Seeds, Tena (ECY)

From:	Seeds, Tena (ECY)
Sent:	Tuesday, March 5, 2024 9:32 AM
То:	Kim Hempel
Cc:	doug@cantera-group.com; mike@cantera-group.com; william.joyce@hcmp.com;
	jamie.stevens@creteconsulting.com; Kristin.Anderson@floydsnider.com
Subject:	RE: Time Oil Bulk Terminal - Long-Term Compliance Monitoring Annual Report
Attachments:	2024.03.01 TOC LTCM Annual Report-ECYcomments.pdf

Hi Kim,

Thank you for submitting the Annual Report for the Time Oil Bulk Terminal Site. Ecology has completed review of the report and provides the following comments:

- Page A-2, Section 1.1 third bullet (comment for clarification purposes): Regarding the cleanup action summary
 for CAA-4, the groundwater flowing onto ASKO from the upgradient BNSF parcel that has elevated
 concentrations of chlorinated VOCs is from the perched water-bearing zone. The interceptor trench and
 permeable reactive barrier are designed to only capture and treat water from the perched WBZ. The gravity well
 that receives the treated water is screened into the shallow WBZ.
- Page A-15, Section 4.2.2 first paragraph: The TCE-contaminated source soil was encapsulated by ISS, not removed.
- Page A-15, Section 4.2.2 second paragraph: 01MW53 was also a downgradient well (in addition to 01MW56 and 01MW85 that were mentioned) where TCE spiked then showed increasing DCE and/or VC. Also, regarding detections of ethene and methane at downgradient well 01MW85, I would expect those to be detected at higher concentrations given the relatively high concentrations of cDCE in that well. Those parameters should continue to be monitored at 01MW85 and also at other locations where CVOCs are elevated to demonstrate that complete reductive dechlorination is occurring.
- Page A-17, Section 4.3 last paragraph: The statement that during previous Site investigations TCE did not exceed the cleanup level in groundwater in the shallow WBZ on the BNSF parcel is not accurate. Shallow WBZ well 01MW93 on the BNSF property contained detectable TCE ranging from 1.5 ug/L to 5.5 ug/L during events performed in 2012, 2013, and 2014. While these concentrations are significantly lower than the 2023 RI detection in 01MW93 (1410 ug/L), they are still higher than the Site CUL of 0.5 ug/L.
- Page A-19, Section 5.1: A comprehensive well gauging event should be performed at all accessible wells on the ASKO, Bulk Terminal, and BNSF parcels and in W. Commodore to further evaluate flow conditions and groundwater migration patterns that may be associated with the increased CVOC concentrations observed in the shallow WBZ on BNSF and on ASKO (i.e., the gravity well screened in the shallow WBZ) and downgradient of the ASKO boundary. Collection and analysis of groundwater samples from those wells for CVOCs (and possibly other parameters) should also be performed concurrent with the site-wide, multi-party event. Ecology expects that both parties (BNSF and Cantera/TOC Seattle Terminal 1, LLC) will coordinate with each other to conduct this event sometime during 2024.
- Pages A-19 and A-10, Sections 5.2, 5.3, and 5.4: Ecology agrees with all of the recommendations provided in these sections for the Bulk Terminal, ASKO, and East Waterfront.

These comments have also been inserted into the PDF file for this report (attached), which Ecology will be uploading to the online document repository for the Time Oil Bulk Terminal Site. That copy will be publicly accessible from Ecology's web page for this site at https://apps.ecology.wa.gov/cleanupsearch/site/14604#site-documents.

Regards,

Tena Seeds, PE (she/her) Senior Engineer, Uplands Unit Northwest Region Toxics Cleanup Program Washington State Department of Ecology Mailing Address: PO Box 330316, Shoreline, WA 98133-9716 Physical Address: 15700 Dayton Ave N, Shoreline, WA 98133 Phone: (425) 457-3143 24-hour reception line: 206-594-0000 tena.seeds@ecy.wa.gov ↓ Chat or call in Teams

From: Kim Hempel <khempel@pioneerees.com>
Sent: Friday, March 1, 2024 11:28 AM
To: Seeds, Tena (ECY) <TSEE461@ECY.WA.GOV>
Cc: doug@cantera-group.com; mike@cantera-group.com; william.joyce@hcmp.com;
jamie.stevens@creteconsulting.com; Kristin.Anderson@floydsnider.com
Subject: Time Oil Bulk Terminal - Long-Term Compliance Monitoring Annual Report

External Email

Good morning Tena,

As required by Prospective Purchaser Consent Decree (PPCD No. 20-2-15215-3 SEA), the Long-Term Compliance Monitoring Annual Report for the Time Oil Bulk Terminal Site is available for download at the link below, which documents activities performed in 2023 in accordance with the Long-Term Compliance Monitoring Plan (LTCMP).

Please let me know if you have any questions.

Thanks, Kim

Kim Hempel | Senior Project Manager

Pioneer Engineering & Environmental Services, LLC

2753 West 31st Street Chicago, Illinois 60608

Main: 773.722.9200 Direct: 773.435.3725 Fax: 773.722.9201 Web: PioneerEES.com

Files attached to this message

Filename	Size	Checksum (SHA256)
2024.03.01 TOC LTCM Annual Report- compressed.pdf	7.47 MB	a3fe291ce3a5dd8f5104bf7d6dd345e283bb18968047b8d2ce787ca21c4f29d2

2753 West 31st Street | Chicago, IL 60608 Tel: 773-722-9200 | Fax: 773-722-9201 | pioneerEES.com

Transmitted via Electronic Mail

March 1, 2024

Ms. Tena Seeds Washington State Department of Ecology Toxics Cleanup Program 15700 Dayton Ave N., Shoreline, WA 98133

RE: Long-Term Compliance Monitoring Annual Report Time Oil Bulk Terminal Site, Facility Site ID #75486194 and Cleanup Site ID #14604 Prospective Purchaser Consent Decree No. 20-2-15215-3 SEA

Dear Ms. Seeds:

As required by Prospective Purchaser Consent Decree (PPCD No. 20-2-15215-3 SEA), Pioneer Engineering & Environmental Services, LLC on behalf of TOC Seattle Terminal 1, LLC submits the attached Long-Term Compliance Monitoring Annual Report for the Time Oil Bulk Terminal Site for the 2023 reporting period.

If you have any questions about this report, please contact me at 773-435-3725.

Sincerely,

Kin Heupel

Kim Hempel Project Coordinator Pioneer Engineering & Environmental Services, LLC

Distribution List: Doug Ciserella and Mike Ciserella, TOC Seattle Terminal 1, LLC Bill Joyce, Hillis Clark Martin & Peterson P.S. Jamie Stevens, CRETE Consulting Kristin Anderson, Floyd|Snider

Long-Term Compliance Monitoring Annual Report

Time Oil Bulk Terminal Site Facility Site ID #75486194 Cleanup Site ID #14604 PPCD No. 20-2-15215-3 SEA Seattle, Washington

> *Pioneer Project Number:* 18-0317-101

> > Date Submitted: March 1, 2024

Prepared for:

TOC Seattle Terminal 1, LLC 2753 West 31st Street Chicago, Illinois 60608

Submitted to:

Washington State Department of Ecology Toxics Cleanup Program 15700 Dayton Ave N. Shoreline, Washington 98133 Attn: Ms. Tena Seeds

TIME OIL BULK TERMINAL SITE PROSPECTIVE PURCHASER CONSENT DECREE NO. 20-2-15215-3 SEA LONG-TERM COMPLIANCE MONITORING ANNUAL REPORT

This Long-Term Compliance Monitoring Annual Report has been prepared to document the post-remedial construction compliance monitoring items detailed in Section 3 of the Long-Term Compliance Monitoring Plan (LTCMP¹) for the Time Oil Bulk Terminal Site (Site) for the 2023 reporting period. The LTCMP includes a Groundwater Monitoring Plan (GMP), a Soil and Remedial Element Management Plan (SREMP) and a Vapor Intrusion Assessment and Mitigation Plan (VI Plan). Activities performed in 2023 in accordance with each of these plans are described below.

Summary of Monitoring Activities Performed per the GMP

- The 2023 Groundwater Monitoring Annual Report includes the following required LTCMP items:
 - Monitoring well network updates
 - o Summary of quarterly short-term groundwater monitoring activities, data collected, and results
 - Assessment of Compliance with Groundwater Cleanup Standards
 - Indications of Organic Contaminant Degradation
 - Groundwater Flow Patterns
 - Recommendations for Updates to Monitoring Locations or Frequency

Refer to the 2023 Groundwater Monitoring Annual Report included as Appendix A for a summary of activities and data collected.

Summary of Assessment or Mitigation Activities Performed per the VI Plan

• No buildings are present on the site; therefore, vapor barriers were not installed and vapor intrusion monitoring was not performed during the reporting period.

Summary of Inspection and Maintenance Activities Performed per the SREMP

- The site remains undeveloped and routine inspections have not yet been triggered per Section 7 of the SREMP. The perimeter fencing has been maintained during the reporting period, which limits site access to authorized personnel only. Interim caps/surfaces installed during the remedial action have been observed during groundwater monitoring events and construction oversight with no significant degradation or changes noted.
- The eastern lot on the Bulk Terminal parcel, hereinafter referred to as Lot F, is currently being developed. The boundaries of Lot F are depicted on Figure A.1 in Appendix A. Work is anticipated to be completed by December 2024. Routine inspections of Lot F will begin 2 years after development.

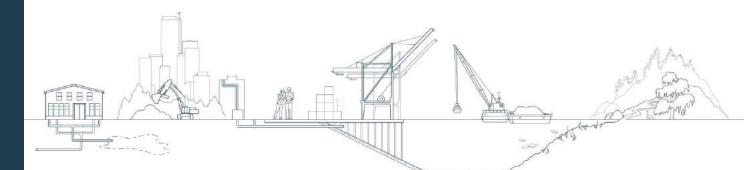
Anticipated 2024 Activities

- Development at Lot F started in October 2023 and is anticipated to be completed by December 2024.
- No other property modifications have occurred at the site or are currently anticipated in 2024.
- Quarterly groundwater monitoring will continue as described in Appendix A.
- Quarterly progress reports will provide Ecology with periodic updates regarding redevelopment plans and other Site activities.
- The next Long-Term Compliance Monitoring Annual Report will be submitted on or by March 1, 2025.

¹ Long-Term Compliance Monitoring Plan, Prepared by CRETE Consulting, February 10, 2023.

Appendices

• Appendix A – Groundwater Monitoring Annual Report


END LONG-TERM COMPLIANCE MONITORING ANNUAL REPORT

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Prepared for Cantera Development Group, LLC

February 2024

LIMITATIONS

This report has been prepared for the exclusive use of Cantera Development Group, LLC, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd|Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd|Snider.

The interpretations and conclusions contained in this report are based in part on previous site characterization data collected by others and Floyd|Snider cannot assure the accuracy of this information.

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

> This document was prepared for Cantera Development Group, LLC under the supervision of:

Name: Pamela Osterhout Date: 02/27/2024

Table of Contents

1.0	Introd	uction		A-1
	1.1	CLEANI	JP ACTION SUMMARY	A-1
	1.2	PROPE	RTY REDEVELOPMENT STATUS	A-3
2.0	Monit	oring W	ell Network Updates	A-5
3.0	Short-	Term Pe	rformance Monitoring Activities	A-7
	3.1	GROUN	IDWATER FLOW PATTERN ANALYSIS	A-8
	3.2	BULK T	ERMINAL GROUNDWATER MONITORING	A-9
	3.3	ASKO G	ROUNDWATER MONITORING	A-9
	3.4	EAST W	/ATERFRONT	A-10
	3.5		IGENCY SAMPLING AND GROUNDWATER MONITORING PLA IONS	
		3.5.1	2023 Contingency Sampling	A-11
		3.5.2	Groundwater Monitoring Plan Deviations	
	3.6	DATA V	ALIDATION	
4.0	Year 1	Data Ev	aluation and Performance Summary	A-13
	4.1	COMPL	IANCE WITH CLEANUP STANDARDS	A-13
		4.1.1	Bulk Terminal	A-13
		4.1.2	ASKO Hydraulic	A-13
		4.1.3	East Waterfront	A-14
	4.2	ASSESS	MENT OF NATURAL ATTENUATION	A-14
		4.2.1	Bulk Terminal	A-14
		4.2.2	ASKO Hydraulic	A-15
		4.2.3	East Waterfront	A-16
	4.3	BNSF R	AILWAY COMPANY PROPERTY INVESTIGATION	A-16
5.0	Recom	nmendeo	d Short-Term Groundwater Monitoring Updates	A-19
	5.1	SITE-W	IDE GROUNDWATER FLOW PATTERNS	A-19
	5.2	BULK T	ERMINAL	A-19
	5.3	ASKO H	IYDRAULIC	A-19
	5.4	EAST W	/ATERFRONT	A-20
	5.5	CONTIN	IGENCY ACTIONS	A-20
	5.6	SCHEDU	JLE AND REPORTING	A-20
6.0	Refere	ences		A-21

List of Tables

- Table A.1 Well Inventory and Status
- Table A.2Summary of 2023 Short-Term Performance Monitoring
- Table A.3Pre- and Post-Remediation Groundwater Results for Indicator Hazardous
Substances
- Table A.4 Monitored Natural Attenuation and Field Parameters

List of Figures

- Figure A.1 Site Features and Monitoring Well Status Summary
- Figure A.2 Short-Term Performance Monitoring Locations
- Figure A.3a Shallow WBZ Groundwater Elevations—January 2023
- Figure A.3b Shallow WBZ Groundwater Elevations—April 2023
- Figure A.3c Shallow WBZ Groundwater Elevations—June 2023
- Figure A.3d Shallow WBZ Groundwater Elevations—October 2023
- Figure A.4a Intermediate WBZ Groundwater Elevations—January 2023
- Figure A.4b Intermediate WBZ Groundwater Elevations—April 2023
- Figure A.4c Intermediate WBZ Groundwater Elevations—June 2023
- Figure A.5 2023 IHS Analytical Results: Gasoline-Range Organics
- Figure A.6 2023 IHS Analytical Results: Total Diesel-Range and Oil-Range Organics
- Figure A.7 2023 IHS Analytical Results: Trichloroethene and Vinyl Chloride
- Figure A.8 2023 IHS Analytical Results: Benzene

List of Attachments

- Attachment A.1 Well Logs
- Attachment A.2 Laboratory Reports
- Attachment A.3 FluxTracer Report
- Attachment A.4 Data Validation Memoranda
- Attachment A.5 Updated Short-Term Monitoring Well Sampling and Analytical Schedule

List of Abbreviations

Abbreviation	Definition
AOC	Area of Concern
ASKO	ASKO Hydraulic
BNSF	BNSF Railway Company
CAA	Cleanup action area
САР	Cleanup Action Plan
СРОС	Conditional point of compliance
CUL	Cleanup level
cVOC	Chlorinated volatile organic compound
DCE	Dichloroethene
DO	Dissolved oxygen
DRO	Diesel-range organics
Ecology	Washington State Department of Ecology
GMAR	Groundwater Monitoring Annual Report
GMP	Groundwater Monitoring Plan
GRO	Gasoline-range organics
IHS	Indicator hazardous substance
ISS	In situ solidification and stabilization
LTCMP	Long-Term Compliance Monitoring Plan
µg/L	Micrograms per liter
MNA	Monitored natural attenuation
ORO	Oil-range organics
ORP	Oxidation-reduction potential
penta	Pentachlorophenol
POC	Point of compliance
PRB	Permeable reactive barrier
Property	The four parcels identified as "Bulk Terminal," "ASKO," "East Waterfront," and "West Waterfront"
REL	Remediation level
ROW	Right-of-way
February 2024	Page A-iii Long-Term Compliance M

Definition
Time Oil Bulk Terminal Site
Trichloroethene
Total petroleum hydrocarbons
Water-bearing zone

1.0 Introduction

This Groundwater Monitoring Annual Report (GMAR) was prepared at the request of TOC Seattle Terminal 1, LLC, to fulfill requirements of the Prospective Purchaser Consent Decree (No 20-2-15215-3 SEA). The GMAR presents the results of post-cleanup action groundwater monitoring completed in 2023 in accordance with the Groundwater Monitoring Plan (GMP; Floyd|Snider 2023), which was presented as an appendix to the Long-Term Compliance Monitoring Plan (LTCMP; Crete 2023) for the Time Oil Bulk Terminal Site (Site). The LTCMP for the Site was approved by the Washington State Department of Ecology (Ecology) in a letter dated February 14, 2023. The GMAR is presented as an appendix to the Long-Term Compliance Monitoring Annual Report for the Site.

The Site is the location of the former Time Oil Company Seattle Terminal facility located on W. Commodore Way in Seattle, Washington. For the purposes of this document, the Property is defined as the four separate upland parcels within the Site commonly identified as the Bulk Terminal, ASKO Hydraulic (ASKO), East Waterfront, and West Waterfront. A cleanup action was performed in 2021 in accordance with the Cleanup Action Plan (CAP; Ecology 2020) for the Site.

This GMAR provides an evaluation of compliance with Site groundwater cleanup levels (CULs) for indicator hazardous substances (IHSs; arsenic, gasoline-range organics [GRO], total diesel-range organics [DRO] and oil-range organics [ORO], benzene, trichloroethene [TCE], vinyl chloride, and pentachlorophenol [penta]) specified in the CAP at the applicable point of compliance (POC). Cleanup standards are defined as a CUL combined with a POC where the CUL applies. A conditional POC (CPOC) was established at the downgradient edge of the Upland Area of Concern (AOC) and within the W. Commodore Way right-of-way (ROW), as shown on Figure A.1.

1.1 CLEANUP ACTION SUMMARY

Remedial action construction was completed at the Site between July and December 2021 and included removal or in situ solidification and stabilization (ISS) of contaminated soil acting as a source of IHSs to groundwater in designated cleanup action areas (CAAs) and focused in situ groundwater treatment as shown on Figure A.1. Those activities, which are documented in the Remedial Action Completion Report Phase 1 (Crete 2022), were designed to remove source soil contributing to groundwater contamination in three water-bearing zones (WBZs) at the Site, including a perched WBZ (encountered only on ASKO and the upgradient BNSF Railway Company [BNSF] parcel), shallow WBZ, and intermediate WBZ.

The goals of source soil removal for the cleanup action were determined based on the AOC in which each CAA was located. In the upgradient Upland AOC, comprising the Bulk Terminal, ASKO, and the adjacent W. Commodore Way ROW, the cleanup action was designed to achieve remediation levels (RELs) in soil to meet CULs long-term in groundwater at the CPOC. In the downgradient Shoreline AOC, comprising the East Waterfront, the cleanup action was designed to achieve CULs in soil to meet CULs in soil to meet CULs in soil to meet for the cleanup action was designed to achieve CULs in soil to meet for the CPOC in a shorter time frame.

The cleanup action encompassed multiple CAAs, summarized as follows.

- In CAA-1 and CAA-2 on the Bulk Terminal, excavation and ISS were conducted to address soil with GRO, total DRO+ORO, and benzene exceeding RELs and contributing to groundwater contamination in the shallow WBZ. Limited petroleum impacts to groundwater in the intermediate WBZ were also present in the W. Commodore Way ROW downgradient of CAA-2. An oxygen-releasing compound (ORC-A) was applied in the northeast and northwest corners of CAA-2 after excavation.
- In CAA-3, located between the Bulk Terminal and ASKO, excavation was conducted to address soil with GRO, total DRO+ORO, benzene, and TCE exceeding RELs. Soil contamination in this CAA was shallow and did not appear to contribute to groundwater contamination.
- In CAA-4 on ASKO, soil with TCE exceeding RELs and contributing to groundwater contamination in the perched, shallow, and intermediate WBZs was addressed by ISS. An in situ groundwater treatment barrier of trademarked colloidal biomatrix (PlumeStop) mixed with sulfidated microscale zero-valent iron was injected along the northern boundary of ASKO, downgradient of CAA-4. Groundwater flowing onto ASKO from the upgradient BNSF parcel that has elevated concentrations of chlorinated volatile organic compounds (cVOCs) is additionally treated via an interceptor trench and permeable reactive barrier (PRB) wall amended with zero-valent iron. The treated groundwater is infiltrated through an on-Property gravity well.
- In CAA-5 on ASKO, shallow soil with arsenic, GRO, and total DRO+ORO exceeding CULs and contributing to groundwater contamination in the perched WBZ was removed via excavation.
- In CAA-6 on the East Waterfront, soil with GRO, total DRO+ORO, and benzene exceeding CULs and contributing to groundwater contamination in the shallow WBZ was removed via excavation.
- In CAA-7 on the East Waterfront, soil with arsenic exceeding CULs and contributing to limited contamination in the shallow WBZ was removed via excavation.

Monitored natural attenuation (MNA) is a component of the cleanup action and is expected to occur in the dissolved-phase organic contaminant plumes remaining after completion of remedial action construction. The areas where MNA is expected to occur include:

- areas within and downgradient of groundwater plumes where soil contaminant source removal was performed via excavation;
- adjacent to and downgradient of areas where soil source contamination was immobilized with ISS; and
- downgradient of areas where bio-amendments or in situ groundwater treatment were used to accelerate biodegradation of organic contaminants.

The final component of the cleanup action will include installation of a cap and implementation of institutional controls on the Upland AOC in conjunction with property redevelopment to provide a protective barrier to remaining contamination.

1.2 PROPERTY REDEVELOPMENT STATUS

Redevelopment is in progress for a portion of the Bulk Terminal on Lot F. Redevelopment began on Lot F (Refer to Figure A.1) on October 30, 2023, and includes grading, installation of underground utilities, and construction of a multi-story public storage building. Redevelopment of ASKO and the remaining portions of the Bulk Terminal has been delayed and other redevelopment plans are currently being considered.

Impacts to the monitoring well network and modifications to the network to accommodate property redevelopment are discussed in further detail in Section 2.0. Locations of the planned buildings are shown on Figure A.1.

This page intentionally left blank.

2.0 Monitoring Well Network Updates

A monitoring well network was established at the Property to assess performance of the cleanup action and compliance with the CULs for groundwater specified in the CAP. This network includes monitoring wells located at the CPOC and downgradient of the CPOC to measure compliance with cleanup standards, wells upgradient of the CPOC to measure and quantify the effects of remediation, and sentinel wells to monitor the nature and extent of contaminants in groundwater when CULs have not been achieved at the CPOC or to evaluate plume boundary conditions.

The network of monitoring wells was updated following remedial action construction with four additional monitoring wells installed to replace certain wells decommissioned during construction and to fill remaining gaps in the monitoring well network, including shallow WBZ well 01MW19R on the Bulk Terminal, intermediate WBZ well 01MW49R near the ROW downgradient of the Bulk Terminal, perched WBZ well MW03R on ASKO, and shallow WBZ well 02MW04R on the East Waterfront. These wells were installed in December 2022 as described in Section 2.4 of the GMP. Well completion logs for these four new wells are included in Attachment A.1.

Additionally, four wells were decommissioned in June 2023 in preparation for redevelopment on Lot F of the Bulk Terminal parcel including 01MW17, 01MW99, 01MW105, and 01MW110. In the GMP, 01MW17 was designated to be retained for additional performance data if needed; however, it was located within a driveway for the new building to be constructed on Lot F. Therefore, in coordination with Ecology, 01MW100 was retained instead to fulfill the monitoring objectives at 01MW17 specified in the GMP. Monitoring wells were decommissioned by a Washington State licensed driller in accordance with WAC 173-160-381.

The current status of Site monitoring wells is summarized in Table A.1 and shown on Figure A.1. The monitoring well network used for the short-term performance monitoring includes monitoring well locations as shown on Figure A.2 and is discussed in further detail in Section 3.0. This page intentionally left blank.

3.0 Short-Term Performance Monitoring Activities

The groundwater monitoring activities completed in 2023 represent the first year of short-term performance monitoring at the Site. Short-term monitoring will be conducted for 2 years in the shoreline AOC (East Waterfront) and 4 years in the upland AOCs (ASKO and Bulk Terminal) and will transition to long-term monitoring per the GMP following completion of the short-term monitoring schedule. Post-remediation short-term performance monitoring was outlined in the GMP in pre-redevelopment (initial) and post-redevelopment phases. Short-term performance monitoring was conducted quarterly per the GMP starting in January 2023. Due to changes in the property redevelopment plans and schedule, short-term monitoring has not yet transitioned to post-development short-term monitoring.

Performance monitoring is being conducted to assess remedy effectiveness within and downgradient of active treatment areas and includes assessment of the natural attenuation processes, groundwater flow patterns, and groundwater quality trends after remediation. Short-term performance monitoring was conducted in 2023 at wells illustrated on Figure A.2 on a quarterly, semiannual, or annual basis. A detailed field sampling and analytical schedule for each well included in the 2023 short-term performance monitoring program is presented in Table A.2.

Quarterly groundwater monitoring was conducted on January 31 through February 1, April 7, June 28 and 29, and October 10, 2023. The third quarterly monitoring event was conducted early in coordination with Ecology to complete the sampling prior to the anticipated start of redevelopment construction on Lot F in July 2023; construction on Lot F was later delayed until late October 2023.

Monitoring wells were sampled using standard low-flow methods with either a peristaltic pump (shallow WBZ wells) or a bladder pump (intermediate WBZ wells). Depth to groundwater and field parameters (pH, temperature, specific conductance, dissolved oxygen [DO], and oxidation–reduction potential [ORP]) were also recorded at each well sampled in 2023.

Groundwater elevations and flow patterns measured each quarter are presented in Figures A.3a through A.3d for the shallow WBZ and A.4a through A.4c for the intermediate WBZ. The 2023 IHS analytical results are presented in Table A.3 along with the result collected most recently prior to remediation for comparison (shown as pre-remediation). Results are illustrated by IHS or IHS groups: GRO, total DRO and ORO, TCE and VC, and benzene, in Figures A.5, A.6, A.7, and A.8, respectively. Penta and total arsenic results are not shown on a figure because analysis of these IHSs were spatially limited (one to two wells). IHS (and secondary MNA parameter *cis*-1,2-dichloroethene [DCE]) analytical results are presented in Table A.3. All other secondary MNA parameters and field parameters are presented in Table A.4. Laboratory reports for all monitoring events are included in Attachment A.2.

3.1 GROUNDWATER FLOW PATTERN ANALYSIS

Groundwater flow directions and gradients were evaluated quarterly by collecting depth to groundwater measurements in accessible shallow WBZ and intermediate WBZ wells during each quarterly monitoring event. Site-wide depth to groundwater measurements were collected during the first three monitoring events of 2023 and at a reduced list of locations in the shallow WBZ during the fourth quarter of 2023 in coordination with Ecology. Potentiometric maps of the shallow WBZ were prepared for each of the four quarterly events and are presented in Figures A.3a through A.3d. Potentiometric maps of the intermediate WBZ were prepared for the first three quarterly events and are presented in Figures A.4a through A.4c.

In the upland AOCs, shallow WBZ groundwater flow patterns were monitored to assess whether flow patterns changed from pre-remediation conditions because of influence from the ISS monoliths.

- On the Bulk Terminal, groundwater mounding continues to be observed in the central portion of the parcel in the vicinity of 01MW12, likely because this remains a relatively large unpaved area at the Site with predominantly gravel fill from various excavations. The primary groundwater flow is to the north-northwest, with secondary flow directions (likely caused by mounding) to the west and northeast. The steepest gradients were measured between the CAA-2 and CAA-4 ISS monoliths in the vicinity of 01MW30 and 01MW19R. Groundwater levels and flow direction were relatively consistent between the wet and dry seasons and consistent with the pre-ISS modeling presented in the Engineering Design Report (Crete 2021).
- On ASKO, shallow WBZ gradients remain relatively flat downgradient of the CAA-4 ISS monolith relative to pre-remediation conditions. Gradients have become steeper between the CAA-4 and CAA-2 monoliths relative to pre-remediation conditions; however, groundwater flow directions remain relatively consistent between pre- and post-remediation conditions with a primary flow direction to the north. No significant change in water level elevations was observed between the wet and dry seasons. The perched WBZ was monitored at MW03R, which remained dry throughout 2023. The perched WBZ, which was previously only observed on ASKO and the upgradient BNSF parcel, may no longer be present because of the capture of perched groundwater in the interceptor trench and ISS completed on ASKO.

In the shoreline AOC, at the East Waterfront, shallow WBZ groundwater elevations were consistent throughout 2023 with a primary flow direction to the north-northwest, relatively flat gradients toward the shoreline, and steeper gradients in the southern portion of the parcel consistent with topography and pre-remediation flow patterns. The primary groundwater flow direction of the intermediate WBZ is north-northwest, toward Salmon Bay, consistent with pre-remediation flow patterns. Spatial coverage of the intermediate WBZ wells is limited, and water levels were relatively consistent through the first three quarters of 2023. In coordination with Ecology, water level monitoring of the intermediate WBZ wells was discontinued after the third quarter of 2023.

3.2 BULK TERMINAL GROUNDWATER MONITORING

Short-term performance monitoring on the Bulk Terminal in 2023 included the following:

- Quarterly monitoring of shallow WBZ wells 01MW35 and 01MW84 downgradient of the CPOC at the edges of the current total petroleum hydrocarbons (TPH) plume and 01MW19R adjacent to the ISS monolith
- Semiannual monitoring of shallow WBZ wells 01MW12 and 01MW40 and intermediate WBZ well 01MW49R within the groundwater contaminant plumes and downgradient of ISS and excavation areas
- Annual monitoring of shallow WBZ well 01MW66 in the localized penta plume
- Shallow WBZ well 01MW87 and intermediate WBZ well 01MW51 sampling during the second quarterly event to establish post-remedy baseline conditions for those wells located downgradient of the ISS and excavation areas

On the Bulk Terminal, GRO concentrations remain greater than the CUL (800 micrograms per liter $[\mu g/L]$) but decreased significantly (35% to 90%) compared to pre-remediation conditions in two downgradient wells (01MW19R and 01MW84), with GRO concentrations ranging from 990 to 5,500 $\mu g/L$. GRO concentrations were less than the CUL at wells 01MW12, 01MW35, 01MW40, 01MW49R, 01MW51, and 01MW87 with concentrations ranging from non-detect to 110 $\mu g/L$.

Total DRO and ORO concentrations remain greater than the CUL (500 μ g/L) and have slightly increased at shallow WBZ wells 01MW12 and 01MW40 upgradient of the CAA-2 ISS monolith with concentrations ranging from 620 to 5,300 μ g/L compared to pre-remediation concentrations of 590 to 1,100 μ g/L. Benzene also exceeded the CUL (0.44 μ g/L) at 01MW12 and 01MW40 during the 2023 monitoring at concentrations ranging from 0.73 to 1.3 μ g/L. The TPH and benzene concentrations at 01MW40 were much lower during the third quarter, indicating that residual TPH may be effected by temporary remobilization of contaminants where excavation was completed to achieve RELs in CAA-1, but concentrations are expected to continue to decline over time as TPH degrades and the Site becomes more stable. Total DRO and ORO decreased by about 46% or more at downgradient wells 01MW19R, 01MW35, 01MW49R, 01MW51, and 01MW84 relative to pre-remediation conditions.

Penta was only monitored in shallow WBZ well 01MW66 during January 2023. Penta concentrations decreased from 3.6 to 1.9 μ g/L between 2019 and 2023, but remain above the CUL of 0.20 μ g/L.

3.3 ASKO GROUNDWATER MONITORING

Short-term performance monitoring on ASKO in 2023 included the following:

 Shallow WBZ wells 01MW53 and 01MW85 downgradient of the PlumeStop at the CPOC and at the edges of the current cVOC plume, and 01MW46 adjacent to the ISS monolith were monitored quarterly.

- Shallow WBZ well 01MW15 upgradient and adjacent to the ISS treatment area, shallow WBZ wells MW05 and 01MW56, and intermediate WBZ well 01MW108 were monitored semiannually.
- Shallow WBZ MW06 was monitored once post-remedy in January 2023 to evaluate a baseline of results relative to MW05 ahead of property redevelopment when MW05 will presumably be decommissioned.
- Contingency shallow WBZ well 01MW107 was sampled in June (Q3) and October (Q4) 2023 because of elevated cVOC concentrations observed in the shallow WBZ at 01MW53 (per the GMP).

The perched WBZ well MW03R was dry during all four quarterly events and therefore was not sampled in 2023.

On ASKO, TCE concentrations have decreased relative to pre-remediation conditions in the vicinity of the CAA-4 source area (01MW46 and MW05) from 880 μ g/L and 240 μ g/L to 300 μ g/L and 160 μ g/L, respectively, but remain above the CUL of 0.50 μ g/L. MW06, which is within the radius of the PlumeStop, did not have detectable TCE post-remediation. TCE concentrations increased at downgradient ROW wells 01MW53 and 01MW85 with concentrations ranging from 1.5 to 2.9 μ g/L and 5.7 to 110 μ g/L relative to pre-remediation conditions when TCE was non-detect. This increased TCE is attributed primarily to increases of TCE in the shallow zone upgradient of ASKO, which is discussed further in Section 4.3, and may also be influenced by temporary remobilization of contamination by ISS prior to installation of the PlumeStop. cVOCs were not detected downgradient at contingency monitoring well 01MW107.

Vinyl chloride, which is a breakdown product of TCE, has slightly increased relative to preremediation conditions at several ASKO monitoring wells, including 01MW15, 01MW46, 01MW53, 01MW56, and 01MW85. This is expected as TCE continues to degrade. Vinyl chloride decreased relative to pre-remediation conditions at shallow WBZ well MW05 from 27 μ g/L to 6.9 μ g/L, but remains above the CUL of 0.20 μ g/L. Vinyl chloride also decreased at intermediate WBZ well 01MW108 from 0.33 μ g/L to 0.065 μ g/L. Results of natural attenuation parameters on ASKO are summarized in Section 4.2.2.

Benzene concentrations were monitored at source area wells 01MW46 and MW05 and downgradient well MW06. Benzene concentrations have decreased relative to pre-remediation conditions at 01MW46 from 14 to 4.8 μ g/L, and benzene concentrations at MW05 were relatively consistent with pre-remediation concentrations (1.0 μ g/L) at 1.4 to 1.5 μ g/L. Benzene was not detected at MW06, downgradient from MW05.

3.4 EAST WATERFRONT

Short-term performance monitoring on the East Waterfront in 2023 included the following:

• Shallow WBZ wells 02MW04R and 02MW19, within the groundwater contaminant plumes and downgradient of the excavation areas, and shallow WBZ well 02MW07 within the groundwater TPH plume were monitored quarterly.

TPH (GRO and total DRO + ORO), benzene, and total arsenic results at all locations were less than CULs at the three monitored wells (02MW04R, 02MW07, and 02MW19) each quarter, except for one exceedance of benzene (29 μ g/L) at 02MW04R during the June 2023 event. Benzene concentrations were non-detect during the first, second, and fourth quarters, indicating that this third quarter result was anomalous.

3.5 CONTINGENCY SAMPLING AND GROUNDWATER MONITORING PLAN DEVIATIONS

The 2023 monitoring events were adaptively managed each quarter in coordination with Ecology based on the cumulative data collected. Each quarter, the IHS results were evaluated relative to the GMP decision framework for contingency sampling. Additionally, because of a change in the redevelopment schedule, the planned decommissioning of short-term performance monitoring wells was put on hold until redevelopment begins.

3.5.1 2023 Contingency Sampling

Contingency sample collection and analysis was conducted per the GMP to fulfill the short-term performance monitoring goals. Contingency sampling of one additional well, 01MW107, downgradient of the ASKO parcel was implemented during the third and fourth quarters of 2023 because of elevated cVOC concentrations observed in monitoring wells 01MW53 and 01MW85.

An additional contingency sampling action outside of the scope of the GMP included deployment of a FluxTracer in 01MW85 to evaluate elevated TCE concentrations in groundwater at this location during the third quarter of 2023. The 5-foot long FluxTracer was deployed for 4 weeks spanning the saturated screen interval of 01MW85 and then analyzed by Regenesis Remediation Services for Darcy velocity and mass flux of TCE and *cis*-1,2-DCE through each 1-foot interval of screen. The results of the FluxTracer were used as a line of evidence to evaluate the elevated TCE concentrations observed in that well during the June 2023 monitoring event. Dissolved gases were also re-collected at 01MW85 at lower reporting limits during Q4 to supplement the FluxTracer analysis.

The results of the FluxTracer showed that TCE results were below the detection limit of 10 μ g/L in October 2023, which is consistent with the concentrations at 01MW85 from the first, second, and fourth monitoring events (which ranged from 5.7 to 13 μ g/L). The groundwater (Darcy) velocity at 01MW85 ranged from less than 2 to 4.5 cm/day, which is a relatively low velocity and is consistent with stagnant groundwater conditions and slow recharge observed in nearby monitoring 01MW53. The FluxTracer report is included in Attachment A.3. Contingency sampling recommendations for the 2024 monitoring year are presented in Section 5.3.

3.5.2 Groundwater Monitoring Plan Deviations

Minor deviations from the GMP during the 2023 monitoring year include the following:

- Schedule deviations:
 - Shallow WBZ wells 01MW51 and 01MW87 were designated for baseline sampling in Q1; however, they were sampled in Q2 to allow time to acquire a ROW permit because wells are located within the drive lane of W. Commodore Way.
 - The third quarterly monitoring event occurred early (end of June rather than beginning of July) to accommodate the redevelopment construction mobilization originally scheduled for July 1, 2023.
- Sampling methodology deviations:
 - At well 01MW53, the well casing was pumped dry using low-flow sampling methods and slow recharge was observed. The low productivity at this location is attributed to shallow WBZ stagnation downgradient of ISS, which is exacerbated by a thin saturated zone and a well casing that does not fully extend to the bottom of the shallow WBZ. After purging this well dry, samples were collected without further purging once sufficient recharge occurred to collect the required sample volume.

3.6 DATA VALIDATION

A Compliance Screening (USEPA Stage 2A) data quality review was performed on TPH, total arsenic, select VOCs, conventionals, and dissolved gases data resulting from laboratory analysis. The data were reviewed using guidance and quality control criteria documented in the GMP (Floyd|Snider 2023), Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (USEPA 1986), National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020a), and the National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020b).

Based on the data quality review, data are determined to be of acceptable quality for use as reported or qualified. Data validation summaries with additional details for each quarterly event are included in Attachment A.4.

All data collected in 2023 were submitted to Ecology's Environmental Information Management system in February 2024.

4.0 Year 1 Data Evaluation and Performance Summary

Data evaluation is performed to assess compliance with cleanup standards, determine whether indications of organic contaminant degradation are present, and identify long-term groundwater quality trends and flow patterns as described in the following sections. The anticipated restoration time frame for the Shoreline AOC (East Waterfront) monitoring wells to achieve CULs is 5 years. The anticipated restoration time frame for the Upland AOC (including both ASKO and the Bulk Terminal) is 15 years at and downgradient of the CPOC. The post-remediation dataset from 2023 is not robust enough yet for evaluation of long-term trends related to meeting the restoration time frame goals, so discussion of 2023 groundwater quality is limited to general observations only. A more thorough discussion of long-term trends will be included in the 2024 GMAR after a more robust dataset is available for trend analysis.

4.1 COMPLIANCE WITH CLEANUP STANDARDS

Cleanup standards are defined as a CUL combined with a POC where the CUL must be met. Because this first year of groundwater monitoring is focused on performance monitoring and establishing post-remedial groundwater conditions, this section summarizes the first year of compliance data relative to pre-remedial conditions and CULs and not cleanup standards.

4.1.1 Bulk Terminal

Groundwater compliance will be evaluated for the Bulk Terminal through long-term confirmation monitoring of wells at the CPOC (shallow WBZ wells 01MW03, 01MW19R, 01MW11R, 01MW86, and 01MW87 and intermediate WBZ well 01MW51). Of these wells, short-term monitoring is currently being conducted at 01MW19R. GRO, total DRO and ORO, and benzene all exceed the CULs at well at 01MW19R with exceedance factors ranging from 1.2 to 1.6 for GRO, 1.4 to 1.8 for total DRO and ORO, and 3.6 to 11.8 for benzene. Overall, groundwater concentrations have significantly decreased relative to pre-remediation conditions and are on an apparent track to comply with cleanup standards within the prescribed restoration time frame.

In the intermediate WBZ, evidence of complete attenuation of TPH downgradient of the excavation and ISS areas is observed at 01MW49R and 01MW51 where previously elevated total DRO+ORO decreased to less than the CUL during post-remediation monitoring.

4.1.2 ASKO Hydraulic

Groundwater compliance will be evaluated for ASKO through long-term confirmation monitoring of wells at the CPOC (shallow WBZ wells 01MW53, 01MW85, and 01MW89 and intermediate WBZ well 01MW112). Of these wells, short-term monitoring is currently being conducted at 01MW53 and 01MW85. In 2023, TCE and VC exceeded the CULs at both wells 01MW53 and 01MW85. Exceedance factors at 01MW53 ranged from 1.8 to 5.8 and at 01MW85 exceedance factors ranged from 11.4 to 220. Contingency monitoring of 01MW107 showed non-detect results of cVOCs downgradient of the CPOC, which indicates that the cVOC exceedances at

01MW53 and 01MW85 are localized and not migrating. Persistent lower-level TCE exceedances and low productivity at 01MW53 may also be reflective of groundwater stagnation downgradient of ISS. The results of the FluxTracer show slow groundwater velocity downgradient of the PlumeStop, which indicates that groundwater may take longer to remediate as it flows through the CPOC.

4.1.3 East Waterfront

Groundwater compliance will be evaluated for the East Waterfront through long-term confirmation monitoring of shallow WBZ wells 02MW04R, 02MW07, 02MW17, 02MW19, and 02MW20R. Of these wells, short-term monitoring is currently being conducted at 02MW04R, 02MW07, and 02MW19. Groundwater results from 2023 indicate that compliance with cleanup standards will be achieved within the anticipated restoration time frame. All 2023 IHS results were less than CULs, with one exception of benzene at 02MW04R, which is being evaluated further as a potentially anomalous result not representative of groundwater quality.

4.2 ASSESSMENT OF NATURAL ATTENUATION

Natural attenuation is expected to occur following removal of source soil contamination via excavation and ISS. The primary evidence of natural attenuation is decreasing IHS concentrations. Measurement of primary geochemical parameters collected during field sampling (particularly DO and ORP, and also pH, conductivity, and temperature) and secondary geochemical parameters (such as dissolved gases and ferrous iron) provides additional information regarding the mechanisms of biotic degradation and favorability of site conditions for ongoing attenuation.

4.2.1 Bulk Terminal

On the Bulk Terminal, natural attenuation is expected to occur in the shallow and intermediate WBZ following removal of TPH-contaminated source soil by excavation in CAA-1 and CAA-2 and by ISS in CAA-2. The primary mechanism of attenuation of TPH is aerobic degradation as discussed in Section 3.3.1 of the GMP. Downgradient of CAA-2, aerobic degradation was additionally enhanced by addition of ORC within the CAA-2 excavation. The primary evidence of attenuation is an apparent trend of decreasing concentrations of TPH constituents including GRO, total DRO+ORO, and benzene.

There is strong evidence of TPH degradation occurring in the shallow WBZ on the Bulk Terminal. For instance, at 01MW19/01MW19R at the downgradient property line, benzene has decreased from 2,600 μ g/L pre-remediation to 1.8 μ g/L post-remediation, and during the same period, GRO decreased from 10,000 to 1,300 μ g/L and total DRO+ORO decreased from 1,900 to 920 μ g/L. Similar trends of decreasing TPH constituent concentrations are observed at 01MW35 and 01MW84 near the downgradient edge of the pre-remediation TPH plume as shown on Table A.3. At wells on-property closer to the TPH source soil areas where temporary spikes in concentrations relative to pre-remediation conditions appear to have occurred because of remobilization during excavation and ISS, including 01MW12 and 01MW40, post-remediation trends also indicate active breakdown of TPH at 01MW40. Eventual decreasing trends are

expected at 01MW12; however, this well may be influenced by stagnation upgradient of the ISS monolith.

The results of primary geochemical parameter analysis in groundwater at the Bulk Terminal parcel indicate that conditions are favorable for continued aerobic degradation. Oxidizing conditions, indicated by positive ORP, were generally prevalent in shallow-zone groundwater except at 01MW12 and 01MW19R where negative ORP was regularly observed. DO concentrations were variable during the first year of post-remediation monitoring and are assumed to be influenced by placement of ORC-A and permeable backfill on the Bulk Terminal. DO generally also appeared to be favorable to aerobic degradation and will continue to be assessed during subsequent monitoring events.

4.2.2 ASKO Hydraulic

On ASKO, natural attenuation is expected to occur following removal of TCE-contaminated source soil by ISS in CAA-4. The primary mechanism of attenuation of TCE is anaerobic degradation by reductive dechlorination as discussed in Section 3.3.2 of the GMP. During reductive dechlorination, chlorine atoms on the cVOC molecule are replaced by other negatively charged particles, pulting in a non-chlorinated and non-hazardous end product. Downgradient of CAA-4, reductive dechlorination is expected to occur biotically from *Dehalococcoides* bacteria, which are naturally present in saturated soil. Additionally, at the downgradient property line where PlumeStop was amended with a zero-valent iron electron donor, abiotic degradation is expected to occur concurrently with biotic degradation. The primary evidence of reductive dechlorination is a trend of decreasing concentrations of the parent product TCE accompanied by increasing concentrations of the intermediate breakdown products of DCE and vinyl chloride.

There is strong evidence of reductive dechlorination occurring in the shallow WBZ on ASKO. For instance, at 01MW46 located immediately downgradient of the ISS monolith, TCE has decreased from 880 μ g/L pre-remediation to 300 μ g/L post-remediation, and during the same period, *cis*-1,2-DCE increased from 220 to 400 μ g/L and vinyl chloride increased from 11 to 36 μ g/L. Similar trends of decreasing TCE and increasing DCE and/or vinyl chloride are observed at 01MW15 at the upgradient edge of the pre-remediation TCE plume and at downgradient wells MW05 and MW06 as shown on Table A.3. At downgradient wells where temporary spikes in TCE relative to pre-remediation conditions appear to have occurred because of remobilization during ISS or ongoing migration from upgradient sources, including 01MW56 and 01MW85, post-remediation trends of increasing DCE and/or vinyl chloride also indicate active breakdown of TCE. Detections of ethene and methane at downgradient well 01MW85 are additional evidence of breakdown of vinyl chloride.

In the intermediate WBZ, evidence of complete attenuation of cVOCs downgradient of the ISS monolith is observed at 01MW108, where TCE and DCE remain non-detect and vinyl chloride concentrations decreased to less than the CUL during the most recent monitoring event. Attenuation of cVOCs could not be assessed in the perched WBZ because this saturated zone no longer appears to be present on ASKO following installation of an upgradient interceptor trench.

The results of geochemical parameter analysis in groundwater at ASKO indicate that conditions are favorable to continued reductive dechlorination. Reducing conditions, indicated by negative ORP, were prevalent in groundwater on-property within the pre-remediation TCE plume during all monitoring events. DO measurements were variable and may still be partially influenced by disturbance during remediation; DO will continue to be assessed during subsequent monitoring events.

4.2.3 East Waterfront

On the East Waterfront, all TPH-contaminated source soil was removed by excavation in CAA-6 and attenuation of the post-excavation dissolved-phase TPH constituents in groundwater was expected to occur quickly by aerobic degradation.

Observed groundwater conditions downgradient of CAA-6 are generally consistent with the expected observation of rapid attenuation. For instance, at 02MW04R, GRO decreased from a pre-remediation concentration of 3,100 μ g/L to non-detect and total DRO+ORO decreased from 2,000 μ g/L to non-detect. Except for an anomalous detection during Q3, benzene concentrations were also non-detect at 02MW04R. Additionally, at 02MW07 and 02MW19, which had pre-remediation exceedances of total DRO+ORO and GRO, respectively, all concentrations were less than CULs during post-remediation monitoring.

Geochemical conditions on the East Waterfront are also favorable for continued aerobic degradation, with generally positive ORP and consistently high DO ranging from approximately 1 to 5 milligrams per liter at 02MW04R nearest to the former TPH source area.

4.3 BNSF RAILWAY COMPANY PROPERTY INVESTIGATION

In 2023, additional remedial investigation was performed by BNSF on the portion of their property upgradient of CAA-4 on ASKO under a separate AO between BNSF and Ecology. The investigation consisted of additional soil and groundwater reconnaissance sample collection from subsurface borings, installation of monitoring wells in the perched and shallow WBZs, and groundwater sample collection from existing and new monitoring wells. The results of this investigation were summarized in the 4th quarter 2023 AO progress report provided to Ecology by Arcadis U.S. Inc. (Arcadis 2024) and are relevant to both short-term and long-term compliance monitoring on ASKO.

The materials provided for the BNSF parcel investigation included raw data packages for cVOC analysis for 10 soil borings, 5 groundwater reconnaissance locations, 7 existing monitoring wells, and 4 new monitoring wells.

In soil, TCE was detected at concentrations exceeding the Site CUL of 0.02 milligrams per kilogram at multiple locations, with the maximum TCE concentrations detected between 12 and 20 feet below ground surface at borings immediately upgradient of the ASKO property line. These elevated TCE concentrations were detected within the perched WBZ and in the silt unit

separating the perched and shallow WBZs. Soil data were not collected between 20 and 35 feet below ground surface, which is the interval generally corresponding to the shallow WBZ.

In groundwater, TCE was detected at concentrations exceeding the Site CUL of 0.5 μ g/L at multiple reconnaissance boring and monitoring well locations. In the perched WBZ, significantly elevated TCE concentrations of up to 1,350 μ g/L were detected upgradient of CAA-4, generally consistent with previous findings at the Site. Significantly elevated TCE concentrations of up to 4,210 μ g/L were also detected in the shallow WBZ in both new and existing monitoring wells and groundwater reconnaissance borings. During previous Site investigations, TCE did not exceed the CUL in groundwater in the shallow WBZ on the BNSF parcel. This finding is particularly concerning because the interceptor trench and treatment vault were installed on ASKO along the BNSF parcel boundary to treat cVOC contamination in the perched WBZ and not the shallow WBZ. Contaminant migration in the shallow WBZ from BNSF onto ASKO could have adverse effects on the cleanup action and associated restoration time frame.

This page intentionally left blank.

5.0 Recommended Short-Term Groundwater Monitoring Updates

The Year 1 compliance monitoring data were evaluated quarterly, and minor modifications were made to the monitoring program each quarter, in coordination with Ecology, using the adaptive management decision framework presented in Attachment A.3 of the GMP. The recommendations for the 2024 short-term groundwater monitoring program based on the full Year 1 dataset are summarized in this section by site-wide and parcel-specific recommendations. The 2024 short-term groundwater monitoring program with these recommendations is also presented in an updated table of monitoring wells and analytical schedule in Attachment A.4.

5.1 SITE-WIDE GROUNDWATER FLOW PATTERNS

The 2023 water level network has yielded sufficient data to understand groundwater flow patterns without collecting extraneous measurements. Hydrogeologic measurements of the shallow WBZ are recommended to occur semiannually in the first and third quarters of the year to represent the wet and dry seasons. Water levels will be recorded from all shallow WBZ wells designated for sampling in the monitoring network, plus an upgradient well for each parcel (01MW61, 01MW83, and 01MW100), and a few additional locations for full spatial coverage across the shallow WBZ (01MW30, 01MW102, 02MW16, and 02MW18). Potentiometric contour maps of the shallow WBZ for the wet and dry seasons will be prepared for the 2024 GMAR.

Water levels will be recorded from the intermediate WBZ during sample collection only, and no additional evaluation of intermediate WBZ flow direction and gradients is recommended.

5.2 BULK TERMINAL

Continue monitoring the Bulk Terminal monitoring wells per the GMP from the designated "initial" short-term monitoring network, with the following considerations in 2024:

Discontinue monitoring of 01MW35 because CULs have been achieved for four consecutive quarters.

If construction begins on any other portions of the Bulk Terminal parcel, transition monitoring to the "after redevelopment" short-term monitoring program in coordination with Ecology.

5.3 ASKO HYDRAULIC

Groundwater monitoring is recommended to continue on the ASKO parcel per the GMP from the designated "initial" short-term monitoring network, with the following additional considerations for the 2024 monitoring year:

Reinstall 01MW53 (01MW53R) to the south of its current location to deepen the screened interval by an additional 0.5 to 1 foot within the saturated zone relative to the current well screen to improve the well connection with the shallow WBZ. The

current location of 01MW53 has very low productivity and cannot be sampled with standard low-flow methodology.

- Retain the contingency well 01MW107, downgradient of 01MW53 and 01MW85, for the Q1 2024 monitoring event. Continued contingency monitoring of 01MW107 will be re-evaluated after each quarterly event based on cVOC concentrations at 01MW53R and 01MW85.
- Continue monitoring select MNA parameters (dissolved gases, total iron, and dissolved iron) at MW05, MW06, and 01MW85 in Q1 2024 to evaluate changes in water quality as it flows through the PlumeStop. Continued MNA monitoring at these locations will be reevaluated for Q3 based on the Q1 results.
- Replace shallow WBZ well 01MW58 (01MW58R) ahead of redevelopment to assess migration of TCE in upgradient shallow WBZ groundwater from the BNSF parcel onto the ASKO parcel.
- If construction begins on any portions of the ASKO parcel, transition monitoring to the "after redevelopment" short-term monitoring. Based on the 2023 monitoring data, contingency wells designated in the GMP for installation after redevelopment are not currently needed for performance or confirmation monitoring. The final locations of wells to be installed after redevelopment will be determined in coordination with Ecology.

5.4 EAST WATERFRONT

Groundwater monitoring is recommended to continue on the East Waterfront parcel per the GMP, with the following additional considerations for the 2024 monitoring year:

• Reduce frequency of monitoring from quarterly to annual at monitoring wells 02MW07 and 02MW19 that have four consecutive results of IHSs less than CULs.

5.5 CONTINGENCY ACTIONS

No contingency cleanup actions are recommended based on the 2023 short-term groundwater monitoring results, which demonstrate that removal of contaminant source mass had caused a significant overall improvement in groundwater quality at the Site. Contingency monitoring is recommended on ASKO, as described above, to further assess the distribution and migration of TCE.

5.6 SCHEDULE AND REPORTING

Monitoring will be completed on a quarterly basis in 2024 in accordance with the GMP and the recommendations contained in this GMAR, in coordination with Ecology. Per the PPCD, quarterly reports will be submitted by the 15th of the month after each quarter and the 2024 GMAR will be submitted by March 1, 2025.

6.0 References

- Arcadis U.S. Inc. (Arcadis). 2024. Progress Report Fourth Quarter 2023, Agreed Order No. DE 18042, Facility Site Identification No. 75486194, Cleanup Site Identification No. 14604, Time Oil Bulk Terminal BNSF Property, Seattle, WA. Letter from Kyle Haslam, Arcadis U.S., Inc., to Tena Seeds, Washington State Department of Ecology. 12 January.
- Crete Consulting, Inc. (Crete). 2021. *Engineering Design Report, Time Oil Bulk Terminal, Seattle, Washington.* Prepared for TOC Seattle Terminal 1, LLC. 28 June.
- _____. 2022. *Remedial Action Completion Report, Time Oil Bulk Terminal, Seattle, Washington.* Prepared for TOC Seattle Terminal 1, LLC. 31 January.
 - _____. 2023. Long-Term Compliance Monitoring Plan, Time Oil Bulk Terminal, Seattle, Washington. Prepared for TOC Seattle Terminal 1, LLC. 10 February.
- Floyd|Snider. 2023. *Time Oil Bulk Terminal Site—Groundwater Monitoring Plan.* Prepared for Cantera Development Group, LLC. January.
- U.S. Environmental Protection Agency (USEPA). 1986. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- _____. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128. September.
- _____. 2002. *Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8*. Publication No. EPA/240/R-02/004. Office of Environmental Information. Washington, DC. November.
- _____. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.
- _____. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005/OLEM 9240.0-51. November.
- Washington State Department of Ecology (Ecology). 2005. Guidance on Remediation of Petroleum-Contaminated Ground Water by Natural Attenuation. Toxics Cleanup Program. Publication No. 05-09-091. July.
 - _____. 2016. *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies.* Publication No. 04-03-030. Environmental Assessment Program. Manchester, Washington. December.
 - _. 2020. Cleanup Action Plan, Time Oil Bulk Terminal, Seattle, WA. 28 September.

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Tables

Table A.1Well Inventory and Status

Well ID	Parcel	Water-Bearing Zone	Screened Interval (feet below TOC)	Status
01MW03	BT	Shallow	10–25	Status
				To be decommissioned during redevelopment (within anticipated redevelopment structure
01MW06	ВТ	Shallow	10–25	footprint). To be decommissioned during redevelopment (within anticipated redevelopment structure
01MW08	BT	Shallow	9–25	footprint). To be decommissioned during redevelopment and replaced by 01MW60R (within anticipated
01MW15	ASKO	Shallow	10–30	redevelopment structure footprint).
01MW17	BT	Shallow	20-30	Decommissioned in June 2023 (within footprint of future driveway; monitoring purpose fulfilled by 01MW1
01MW19R	BT	Shallow	10-20	
01MW30 01MW34	BT BT	Shallow Shallow	15–28 10–20	
011010034 01MW35	BT	Shallow	10-20	
01MW35	BT	Shallow	10-20	
01MW39	BT	Shallow	7-22	Damaged during cleanup action and unusable. To be decommissioned during redevelopment (Monitoring objective fulfilled by 01MW100 and 01MW40/01MW90R).
01MW40	вт	Shallow	7–22	To be decommissioned during redevelopment and replaced by 01MW90R (within redevelopment structure footprint).
01MW46	ASKO	Shallow	13–28	To be decommissioned during redevelopment and replaced by 01MW58R (within
01MW47	BT	Shallow	6–21	redevelopment structure footprint).
01MW48	BT	Intermediate	28–32	
01MW48	BT	Intermediate	35–40	
01MW51	BT	Intermediate	29–39	
)1MW52	ASKO	Shallow	14-24	To be decommissioned during redevelopment (monitoring purpose fulfilled by 01MW89).
01MW53	ASKO	Shallow	16–26	
01MW56	ASKO	Shallow	16–26	
01MW57	ASKO	Intermediate	35.5–40.5	To be decommissioned during redevelopment. Within redevelopment structure footprint.
01MW58	ASKO	Shallow	25.5–35.5	Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW46.
01MW61	ASKO	Shallow	22–37.5	
01MW66	BT	Shallow	12–22	
01MW80	ASKO	Shallow	20–28	To be decommissioned during redevelopment. Within redevelopment structure footprint.
01MW83	EW	Shallow	14–24	
1MW84	BT	Shallow	17-23	
01MW85	ASKO	Shallow	18-27	
01MW86	BT	Shallow	14-24	
01MW87	BT	Shallow	11-21	
01MW88 01MW89	BT ASKO	Shallow Shallow	11–21 18–26	To be decommissioned (monitoring purpose fulfilled by 01MW36).
011010089	ASKU	Shallow	18-20	Decommissioned in June 2023 (within footprint of future driveway; monitoring purpose
01MW99	BT	Shallow	20–30	fulfilled by 01MW100).
01MW100	BT BT	Shallow Shallow	20–30 17–21	Retained for monitoring in place of 01MW17.
01MW101 01MW102	BT	Shallow	17-21	
01MW102	BT	Shallow	7–17	To be decommissioned during redevelopment (Dry well, montioring purpose fulfulled by
01MW104	BT	Intermediate	28–33	01MW11R).
01MW105	BT	Shallow	5–15	Decommissioned in June 2023.
01MW106	ASKO	Shallow	15–25	
01MW107	ASKO	Shallow	17–27	
01MW108	ASKO	Intermediate	30–35	To be decommissioned during redevelopment and replaced by 01MW112 (within redevelopment structure footprint).
01MW109	ΒТ	Shallow	8–18	To be decommissioned during redevelopment (dry well, outside and cross-gradient of TPH
		Shanow	0-10	impacts).
	BT	Shallow	11–21	impacts). Decommissioned in June 2023.
01MW111	BT	Shallow Intermediate	11–21 30–35	
)1MW111)1MW12	BT BT	Shallow Intermediate Shallow	11–21 30–35 4–19	Decommissioned in June 2023.
01MW111 01MW12 02MW01	BT BT EW	Shallow Intermediate Shallow Shallow	11–21 30–35 4–19 10–20	Decommissioned in June 2023.
01MW111 01MW12 02MW01 02MW03	BT BT EW EW	Shallow Intermediate Shallow Shallow Shallow	11-21 30-35 4-19 10-20 10-20	Decommissioned in June 2023.
01MW111 01MW12 02MW01 02MW03	BT BT EW	Shallow Intermediate Shallow Shallow	11–21 30–35 4–19 10–20	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts).
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05	BT BT EW EW EW	Shallow Intermediate Shallow Shallow Shallow Shallow Intermediate	11-21 30-35 4-19 10-20 10-20 5-15 20-35	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts).
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05	BT BT EW EW EW	Shallow Intermediate Shallow Shallow Shallow Shallow	11-21 30-35 4-19 10-20 10-20 5-15	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51.
01MW110 01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07	BT BT EW EW EW	Shallow Intermediate Shallow Shallow Shallow Shallow Intermediate	11-21 30-35 4-19 10-20 10-20 5-15 20-35	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08	BT EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Shallow Intermediate Shallow	11-21 30-35 4-19 10-20 10-20 5-15 20-35 1.5-11.5	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08	BT BT EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW09 02MW10	BT BT EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW09 02MW10 02MW13 02MW14	BT BT EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15 5-15	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW09 02MW10 02MW13 02MW14 02MW16	BT BT EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15 5-15 5-15 5-15	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts.
11MW111 11MW12 12MW01 12MW03 12MW04R 12MW05 12MW05 12MW07 12MW08 12MW08 12MW09 12MW10 12MW13 12MW14 12MW16 12MW17	BT BT EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow Shallow Shallow	$ \begin{array}{r} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW09 02MW10 02MW13 02MW14 02MW16 02MW17 02MW18	BT BT EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	$ \begin{array}{r} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ 4-14\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW10 02MW13 02MW14 02MW14 02MW16 02MW17 02MW18 02MW19	BT BT EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	$ \begin{array}{r} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ 4-14\\ 3-13\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts.
11MW111 11MW12 12MW01 12MW03 12MW03 12MW05 12MW05 12MW05 12MW07 12MW08 12MW09 12MW09 12MW10 12MW13 12MW14 12MW16 12MW17 12MW18 12MW19 12MW1	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	$ \begin{array}{c} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ 4-14\\ 3-13\\ 18-28\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW05 02MW07 02MW08 02MW09 02MW10 02MW10 02MW13 02MW14 02MW14 02MW14 02MW14 02MW14 02MW14 02MW19 02MW19 02MW19 02MW19 02MW21	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Intermediate Intermediate Intermediate	$ \begin{array}{r} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ 4-14\\ 3-13\\ 18-28\\ 17-27\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW05 02MW07 02MW08 02MW09 02MW10 02MW10 02MW10 02MW13 02MW14 02MW14 02MW14 02MW14 02MW18 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Intermediate Intermediate Shallow	$ \begin{array}{c} 11-21\\ 30-35\\ 4-19\\ 10-20\\ 10-20\\ 5-15\\ 20-35\\ 1.5-11.5\\ 13-22\\ 7-12\\ 2.5-7.5\\ 5-15\\ 5-15\\ 5-15\\ 1-11\\ 4-14\\ 3-13\\ 18-28\\ 17-27\\ 18-28\\ \end{array} $	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW07 02MW08 02MW09 02MW09 02MW10 02MW10 02MW14 02MW16 02MW17 02MW18 02MW17 02MW18 02MW19 02MW19 02MW19 02MW21 02MW21 02MW21 02MW21 02MW21	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Intermediate Intermediate Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15 5-15 5-15 1-11 4-14 3-13 18-28 17-27 18-28 18-28 18-28 18-28 18-28	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05 02MW05 02MW07 02MW08 02MW09 02MW10 02MW10 02MW13 02MW14 02MW16 02MW17 02MW18 02MW17 02MW18 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19 02MW19 02MW18	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Perched	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15 5-15 5-15 1-11 4-14 3-13 18-28 17-27 18-28 13-18	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible. Inaccessible (buried by gravel). To be decommissioned during redevelopment. Outside and cross-gradient of cVOC impacts.
01MW111 01MW12 02MW01 02MW03 02MW04R 02MW05 02MW05	BT BT EW EW EW EW EW EW EW EW EW EW EW EW EW	Shallow Intermediate Shallow Shallow Shallow Intermediate Shallow Intermediate Intermediate Shallow Shallow	11-21 30-35 4-19 10-20 5-15 20-35 1.5-11.5 13-22 7-12 2.5-7.5 5-15 5-15 5-15 1-11 4-14 3-13 18-28 17-27 18-28 18-28 18-28 18-28 18-28	Decommissioned in June 2023. To be decommissioned during redevelopment (outside of TPH impacts). Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW48, 01MW51. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 02MW03. Damaged during cleanup action and unusable. To be decommissioned during redevelopment Monitoring objective fulfilled by 01MW84, 01MW102. To be decommissioned during redevelopment. Outside and cross-gradient of TPH impacts. Overgrown; inaccessible.

Notes:

Locations are listed alphanumerically.

Abbreviations:

ASKO ASKO Hydraulic

BT Bulk Terminal

cVOC Chlorinated volatile organic compound

EW East Waterfront

TOC Top of casing

TPH Total petroleum hydrocarbons

Long-Term Compliance Monitoring Annual Report

Appendix A 2023 Groundwater Monitoring Annual Report

Table A.2Summary of 2023 Short-Term Performance Monitoring

		Screened								2	023 Monito	oring Sch	nedule						
		Interval				MNA Pa	arameters ⁽¹⁾			Indicator Ha		-			2023 N	/lonitori	ng Sched	ule	1
Well ID	Water-Bearing Zone	(feet below TOC)	Designation	Monitoring Schedule	GMP Notes	Primary	Secondary	Total Arsonic	GRO	Total DRO+ORO	Benzene	TCE	Vinyl Chloride	Ponta	Q1	Q2	Q3	Q4	Monitoring Schedule Deviation Notes
Bulk Termina		100)	Designation	Schedule	Givin Notes		Jecondary	Aiseine	GILO	Dictore	Delizene	TCL	cilloride	Tenta	<u> </u>	Q2	45	4	Deviation Notes
01MW12	Shallow	4–19	CAA-1 Downgradient Plume	Semiannual		x	1	Γ	X	х	X		1	[IHS	[IHS		
01MW19R	Shallow	10-20	CAA-2 Source Area	Quarterly		X			X	X	X				IHS	IHS	IHS	IHS	
01MW35	Shallow	10-20	CAA-2 Downgradient Plume	Quarterly		X			X	X	X				IHS	IHS	IHS	IHS	
					Monitor until redevelopment; decommission														
01MW40	Shallow	7–22	CAA-1 Source Area	Initial Semiannual	during property redevelopment (within structure footprint).	х			х	х	х				IHS		IHS		
01MW49R	Intermediate	35–40	CAA-2 Downgradient Plume	Semiannual		Х			Х	Х	Х				IHS		IHS		
01MW51	Intermediate	29–39	CAA-2 Downgradient Plume	Initial Baseline	Sample once during first quarter of initial montoring.	х			х	х	х					IHS			Baseline sample collected in Q2 instead of Q1.
01MW66	Shallow	12–22		Annual	On-property penta plume	Х								Х	IHS				
01MW84	Shallow	17–23	CAA-2 Downgradient Plume	Quarterly		Х			х	Х	Х				IHS	IHS	IHS	IHS	
01MW87	Shallow	11–21	CAA-2 Downgradient Sentinel	Initial Baseline/ Contingency	Sample once during first quarter of initial monitoring; sample if IHS concentrations increasing at 01MW12.	x			х	х	x					IHS			Baseline sample collected in Q2 instead of Q1.
ASKO Wells					•		•			•									•
01MW15	Shallow	10–30	CAA-4 Source Area	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).	х						х	x		IHS		IHS		
01MW46	Shallow	13–28	CAA-4 Source Area	Quarterly	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).	х	х				x	х	х		IHS + MNA	IHS	IHS + MNA	IHS	
01MW53	Shallow	16–26	CAA-4 Downgradient Plume	Quarterly		Х						Х	Х		IHS	IHS	IHS	IHS	
01MW56	Shallow	16–26	CAA-4 Downgradient Plume	Semiannual		х	х					х	х		IHS + MNA		IHS + MNA		
01MW85	Shallow	18–27	CAA-4 Downgradient Plume	Quarterly		х	х					х	x		IHS + DG + MNA	IHS	IHS + MNA	IHS + DG	Dissolved gases collected in Q4.
01MW107	Shallow	17–27	CAA-4 Downgradient Sentinel	Contingency	Sample if increasing IHS concentrations at 01MW53 or 01MW85.	x						x	x				IHS	IHS	Contingency location added in Q3 due to increasing IHS concentrations at 01MW53 and 01MW85.
01MW108	Intermediate	30–35	CAA-4 Downgradient Plume	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).	х						х	х		IHS		IHS		
MW03R	Perched	13–18	CAA-5 Source Area	Semiannual		Х		Х	Х	Х	Х	Х	Х						Well was dry.
MW05	Shallow	19–29	CAA-4 Downgradient Plume	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).	х	х				x	х	x		IHS + MNA		IHS + MNA		
MW06	Shallow	18–28	CAA-4 Downgradient Plume	Initial Baseline	Sample once during first quarter of initial monitoring; contingency sample if increasing IHS concentrations at 01MW46, 01MW53, 01MW85, or MW05; monitor semiannually after redevelopment grading.		x				x	x	x		IHS + MNA				

Table A.2Summary of 2023 Short-Term Performance Monitoring

		Screened				2023 Monitoring Schedule													
		Interval			1	MNA Pai	ameters ⁽¹⁾			Indicator Ha	zardous Sub	ostances			2023 1	Monitorin	g Schedı	ıle	
	Water-Bearing	(feet below		Monitoring				Total		Total			Vinyl						Monitoring Schedule
Well ID	Zone	TOC)	Designation	Schedule	GMP Notes F	Primary	Secondary	Arsenic	GRO	DRO+ORO	Benzene	TCE	Chloride	Penta	Q1	Q2	Q3	Q4	Deviation Notes
East Waterfro	nt Wells													_					
02MW04R	Shallow	5–15	CAA-6 Source Area	Quarterly		Х			Х	Х	Х				IHS	IHS	IHS	IHS	
02MW07	Shallow	1.5–11.5	CAA-6 Downgradient Plume	Quarterly		Х		Х	Х	Х	Х				IHS	IHS	IHS	IHS	
02MW19	Shallow	3–13	CAA-6 Downgradient Sentinel	Quarterly		Х		Х	Х	Х	Х				IHS	IHS	IHS	IHS	

Notes:

Blank cells are intentional.

Wells not designated for short-term monitoring are considered sentinels and may be sampled at the Property Owner's discretion to obtain additional performance data, if needed.

-- Not established.

1 Primary MNA parameters include field measurement of dissolved oxygen, oxidation-reduction potential, pH, conductivity, and temperature. Primary MNA parameters were collected during all sampling events specified in the short-term performance monitoring plan. Secondary MNA parameters include ferrous iron (field method) and laboratory analysis of nitrate, nitrite, sulfate, sulfate, sulfate, cis-1,2-dichloroethene, and dissolved gases (methane, ethene, and ethane). Secondary MNA parameters were analyzed from select wells semiannually to determine baseline geochemical conditions during Year 1. Dissolved gases were designated for annual sampling only at 01MW85.

Abbreviations:

ASKO ASKO Hydraulic

BSNF BNSF Railway Company

DG Dissolved gasses

DRO Diesel-range organics

GMP Groundwater Monitoring Plan

GRO Gasoline-range organics

IHS Indicator hazardous substance MNA Monitored natural attenuation ORO Oil-range organics penta Pentachlorophenol TCE Trichloroethene TOC Top of casing

Time Oil Bulk Terminal

FLOYD | SNIDER

				_						
		Analyte Class	Total Metals	T	PH Total	VOCs		cVOCs		SVOCs
		Analyte	Arsenic	GRO	DRO+ORO	Benzene	TCE	cis -1,2-DCE	Vinyl Chloride	Penta
		CAS No.	7440-38-2		 (U=0)	71-43-2	79-01-6	156-59-2	75-01-4	87-86-5
		Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	-	Cleanup Level	5.0	800	500	0.44	0.50		0.20	0.20
rcel	Location	Sample Date								
	01MW12			100.11	––– (1)		1	I		
	Pre-remediation	4/30/2019		100 U	590 ⁽¹⁾	3.0				
	Post-remediation	1/31/2023 6/28/2023		100 U	1,000 ⁽¹⁾ 1,200 ⁽¹⁾	0.35 U				
	01MW19/01MW19R			110	1,200	1.3				
	Pre-remediation	4/30/2019		10,000	1,900 (1)	2,600	1.0 U	1.0 U	0.20 U	
	Freiheulation	1/31/2023		990	910 ⁽¹⁾	5.2	1.0 0	1.0 0	0.20 0	
		4/7/2023		1,100	700 (1)	4.4				
	Post-remediation	6/28/2023		1,300	810 ⁽¹⁾	2.1				
		· · · ·		1,200	890 ⁽¹⁾	1.6				
		10/10/2023		1,300	920 ⁽¹⁾	1.8				
	01MW35			_,			1			
	Pre-remediation	5/1/2019		100 U	550 ⁽¹⁾	0.35 UJ				
		1/31/2023		100 U	110 (1)	0.35 U		l		
	Doct romodiation	4/7/2023		100 U	120 (1)	0.35 U				
	Post-remediation	6/28/2023		100 U	76 ⁽¹⁾	0.35 U				
		10/10/2023		100 U	56 ⁽¹⁾	0.35 U				
	01MW40									
	Pre-remediation	4/30/2019			1,100 ⁽¹⁾	0.35 UJ				
	Post-remediation	1/31/2023		100 U	5,300 ⁽¹⁾	0.73				
	1 ost remediation	6/28/2023		100 U	620 ⁽¹⁾	0.35 U				
	01MW49/01MW49R	1		-	I	T	T	•		
	Pre-remediation	5/1/2019		100 U	850 ⁽¹⁾	0.35 UJ				
	Post-remediation	1/31/2023		100 U	260 ⁽¹⁾	0.35 U				
		6/29/2023		100 U	160 (1)	0.35 U				
	01MW51	I		F	(1)	1		I		
	Pre-remediation	5/26/2016		370	1,800 (1)	1.0 U				
	Post-remediation	4/7/2023		100 U	250 U	0.35 U				
	01MW66			100.11	0.50			T	1	
	Pre-remediation	4/30/2019		100 U	250	0.35 UJ				3.6
	Post-remediation	1/31/2023								1.9
	01MW84	5/4/2040		0.400	a coo (1)	50.0	[
	Pre-remediation	5/1/2019		8,400	2,800 ⁽¹⁾ 810 ⁽¹⁾	5.0 U				
		1/31/2023		2,300	810 ⁽¹⁾ 830 ⁽¹⁾	0.35 U		<u> </u>		
		4/7/2022		2,200	1,500 ⁽¹⁾	0.35 U				
	Post-remediation	4/7/2023		5,500 4,600	1,500 ⁽¹⁾	0.35 U 0.35 U				
		6/28/2023		4,800	1,400 ⁽¹⁾	0.35 U				
		10/10/2023		3,500	1,500 (1)	0.35 U				
	01MW87	10/10/2023		3,300	1,500	0.55 0				
		5/26/2019		100 U		1.0 U	[1		
	Pre-remediation	5/1/2019		100 0	110	1.0 0				
	Post-remediation	4/7/2023		100 U	250 U	0.35 U				
	01MW15						l			
	Pre-remediation	5/2/2019		100 U	220 (1)	0.41	0.50 U	1.7	7.2	
		2/1/2023		100 0		02	0.50 U	6.4	36	
	Post-remediation	6/28/2023					0.50 U	5.7	28	
	01MW46	-,,				1				
	Pre-remediation	5/2/2019			280 (1)	14	880	220	11	
		2/1/2023				3.8	240	140	17	
		4/7/2023				3.5 U	140	110	9.3	
	Post-remediation	6/28/2023				4.3	280	260	25	
		10/10/2023				4.8	300	400	36	
	01MW53									
	Pre-remediation	5/2/2019			94 (1)	0.35 U	0.50 U	4.4	0.26	
		2/1/2023					2.9	5.4	0.57	
	1	1/7/2023			1		21	3.2	0.36	

Table A.3 Pre- and Post-Remediation Groundwater Results for Indicator Hazardous Substances

	10/10/2023				1.5	2.4	0.59	
O1MW56 Pre-remediation								
S Pre-remediation	5/2/2019		1,000 ⁽¹⁾	0.35 U	0.50 U	1.0 U	0.61	
Post-remediation	2/1/2023				0.81	1.0 U	0.99	
Post-remediation	6/28/2023				0.62	1.0 U	0.97	
01MW85								
Pre-remediation	5/3/2019		450 ⁽¹⁾		0.50 U	2.4	7.9	
	1/31/2023				5.7	1,200	13	
Post-remediation	4/7/2023				6.2	1,200	17	
FUSI-TEINEUIAtion	6/28/2023				110	1,000	13	
	10/10/2023				13	1,100	18	
01MW107								
Pre-remediation	5/6/2019				0.50 U	1.0 U	0.020 U	
Post-remediation	6/28/2023				0.50 U	1.0 U	0.020 U	
Post-remediation	10/10/2023				0.50 U	1.0 U	0.020 U	
01MW108								
Pre-remediation	5/3/2019				0.50 U	1.0 U	0.33	
Post-remediation	2/1/2023				0.50 U	1.0 U	0.27	
rost-temediation	6/29/2023				0.50 U	1.0 U	0.065	

4/7/2023

6/28/2023

Post-remediation

2.1

2.0

3.2

2.9

0.36

0.51

Long-Term Compliance Monitoring Annual Report

Appendix A 2023 Groundwater Monitoring Annual Report

Table A.3

FLOYD | SNIDER

		Analyte Class	Total Metals	Т	РН	VOCs		cVOCs		SVOCs
					Total					
		Analyte	Arsenic	GRO	DRO+ORO	Benzene	TCE	<i>cis</i> -1,2-DCE	Vinyl Chloride	Penta
		CAS No.	7440-38-2		(U=0)	71-43-2	79-01-6	156-59-2	75-01-4	87-86-5
		Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Cleanup Level	5.0	800	500	0.44	0.50		0.20	0.20
Parcel	Location	Sample Date								
	MW05				-	-				
Ĵ	Pre-remediation	5/3/2019		140	310 (1)	1.0	240	120	27	
ont	Post-remediation	2/1/2023				1.4	140	360	6.8	
<u>с</u>	Post-remediation	6/28/2023				1.5 J	160	360	6.9	
ASKO (cont.)	MW06									
A	Pre-remediation	5/3/2019			370 ⁽¹⁾	2.6	330	31	2.8	
	Post-remediation	2/1/2023				0.35 U	0.50 U	1.0 U	2.6	
	02MW04/02MW04R									
	Pre-remediation	5/18/2016		3,100	2,000 ⁽¹⁾	19				
	Fre-remediation	5/3/2019				3.7				
		2/1/2023		100 U	69 ⁽¹⁾	0.35 U				
	Post-remediation	4/7/2023		100 U	250 U	0.35 U				
	rost-remediation	6/29/2023		100 U	65 ⁽¹⁾	29				
		10/10/2023		100 U	250 U	0.35 U				
	02MW07									
		5/19/2016		100 U	160 ⁽¹⁾	1.0 U				
ont	Pre-remediation	5/3/2019			670 ⁽¹⁾					
East Waterfront		7/25/2019	3.9							
/ate		2/1/2023	1.0 U	100 U	86 ⁽¹⁾	0.35 U				
t X	Post-remediation	4/7/2023	1.0 U	100 U	250 U	0.35 U				
Eas	Post-remediation	6/29/2023	1.1	100 U	76 ⁽¹⁾	0.35 U				
		10/10/2023	1.2	100 U	73 ⁽¹⁾	0.35 U				
	02MW19									
	Pre-remediation	5/6/2019		100 U	380 (1)					
	Fre-remediation	7/25/2019	14							
		2/1/2023	3.3	100 U	150 ⁽¹⁾	0.35 U				
		4/7/2023	4.7	100 U	76 ⁽¹⁾	0.35 U				
	Post-remediation	4/7/2023	4.8	100 U	84 (1)	0.35 U				
		6/29/2023	4.2	100 U	76 ⁽¹⁾	0.35 U				
		10/10/2023	3.1	100 U	81 (1)	0.35 U				

Table A.3Pre- and Post-Remediation Groundwater Results for Indicator Hazardous Substances

Notes:

Blanks are intentional. Data not collected for specific analyte.

Italic Reporting limit exceeds cleanup level.

BOLD Detected exceedance of cleanup level.

1 Laboratory noted that the sample chromatographic pattern does not resemble the fuel standard used for quantitation for one or more of the detected concentrations in the sum.

Abbreviations:

CAS Chemical Abstracts Service

cVOC Chlorinated volatile organic compound

DCE Dichloroethene

DRO Diesel-range organics

GRO Gasoline-range organics

µg/L Micrograms per liter

- ORO Oil-range organics
- penta Pentachlorophenol
- SVOC Semivolatile organic compound
- TCE Trichloroethene
- TPH Total petroleum hydrocarbons
- VOC Volatile organic compound

Qualifiers:

- J Analyte was detected; concentration is an estimate.
- U Analyte was not detected at the given reporting limit.
- UJ Analyte was not detected at the given reporting limit, which is considered estimated.

Long-Term Compliance Monitoring Annual Report Appendix A 2023 Groundwater Monitoring Annual Report Table A.3

Table A.4Monitored Natural Attenuation and Field Parameters

			Water Level		Pri	imary MN						5	econdary MN/	A Parameters			
		Analyte Class	trate: Level	<u> </u>		Field Mea				L		Anions		Conventional	Dis	solved Gass	
		Analyte class	Depth to	Dissolved	Specific	Ticlu Micu					Nitrate (as	Nitrite (as		conventional	013		
		Analyte	Water	Oxygen	Conductance	ORP	pН	Temperature	Turbidity	Ferrous Iron	Nitrogen)	Nitrogen)	Sulfate	Sulfide	Ethane	Ethene	Methane
		CAS No.								15438-31-0	14797-55-8	14797-65-0	14808-79-8	18496-25-8	74-84-0	74-85-1	74-82-8
		Unit	Feet	mg/L	μS/cm	mV	pН	°C	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Parcel	Location Name	Sample Date			μο/ «		P.1		iitu								
		1/31/2023	1.05	7.44	586	-22.2	6.61	10.8	3.44								
	01MW12	6/28/2023	6.40	0.10	625	-47.1	6.69	14.6	3.02								
		1/31/2023	11.90	7.11	217.3	-63.4	6.92	14.6	1.11								
		4/7/2023	11.90	2.16	190.3	-33.6	6.90	14.4	1.32								
	01MW19R	6/28/2023	13.90	0.24	216.2	-84.6	7.08	16.3	0.61								
		10/10/2023	13.38	0.28	173.4	10.4	6.79	15.7	0.87								
		1/31/2023	15.66	2.17	190.1	175.6	6.41	12.6	0.79								
		4/7/2023	16.72	2.86	203.5	66.6	6.23	13.0	0.45								
al	01MW35	6/28/2023	17.28	0.41	160.7	82.5	6.39	14.8	0.50								
in		10/10/2023	17.23	0.68	77.2	97.1	6.38	18.6	2.04								
Bulk Terminal		1/31/2023	10.61	7.59	402.9	79.4	6.43	11.2	1.17								
кт	01MW40	6/28/2023	14.16	0.11	431.8	14.2	6.68	15.2	1.89								1
Bul		1/31/2023	26.59	5.78	914	-95.4	7.06	14.3	3.03								1
_	01MW49R	6/29/2023	25.86	1.22	828	-110.8	7.14	15.2	1.32								1
	01MW51	4/7/2023	20.38	2.64	881	-46.6	6.86	13.5	3.23								1
	01MW66	1/31/2023	4.78	7.14	356.5	-9.1	6.58	12.5	4.79								1
		1/31/2023	14.69	2.04	81.4	-49.5	6.61	12.8	2.10								
		4/7/2023	15.30	2.28	72.0	11.9	6.57	12.6	2.21								
	01MW84	6/28/2023	15.71	0.20	86.8	-18.6	6.51	14.5	11.83								
		10/10/2023	15.85	0.26	84.3	50.8	6.46	16.7	3.77								
	01MW87	4/7/2023	13.55	5.12	190.8	86.0	6.26	12.6	3.95								1
		2/1/2023	20.14	6.49	392.3	-82.1	7.17	12.9	0.68	3.0	1.0 U	1.2 U	77	1.0 J			
	MW05	6/28/2023	20.99	0.13	576	-84.6	7.29	14.0	1.99	3.0	0.50 U		130	3.6			1
	MW06	2/1/2023	21.38	1.97	459.9	-55.2	6.84	14.1	7.51	3.5	1.0 U	1.2 U	42	0.50 U			
		2/1/2023	19.32	6.26	422.1	-29.8	6.85	14.4	1.14								
	01MW15	6/28/2023	19.51	0.23	591	-50.3	7.06	15.4	0.93								
		2/1/2023	22.33	1.71	358.3	-113.2	7.27	14.8	1.04	3.5	1.0 U	1.2 U	140	0.20 J			
		4/7/2023	22.37	2.68	332.6	-38.9	6.75	15.5	1.32								
	01MW46	6/28/2023	23.82	0.19	490.9	-68.9	7.21	15.4	2.44	3.5	0.50 U		190	2.4			
		10/10/2023	23.72	0.20	366.2	3.7	6.74	14.9	5.70								
		2/1/2023	22.47	5.31	599	0.1	6.60	14.1	27.9					l l			
0	01144/52	4/7/2023	22.42	6.07	640	-56.1	6.78	13.3	41.5								
ASKO	01MW53	6/28/2023	22.70	0.19	729	-24.6	6.69	15.8	5.54								
Ä		10/10/2023	22.94	0.23	528	-12.5	6.57	16.3	6.86								
	011414/56	2/1/2023	19.62	6.74	568	-9.5	6.66	14.6	2.11	4.5	0.33 J	1.2 U	25	0.50 U			
	01MW56	6/28/2023	20.35	0.17	702	20.1	6.69	14.7	1.83	4.5	0.91		29	4.4			
		1/31/2023	22.50	2.41	577	-57.7	6.89	14.9	3.32	5.0	1.0 UJ	1.2 UJ	7.7	0.50 UJ	0.015 U	0.015 U	1.8
	0114405	4/7/2023	22.56	5.50	596	-87.8	7.05	14.9	1.67								
	01MW85	6/28/2023	23.00	0.11	619	-59.7	6.98	15.3	2.59	4.0	0.50 U		61	4.8			
		10/10/2023	23.44	0.29	475.9	34.5	6.78	14.9	1.10						0.00022 U	0.0027 J	0.32 J
	0110000	6/28/2023	23.31	0.93	320.2	100.2	6.22	15.4	2.41								
	01MW107	10/10/2023	24.34	1.00	236.9	73.7	6.14	14.7	0.94								
	01144400	2/1/2023	24.36	1.43	569	-81.0	6.93	14.2	10.17								
	01MW108	6/29/2023	25.18	1.43	697	-86.4	7.02	15.3	4.40							l	1

Time Oil Bulk Terminal

Table A.4Monitored Natural Attenuation and Field Parameters

			Water Level		Pr	imary MNA	Paramet	ters				S	econdary MNA	A Parameters				
		Analyte Class		•		Field Mea	surement	t		•		Anions	-	Conventional	Dis	solved Gass	es	
			Depth to	Dissolved	Specific						Nitrate (as	Nitrite (as						
-		Analyte	Water	Oxygen	Conductance	ORP	рН	Temperature	Turbidity	Ferrous Iron	Nitrogen)	Nitrogen)	Sulfate	Sulfide	Ethane	Ethene	Methane	
		CAS No.								15438-31-0	14797-55-8	14797-65-0	14808-79-8	18496-25-8	74-84-0	74-85-1	74-82-8	
		Unit	Feet	mg/L	μS/cm	mV	рН	°C	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Parcel	Location Name	Sample Date																
		2/1/2023	7.79	4.52	262	32.1	6.85	9.2	3.22									
	020404040	4/7/2023	6.73	5.25	237.2	84.5	6.76	8.4	1.82									
	02MW04R		6/29/2023	7.84	3.25	352.6	50.8	6.82	15.4	1.52								
t	-	10/10/2023	8.01	1.04	298.1	99.9	6.76	16.9	1.52									
fro		2/1/2023	2.79	4.96	312.1	74.8	6.36	9.8	1.81									
ter	021414/07	4/7/2023	1.70	3.19	373.6	126.2	6.10	9.8	2.04									
Waterfront	02MW07	6/29/2023	2.28	2.52	844	91.1	6.04	16.5	1.57									
st	-	10/10/2023	2.72	0.79	536	89.6	5.92	17.3	0.86									
Ea		2/1/2023	3.02	3.24	387.2	4.9	6.42	11.4	3.86									
	021414/10	4/7/2023	2.22	3.62	440.3	-21.9	6.54	11.4	2.86									
	02MW19	6/29/2023	2.60	0.17	576	-6.8	6.50	14.1	1.68									
		10/10/2023	3.21	0.16	338.9	-16.5	6.48	15.7	1.87									

Notes:

Lab-reported concentrations for anions, dissolved gasses, and conventionals have been rounded to two significant figures. Field measurements are presented to the decimal places reported on the field meters.

Abbreviations:

CAS Chemical Abstracts Service

°C Degrees Celsius

µS/cm Microsiemens per centimeter

mg/L Milligrams per liter

MNA Monitored natural attenuation

mV Millivolts

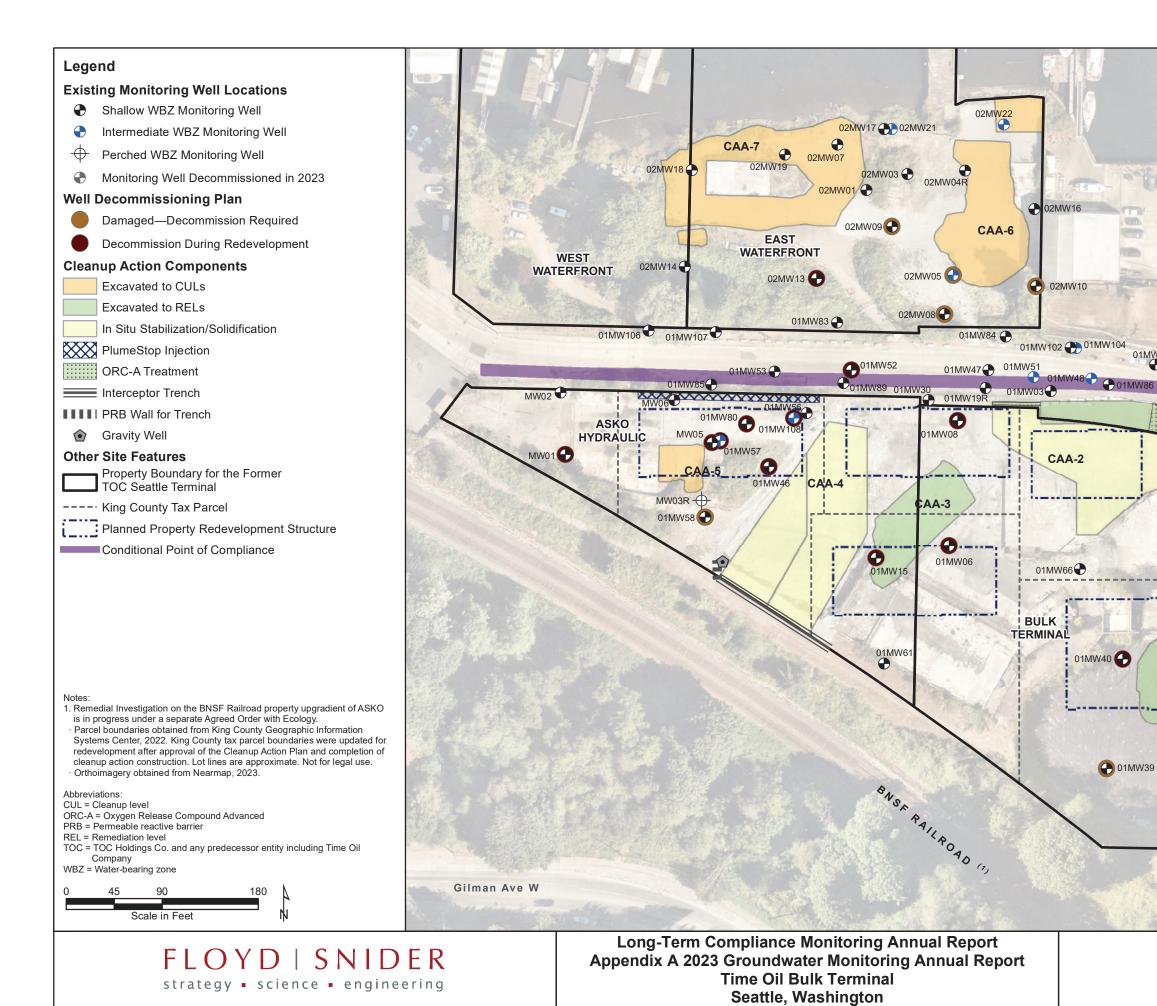
ntu Nephelometric turbidity units

ORP Oxidation-reduction potential

Qualifiers:

J Analyte was detected; concentration is an estimate.

U Analyte was not detected at the associated reporting limit.


UJ Analyte was not detected at the associated reporting limit, which is an estimate.

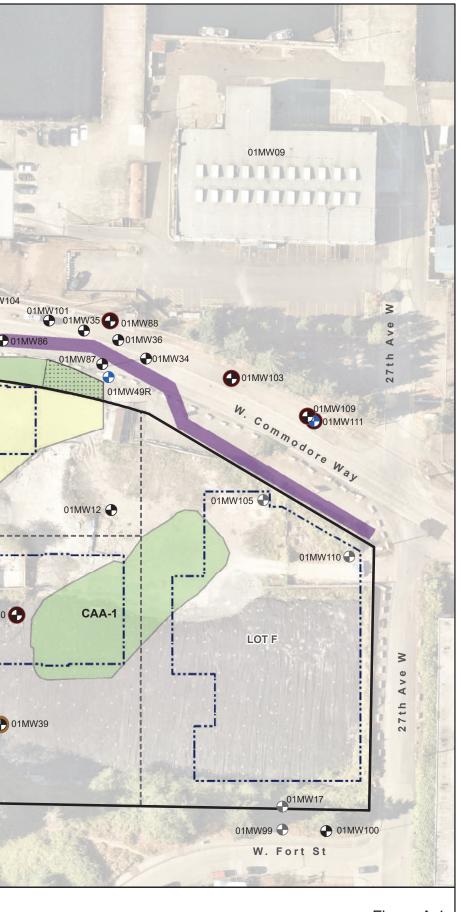
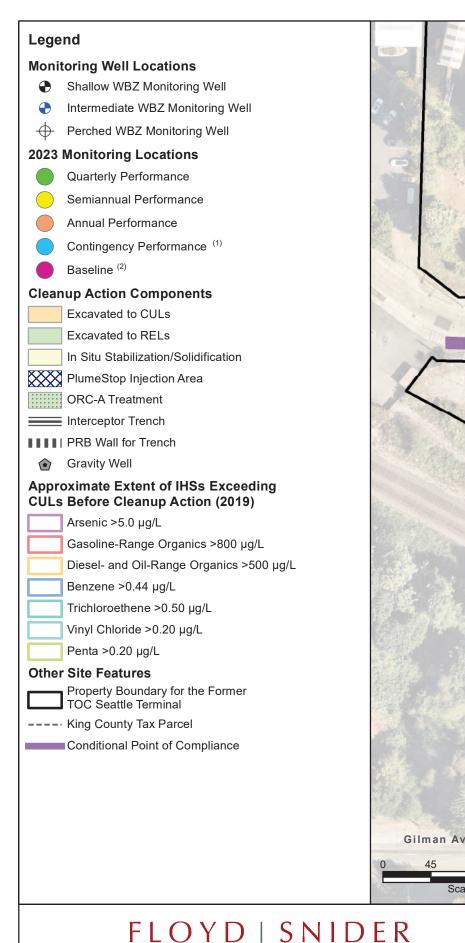
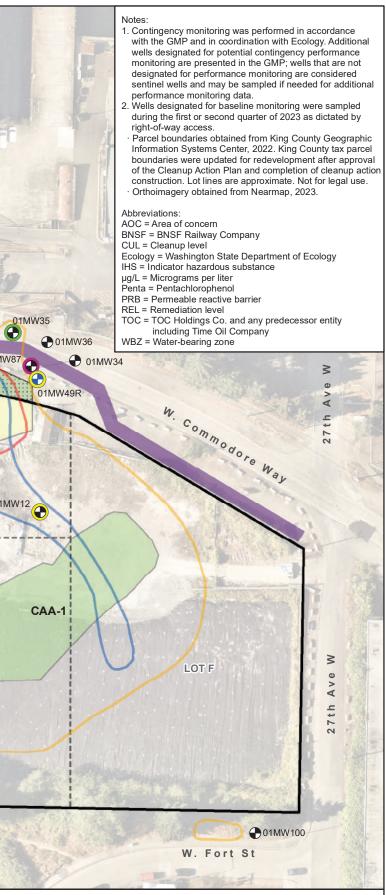
Time Oil Bulk Terminal

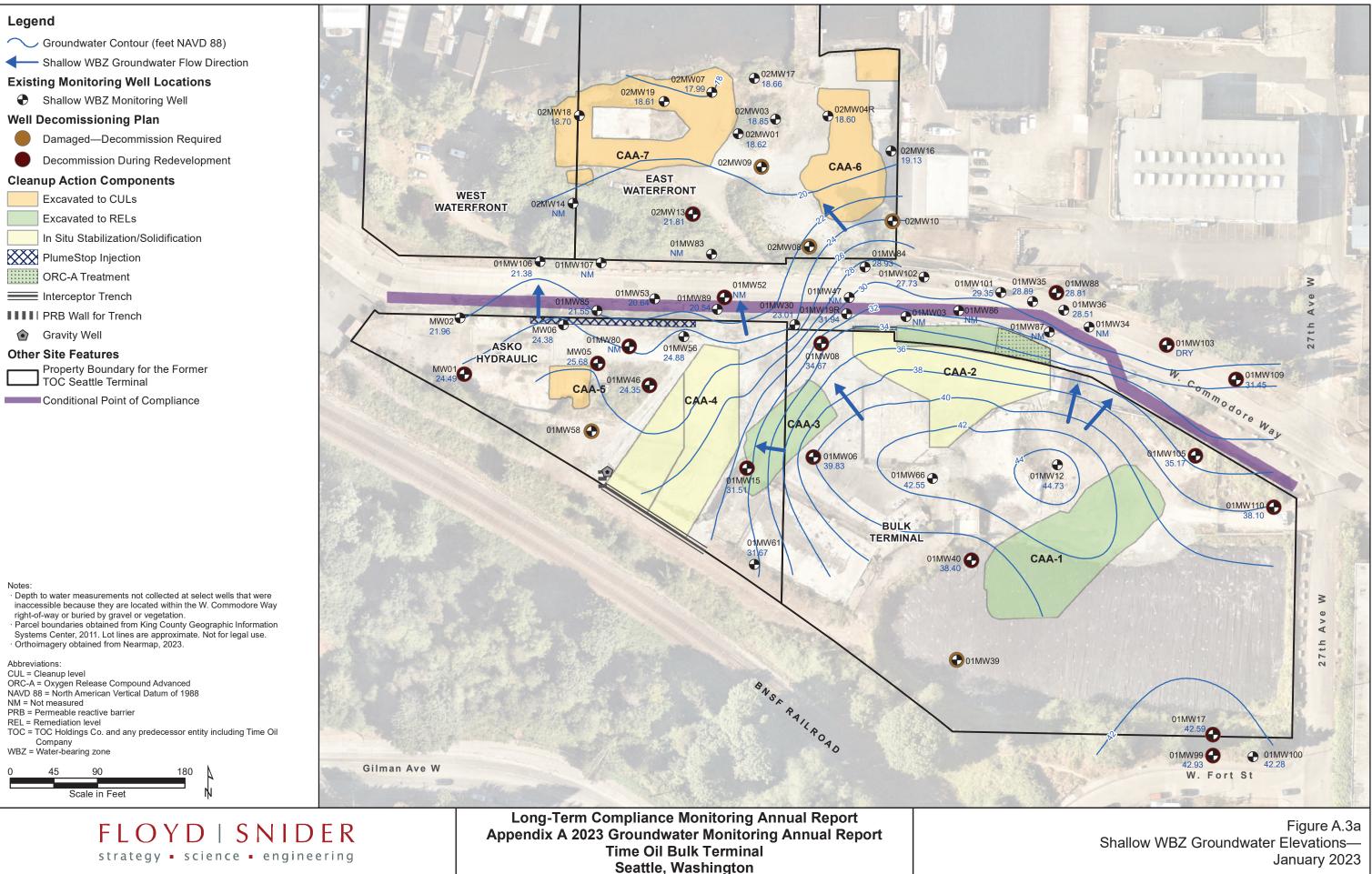
Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

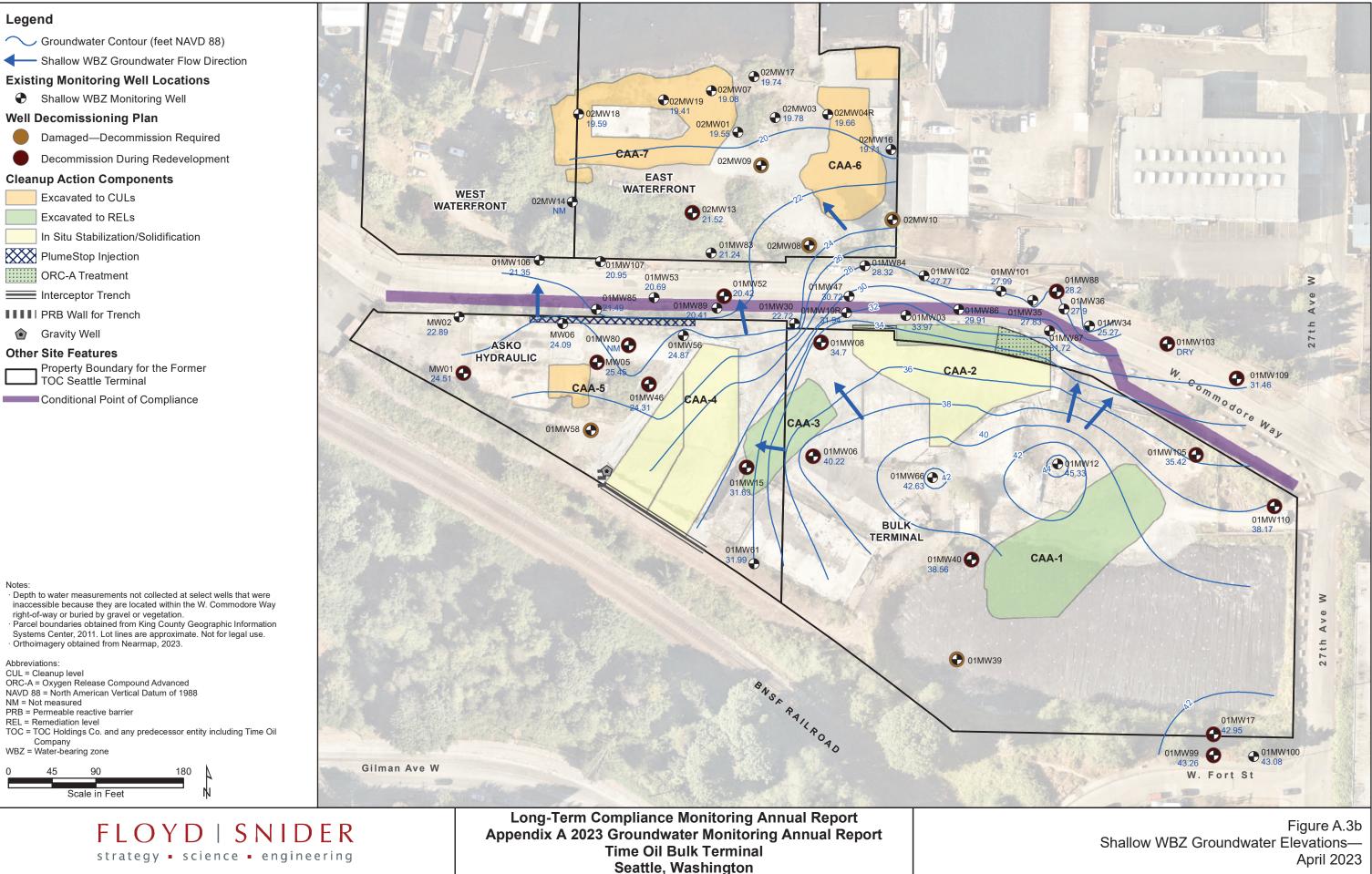
Time Oil Bulk Terminal

Figures

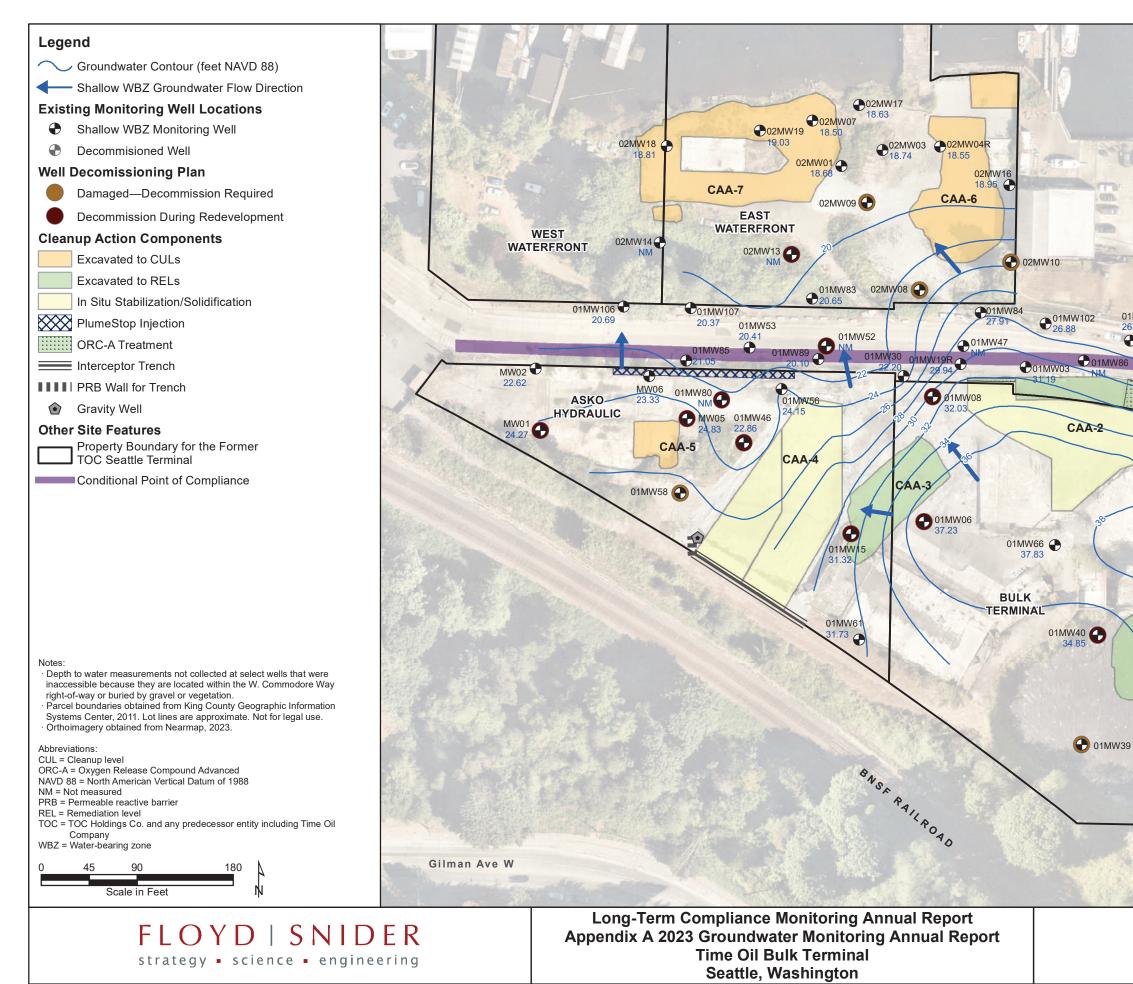
L: ISISIProjects\Cantera-TOC\MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.1 Site Features and Monitoring Well Status Summary.mxd 2/12/2024

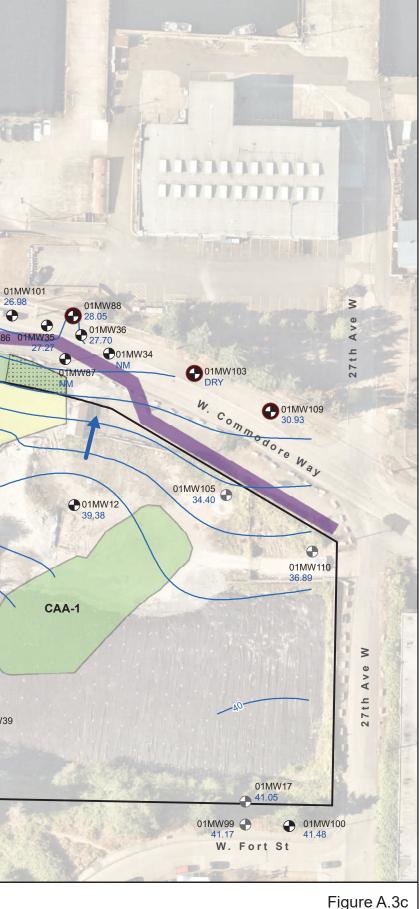





Figure A.1 Site Features and Monitoring Well Status Summary

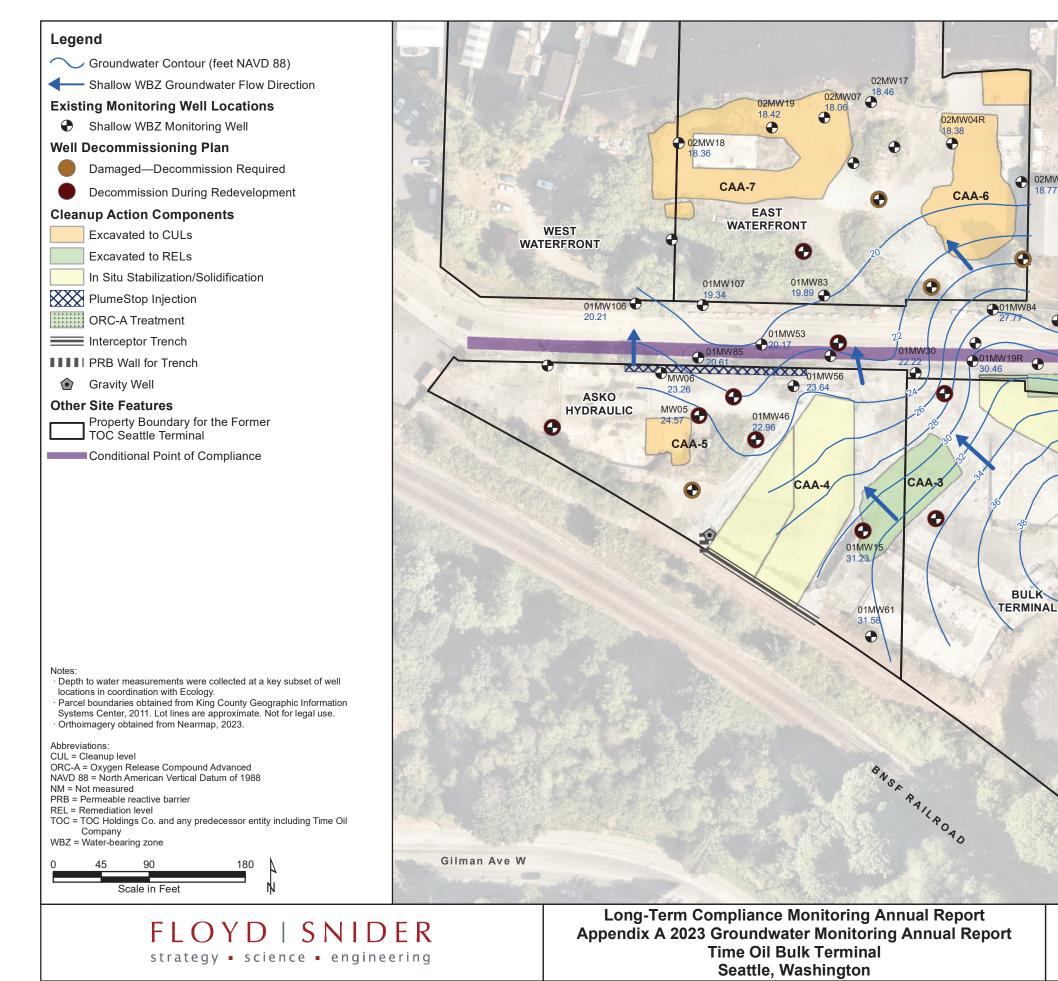

Notes . Contingency monitoring was performed in accordance with the GMP and in coordination with Ecology. Additional wells designated for potential contingency performance monitoring are presented in the GMP; wells that are not designated for performance monitoring are considered 02MW17 02MW21 02MW22 sentinel wells and may be sampled if needed for additional performance monitoring data. CAA-7 02MW07 Wells designated for baseline monitoring were sampled during the first or second quarter of 2023 as dictated by 02MW18 02MW19 02MW04F right-of-way access. 02MW03 Parcel boundaries obtained from King County Geographic 02MW01 Information Systems Center, 2022. King County tax parcel boundaries were updated for redevelopment after approval • 02MW16 construction. Lot lines are approximate. Not for legal use. WEST EAST Orthoimagery obtained from Nearmap, 2023. CAA-6 WATERFRONT WATERFRONT Abbreviations: AOC = Area of concern 02MW14 BNSF = BNSF Railway Company CUL = Cleanup level Ecology = Washington State Department of Ecology IHS = Indicator hazardous substance • 01MW83 µg/L = Micrograms per liter Penta = Pentachlorophenol 01MW107 01MW84 PRB = Permeable reactive barrier 01MW102 01MW104 01MW101 REL = Remediation level 01MW53 01MW35 TOC = TOC Holdings Co. and any predecessor entity • 01MW51 01MW48 01MW47 including Time Oil Company • 01MW89 01MW3 01MW36 01MW85 WBZ = Water-bearing zone 01MW19R 01MW03 01MW86 01MW87 01MW34 01MW56 ≥ **AW06** 01MW80 • ASKO 01MW108 11/1/08 01MW49 MW05 HYDRAULIC A < CAA-2 · Commodore Way 4 CAA-5 • 01MW46 MW03R CAA-3 CAA-4 01MW12 **●**01MW06 • 01MW66 BULK TERMINAL 01MW61 CAA-1 01MW40 ≥ LOT F Φ 4 th N BNSF RAILROAD Gilman Ave W **O1MW100** 90 180 W. Fort St Scale in Feet Long-Term Compliance Monitoring Annual Report Appendix A 2023 Groundwater Monitoring Annual Report Figure A.2 **Time Oil Bulk Terminal** 2023 Short-Term Performance Monitoring Locations strategy • science • engineering Seattle, Washington

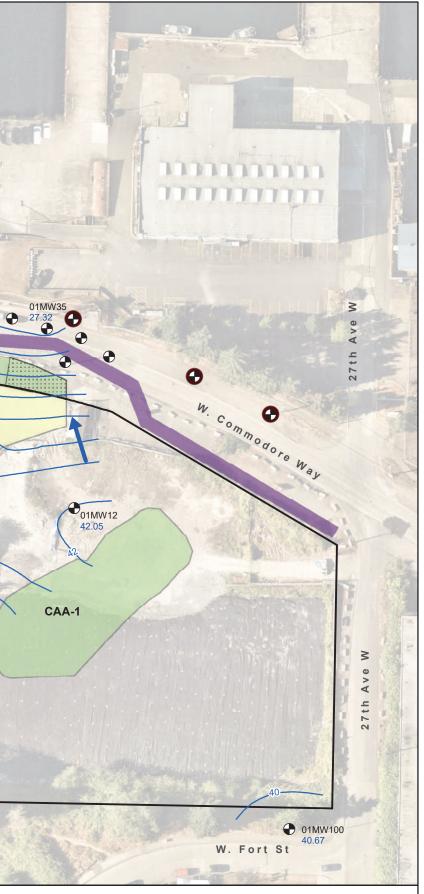
L:\GIS\Projects\Cantera-TOC\MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.2 2023 Short-Term PM Locs.mxd 2/12/2024




L: I:GIS/Projects/Cantera-TOC/MXD\06-Groundwater Monitoring/LTCMP AND GMP\Appendix A-2023\A.3a Shallow WBZ GW Elevations Jan 2023.mxd.mxd 2/12/2024

L: I:GIS/Projects/Cantera-TOC/MXD/06-Groundwater Monitoring/LTCMP AND GMP/Appendix A-2023/A.3b Shallow WBZ GW Elevations April 2023.mxd.mxd 2/12/2024


L: ISISIProjects\Cantera-TOC\MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.3c Shallow WBZ GW Elevations June 2023.mxd.mxd 2/12/2024


26.98

•

Shallow WBZ Groundwater Elevations-June 2023

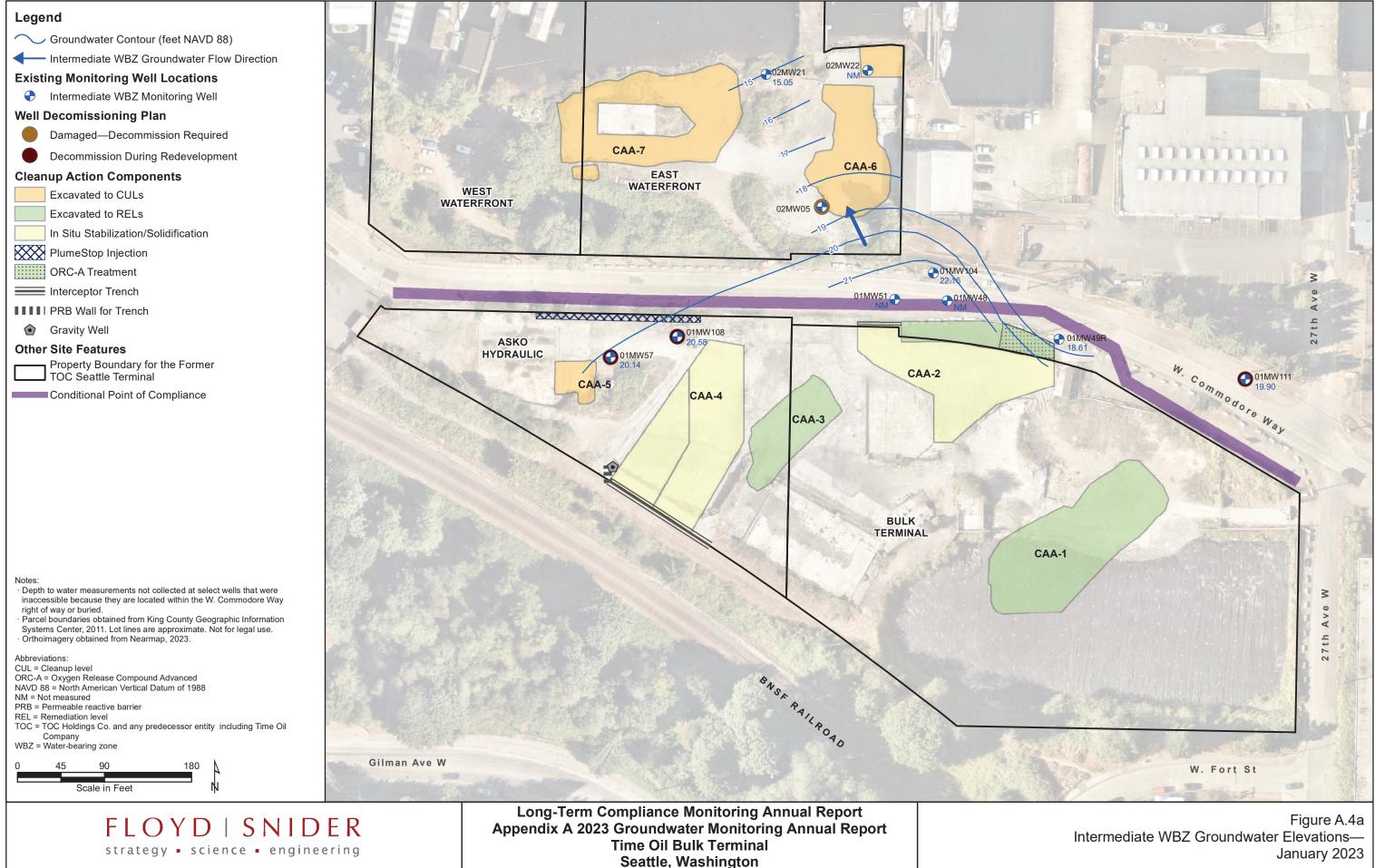
L: I:GIS/Projects/Cantera-TOC/MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.3d Shallow WBZ GW Elevations Oct 2023.mxd.mxd 2/12/2024

02MW16

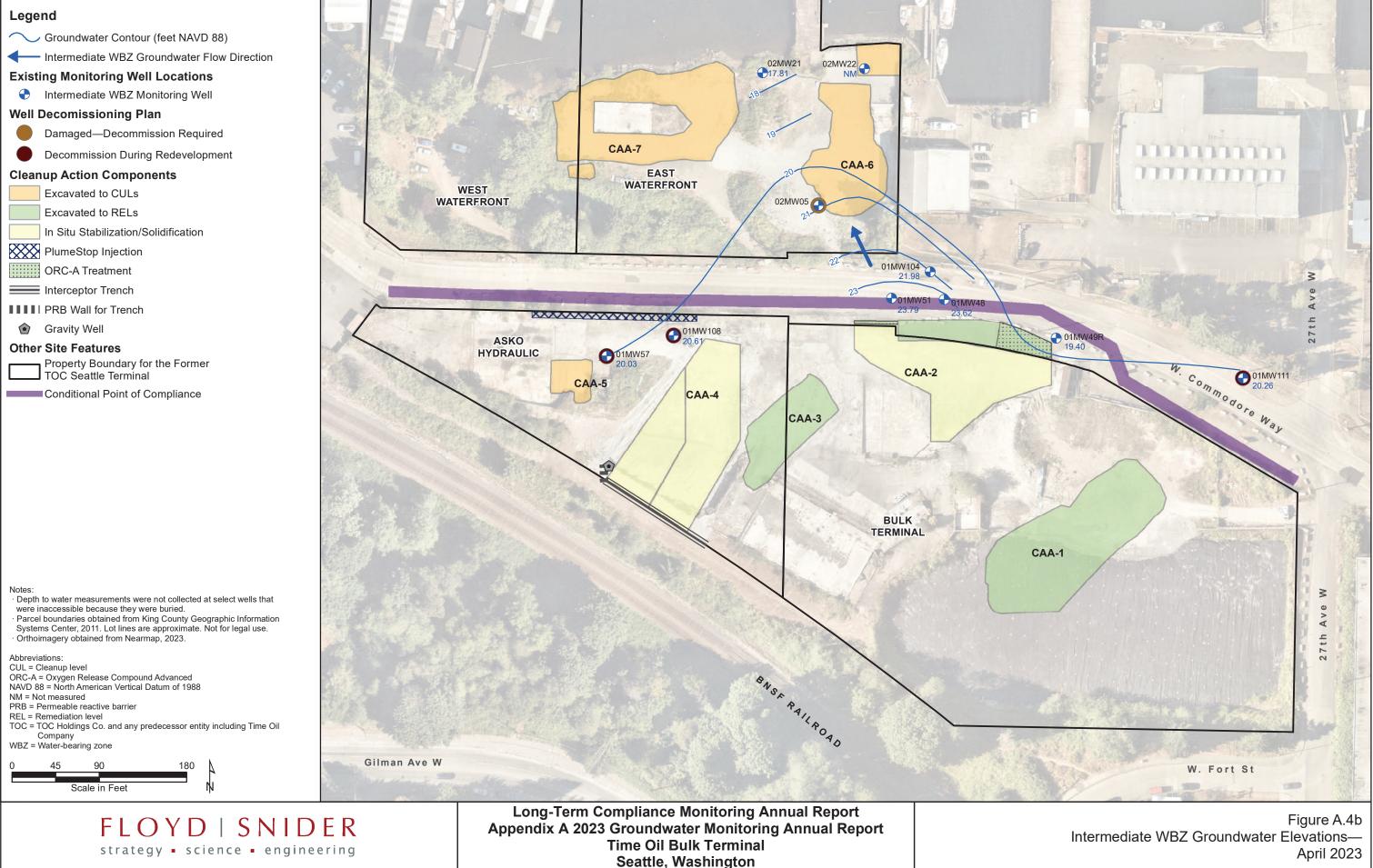
• 01MW102 27.02

CAA-2

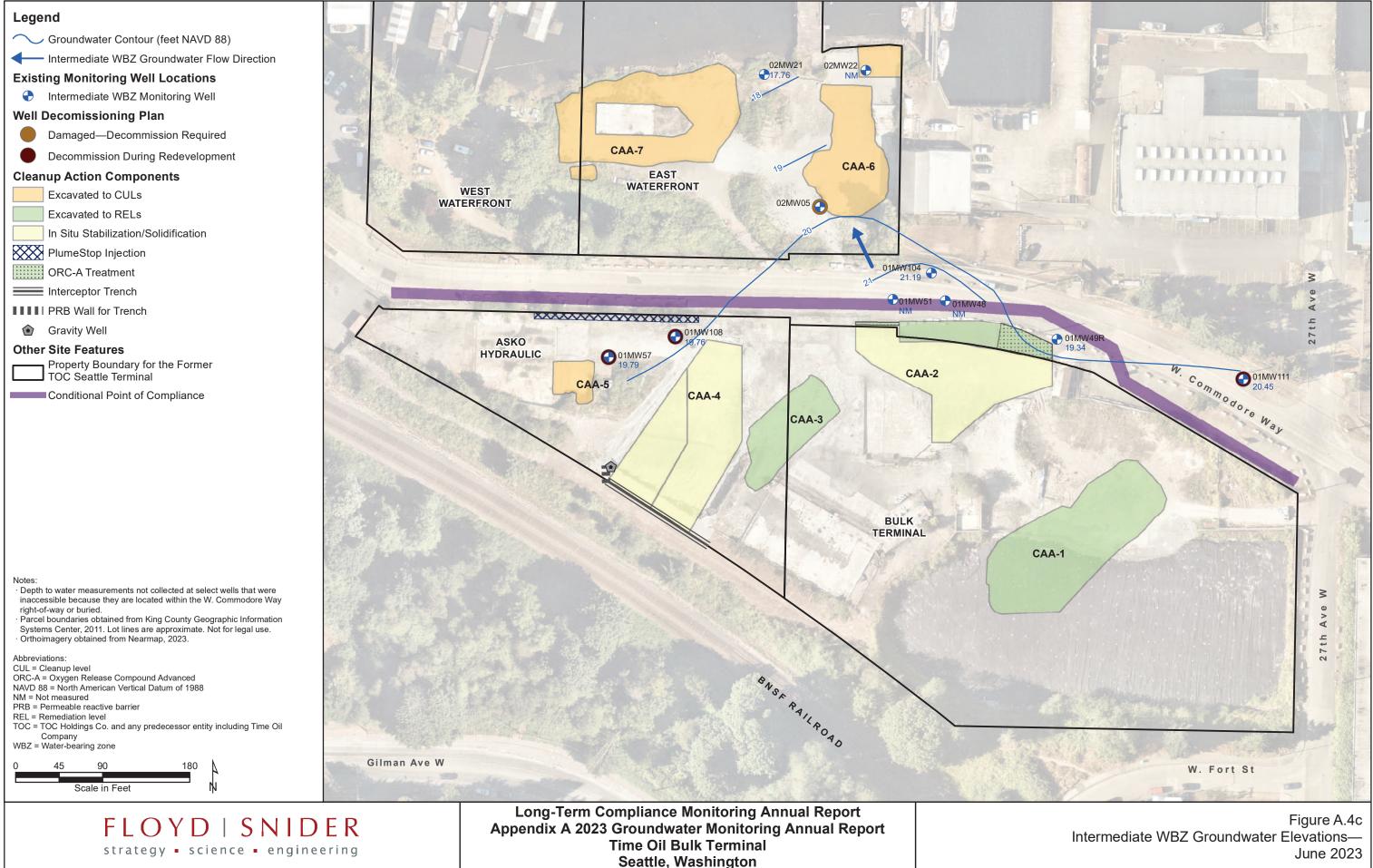
01MW66

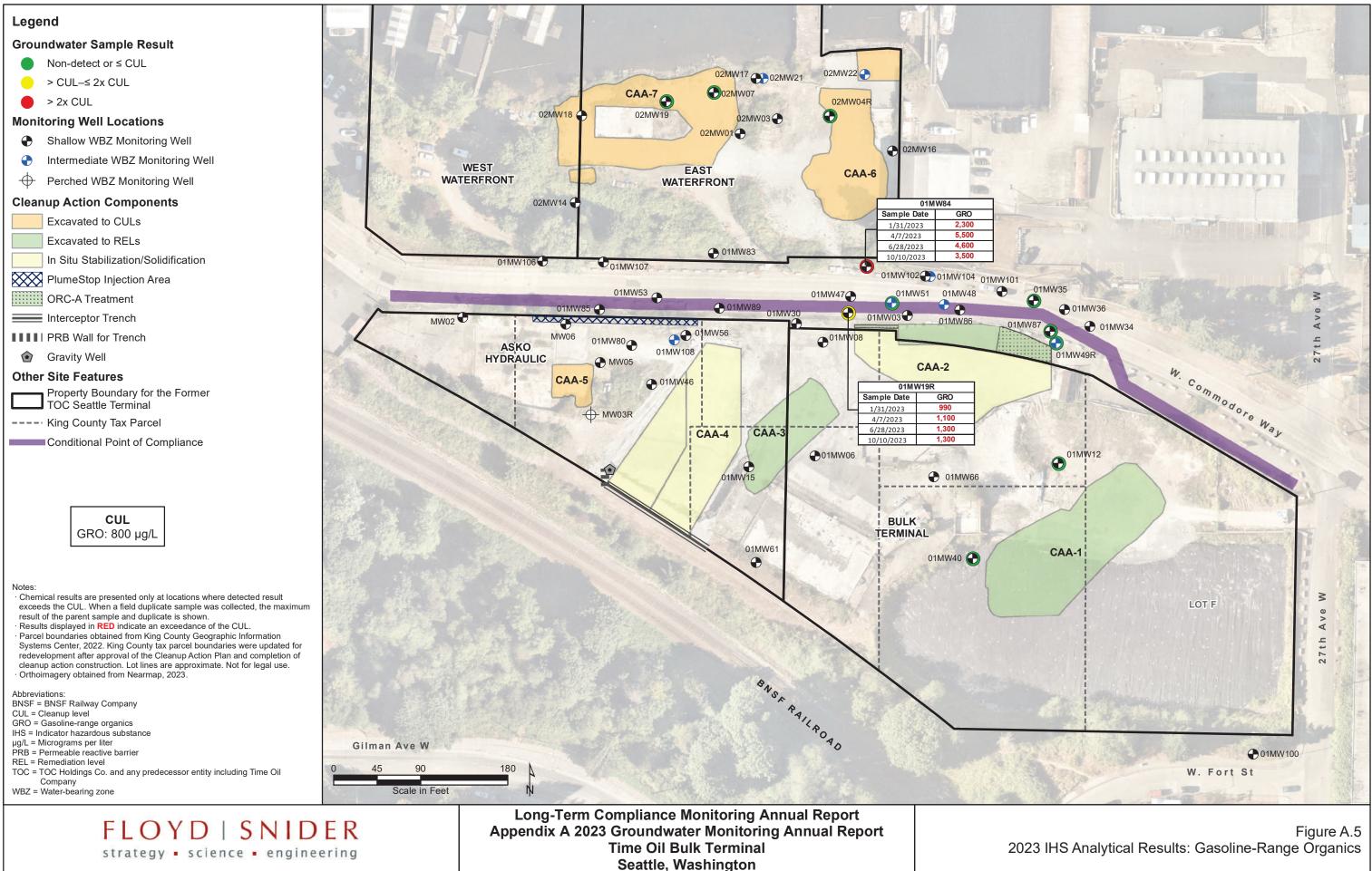

01MW40

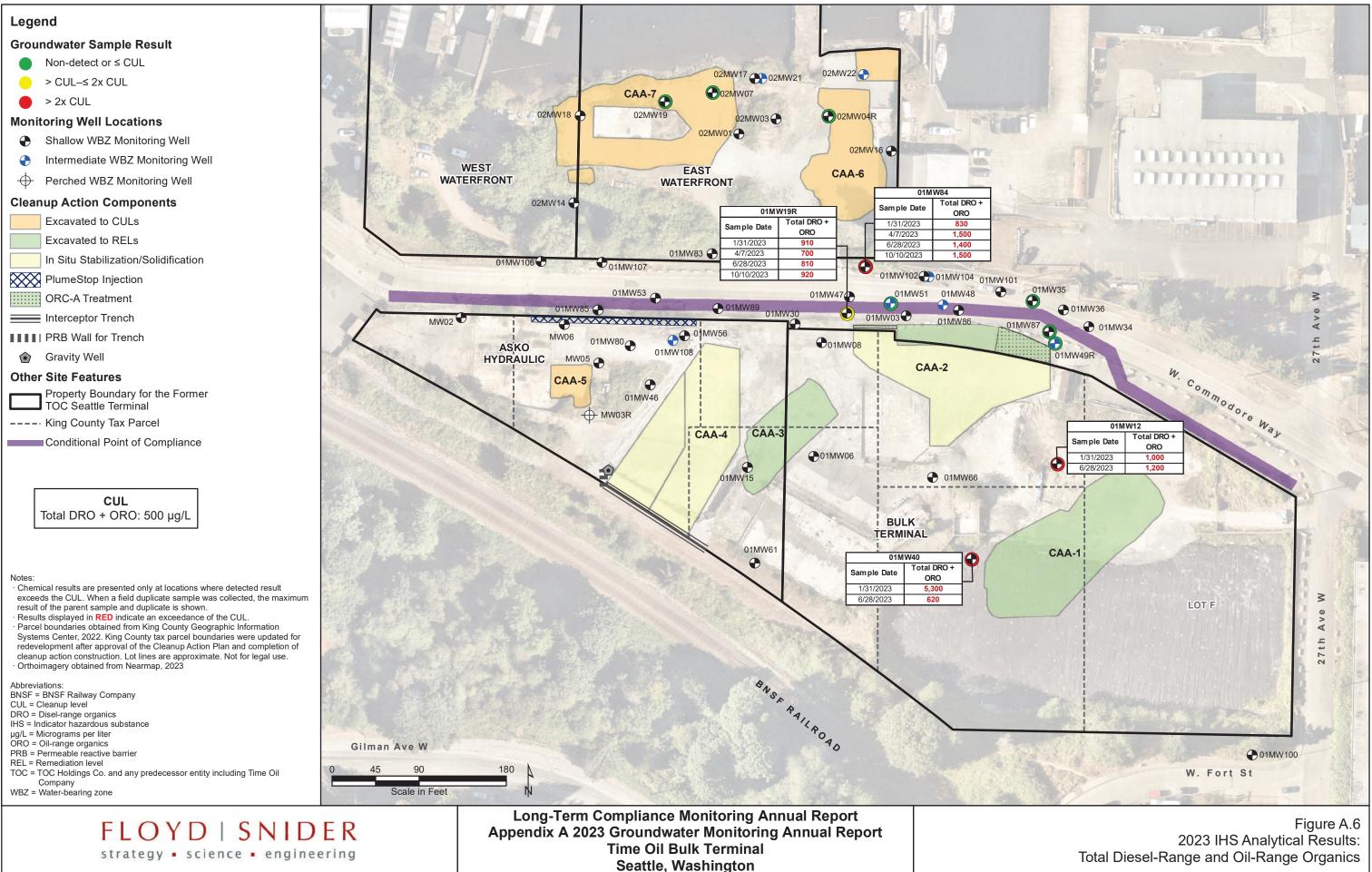
•

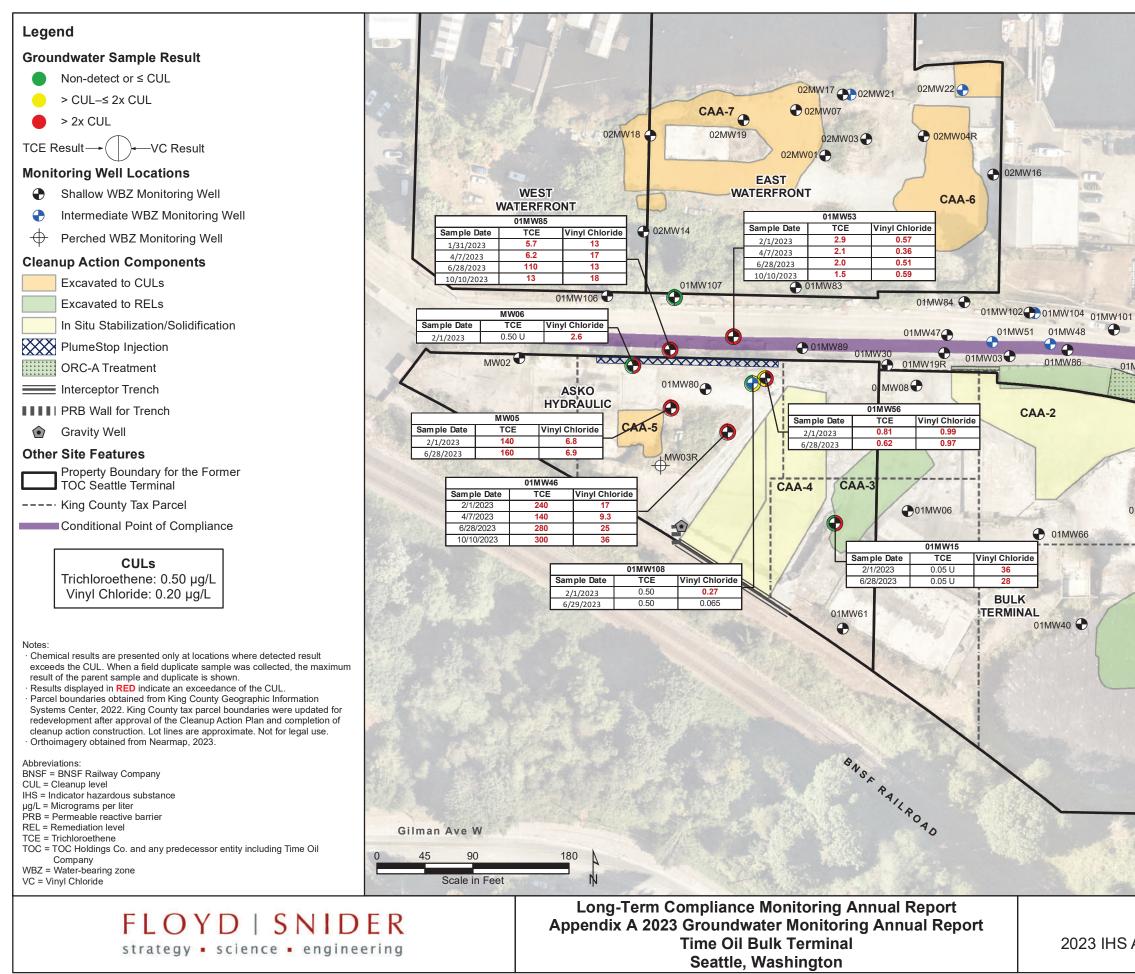

36 61

8.77


Figure A.3d Shallow WBZ Groundwater Elevations-October 2023


L: I:GIS/Projects/Cantera-TOC/MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.4a Int. WBZ GW Elevations Jan 2023.mxd.mxd 2/12/2024




L: I:GIS/Projects/Cantera-TOC/MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.4b Int. WBZ GW Elevations April 2023.mxd.mxd 2/12/2024

L: I:GIS/Projects\Cantera-TOC\MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.4c Int. WBZ GW Elevations June 2023.mxd.mxd 2/12/2024

I:\GIS\Projects\Cantera-TOC\MXD\06-Groundwater Monitoring\LTCMP AND GMP\Appendix A-2023\A.7 2023 IHS Analytical Results TCE and VC.mxd

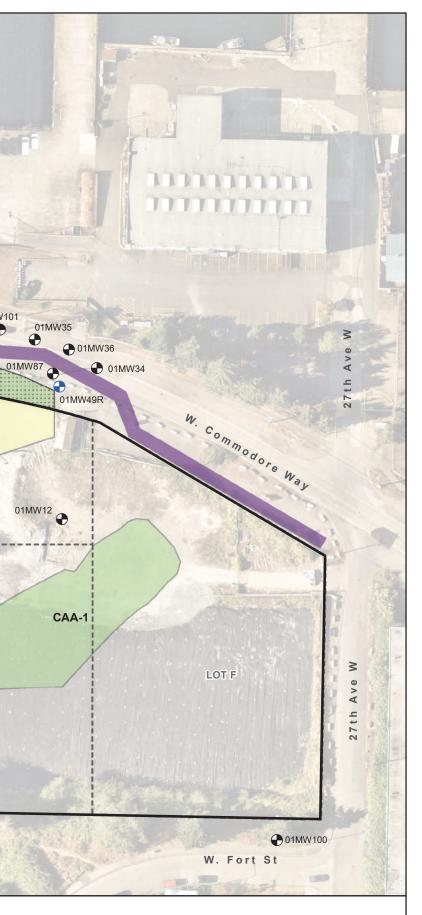
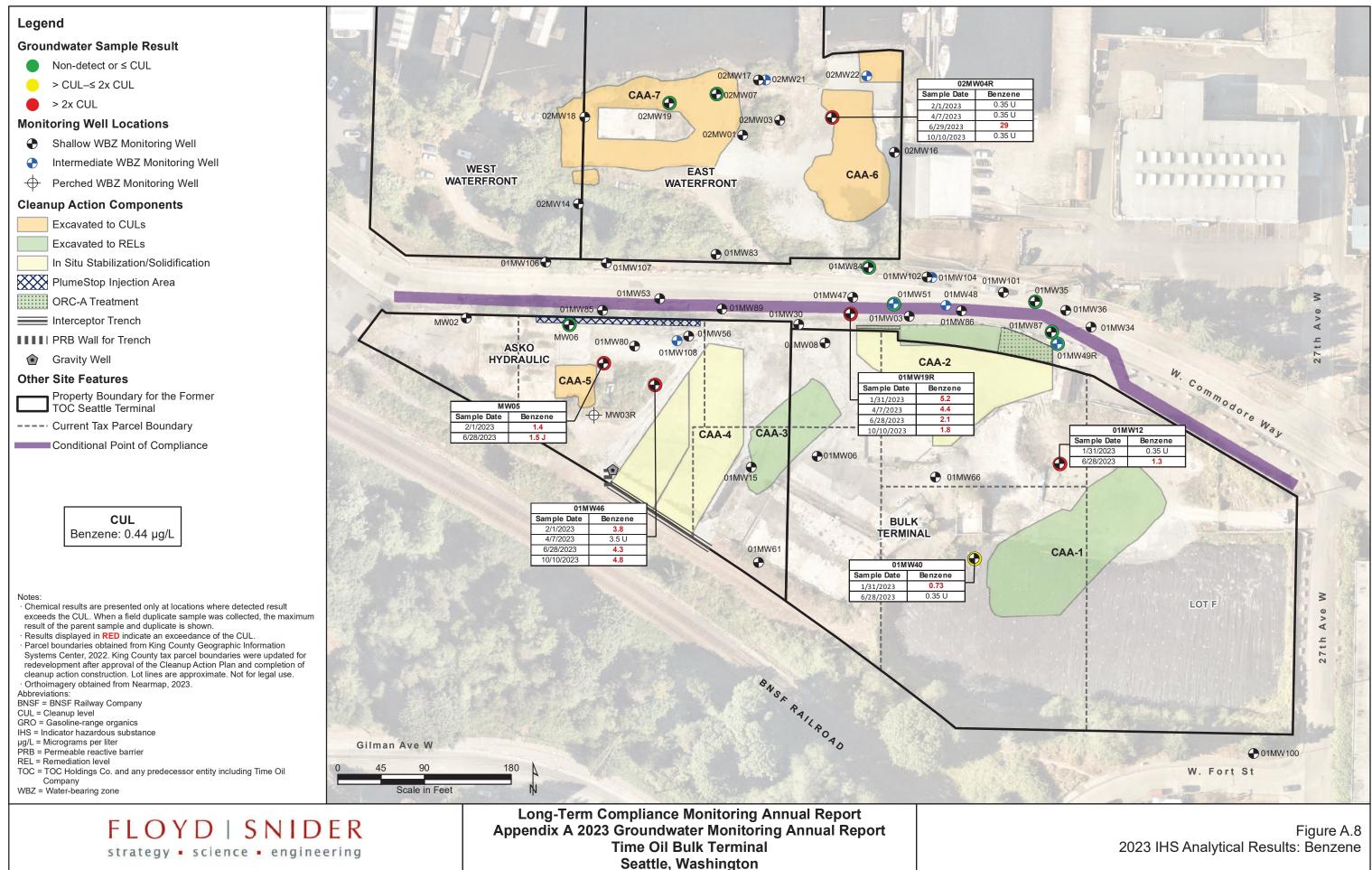



Figure A.7 2023 IHS Analytical Results: Trichloroethene and Vinyl Chloride

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Attachment A.1 Well Logs

_	_		PROJECT:	1	LOCATION:		WELL ID:
FL	OY	DISNIDER	Cantera-TOC		2737 W Commodo	re Way	01MW19R
		science • engineering	LOGGED BY:		BORING LOCATION	:	ECOLOGY WELL ID:
	57		K. Anderson		BT ROW, West of	CAA-2	BNM 532
DRILLE	D BY:		COORDINATE SYSTEM:	1	NORTHING:		EASTING:
AEC			NAD 1983/ NAVD88 ft		245601.3		1256099.47
DRILLI	NG EQUIPI	MENT:	SCREENED INTERVAL (ft	bgs): (GROUND SURFACE	ELEV.:	TOC ELEVATION:
Terra	a Sonic		10-20				43.84
DRILLI	NG METHO)D:		•	TOTAL DEPTH (ft bg	IS):	DEPTH TO WATER (ft bgs):
Soni	ic LAR				25		15.5
SAMPL	ING METH	0 D:		E	BORING DIAMETER	(inch):	DRILL DATE:
Con	tinuous	- Liner Bags			4" inner/6" out	er	12/19/2022
Depth	USCS	Descript	ion		Drive/		Well Construction
(feet)	Symbol				Recovery		
0		Asphalt ground surface.				-	Protective Cover
	Asphalt						Concrete
	0.0.0.0.0	Gray sandy GRAVEL; dry.					
2	••••••						
-	0.0.0.0.0						
_	GW:						
	••••••						
4 —	0.0.0.0.0						
	<u> </u>	Gray, well-graded SAND with silt; m	nist				🖌 🔶 Bentonite Chips
_	SW-SM						2" Sch. 40 PVC
	.0 ** - 0 **						
6 —		Gray sandy SILT.					
	ML						
_							
		Gray-brown silty SAND; wood frag	ments in underlying material				
8 —		suggests fill; slight sulfide odor in sa	ind at 7.5 ft.				
_							
10 —							
-	SM						
-							
12 —							
-							
		Gray, poorly-graded, fine SAND wit	h silt; moderate to strong				
14 —		hydrocarbon odor.					2-12 Monterey Sand
							10-Slot PVC Screen
—		 					
16 —		Becomes moist to wet.					
_	SP-SM						
18 —							
-							
0.0							
				NOTEO			
ft bgs	VIATIONS = feet belo	ow ground surface USCS = Unified	Soil Classification System	NOTES:			log/oomplo uplood sated
ppm	= parts per	million	groundwater table	All Interva	ais eveniy decomp	essed for	log/sample unless noted.
					-		

IOV		PROJECT:	LOCATION:	WELL ID:
LUI	D SNIDER	Cantera-TOC	2737 W Commodore V	Nay 01MW19
	science • engineering	LOGGED BY:	BORING LOCATION:	ECOLOGY WELL ID:
		K. Anderson	BT ROW, West of CA	
RILLED BY:		COORDINATE SYSTEM:	NORTHING:	EASTING:
AEC		NAD 1983/ NAVD88 ft	245601.3	1256099.47
RILLING EQUIP	MENI	SCREENED INTERVAL (ft bgs): 10-20	GROUND SURFACE EL	EV.: TOC ELEVATION: 43.84
RILLING METHO	<u></u>	10-20	TOTAL DEPTH (ft bgs):	
Sonic LAR			25	15.5
AMPLING METH			BORING DIAMETER (inc	
Continuous	- Liner Bags		4" inner/6" outer	12/19/2022
epth USCS eet) Symbol	Descript	ion	Drive/ Recovery	Well Construction
2 — ML 4 — ML	Bottom of boring = 25 ft. bgs.			

	~		PROJECT:		TION:		WELL ID:
FL	OY	DISNIDER	Cantera-TOC	273	7 W Commodore	Way	01MW49R
		science • engineering	LOGGED BY:		NG LOCATION: ROW, NE corner		ECOLOGY WELL ID:
			K. Anderson	CA			BNM 533
DRILLE			COORDINATE SYSTEM:		THING:		EASTING:
AEC			NAD 1983/ NAVD88 ft		5570		1256314.53
	NG EQUIPI	MENI:	SCREENED INTERVAL (ft 35-40	bgs): GROU	JND SURFACE E	LEV.:	TOC ELEVATION:
-	a Sonic NG METHO	<u>ا</u> مر	33-40	тота			45.2
	ic LAR	JD.		40	L DEPTH (ft bgs)):	DEPTH TO WATER (ft bgs): 13
	ING METH	٥n·			NG DIAMETER (i	nch):	DRILL DATE:
		- Liner Bags			inner/6" oute	· /	12/19/2022
		-					
Depth (feet)	USCS Symbol	Descript	ion	R	Drive/ ecovery	V	Vell Construction
0	Asphalt	Asphalt ground surface.					Protective Cover
-	<u> innémét</u>	Well-graded GRAVEL fill; poor reco	Voru				Concrete
	• • • • • • • • • • • • • • • • • • •	Weil-graded GRAVEL IIII, poor reco	very.				
2 —							
	GW						
	0 • 0 • 0 • 0 • 0						
4 —		Brown, silty SAND ; moist; no odor.					
-							
6 —		_					
0		Lens of brown SAND with silt.					
-	SM	Brown, silty SAND ; moist; no odor.					
8 —							
_							
		 Becomes gray with hydrocarbon od	or	-			
10 —		Brown, poorly-graded, fine SAND w					
12 —							
	SP-SM						
▼-		Becomes moist to wet.					
14 —							
-		Gray, poorly-graded SAND ; no odo	r.				
16 —							
	SP						← Bentonite Chips
18 —		 4 in. silt lens.					2" Sch. 40 PVC
			v majati na adar				
	ML	Gray sandy SILT , stiff, dry to slight	y moist, no odor.				
20 —							
ABBRE	VIATIONS			NOTES:			
ft bgs ppm	s = feet belo = parts per	ow ground surface USCS = Unified million	Soil Classification System	All intervals ev	enly decompre	ssed for lo	og/sample unless noted.

	PROJECT:	LOCATION:	WELL ID:
FLOYD SNIDER	Cantera-TOC	2737 W Commodore W	/ay 01MW49R
strategy • science • engineering	LOGGED BY:	BORING LOCATION: BT ROW, NE corner of	ECOLOGY WELL ID:
	K. Anderson	CAA-2	BNM 533
DRILLED BY:	COORDINATE SYSTEM:	NORTHING:	EASTING:
AEC	NAD 1983/ NAVD88 ft	245570	1256314.53
DRILLING EQUIPMENT:	SCREENED INTERVAL (ft bgs):	GROUND SURFACE ELE	
Terra Sonic	35-40		45.2
DRILLING METHOD: Sonic LAR		TOTAL DEPTH (ft bgs):	DEPTH TO WATER (ft bgs):
SAMPLING METHOD:		40 BORING DIAMETER (inc	h): DRILL DATE:
Continuous - Liner Bags		4" inner/6" outer	12/19/2022
Depth USCS Descrip	tion	Drive/ Recovery	Well Construction
Gray very fine, poorly-graded SAN	with silt; very dense; moist to wet.		
22 — Sand grain size coarsens to fine at	22 ft; no odor.		
SP-SM			
24 —			
Gray sandy SILT ; very dense; dry.			
26 Gray, very fine SAND with silt.			
SP-SM			
Grades to very fine, gray silty SAN	D: cilt increases with depth	_	
28 — 111 Grades to very line, gray sitty SAN	D ; sin increases with depth.		
SM			
30			
Gray, fine sandy SILT .			
32 -			
34 —			
36			
Gray silty SAND ; wet.			2-12 Monterey Sand
	h silt: wat		
Gray, poorly-graded, fine SAND wit	וו סוונ, שענ.		10-Slot PVC Screen
38 —			
SP-SM			
40Bottom of boring = 40 ft. bgs.			
ABBREVIATIONS:	NOTES		
ft bgs = feet below ground surface USCS = Unified	Soil Classification System		ed for log/sample unless noted.
ppm = parts per million 🔹 = denotes	groundwater table All Inte		

			PROJECT:		LOCATION:		WELL ID:
FL	OY	D SNIDER	Cantera-TOC		2737 W Commodo	re Way	02MW04R
		science • engineering	LOGGED BY:		BORING LOCATION		ECOLOGY WELL ID:
			K. Anderson		EW, West of CAA	·6	BNM 534
DRILLE			COORDINATE SYSTEM: NAD 1983/ NAVD88 ft		NORTHING:		EASTING:
AEC	NG EQUIPI			,	245805 GROUND SURFACE		1256080.26 TOC ELEVATION:
	a Sonic	WIE N I.	SCREENED INTERVAL (ft bg 5-15	gs):	GROUND SURFACE	ELEV.	26.39
	NG METHO)D.	0.10		TOTAL DEPTH (ft bg	18).	DEPTH TO WATER (ft bgs):
	c LAR				20	,0).	10
SAMPL	ING METH	OD:			BORING DIAMETER	(inch):	DRILL DATE:
Cont	tinuous	- Liner Bags			4" inner/6" out	er	12/19/2022
Depth (feet)	USCS Symbol	Descript	ion		Drive/ Recovery		Well Construction
0		Brown, well-graded SAND with poor (backfill); poor recovery in backfill; n	rly-graded gravel and little silt				Protective Cover
1 —		(Dackini), poor recovery in Dackini, n	0 0001.				← Concrete
2 —							→ Bentonite Chips
_							2" Sch. 40 PVC
3 —						N N	
4 _							
5 _	SW						
6 _							
7 —							
8 —							
9 —							2-12 Monterey Sand
10 🔽	<u></u>	Gray, poorly-graded, fine SAND with no odor.	h silt; silt decreases with depth	ı; wet;			10-Slot PVC Screen
11 —	SP-SM						
12 —	01 01						
13	ML	Very fine sandy SILT					
14 —	SP-SM	Gray, poorly-graded, fine SAND with	h silt; wet; no odor.				
15 —		Gray sandy SILT ; very firm to hard;	dry to slightly moist.				
16 —							
17 —							
_ 18 —	ML						
 19 —							
20		Bottom of boring = 20 ft. bgs.					
ft bgs	VIATIONS = feet belo = parts per	: ow ground surface USCS = Unified 3	Soil Classification System	IOTES: II interv	als evenly decomp	ressed for	log/sample unless noted.

strategy science engineering L06GED BY: K. Anderson BORING LOCATION: ASKO, South of CAA-5 ECOLOGY WELLID: BNM 531 DRILLED BY: AEC CORDINATE SYSTEM: NAD 1983/ NAVD88 ft NORTHUNG: 245495.72 EASTING: 1255833.26 DRILLING EQUIPMENT: Terra Sonic SCREENED INTERVAL (ft bgs): 13-18 GROUND SURFACE ELEV: 20 TOTAL DEPTH (ft bgs): 52.26 Somic LAR TOTAL DEPTH (ft bgs): Continuous - Liner Bags DESCription DRIVE / Recovery DRILL DATE: 12/19/2022 Doptit 1 USCS Description Drive / Recovery Well Construction 0 Brown sandy SILT; gray motiling; few fine gravel and rooitels; stiff with low-medium plasticity; moist; no odor. Frotective Cover 0 Brown sandy SILT; gray motiling; very stiff, hard, and dry. Enderse brown. Enderse brown. 1 Begins to grade to gray with brown mottling; very stiff, hard, and dry. Enderse brown. 1 Becomes brown. Becomes brown. Enderse brown.	ELOV		PROJECT: Cantera-TOC	LOCATION: 2737 W Comm	odore Way	WELL ID: MW03R
ALC C K. Anderson ASKO, South of CAA-5 BNM 531 DRILLED BY: COORDIMATE SYSTEM: WORTHING: E ASTING: AEC NAD 1983/NAUD08 ft 245495.72 125583.26 DRILLING EGUIPMENT: SOREENED INTERVAL (It bps): GROUND SURFACE ELEV: TOC ELEVATION: Terra Sonic 13-18 Continuous: Line Theo: 32.26 Sonic LAR 20 DAMING MAETER (Inch): Continuous - Liner Bags Description Continuous - Liner Bags Description Drive/ Recovery Well Construction 0 Increasing State to gray with brown mottling; very stiff, hard, and dry. Free medium plasticity; mostl; no odor. 1 Begins to grade to gray with brown mottling; very stiff, hard, and dry. Image: State to gray with brown mottling; very stiff, hard, and dry. 1 Begins to grade to gray with brown mottling; very stiff, hard, and dry. Image: State to gray with brown mottling; very stiff, hard, and dry. 1 Image: State to gray with brown mottling; very stiff, hard, and dry. Image: State to gray with brown mottling; very stiff, hard, and dry. 1 Image: State to gray with brown mottling; very stiff, hard, and dry. Image: State to gray with brown mottling; very stiff, hard, and dry. 1 Image: State to gray with brown mottling; very stiff, hard, and dry. Image: State to gray with brown mottling; very stiff, hard, and dry.						
DellLIDE DY: AEC AEC AEC AEC AEC AEC AEC AEC	strategy • s	science • engineering				
Depth USCS Description Drive/ Recovery Well Construction 0 USCS Description Drive/ Recovery Protective Cover 0 USCS Begins to grade to gray with brown mottling; very stiff, hard, and dry. Image: Stiff with to the stiff stiff stif	DRILLED BY:			NORTHING:		EASTING:
Terra Sonic 13-18 State DRILLUG METHOD: Sonic LAR TOTAL DEPTH (thos): 20 DEPTH TO WATER (thos): 13.5 SAMPLING METHOD: Continuous - Liner Bags BORING DIAMETER (inch): 24' inner/6' outer DRILL DATE: 12/19/2022 Depth (vert) USCS Symbol Description Drive/ Recovery Well Construction 0 Erown sandy SiLT; gray motting: few fine gravel and rootlets; stiff with itw-medium plasticity; most; no odor. Protective Cover 1 - Begins to grade to gray with brown mottling; vary stiff, hard, and dry. - 5 - - Becomes brown. 10 - - - 11 - - - 12 - - - 13 - - - 14 - SM Gray and brown mottled silly SAND; dry: no odor. -			NAD 1983/ NAVD88 ft			
DRILLING METHOD: Sonic LAR TOTAL DEPTH (ft bgs): 20 DEPTH TO WATER (ft bgs): 20 SAMPLING METHOD: BORING DIAMETER (inch): 20 DRILL DATE: 12/19/2022 Depth Usc Description Dive/ test Symbol Description Dive/ test Begins to grade to gray with brown mottling: very stiff, hard, and dry. Protective Cover Concrete Dive/ test ML Begins to grade to gray with brown mottling: very stiff, hard, and dry. Becomes brown. Becomes brown. Dive/ test Gray and brown mutiled silly SAND; dry; no odor.		MENT:				
Sonic LAR 20 13.5 SAMELING METHOD: Continuous - Liner Bags BORING DIAMETER (inch): 3 - 4 inner/6" outer DBILL DATE: 12/19/2022 Depth Well Construction Description Drive/ Recovery Well Construction 0 - - - 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - ML - 8 - - - 9 - - - 11 - - - 12 - - - 3 - - - 4 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - -			13-18		() () ()	
SAMPLING METHOD: DRIL DATE: Continuous - Liner Bags Description USCS Symbol Description Depth (ref) USCS Symbol Depth (ref) Brown sandy SLT: gray motiling; fow fine gravel and rootfets; stiff with 1 1 - 2 - 3 - 4 - 5 - 6 - 7 ML 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 13 - 14 - 15 -		JD:			n bgs):	
Continuous - Liner Bags 4" inner/6" outer 12/19/2022 Depth (reet) USCS Symbol Description Drive/ Recovery Well Construction 1 - - - - 2 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - ML Begins to grade to gray with brown mottling: very stiff, hard, and dry. - 8 - - - - 9 - - - - 11 - - - - 12 - - - - 13 - - - - 14 - - - - 15 - - - -		OD:			TER (inch):	
Brown sandy SiLT; gray motiling; few fine gravel and rootlets; stiff with Recovery Well Construction 1 - - Protective Cover 2 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - ML - - 8 - - - - 9 - - - - 11 - - - - 8 - - - - 9 - - - - 10 - - - - 11 - - - - 12 - - - - 13 - - - - 14 - - - - 15 - - - 2-12 Monterey Sand	Continuous -	- Liner Bags			. ,	
Brown sandy SiLT: gray motiling; few fine gravel and rootlets; stiff with Recovery Well Construction 1 - - Protective Cover 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - ML - 8 - - 9 - - 11 - - 12 - - 13 - - 14 - - 5 - - 14 - - 15 - -	-			Drive/		
 I bew-medium plasticity; moist, no odor. Begins to grade to gray with brown mottling; very stiff, hard, and dry. Begins to grade to gray with brown mottling; very stiff, hard, and dry. Becomes brown. B		Descript	ion		у	Well Construction
1	0	Brown sandy SILT ; gray mottling; fe	ew fine gravel and rootlets; stiff with			Protective Cover
$\begin{array}{c} 2 \\ 3 \\ - \\ 3 \\ - \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	1 _	low-medium plasticity; moist; no odc)r.			Concrete
3 - 4 - 5 - 6 - 7 - ML Becomes brown. 9 - 10 - 11 - 12 - 13 - 14 - 5 - 15 -						
 Begins to grade to gray with brown mottling; very stiff, hard, and dry. HL Becomes brown. Becomes brown. Gray and brown mottled silty SAND; dry; no odor. SM Gray and brown mottled silty SAND; dry; no odor. SM 	2					
 Begins to grade to gray with brown mottling; very stiff, hard, and dry. HL Becomes brown. Becomes brown. Gray and brown mottled silty SAND; dry; no odor. SM Gray and brown mottled silty SAND; dry; no odor. SM 	-					
Begins to grade to gray with brown mottling; very stift, hard, and dry.	3 —					
5 - 6 - 7 - ML 8 - 9 - 10 - 11 - 12 - 13 - 14 - SM 15 - SM 15 - SM 15 - SM 10 - 10 - 10 - 11 - 12 - 13 - 13 - 14 - SM 15 - SM 10 - 10 - 1	4 —	Begins to grade to grav with brown r	mottling: very stiff, hard, and dry.			
6 - Bentonite Chips 7 - ML 8 - 2' Sch. 40 PVC 9 - 10 - 11 - 12 - 13 - 14 - SM 15 - SM Gray and brown mottled silty SAND; dry; no odor.	_		- <u>()</u> -) - (,)			
7 ML 8 Becomes brown. 9 Becomes brown. 10 Becomes brown. 11 Becomes brown. 12 Becomes brown. 13 Gray and brown mottled silty SAND; dry; no odor. 14 SM 15 SM	5 —					
Becomes brown. Becomes brown. Becomes brown. Becomes brown. Gray and brown mottled silty SAND; dry; no odor. Gray and brown mottled silty SAND; dry; no odor. Comparison of the second se	6 —					🖌 🔶 Bentonite Chips
Becomes brown. Becomes brown. Becomes brown. Becomes brown. Gray and brown mottled silty SAND; dry; no odor. Gray and brown mottled silty SAND; dry; no odor. Comparison of the second se	ML					2" Sch. 40 PVC
9 - 10 - 11 - 12 - 13 - 13 - 14 - 15 - SM Gray and brown mottled silty SAND; dry; no odor. ← 2-12 Monterey Sand	7					
9	8 —					
$\begin{array}{c} & & \\ 10 & - \\ 11 & - \\ 12 & - \\ 13 & - \\ 14 & - \\ 15 & - \\ 15 & - \\ \end{array}$ $\begin{array}{c} & \\ Gray and brown mottled silty SAND; dry; no odor. \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	_	Becomes brown.				
11 - 12 - 13 - 13 - 14 - 15 - SM Gray and brown mottled silty SAND; dry; no odor. 14 - 2-12 Monterey Sand	9 —					
12 - 13 - 14 - SM 15 - SM 15 - SM 15 - SM 16 - SM 10 Slot DVC Saraan 10 Slot DVC Saraan	10 —					
12 - 13 - 14 - SM 15 - SM 15 - SM 15 - SM 16 - SM 10 Slot DVC Saraan 10 Slot DVC Saraan	-					
13 - 14 - SM 15 - SM 15 - SM 10 Slet DVC Screen						
Gray and brown mottled silty SAND; dry; no odor.	12 —					
Gray and brown mottled silty SAND; dry; no odor.	_					
14 - SM 15 - SM 15 - SM 10 Slot DVC Screen						
	14 —	Gray and brown mottled silty SAND); ary; no odor.			
						2-12 Monterey Sand
Examples of the same dense: moist.						10-Slot PVC Screen
	16 —	Gray, poorly-graded, tine SAND ; me	euluin dense; MOIST.			
	SP					
18 Gray sandy SILT; slightly moist.		Gray sandy SILT; slightly moist.				
	- ML					
- SM Interbedded gray sandy SILT with silty SAND.		Interbedded gray sandy SILT with s	silty SAND.			
20 Bottom of boring = 20 ft. bgs.	_20		1			
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified Soil Classification System Samples evenly decompressed for logging unless otherwise noted;						
ppm = parts per million			groundwater table new we	ll ~5 ft higher in e	elevation than	n original MW03

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Attachment A.2 Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 13, 2023

Kristin Anderson, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on February 1, 2023 from the Cantera TOC, F&BI 302018 project. There are 37 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Milif Colo

Michael Erdahl Project Manager

Enclosures FDS0213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 1, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera TOC, F&BI 302018 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
302018 -01	01MW12-013123
302018 -02	01MW35-013123
302018 -03	01MW40-013123
302018 -04	01MW49R-013123
302018 -05	01MW84-013123
302018 -06	01MW84D-013123
302018 -07	01MW85-013123
302018 -08	01MW19R-013123
302018 -09	01MW66-013123
302018 -10	BT-TRIP-BLANK
302018 -11	01MW56-020123
302018 -12	01MW108-020123
302018 -13	01MW46-020123
302018 -14	01MW15-020123
302018 -15	MW05-020123
302018 -16	MW06-020123
302018 -17	02MW19-020123
302018 -18	02MW07-020123
302018 -19	02MW04R-020123
302018 -20	EW-TRIP-BLANK
302018 -21	01MW53-020123

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018 Date Extracted: 02/07/23 Date Analyzed: 02/07/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
01MW12-013123 ³⁰²⁰¹⁸⁻⁰¹	<100	111
01MW35-013123 ₃₀₂₀₁₈₋₀₂	<100	108
01MW40-013123 ₃₀₂₀₁₈₋₀₃	<100	112
01MW49R-013123 ₃₀₂₀₁₈₋₀₄	<100	112
01MW84-013123 ³⁰²⁰¹⁸⁻⁰⁵	2,300	105
01MW84D-013123 ³⁰²⁰¹⁸⁻⁰⁶	2,200	99
01MW19R-013123 ³⁰²⁰¹⁸⁻⁰⁸	990	110
BT-TRIP-BLANK 302018-10	<100	110
02MW19-020123 ³⁰²⁰¹⁸⁻¹⁷	<100	105
02MW07-020123 ³⁰²⁰¹⁸⁻¹⁸	<100	103
02MW04R-020123 ³⁰²⁰¹⁸⁻¹⁹	<100	101

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018 Date Extracted: 02/07/23 Date Analyzed: 02/07/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
EW-TRIP-BLANK 302018-20	<100	98
Method Blank ^{03-220 MB}	<100	103

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018 Date Extracted: 02/03/23 Date Analyzed: 02/03/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
01MW12-013123 ³⁰²⁰¹⁸⁻⁰¹	1,000 x	<250	111
01MW35-013123 ³⁰²⁰¹⁸⁻⁰²	110 x	<250	108
01MW40-013123 302018-03	4,700 x	600 x	96
01MW49R-013123 302018-04	260 x	<250	108
01MW84-013123 ³⁰²⁰¹⁸⁻⁰⁵	810 x	<250	104
01MW84D-013123 ³⁰²⁰¹⁸⁻⁰⁶	830 x	<250	101
01MW19R-013123 ³⁰²⁰¹⁸⁻⁰⁸	910 x	<250	108
02MW19-020123 ³⁰²⁰¹⁸⁻¹⁷	150 x	<250	114
02MW07-020123 ³⁰²⁰¹⁸⁻¹⁸	86 x	<250	109
02MW04R-020123 ³⁰²⁰¹⁸⁻¹⁹	69 x	<250	107
Method Blank ^{03-308 MB}	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	02MW19-020123	Client:	Floyd-Snider
Date Received:	02/01/23	Project:	Cantera TOC, F&BI 302018
Date Extracted:	02/02/23	Lab ID:	302018-17 x2
Date Analyzed:	02/08/23	Data File:	302018-17 x2.034
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	3.25		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	02MW07-020123 02/01/23	Client: Project:	Floyd-Snider Cantera TOC, F&BI 302018
Date Extracted: Date Analyzed:	02/02/23 02/03/23	Lab ID: Data File:	302018-18 302018-18.095
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	MG
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 02/02/23 02/03/23 Water wg(L (app))	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider Cantera TOC, F&BI 302018 I3-72 mb2 I3-72 mb2.034 ICPMS2 MC
Units: Analyte: Arsenic	ug/L (ppb) Concentration ug/L (ppb) <1	Operator:	MG

7

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW12-01 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	13123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-01 020609.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	94	71	132
Toluene-d8		91	68	139
4-Bromofluorobenz	ene	97	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW35-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	13123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-02 020610.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	71	132
Toluene-d8		91	68	139
4-Bromofluorobenz	ene	99	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW40-01 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	13123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-03 020611.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	71	132
Toluene-d8		92	68	139
4-Bromofluorobenz	ene	102	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		0.73		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW49R- 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	013123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-04 020612.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	93	71	132
Toluene-d8		88	68	139
4-Bromofluorobenz	ene	97	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW84-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	13123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-05 020613.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	71	132
Toluene-d8		102	68	139
4-Bromofluorobenz	ene	99	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW84D- 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	013123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-06 020614.D GCMS13 LM
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	101	71	132
Toluene-d8	ui	101	68	139
4-Bromofluorobenz	ene	100	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW85-0 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	13123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-07 1/10 020624.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	91	71	132
Toluene-d8		91	68	139
4-Bromofluorobenz	ene	96	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		13		
cis-1,2-Dichloroeth	ene	1,200		
Trichloroethene		5.7		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW19R- 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	013123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-08 020615.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	71	132
Toluene-d8		102	68	139
4-Bromofluorobenz	ene	101	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		5.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	BT-TRIP-B 02/01/23 02/03/23 02/03/23 Water ug/L (ppb)	LANK	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-10 020316.D GCMS11 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	78	126
Toluene-d8		105	84	115
4-Bromofluorobenz	ene	102	72	130
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW56-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-11 020616.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 101 97	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 0.99 <1 0.81		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW108-0 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	020123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-12 020617.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 99 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 0.27 <1 <0.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW46-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-13 1/10 020625.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 98 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth	ene	Concentration ug/L (ppb) 17 140		
Trichloroethene Benzene		$\begin{array}{c} 240\\ 3.8 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW15-0 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-14 020618.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 105 102 97	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene	ene	$36 \\ 6.4 \\ < 0.5$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW05-0201 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-15 1/10 020626.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	71	132
Toluene-d8		99	68	139
4-Bromofluorobenz	ene	99	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		6.8		
cis-1,2-Dichloroeth	ene	360		
Trichloroethene		140		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW05-0201: 02/01/23 02/03/23 02/03/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-15 020318.D GCMS11 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	78	126
Toluene-d8		105	84	115
4-Bromofluorobenz	ene	103	72	130
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1.4		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW06-0201 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-16 020619.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 95 92 104	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	2.6 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW19-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-17 020620.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	71	132
Toluene-d8		98	68	139
4-Bromofluorobenz	ene	100	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW07-02 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-18 020621.D GCMS13 LM
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	103	71	132
Toluene-d8		101	68	139
4-Bromofluorobenz	ene	99	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW04R- 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	020123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-19 020622.D GCMS13 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	92	71	132
Toluene-d8		89	68	139
4-Bromofluorobenz	ene	101	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EW-TRIP-I 02/01/23 02/03/23 02/03/23 Water ug/L (ppb)	BLANK	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-20 020317.D GCMS11 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	78	126
Toluene-d8		110	84	115
4-Bromofluorobenz	ene	102	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW53-0 02/01/23 02/03/23 02/06/23 Water ug/L (ppb)	20123	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 302018-21 020623.D GCMS13 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze		% Recovery: 98 99 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 0.57 5.4 2.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 02/03/23 02/03/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 302018 03-0264 mb 020315.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 106 103	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	<0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Analysis for Semivolatile Phenols By EPA Method 8270E SIM

1.9

Pentachlorophenol

Client Sample ID:	01MW66-0	13123	Client:	Floyd-Snider
Date Received:	02/01/23		Project:	Cantera TOC, F&BI 302018
Date Extracted:	02/03/23		Lab ID:	302018-09
Date Analyzed:	02/03/23		Data File:	020320.D
Matrix:	Water		Instrument:	GCMS12
Units:	ug/L (ppb)		Operator:	VM
Surrogates: 2,4,6-Tribromopher	nol	% Recovery: 109	Lower Limit: 50	Upper Limit: 150
Compounds:		Concentration ug/L (ppb)		

30

ENVIRONMENTAL CHEMISTS

Analysis for Semivolatile Phenols By EPA Method 8270E SIM

< 0.2

Pentachlorophenol

Client Sample ID:	Method Blank	Client:	Floyd-Snider
Date Received:	Not Applicable	Project:	Cantera TOC, F&BI 302018
Date Extracted:	02/03/23	Lab ID:	03-310 mb
Date Analyzed:	02/03/23	Data File:	020319.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM
Surrogates: 2,4,6-Tribromopher	% Recovery: nol 79	Lower Limit: 50	Upper Limit: 150
Compounds:	Concentration ug/L (ppb)		

31

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302017-01 (Duplicate)													
	Reporting	Samp	le Duj	olicate	RPD								
Analyte	Units	Resul	lt Re	esult	(Limit 20)								
Gasoline	ug/L (ppb)	<100) <	100	nm								
Laboratory Code: Laboratory Control Sample Percent													
	Reporting	Spike	Recovery	Acceptance									
Analyte	Units	Level	LCS	Criteria	_								
Gasoline	ug/L (ppb)	1,000	93	70-130	_								

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	120	112	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	: 301238-01	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	2.06	83	79	75-125	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	89	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 302018-15 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	7.8	96	108	50 - 150	12
cis-1,2-Dichloroethene	ug/L (ppb)	10	350	145	$270 \mathrm{b}$	50 - 150	60 b
Benzene	ug/L (ppb)	10	1.4	105	106	50 - 150	1
Trichloroethene	ug/L (ppb)	10	140	7 b	109	50 - 150	176 b

	I I I I I I I I I I I I I I I I I I I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	113	111	70-130	2
cis-1,2-Dichloroethene	ug/L (ppb)	10	98	104	70-130	6
Benzene	ug/L (ppb)	10	100	104	70-130	4
Trichloroethene	ug/L (ppb)	10	97	100	70-130	3
Toluene	ug/L (ppb)	10	97	107	70-130	10

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/23 Date Received: 02/01/23 Project: Cantera TOC, F&BI 302018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILE PHENOLS BY EPA METHOD 8270E SIM

Laboratory coue. Laborator	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 30)
Pentachlorophenol	ug/L (ppb)	2.5	101	88	70-130	14

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

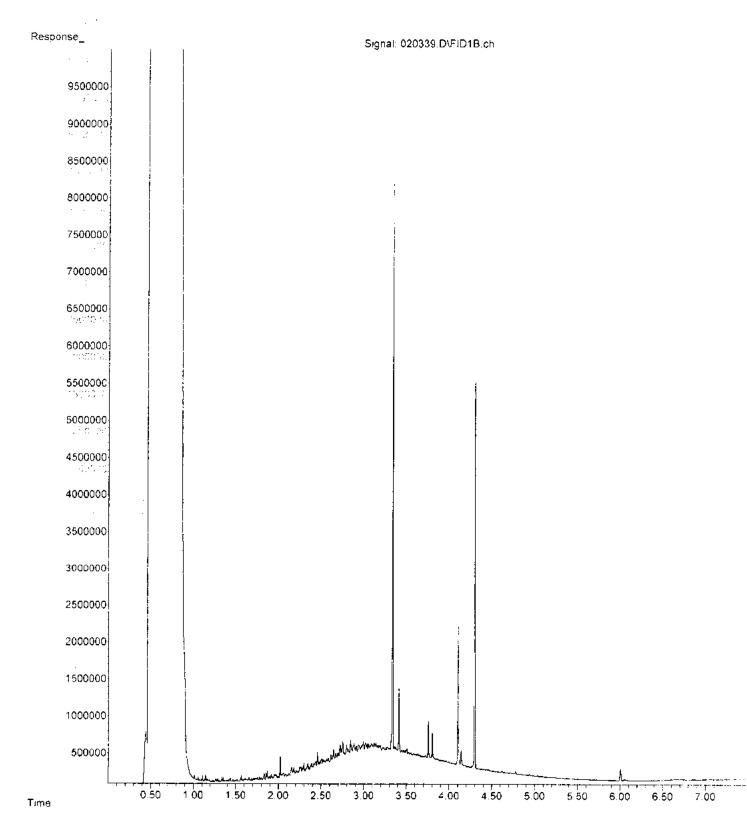
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

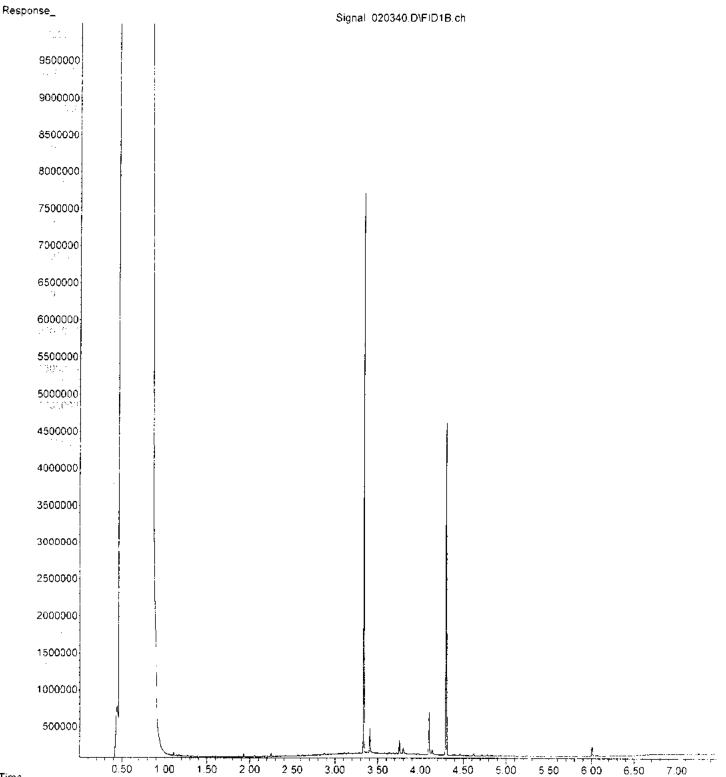
vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


					•	æ	•		•		.	54	~	*		_					1	
Re		—	Friedman & Bruya, Inc.		BT-TRIP-BLANK	01 MW 66 - 013123	01MW191R-0131-23	01MW85-013123	01MWB4D-013123	01MW84-013123	01MW49R-013123	011111110-013123	_ \	01 MW12 - 013123	Sample ID		Phone 212-2010 Email	City. State. ZIP South wA	Company Floys Shires	e P		N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Received by:	Relinquished by:	Received by:	Relinquished by	61	IO A.B	09 A-C	08 A-H	OT A-K	06	05	04	03	01	01 A.H	Lab ID						2	
	Why	ever was		CINATIARS	 									1/31/23	Date Sampled				Sute locu			<i>co</i>
					09.00	S1:HI	05:01	110-12	13:57	13.47	12:02	11:20	10:37	09.30	Time Sampled		and Project si	REMARKS CVOCS = TCE,	Curter	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF
		100	Damela		٤	GW	GW	Gi	GE W	લંહ	ê E	િંદ	(JW)	GW	Sample Type		and Viny) (Mic) Project specific RLs? -	TCE, C	l'untera TCC	NAME	SAMPLERS (signature)	CHAIN
		_	16	PRI	2	3	œ	=	œ	∞	α	Ø	œ	Ø	# of Jars			C15-12-DCE			ure)/	
			Ostar Mourt	PRINT NAME			<		5	<	\leq	R	<	\leq	NWTPH-Dx		No.	, Q				ÇŲST
	5	T T	how	AME	\leq			<u> </u>	<u> </u> <	$ \leq$		<u> </u> <	<u> `</u>	$ \leq$	NWTPH-Gx	$\left \right $	5	<u>(</u> ,	 	{		ODY
			¥-1			+		+	+			+			BTEX EPA 8021 NWTPH-HCID	$\left \right $		Ι			N	H
i					 	╋		+			+			-	VOCs EPA 8260	ANAL		NVO		P	2	.
						$\overline{\langle}$									Pentepa 8270	LYSES		INVOICE TO		PO #	Y	02-01-
SS		2	E Maria	0		<u> </u>	_	<u> </u>	<u> </u>	-				+-	PCBs EPA 8082	100		0				1
្រុះ			s P	COMPANY		\ -	<u> </u>		$\downarrow \leq$	\downarrow				$ \leq$	Benzene bij	REQUESTED	l		<u> </u>			دم د ک
Samples received at		-	ud Snider	ANY					\ 	+		+-			CVOCS 8260 Navate, Natite + Suifate (300	DED	Defaute		Rusł	C RUSH		ے ا
ived :		:	¥			_	+-	$\frac{1}{2}$	<u> </u>		+	+	+		Nivate, Nitite + Suifate (300) Suifide SM450	- T	E.	SAIV chive	, char	andar JSH_	Page #	vw4/
		<u>_ح</u> ر	2		-	-	+	$\overline{\}$	<u>·</u>		-	+	-		Nethank, Ethana Ethana (RSK-		Dispo	SAMPLE DISTUSAL Archive samples	ges au	Standard turnaround	NARO) EI
00 H	-	7	21123	DATE			+	+	\							-117- 	se aft	les	thoriz	aroun	UND	Y
	<u> </u>	23/	=							i					Notes		Default. Dispose after 30 days	JOAL	Rush charges authorized by:		TURNAROUND TIME	11
		2	1001	TIME			ļ										days					~
	LT	_	I	L	╵┖╼		_!	1					_									

Rec	Ph. (206) 285-8282	t, Inc.	EW-TRIP-BLANK	02 MWC4R-020123	62MW 07 - 020123	02MW19-020123	MW06 -0201-23	MW05-020123	01MW15-020123	01MW46-02023	01MW108-020123	01MW56 - 0201 23	Sample ID		PhoneEmail_	City, State, ZIP UN			Report To Krishn Anders	310000
Received by:	Received by:	Relinquished by:	100	19 A-H	18 A-I	I-4-I	16 A-H	15-A-N	IU A-F	13 A-H	12 A-F	11 A-# 2	Lab ID						eren l	
	here	SIGNATURE								 	-	21/23	Date Sampled							
	-	H H	04.00	20,21	14:20	14:12	1235	12:26	00 11	09:30	09.10	1000	Time Sampled		+ Vinv	- evocs =	Cantera	PROJEC	SAMPLE	SAMPLE CHAIN OF CUST
		P 04	1	1 G	r F E	GU	Gw	સિ	ઈ	ີ ເບີ	હિટ	Gw	Sample Type		Froject specific RLs? -		8	PROJECT NAME	SAMPLERS (signature)	CHAIN
	VINH	PRINT N	1	ა <u>დ</u>	کر د	2	0		6	Q	6	œ	# of Jars			TCE, US-12-DCE	6		ture)	OFC
		PRINT NAME		<u>اح</u> حار			<u> </u>	+	1				NWTPH-Dx NWTPH-Gx		Yes / No	1-10-6			hud	USTO
		ĨЕ		$\overline{\langle}$			<	<	(B)	; S			BEATHER EPA 8021							FODY
				-+					+		┼──		NWTPH-HCID VOCs EPA 8260	ANA		INVOICE TO		PO	2	
			┤┝┈										PAHs EPA 8270	ANALYSES REQUESTED		ICE T		0 #	2	02-01-23
S	₹ B					+-	$\left \right\rangle$			<u>र</u>	<	-	PCBs EPA 8082	REQU		¢				4
iplos 1		S					₹	$\mathbf{\xi}$	+	k			Nitrate, Nitr ite Tinitate 3000	JESTE		 	<u> </u>		1	
Samplos received at 4 00	E						<u>रि</u>	. <				K	Sulfide SMUSD	U	lefau	Arc	ush ch	RUSH		Jmm/
			┤┣			$\langle \langle$	<u> </u>			_		-	Total Assenic		t: Disp	Archive samples	arges	I I	TURNAR	TS TS
00		1123					ļ	MS/		IND BANBERN					Default: Dispose after	SAMPLE DISTORAL hive samples ler	Rush charges authorized by	RUSH	TURNAROUND TIME	24 H
								WSV/		xn.re			Notes		ter 30		Zed by		TIME	Ч » кі
	1081	18.01	TIME							Ē					30 days	 				\sim

Re	Ph. (206) 285-8282 Rec Re	, Inc.											01111153-020123	Sample ID		Phone - Email	Address	Company Flade Mille	Report To Kyshn Hnders	302010	2
Received by:	Received by:	Relinquished by											21 A-F	Lab ID					CHS7)	
	Que	Markey C											211/23	Date Sampled							10
		that			- -	-							10:50	Time Sampled		Project s	REMARKS	Cant	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO
		9.9											GW	Sample Type		<u> Project specific RLs? - Yes / No</u>	S	Cantera TOC	NAME	RS (signat	CHAIN
	1NH	P. Osterhant	PR						\uparrow	1			e	# of Jars		<u>2 - Y</u> e		8	+	ure)	OFC
		how	PRINT NAME	\vdash							-			NWTPH-Dx		S / N			Å	<u> </u>	us,
		4-	IAMI			Λ _			\mathbb{Z}					NWTPH-Gx			· · · · · · · · · · · ·		_{		lOD
				┞╄				<u></u> }	\vdash			_		BTEX EPA 802) L	Ž	DY
							\sim	\vdash	┢	4-		+-	+	NWTPH-HCID VOCs EPA 826			INV		ľ		þ
				\square		$\left\{ - \right\}$		-	+	-	╉─		+	PAHs EPA 827	ㅋヒ		INVOICE TO		Po #		
So a	Å F	SIA				T		 	Ď	·			+-	PCBs EPA 808	ES R		IO	2	_ ₹	\mathbf{i}	12-0
olos r	. x		COM										R	TLE, CICI,2 DLE, VIAUM	EQU					4	01-23
Somolog repuised			COMPANY				\setminus						<		REQUESTED	┟		<u>स्</u>			2
23. 26			×													Default:	Archi	ush cl	D RUSH	, TI	• <
<u>عا</u> ملم							P											harge	dard t H	TURNA	1 mV
ဂိ			DATE								1			1		s esode	SAMPLE DISPOSAL hive samples	Rush charges authorized by	UStandard turnaround O RUSH	Page #	2 F3
			र्स		X									Notes		uter (POS/	rized	und		
	100	10 <u>8</u>	TIME											ω		Dispose after 30 days		by:			्रभू
		- I	L			L	I	<u> </u>										<u> </u>		ا لسور	


File :P:\Proc_GC13\02-03-23\020339.D
Operator : TL
Acquired : 03 Feb 2023 04:08 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-01
Misc Info :
Vial Number: 37

ERR

File P:\Proc_GC13\02-03-23\020340.D
Operator : TL
Acquired : 03 Feb 2023 04:19 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-02
Misc Info :
Vial Number: 38

ERR

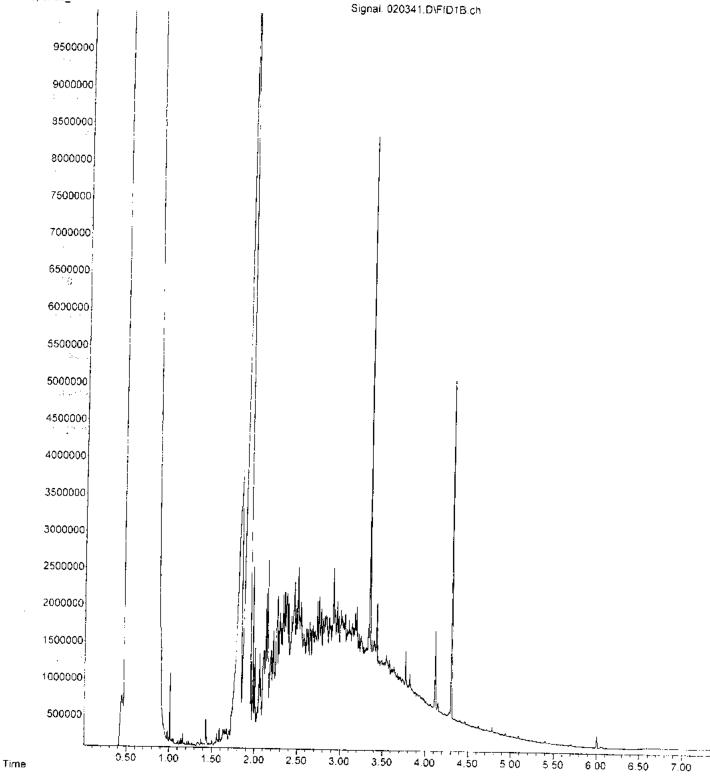
Time

```
File :P:\Proc_GC13\02-03-23\020341.D

Operator : TL

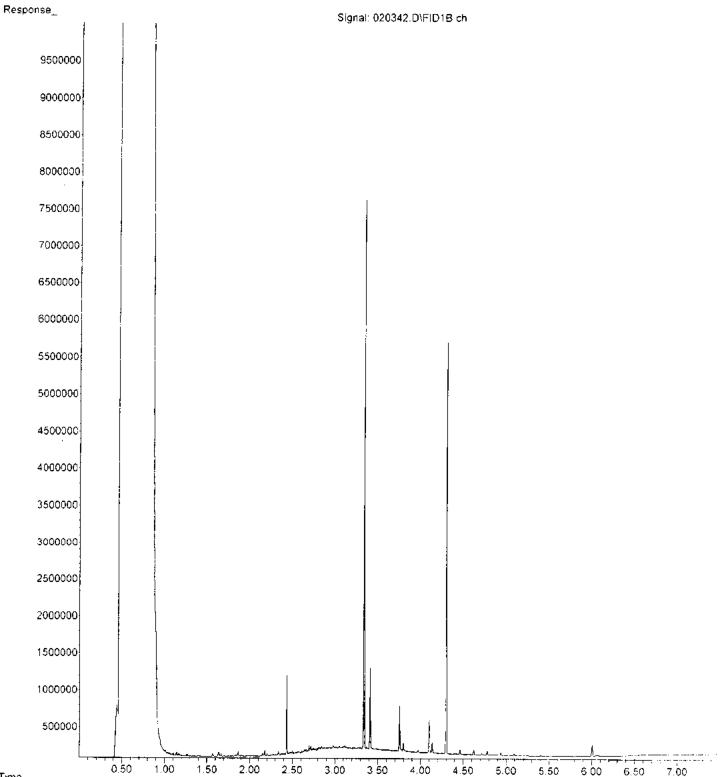
Acquired : 03 Feb 2023 04:30 pm using AcqMethod Dx.M

Instrument : GC13


Sample Name: 302018-03

Misc Info :

Vial Number: 39
```


ERR

Response_

File :P:\Proc_GC13\02-03-23\020342.D
Operator : TL
Acquired : 03 Feb 2023 04:42 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-04
Misc Info :
Vial Number: 40

ERR

Time

File :P:\Proc_GC13\02-03-23\020343.D
Operator : TL
Acquired : 03 Feb 2023 04:53 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-05
Misc Info :
Vial Number: 41

Response_

ĒRR

2.50

3 00

3.50

4 00

4 50

5.00

5 50

6.00

7.

7 00

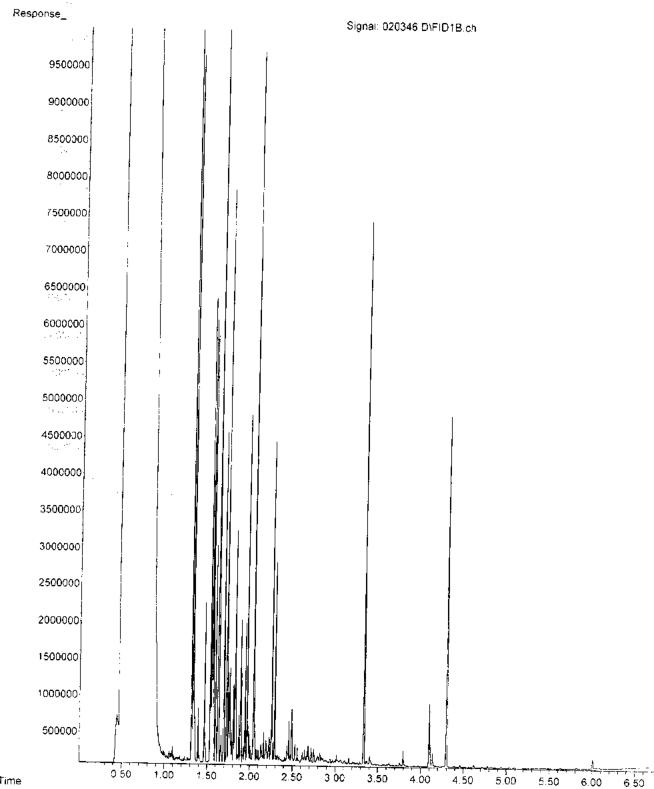
6.50

2.00

1.50

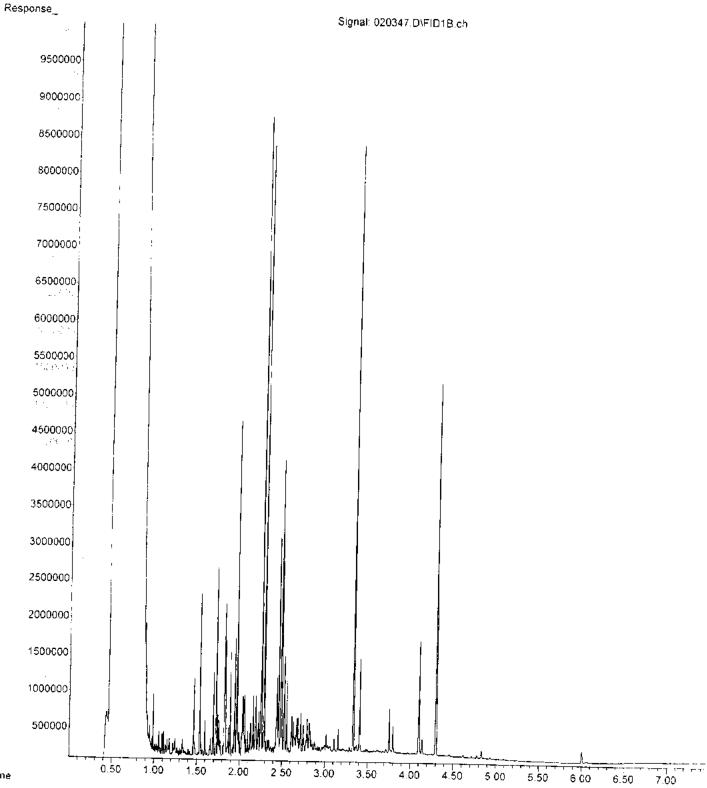
1.00

500000


0 50

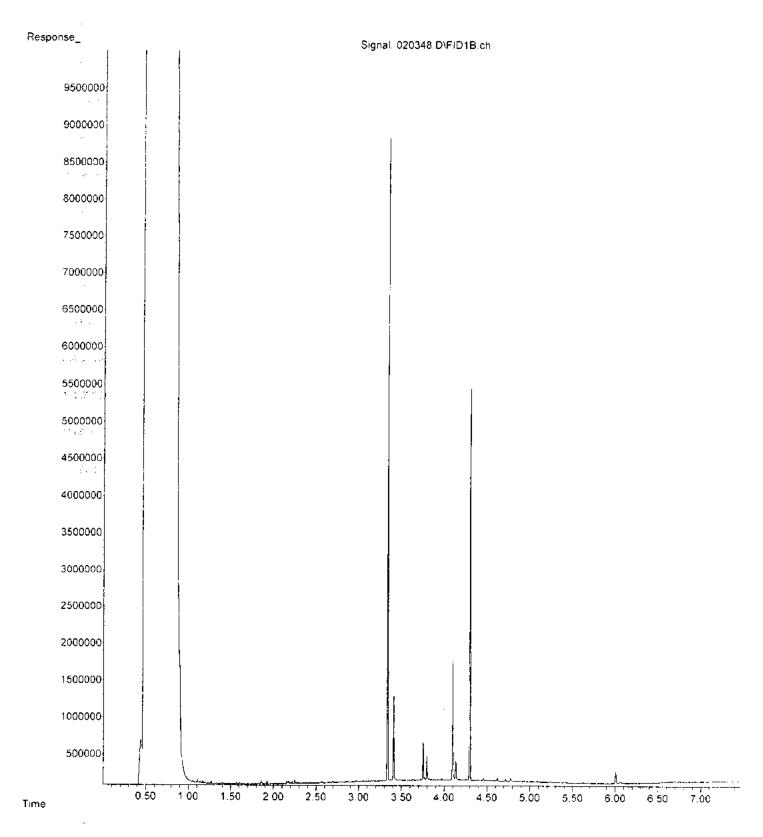
```
File
         :P:\Proc_GC13\02-03-23\020346.D
Operator : TL
Acquired : 03 Feb 2023 05:27 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-06
Misc Info :
Vial Number: 42
```

ERR


T- +-

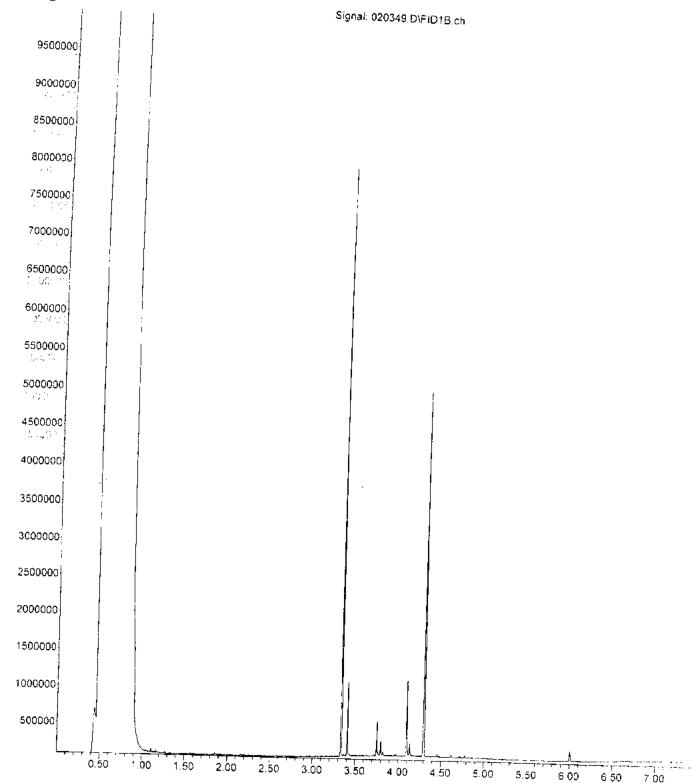
7 00

File :P:\Proc_GC13\02-03-23\020347.D
Operator : TL
Acquired : 03 Feb 2023 05:38 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-08
Misc Info ::
Vial Number: 43


ERR

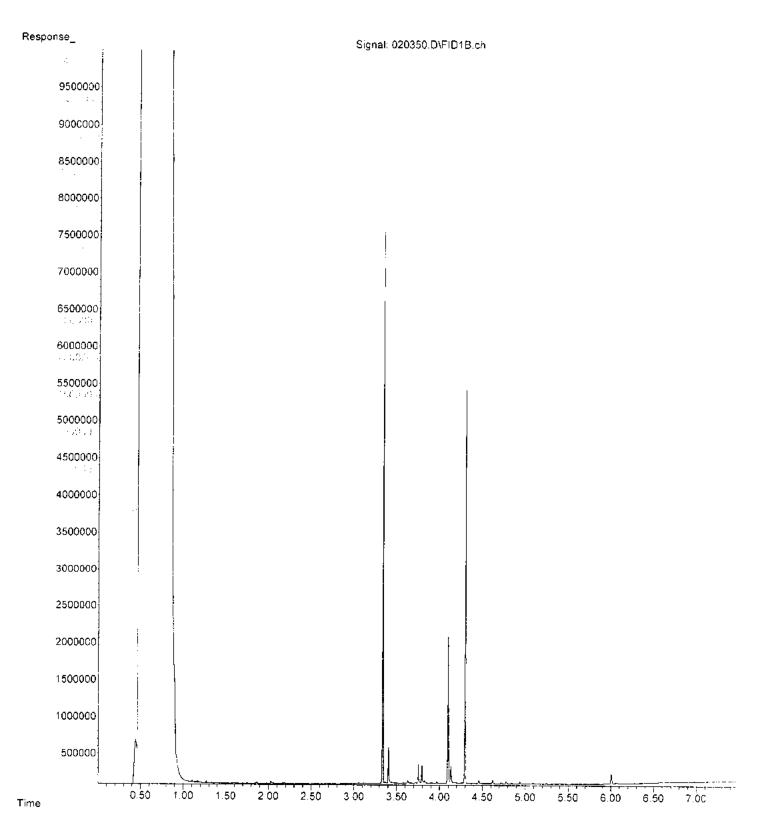
Time

File :P:\Proc_GC13\02-03-23\020348.D
Operator : TL
Acquired : 03 Feb 2023 05:49 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-17
Misc Info :
Vial Number: 44


ERR

File :P:\Proc_GC13\02-03-23\020349.D Operator : TL Acquired : 03 Feb 2023 06:01 pm using AcqMethod Dx.M Instrument : GC13 Sample Name: 302018-18 Misc Info : Vial Number: 45

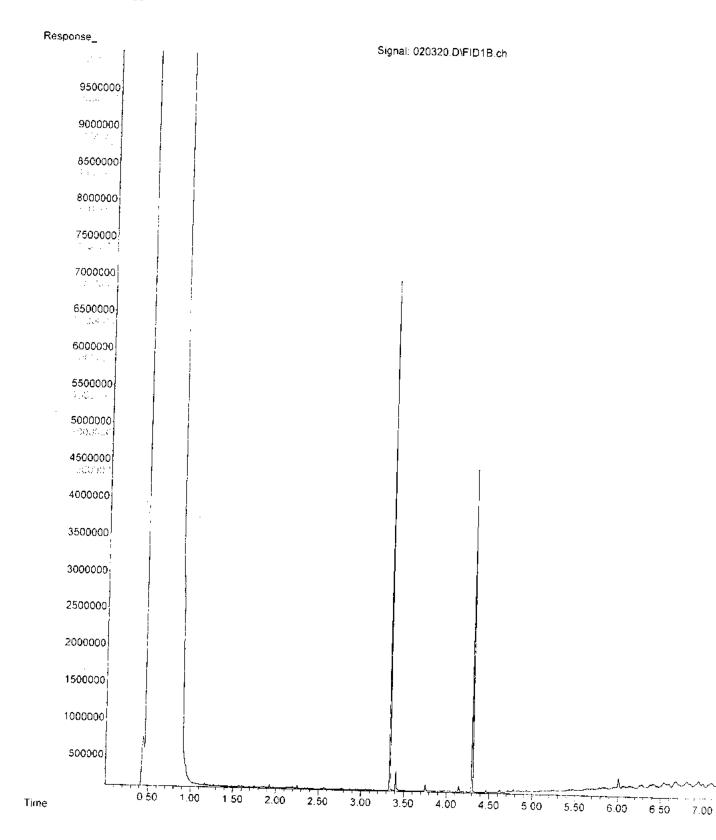
ERR


Response_

Time

File :P:\Proc_GC13\02-03-23\020350.D
Operator : TL
Acquired : 03 Feb 2023 06:12 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 302018-19
Misc Info :
Vial Number: 46

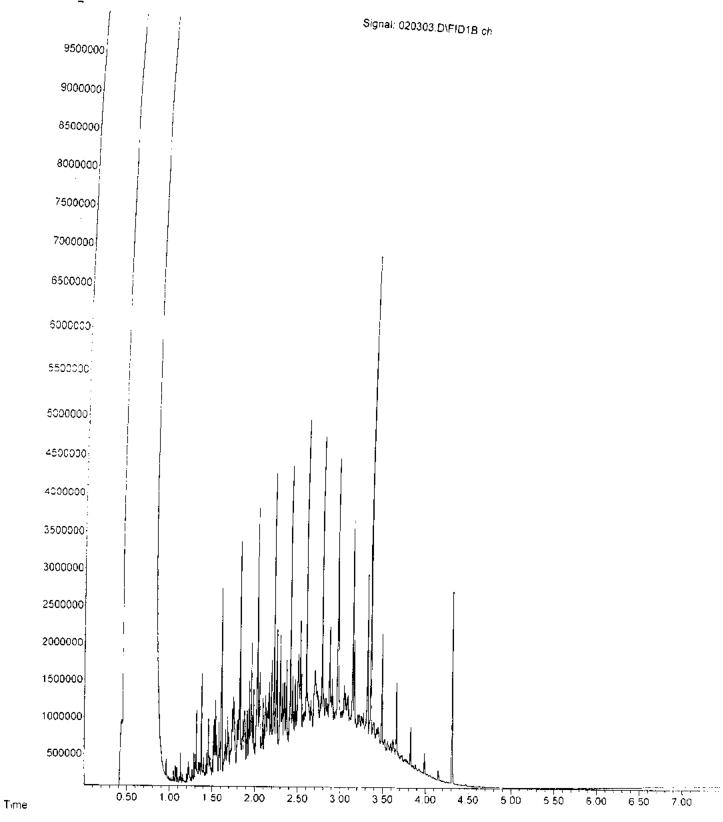
ERR



File :P:\Proc_GC13\02-03-23\020320.D
Operator : TL
Acquired : 03 Feb 2023 12:34 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 03-308 mb
Misc Info :
Vial Number: 22

0.11

ERR


. .

File :P:\Proc_GC13\02-03-23\020303.D Operator : TL Acquired : 03 Feb 2023 08:52 am using AcqMethod Dx.M Instrument : GC13 Sample Name: 500 Dx 67-1438 Misc Info : Vial Number: 3

ERR

Response_

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 302018 Work Order Number: 2302048

February 10, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 2/2/2023 for the analyses presented in the following report.

Dissolved Gases by RSK-175 Ion Chromatography by EPA Method 300.0 Sulfide by SM 4500-S2-F

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 302018 2302048	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2302048-001	01MW85-013123	01/31/2023 4:12 PM	02/02/2023 2:14 PM
2302048-002	01MW56-020123	02/01/2023 9:07 AM	02/02/2023 2:14 PM
2302048-003	01MW46-020123	02/01/2023 9:30 AM	02/02/2023 2:14 PM
2302048-004	MW05-020123	02/01/2023 12:26 PM	02/02/2023 2:14 PM
2302048-005	MW06-020123	02/01/2023 12:35 PM	02/02/2023 2:14 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2302048** Date: **2/10/2023**

CLIENT:Friedman & BruyaProject:302018

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2302048

 Date Reported:
 2/10/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP** - Sample Duplicate HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2302048

 Date Reported:
 2/10/2023

CLIENT:	Friedman & Bruya

Project: 302018

Lab ID: 2302048-001 Client Sample ID: 01MW85-013123				Collectior Matrix: W		1/31/2023 4:12:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	n ID: R8	1757 Analyst: LB
Methane	1.75	0.0675	D	mg/L	10	2/9/2023 3:38:00 PM
Ethene	ND	0.0146		mg/L	1	2/9/2023 3:14:00 PM
Ethane	ND	0.0151		mg/L	1	2/9/2023 3:14:00 PM
Ion Chromatography by EPA Method	300.0			Batch	n ID: 393	Analyst: AT
Nitrite (as N)	ND	1.20	DH	mg/L	10	2/2/2023 10:51:00 PM
Nitrate (as N)	ND	1.00	DH	mg/L	10	2/2/2023 10:51:00 PM
Sulfate	7.69	6.00	D	mg/L	10	2/2/2023 10:51:00 PM
Sulfide by SM 4500-S2-F				Batch	n ID: R8	1758 Analyst: SS
Sulfide	ND	0.500	н	mg/L	1	2/8/2023 4:00:00 PM

Lab ID: 2302048-002 Client Sample ID: 01MW56-0201			Collection Matrix: V	2/1/2023 9:07:00 AM		
Analyses	Result	RL C	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Meth	<u>hod 300.0</u>			Batc	h ID: 39	317 Analyst: AT
Nitrite (as N)	ND	1.20	D	mg/L	10	2/2/2023 11:15:00 PM
Nitrate (as N)	0.330	1.00	DJ	mg/L	10	2/2/2023 11:15:00 PM
Sulfate	25.1	6.00	D	mg/L	10	2/2/2023 11:15:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID: R8	1758 Analyst: SS
Sulfide	ND	0.500		mg/L	1	2/8/2023 4:00:00 PM

Analytical Report

 Work Order:
 2302048

 Date Reported:
 2/10/2023

CLIENT:	Friedman & Bruya
Project:	302018

Lab ID: 2302048-003 Client Sample ID: 01MW46-02	20123			Collection Date: 2/1/2023 9:30:00 / Matrix: Water				
Analyses	Result	RL Q	ual	Units	DF	Date Analyzed		
lon Chromatography by EPA M	lethod 300.0			Batc	h ID: 39	317 Analyst: AT		
Nitrite (as N)	ND	1.20	D	mg/L	10	2/2/2023 11:38:00 PM		
Nitrate (as N)	ND	1.00	D	mg/L	10	2/2/2023 11:38:00 PM		
Sulfate	144	6.00	D	mg/L	10	2/2/2023 11:38:00 PM		
Sulfide by SM 4500-S2-F				Batc	h ID: R8	1758 Analyst: SS		
Sulfide	0.200	0.500	J	mg/L	1	2/8/2023 4:00:00 PM		

Lab ID: 2302048-004

Client Sample ID: MW05-020123

Collection Date: 2/1/2023 12:26:00 PM Matrix: Water

Analyses	Result	RL C	lual	Units	DF	Date Analyzed
Ion Chromatography by EPA N	Batc	h ID: 39	317 Analyst: AT			
Nitrite (as N)	ND	1.20	D	mg/L	10	2/3/2023 12:01:00 AM
Nitrate (as N)	ND	1.00	D	mg/L	10	2/3/2023 12:01:00 AM
Sulfate	76.6	6.00	D	mg/L	10	2/3/2023 12:01:00 AM
Sulfide by SM 4500-S2-F				Batc	h ID: R8	31758 Analyst: SS
Sulfide	1.00	0.500		mg/L	1	2/8/2023 4:00:00 PM

Analytical Report

 Work Order:
 2302048

 Date Reported:
 2/10/2023

CLIENT:	Friedman & Bruya
Project:	302018

Lab ID: 2302048-005 Client Sample ID: MW06-02012	23			Collectio Matrix: V		2/1/2023 12:35:00 PM
Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
lon Chromatography by EPA Me	<u>thod 300.0</u>			Batc	h ID: 39	317 Analyst: AT
Nitrite (as N)	ND	1.20	D	mg/L	10	2/3/2023 1:34:00 AM
Nitrate (as N)	ND	1.00	D	mg/L	10	2/3/2023 1:34:00 AM
Sulfate	42.1	6.00	D	mg/L	10	2/3/2023 1:34:00 AM
Sulfide by SM 4500-S2-F				Batc	h ID: R8	1758 Analyst: SS
Sulfide	ND	0.500		mg/L	1	2/8/2023 4:00:00 PM

Work Order: CLIENT: Project:	2302048 Friedman & 302018	Bruya							lon Ch	QC S	SUMMAI		
Sample ID: MB-39:	317A	SampType: N	//BLK			Units: mg/L		Prep Da	te: 2/2/202	3	RunNo: 817	′54	
Client ID: MBLK	N	Batch ID: 3	39317					Analysis Da	te: 2/2/202	3	SeqNo: 169	4599	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)			ND	0.120									
Nitrate (as N)		I	ND	0.100									
Sulfate		I	ND	0.600									
Sample ID: LCS-39	9317	SampType: L	CS			Units: mg/L		Prep Da	te: 2/2/202	3	RunNo: 817	/54	
Client ID: LCSW		Batch ID: 3	39317					Analysis Da	te: 2/2/202	3	SeqNo: 169	4600	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		0.7	739	0.120	0.7500	0	98.5	90	110				
Nitrate (as N)		0.7	746	0.100	0.7500	0	99.5	90	110				
Sulfate		3	.66	0.600	3.750	0	97.5	90	110				
Sample ID: 230204	8-004ADUP	SampType: D	DUP			Units: mg/L		Prep Da	te: 2/2/202	3	RunNo: 817	/54	
Client ID: MW05-	020123	Batch ID: 3	39317					Analysis Da	te: 2/3/202	3	SeqNo: 1694614		
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)			ND	1.20						0	0	20	D
Nitrate (as N)		I	ND	1.00						0	0	20	D
Sulfate		7	6.1	6.00						76.60	0.668	20	D
Sample ID: 230204	8-004AMS	SampType: N	NS			Units: mg/L		Prep Da	te: 2/2/202	3	RunNo: 817	/54	
Client ID: MW05-	020123	Batch ID: 3	39317					Analysis Da	te: 2/3/202	3	SeqNo: 169	4615	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		7.	.24	1.20	7.500	0	96.5	80	120				D
Nitrate (as N)		7.	.29	1.00	7.500	0	97.2	80	120				D
Sulfate		1	112	6.00	37.50	76.60	95.1	80	120				D

Work Order:2302048CLIENT:FriedmanProject:302018	& Bruya						lon Ch	QC S	SUMMA by by EP		
Sample ID: 2302048-004AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 2/2/202	23	RunNo: 81	754	
Client ID: MW05-020123	Batch ID: 39317					Analysis Da	te: 2/3/202	23	SeqNo: 169	94616	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	7.11	1.20	7.500	0	94.8	80	120	7.240	1.81	20	D
Nitrate (as N)	7.14	1.00	7.500	0	95.2	80	120	7.290	2.08	20	D
Sulfate	111	6.00	37.50	76.60	91.9	80	120	112.3	1.09	20	D
Sample ID: 2302028-001ADUP	SampType: DUP			Units: mg/L		Prep Date: 2/2/2023		23	RunNo: 81754		
Client ID: BATCH	Batch ID: 39317					Analysis Da	te: 2/3/202	23	SeqNo: 16	94635	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Nitrite (as N)	ND	12.0						0	0	20	D
Nitrate (as N)	ND	10.0						0	0	20	D
Sulfate	ND	60.0						0	0	20	D
Sample ID: 2302028-001AMS	SampType: MS			Units: mg/L		Prep Da	te: 2/2/202	23	RunNo: 817	754	
Client ID: BATCH	Batch ID: 39317					Analysis Da	te: 2/3/202	23	SeqNo: 16	94636	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Nitrite (as N)	73.2	12.0	75.00	0	97.6	80	120				D
Nitrate (as N)	72.8	10.0	75.00	0	97.1	80	120				D
Sulfate	354	60.0	375.0	0	94.4	80	120				D

Work Order: CLIENT: Project:	2302048 Friedman & 302018	Bruya								QC	SUMMAI Sulfide b		
Sample ID: MB-R	81758	SampType: N	IBLK			Units: mg/L	-	Prep Dat	e: 2/8/202	3	RunNo: 817	758	
Client ID: MBLK	Ŵ	Batch ID: R	R81758					Analysis Dat	e: 2/8/202	3	SeqNo: 169	94731	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		١	ND 0.	.500									
Sample ID: LCS-F	R81758	SampType: L	cs			Units: mg/L	-	Prep Dat	e: 2/8/202	3	RunNo: 817	758	
Client ID: LCSW	I	Batch ID: R	R81758					Analysis Dat	e: 2/8/202	3	SeqNo: 169	94732	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		1.	.60 0.	.500	2.000	0	80.0	55.8	124				
Sample ID: 23020	48-004BDUP	SampType: D	UP			Units: mg/L	-	Prep Dat	e: 2/8/202	3	RunNo: 817	758	
Client ID: MW0	5-020123	Batch ID: R	R81758					Analysis Dat	e: 2/8/202	3	SeqNo: 169	94737	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		1.	.00 0.	.500						1.000	0	30	
Sample ID: 23020	48-004BMS	SampType: N	IS			Units: mg/L	-	Prep Dat	e: 2/8/202	3	RunNo: 817	758	
Client ID: MW0	5-020123	Batch ID: R	R81758					Analysis Dat	e: 2/8/202	3	SeqNo: 169	94738	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide NOTES:		6.	.00 0.	.500	2.000	1.000	250	21.5	190				S
S - Spike recov	ery indicates a p	ossible matrix effe	ect.										
Sample ID: 23020	48-004BMSD	SampType: N	ISD			Units: mg/L	-	Prep Dat	e: 2/8/202	3	RunNo: 817	758	
Client ID: MW0	5-020123	Batch ID: R	81758					Analysis Dat	e: 2/8/202	3	SeqNo: 169	94739	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide NOTES:	beenved	2.	40 0.	.500	2.000	1.000	70.0	21.5	190	6.000	85.7	30	R

R - High RPD observed.

ND

ND

0.0146

0.0151

0

0

0

0

Work Order: CLIENT: Project:	2302048 Friedman & 302018	Bruya									SUMMA solved Ga		
Sample ID: LCS-F	R81757	SampType	E: LCS			Units: ppmv		Prep Dat	e: 2/9/202	3	RunNo: 81	757	
Client ID: LCSW	I	Batch ID:	R81757					Analysis Dat	e: 2/9/202	3	SeqNo: 16	94763	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			967	0.00675	1,000	0	96.7	68.9	131				
Ethene			967	0.0146	1,000	0	96.7	72	129				
Ethane			974	0.0151	1,000	0	97.4	73.4	128				
Sample ID: MB-R	81757	SampType	: MBLK			Units: mg/L		Prep Dat	e: 2/9/202	3	RunNo: 81	757	
Client ID: MBLK	W	Batch ID:	R81757					Analysis Dat	e: 2/9/202	3	SeqNo: 16	94770	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			ND	0.00675									
Ethene			ND	0.0146									
Ethane			ND	0.0151									
Sample ID: 23020	21-001FREP	SampType	E: REP			Units: mg/L		Prep Dat	e: 2/9/202	3	RunNo: 81	757	
Client ID: BATC	н	Batch ID:	R81757					Analysis Dat	e: 2/9/202	3	SeqNo: 16	94743	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane			3.11	0.00675						2.811	10.0	30	

30

Ethene

Ethane

Sample Log-In Check List

Client Name: FB	Work Order Num	ber: 2302048	
Logged by: Clare Griggs	Date Received:	2/2/2023 2:	14:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🔽	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
3. Coolers are present?	Yes 🖌	No 🗌	
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present
6. Was an attempt made to cool the samples?	Yes 🖌	No 🗌	
7. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🖌	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Are samples properly preserved?	Yes 🔽	No 🗌	
11. Was preservative added to bottles?	Yes 🔽	No 🗌	NA 🗌
			etate to B fractions
12. Is there headspace in the VOA vials?	Yes 🗌	No 🗹	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes	No 🗹	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Person Notified: Date	e:		
By Whom: Via:	,	none 🗌 Fax	In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			
19. Additional remarks.			
tem Information			

	Item #	Temp °C
Sample		4.7

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

REMARKS Floyd Gude EDb SAMPLE DISPOSE SAMPLE DISPOSE Please Email Results SAMPLE DISPOSE Time ANALYSES REQUESTED Time Sampled Matrix # of SAMPLE DISPOSE Sampled ANALYSES REQUESTED View and samples Sampled Matrix jars Not Sampled Matrix jars Not Join Sign colspan="2">Sampled Not Analyses REQUESTED View colspan="2">Analyses REQUESTED Odo to xins (FPH H) View colspan="2">View colspan="2">Not Sampled Not Matrix 2 Analyses REQUESTED Not View colspan="2">View colspan="2">View colspan="2" Not SigNATURE Not View colspan="2" View colspan= 2						+-+								y:	Relinquished by: Received by:		Ph. (206) 285-8282 Fax (206) 283-5044	
REMARKS Floyd Gude EDD SAMPLE DIS Dispose after 30 da Please Email Results SAMPLE DIS Dispose after 30 da Return samples Will call with instr Jars SAMPLE DIS Dispose after 30 da Return samples Will call with instr ANALYSES REQUESTED ANALYSES REQUESTED VPH VPH <th co<="" th=""><th>14IV</th><th>2/2/23</th><th></th><th>1-)</th><th>FAL</th><th></th><th></th><th></th><th>ies</th><th>12</th><th>オ</th><th>r N</th><th>111</th><th></th><th>Received by:</th><th>2029</th><th>Seattle, WA 98119-2029</th></th>	<th>14IV</th> <th>2/2/23</th> <th></th> <th>1-)</th> <th>FAL</th> <th></th> <th></th> <th></th> <th>ies</th> <th>12</th> <th>オ</th> <th>r N</th> <th>111</th> <th></th> <th>Received by:</th> <th>2029</th> <th>Seattle, WA 98119-2029</th>	14IV	2/2/23		1-)	FAL				ies	12	オ	r N	111		Received by:	2029	Seattle, WA 98119-2029
REMARKS SAMPLE DISPOSA Dispose after 30 days Please Email Results ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Will call with instruction With the subtrance Just colspan="2">SAMPLE DISPOSA Dispose after 30 days Return samples WILL call with instruction VPH X X X X X X X X X X X <th colsp<="" th=""><th>0800</th><th>2/2/23</th><th>Bruya</th><th>an &]</th><th>riedm</th><th>Ŧ</th><th></th><th></th><th></th><th>rdahl</th><th>nael E</th><th>Mic</th><th>fi</th><th>Jor Dit</th><th>Relinquished by</th><th>Vest</th><th>3012 16th Avenue West</th></th>	<th>0800</th> <th>2/2/23</th> <th>Bruya</th> <th>an &]</th> <th>riedm</th> <th>Ŧ</th> <th></th> <th></th> <th></th> <th>rdahl</th> <th>nael E</th> <th>Mic</th> <th>fi</th> <th>Jor Dit</th> <th>Relinquished by</th> <th>Vest</th> <th>3012 16th Avenue West</th>	0800	2/2/23	Bruya	an &]	riedm	Ŧ				rdahl	nael E	Mic	fi	Jor Dit	Relinquished by	Vest	3012 16th Avenue West
REMARKS Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results SAMPLE DIS Dispose after 30 da Return samples Will call with instr Please Email Results SAMPLE DIS Dispose after 30 da Return samples Will call with instr VPH X X X X X Nitrite X X X X X Sulfate X X X X X X Sulfate X X X X X X X Sulfide X X X X X X X X X Sulfide X X X X X X X X X X X Sulfide X X X X X X X X X X X X X X X X X X X	TIM	DATE	ANY	OMP ₂				ME	TNA	PRIN	Ī		2	SIGNATURE		Inc.	Friedman & Bruya, Inc.	
REMARKS Flord Gude EDD Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results SAMPLE DIS Dispose after 30 da Return samples Will call with instr ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Null call with instr VPH VPH VPH VPH VPH VPH VPH VPH																		
REMARKS Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results SAMPLE DIS SAMPLE DIS Return samples Will call with instr Will call with instr H H H H H H H H H H H H H																		
REMARKS Flord Sude EDD SAMPLE DIS Please Email Results SAMPLE DIS Please Email Results Dispose after 30 da Please Email Results Dispose after 30 da NALYSES REQUESTED Return samples Will call with instr Jars Suffate YPH Suffate Suffate ANALYSES REQUESTED Return samples Will call with instr YPH X X Suffate NAMPLE DIS SAMPLE DIS Suffate Suffate YPH X X X Suffate Mathematical Superior YPH X X Suffate X X X X X X X X X <th colsp<="" td=""><td></td><td></td><td></td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>\square</td><td></td><td>\square</td><td>4</td><td>wster.</td><td>1235</td><td>2/1/25</td><td></td><td>MW 06- 020123</td></th>	<td></td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>\square</td> <td></td> <td>\square</td> <td>4</td> <td>wster.</td> <td>1235</td> <td>2/1/25</td> <td></td> <td>MW 06- 020123</td>					×	×	×	×	\square		\square	4	wster.	1235	2/1/25		MW 06- 020123
REMARKS Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results ANALYSES REQUESTED ANALYSES REQUESTED Mill call with instr Will call with instr Nit in te X X X X Sulfate X X X X Sulfate X X X X X X X X X X X X X X X X X X X	95	MS/M			×	×	×	×	\square			2	witer	1226	2/1/23		WW05-020123	
REMARKS Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results Please Email Results Sample Dispose after 30 da Return samples Will call with instr Nitrite X X Nitrite X X Sulfate X X Sulfate X X Sulfate X X Methene, Ethane, X X X Methene, Ethane, X X X Methene, Ethane, X X X Methene, Ethane, X X X X Methene, X X X Methene, X X X X X X X X X X X X X X X X X X X					×	x	×	X				2	weter.	0200	21/125		01 MW46 -020123	
REMARKS REMARKS Please Email Results Please Email Results Please Email Results Please Email Results Solf ate Solf ate					×	×	×	×				2	veter.	t 090	2/1/23		01 MW56-020123	
ttrix # of Dioxins/Furans EPH VPH VPH Nitete Sulfide Methen, Ethene, Ethene				×	×	×	×	×				ы	water	1612	1 31 23		01MW85-013123	
REMARKS Floyd Sudar EDD Disp Please Email Results ANALYSES REQUESTED	otes	z	ETHERE KSK								Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID	
REMARKS Floyd Surder EDD Disp Please Email Results Will				TED	QUES	S RE	LYSH	ANA		1	Π							
	hons	fter 30 days imples with instruct	Dispose a Return sa Will call y					EDD	Resul	(oyd Email	lease]	P	· · · · · · · · · · · · · · · · · · ·	dmanandbruy	Seattle, WA 98119 35-8282 merdahl@frie	eattle, -8282	City, State, ZIP <u>S</u> Phone # <u>(206) 285</u>	
362018 U-155 Kush charges authorized by:	d by:	rpt.E. DISPO	Kush charg		0	1-15	C			œ	120	30			3012 16th Ave W	012 16	Address3	
PROJECT NAME/NO. PO #		TAT	XStandard RUSH		/ #	PO	,		·	E/NO	NAM	DJECT	PR	Inc.	Friedman and Bruya, Inc	riedma	CompanyF	
Fransi	TIME	* NAROUND	TUR					24		TER	RAC	BCON	SU		Michael Erdahl	Michael	Send Report To N	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 17, 2023

Kristin Anderson, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on April 10, 2023 from the Cantera TOC, F&BI 304125 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Milif Colo

Michael Erdahl Project Manager

Enclosures c: Pamela Osterhout FDS0417R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 10, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera TOC, F&BI 304125 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
304125 -01	01MW46-040723
304125 -02	01MW53-040723
304125 -03	01MW85-040723
304125 -04	01MW19R-040723
304125 -05	01MW35-040723
304125 -06	01MW-51-040723
304125 -07	01MW-84-040723
304125 -08	01MW87-040723
304125 -09	02MW04R-040723
304125 -10	02MW07-040723
304125 -11	02MW19-040723
304125 -12	02MW19-040723-D
304125 -13	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125 Date Extracted: 04/10/23 Date Analyzed: 04/11/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
01MW19R-040723 ³⁰⁴¹²⁵⁻⁰⁴	1,100	109
$01 \mathrm{MW35}\text{-}040723 _{304125\text{-}05}$	<100	107
01MW-51-040723 ³⁰⁴¹²⁵⁻⁰⁶	<100	104
01MW-84-040723 ^{304125-07 1/10}	5,500	110
01MW87-040723 ³⁰⁴¹²⁵⁻⁰⁸	<100	102
02MW04R-040723 ³⁰⁴¹²⁵⁻⁰⁹	<100	103
02MW07-040723 ³⁰⁴¹²⁵⁻¹⁰	<100	104
02MW19-040723 ³⁰⁴¹²⁵⁻¹¹	<100	103
02MW19-040723-D ³⁰⁴¹²⁵⁻¹²	<100	105
Method Blank ^{03-768 MB}	<100	103

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125 Date Extracted: 04/11/23 Date Analyzed: 04/11/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
$01 \underline{MW19R} - 040723 _{304125 - 04}$	700 x	<250	118
$01 MW 35 \cdot 040723 _{304125 \cdot 05}$	120 x	<250	122
01MW-51-040723 304125-06	<50	<250	119
01MW-84-040723 ³⁰⁴¹²⁵⁻⁰⁷	1,500 x	<250	118
01MW87-040723 ³⁰⁴¹²⁵⁻⁰⁸	<50	<250	122
02MW04R-040723 ³⁰⁴¹²⁵⁻⁰⁹	<50	<250	114
02MW07-040723 ³⁰⁴¹²⁵⁻¹⁰	<50	<250	130
02MW19-040723 ³⁰⁴¹²⁵⁻¹¹	76 x	<250	122
02MW19-040723-D ³⁰⁴¹²⁵⁻¹²	84 x	<250	123
Method Blank 03-893 MB	<50	<250	121

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	02MW07-040723 04/10/23	Client: Project:	Floyd-Snider Cantera TOC, F&BI 304125
Date Extracted:	04/10/23	Lab ID:	304125-10
Date Analyzed: Matrix:	04/10/23 Water	Data File: Instrument:	304125-10.173 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	02MW19-040723 04/10/23 04/10/23 04/10/23 Water	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider Cantera TOC, F&BI 304125 304125-11 304125-11.174 ICPMS2
Units: Analyte:	ug/L (ppb) Concentration ug/L (ppb)	Operator:	SP
Analyte.	ug/Li (ppb)		

Arsenic

4.65

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	02MW19-040723-D 04/10/23	Client: Project:	Floyd-Snider Cantera TOC, F&BI 304125
Date Extracted:	04/10/23	Lab ID:	304125-12
Date Analyzed:	04/10/23	Data File:	$304125 ext{-} 12.175$
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Arsenic

4.83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Floyd-Snider
Date Received:	NA	Project:	Cantera TOC, F&BI 304125
Date Extracted:	04/10/23	Lab ID:	I3-274 mb
Date Analyzed:	04/10/23	Data File:	I3-274 mb.037
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW46-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-01 1/10 041115.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 102 118	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene Benzene	ene	Concentration ug/L (ppb) 9.3 110 140 <3.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW53-0- 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-02 041114.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 92 104 103	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride		Concentration ug/L (ppb) 0.36		
cis-1,2-Dichloroeth Trichloroethene	ene	$\begin{array}{c} 3.2\\ 2.1\end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW85-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-03 1/10 041116.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 93 119	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 17 1,200 6.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW19R- 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	040723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-04 041117.D GCMS13 MD
		_	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	71	132
Toluene-d8		107	68	139
4-Bromofluorobenz	ene	105	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		4.4		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW35-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-05 041118.D GCMS13 MD
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	96	71	132
Toluene-d8		102	68	139
4-Bromofluorobenz	ene	103	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW-51-0 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	040723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-06 041119.D GCMS13 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	71	132
Toluene-d8		91	68	139
4-Bromofluorobenz	ene	108	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW-84-0 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-07 041120.D GCMS13 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	71	132
Toluene-d8		104	68	139
4-Bromofluorobenz	ene	107	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW87-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-08 041121.D GCMS13 MD
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	90	71	132
Toluene-d8	-44	93	68	132
4-Bromofluorobenz	ene	90	60	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW04R- 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	040723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-09 041122.D GCMS13 MD
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	92	71	132
Toluene-d8		92	68	139
4-Bromofluorobenz	ene	109	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW07-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	10723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-10 041123.D GCMS13 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	96	71	132
Toluene-d8		102	68	139
4-Bromofluorobenz	ene	107	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW19-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	10723	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-11 041138.D GCMS13 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	90	71	132
Toluene-d8		93	68	139
4-Bromofluorobenz	ene	101	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW19-04 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)	40723-D	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-12 041139.D GCMS13 MD
Current on t		0/ D	Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	81	71	132
Toluene-d8		115	68	139
4-Bromofluorobenz	ene	104	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 04/10/23 04/11/23 04/11/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 304125-13 041111.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 96 95 103	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene Benzene	ene	Concentration ug/L (ppb) <0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 04/11/23 04/11/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera TOC, F&BI 304125 03-0723 mb 041109.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 98 104	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	<0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 304	4097-01 (Dupli	icate)						
	Reporting	Samp	le Dup	olicate	RPD			
Analyte	Units	Resu	lt Re	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	100	nm			
Laboratory Code: Laboratory Control Sample Percent								
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	_			
Gasoline	ug/L (ppb)	1,000	100	70-130	_			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	120	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 304113-01	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	77.8	34 b	24 b	75-125	34 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/23 Date Received: 04/10/23 Project: Cantera TOC, F&BI 304125

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 304125-04 (Matrix Spike)

Č ,	- /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	0.73	100	16-176
cis-1,2-Dichloroethene	ug/L (ppb)	10	3.9	96 b	50 - 150
Benzene	ug/L (ppb)	10	4.4	94 b	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	99	43-133

Laboratory Code: Laboratory Control Sample

	I I I I I I I I I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	101	99	70-130	2
cis-1,2-Dichloroethene	ug/L (ppb)	10	107	108	70-130	1
Benzene	ug/L (ppb)	10	101	102	70-130	1
Trichloroethene	ug/L (ppb)	10	103	104	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

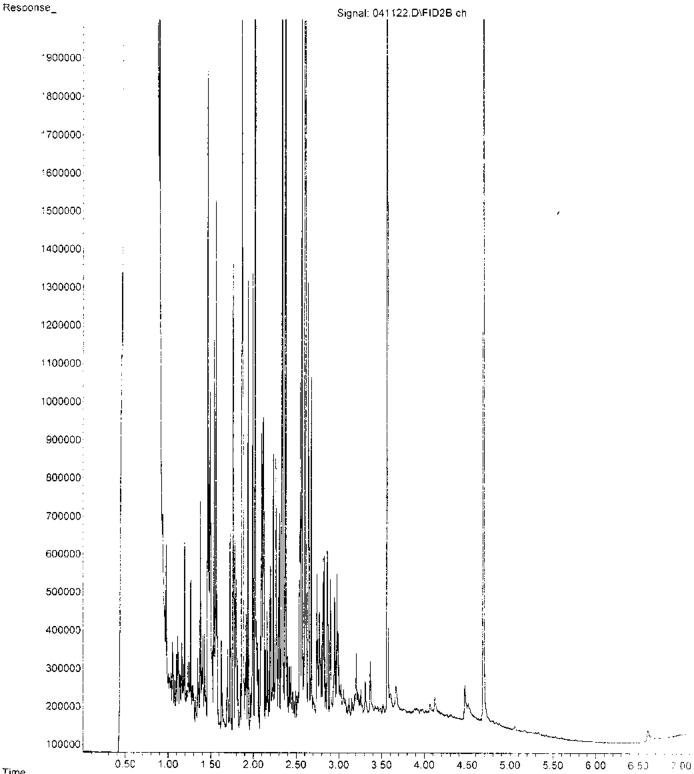
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

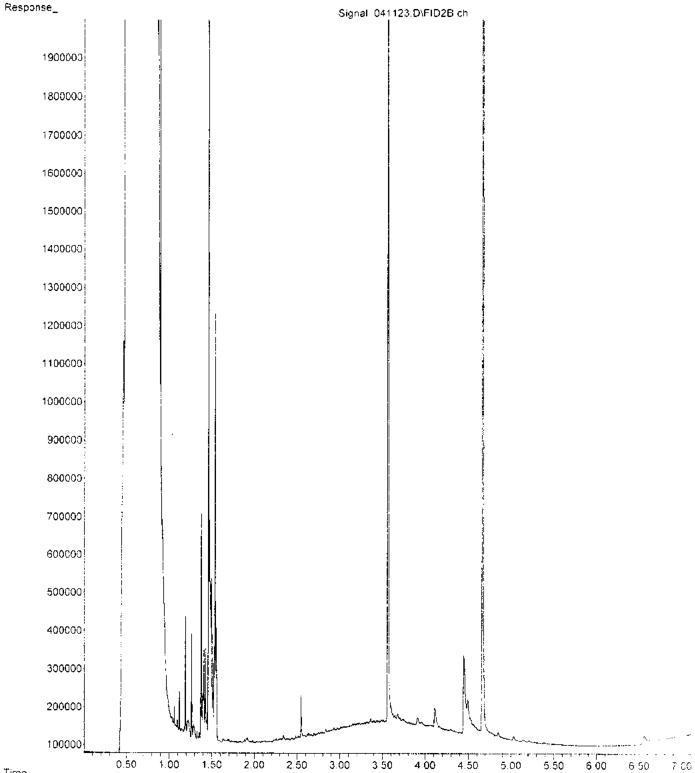
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

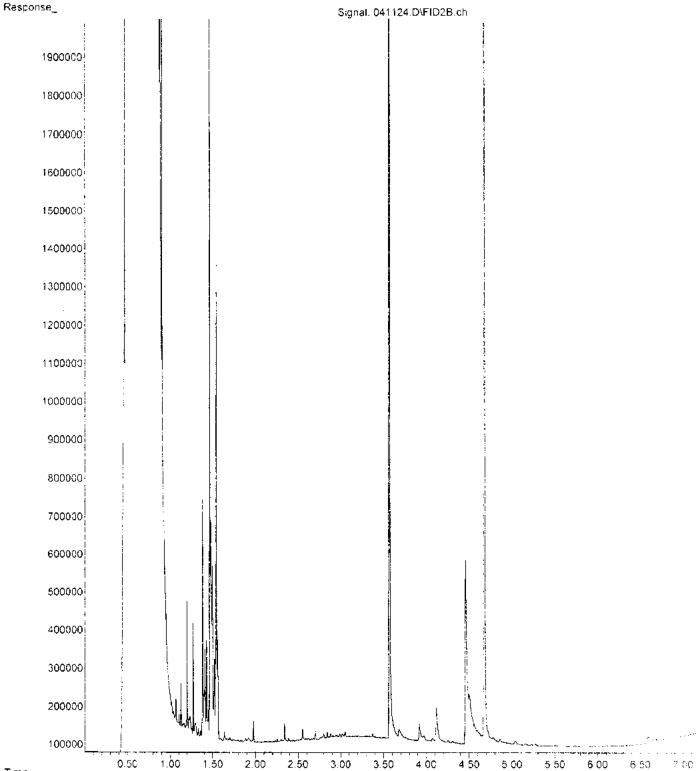
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

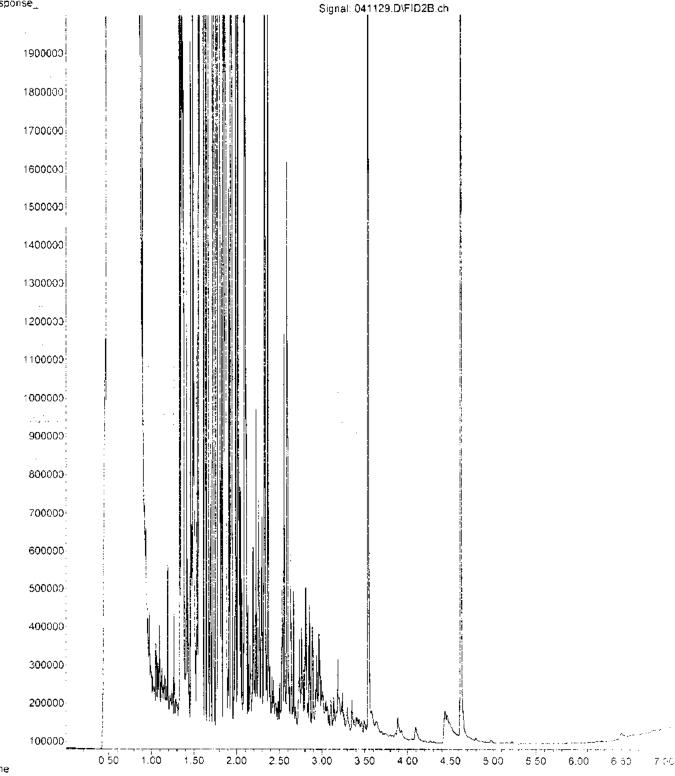
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


Received by:	Relinquished by:	Ph. (206) 285-8282	 -	02 MWC7 - 040723 10	02 MW04 R-040723 09	60 52 to h0- t8 mm 10	40 52 to ho - hammid	20 5240ho- 15mm10	01 MW35-040723 . 05	01 MW19R-040723 04	01MWBS-040723 05	01MW53-040723 02	01MW46-040723 01	Sample ID I		PhoneWorldt-2016Email	City, State, ZIP_Seattle, WA-90101	Company Floyd Small	Report To Kristin Anchaston + Pawela Ortan Way PROJECT NAME	304125
oy:	And by:		S	A-H	-	+	<u> </u>	┝	<u> </u>	04 A -G	k	QL A-F	OI A-E	Lab ID			-90	úti.	+ R	
	fland	Inne	SIGNATURE	f-							-		4723	Date Sampled			N.	200	mela Ortan	•
				17:25	16:35	0.50	13:20/	09:45	14:10	12:05	12:50	1130	15:05	Time Sampled		Project s		Carta	NAL PROJEC	SAMPLE CHAIN OF CUSTODY
	5			 -							 		Gw	Sample Type	-	Project specific RLs? - Yes / No	remarks r cvoc hst 6482100	Countera TCC	PROJECT NAME	CHAU
	Whan	00	PRI	4	4	4	4	4	4-5	ų	6	6	e.	# of Jars		501-1 501-1	482	א	rature)	NOF
		operized	PRINT NAME	$\overline{\langle}$	5	<	$\overline{\langle}$	5	5	<	! 			NWTPH Dx	<u></u>	les X	ક			Cu
	Pha,		AME	5	<	\leq	5	<	\leq	5				NWTPH-Gx		Na			hu	STO
	5													BTEX EPA 8021						DY
									·					NWTPH-HCID	Z	vinuji cheride			2	4
+	_ .										<u> </u>	. 		VOCs EPA 8260	NAL	9	INVOICE TO			9
	FLBI	n							<u></u>					PAHs EPA 8270	ISES	NY A			÷ 4	outiolas
	14	64	8	<	<	र	¢	<	<	<			<	PCBs EPA 8082	ANALYSES REQU	م	^מ ן			25
		FLOYD SMDER	COMPANY	\vdash								<u>ح</u>	<u> </u>	Benzene	NES.					
			Z											WOCS 75	ESTED			Ru	5 .	
		ل م م		\vdash				- \$ 2						Total Asenic ODLOB	ļľ	Bit it	SAMPLE DI	tUSH	Page #	10
	4	-		R				ldaa					8			Dis	MMPL re san	arges	RNA	2
	101	1/1d/23	DATE	Rec & Samples at lat				Samples received					Rec Stampter attab			□ Other Cefault: Dispose after 30 days	SAMPLE DISPOSAL hive samples	O-RUSH_ Rush charges authorized by	TURNAROUND TIME	J2/C2/VW4
4	23	23						ecsi v				-	Sam	Notes		after	SPOS	orized		1
	2580	0.580	TIME	Set				red :					A (1)	es		30 d	3AL	d by:	ME	s
	12	Ċ	B	\$ (\$)			at .					# (°	y 		 ays				
								Å												

Ree	<i>F H.</i> (200) 200-0202 Rei	ı, Inc.				$\overline{)}$					TRIP BLANK	62 MW19-040723-D	02 MW 19 - 0407 23	Sample ID		PhoneEmail	City, State, ZIP	Address	Company Fleyd Snider	Report To Kristin/ Pannela	304125
Received by:	Religived by: M/6 Relinquished by:	Reinquished by:	SI				$\Big\rangle$				13 A-5		11 A-H	Lab ID						ela	
	pant		MATURE					$M \sim .$			4/2/23	4 7 23	4/7/23	Date Sampled							
								\langle	(),	2	09-30	17:00	GGAI	Time Sampled		Project sp	REMARKS	Cwillon	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
	when	с.									ي ر	જ	GW	Sample Type		Project specific RLs?	REMARKS NOCS = TRE/ CU-12-DCE. What Wherede has bird		PROJECT NAME	SAMPLERS (signature)	CHAIN
		C. OREIRO	PRIN								2	ଡ	CC	#of Jars		· Ye	2 7 7 7		**		OFC
	Phan	6	PRINT NAME		-							<u> </u>	くく	NWTPH-Dx						2	[S]
	3		ME				S S							NWTPH-Gx BTEX EPA 8021		0.0				12	₩ġ
ĺ				┟╼╾┼			Samples				┨			NWTPH-HCID			H			B	
							I -							VOCs EPA 8260	ANALYSES REQUESTED	1	UN ADIOANI		Ţ	2	104
		D					recaived		 					PAHs EPA 8270	YSE		L R OI		FO #	\mathcal{P}^{i}	04/10/23
	2 3	ŝ					2 2 2						-	PCBs EPA 8082	BREC		0	3		,	ъ.
		DS	COMPANY				180				<u> </u>	<	\leq	Benzenc by EVOCS #	UES						_ا ي
		FLOYD SNIDER	YN				ن م				\vdash	रि	1<	evols A Total arsenic Gozua	TED				N D X	5	
) N						 		 				60208	$\left \right $		Archive Other_		anua. USH_	TUR	2/VW Page #
_											+					Disp	Archive samples		roes a	NAR	$\int \frac{J^2}{C^2} V W 4$
	<u>د با ما لم</u>	4/10/23	DATE			-										ose af	er		☐ RUSH Bush charges authorized by:	TURNAROUND TIME	, ···
			+											Notes		ter 3			ized b		8, N N
	2580	0850	TIME		•			-								Dispose after 30 days				B	2

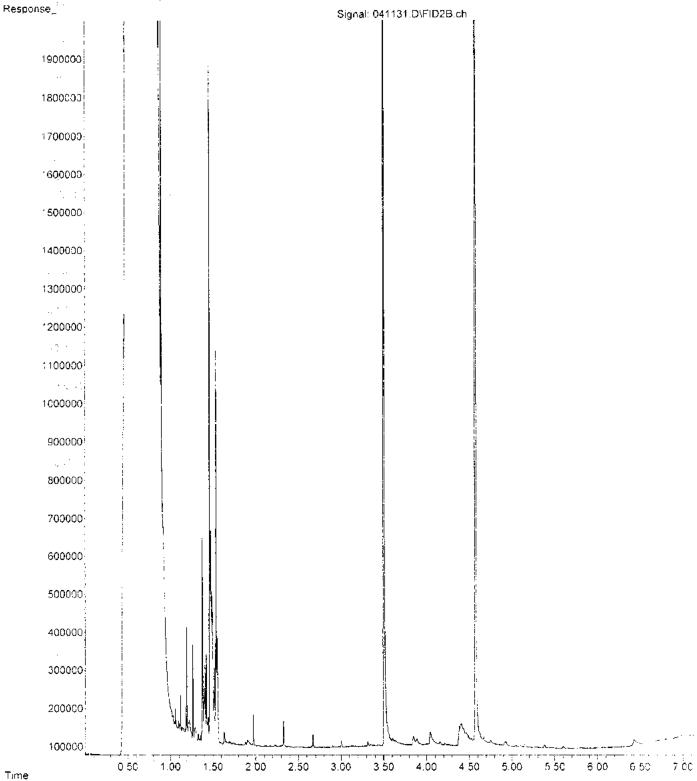

File :P:\Proc_GC10\04-11-23\041122.D Operator : TL : 11 Apr 2023 01:05 pm using AcqMethod DX.M Acquired Instrument : GC10 Sample Name: 304125-04 Misc Info : Vial Number: 20

:P:\Proc_GC10\04-11-23\041123.D File Operator : TL Acquired : 11 Apr 2023 01:17 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 304125-05 Misc Info : Vial Number: 21

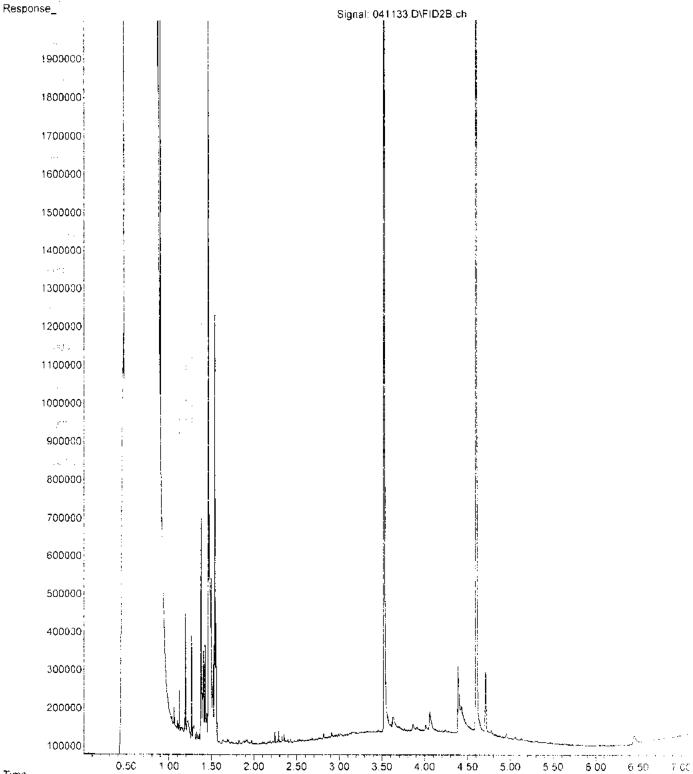


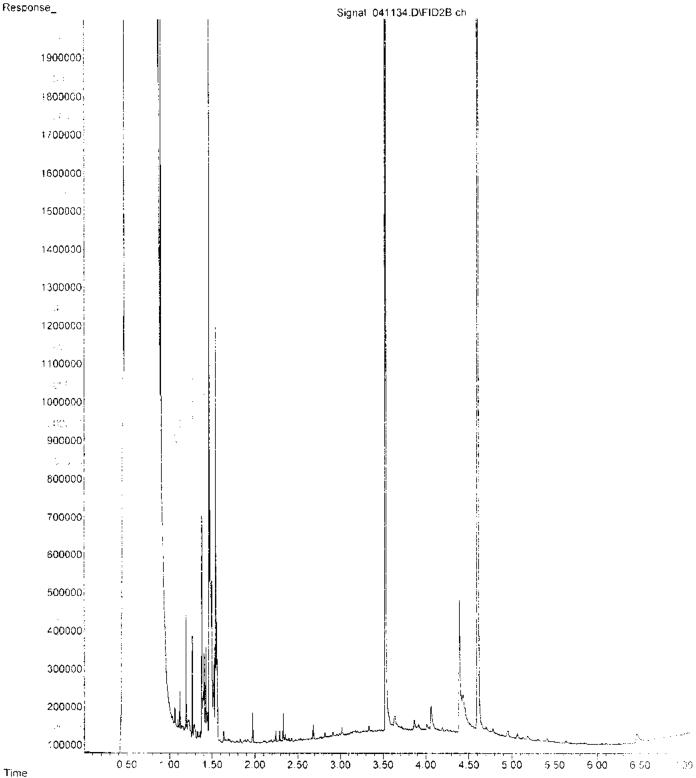
File :P:\Proc_GC10\04-11-23\041124.D
Operator : TL
Acquired : 11 Apr 2023 01:28 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 304125-06
Misc Info :
Vial Number: 22

File :P:\Proc_GC10\04-11-23\041129.D
Operator : TL
Acquired : 11 Apr 2023 02:26 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 304125-07
Misc Info :
Vial Number: 23

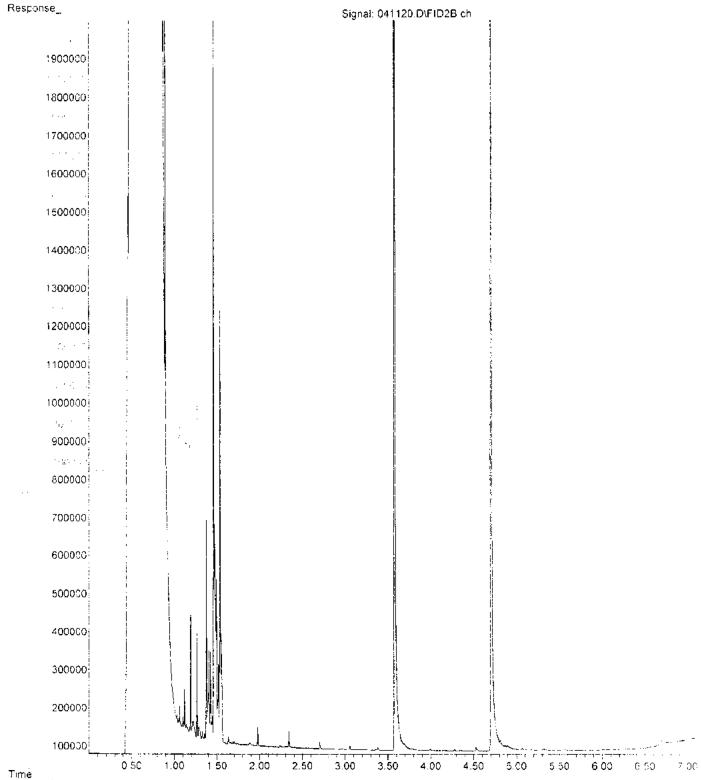

Response_

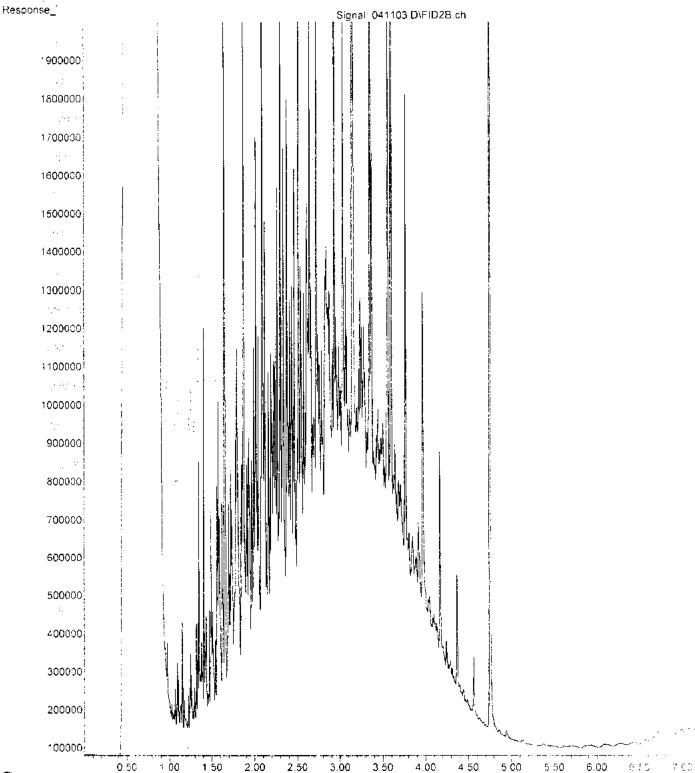
:P:\Proc_GC10\04-11-23\041130.D File Operator : TL Acquired : 11 Apr 2023 02:37 pm using AcqMethod DX.M Instrument .: GC10 Sample Name: 304125-08 Misc Info : Vial Number: 24


File :P:\Proc_GC10\04-11-23\041131.D Operator : TL Acquired : 11 Apr 2023 02:49 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 304125-09 Misc Info : Vial Number: 25


File :P:\Proc_GC10\04-11-23\041132.D
Operator : TL
Acquired : 11 Apr 2023 03:00 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 304125-10
Misc Info :
Vial Number: 26

Response_ Signal, 041132 D\FID2B ch 1900000 1800000 1700000 1600000-1500000; 1400000 : 300000 1200000{ 1100000 1000000 900000 800000 700000 600000 500000 400000 300000 200000 100000 2.50 3 00 3 50 4 00 4.50 0.50 1.00 1.50 2.00 5.00 5 50 6.00 7.00 6.50


:P:\Proc_GC10\04-11-23\041133.D File Operator : TL Acquired : 11 Apr 2023 03:12 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 304125-11 Misc Info : Vial Number: 27


:P:\Proc_GC10\04-11-23\041134.D File Operator ; TL Acquired : 11 Apr 2023 03:23 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 304125-12 Misc Info : Vial Number: 28

:P:\Proc_GC10\04-11-23\041120.D File Operator : TL Acquired : 11 Apr 2023 12:42 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 03-893 mb Misc Info : Vial Number: 18

File :P:\Proc_GC10\04-11-23\041103.D
Operator : TL
Acquired : 11 Apr 2023 08:02 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 500 DX 68-66F
Misc Info :
Vial Number: 3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanadbruya.com

July 7, 2023

Kristin Anderson, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on June 28, 2023 from the Cantera-TOC, F&BI 306447 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Milif Cole

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Pamela Osterhout FDS0707R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 28, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 306447 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
306447 -01	01MW12-062823
306447 -02	01MW19R-062823
306447 -03	01MW35-062823
306447 -04	01MW40-062823
306447 -05	01MW84-062823
306447 -06	MW05-062823
306447 -07	01MW15-062823
306447 -08	01MW46-062823
306447 -09	01MW53-062823
306447 -10	01MW56-062823
306447 -11	01MW85-062823
306447 -12	01MW84-D-062823
306447 -13	01MW107-062823
306447 -14	TB-062823

Samples MW05-062823, 01MW46-062823, 01MW56-062823, and 01MW85-062823 were sent to Fremont Analytical for sulfide, nitrate, nitrite, and sulfate analyses. The report is enclosed.

The 8260D vinyl chloride laboratory control sample and duplicate relative percent difference was outside of control limits. The samples associated were non-detect for vinyl chloride. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447 Date Extracted: 06/29/23 Date Analyzed: 06/30/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
$\underset{_{306447\cdot01}}{01MW12\cdot062823}$	110	118
01MW19R-062823 ³⁰⁶⁴⁴⁷⁻⁰²	1,300	122
$01\mathrm{MW35}\text{-}062823_{306447\text{-}03}$	<100	113
01MW40-062823 ³⁰⁶⁴⁴⁷⁻⁰⁴	<100	119
$\underset{306447\text{-}05}{01MW84\text{-}062823}$	4,600	121
01MW84-D-062823 ³⁰⁶⁴⁴⁷⁻¹²	4,300	120
Method Blank ^{03-1407 MB}	<100	139

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447 Date Extracted: 06/29/23 Date Analyzed: 06/29/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
$01MW12-062823_{306447-01}$	860 x	360 x	107
01MW19R-062823 306447-02	810 x	<250	116
01MW35-062823 306447-03	76 x	<250	116
$01\mathrm{MW40}\text{-}062823_{306447\text{-}04}$	620 x	<250	118
$01 \underline{MW84-062823}_{306447-05}$	1,400 x	<250	129
01MW84-D-062823 306447-12	1,300 x	<250	120
Method Blank ^{03-1565 mb2}	<50	<250	118

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW12-06 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	2823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-01 063021.D GCMS11 MD
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 98	Lower Limit: 78	Upper Limit: 126
Toluene-d8	u i	103	84	115
4-Bromofluorobenz	ene	104	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		1.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW19R- 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	062823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-02 063022.D GCMS11 MD
Surrogates:	14	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane Toluene-d8	-d4	$\frac{102}{110}$	$78\\84$	$\frac{126}{115}$
4-Bromofluorobenz	ono	109	$\frac{84}{72}$	115 130
Compounds:		Concentration ug/L (ppb)	12	100
Benzene		2.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW35-00 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	32823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-03 063023.D GCMS11 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	92	78	126
Toluene-d8		105	84	115
4-Bromofluorobenz	ene	101	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW40-00 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	62823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-04 063024.D GCMS11 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	78	126
Toluene-d8		103	84	115
4-Bromofluorobenz	ene	99	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW84-00 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	62823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-05 063025.D GCMS11 MD
C .		0/ D	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	109	78	126
Toluene-d8		105	84	115
4-Bromofluorobenz	ene	100	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW05-0628 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	323	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-06 1/10 070341.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 95 93 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth	ene	Concentration ug/L (ppb) 6.9 360		
Trichloroethene Benzene		160 1.5 j		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW15-00 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	32823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-07 070342.D GCMS13 MD
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	100	71	132
Toluene-d8		102	68	139
4-Bromofluorobenz	ene	99	62	136
Compounds:		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		28		
cis-1,2-Dichloroeth	ene	5.7		
Trichloroethene		< 0.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW46-06 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	32823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-08 070343.D GCMS13 MD
Surrogates: 1,2-Dichloroethane	-d4	% Recovery:	Lower Limit: 71	Upper Limit: 132
Toluene-d8 4-Bromofluorobenz	ene	92 97	$\begin{array}{c} 68 \\ 62 \end{array}$	139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Benzene		$25\\4.3$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW46-0 06/28/23 07/03/23 07/05/23 Water ug/L (ppb)	62823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-08 1/10 070511.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 90 91 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: cis-1,2-Dichloroeth	000	Concentration ug/L (ppb) 260		
Trichloroethene	CIIC	280		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW53-0 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	62823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-09 070344.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 88 91 97	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth Trichloroethene	ene	Concentration ug/L (ppb) 0.51 2.9 2.0		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW56-00 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	62823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-10 070345.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 100 100	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 0.97 <1 0.62		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW85-06 06/28/23 07/03/23 07/03/23 Water ug/L (ppb)	32823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-11 1/10 070346.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 102 101	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 13 1,000 110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW84-D 06/28/23 07/03/23 07/04/23 Water ug/L (ppb)	-062823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-12 070347.D GCMS13 MD
Surrogates:	14	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane Toluene-d8	-d4	101	71	132
4-Bromofluorobenz	ono	$\begin{array}{c} 103 \\ 99 \end{array}$	$\begin{array}{c} 68 \\ 62 \end{array}$	$139 \\ 136$
Compounds:	ene	99 Concentration ug/L (ppb)	02	100
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW107-0 06/28/23 07/03/23 07/04/23 Water ug/L (ppb)	062823	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-13 070348.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 90 93 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth Trichloroethene	ene	Concentration ug/L (ppb) <0.02 <1 <0.5		

ENVIRONMENTAL CHEMISTS

TB-062823 06/28/23 06/30/23 06/30/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 306447-14 063014.D GCMS11 MD
-d4 ene	% Recovery: 108 101 102	Lower Limit: 78 84 72	Upper Limit: 126 115 130
ene	Concentration ug/L (ppb) <0.02 <1 <0.5		
	06/28/23 06/30/23 06/30/23 Water ug/L (ppb)	06/28/23 06/30/23 06/30/23 Water ug/L (ppb) -d4 108 101 ene 102 Concentration ug/L (ppb) <0.02 ene <1	$\begin{array}{cccccc} 06/28/23 & & & & Project: \\ 06/30/23 & & & Lab ID: \\ 06/30/23 & & & Data File: \\ Water & & & Instrument: \\ ug/L (ppb) & & & Operator: \\ & & & & Lower \\ & & & & & 0perator: \\ -d4 & & 108 & & 78 \\ & & & 101 & & 84 \\ ene & & & 102 & & 72 \\ & & & & & & \\ & & & & & & 101 & & 84 \\ ene & & & & & 102 & & 72 \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & \\ ene & & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ & & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & \\ ene & & & & & & & \\ ene & & & & & & \\ ene & & & & & & & \\ ene & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & & \\ ene & & & & & & \\$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/30/23 06/30/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 03-1526 mb 063009.D GCMS11 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 110 100 103	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	<0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 07/03/23 07/03/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306447 03-1530 mb 070314.D GCMS11 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 100 102	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	<0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 30	6422-01 (Dupli	icate)						
	Reporting	Samp	le Dup	olicate	RPD			
Analyte	Units	Resu	lt Re	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	100	nm			
Laboratory Code: La	Laboratory Code: Laboratory Control Sample Percent							
	Reporting	Spike	Recovery	Acceptance				
		T		· · · I. · · · · · ·				
Analyte	Units	Level	LCS	Criteria	_			

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	116	65 - 151	11

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306439-04 (Matrix Spike)

•	- /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	125	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	110	10-211
Benzene	ug/L (ppb)	10	< 0.35	109	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	108	35 - 149

Laboratory Code: Laboratory Control Sample

	-	Spike	Percent	Percent	Accontance	RPD
	Reporting	эріке	Recovery	Recovery	Acceptance	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	99	133	64-142	29 vo
cis-1,2-Dichloroethene	ug/L (ppb)	10	99	104	70-130	5
Benzene	ug/L (ppb)	10	100	104	70-130	4
Trichloroethene	ug/L (ppb)	10	97	102	70-130	5

ENVIRONMENTAL CHEMISTS

Date of Report: 07/07/23 Date Received: 06/28/23 Project: Cantera-TOC, F&BI 306447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306490-01 (Matrix Spike)

	- /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	130	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	107	10-211
Benzene	ug/L (ppb)	10	< 0.35	107	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	106	35 - 149

Laboratory Code: Laboratory Control Sample

	-	a .1	Percent	Percent		DDD
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	115	122	64-142	6
cis-1,2-Dichloroethene	ug/L (ppb)	10	84	88	70-130	5
Benzene	ug/L (ppb)	10	85	91	70-130	7
Trichloroethene	ug/L (ppb)	10	84	89	70-130	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

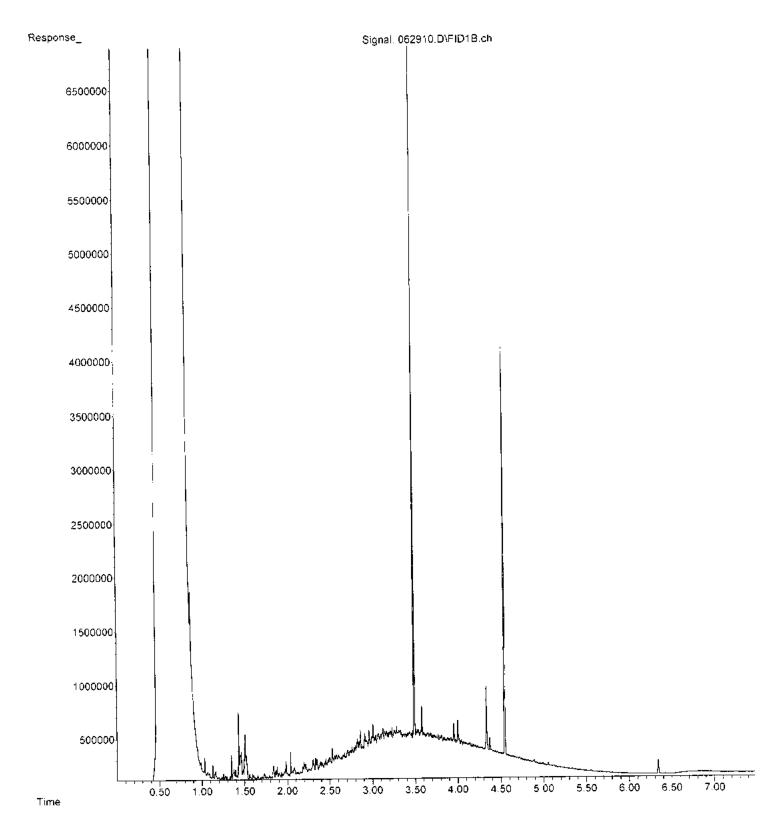
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

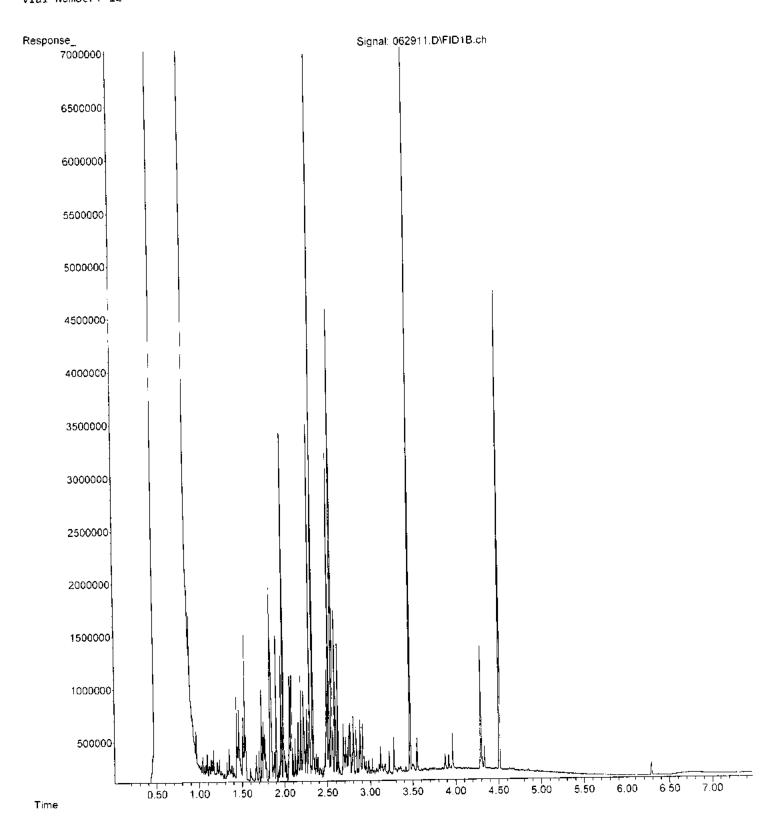
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

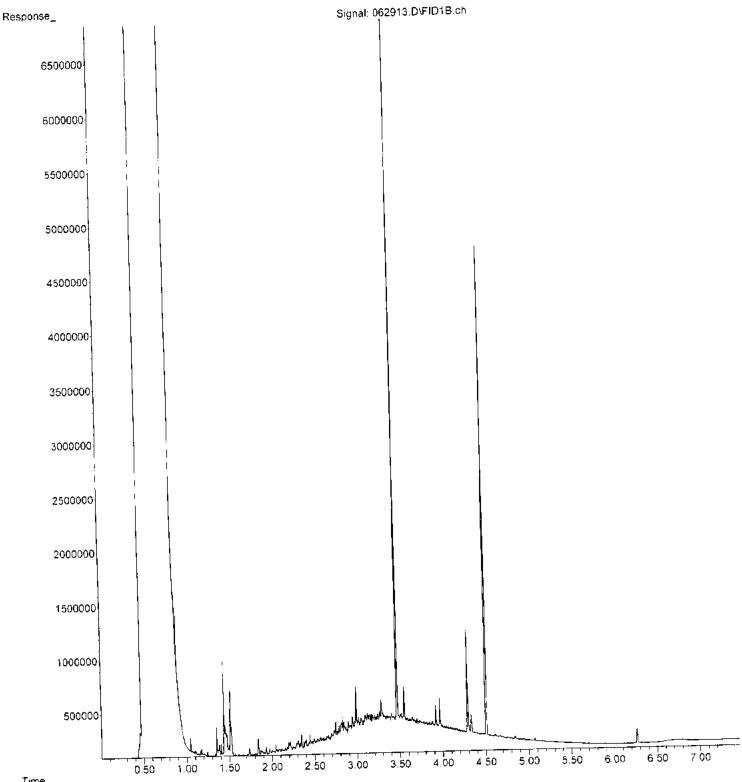

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


L						+4			\$			C str			d by:	Received by:	
							⊽- ຂ	() ()	19 21. 19		Samnles received at	Samr		/	Relinquished by:	Relinqu	
	A A	6(28/23		2	FR			2	ron	Lagi		Andre	Ň		a by:	Received by:	
	1902	22/32/0		FLOYD SNIDER	LOVI	ħ				0°	OMEIRO	C		N.	Nerinquisned by:	nemulu	Erreuman & bruya, Inc. Ph. (206) 285-8282
L	TIME	DATE	YY	COMPANY	Q				ME	TNA	PRINT NAME			SIGNATURE	<u>olis</u>		
			、くく	<u>ح</u>					<u> </u>	ļ	8	в Ш	0950	+	10 A 44		01 MWS W-062823
			<u> </u>	<							3	B B	144		OPAC		01MW53-062823
			、 く く	く く							æ	ц Ц Ш	1000		08 A.H		01MW46-062823
				<u>र</u>							6	£ω	135		07AF		01MW15-062823
			く く く	$\frac{\langle}{\langle}$							ω	(Jup)	1052		of AH		MW05-062823
				<					1	5	6	a 3	1440		05 A.F		014284-062823
.				\leq						$ \leq$	Ц	GW	15)5			13 09	01 MW40 -06 2823
				\leq						$\left \right\rangle$	4	લ્પ્ટ	1955		03	<u> </u>	01 MW 35-062623
	· · ·			\leq						\leq	4	Gω	1308		02		01MW 19R -062823
1				<					5	\leq	4.	<u>G</u> E	1420	01 A.G-6/28/23	J A-G-		01 MW12-062823
	ies K	Notes	Mitrate, notrite Sulfate by 300 Sulficle by SM 4300	Benzentes TCE, CIS-1, 2-DE	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	BTEX EPA 8021 NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	# of Jars	Sample ^T ype	Time Sampled	Date Sampled	Lab ID		Sample ID
			9	REQUEST	S	LYSE	ANAL			$\left \right $							
Į <u> </u>	30 days	samples Dispose after 30 days	☐ Archive samples ☐ Other Default: Dispose	ļ		1 to	Pioneer	1 2	No	 ~	<u>s? - Үе</u>	Project specific RLs? - Y	CVQCS Com Project s	Email Walda Of Iscident der CVOCS by 8266	n ion	יאין אין זmail_∤א	Phone/97-2010_E
!	SAL	SAMPLE DISPOSAL	SAM		TO	INVOICE TO	INV				1	KS	REMAR	≥	P		Cities and and and and and
	d by:	LI RUSH Rush charges authorized by:	Rush charg			×					TOC	Cantera - 7	Cant	8	it les	S E	Address (201 Union St. Suid, 600
]	IME	TURNAROUND TIME Standard turnaround	TURN XStandard			PO #	2	A		h		PROJECT NAME		Laterhay	Kanvels	H UCON	Report ToK <u>ristin Appleton + Yawela Laterhar</u> i
125	25	J Uwx	56/86	06	₩.		H.	Y	IOI	yus.	OF C	SAMPLE CHAIN OF	_ ~	5	ן -		306447

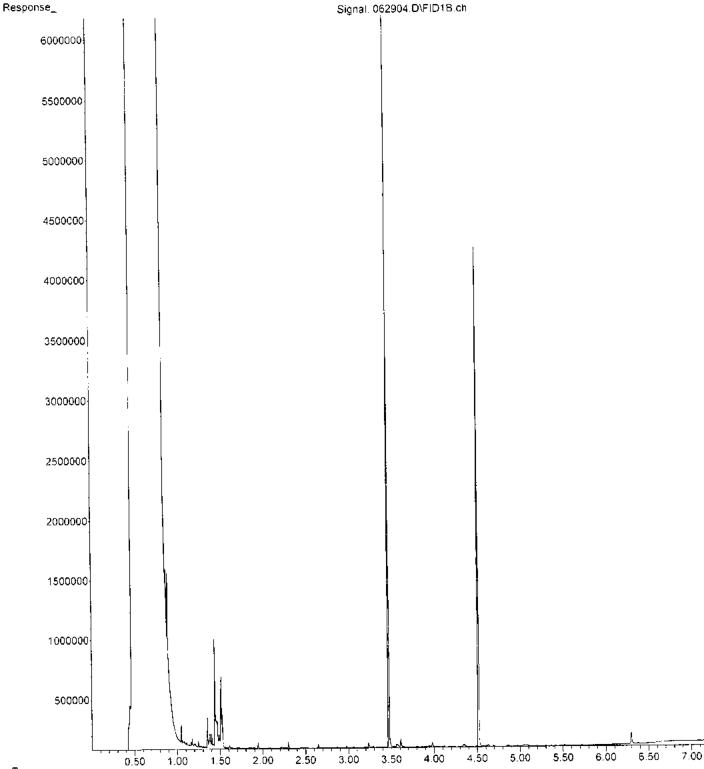
Received by	Reling	Ph. (206) 285-8282 Received by:	i, Inc.								TB-062813	01mw107-062823	0111104-0-061823	52.8790-520milo	0100	Sample ID		PhoneEmail	tate, ZIP-Cak	Kond -	C	Company_Floyd Snicker	Report To Krishin + Pa	744905
ed hy:	Relinguished by:	ed by:	Relinquished by: V								p'	13 AF	12 A.E	879	814	Lab ID		labdataOf		7	-		Pamela	
		NAN NAN	NUNATURE							67070	celsel ,	A		6 28/25		Date Sampled		Email abdata of loyds mider comproject specific RLs? -						
						 				1700	Ĩ	1640	Sthi	1230		Time Sampled		<u>con Project</u>			Can	PROJE	SAMPI	SAMPL
Samples received at	TUNI	1.06								-100		(LU)	βW	Q		Sample Type		<u>specific RL</u>	ND3		Cantera T	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO
es 10	6	SPERC	PRINT NAME	 	ļ						- (4	5	J	00		# of Jars					500	\mathbf{i}	aturé	N OF
Aive	-991		[NA]	ļ			_			_	-		Χ.			NWTPH-Dx		Yes /)) Ci
d at	1r		ME		_		-	┥─		+-	╎		<u>×</u>		+	NWTPH-Gx		/ No		 				STO
4	no							<u> -</u>		+	╉	-	_			TEX EPA 8021			1				N	DY
്പ്	<u> </u>									1	╈	-+				OCs EPA 8260	AN/	tioneer	, INA			E F	J	i
		2													1	AHs EPA 8270	LYS	ne	INVOICE TO			PO #		90
		FLOYD SNIDER-	2					<u> </u>								OCs EPA 8260 AHS EPA 8270 CBS EPA 8082 CE, CIS-1, 7 DCF VIAL CHORIDE DITALE, NHCHE DITALE, NHCHE	ES RJ	4	OTO				Ĩ	86
	13	ŝ	COMPANY	<u> </u>				 	<u> </u>	×	₽	<u> </u>		\times	71	UNYI CHURIDE	QUI						И	
Í			YNY									_		×		intrate, Northe	STE			L 		<u> </u>	- + •	23
		Ì						 		 	\downarrow	_		\times		- 43~~1		Default	Arch		RUS I RUS	Stan		<
	6	6		┝━┦						X	╞	`	\times	_	5	Benzene by			AMP	0 5	H	URN/ dard i	Page #	Vw6
	6/28/20	6/28/22	DATE				Ì							ļ		Notes		Dispose after 30 days	SAMPLE DISPOSAL	0 444101 16	D RUSH	TUKNAKOUND TIME Indard turnaround	2	/ #3/
	Э Ф	1802	TIME					-								fes		r 30 days	SAL	eu vy.	5d	TIME d	2	15

File :Q:\GC10\GC10_Data\06-29-23\062910.D
Operator : TL
Acquired : 29 Jun 2023 11:30 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 306447-01
Misc Info :
Vial Number: 11

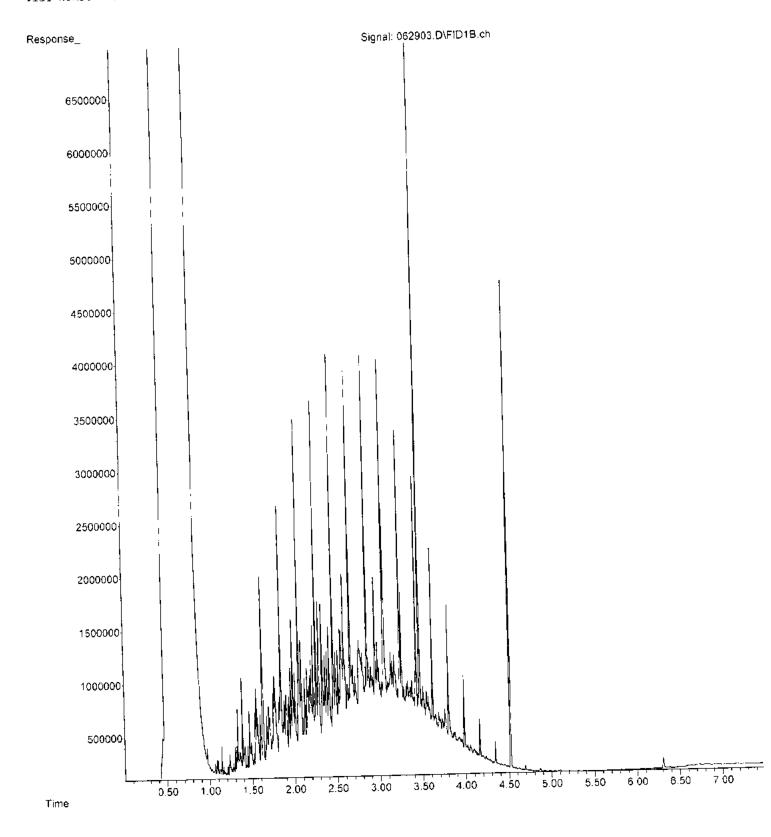


File :Q:\GC10\GC10_Data\06-29-23\062911.D
Operator : TL
Acquired : 29 Jun 2023 11:42 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 306447-02
Misc Info :
Vial Number: 12

File :Q:\GC10\GC10_Data\06-29-23\062912.D
Operator : TL
Acquired : 29 Jun 2023 11:54 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 306447-03
Misc Info :
Vial Number: 13


:Q:\GC10\GC10_Data\06-29-23\062913.D File Operator : TL Acquired : 29 Jun 2023 12:05 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 306447-04 Misc Info : Vial Number: 14

File :Q:\GC10\GC10_Data\06-29-23\062914.D Operator : TL Acquired : 29 Jun 2023 12:17 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 306447-05 Misc Info : Vial Number: 15


Signal. 062914.D\FID1B.ch Response_ 2.5e+07 2.4e+07 2.3e+07 2.2e+07 2.1e+07 2e+07 1 9e+07 1.8e+07 1.7e+07 1.6e+07 1 5e+07 1.4e+07 1.3e+07 1.2e+07 1.1e+07 1e+07 9000000 8000000 7000000 6000000 5000000 4000000] 3000000 2000000 1000000 5.50 7.00 6.00 6 50 4.00 5.00 4.50 3.50 0.50 1.00 1.50 2 00 2 50 3.00

File :Q:\GC10\GC10_Data\06-29-23\052904.D Operator : TL Acquired : 29 Jun 2023 09:02 am using AcqMethod DX.M Instrument : GC10 Sample Name: 03-1565 mb2 Misc Info : Vial Number: 6

File :Q:\GC10\GC10_Data\06-29-23\062903.D
Operator : TL
Acquired : 29 Jun 2023 08:50 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 500 DX 68-66J
Misc Info :
Vial Number: 3

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 306447 Work Order Number: 2306503

July 07, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 6/29/2023 for the analyses presented in the following report.

Ion Chromatography by EPA Method 300.0 Sulfide by SM 4500-S2-F

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 306447 2306503	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2306503-001	MW05-062823	06/28/2023 10:52 AM	06/29/2023 12:06 PM
2306503-002	01MW46-062823	06/28/2023 10:00 AM	06/29/2023 12:06 PM
2306503-003	01MW56-062823	06/28/2023 9:50 AM	06/29/2023 12:06 PM
2306503-004	01MW85-062823	06/28/2023 12:30 PM	06/29/2023 12:06 PM

Case Narrative

WO#: **2306503** Date: **7/7/2023**

CLIENT:Friedman & BruyaProject:306447

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2306503** Date Reported: **7/7/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate** RL - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2306503

 Date Reported:
 7/7/2023

Project: 306447

Lab ID: 2306503-001 Client Sample ID: MW05-062	2823			Collection Matrix: V		6/28/2023 10:52:00 AM
Analyses	Result	RL C	lual	Units	DF	Date Analyzed
lon Chromatography by EPA	<u>Method 300.0</u>			Batc	h ID: 40	807 Analyst: AT
Nitrite (as N)	ND	0.600	D	mg/L	5	6/29/2023 6:51:00 PM
Nitrate (as N)	ND	0.500	D	mg/L	5	6/29/2023 6:51:00 PM
Sulfate NOTES: Diluted due to matrix.	132	30.0	D	mg/L	50	6/30/2023 9:54:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID: R8	35056 Analyst: SS
Sulfide	3.60	0.500		mg/L	1	7/3/2023 11:22:17 AM

Lab ID: 2306503-002				Collectio	n Date:	6/28/2023 10:00:00 AM
Client Sample ID: 01MW46-0628	23			Matrix: V	Vater	
Analyses	Result	RL QI	ual	Units	DF	Date Analyzed
lon Chromatography by EPA Meth	<u>10d 300.0</u>			Batc	h ID: 40	807 Analyst: AT
Nitrite (as N)	ND	0.600	D	mg/L	5	6/29/2023 7:14:00 PM
Nitrate (as N)	ND	0.500	D	mg/L	5	6/29/2023 7:14:00 PM
Sulfate	186	30.0	D	mg/L	50	6/30/2023 10:17:00 PM
NOTES:						
Diluted due to matrix.						
Sulfide by SM 4500-S2-F				Batc	h ID: R8	5056 Analyst: SS
Sulfide	2.40	0.500		mg/L	1	7/3/2023 11:22:17 AM

Analytical Report

 Work Order:
 2306503

 Date Reported:
 7/7/2023

CLIENT:	Friedman & Bruya
CLIENT:	Friedman & Bruya

Project: 306447

Lab ID: 2306503-003 Client Sample ID: 01MW56-	062823			Collection Matrix: V		6/28/2023 9:50:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA	<u>Method 300.0</u>			Batc	h ID: 40	0807 Analyst: AT
Nitrite (as N)	ND	0.600	D	mg/L	5	6/29/2023 7:37:00 PM
Nitrate (as N)	0.910	0.500	D	mg/L	5	6/29/2023 7:37:00 PM
Sulfate NOTES: Diluted due to matrix.	28.5	3.00	D	mg/L	5	6/29/2023 7:37:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID: R	85056 Analyst: SS
Sulfide	4.40	0.500		mg/L	1	7/3/2023 11:22:17 AM

Lab ID: 2306503-004				Collectio	n Date:	6/28/2023 12:30:00 PM
Client Sample ID: 01MW85-062	823			Matrix: V	Vater	
Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
lon Chromatography by EPA Met	<u>hod 300.0</u>			Batc	h ID: 40	807 Analyst: AT
Nitrite (as N)	ND	0.600	D	mg/L	5	6/29/2023 8:00:00 PM
Nitrate (as N)	ND	0.500	D	mg/L	5	6/29/2023 8:00:00 PM
Sulfate	60.9	3.00	D	mg/L	5	6/29/2023 8:00:00 PM
NOTES:						
Diluted due to matrix.						
Sulfide by SM 4500-S2-F				Batc	h ID: R8	5056 Analyst: SS
Sulfide	4.80	0.500		mg/L	1	7/3/2023 11:22:17 AM

Work Order: 2	2306503								000	SUMMAI		лорт
CLIENT:	-riedman & I	Bruya							•			
	306447	,						lon Ch	iromatogra	phy by EP	A Method	d 300.0
Sample ID: MB-4080	17	SampType: MBLK			Units: mg/L		Prep Da	ite: 6/29/20)23	RunNo: 850)91	
Client ID: MBLKW		Batch ID: 40807					Analysis Da	ite: 6/29/20)23	SeqNo: 177	76288	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		ND	0.120									
Nitrate (as N)		ND	0.100									
Sulfate		ND	0.600									
Sample ID: LCS-408	07	SampType: LCS			Units: mg/L		Prep Da	ite: 6/29/20)23	RunNo: 850)91	
Client ID: LCSW		Batch ID: 40807					Analysis Da	ite: 6/29/20)23	SeqNo: 177	76289	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		0.700	0.120	0.7500	0	93.3	90	110				
Nitrate (as N)		0.711	0.100	0.7500	0	94.8	90	110				
Sulfate		3.58	0.600	3.750	0	95.3	90	110				
Sample ID: 2306479	-001BDUP	SampType: DUP			Units: mg/L		Prep Da	ite: 6/29/20)23	RunNo: 850)91	
Client ID: BATCH		Batch ID: 40807					Analysis Da	ite: 6/29/20)23	SeqNo: 177	76291	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		ND	0.120						0		20	
Nitrate (as N)		ND	0.100						0		20	
Sulfate		2.29	0.600						2.332	1.82	20	
Sample ID: 2306479	-001BMS	SampType: MS			Units: mg/L		Prep Da	ite: 6/29/20)23	RunNo: 850)91	
Client ID: BATCH		Batch ID: 40807					Analysis Da	ite: 6/29/20)23	SeqNo: 177	76292	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		0.702	0.120	0.7500	0	93.6	80	120				
Nitrate (as N)		0.701	0.100	0.7500	0	93.5	80	120				
Sulfate		5.88	0.600	3.750	2.332	94.6	80	120				

Work Order:	2306503	_							QC S	SUMMA	RY REF	PORT
CLIENT:	Friedman & 306447	Bruya						lon Ch	romatogra	phy by EP	A Metho	d 300.0
Project:					Lipito: ma/l		Dran Dat		•	RunNo: 850		
Sample ID: 230647		SampType: MSD			Units: mg/L			e: 6/29/20				
Client ID: BATCH	1	Batch ID: 40807					Analysis Dat			SeqNo: 17		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)		0.727	0.120	0.7500	0	96.9	80	120	0.7020	3.50	20	
Nitrate (as N)		0.728	0.100	0.7500	0	97.1	80	120	0.7010	3.78	20	
Sulfate		6.14	0.600	3.750	2.332	101	80	120	5.879	4.29	20	
Sample ID: LCS-40	0808	SampType: LCS			Units: mg/L		Prep Dat	e: 6/30/20	23	RunNo: 850	099	
Client ID: LCSW		Batch ID: 40808					Analysis Dat	e: 6/30/20	23	SeqNo: 17	76368	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate		3.61	0.600	3.750	0	96.3	90	110				
Sample ID: MB-40	808	SampType: MBLK			Units: mg/L		Prep Dat	e: 6/30/20	23	RunNo: 850	099	
Client ID: MBLK	W	Batch ID: 40808					Analysis Dat	e: 6/30/20	23	SeqNo: 17	76370	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate		ND	0.600									
Sample ID: 230650	03-002ADUP	SampType: DUP			Units: mg/L		Prep Dat	e: 6/30/20	23	RunNo: 850	099	
Client ID: 01MW	46-062823	Batch ID: 40808					Analysis Dat	e: 6/30/20	23	SeqNo: 17	76378	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate		173	30.0						186.2	7.23	20	D
Sample ID: 230650)3-002AMS	SampType: MS			Units: mg/L		Prep Dat	e: 6/30/20	23	RunNo: 850	099	
Client ID: 01MW	46-062823	Batch ID: 40808					Analysis Dat	e: 6/30/20	23	SeqNo: 17	76379	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
•												

Work Order:	2306503								00.9	SUMMAR		
CLIENT:	Friedman &	Bruya							•			
Project:	306447							lon Ch	romatogra	ohy by EP	A Method	300.0
Sample ID: 23065	03-002AMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 6/30/20	23	RunNo: 850	99	
Client ID: 01MW	46-062823	Batch ID: 40808					Analysis Da	te: 6/30/20	23	SeqNo: 177	6380	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate		355	30.0	187.5	186.2	90.2	80	120	352.0	0.961	20	D

Work Order: CLIENT: Project:	2306503 Friedman & E 306447	Bruya					QC SUMMARY REPORT Sulfide by SM 4500-S2-F
Sample ID: MB-R8	5056	SampType: MBLK			Units: mg/L	Prep Date: 7/3/2023	RunNo: 85056
Client ID: MBLK	w	Batch ID: R85056				Analysis Date: 7/3/2023	SeqNo: 1775518
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RF	PD Ref Val %RPD RPDLimit Qual
Sulfide		ND	0.500				
Sample ID: LCS-R	85056	SampType: LCS			Units: mg/L	Prep Date: 7/3/2023	RunNo: 85056
Client ID: LCSW		Batch ID: R85056				Analysis Date: 7/3/2023	SeqNo: 1775519
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RF	PD Ref Val %RPD RPDLimit Qual
Sulfide		2.40	0.500	2.000	0	120 45.6 120	
Sample ID: 230647	70-001ADUP	SampType: DUP			Units: mg/L	Prep Date: 7/3/2023	RunNo: 85056
Client ID: BATCH	1	Batch ID: R85056				Analysis Date: 7/3/2023	SeqNo: 1775521
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RF	PD Ref Val %RPD RPDLimit Qual
Sulfide NOTES: R - High RPD ob	oserved.	2.40	0.500				1.600 40.0 30 R
Sample ID: 230653	86-002AMS	SampType: MS			Units: mg/L	Prep Date: 7/3/2023	RunNo: 85056
Client ID: BATCH	1	Batch ID: R85056				Analysis Date: 7/3/2023	SeqNo: 1776234
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RF	PD Ref Val %RPD RPDLimit Qual
Sulfide		4.00	0.500	2.000	1.200	140 21.5 190	

Client Name: FB	Work Order Numb	ber: 2306503	
Logged by: Morgan Wilson	Date Received:	6/29/2023	12:06:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes 🗌	No 🗌	Not Present
4. Was an attempt made to cool the samples?	Yes 🖌	No 🗌	
5. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🖌	No 🗌	
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples properly preserved?	Yes 🖌	No 🗌	
9. Was preservative added to bottles?	Yes 🖌	No 🗌	NA 🗌
			NaOH
10. Is there headspace in the VOA vials?	Yes 🗌	No 🗌	NA 🗹
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
12. Does paperwork match bottle labels?	Yes 🖌	No 🗔	
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
14. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
15. Were all holding times able to be met?	Yes 🖌	No 🗌	
<u>Special Handling (if applicable)</u>			
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Date	:		
By Whom: Via:	μ	none 🗌 Fax	In Person
Regarding:			
Client Instructions:			
17. Additional remarks:			

Item Information

Item #	Temp °C
Sample	0.6

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

								8								Received by:		Fax (206) 283-5044	
															by:	Relinquished by:		Ph. (206) 285-8282	
XC	5	Ellep		M	FA			X	Tues	2	MING	5	4	0	n	Received by:	2029	Seattle, WA 98119-2029	
10	2180	6/29/23	7a	Friedman & Bruya	man b	Fried					Michael Erdahl	Michae		0	the con	Refinduietred	Vest	3012 16th Avenue West	
E	TIME	DATE		COMPANY	COM	ł		$\left \right $	NAME	PRINT	PR		_		SIGNATURE		Inc	Friedman & Bruya Inc.	-
										_		_							
						$\left \right $	$\left \right $												
											_		\rightarrow						-
			-		\rightarrow	-	-	-	_	_		_	+						
				-	-		-		_		_	_	+						
									_	_		_	_						
						-					_								-
				$\left \right $	-				-										
				-	-	-	-	x	x	x	x		2	1230 water	1230	6/28/2023		01MW85-062823	- 1
				-	\vdash	\vdash		x	x	×	×		N	water	950	6/28/2023		01MW56-062823	-
				-	-	-	\vdash	×	x	×	x		2	1000 water	1000	6/28/2023		01MW46-062823	-
			-					x	x	х	х		2	1052 water	1052	6/28/2023		MW05-062823	. T
	tes	Notes						Sulfide	Sulfate	Nitrite	Nitrate	# of jars		Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID	
					ESTE	EQUI	ES R	ANALYSES REQUESTED	Al			Ц							
	suc	Return samples Will call with instructions	Return samples Will call with in	Re						r EDD	Floyd Snider EDD	Floyd		L.COM	(206) 285-8282 merdahl@friedmanandbruya.com	merdahl@frie	8282	Phone # (206) 285-	
	SAL	SAMPLE DISPOSAL Dispose after 30 days	SAM	D								RKS	REMARKS	R		Seattle WA 98119	attla	ate ZIP	
200.12	by:	RUSH	RUSH ush charge	Rusl		63	D-363				306447	60			, Inc.	Friedman and Bruya, Inc 3012 16th Ave W	<u>iedma</u>)12 16	Company <u>Fr</u> Address 30	
of 1		I TAT	⊠ Standard TAT	XX		#	PO #	_		0	PROJECT NAME/NO	CT NA	ROJE	 اح		Michael Erdani	ucnaei	Send Keport <u>10</u> M	
	of 1	#1	TURN							~	SUBCONTRACTER	DNTR/	UBCC	S		D-1-1-1			
		2	2306503	22		Υ(USTODY	CUS	NOF	HAI	LEC	AMP	CT S	NTRA	SUBCONTRACT SAMPLE CHAIN OF C				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanadbruya.com

July 6, 2023

Kristin Anderson, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Anderson:

Included are the results from the testing of material submitted on June 29, 2023 from the Cantera-TOC, F&BI 306460 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Milif Cale

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data, Pamela Osterhout FDS0706R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 29, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 306460 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
306460 -01	01MW108-062923
306460 -02	01MW49R-062923
306460 -03	02MW04R-062923
306460 -04	02MW07-062923
306460 -05	02MW19-062923

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460 Date Extracted: 07/03/23 Date Analyzed: 07/03/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
$01 \mathrm{MW49R} \text{-} 062923 \\ _{306460 \text{-} 02}$	<100	116
$\begin{array}{c} 02 MW04 R\text{-}062923 \\ _{306460\text{-}03} \end{array}$	<100	110
02MW07-062923 306460-04	<100	112
02MW19-062923 306460-05	<100	116
Method Blank ^{03-1412 MB}	<100	107

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460 Date Extracted: 06/30/23 Date Analyzed: 06/30/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
$01MW49R-062923$ $_{306460-02}$	160 x	<250	120
$02MW04R-062923$ $_{306460-03}$	65 x	<250	113
02MW07-062923 ³⁰⁶⁴⁶⁰⁻⁰⁴	76 x	<250	116
02MW19-062923 ³⁰⁶⁴⁶⁰⁻⁰⁵	76 x	<250	118
Method Blank 03-1570 MB2	<50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	02MW07-062923 06/29/23 06/29/23	Client: Project: Lab ID:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-04
Date Analyzed:	06/30/23	Data File:	306460-04.120
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	1.13		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	02MW19-062923 06/29/23	Client: Project:	Floyd-Snider Cantera-TOC, F&BI 306460
Date Extracted:	06/29/23	Lab ID:	306460-05
Date Analyzed:	06/30/23	Data File:	306460-05.123
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
r mary te.	ug/L (ppb)		
Arsenic	4.24		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 06/29/23 06/30/23 Water	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider Cantera-TOC, F&BI 306460 I3-521 mb I3-521 mb.042 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW108- 06/29/23 07/03/23 07/03/23 Water ug/L (ppb)	062923	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-01 070340.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 92 102	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth Trichloroethene	ene	Concentration ug/L (ppb) 0.065 <1 <0.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW49R- 06/29/23 07/03/23 07/03/23 Water ug/L (ppb)	062923	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-02 070322.D GCMS11 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	78	126
Toluene-d8		101	84	115
4-Bromofluorobenz	ene	107	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW04R- 06/29/23 07/03/23 07/03/23 Water ug/L (ppb)	062923	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-03 070323.D GCMS11 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 102 107	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds: Benzene		Concentration ug/L (ppb) 29		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW07-06 06/29/23 07/03/23 07/03/23 Water ug/L (ppb)	32923	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-04 070324.D GCMS11 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	78	126
Toluene-d8		99	84	115
4-Bromofluorobenz	ene	103	72	130
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW19-00 06/29/23 07/03/23 07/03/23 Water ug/L (ppb)	62923	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 306460-05 070325.D GCMS11 MD
Surrogatos		% Recovery:	Lower Limit:	Upper Limit:
Surrogates:	14	0		
1,2-Dichloroethane	-04	104	78	126
Toluene-d8		99	84	115
4-Bromofluorobenz	ene	98	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 07/03/23 07/03/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 306460 03-1527 mb 070308.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 102 101	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride cis-1,2-Dichloroeth Trichloroethene Benzene	ene	<0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 306460-05 (Duplicate)						
	Reporting	Samp	le Dup	olicate	RPD	
Analyte	Units	Resu	lt Re	esult	(Limit 20)	
Gasoline	ug/L (ppb)	<100) <	100	nm	
Laboratory Code: La	boratory Contr	rol Sampl	le Percent			
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria	_	
Gasoline	ug/L (ppb)	1,000	97	70-130	-	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	116	65 - 151	7

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 306460-04	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	1.13	108	103	75-125	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/06/23 Date Received: 06/29/23 Project: Cantera-TOC, F&BI 306460

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306440-06 (Matrix Spike)

	- /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	107	16-176
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	102	50 - 150
Benzene	ug/L (ppb)	10	< 0.35	104	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	106	43-133

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	96	96	43-149	0
cis-1,2-Dichloroethene	ug/L (ppb)	10	98	103	70-130	5
Benzene	ug/L (ppb)	10	101	105	70-130	4
Trichloroethene	ug/L (ppb)	10	102	105	70-130	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

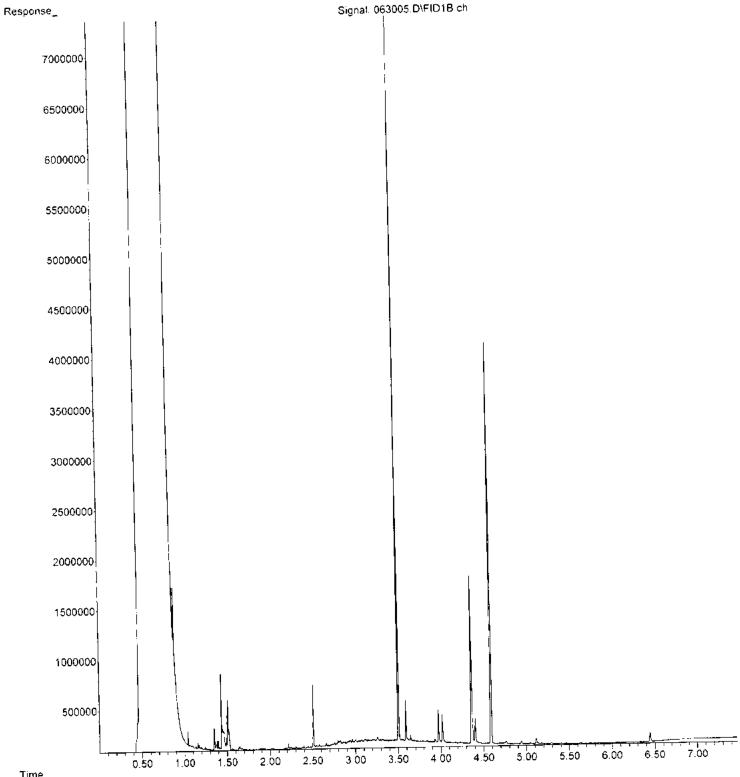
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

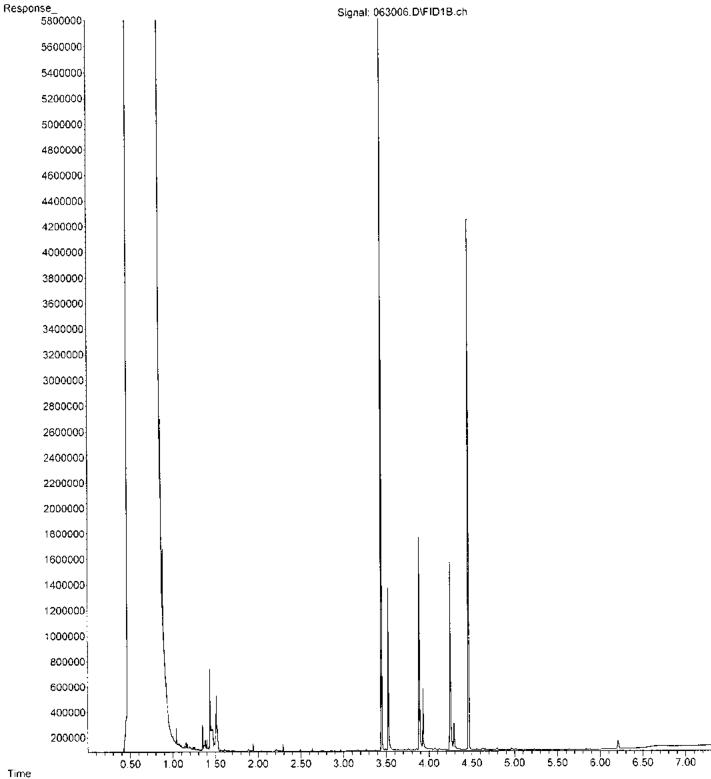
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

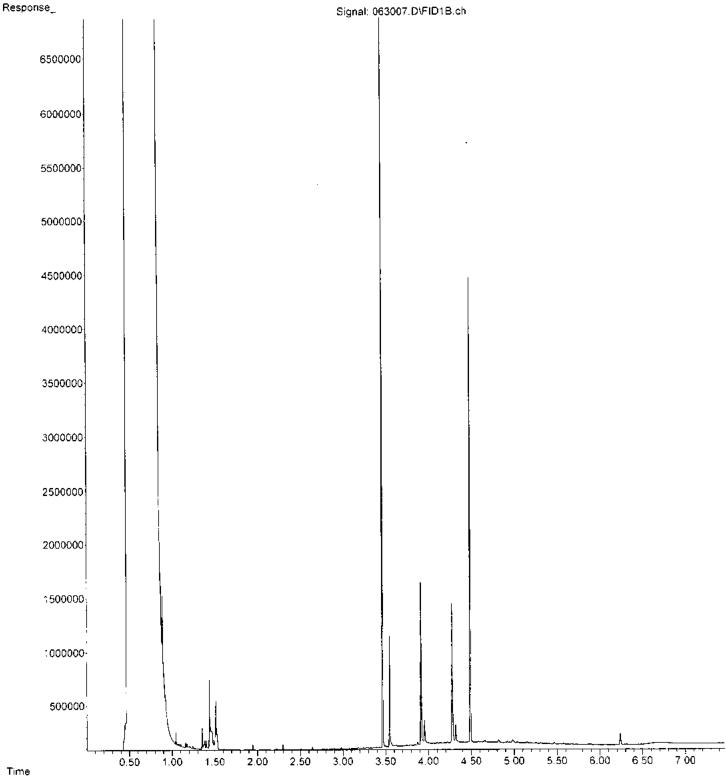
 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

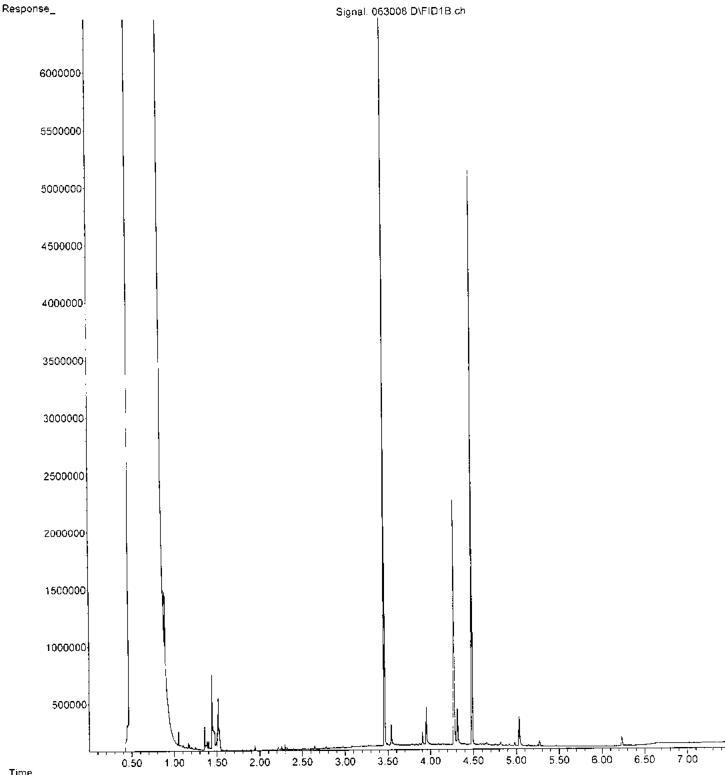
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

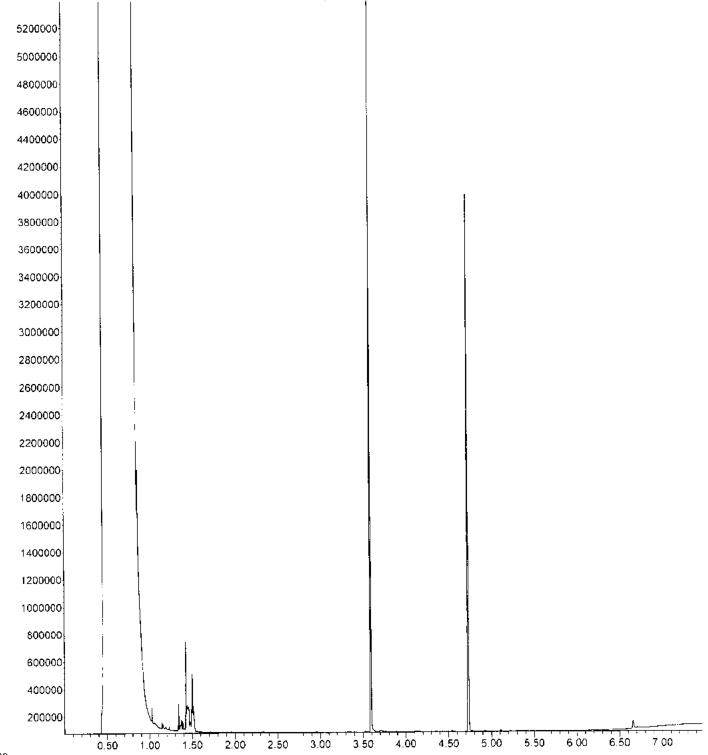
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

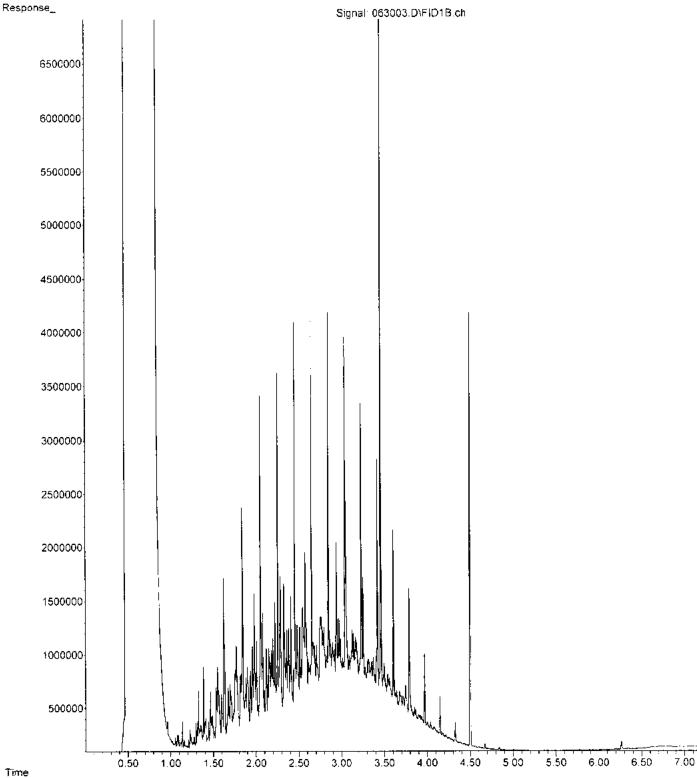

Friedman & Bruya, Inc. Relin Ph. (206) 285-8282 Rece Rece				02MW04R-062923	011MW 108-062923	Sample ID		City, State, ZIP Seattle, WA 98101 Live 292-2078 Email	306460 Report To Krishn Anderson + Pandal Company Floyd Snider Address (201 Union (t. Suife 100)
Relinquished by: Received by: Relinquished by: Received by			04 A-H	02 A-G	• <u>A</u> -	Lab ID		A 9610	N + Pam
SIGNATURE Relinquished by: Received by: Relinquished by: Received by:			<u>}</u>		62123	Date Sampled			Panda Aterhous
M	R		12:42	10:30	Sh bo	Time Sampled		REMARKS CVOCs + T Project spec	
Deele	j	<i>.</i>	}		- GW	Sample Type		REMARKS CVOCs + Benzene by Clid Project specific RLs? · Yes / No	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME
PRINT NAM MCCanne			$\frac{\sqrt{2}}{2}$	- 1 - 7	< 4 e	NWTPH-Dx		ν 64 8	OF CUS
AME		Sample		< <	· · · · · ·	NWTPH-Gx BTEX EPA 8021 NWTPH-HCID			TODY
70		Ú				VOCs EPA 8260 PAHs EPA 8270	ANALYSES	INVOICE TO Pioneer	PO #
4 ST COM	# # ·	received at			<	PCBs EPA 8082 TCE, en hz-DCE t vinyl chlorado	S REQUESTED	TO	19/23
Junder		ა c			<u> </u>	Benžene ky AZUN Total Arsenic by 60208	STED	☐ Archive ☐ Other ☐ Other	v w/2 (I 3 / L2 Page #
DATE 4/29/23 6/29						· z		SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 days	V W2 (I 3 / L2 Page #
TIME 3:35 3:35						Notes		OSAL er 30 days	of TIME ed by:


```
File :P:\Proc_GC10\06-30-23\063005.D
Operator : TL
Acquired : 30 Jun 2023 08:59 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 306460-02
Misc Info :
Vial Number: 7
```



:P:\Proc_GC10\06-30-23\063006.D File Operator : TL Acquired : 30 Jun 2023 09:11 am using AcqMethod DX.M Instrument : GC10 Sample Name: 306460-03 Misc Info : Vial Number: 8

:P:\Proc_GC10\06-30-23\063007.D File Operator : TL Acquired : 30 Jun 2023 09:23 am using AcqMethod DX.M Instrument : GC10 Sample Name: 306460-04 Misc Info : Vial Number: 9


:P:\Proc_GC10\06-30-23\063008.D File Operator : TL : 30 Jun 2023 09:34 am using AcqMethod DX.M Acquired Instrument : GC10 Sample Name: 306460-05 Misc Info : Vial Number: 10


File :P:\Proc_GC10\06-30-23\063004.D
Operator : TL
Acquired : 30 Jun 2023 08:48 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 03-1570 mb2
Misc Info :
Vial Number: 6

Response_

Signal: 063004.D\FID1B.ch

:P:\Proc_GC10\06-30-23\063003.D File Operator : TL Acquired : 30 Jun 2023 07:10 am using AcqMethod DX.M Instrument : GC10 Sample Name: 500 DX 68-663 Misc Info : Vial Number: 3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanadbruya.com

October 19, 2023

Pamela Osterhout, Project Manager Floyd-Snider Two Union Square 601 Union St, Suite 600 Seattle, WA 98101

Dear Ms Osterhout:

Included are the results from the testing of material submitted on October 10, 2023 from the Cantera-TOC, F&BI 310168 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Floyd Snider Lab Data FDS1019R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2023 by Friedman & Bruya, Inc. from the Floyd-Snider Cantera-TOC, F&BI 310168 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
310168 -01	01MW46-101023
310168 -02	01MW19R-101023
310168 -03	01MW53-101023
310168 -04	01MW85-101023
310168 -05	01MW107-101023
310168 -06	01MW35-101023
310168 -07	01MW84-101023
310168 -08	02MW04R-101023
310168 -09	02MW19-101023
310168 -10	02MW07-101023
310168 -11	01MW19R-D-101023
310168 -12	TB-101023

Sample 01MW85-101023 was sent to Onsite Environmental for RSK dissolved gases analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168 Date Extracted: 10/12/23 Date Analyzed: 10/12/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
01MW19R-101023 310168-02	1,200	124
01MW35-101023 310168-06	<100	102
01MW84-101023 310168-07	3,500	105
02MW04R-101023 ³¹⁰¹⁶⁸⁻⁰⁸	<100	100
02MW19-101023 310168-09	<100	93
02MW07-101023 310168-10	<100	94
01MW19R-D-101023 310168-11	1,200	119
Method Blank ^{03-2235 MB}	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168 Date Extracted: 10/12/23 Date Analyzed: 10/17/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
01MW19R-101023 310168-02	890 x	<250	118
01MW35-101023 310168-06	56 x	<250	139
01MW84-101023 310168-07	1,500 x	<250	126
02MW04R-101023 ³¹⁰¹⁶⁸⁻⁰⁸	<50	<250	132
02MW19-101023 ³¹⁰¹⁶⁸⁻⁰⁹	81 x	<250	136
02MW07-101023 ³¹⁰¹⁶⁸⁻¹⁰	73 x	<250	139
01MW19R-D-101023 ³¹⁰¹⁶⁸⁻¹¹	920 x	<250	131
Method Blank ^{03-2400 MB}	<50	<250	121

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	02MW19-101023 10/10/23 10/11/23	Client: Project: Lab ID:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-09
Date Analyzed:	10/11/23	Data File:	310168-09.151
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	3.13		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	02MW07-101023 10/10/23	Client: Project:	Floyd-Snider Cantera-TOC, F&BI 310168
Date Extracted:	10/11/23	Lab ID:	310168-10
Date Analyzed: Matrix:	10/11/23 Water	Data File: Instrument:	310168-10.152 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	1.24		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	Method Blank NA 10/11/23	Client: Project: Lab ID:	Floyd-Snider Cantera-TOC, F&BI 310168 I3-804 mb
Date Analyzed: Matrix:	10/11/23 10/11/23 Water	Data File: Instrument:	I3-804 mb I3-804 mb.086 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW46-10 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	01023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-01 1/10 101221.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 109 101	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 36 400 300		
Benzene		4.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW19R- 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	101023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-02 101223.D GCMS11 LM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	78	126
Toluene-d8		104	84	115
4-Bromofluorobenz	ene	108	72	130
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW53-1 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	01023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-03 101213.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 107 110 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene	ene	Concentration ug/L (ppb) 0.59 2.4 1.5		

ENVIRONMENTAL CHEMISTS

01MW85-10 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	01023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-04 1/10 101222.D GCMS13 MD
-d4 ene	% Recovery: 106 116 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136
ene	Concentration ug/L (ppb) 18 1,100		
	10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	10/12/23 10/12/23 Water ug/L (ppb) •d4 106 116 ene 99 Concentration ug/L (ppb) 18	$\begin{array}{cccc} 10/10/23 & & \mbox{Project:} \\ 10/12/23 & & \mbox{Lab ID:} \\ 10/12/23 & & \mbox{Data File:} \\ \mbox{Water} & & \mbox{Instrument:} \\ \mbox{ug/L (ppb)} & & \mbox{Operator:} \\ \mbox{Coperator:} & & \mbox{Limit:} \\ \mbox{d4} & 106 & 71 \\ 116 & 68 \\ \mbox{ene} & 99 & 62 \\ \mbox{Concentration} \\ \mbox{ug/L (ppb)} & & \mbox{18} \\ \mbox{ene} & 1,100 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW107- 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	101023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-05 101214.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 99 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth Trichloroethene	ene	Concentration ug/L (ppb) <0.02 <1 <0.5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW35-101023 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-06 101215.D GCMS13 MD	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	105	71	132	
Toluene-d8		112	68	139	
4-Bromofluorobenz	ene	98	62	136	
		Concentration			
Compounds:		ug/L (ppb)			
Benzene		< 0.35			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW84-101023 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-07 101216.D GCMS13 MD	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	105	71	132	
Toluene-d8		113	68	139	
4-Bromofluorobenz	ene	97	62	136	
Compounds:		Concentration ug/L (ppb)			
Benzene		< 0.35			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW04R-101023 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-08 101217.D GCMS13 MD	
		_	Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	109	71	132	
Toluene-d8		110	68	139	
4-Bromofluorobenz	ene	98	62	136	
		Concentration			
Compounds:		ug/L (ppb)			
Benzene		< 0.35			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW19-101023 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-09 101218.D GCMS13 MD	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 110 111 97	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds: Benzene		Concentration ug/L (ppb) <0.35			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	02MW07-10 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	01023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-10 101219.D GCMS13 MD
C		0/ D	Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	71	132
Toluene-d8		113	68	139
4-Bromofluorobenz	ene	98	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		< 0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01MW19R- 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)	D-101023	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-11 101220.D GCMS13 MD
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105	71	132
Toluene-d8		118	68	139
4-Bromofluorobenz	ene	102	62	136
		Concentration		
Compounds:		ug/L (ppb)		
Benzene		1.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	TB-101023 10/10/23 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 310168-12 101212.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 113 113 102	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Vinyl chloride cis-1,2-Dichloroeth	ene	Concentration ug/L (ppb) <0.02 <1		
Trichloroethene Benzene		<0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 10/12/23 10/12/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider Cantera-TOC, F&BI 310168 03-2330 mb 101208.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 92 99	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds: Vinyl chloride cis-1,2-Dichloroethe Trichloroethene Benzene	ene	Concentration ug/L (ppb) <0.02 <1 <0.5 <0.35		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 310168-06 (Duplicate)								
	Reporting	Samp	le Duj	olicate	RPD			
Analyte	Units	Resul	lt Re	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	:100	nm			
Laboratory Code: Laboratory Control Sample Percent								
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Gasoline	ug/L (ppb)	1,000	110	70-130	_			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	120	65 - 151	7

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 310160-01	(Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	37.8	102 b	90 b	75-125	12 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/19/23 Date Received: 10/10/23 Project: Cantera-TOC, F&BI 310168

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310168-02 (Matrix Spike)

•	- /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	0.41	95	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	2.8	$105 \mathrm{b}$	10-211
Benzene	ug/L (ppb)	10	1.6	104	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	102	35 - 149

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Co	introi Gampie		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	91	91	64-142	0
cis-1,2-Dichloroethene	ug/L (ppb)	10	99	100	70-130	1
Benzene	ug/L (ppb)	10	103	103	70-130	0
Trichloroethene	ug/L (ppb)	10	98	98	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

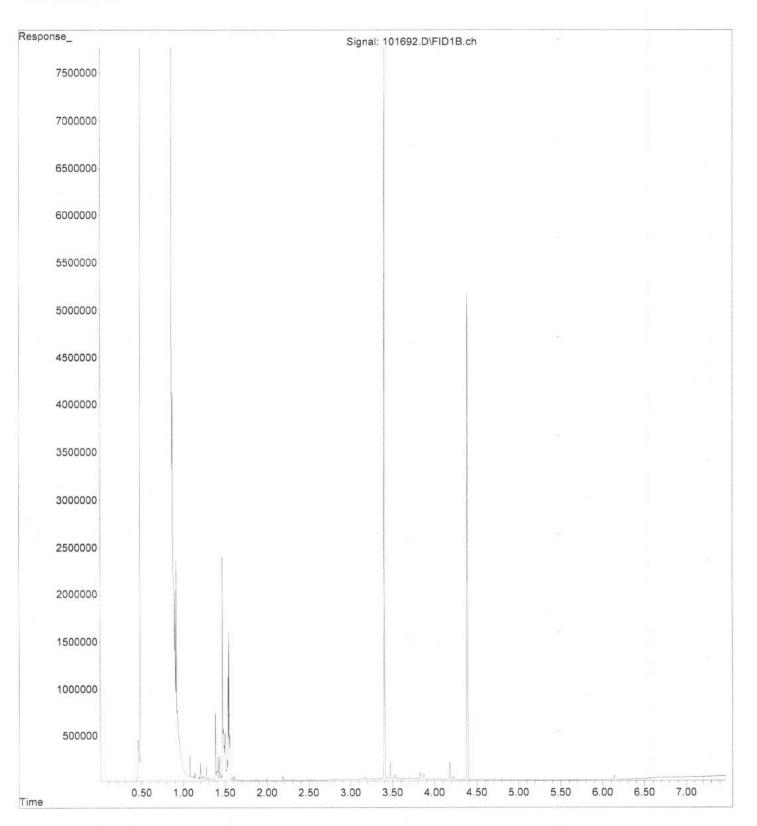
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

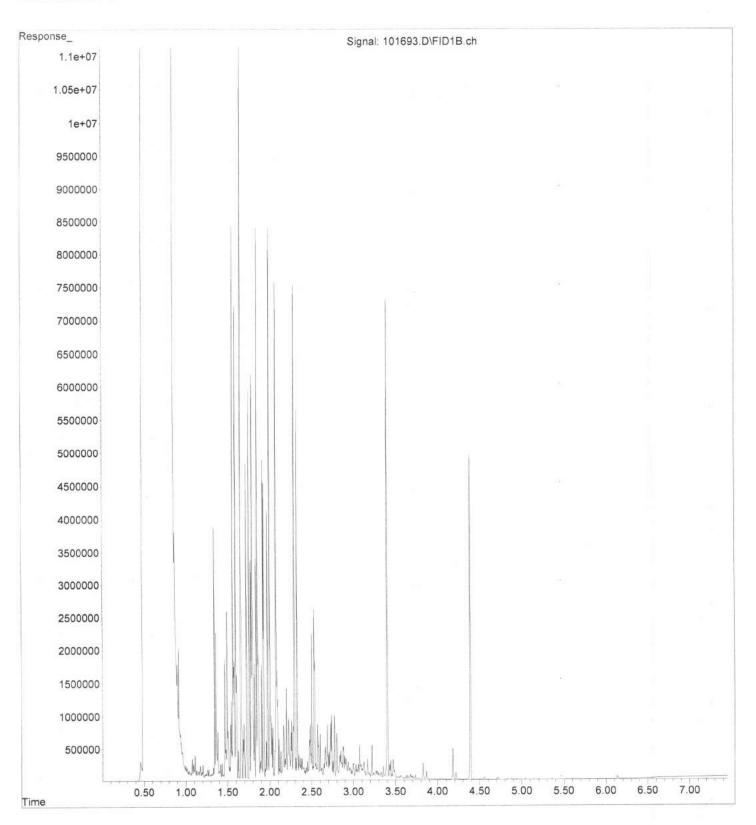
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

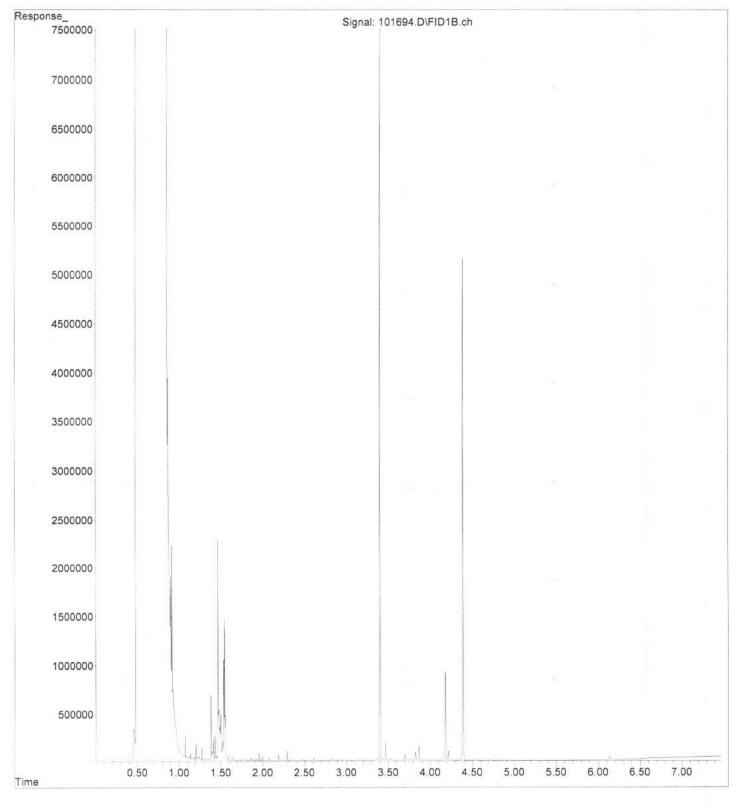
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

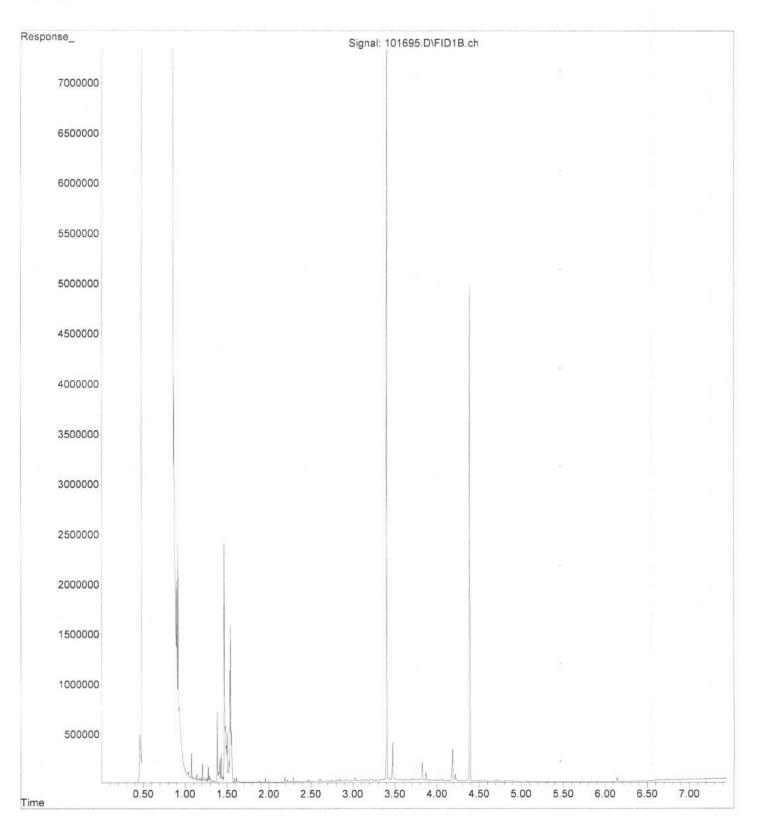

6 nL

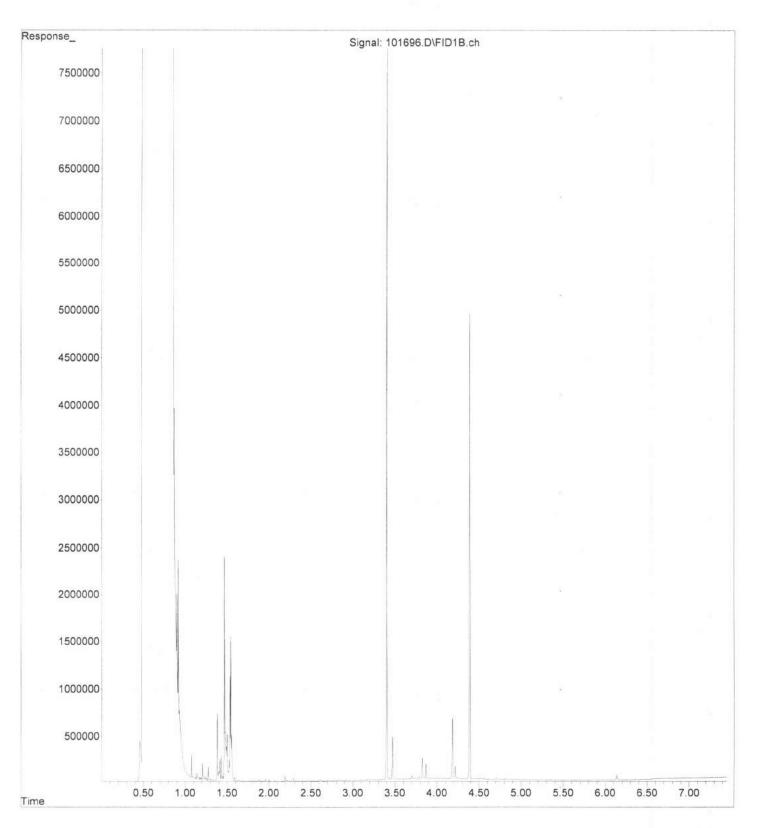
			Friedman & Bruya, Inc. Ph. (206) 285-8282	1								TE-101023	01mm1912	So So So		Phone 206-7	City, State, ZIP_	Address 6	Company <u>F</u>	Report To P	310168
Rece	Reli	,	, Inc.				i 4					23	61m1w1912-12-101073	Sample ID		Phone 206-292-2070 Email abdata Ottoysmac.on	ZIP <u>Seartue</u> ماھ	Address 601 UNION ST	Company FLOYD SNIDER	Report To PAM OSTER HOUT UAU data Oflaydsnider.com	k
Received by:	Relinquished by:	Received by	Reinquished by:	⊈ I	- -							12 A.B	11 A-D	Lab ID		labdata P	10 98101			labdataOf	
			A A	SIGNATURE								10/10/23	toholzz	Date Sampled		Acydsmider				loydsnider. co	
												00FT	010	Time Sampled		Project s	REMARKS	Cantera-Tac	PROJEC		SAMPLE CHAIN OF CUSIODY
		L I	C,0				!					WARE	WATER	Sample Type		n Project specific RLs? -	KS	r-Tac	PROJECT NAME	SAMPLERS (signature) ア6、Cつ	
		JOE MOHA	C.00001120	PRINT NAME								N	+	# of Jars						C V U U	
		Lo H	ľ	TNA							 	ļ	×	NWTPH-Dx		Yes / No					U U U U
		ATC)		ME		<u> </u>						<u> </u>		NWTPH-Gx		5					
		θ								<u> </u>	 			BTEX EPA 8021	$\left \right $		7				
								-	\vdash		 	X		NWTPH-HCID	A	10	, INI			•	
-			5					·					⁻	PAHs EPA 8270	ALX	Proveer	INVOICE TO		PO #		10
	S	F	FLOYD SUNCER								 			PCBs EPA 8082	ES I		E TO		74		0
	dure	7	D	ß							 	\checkmark	×	BENZENEBZGO	E		-			2.00	22
	les		SQ	COMPANY							 				JESI						Ê.
	rece		Å	X									-	NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 BENZEいえ(0260)	ED			Rust			S
	Samples received at																SAI	t chai	andaı JSH_	TUR	UWS/C2
	20	•	6	片									<u> </u>	<u> </u>		Disp	SAMPLE DI	rges a	rd tur	NAR	3
	2 °C	[w] 73	(Jaila)	DATE										Notes		ose afte	SAMPLE DISPOSAL hive samples	Rush charges authorized by	Standard turnaround CRUSH	TURNAROUND TIME	<u><u></u></u>
		4741	1727	TIME										ę		⊔ Uther Default: Dispose after 30 days	SAL	:d by:		IME	1

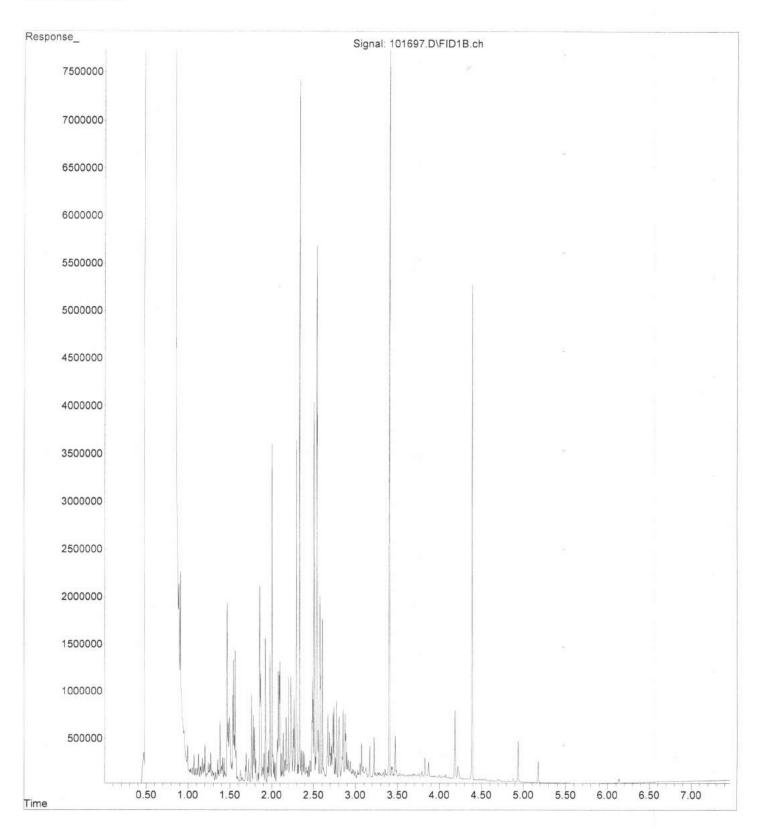

File :D:\GC14\GC14_Data\10-16-23\101691.D
Operator : TL
Acquired : 17 Oct 2023 03:37 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-02 rr
Misc Info :
Vial Number: 75

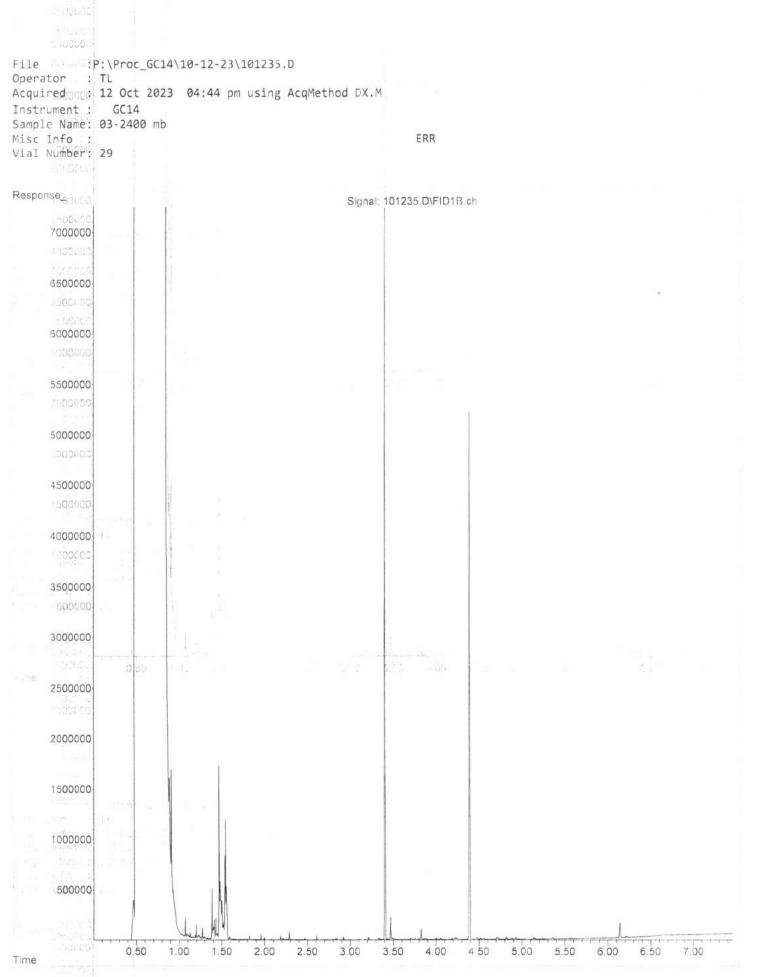
Response_ Signal: 101691.D\FID1B.ch 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 Time


File :D:\GC14\GC14_Data\10-16-23\101692.D
Operator : TL
Acquired : 17 Oct 2023 03:49 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-06 rr
Misc Info :
Vial Number: 76

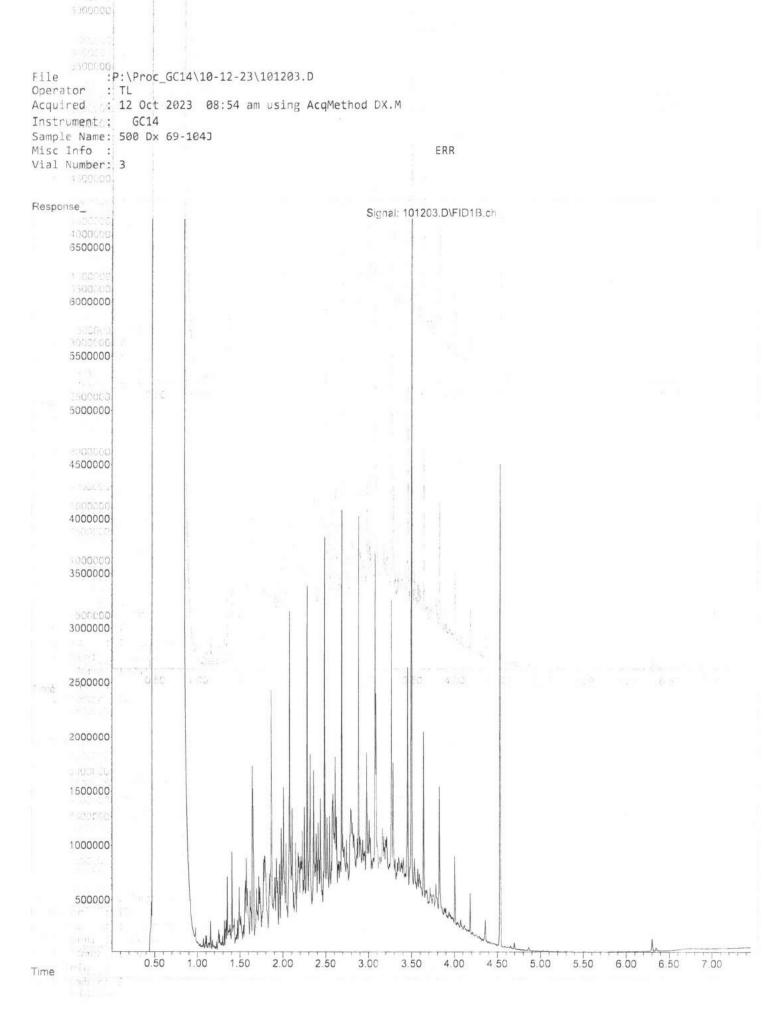

File :D:\GC14\GC14_Data\10-16-23\101693.D
Operator : TL
Acquired : 17 Oct 2023 04:01 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-07 rr
Misc Info :
Vial Number: 77


```
File :D:\GC14\GC14_Data\10-16-23\101694.D
Operator : TL
Acquired : 17 Oct 2023 04:12 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-08 rr
Misc Info :
Vial Number: 78
```



File :D:\GC14\GC14_Data\10-16-23\101695.D
Operator : TL
Acquired : 17 Oct 2023 04:24 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-09 rr
Misc Info :
Vial Number: 79



File :D:\GC14\GC14_Data\10-16-23\101696.D
Operator : TL
Acquired : 17 Oct 2023 04:35 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-10 rr
Misc Info :
Vial Number: 80



File :D:\GC14\GC14_Data\10-16-23\101697.D
Operator : TL
Acquired : 17 Oct 2023 04:47 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 310168-11 rr
Misc Info :
Vial Number: 81

1 mane

October 17, 2023

Michael Erdahl Friedman & Bruya, Inc. 5500 4th Avenue South Seattle, WA 98108

Re: Analytical Data for Project 310168 Laboratory Reference No. 2310-150

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on October 11, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

1

David Baumeister Project Manager

Enclosures

Date of Report: October 17, 2023 Samples Submitted: October 11, 2023 Laboratory Reference: 2310-150 Project: 310168

Case Narrative

Samples were collected on October 10, 2023 and received by the laboratory on October 11, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Dissolved Gases RSK 175 Analysis

Sample 01MW85-101023 had a surrogate recovery outside control limits believed to be caused by sample matrix interference. Sample was re-run with similar results. All other quality control parameters were in control, no further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

DISSOLVED GASES RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	01MW85-101023					
Laboratory ID:	10-150-01					
Methane	320	2.2	RSK 175	10-16-23	10-16-23	
Ethane	ND	0.22	RSK 175	10-16-23	10-16-23	
Ethene	2.7	0.29	RSK 175	10-16-23	10-16-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	152	50-150				Q

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1016W1					
Methane	ND	0.55	RSK 175	10-16-23	10-16-23	
Ethane	ND	0.22	RSK 175	10-16-23	10-16-23	
Ethene	ND	0.29	RSK 175	10-16-23	10-16-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	102	50-150				
			Percent	Recoverv	RPD)

					re	cent	Recovery		KFU	
Analyte	Result		Spike Level		Rec	Recovery		RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB10	16W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	44.2	44.2	44.2	44.2	100	100	75-125	0	25	
Ethane	82.5	83.4	83.2	83.2	99	100	75-125	1	25	
Ethene	76.6	77.1	77.7	77.7	99	99	75-125	1	25	
Surrogate:										
1-Butene					99	99	50-150			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.										01MW85-101023	Sample ID		Phone #(206) 285-{	City, State, ZIP <u>Se</u> ;		Company <u>Fr</u>	Send Report <u>To</u> M
		029	est	Inc.											Lab ID		8282 1	Seattle, WA	5500 4 th Ave S	iedma	ichael
Received by:	Relinquished by:	Received by:	Relinquished by:	1										10/10/2023	Date Sampled		nerdahl@frie	WA 98108	Ave S	Friedman and Bruya,	Michael Erdahl
	y:		2 2 C.	SIGNATURE										1111	Time Sampled		(206) 285-8282 merdahl@friedmanandbruya.com			, Inc.	
		1	K	7										water	Matrix			REM		PRO	SUB
			Mich	Ó										3	# of jars		yd Sni	REMARKS		JECT	CONT
		3,	Michael Erdahl											x	PISTOUED GASE RSK, MEE *	5	Floyd Snider RDD- MDL	01	310168	PROJECT NAME/NO.	SUBCONTRACTER Onsite
		Marin	dahl	PRINT															.68	E/NO.	ER
		S		PRINT NAME					_							ANA	-Report to				
							-	_								ALYS			D		10
<u> </u>			F			+	+									LYSES REQUESTED			D-489	PO#	10-150
		0	riedm	Q												QUES			9	#	0
		SE	Friedman & Bruya	COMPANY												STED	L				
			ruya	YNY													Return samples Will call with instructions	SAMPLE DISPO Dispose after 30 days	Rush charges authorized by:	IN Standard TAT RUSH	TUI
		lol	10/1	D/	_	-	+	+	-	-		-	* 1	-		Η	sample l with ii	MPLE after 3	ges aut	rd TAT	Page #_
		10/11/23	10/11/23	DATE							Eth	Ethanc,	* Methone		No		s nstructi	SAMPLE DISPOSAL ose after 30 days	horized		Page #1of TURNAROUND TIME
		5151	0830	TIME							Ethene	me,	anc!		Notes		ons	SAL	l by:		of 1
		2	30	ME							•										

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

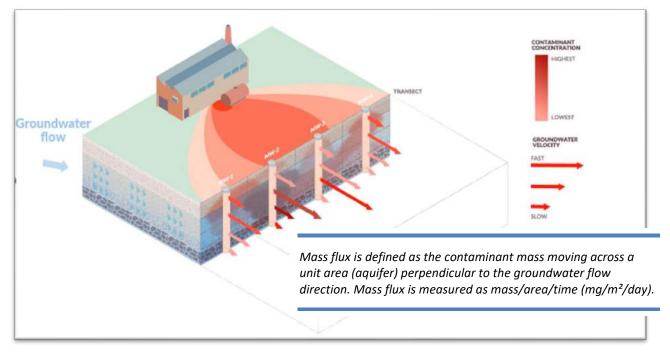
Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Attachment A.3 FluxTracer Report

FluxTracer[®] Results: Darcy Velocity, Mass Flux, and Contaminant Concentrations

November 17, 2023


- TO: Kristin Anderson Floyd Snider 601 Union St. Ste. 600 Seattle, WA 98101-2390
- FROM: Joshua Moreno, REGENESIS Chris Lee, REGENESIS
- RE: Flux Tracer Results for Kristin, Time Oil Cantera Site

Scope of Work

FluxTracer[®] testing was conducted to assess groundwater velocity and contaminant mass flux within existing monitoring wells to aid in site characterization and remedial designs. REGENESIS received 1 set of 5' passive flux meter device from Floyd Snider and performed FluxTracer analysis to determine Darcy flux, mass flux, and flux derived contaminant concentration. The quantitative FluxTracer test measures the amount of alcohol tracers that desorbed from the activated carbon due to groundwater passively flowing through the cylinder cannisters. Concurrently, contaminants present in the plume will adsorb to the activated carbon during the deployed period after which will be extracted from the activated carbon to quantify mass flux and flux derived contaminant concentration.

What is Mass Flux?

Conceptual site modeling overlaying hydraulic conductivity, groundwater velocity, and contaminant concentrations.

Mass flux refers to the movement of contaminant mass from one location to another, measured in units of mass per unit of time and area. Contaminant mass flux data is used in environmental remediation to identify the pathways through which contaminants are moving through the aquifer. This can involve the use of monitoring wells and various technologies to collect data on the flow of water and contaminants through the soil and rock formations. This information can help determine the locations of plumes and the direction of contaminant movement which is important for identifying the sources of contamination and designing remediation strategies.

Contaminant mass flux data can also be used to assess the potential risks to human and ecosystem health. By understanding the rate at which contaminants are moving through the groundwater and the concentrations at which they are present, it is possible to evaluate the potential impacts of environmental hazards on human and ecological receptors. Mass flux data can be used to prioritize remediation efforts and to develop risk management plans. For example, the use of permeable reactive barriers or in-situ bioremediation techniques may be more effective in certain locations based on contaminant mass flux data (ITRC, 2010). Contaminant mass flux data is an important tool in environmental remediation as it helps to understand and predict the movement of contaminants in the environment, assess potential risks to humans and ecosystems, and design effective remediation strategies.

ITRC. (2010). Use and Measurement of Mass Flux and Mass Discharge. www.itrcweb.org.

Results

Table 1. 01MW85 Darcy velocity and mass flux data

Sample No.	Depth below top of well casing (ft)	Darcy velocity (cm/day)	PCE (mg/m²/day)	TCE (mg/m²/day)	cDCE (mg/m²/day)
1	22.5	<2.0	<1	<0.9	1
2	23.5	<2.0	<1	<0.9	5
3	24.5	3.4	<1	<0.9	6
4	25.5	4.5	<1	<0.9	33
5	26.5	4.4	<1	<0.9	10

Table 2. 01MW85 Flux-derived concentration

Sample No.	Depth Below Casing (ft)	PCE (µg/L)	TCE (µg/L)	cDCE (µg/L)
1	22.5	N/A	N/A	N/A
2	23.5	N/A	N/A	N/A
3	24.5	N/A	N/A	180
4	25.5	N/A	N/A	730
5	26.5	N/A	N/A	230

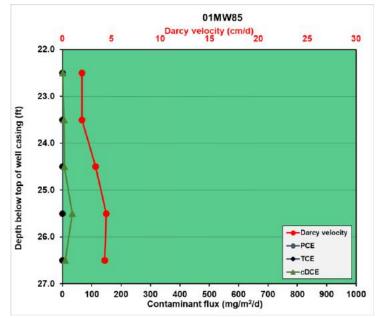


Figure 1. 01MW85 Contaminant flux (mg/m²/d), Darcy velocity (cm/d), and depth below casing.

Interpretation of Results:

The FluxTracer test provides contaminant flux and Darcy velocity at 1-foot intervals. Contaminant flux and Darcy velocity are then used to derive contaminant mass at 1-foot intervals.

Under these test conditions, the Darcy velocity and contaminant flux for the groundwater plume can be interpreted as follows:

Qualitative Interpretation	Darcy Velocity (cm/day)	*Seepage Rate (ft/yr)	Contaminant Flux (mg/m²/day)
Low	<2 - 5	<96 - 240	<10 - 300
Medium	5 - 15	240 - 719	300 - 800
High	15->30	719 - 1437	800 - >2000

*Seepage rate assumes a 0.25 porosity

Flux derived concentration is derived using the following equation:

GW concentration
$$(\mu g/L) = \frac{Mass flux (\mu g/m^2/d)}{Darcy(cm/d) * 10}$$

A non-applicable (N/A) is applied to the intervals where either the Darcy velocity, contaminant of concern, or both is less than the reporting limit.

A value of ND <X indicates that the analyte of concern is NOT detected above the method detection limit (MDL) or the method reporting limit (MRL).

A J-value indicates that the analyte of concern was detected and that the analyte concentration is an estimated value which is between the method detection limit (MDL) and the method reporting limit (MRL).

Description of Experimental Methods

A batch reactor is filled with 10 grams of sample from each 1-foot interval and is extracted for alcohol tracers followed by extraction of chlorinated volatile organic solvents (CVOCs) using of isobutanol and acetone-hexane, respectively. Batch reactors are then placed on a shaker for 24 hours. A 1 ml extract from each batch reactor is transferred to a liquid gas chromatography vial and each sample is analyzed by a GC-FID for alcohol tracers and GC-MS for CVOCs. Quantitation procedures of Darcy and mass flux can be found in, https://pubs.acs.org/doi/10.1021/es050074g.

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Attachment A.4 Data Validation Memoranda

Prepared by:	Chell Black
Date:	February 14, 2024
Project No.:	Cantera-TOC
Sample Event(s):	2023 Q1 Groundwater Monitoring
Sample Delivery Group(s):	302018 and 2302048
Sample Media:	Groundwater

A Compliance Screening (USEPA Stage 2A) data quality review was performed on total petroleum hydrocarbons, total arsenic, select volatile organic compounds, pentachlorophenol, anions (nitrate, nitrite, and sulfate), and dissolved gases data resulting from laboratory analysis. The data were reviewed using guidance and quality control (QC) criteria documented in the Groundwater Monitoring Plan (Floyd|Snider 2023), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 1986), *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA 2020a), and the National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020b).

A total of 14 groundwater samples, 1 field duplicate sample, and 2 trip blank samples were submitted to Friedman & Bruya, Inc. (FBI) in Seattle, Washington, for chemical analysis by NWTPH-Gx, NWTPH-Dx, EPA 6020B, EPA 8260D, EPA8270D, EPA 300.0, and Standard Method (SM) 4500-S2-F. FBI subcontracted select dissolved gases sample volume to Fremont Analytical (Fremont) in Seattle, Washington, to be analyzed by method RSK 175. FBI reported results under one sample delivery group, 302018, and Fremont reported results under one sample delivery group, 2302048.

DATA QUALITY REVIEW

All sample results reported between the method detection limit and the reporting limit were qualified "J" to indicate they are estimated. Field and laboratory QC parameters for samples met project criteria with exceptions noted as follows:

Volatile Organic Compounds

The trichloroethene matrix spike (MS) for sample MW05-020123 fell outside the control limit low. The *cis*-1,2-dichloroethene matrix spike duplicate (MSD) was outside the control limit high for the same sample. The MS/MSD relative percent differences (RPDs) were also above control

limits for both analytes. The sample concentrations were greater than four times the spike levels, so no data were qualified.

Anions

Sample 01MW85-013123 was analyzed for nitrate and nitrite outside the recommended hold time of 48-hours. Associated sample results were qualified "UJ" to indicate they are estimated.

Sulfide

Sample 01MW85-013123 was analyzed for sulfide outside the recommended hold time of 7 days. The associated sample result was qualified "UJ" to indicate it is estimated.

The sulfide MS and MS/MSD were outside control limits high. Associated detected results were qualified "J" to indicate they are estimated.

DATA QUALITY SUMMARY

Based on the data quality review, data are determined to be of acceptable quality for use as reported or qualified.

REFERENCES

Floyd | Snider. 2023. Time Oil Bulk Terminal Site Groundwater Monitoring Plan. January.

- U.S. Environmental Protection Agency (USEPA). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- _____. 2020a. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005/OLEM 9240.0-51. November.
- _____. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.

Prepared by:	Gretchen Heavner
Date:	February 14, 2024
Project No.:	Cantera-TOC
Sample Event(s):	Q2 2023 Quarterly Groundwater Monitoring
Sample Delivery Group(s):	FBI304125
Sample Media:	Groundwater

A Compliance Screening (Stage 2A) data quality review was performed on TPH, total arsenic, and select VOC data resulting from laboratory analysis. The data were reviewed using guidance and quality control (QC) criteria documented in in the Groundwater Monitoring Plan (Floyd|Snider 2023), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 1986), *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA 2020a), and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020b).

A total of 12 groundwater samples and one trip blank were submitted to Friedman & Bruya, Inc. in Seattle, Washington, for chemical analysis by NWTPH-Dx, NWTPH-Gx, EPA 6020, and EPA 8260D. Friedman & Bruya, Inc. reported results under SDG 304125.

DATA QUALITY REVIEW

Field and laboratory QC parameters for all samples met project criteria.

DATA QUALITY SUMMARY

Based on the data quality review, data are determined to be of acceptable quality for use as reported or qualified.

REFERENCES

Floyd | Snider. 2023. Time Oil Bulk Terminal Site Groundwater Monitoring Plan. January.

U.S. Environmental Protection Agency (USEPA). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.

- _____. 2020a. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005/OLEM 9240.0-51. November.
- _____. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.

Prepared by:	Cheronne Oreiro
Date:	February 14, 2024
Project No.:	Cantera-TOC
Sample Event(s):	Q3 2023 Quarterly Groundwater Monitoring
Sample Delivery Group(s):	304125
Sample Media:	Groundwater

A Compliance Screening (Stage 2A) data quality review was performed on total petroleum hydrocarbons, total arsenic, select volatile organic compounds, and conventional data resulting from laboratory analysis. The data were reviewed using guidance and quality control (QC) criteria documented in the Groundwater Monitoring Plan (Floyd|Snider 2023), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 1986), *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA 2020a), and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020b).

A total of 17 groundwater samples, 1 field duplicate sample, and 1 trip blank sample were submitted to Friedman & Bruya, Inc. in Seattle, Washington, for chemical analysis by methods NWTPH-Dx, NWTPH-Gx, EPA 6020, and EPA 8260D. Friedman & Bruya, Inc. reported results under sample delivery groups (SDGs) 306447 and 306460. Friedman & Bruya, Inc. subcontracted select sample volumes to Fremont Analytical in Seattle, Washington, for chemical analysis by methods EPA 300.0 and SM 4500-S2-F. Fremont Analytical reported results under SDG 23060503.

DATA QUALITY REVIEW

Field and laboratory QC parameters for all samples met project criteria.

DATA QUALITY SUMMARY

Based on the data quality review, data are determined to be of acceptable quality for use as reported or qualified.

REFERENCES

Floyd | Snider. 2023. Time Oil Bulk Terminal Site Groundwater Monitoring Plan. January.

- U.S. Environmental Protection Agency (USEPA). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- _____. 2020a. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005/OLEM 9240.0-51. November.
- _____. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.

Prepared by:	Chell Black
Date:	February 14, 2024
Project No.:	Cantera-TOC
Sample Event(s):	2023 Q4 Groundwater Monitoring
Sample Delivery Group(s):	310168, 310169, and 2310-150
Sample Media:	Groundwater

A Compliance Screening (USEPA Stage 2A) data quality review was performed on total petroleum hydrocarbons, total arsenic, select volatile organic compounds, and dissolved gases data resulting from laboratory analysis. The data were reviewed using guidance and quality control (QC) criteria documented in the Groundwater Monitoring Plan (Floyd|Snider 2023), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 1986), *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA 2020a), and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020b).

A total of 10 groundwater samples, 1 field duplicate sample, and 1 trip blank sample were submitted to Friedman & Bruya, Inc. (FBI) in Seattle, Washington, for chemical analysis by NWTPH-Gx, NWTPH-Dx, EPA 6020B, and EPA 8260D. Analysis by RSK 175 was subcontracted to OnSite Environmental in Redmond, Washington. FBI reported results under sample delivery group 310168. OnSite Environmental reported results under sample delivery group 2310-150.

DATA QUALITY REVIEW

Field and laboratory QC parameters for samples met project criteria, with the exception of the surrogate recovery for the RSK 175 analysis of sample 01MW85-101023. The surrogate was outside control limits high and the detected results for the sample were qualified "J" as estimated.

DATA QUALITY SUMMARY

Based on the data quality review, data are determined to be of acceptable quality for use as reported or qualified.

REFERENCES

Floyd | Snider. 2023. *Time Oil Bulk Terminal Site Groundwater Monitoring Plan.* January.

- U.S. Environmental Protection Agency (USEPA). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- _____. 2020a. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-20-005/OLEM 9240.0-51. November.
- _____. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.

Long-Term Compliance Monitoring Annual Report Appendix A: 2023 Groundwater Monitoring Annual Report

Time Oil Bulk Terminal

Attachment A.5 Updated Short-Term Monitoring Well Sampling and Analytical Schedule

Attachment A.5

Updated Short-Term Monitoring Well Sampling and Analytical Schedule

					1			-	Proposed M	lonitoring Pa	rameters	-			1								
						In	dicator Hazardo			ionitoring Fa	ameters	MNA Pa	rameters ⁽³⁾										-
											Primary	IVINA Fa	Secondary			2024			2025		20	026	
					Total						· · · · · · · · · · · · · · · · · · ·	Total and	secondary			2024		<u>+</u> _					-
		Screened			Arsenic by	,	Total	Benzene	cVOCs (2)	Penta by		Dissolved	Ferrous Iron by	Dissolved									
	Water-Bearing		Proposed Monitoring		USEPA	GRO by			by USEPA	USEPA	Field	Iron	Color Disc or	Gases									
Well ID	Zone	below TOC)	Frequency ⁽¹⁾	Notes	6020B	NWTPH-Gx		8260D	8260D				SM3500-FE-D		Q1	Q2 C	23 Q4		Q2 Q3	Q4 Q1	L Q2	Q3 Q4	Change Log ⁽⁴⁾
Bulk Terminal Pa						-					•			,	<u>, ,</u>		<u>· ·</u>				<u> </u>		
Wells Designate	ed for Analytical	Sampling																					
01MW12	Shallow	4–19	Semiannual			Х	Х	Х			х				IHS	ll	HS	IHS	IHS	IHS	S	IHS	
011414/100	Challaur	10.20	Quarterly (2023–2024)/			v	v	v			v								IHS	IHS	_		
01MW19R	Shallow	10–20	Semiannual (2025–2026)			х	х	х			Х				IHS	IHS II	HS IHS	SIHS	IHS	IHS	2	IHS	
01MW35	Shallow	10–20	Quarterly (2023)			x	х	x			х												No further sampling after 2023. Monitoring well results less than CULs for 4 consecutive quarters in 2023.
01MW40	Shallow	7–22	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).		x	x	x			x				IHS	"	нs						Continue monitoring per initial short-term GMP in 2024 or until redevelopment begins.
01MW49R	Intermediate	35–40	Semiannual			х	X	х			х	1			IHS	11	HS	IHS	IHS	IHS	s	IHS	+
01MW66	Shallow	12-22	Annual	On-property penta plume						х	X	1			IHS		-	IHS		IHS		1	+
			Quarterly (2023–2024)/	- Pohenikana kana		L	·																+
01MW84	Shallow	17–23	Semiannual (2025–2026)			х	х	х			Х				IHS	IHS II	HS IHS	S IHS	IHS	IHS	S	IHS	
01MW87	Shallow	11–21	Contingency	Retain as contingency during performance period if IHS concentrations increase at 01MW12.		x	x	х			х												
01MW90R	Shallow	new (~5–15)	Redevelopment Semiannual	Install and monitor in place of 01MW40 after redevelopment grading.		х	х	х			х							IHS	IHS	IHS	s	IHS	
Wells Designate	ed for Contingen	cy or Water Lev	el Monitoring Only		1	1			1	1							-	<u> </u>		-	_	1 1	
01MW100	Shallow	20–30		Retain for collection of additional performance data if needed (in place of 01MW17).																			Upgradient sentinel monitoring location retained in place of 01MW17.
01MW102	Shallow	10–20		Retain for collection of additional performance data if needed.																			
01MW104	Intermediate	28–33	Contingency	Sample if IHS concentrations increasing at 01MW49R or 01MW51.																			Current data suggest contingency well is not needed
ASKO Parcel Well																							
	ed for Analytical				1	1	1			1	•	r			8								1
MW03R	Perched	13–18	Semiannual		Х	Х	Х	Х	Х		Х				IHS		HS	IHS	IHS	IHS	S	IHS	
MW05	Shallow	19–29	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).				х	x		х	x	x	X ⁽³⁾	ihs Mna	II	HS						Continue monitoring per initial short-term GMP in 2024 or until redevelopment begins. Continue monitoring secondary MNA parameters in Q1 2024.
MW06	Shallow	18–28	Initial Baseline/Contingency/ Redevelopment Semiannual	Contingency sample if increasing IHSs at 01MW53, 01MW85 or MW05; sample semiannually after redevelopment grading.				х	x		x	x	х	X ⁽³⁾	IHS MNA			IHS	IHS	IHS	S	IHS	Well is within PlumeStop barrier; monitor as- needed to assess PlumeStop performance
01MW15	Shallow	10–30	Initial Semiannual	Monitor until redevelopment; decommission during property redevelopment (within structure footprint).					x		х				IHS	11	нs						Continue monitoring per initial short-term GMP in 2024 or until redevelopment begins.
01MW45R	Shallow	new (~12–27)	Redevelopment Semiannual	Install and monitor after redevelopment		Х	Х	Х	Х		Х							IHS	IHS	IHS	S	IHS	
01MW46	Shallow	13–28	Initial Quarterly	Monitor until redevelopment; decommission during property redevelopment (within structure footprint). Replace and continue monitoring 01MW46R after redevelopment grading if needed.				x	x		x				IHS	11	нs						Continue monitoring per initial short-term GMP in 2024 or until redevelopment begins.
01MW53(R)	Shallow	16–26 (new ~17-27)	Quarterly (2023–2024)/ Semiannual (2025–2026)	Reinstall during Q1 2024 and continue monitoring.					х		х				IHS	IHS II	HS IHS	5 IHS	IHS	IHS	s		Reinstall during Q1 2024 and continue short- term monitoring in Q1 2024.
01MW56	Shallow	16-26	Semiannual				1	1	х		х	1			IHS	11	HS	IHS	IHS	IHS	s	IHS	
01MW58R	Shallow	new (~24–34)	Quarterly (2024)/ Semiannual (2025–2026)	Install and monitor in Q1 2024.					x		x							5 IHS	IHS	IHS	1	IHS	Reinstall during Q1 2024 and begin short-term monitoring in Q1 2024.

Time Oil Bulk Terminal

Long-Term Compliance Monitoring Annual Report Appendix A 2023 Groundwater Monitoring Annual Report Attachment A.5

FLOYDISNIDER

Attachment A.5

Updated Short-Term Monitoring Well Sampling and Analytical Schedule

	1	т т						P	ronosed M	Ionitoring Pa	rameters				1							
						Ind	licator Hazardo			ionitoring i u		MNA Pa	arameters ⁽³⁾									
											Primary		Secondary		-	2024		202	5		2026	
					Total							Total and	-									
		Screened			Arsenic by		Total	Benzene	cVOCs ⁽²⁾	Penta by		Dissolved	Ferrous Iron by	Dissolved								
	-	Interval (feet	Proposed Monitoring		USEPA		DRO+ORO by	-	by USEPA		Field	Iron	Color Disc or	Gases								(4)
Well ID ASKO Parcel We	Zone	below TOC)	Frequency ⁽¹⁾	Notes	6020B	NWTPH-Gx	NWTPH-Dx	8260D	8260D	8270D SIM	Parameters	USEPA 6020	SM3500-FE-D	by RSK-175	Q1	Q2 Q3	Q4 (Q1 Q2 0	Q3 Q4	4 Q1 0	Q2 Q3 (Q4 Change Log ⁽⁴⁾
		I Sampling (cont.))																			
				Install and monitor after redevelopment	[[1	1	1	1		1		[1		1	1 1	1			
01MW60R	Shallow	new (~25–40)	Redevelopment Semiannual	grading.					х		Х						1	HS	HS	IHS	IHS	
01MW85	Shallow	18–27	Quarterly (2023–2024)/						х		х	х	х	X ⁽³⁾	IHS	IHS IHS	інс і	цс і	HS	IHS	IHS	Continue monitoring secondary MNA
011111005	Shanow	10-27	Semiannual (2025–2026)						^		^	^	^	^	MNA		11.5	113	115	1113	1115	parameters in Q1 2024.
				Monitor until redevelopment; decommission																		
01MW108	Intermediate	30–35	Initial Semiannual	during property redevelopment (within					х		Х				IHS	IHS						Continue monitoring per initial short-term GMP in 2024 or until redevelopment begins.
				structure footprint).																		in 2024 of until redevelopment begins.
Wells Designat	ted for Continger	ncy or Water Leve	el Monitoring Only	ł	Į	ļ	1		ļ	1	L		ĮĮ		1		<u> </u>	<u> i i i </u>		1 1		- <u>-</u>
MW02				Monitor if stronger than expected westward					v		Y											Current data suggest contingency well is not
101002	Shallow	18–28	Contingency	gradients or increasing IHSs at MW06.					х		Х											needed
01MW61	Shallow	22-37.5		Retain for collection of additional performance																		
	0.10.10	22 07.0		data if needed.																		
				Monitor if increasing IHSs at 01MW53,																		
01MW80	Shallow	20–28	Initial Contingency	01MW85 or MW05; decommission during					х		Х											
				property redevelopment (within structure footprint).																		
																						Contingency sampling triggered in Q1 2024.
01MW89	Shallow	18–26	Contingency	Sample if increasing IHSs at 01MW53 or 01MW56.					х		х				IHS							Continued monitoring will be reassessed
																						quarterly.
01MW106	Shallow	15–25		Retain for collection of water levels or																		
	0.10.10	10 10		additional performance data if needed.																		
		47.07		Monitor if increasing IHSs at 01MW53 or																		Contingency sampling triggered in Q3 2023.
01MW107	Shallow	17–27	Contingency	01MW85.					х		х				IHS							Continued monitoring will be reassessed quarterly.
				Install after redevelopment grading; sample if																		quarteriy.
01MW112	Intermediate	new (~30–35)	Redevelopment Contingency	increasing IHSs at 01MW53 or 01MW108.					х		Х											
				Install after redevelopment grading if needed;																		
01MW113	Shallow	new (~12–27)	Redevelopment Contingency	monitor if stronger than expected westward					х		Х											Current data suggest contingency well is not
				gradients or increasing IHSs at MW06.																		needed.
East Waterfront																						
Wells Designa	ted for Analytica	I Sampling		1					1				, I		1		<u> </u>	<u> </u>				
02MW04R	Shallow	5–15	Quarterly (2023–2024)/ Annual (2025–2026)			х	х	х			х				IHS	IHS IHS	IHS		IHS	s		HS
		+ +	Quarterly (2023)/					1												+		Reduce frequency from quarterly to annual in
02MW07	Shallow	1.5–11.5	Annual (2024–2026)		х	х	Х	х			х				IHS				IHS	S		HS 2024.
000.0047		<u> </u>	Contingency (2023–2024)/	Sample if increasing IHSs at 02MW04R or		L							<u>† </u>									
02MW17	Shallow	1–11	Annual (2025–2026)	02MW07.	х	х	х	х			х								IHS	S		HS
02MW19	Shallow	3–13	Quarterly (2023)/		x	х	x	х			х				IHS				IHS	\$		Reduce frequency from quarterly to annual in
021010013	Shanow	3-13	Annual (2024–2026)		^	^	^	^			^				1113				103			^{ns} 2024.
			Redevelopment Contingency	Install after redevelopment grading; sample if																		
02MW20R	Shallow	new (~1–11)	(2023–2024)/	increasing IHSs at 02MW04R.	х	Х	х	х			Х								IHS	S		HS
L			Annual (2025–2026)	<u> </u>								1										

Time Oil Bulk Terminal

Attachment A.5

Updated Short-Term Monitoring Well Sampling and Analytical Schedule

								P	roposed M	onitoring Pa	rameters												
						Ind	licator Hazardo	us Substand	es			MNA Pa	arameters ⁽³⁾										
											Primary		Secondary			2024		2	025		2026		
					Total							Total and											
		Screened			Arsenic by		Total	Benzene	cVOCs ⁽²⁾	Penta by		Dissolved	Ferrous Iron by	Dissolved									
	Water-Bearing	Interval (feet	Proposed Monitoring		USEPA	GRO by	DRO+ORO by	by USEPA	by USEPA	USEPA	Field	Iron	Color Disc or	Gases									
ell ID	Zone	below TOC)	Frequency ⁽¹⁾	Notes	6020B	NWTPH-Gx	NWTPH-Dx	8260D	8260D	8270D SIM	Parameters	USEPA 6020	SM3500-FE-D	by RSK-175	Q1	Q2 Q3	Q4 (Q1 Q2	Q3 Q	4 Q1 (Q2 Q3 (Q4	Change Log ⁽⁴⁾
st Waterfron	t Parcel Wells (cor	nt.)																					
ells Designa	ted for Contingen	cy or Water Leve	el Monitoring Only																				
02MW16	Shallow	5–15		Retain for collection of additional performance	2																		
021010010	Stidilow	5-15		data if needed.																			
02MW18	Shallow	4–14		Retain for collection of additional performance	2																		
0211111112	StidllOW	4-14		data if needed.																			
01MW83	Shallow	14–24		Retain for collection of additional performance	2																		
	VOIIbut	14-24		data if needed.				1		1							1	1	1	1 1			

Notes:

Blank cells are intentional

Wells not designated for short-term monitoring are considered sentinels and may be sampled at the Property Owner's discretion or at Washington State Department of Ecology's request to obtain additional performance data, if needed. Water levels will be collected from monitoring wells designated for sampling and select other wells (01MW61, 01MW83, 01MW100, 01MW102, 01MW107, 02MW16, 02MW18) semiannually (Q1 and Q3).

-- Not established.

Italics Proposed well to be installed after redevelopment (if needed).

1 Wells designated for initial short-term monitoring will be sampled until grading and utility installation for property redevelopment. Wells designated for redevelopment monitoring will be installed and sampled after grading has been completed.

2 cVOCs include TCE, cis-1,2-dichloroethene, and vinyl chloride.

3 Primary MNA parameters are field measurements that will be collected during every event and include dissolved oxygen, oxidation-reduction potential, pH, specific conductance, and temperature. Secondary MNA parameters including total and dissolved iron, field-measured ferrous iron, and dissolved gases (methane, ethene, and ethane) will be analyzed during Q1 of Year 2 from select wells. Secondary MNA parameters may be analyzed as needed after 2023 to assess remedy performance.

4 Additional changes:

- The 2023 schedule was completed and removed from the table.

- Wells decommissioned in 2023 were removed from the table (01MW17, 01MW99, 01MW105, and 01MW110).

- Sentinel wells not designated for contingency use or water level monitoring were removed from the table (refer to Table A.1 for full well inventory list).

- Secondary MNA parameters discussed in Note 3 were changed from anions (nitrate, nitrite, sulfate, and sulfide) to total and dissolved iron, plus dissolved gasses, starting in 2024.

Abbreviations:

CUL Cleanup level

cVOC Chlorinated volatile organic compound

DRO Diesel-range organics

GMP Groundwater Monitoring Plan

GRO Gasoline-range organics

IHS Indicator hazardous substance

MNA Monitored natural attenuation

- ORO Oil-range organics
- penta Pentachlorophenol

TCE Trichloroethene

TOC Top of casing

USEPA U.S. Environmental Protection Agency