysis Date	e: 8/12/20	23	SeqNo: 179	2718	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		1.35	0.0163	1.087	0	124	5	160		·		_
Chloromethane		1.23	0.0544	1.087	0	113	17.7	160				
Vinyl chloride		1.07	0.0272	1.087	0	98.0	21.7	160				
Bromomethane		1.28	0.0272	1.087	0	118	20	160				
Trichlorofluoromethane (CFC-11)		1.35	0.0217	1.087	0	125	5	160				
Chloroethane		1.58	0.0815	1.087	0	146	5	160				
1,1-Dichloroethene		1.17	0.109	1.087	0	107	21.7	160				
Acetone		2.07	0.272	2.718	0	76.1	20.7	160				
Methylene chloride		1.17	0.0381	1.087	0.03080	105	46.7	154				
trans-1,2-Dichloroethene		1.17	0.0109	1.087	0	107	41.9	160				
Methyl tert-butyl ether (MTBE)	0	.968	0.0217	1.087	0	89.1	70.3	138				
1,1-Dichloroethane		1.16	0.0272	1.087	0	106	45.4	160				
cis-1,2-Dichloroethene		1.06	0.0163	1.087	0	97.1	52.6	151				
(MEK) 2-Butanone		2.01	0.326	2.718	0	73.8	44.3	160				
Chloroform		1.13	0.0190	1.087	0	104	52.7	148				
1,1,1-Trichloroethane (TCA)		1.11	0.0217	1.087	0	102	39.7	160				

Page 89 of 99 Revision v2

CLIENT:

GeoEngineers


Project: S Jackson Street

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-017BMS	SampType: MS			Units: mg/k	Kg-dry	Prep Dat	te: 8/10/20	23	RunNo: 85 8	399	
Client ID: BATCH	Batch ID: 41166					Analysis Da	te: 8/12/20	23	SeqNo: 179	92718	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloropropene	1.08	0.0217	1.087	0	99.8	40.1	160				
Carbon tetrachloride	1.17	0.0272	1.087	0	107	34.2	160				
1,2-Dichloroethane (EDC)	1.10	0.0217	1.087	0	101	64.6	137				
Benzene	1.05	0.0190	1.087	0	96.3	52.3	147				
Trichloroethene (TCE)	1.07	0.0163	1.087	0	98.8	43.1	160				
1,2-Dichloropropane	1.06	0.0272	1.087	0	97.7	59.5	142				
Bromodichloromethane	1.05	0.0272	1.087	0	96.5	61.4	146				
Dibromomethane	1.07	0.0136	1.087	0	98.2	72.4	140				
cis-1,3-Dichloropropene	0.892	0.0163	1.087	0	82.1	59.6	136				
Toluene	1.12	0.0326	1.087	0	103	50.1	147				
Trans-1,3-Dichloropropylene	0.892	0.0217	1.087	0	82.1	59.3	139				
Methyl Isobutyl Ketone (MIBK)	2.76	0.0652	2.718	0	102	48	160				
1,1,2-Trichloroethane	1.06	0.0136	1.087	0	97.9	70.4	140				
1,3-Dichloropropane	1.04	0.0109	1.087	0	95.5	69.2	140				
Tetrachloroethene (PCE)	1.14	0.0163	1.087	0	105	44.6	160				
Dibromochloromethane	1.02	0.0163	1.087	0	94.0	64.7	141				
1,2-Dibromoethane (EDB)	1.12	0.0109	1.087	0	103	70.4	143				
2-Hexanone (MBK)	2.24	0.0679	2.718	0	82.3	33	160				
Chlorobenzene	1.07	0.0163	1.087	0	98.6	59.6	134				
1,1,1,2-Tetrachloroethane	1.09	0.0272	1.087	0	101	58	141				
Ethylbenzene	1.07	0.0272	1.087	0	98.2	51.7	143				
m,p-Xylene	2.26	0.0544	2.174	0	104	54.5	144				
o-Xylene	1.09	0.0272	1.087	0	99.8	57.1	141				
Styrene	1.07	0.0109	1.087	0	98.0	63.4	135				
Isopropylbenzene	1.15	0.0163	1.087	0	106	47.8	152				
Bromoform	1.06	0.0163	1.087	0	97.8	70.1	134				
1,1,2,2-Tetrachloroethane	1.05	0.217	1.087	0	96.7	43.2	157				
n-Propylbenzene	1.14	0.0163	1.087	0	105	47.5	152				
Bromobenzene	1.06	0.0136	1.087	0	97.9	66.9	133				
1,3,5-Trimethylbenzene	1.05	0.0163	1.087	0	96.7	51.5	146				
2-Chlorotoluene	1.03	0.0179	1.087	0	94.3	54.5	137				
4-Chlorotoluene	1.09	0.0179	1.087	0	101	56.5	138				

Revision v2 Page 90 of 99

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2308044-017BMS	SampType: MS			Units: mg/Kg	-dry	Prep Date	e: 8/10/2023	RunNo: 85899	
Client ID: BATCH	Batch ID: 41166					Analysis Date	e: 8/12/2023	SeqNo: 1792718	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit 0	Qual
tert-Butylbenzene	1.07	0.0163	1.087	0	98.7	41.8	152		
1,2,3-Trichloropropane	0.941	0.0326	1.087	0	86.6	64.3	132		
1,2,4-Trichlorobenzene	1.10	0.0652	1.087	0	102	58.1	135		
sec-Butylbenzene	1.15	0.163	1.087	0	106	44.2	155		
4-Isopropyltoluene	1.12	0.217	1.087	0	103	46	156		
1,3-Dichlorobenzene	1.06	0.0217	1.087	0	97.1	62.6	132		
1,4-Dichlorobenzene	1.12	0.0163	1.087	0	103	62.7	125		
n-Butylbenzene	1.11	0.0217	1.087	0	102	43.4	155		
1,2-Dichlorobenzene	1.07	0.0217	1.087	0	98.6	67.9	128		
1,2-Dibromo-3-chloropropane	0.990	0.0326	1.087	0	91.1	61.9	135		
1,2,4-Trimethylbenzene	1.12	0.0163	1.087	0	103	55.5	144		
Hexachloro-1,3-butadiene	1.03	0.0435	1.087	0	94.7	38.7	158		
Naphthalene	1.14	0.109	1.087	0	105	56.6	148		
1,2,3-Trichlorobenzene	1.11	0.0652	1.087	0	102	58.1	142		
Surr: Dibromofluoromethane	1.37		1.359		101	79.5	124		
Surr: Toluene-d8	1.37		1.359		100	77.5	124		
Surr: 1-Bromo-4-fluorobenzene	1.30		1.359		95.8	60.5	139		
Sample ID: CCV-41166C	SampType: CCV			Units: μg/L		Prep Date	e: 8/14/2023	RunNo: 85899	
Client ID: CCV	Batch ID: 41166			-		Analysis Date	e: 8/14/2023	SeqNo: 1792722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit 0	Qua
n-Propylbenzene	21.5	0.0150	20.00	0	107	80	120		
Surr: Dibromofluoromethane	25.3		25.00		101	80	120		
Surr: Toluene-d8	25.2		25.00		101	80	120		
Surr: 1-Bromo-4-fluorobenzene	23.9		25.00		95.7	80	120		

Revision v2 Page 91 of 99

Date: 8/28/2023

Work Order: 2308151

QC SUMMARY REPORT

CLIENT: GeoEngineers
Project: S Jackson Street

Volatile Organic Compounds by EPA Method 8260D

Sample ID: CCV-41178C	SampType: CCV			Units: µg/L		Prep Da	te: 8/14/2 0	23	RunNo: 858	376	
Client ID: CCV	Batch ID: 41178					Analysis Da	te: 8/14/20	23	SeqNo: 179	92970	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Propylbenzene	21.5	0.0150	20.00	0	107	80	120				
n-Butylbenzene	22.0	0.0200	20.00	0	110	80	120				
Surr: Dibromofluoromethane	25.3		25.00		101	80	120				
Surr: Toluene-d8	25.2		25.00		101	80	120				
Surr: 1-Bromo-4-fluorobenzene	23.9		25.00		95.7	80	120				

Revision v2 Page 92 of 99

Sample Log-In Check List

Cli	ent Name:	GEI			Work Order Num	ber: 2308151		
Log	gged by:	Morgan Wilson			Date Received:	8/10/2023	11:11:00 AM	
Chai	in of Custo	odv						
		ustody complete?			Yes 🗸	No 🗌	Not Present	
		sample delivered?			Courier			
Log	<u>In</u>							
3. 0	Custody Seals	s present on shipping container ments for Custody Seals not in			Yes	No 🗌	Not Present ✓	
4. V	Was an attem	pt made to cool the samples?			Yes 🗸	No 🗌	NA 🗌	
5. V	Were all items	s received at a temperature of	>2°C to 6°C	*	Yes 🗸	No 🗌	na 🗆	
6. 5	Sample(s) in բ	proper container(s)?			Yes 🗸	No \square		
7. 5	Sufficient sam	ple volume for indicated test(s)?		Yes 🗸	No \square		
8. <i>F</i>	Are samples բ	properly preserved?			Yes 🗸	No 🗌		
9. V	Was preserva	tive added to bottles?			Yes	No 🗹	NA \square	
10 l	s there heads	space in the VOA vials?			Yes	No 🗌	NA 🗸	
-		· es containers arrive in good cor	ndition(unbrok	en)?	Yes 🗸	No 🗌		
		ork match bottle labels?			Yes 🗸	No \square		
40 /	\ro matricos (correctly identified on Chain of	Custody2		Yes 🗹	No 🗆		
-		t analyses were requested?	Custody!		Yes 🗹	No \square		
		ng times able to be met?			Yes 🛂	No \square		
-		ing (if applicable)			\square			
16.	Was client n	otified of all discrepancies with	this order?		Yes 🗌	No 📙	NA 🗹	
	Person	Notified:		Date:				
	By Who	om:		Via:	eMail P	hone Fax [In Person	
	Regard							
	Client I	nstructions:						
17.	Additional re	marks:						
Item	<u>Information</u>							
		Item #	Temp °C					
	Sample		3.2					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

finquished (Signature)

Print Name

Date/Time

quished (Signature)

www.frem		CIR CAN
www.fremontanalytical.com	Received (Signature)	× Cucould
	MISON 7	DINA C

8/10/23

Page 1 of 2

Tel: 206-352-3790 Date: 8/8/23 Page: 1 of: 2 Laboratory Project No (Internal): 2308
outh Jackson Stree
lent: GeoEngineers Project No.:24504-001-01
dress: 2101 4th Ave Ste 950 collected by: Paul Robinette
tv. State, Zip: Seattle, WA 98121 Location: Seattle, WA
lephone: 425.861.2674 Report To (PM): Robert Trahan Disposal: Samples will be disposed in 30 days unless otherwise requested □ Return to client □ Return to client

				Chain of Custody Bosond & John	story Services Agreement
では近日のうちつい	3(3600 Fremont Ave N.	e Z.	chain of custody Record & Labor	Laboratory Services Agreement
	- 5	Seattle, WA 98103 Tel: 206-352-3790		Date: 8/8/23 Page: 1 of: 2	Laboratory Project No (internal): 2308 51
An Alliance Technical Group Company	Audi			Project Name: South Jackson Street	Special Remarks: Level 2B QA
client: GeoEngineers				Project No. 24504-001-01	
Address: 2101 4th Ave Ste 950				collected by: Paul Robinette	
city State zip: Seattle, WA 98121	1			Location: Seattle, WA	
Telephone: 425.861.2674				Report To (PM); Robert Trahan	Disposal: Samples will be disposed in 30 days unless otherwise requested Retain volume (specify above) Return to client
Email(s): rtrahan@geoengineers.com, probinette@geoengineers.com	rs.com,	probine	tte@	leoengineers.com	
Sample Name	Sample Date	Sample Time	Sample Type [Matrix]*	# of CS	Comments
R1-NSW-98	8/8/23	0900 S	0)		Lead - STD TAT
* 000 and 000 000 000 000 000 000 000 000 000 0					

COC 13-1106.20

www.fremontanalytical.com

	360	00 Fremont	Ave N.		C	hai	in d	of C	Cus	stod	y F	Rec	or	d 8	. L	abo	rato	ory Services Agreement
Fremo		eattle, WA Tel: 206-35		Date:							Page	Par.		of:				atory Project No (internal): 2308 51
An Alliance Technical Group C	ompany						outh	Jack	sor	Stree	t							I Remarks: el 2B QA ALL "UST" SAMPLES 2 DAY TAT
Client: GeoEngineers				Projec	ct No:	245	504-	001	-01									
Address: 2101 4th Ave Ste 95	50			Collec	ted by	, Pa	ul R	obine	ette					200000000000000000000000000000000000000	PV2.1740			e per RT 3/11/23
city, State, Zip: Seattle, WA 9812				100000000000000000000000000000000000000				WA										
Telephone: 425.861.2674				Repor	rt To (I	_{РМ):} F	Rob	ert T	ral	han		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						sal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client
Email(s): rtrahan@geoengine	ers.com,	probin	ette@			**********	***************************************										325	
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	/39		कीकावि	al Rais			20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/	86 10 ST	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ 50 87 61 10 41		801) 801)		Comments
₁ R1-NSW-98	8/8/23	0900	S	1								\times						Lead - STD TAT
UST2-NSW-93	8/8/23	1400	S	3		X	X		X									2-day TAT
3 UST2-WSW-93	8/8/23	1355	S	3		X	X		X									
UST2-SSW-93	8/8/23	1405	S	3														Hold
5 UST2-B-89	8/8/23	1350	S	3		X	X		\times									
UST3-NSW-93	8/8/23	1515	S	3	X	X	\times		\times	X	X	X						
, UST3-SSW-93	8/8/23	1525	S	3														Hold
8 UST3-WSW-93	8/8/23	1530	S	3	X		\times		\times	X	X	\times						
9 UST3-B-90	8/8/23	1520	S	3	X		\times		\times	\times	X	\times						
10																		
*Matrix: A = Air, AQ = Aqueous, B = Bulk, C) = Other, P = P																	
Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	nts TAL	Individu	ual: Ag	*******	***********		************			************		g Mn	Мо	Na N	i Pb S	b Se Sr	Sn Ti Tl V Zn Standard Next Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromi			ospha		Fluor		Nitrat						I b		3 Day Same Day
I represent that I am authorized to to each of the terms on the front ar				1 Fren	nont	Anai	ytical	on be	enati	of the C	iien	t nam	ea a	bove,	tnat	i nave	verifie	☑ 2 Day (specify)
Relinquished (Signature)	Print Name	20		Date/T	ime	Ţ		-	F	Received (-0	A	2/	,	Pri	nt Name	Date/Time
Relinquished (Signature)	Print Name	/	一泛	Date/T	ime	15	2	521	<)	Received (CO		4		1)/N	nt Name	Date/Time
X	The same									× 1	2	=	-		- 1	114501		8/10/23 11:11

ENAMA ENAMA	360	00 Fremont	Ave N.		Cl	nair	1 01	Cus	sto	ly l	Rec	orc	8	Lab	orato	ry Services	Agree	ment	
Fremo	i cal	Seattle, WA Tel: 206-35		Date	8/8/2					1	e: 2		of: 2			ory Project No (internal):	00 -	1815	7
An Alliance Technical Group C	ompany						ıth Ja	acksor	n Stre							Remarks: I 2B QA	-		
Client: GeoEngineers				Proje	ct No: 4	2450	4-00	01-01				A 11/10 SEC. (10)	0.000 (\$0.00000)						
Address: 2101 4th Ave Ste 95	50			Colle	cted by	Paul	Rob	inette											
City, State, Zip: Seattle, WA 981	21					eattl	00001000												
Telephone: 425.861.2674		***************************************	***************************************					t Tra	han	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						: Samples will be disposed in etain volume (specify above)		therwise reques rn to client	sted.
Email(s): rtrahan@geoengine	ers.com	, probin	ette@					***************************************	***************************************	***********									
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	10	Sign of	Casoline Casoline	20 82 15 15 15 15 15 15 15 15 15 15 15 15 15	Sel s	14CO 166 16 16 16 16 16 16 16 16 16 16 16 16	667 N		A DIST				Comment	s	
1 UST4-NSW-93	8/9/23	0745	s	3	X			X	X	X	X					2-day TAT			
2 UST4-SSW-93	8/9/23	0750	S	3	X	>		X	X	X	X					2-day TAT			
₃ UST4-B-90	8/9/23	0755	S	3	\times	>		X	\times	\times	\times					2-day TAT			
4																			
5							\perp												
6					Ш							10							
7					Н	-		\perp	_	_									
8				_	Ш	4				_									
9					Ш	_		\sqcup	_					Ш					
10							8												
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O	= Other, P = P	roduct, S = S	Soil, SD = 5	Sedimer	nt, SL=	Solid,	W = Wa	ater, DW	/ = Drink	ing Wa	ter, G	W = Gro	und Wa	ter, SW	= Storm Wate	er, WW = Waste Water	Editivity is	around Time	
	Priority Pollutar											g Mn	Mo Na	Ni Pb	Sb Se Sr S	n Ti Tl V Zn	☐ Standard	☐ Next [Day
***Anions (Circle): Nitrate Nitrite I represent that I am authorized to to each of the terms on the front an				i Fren		sphate	_	behalf		Clien		ed abo	ove, th	at I ha	ve verified	Client's agreement	☐ 3 Day	Same (specify	-
Relinquished (Signature)	Print Name	S Brices.	死_;	Date/T	ime	2 D.	RO	180	teceived	(Signat	ure)	W		2	Print Name	Date	S/Po/a	23	
Relinquished (Signature) x	Print Name			Date/T	ime			1	teceived		ure)		امر		Print Name		Time 10/23	(1.7)	

	360	00 Fremont	Ave N.		C	hai	in c	of C	us	tod	y F	Rec	ord	8 b	La	bo	rato	ry Services Agreement
Fremo		eattle, WA Tel: 206-35		Date:							Page	Par.		of:				ory Project No (internal): 2308 157
Analyti An Alliance Technical Group C	ompany						outh	Jack	son	Stree	mercenile an	************					Special R	emarks: ALL "UST" SAMPLES 2 DAY TA
Client: GeoEngineers								001-										
Address: 2101 4th Ave Ste 95	50			Collec	ted by	, Pa	ul R	obine	tte								update -mw 8/1	
City, State, Zip: Seattle, WA 9812								WA		***************************************	**********		***************				ì	n per RT, Std TAT, 8/21/23 -cg
Telephone: 425.861.2674					***********	10000000000		ert T		an				*************	000000000			: Samples will be disposed in 30 days unless otherwise requested. etain volume (specify above) Return to client
Email(s): rtrahan@geoengine	ers.com,	probin	ette@			*********	***************************************			***************************************	***********		••••••					
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	/39	E SE SE	कीका वर्ष	A PROPERTY OF THE PROPERTY OF				80 10 ST	80 (8) 80 (6)	A SOL	10 10 10 10 10 10 10 10 10 10 10 10 10 1			Comments
1 R1-NSW-98	8/8/23	0900	S	1								X						Lead - STD TAT
UST2-NSW-93	8/8/23	1400	S	3		X	X			X		X						2-day TAT
3 UST2-WSW-93	8/8/23	1355	S	3		X	X			X		X						
UST2-SSW-93	8/8/23	1405	S	3														Hold
5 UST2-B-89	8/8/23	1350	S	3		X	X		<	X		X						
UST3-NSW-93	8/8/23	1515	S	3	X	X	X			X	X	X						
, UST3-SSW-93	8/8/23	1525	S	3														Hold
8 UST3-WSW-93	8/8/23	1530	S	3	X		X		<	X	X	\times						
9 UST3-B-90	8/8/23	1520	S	3	X		X		<	X	X	\times						
10																		
*Matrix: A = Air, AQ = Aqueous, B = Bulk, C	O = Other, P = P																	
**Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	nts TAL	Individu	ual: Ag	A! A	s B	Ba Be	Ca Cd	Co	Cr Cu F	e Hg	KM	g Mn	Mo	Na Ni	Pb Sb	Se Sr S	in Ti Tl V Zn Standard Next Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromi			ospha		Fluori		Nitrat								☐ 3 Day ☐ Same Day
I represent that I am authorized to to each of the terms on the front ar				1 Fren	nont	Anal	ytical	on be	half	of the C	lien	t nam	ed al	oove,	that I	have	verified	Client's agreement 2 Day (specify)
Relinquished (Signature)	Print Name	00		Date/1	ime	Ţ			Re	eceived (S		-0	1	2/	7	Prin	Name	Date/Time
* med la Dio	Fred		一步	Date	/	12	P.	1	≥) ×		co		ery		1	N/N/	4 C Name	08/10/ 23 Date/Time
Relinquished (Signature) x	Print Name			Date/1	ime				×	eceived (Z	ure)	,_	_	L	1450N		8/10/23 11:11

ENAMA ENAMA	360	00 Fremont	Ave N.		Cl	nair	1 01	Cus	sto	ly l	Rec	orc	8	Lab	orato	ry Services	Agree	ment	
Fremo	i cal	Seattle, WA Tel: 206-35		Date	8/8/2					1	e: 2		of: 2			ory Project No (internal):	00 -	1815	7
An Alliance Technical Group C	ompany						ıth Ja	acksor	n Stre							Remarks: I 2B QA	,		
Client: GeoEngineers				Proje	ct No: 4	2450	4-00	01-01				A 11/10 SEC. (10)	0.000 (\$0.00000)						
Address: 2101 4th Ave Ste 95	50			Colle	cted by	Paul	Rob	inette											
City, State, Zip: Seattle, WA 981	21					eattl	00001000												
Telephone: 425.861.2674		***************************************	***************************************					t Tra	han	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						: Samples will be disposed in etain volume (specify above)		therwise reques rn to client	sted.
Email(s): rtrahan@geoengine	ers.com	, probin	ette@					***************************************	***************************************	***********									
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	10	Sign of	Casoline Casoline	20 82 15 15 15 15 15 15 15 15 15 15 15 15 15	Sel s	14CO 166 16 16 16 16 16 16 16 16 16 16 16 16	667 N		A DIST				Comment	s	
1 UST4-NSW-93	8/9/23	0745	s	3	X			X	X	X	X					2-day TAT			
2 UST4-SSW-93	8/9/23	0750	S	3	X	>		X	X	X	X					2-day TAT			
₃ UST4-B-90	8/9/23	0755	S	3	\times	>		X	\times	\times	\times					2-day TAT			
4																			
5							\perp												
6					Ш							10							
7					Н	-		\perp	_	_									
8				_	Ш	4				_									
9					Ш	_		\sqcup	_					Ш					
10							8												
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O	= Other, P = P	roduct, S = S	Soil, SD = 5	Sedimer	nt, SL=	Solid,	W = Wa	ater, DW	/ = Drink	ing Wa	ter, G	W = Gro	und Wa	ter, SW	= Storm Wate	er, WW = Waste Water	Editivity is	around Time	
	Priority Pollutar											g Mn	Mo Na	Ni Pb	Sb Se Sr S	n Ti Tl V Zn	☐ Standard	☐ Next [Day
***Anions (Circle): Nitrate Nitrite I represent that I am authorized to to each of the terms on the front an				r Fren		sphate	_	behalf		Clien		ed abo	ove, th	at I ha	ve verified	Client's agreement	☐ 3 Day	Same (specify	-
Relinquished (Signature)	Print Name	S Brices.	死_;	Date/T	ime	2 D.	RO	180	teceived	(Signat	ure)	W		2	Print Name	Date	S/Po/a	23	
Relinquished (Signature) x	Print Name			Date/T	ime			1	teceived		ure)		امر		Print Name		Time 10/23	(1.7)	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: S Jackson Street

Work Order Number: 2308152

August 14, 2023

Attention Robert Trahan:

Fremont Analytical, Inc. received 1 sample(s) on 8/10/2023 for the analyses presented in the following report.

Hydrocarbon Identification by NWTPH-HCID

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/14/2023

CLIENT: GeoEngineers Work Order Sample Summary

Project: S Jackson Street **Work Order:** 2308152

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2308152-001
 UST4-230808
 08/08/2023 7:00 AM
 08/10/2023 11:11 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2308152**Date: **8/14/2023**

CLIENT: GeoEngineers
Project: S Jackson Street

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2308152**

Date Reported: 8/14/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

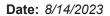
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2308152**Date Reported: **8/14/2023**


Client: GeoEngineers Collection Date: 8/8/2023 7:00:00 AM

Project: S Jackson Street

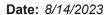
Lab ID: 2308152-001 **Matrix**: Product

Client Sample ID: UST4-230808

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Hydrocarbon Identification	by NWTPH-HCID			Batc	h ID: 41	170 Analyst: AP
Gasoline	ND	577		mg/Kg	1	8/10/2023 9:38:42 PM
Mineral Spirits	ND	962		mg/Kg	1	8/10/2023 9:38:42 PM
Kerosene	ND	962		mg/Kg	1	8/10/2023 9:38:42 PM
Diesel (Fuel Oil)	ND	962		mg/Kg	1	8/10/2023 9:38:42 PM
Heavy Oil	ND	1,920		mg/Kg	1	8/10/2023 9:38:42 PM
Mineral Oil	ND	1,920		mg/Kg	1	8/10/2023 9:38:42 PM
Surr: 2-Fluorobiphenyl	107	50 - 150		%Rec	1	8/10/2023 9:38:42 PM
Surr: o-Terphenyl	107	50 - 150		%Rec	1	8/10/2023 9·38·42 PM

CLIENT:

GeoEngineers


Project: S Jackson Street

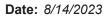
QC SUMMARY REPORT

Hydrocarbon Identification by NWTPH-HCID

Project. S Jackso	ii Street							-	
Sample ID: HO ICV	SampType: ICV			Units: mg/Kg		Prep Date	e: 7/27/2023	RunNo: 85547	
Client ID: ICV	Batch ID: 41170					Analysis Date	e: 7/27/2023	SeqNo: 1784893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Heavy Oil	515	100	500.0	0	103	70	130		
Surr: 2-Fluorobiphenyl	10.5		10.00		105	50	150		
Surr: o-Terphenyl	10.8		10.00		108	50	150		
Sample ID: HO ICB	SampType: ICB			Units: mg/Kg		Prep Date	e: 7/27/2023	RunNo: 85547	
Client ID: ICB	Batch ID: 41170					Analysis Date	e: 7/27/2023	SeqNo: 1784901	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Heavy Oil	ND	100							
Surr: 2-Fluorobiphenyl	9.91		10.00		99.1	50	150		
Surr: o-Terphenyl	9.84		10.00		98.4	50	150		
Sample ID: DX ICB	SampType: ICB			Units: mg/Kg		Prep Date	e: 7/27/2023	RunNo: 85547	
Client ID: ICB	Batch ID: 41170					Analysis Date	e: 7/27/2023	SeqNo: 1784903	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel Range Organics	ND	50.0							
Surr: 2-Fluorobiphenyl	10.0		10.00		100	50	150		
Surr: o-Terphenyl	10.0		10.00		100	50	150		
Sample ID: DX ICV	SampType: ICV			Units: mg/Kg		Prep Date	e: 7/27/2023	RunNo: 85547	
Client ID: ICV	Batch ID: 41170					Analysis Date	e: 7/27/2023	SeqNo: 1784904	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel Range Organics	479	50.0	500.0	0	95.8	70	130		
Surr: 2-Fluorobiphenyl	10.5		10.00		105	50	150		
Surr: o-Terphenyl	11.0		10.00		110	50	150		

Original Page 6 of 11

CLIENT: GeoEngineers


Project: S Jackson Street

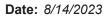
QC SUMMARY REPORT

Hydrocarbon Identification by NWTPH-HCID

1 Toject. O Jackson	Oli Ool										
Sample ID: OIL-CCV-41170A	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/10/2023		RunNo: 858	377	
Client ID: CCV	Batch ID: 41170					Analysis Date	e: 8/10/2023		SeqNo: 17 9	92087	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	477	100	500.0	0	95.5	80	120				
Surr: 2-Fluorobiphenyl	10.8		10.00		108	50	150				
Surr: o-Terphenyl	11.2		10.00		112	50	150				
Sample ID: DX-CCV-41170A	SampType: CCV			Units: mg/Kg		Prep Date	e: 8/10/2023		RunNo: 858	377	
Client ID: CCV	Batch ID: 41170					Analysis Date	e: 8/10/2023		SeqNo: 17 9	92088	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	484	50.0	500.0	0	96.7	80	120				
Surr: 2-Fluorobiphenyl	10.6		10.00		106	50	150				
Surr: o-Terphenyl	13.1		10.00		131	50	150				
Sample ID: MB-41170	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/10/2023		RunNo: 858	377	
Client ID: MBLKS	Batch ID: 41170					Analysis Date	e: 8/10/2023		SeqNo: 17 9	92089	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	30.0									
Mineral Spirits	ND	50.0									
Kerosene	ND	50.0									
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Mineral Oil	ND	100									
Surr: 2-Fluorobiphenyl	10.4		10.00		104	50	150				
Surr: o-Terphenyl	10.6		10.00		106	50	150				
Sample ID: LCS-41170	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/10/2023		RunNo: 858	377	
Client ID: LCSS	Batch ID: 41170					Analysis Date	e: 8/10/2023		SeqNo: 179	92090	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	520	50.0	500.0	0	104	74.5	125				

Original Page 7 of 11

QC SUMMARY REPORT


CLIENT: GeoEngineers

Project: S. Jackson Street

Hydrocarbon Identification by NWTPH-HCID

Project: S Jackson S												
Sample ID: LCS-41170	SampType	e: LCS			Units: mg/Kg		Prep Date	e: 8/10/20	23	RunNo: 858	377	
Client ID: LCSS	Batch ID:	41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	92090	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl		9.23		10.00		92.3	50	150				
Surr: o-Terphenyl		12.0		10.00		120	50	150				
Sample ID: 2308151-002ADUP	SampType	e: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/10/20	23	RunNo: 858	377	
Client ID: BATCH	Batch ID:	41170					Analysis Date	e: 8/10/20	23	SeqNo: 17 9	92092	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	34.2						0		30	
Mineral Spirits		ND	57.0						0		30	
Kerosene		ND	57.0						0		30	
Diesel (Fuel Oil)		ND	57.0						0		30	
Heavy Oil		ND	114						0		30	
Mineral Oil		ND	114						0	_	30	
Surr: 2-Fluorobiphenyl		11.8		11.39		104	50	150		0		
Surr: o-Terphenyl		11.9		11.39		105	50	150		0		
Sample ID: OIL-CCV-41170B	SampType	e: CCV			Units: mg/Kg		Prep Date	e: 8/10/20	23	RunNo: 858	377	
Client ID: CCV	Batch ID:	41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	92093	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil		499	100	500.0	0	99.7	80	120				
Surr: 2-Fluorobiphenyl		10.8		10.00		108	50	150				
Surr: o-Terphenyl		11.3		10.00		113	50	150				
Sample ID: DX-CCV-41170B	SampType	e: CCV			Units: mg/Kg		Prep Date	e: 8/10/20	23	RunNo: 858	377	
Client ID: CCV	Batch ID:	41170					Analysis Date	e: 8/10/20	23	SeqNo: 179	92094	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		488	50.0	500.0	0	97.6	80	120				
Surr: 2-Fluorobiphenyl		11.1		10.00		111	50	150				

Original Page 8 of 11

QC SUMMARY REPORT

CLIENT: GeoEngineers

Hydrocarbon Identification by NWTPH-HCID

Project: S Jackson	Street					н	iyarocarbon ident	ification by NWIPH-	-HCIL
Sample ID: DX-CCV-41170B	SampType: CCV			Units: mg/Kg		Prep Date	8/10/2023	RunNo: 85877	
Client ID: CCV	Batch ID: 41170					Analysis Date	8/10/2023	SeqNo: 1792094	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Surr: o-Terphenyl	13.1		10.00		131	50	150		
Sample ID: OIL-CCV-41170C	SampType: CCV			Units: mg/Kg		Prep Date:	8/10/2023	RunNo: 85877	
Client ID: CCV	Batch ID: 41170					Analysis Date	8/10/2023	SeqNo: 1792096	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Heavy Oil	500	100	500.0	0	100	80	120		
Surr: 2-Fluorobiphenyl	10.9		10.00		109	50	150		
Surr: o-Terphenyl	11.3		10.00		113	50	150		
Sample ID: DX-CCV-41170C	SampType: CCV			Units: mg/Kg		Prep Date:	8/10/2023	RunNo: 85877	
Client ID: CCV	Batch ID: 41170					Analysis Date	8/10/2023	SeqNo: 1792097	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	496	50.0	500.0	0	99.1	80	120		
Surr: 2-Fluorobiphenyl	11.3		10.00		113	50	150		
Surr: o-Terphenyl	13.5		10.00		135	50	150		

Original Page 9 of 11

Sample Log-In Check List

Cli	ent Name:	GEI				Work O	rder Numb	per: 2308152		
Lo	gged by:	Morgan Wil	son			Date Re	eceived:	8/10/2023	3 11:11:00 AM	
Chai	in of Cust	ody								
1.	Is Chain of C	custody compl	ete?			Yes	✓	No 🗌	Not Present	
2.	How was the	sample delive	ered?			Cou	<u>rier</u>			
Log	<u>In</u>									
			shipping containe stody Seals not in			Yes		No 🗌	Not Present ✓	
4. V	Was an attem	npt made to c	ool the samples?			Yes	✓	No 🗌	NA 🗆	
5. V	Were all item	s received at	a temperature of	>2°C to 6°C	*	Yes	✓	No 🗌	NA 🗆	
6. 5	Sample(s) in	proper contail	ner(s)?			Yes	✓	No 🗌		
7. 5	Sufficient san	nple volume fo	or indicated test(s)?		Yes	✓	No 🗌		
8. <i>F</i>	Are samples	properly prese	erved?			Yes	✓	No 🗌		
9. V	Was preserva	ative added to	bottles?			Yes		No 🗸	NA 🗌	
10. l	s there head	space in the \	/OA vials?			Yes		No 🗌	NA 🗸	
11. [Did all sample	es containers	arrive in good cor	ndition(unbro	ken)?	Yes	✓	No 🗌		
12. [Does paperw	ork match bot	tle labels?			Yes	✓	No 🗌		
13. <i>F</i>	Are matrices	correctly iden	tified on Chain of	Custody?		Yes	✓	No 🗆		
14. l	s it clear wha	at analyses we	ere requested?			Yes	✓	No 🗌		
15. V	Were all hold	ing times able	to be met?			Yes	✓	No 🗌		
<u>Spe</u>	cial Hand	ling (if app	olicable)							
16.	Was client n	otified of all d	iscrepancies with	this order?		Yes	; 🗆	No 🗌	NA 🗹	_
	Person	Notified:			Date:	:				
	By Wh	om:			Via:	eM	ail 🗌 Ph	one Fax	In Person	
	Regard	ling:								
	Client I	nstructions:								
17.	Additional re	emarks:								-
<u>Item</u>	<u>Information</u>									
		Item #		Temp °C						
	Sample			3.2						

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

www.fremontanalytical.com

	Print Name	gnature)	Received (Signature)		Date/Time			Print Name		Relinquished (Signature)	Relinqu
(9	SINA O	Bouled	* (MOM	0890	8/14/23		ALSONBON DE	Print Name	M	Relinquished (Signature)	Relinqu
s agreen	nat I have verifie	med above,	alf of the Cl	ytical on beh	Fremont Anal	ment with reement.	his Agreei of this Ag	enter into t	I represent that I am authorized to enter into this Agreement wit to each of the terms on the front and backside of this Agreement.	present that I	to e
☐ 3 Day ☐ Same Day		Nitrate+Nitrite	e Nitrate	te Fluoride	O-Phosphate	Bromide	Sulfate	Chloride	Nitrate Nitrite	**Anions (Circle): N	***Ani
Sn Ti Tl V Zn Standard Next Day	a Ni Pb Sb Se Sr	Hg K Mg Mn Mo Na	Co Cr Cu Fe	Be Ca Cd	: Ag Al As B Ba	Individual:	nts TAL	Priority Pollutants	RCRA-8	**Metals (Circle): MTCA-5	**Met
WW = Waste Water Turn-aro	Water, SW = Storm Water,	GW = Ground	DW = Drinking Water,	W = Water,	SD = Sediment, SL = Solid,		roduct, S=	O = Other, P = Product, S = Soil,	B = Bulk,	*Matrix: A = Air, AQ = Aqueous,	*Matri
											10
											9
											00
											7
											6
											5
											4
											ω
											2
			-			ס	0700	8/8/23		UST4-230808	Sn t
Comments	12 (5) 180 185 1	\$\frac{1}{2}\frac{1}\frac{1}{2}\f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 12 1	# of School Cont	Sample Type (Matrix)*	Sample	Sample		Sample Name	Samp
				ers.com	eoengine	nette@g	probin	ers.com,	Email(s): rtrahan@geoengineers.com, probinette@geoengineers.com); rtrahan@	Email(s
Disposal: Samples will be disposed in 30 days unless otherwise requested. Retain volume (specify above) Return to client	Dispos		ahan	Robert Tr	Report To (PM): Robert Trahan				.2674	Telephone: 425.861.2674	Teleph
				tle, WA	Location: Seattle, WA			21	city, state, zip: Seattle, WA 98121	_{ate, Zip:} Seatt	City, St
		***************************************	te	ul Robinet	collected by: Paul Robinette			0	Address: 2101 4th Ave Ste 950	_{s:} 2101 4th	Addres
		***************************************	01	04-001-0	Project No: 24504-001-01				eers	client: GeoEngineers	Client:
Special Remarks: Level 2B QA	Specia		on Street	outh Jacks	Project Name: South Jackson Street			ompany	An Alliance Technical Group Company	An Allian	
Laboratory Project No (internal):		Page: 1 of: 1			8/8/23 Date:		Seattle, WA 98103 Tel: 206-352-3790		9		-
Laboratory Services Agreement	100000	Chain of Custody Record &	ustody	n of Cu	Chai	Ave N.	3600 Fremont Ave N.	360		A PULLA	2

APPENDIX E Report Limitations and Guidelines for Use

APPENDIX E

REPORT LIMITATIONS AND GUIDELINES FOR USE³

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of South Jackson Partners LLC, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except South Jackson Partners LLC, their authorized agents and regulatory agencies should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report has been prepared for UST removal and excavation activities at Seventh Avenue Service Site located at 701 South Jackson Street, Seattle, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of South Jackson Partners LLC, their authorized agents and regulatory agencies. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our

³ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Agreement with South Jackson Partners LLC and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain after Completion of Remedial Activities

Remediation activity completed in a portion of a site cannot wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If South Jackson Partners desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

