# December 2023 – January 2024 Groundwater Data Analysis Report

# TAYLOR WAY AND ALEXANDER AVENUE FILL AREA SITE TACOMA, WASHINGTON

Cleanup Site ID: 4692

April 8, 2024

Prepared by:

DALTON, OLMSTED, & FUGLEVAND 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Prepared for:

GENERAL METALS OF TACOMA GLENN SPRINGS HOLDINGS BURLINGTON ENVIRONMENTAL





## **Table of Contents**

| 1.0     | Intro | oduction1                                                    |
|---------|-------|--------------------------------------------------------------|
|         | 1.1   | TWAAFA Site Description1                                     |
| 2.0     | Met   | hodology                                                     |
|         | 2.1   | Groundwater Quality Sample Collection and Analysis - Metals2 |
|         | 2.2   | Groundwater Quality Sample Collection and Analysis - PFAS2   |
|         | 2.3   | Investigation-Derived Waste                                  |
| 3.0     | Resi  | ults                                                         |
|         | 3.1   | Quality Assurance/Quality Control (QA/QC) Discussion         |
|         | 3.2   | Groundwater Chemistry Analytical Results - Metals            |
|         | 3.3   | Groundwater Chemistry Analytical Results - PFAS              |
| 4.0     |       | clusions                                                     |
| 5.0     |       | oming Schedule5                                              |
| 6.0     |       | erences5                                                     |
|         |       |                                                              |
| TABLE   | S     |                                                              |
| Table 1 | l     | Groundwater Monitoring Schedule                              |
| Table 2 | 2     | Groundwater Quality Parameters                               |
| Table 3 | 3     | Groundwater Analytical Results – Total and Dissolved Metals  |
| Table 4 | 1     | Groundwater Analytical Results – PFAS                        |
| FIGUR   | ES    |                                                              |
| Figure  | 1     | Regional Location Map                                        |
| Figure  |       | Site Location Map                                            |
| Figure  |       | PFAS Sampling Locations                                      |
| Figure  |       | Arsenic Concentrations Shallow Groundwater                   |
| Figure  |       | Arsenic Concentrations Deep Groundwater                      |
| Figure  |       | Copper Concentrations Shallow Groundwater                    |
| Figure  |       | Copper Concentrations Deep Groundwater                       |
| Figure  |       | Manganese Concentrations Shallow Groundwater                 |
| Figure  |       | Manganese Concentrations Deep Groundwater                    |
| -       |       | •                                                            |

## **APPENDICES**

Appendix A Groundwater Sampling Field Sheets

Appendix B Analytical Laboratory Reports and Data Validation Review Reports



## 1.0 Introduction

Dalton, Olmsted, and Fuglevand, Inc. (DOF) prepared this Groundwater Data Analysis Report for the Taylor Way and Alexander Avenue Fill Area (TWAAFA) Site (Figure 1) on behalf of Glenn Springs Holdings, Inc. (Occidental Chemical Corporation), General Metals of Tacoma (GMT), and Burlington Environmental (Burlington). These parties are among those identified in Agreed Order (AO) Number 14260 (issued December 4, 2020) by the Washington State Department of Ecology (Ecology) as potentially liable parties at the TWAAFA Site (each a "PLP", collectively, the "PLPs" or "AO parties"). The Port of Tacoma (Port) is also a PLP to the TWAAFA Site, identified by Ecology in Enforcement Order (EO) Number DE 19410 (issued December 4, 2020).

This Report was prepared to summarize the data collected and activities performed by AO and EO PLPs with respect to the TWAAFA Site groundwater monitoring program during December 2023 and January 2024, in accordance with the Revised Groundwater Monitoring Plan (GWMP) (DOF, 2022a) and PFAS Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP) (DOF, 2023). On September 6, 2023, the AO and EO Parties received a letter from Ecology that included comments on the Fourth Quarter 2022 Groundwater Data Analysis Report requesting additional groundwater sampling for dissolved metals and PFAS.

The AO parties responded to Ecology via letter dated October 23, 2023, and Ecology responded to the AO and EO parties via letter dated December 4, 2023, providing conditional agreement for additional metals sampling. In addition, the AO Parties submitted a PFAS specific SAP/QAPP to support the request for PFAS sampling. The draft SAP/QAPP was submitted by the AO Parties on November 4, 2023 to Ecology. Ecology emailed comments to the AO and EO Parties on November 21, 2023. A revised SAP/QAPP was submitted by the AO Parties on December 18, 2023 and approved by Ecology via email on December 22, 2023.

### 1.1 TWAAFA Site Description

As shown in Figure 2, the TWAAFA Site is composed of multiple parcels under ownership by different parties – the Port, Burlington, and Pierce County (owner of the former CleanCare parcels). During the groundwater monitoring events, wells located on Port parcels were monitored by the Port's consultant, Maul, Foster, and Alongi (MFA), and all other wells were monitored by DOF. MFA and DOF coordinated the metals monitoring event simultaneously and utilized the same laboratories.

## 2.0 Methodology

DOF and MFA completed the following work related to groundwater monitoring in accordance with the GWMP:

- Collected groundwater samples from the groundwater monitoring network wells within the TWAAFA Site for analysis of total and dissolved metals and PFAS;
- Submitted groundwater samples to independent laboratories for analysis; and
- Reviewed laboratory analytical reports for data quality validation.



## 2.1 Groundwater Quality Sample Collection and Analysis - Metals

Groundwater samples were collected from all scheduled monitoring wells (Table 1) between December 11 to 19, 2023. Samples were collected in accordance with the GWMP and the letters described in Section 1.

Prior to sampling, groundwater purging was conducted at each well. During groundwater purging, water quality parameters were recorded, and once stabilization criteria were met, a groundwater sample was collected. Field forms documenting data collected during monitoring well sampling are included in Appendix A. Groundwater parameters measured as part of sampling via field meter are summarized in Table 2.

Groundwater samples were analyzed for the following constituents as shown on Table 1:

• Total and dissolved metals including aluminum, arsenic, chromium, copper, iron, lead, mercury, nickel, zinc, and manganese.

Groundwater samples collected by DOF and MFA were submitted to Friedman and Bruya, Inc. (FBI) for chemical analysis. Laboratory analytical reports produced by FBI for the groundwater samples collected by DOF were submitted to data validation reviewers, QA/QC Solutions, LLC. MFA conducted an in-house independent review of the laboratory analytical reports on groundwater samples collected for the Port. Data validation reports are included along with the laboratory data reports in Appendix B.

## 2.2 Groundwater Quality Sample Collection and Analysis - PFAS

Groundwater samples were collected from all scheduled monitoring wells (Table 1) on December 12, 2023 or January 11, 2024. Samples were collected in accordance with the PFAS SAP/QAPP described in Section 1.

Eight monitoring wells were sampled for PFAS analysis, located within the source area and distal wells across the TWAAFA Site. The table below details the monitoring well location and rationale for sampling. Sample locations are shown on Figure 3.

| Location | Reasoning                                             |
|----------|-------------------------------------------------------|
| CCW-2A   | Source area well in shallow aquifer (upper zone)      |
| CCW-2B   | Source area well in shallow aquifer (lower zone)      |
| CCW-2C   | Source area well in intermediate aquifer (upper zone) |
| CCW-3A   | Source area well in shallow aquifer (upper zone)      |
| CCW-3B   | Source area well in shallow aquifer (lower zone)      |
| CTMW-17  | Source area well in shallow aquifer                   |
| SB-2A    | Shallow aquifer distal well                           |
| TWA-3    | Shallow aquifer distal well                           |

Field event preparation and execution followed Appendix B of the PFAS SAP/QAPP. Prior to sampling, groundwater purging was conducted at each well. During groundwater purging, water quality parameters were recorded, and once stabilization criteria were met, a groundwater sample was collected. Field forms documenting data collected during monitoring well sampling are included in Appendix A.



Groundwater samples collected by DOF and MFA were submitted to Eurofins Sacramento (Eurofins) for chemical analysis. Laboratory analytical reports produced by Eurofins for the groundwater samples collected by DOF were submitted to data validation reviewers, QA/QC Solutions, LLC. MFA conducted an in-house independent review of the laboratory analytical reports on groundwater samples collected for the Port. Data validations reports are included along with the laboratory data reports in Appendix B.

## 2.3 Investigation-Derived Waste

The primary waste stream generated during the monitoring event was purged groundwater, which was containerized as it was generated. Groundwater was containerized in separate 55-gallon drums based on the parcel ownership and characterized. The Port manages purged groundwater generated from wells on Port-owned parcels whereas Clean Earth manages purged groundwater generated from wells on Burlington-owned parcels. DOF coordinates disposal of purged groundwater with Pierce County and Ecology for purged groundwater generated from wells on the former CleanCare parcels.

## 3.0 Results

This section presents the results of data collected during the groundwater monitoring events.

## 3.1 Quality Assurance/Quality Control (QA/QC) Discussion

Analytical data quality review was conducted on all groundwater samples collected during this monitoring event as specified in the QAPPs (DOF, 2020 and 2023). The data validation reports were completed by QA/QC solutions for DOF-collected samples on Burlington and former CleanCare parcels and by MFA for MFA-collected samples on Port parcels. Analytical reports and associated data validation reports are included in Appendix B.

Hold times, initial and continuing calibrations, method blanks, surrogate recoveries, laboratory duplicate results, field duplicate results, matrix spike/matrix spike duplicate results, and reporting limits were reviewed to assess compliance with applicable methods and project requirements. Qualified data were deemed to be of acceptable quality for their intended use, with the appropriate final data qualifiers assigned, except for results that were rejected due to insufficient surrogate recovery. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, as well as data qualifiers assigned by the reviewer during validation.

Overall, the data reported are of good quality and no results were rejected.

### 3.2 Groundwater Chemistry Analytical Results - Metals

Validated analytical results of groundwater samples collected for metals during the monitoring event are included in Table 3.

Screening levels used in this report for comparison of dissolved metals results were those identified in the 2020 Data Gaps Work Plan (DGWP) (DOF, 2020). These screening levels were based on levels developed in the 2005 Burlington RI Report and also applied in the Port's 2006 1514 Taylor Way RI. These screening levels were site-specific screening levels developed under Ecology's Model Toxics Control Act (MTCA) in consideration of the conceptual model identifying non-potable groundwater and industrial/commercial use. After Ecology's review of the Draft DGWP, Ecology requested that several screening levels be revised to default table values available in Ecology's Cleanup Levels and Risk



Calculation (CLARC) tables. Ecology's requested changes to the screening levels were implemented in the Final 2020 DGWP. In addition, Ecology's lowest current MTCA Method A or B Groundwater Screening Levels are included in Table 3 as a reference for analytes that did not have a screening level included in the DGWP.

Analytical results from the groundwater monitoring event are summarized below and select frequently detected constituents are shown on Figures 4 through 9.

- Metals detected above their respective DGWP screening levels included arsenic, chromium, copper, lead, manganese, mercury, nickel, and zinc. Concentrations of three of the most widely detected metals (arsenic, copper, and manganese) are illustrated on Figures 4 through 9.
- Where detected, dissolved arsenic concentrations ranged from not detected to 1,200 μg/L (CCW-5B). Of the 51 wells sampled, 12 sample locations recorded concentrations that exceeded the screening level of 8 μg/L for arsenic. Arsenic concentrations were highest on the former CleanCare parcels in samples collected in the shallow aquifer. Total arsenic concentrations were similar in concentration, ranging from not detected to 1,470 μg/L (CCW-5B).
- Chromium was selectively tested at four locations. Dissolved chromium concentrations ranged from 9.01 (CTMW-17) to 21 µg/L (TWA-6D).
- Where sampled, dissolved copper concentrations ranged from not detected to 163 μg/L (CTMW-5). Of the 48 wells sampled, results from ten sample locations exceeded the DGWP screening level of 2.4 μg/L for dissolved copper. Copper concentrations were highest in the shallow aquifer and were detected primarily on the former CleanCare parcels. Total copper concentrations were similar in concentration, ranging from not detected to 382 μg/L (CTMW-17).
- Dissolved iron concentrations ranged from 156 μg/L (CTMW-14) to 44,800 μg/L (PZ-8). The highest levels were detected primarily in the former Clean Care and Parcel A parcel (south of Clean Care). Total iron concentrations were similar. Ferrous iron was also analyzed at most locations, ranging from not detected to 41,700 ug/L (PZ-7).
- Lead was selectively tested at seven locations. Dissolved lead concentrations ranged from not detected to 68.7  $\mu$ g/L (CCW-5B).
- Dissolved manganese was detected throughout the TWAAFA Site at concentrations ranging from not detected (CTMW-8 and CTMW-11R) to 3,090 μg/L (PZ-9). Of the 51 wells sampled, most sample results (both dissolved and total) exceeded the DGWP screening level of 100 μg/L for manganese. Manganese was detected in shallow and deep aquifer wells with concentrations highest in the central (both north and south central) area of the TWAAFA Site.
- Mercury was tested at one location (CTMW-17). The dissolved mercury result was not detected (below 0.02  $\mu$ g/L), while the total concentration was 0.13  $\mu$ g/L.
- Nickel was selectively tested at six locations. Dissolved nickel concentrations ranged from not detected to 148 µg/L (CCW-3A). Total nickel concentrations were similar and slightly higher.
- Zinc was selectively tested at six locations (plus one duplicate). Dissolved zinc concentrations ranged from not detected to 556 μg/L (CTMW-5). Total zinc concentrations were similar and slightly higher.



## 3.3 Groundwater Chemistry Analytical Results - PFAS

Groundwater samples were analyzed for the standard list of 40 PFAS constituents under EPA draft Method 1633. Analytical results of detected PFAS during the monitoring event are included in Table 4. The highest concentrations were detected at CTMW-17 in the center of the site near the property boundary between Burlington and the former Clean Care parcels. However, no results were above the MTCA Method C Groundwater or Marine Surface Water Protection Based Concentrations listed in the 2023 Ecology Guidance for Investigation and Remediating PFAS Contamination in Washington State.

## 4.0 Conclusions

The required groundwater monitoring events at the TWAAFA Site were completed successfully following the objectives set forth in the DGWP (DOF, 2020), subsequent correspondence with Ecology, and procedures outlined in the GWMP and PFAS SAP/QAPP. The data set provides useful information for inclusion in the RI/FS.

## 5.0 Upcoming Schedule

As of the date of this report, all required groundwater monitoring events have been completed and no additional groundwater monitoring events are scheduled at this time. DOF anticipates discussion of the data gaps work conducted to date under the AO with Ecology during spring 2024 with respect to data gaps fulfillment in preparation for the RI/FS.

## 6.0 References

DOF, 2020. Final Data Gaps Work Plan, TWAAFA Site, Tacoma, Washington. July.

DOF, 2022a. Revised Groundwater Monitoring Plan, TWAAFA Site, Tacoma, Washington. April.

DOF, 2023. PFAS Sampling and Analysis Plan and Quality Assurance Project Plan, Taylor Way and Alexander Avenue Fill Area Site, Tacoma, Washington. December.



## **Tables**

TABLE 1
GROUNDWATER MONITORING SCHEDULE
December 2023 - January 2024 Groundwater Data Analysis Report
TWAAFA Site Tacoma, Washington

|                                    |      | Analyses - Metals <sup>2</sup> |        |           |       |         |          |        |       |          |                   |  |
|------------------------------------|------|--------------------------------|--------|-----------|-------|---------|----------|--------|-------|----------|-------------------|--|
|                                    |      |                                |        |           |       |         |          |        |       |          |                   |  |
| Well ID                            | PFAS | Arsenic                        | Copper | Manganese | Lead  | Mercury | Chromium | Nickel | Zinc  | Aluminum | Iron <sup>3</sup> |  |
| CCW-1A                             |      | Х                              | X      | X         | -     |         |          | -      | -     | X        | Χ                 |  |
| CCW-1B                             |      | X                              | X      | X         | -     |         |          | 1      | -     | X        | Χ                 |  |
| CCW-1C                             |      | Х                              | X      | X         |       |         | -        |        |       | X        | Χ                 |  |
| CCW-2A                             | X    | X                              | X      | X         |       | -       | -        |        |       | X        | Χ                 |  |
| CCW-2B                             | Х    | Х                              | X      | X         |       |         |          |        |       | X        | Χ                 |  |
| CCW-2C                             | X    | Х                              | X      | X         |       |         | -        |        |       | X        | Χ                 |  |
| CCW-3A                             | Х    | Х                              | Х      | Х         | Х     |         |          | Χ      | Х     | X        | Χ                 |  |
| CCW-3B                             | Х    | Х                              | Х      | Х         |       |         |          |        |       | Х        | Χ                 |  |
| CCW-3C                             |      | Х                              | X      | X         | -     |         |          | -      | -     | X        | Х                 |  |
| CCW-4C                             |      | Х                              | Х      | Х         |       |         |          |        |       | Х        | Х                 |  |
| CCW-5B                             |      | Х                              | Х      | Х         | Х     |         |          |        |       | Х        | Х                 |  |
| CCW-5C                             |      | Х                              | Х      | Х         |       |         |          |        |       | Х        | Х                 |  |
| CCW-6B                             |      | X                              | X      | X         | Х     |         |          |        | Х     | X        | X                 |  |
| CCW-6C                             |      | X                              | X      | X         |       |         | Х        |        |       | X        | X                 |  |
| CCW-7B                             |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CCW-7B                             |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CCW-8B                             |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
|                                    |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| MW-1 (Potter) <sup>1</sup><br>MW-4 | -    | X                              | X      | X         |       | -       |          |        |       | X        | X                 |  |
|                                    |      | X                              | X      |           |       |         |          |        |       |          |                   |  |
| SB-1A                              |      |                                |        | X         |       |         |          | -      |       | X        | X                 |  |
| SB-2A                              | Х    | X                              | X      | X         |       |         |          |        |       | X        | Х                 |  |
| SB-3A                              |      | X                              | X      | Х         |       |         |          | -      |       | Х        | X                 |  |
| CTMW-1                             |      |                                |        |           |       |         |          |        |       |          |                   |  |
| CTMW-5                             |      | X                              | X      | X         |       |         |          | X      | X     | X        | X                 |  |
| CTMW-7                             |      | X                              | X      | X         |       |         |          |        |       | X        | Х                 |  |
| CTMW-8                             |      | X                              | X      | X         |       |         |          |        |       | X        | Х                 |  |
| CTMW-9                             |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CTMW-10 <sup>1</sup>               |      |                                |        |           |       |         |          |        |       |          |                   |  |
| CTMW-11R2                          |      | X                              | X      | X         |       |         |          |        |       | X        | Χ                 |  |
| CTMW-12                            |      | X                              | X      | X         |       |         |          |        |       | X        | Χ                 |  |
| CTMW-14                            |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CTMW-15                            |      | X                              | Χ      | X         |       | -       |          |        |       | X        | Χ                 |  |
| CTMW-17                            | X    | X                              | X      | X         |       | X       | X        |        |       | X        | X                 |  |
| CTMW-17D                           |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CTMW-18                            |      | X                              | X      | X         |       |         |          | -      |       | X        | X                 |  |
| CTMW-20                            |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| CTMW-23R2                          |      | X                              | X      | X         |       |         |          | -      |       | X        | X                 |  |
| CTMW-24                            |      | X                              | X      | X         |       |         |          | -      |       | X        | X                 |  |
| CTMW-24D                           |      | X                              | X      | X         |       |         | <br>V    | -      |       | X        | X                 |  |
| CTMW-25D                           |      | Х                              | X      | X         |       |         | X        | -      |       | X        | X                 |  |
| PZ-5                               |      | <br>V                          |        | <br>V     | <br>V |         |          | <br>V  | <br>V |          | <br>V             |  |
| PZ-7                               |      | X                              |        | X         | X     |         |          | X      | X     | X        | X                 |  |
| PZ-8                               |      | X                              | -      | X         | X     |         |          | X      | X     | X        | X                 |  |
| PZ-9                               |      | X                              |        | X         | X     |         |          | X      | X     | X        | X                 |  |
| TWA-1                              |      | X                              | X      | X         | -     |         |          | -      | -     | X        | X                 |  |
| TWA-2                              |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| TWA-3                              | X    | X                              | X      | Х         |       |         |          | X      |       | X        | Х                 |  |
| TWA-4D                             |      | X                              | X      | X         |       |         |          |        |       | X        | X                 |  |
| TWA-5D                             |      | X                              | X      | X         |       |         |          |        |       | X        | Χ                 |  |
| TWA-6D                             |      | X                              | X      | X         |       |         | X        |        | -     | X        | Χ                 |  |
| TWA-7D                             |      | X                              | Χ      | X         | -     |         |          | -      | -     | X        | Χ                 |  |
| TWA-8D                             |      | X                              | X      | X         |       |         |          | -      |       | Х        | Χ                 |  |
| TWA-9D                             |      | X                              | X      | X         | -     |         |          | -      |       | X        | Χ                 |  |
| TWA-10D                            |      | Х                              | X      | X         |       |         |          | -      |       | X        | Χ                 |  |

Notes

1. Wells that historically had LNAPL.
2. Total (unfiltered) and Dissolved (field filtered) Metals
3. Ferrous and Ferric Iron concentrations reported
Shading indicates wells on the Port of Tacoma property and monitored by the Port's consultant Abbreviations:
-- = not sampled.



## TABLE 2 DECEMBER 2023 GROUNDWATER FIELD PARAMETERS

December 2023 - January 2024 Groundwater Data Analysis Report
TWAAFA Site
Tacoma, Washington

| Location  | рН    | Dissolved<br>Oxygen | E Cond | ORP    | Temp  | Eh<br>Corrected | Eh<br>Corrected | Turbidity |
|-----------|-------|---------------------|--------|--------|-------|-----------------|-----------------|-----------|
| Units     | •     | mg/L                | μS/cm  | mV     | deg C | mV              | V               | NTU       |
| CCW-1A    | 6.83  | 0.29                | 1252   | 51.7   | 11.6  | 266.0           | 0.266           | 2.7       |
| CCW-1B    | 6.94  | 0.18                | 970    | 61.8   | 13.8  | 274.5           | 0.274           | 4.4       |
| CCW-1C    | 7.03  | 0.44                | 2080   | 45.1   | 14.7  | 257.1           | 0.257           | 3.9       |
| CCW-2A    | 6.53  | 0.12                | 1034   | 81.9   | 11.6  | 296.2           | 0.296           | 2.8       |
| CCW-2B    | 7.08  | 0.09                | 1928   | 95.4   | 13.8  | 308.1           | 0.308           | 0.6       |
| CCW-2C    | 6.94  | 0.31                | 1707   | 91.6   | 13.9  | 304.2           | 0.304           | 3.0       |
| CCW-3A    | 6.76  | 0.36                | 1376   | 137.4  | 12.2  | 351.2           | 0.351           | 11.5      |
| CCW-3B    | 6.84  | 0.38                | 1257   | 110.5  | 14.3  | 322.8           | 0.323           | 3.2       |
| CCW-3C    | 6.74  | 0.19                | 1436   | 136.7  | 14.1  | 349.1           | 0.349           | 1.7       |
| CCW-4C    | 6.91  | 0.1                 | 2116   | 33.1   | 14.9  | 245.0           | 0.245           | 2.1       |
| CCW-5B    | 6.4   | 0.1                 | 1253   | 73.7   | 13.4  | 286.7           | 0.287           | 4.6       |
| CCW-5C    | 6.54  | 0.17                | 1738   | 79.2   | 14.6  | 291.3           | 0.291           | 4.4       |
| CCW-6B    | 6.29  | 0                   | 1135   | 77.7   | 12.7  | 291.2           | 0.291           | 4.3       |
| CCW-6C    | 6.57  | 0                   | 4121   | 95.2   | 13.9  | 307.8           | 0.308           | 3.8       |
| CCW-7B    | 6.27  | 0.14                | 1038   | 60.1   | 12.9  | 273.4           | 0.273           | 4.2       |
| CCW-7C    | 6.8   | 0.36                | 2040   | 77.8   | 13.8  | 290.5           | 0.290           | 4.7       |
| CCW-8B    | 6.82  | 0.13                | 1117   | 69     | 14.1  | 281.4           | 0.281           | 3.7       |
| CTMW-5    | 6.32  | 0.05                | 254.1  | 90.6   | 10.8  | 305.5           | 0.305           | 5.8       |
| CTMW-7    | 6.82  | 0.18                | 2226   | 135    | 15.5  | 346.4           | 0.346           | 2.9       |
| CTMW-8    | 12.74 | 0.19                | 6273   | -354.9 | 14.6  | -142.8          | -0.143          | 6.4       |
| CTMW-9    | 6.97  | 0.11                | 3397   | 19.5   | 15.6  | 230.8           | 0.231           | 10.9      |
| CTMW-11R2 | 12.86 | 0.15                | 7908   | -112.3 | 12.3  | 101.5           | 0.101           | 3.7       |
| CTMW-12   | 6.91  | 0.26                | 1956   | 31.3   | 15.3  | 242.9           | 0.243           | 3.5       |
| CTMW-14   | 8.33  | 2.11                | 284.4  | 25.1   | 12.3  | 238.9           | 0.239           | 11.0      |
| CTMW-15   | 6.94  | 0.15                | 660.4  | -97.3  | 12    | 116.7           | 0.117           | 1.8       |
| CTMW-17   | 6.79  | 0                   | 1161   | 44.3   | 11.6  | 258.6           | 0.259           | 22.9      |
| CTMW-17D  | 6.87  | 0                   | 1825   | 48.1   | 14.4  | 260.3           | 0.260           | 4.5       |
| CTMW-18   | 6.61  | 0.31                | 935    | 80.8   | 15.3  | 292.4           | 0.292           | 16.3      |
| CTMW-20   | 6.86  | 0.34                | 1584   | -118.9 | 11.7  | 95.3            | 0.095           | 3.4       |
| CTMW-23R2 | 7.17  | 0.1                 | 733    | 81.8   | 13.3  | 294.8           | 0.295           | 8.0       |
| CTMW-24   | 6.27  | 0.18                | 264.4  | 153.3  | 11.5  | 367.7           | 0.368           | 1.4       |
| CTMW-24D  | 6.85  | 0.19                | 2637   | 140.6  | 13.8  | 353.3           | 0.353           | 1.9       |
| CTMW-25D  | 7.13  | 0.08                | 2809   | -131.6 | 13.6  | 81.2            | 0.081           | 3.0       |
| MW-1      | 6.34  | 0.3                 | 226.4  | -60.6  | 10.2  | 154.7           | 0.155           | 26.7      |



## TABLE 2 DECEMBER 2023 GROUNDWATER FIELD PARAMETERS

# December 2023 - January 2024 Groundwater Data Analysis Report TWAAFA Site Tacoma, Washington

| Location | рН   | Dissolved<br>Oxygen | E Cond | ORP    | Temp  | Eh<br>Corrected | Eh<br>Corrected | Turbidity |
|----------|------|---------------------|--------|--------|-------|-----------------|-----------------|-----------|
| Units    | -    | mg/L                | μS/cm  | mV     | deg C | mV              | V               | NTU       |
| MW-4     | 7.19 | 0                   | 2709   | 18.6   | 12.6  | 232.2           | 0.232           | 4.7       |
| PZ-7     | 6.25 | 0.06                | 1765   | 151.4  | 15.5  | 362.8           | 0.363           | 2.6       |
| PZ-8     | 6.23 | 0.4                 | 461.4  | 132.3  | 11.6  | 346.6           | 0.347           | 49.0      |
| PZ-9     | 6.53 | 0.2                 | 1485   | 13     | 14.8  | 224.9           | 0.225           | 12.3      |
| SB-1A    | 7.4  | 0.47                | 454.5  | -87.6  | 11.7  | 126.6           | 0.127           | 4.1       |
| SB-1B    | 6.94 | 0.22                | 587    | -35.3  | 12.3  | 178.5           | 0.178           | 3.8       |
| SB-3A    | 7.5  | 0.07                | 653.7  | -141.3 | 12.6  | 72.3            | 0.072           | 4.0       |
| TWA-1    | 6.82 | 3.54                | 846    | 70.2   | 10.3  | 285.4           | 0.285           | 6.6       |
| TWA-2    | 7.13 | 0.5                 | 1112   | 91.4   | 11    | 306.1           | 0.306           | 3.3       |
| TWA-3    | 6.7  | 0.31                | 2074   | 138.9  | 10.8  | 353.8           | 0.354           | 1.6       |
| TWA-4D   | 7.79 | 0.04                | 8151   | -115.6 | 13.8  | 97.1            | 0.097           | 4.4       |
| TWA-5D   | 7.49 | 0.1                 | 3739   | -144.3 | 12.9  | 69.0            | 0.069           | 0.7       |
| TWA-6D   | 6.88 | 0.22                | 3893   | -70.9  | 11.7  | 143.3           | 0.143           | 1.2       |
| TWA-7D   | 7.84 | 0.05                | 4092   | -93.1  | 15.6  | 118.2           | 0.118           | 1.1       |
| TWA-8D   | 7.79 | 0.72                | 10753  | 141.4  | 13.5  | 354.3           | 0.354           | 0.0       |
| TWA-9D   | 8.05 | 0.07                | 8977   | -60.6  | 13.8  | 152.1           | 0.152           | 0.0       |
| TWA-10D  | 8.21 | 0.08                | 7782   | -222.1 | 12.5  | -8.5            | -0.008          | 3.5       |

### Notes:

- 1) Equipment YSI Pro Plus- ORP electrodes use platinum Ag/AgCl reference of 3.5 M KCL (confirmed with manufacturer)
- 2) Temperature Correction Formula Eh (mv) = -0.7357 \* (Temp degrees C) + 222.82
- 3) Redox Potential (Eh) = (Potential correction factor, in millivolts [mV]) + (field ORP measurement [mV])
- 4) U.S. Environmental Protection Agency (EPA), 2023, *Operating Procedure: Field Measurement of Oxidation-Reduction Potential*, LSASDPROC-113-R4, Laboratory Services & Applied Science Division, Athens, Georgia, Effective Date April 22.

### **Abbreviations:**

E Cond = electrical conductivity
ORP = oxidation-reduction potential
Temp = Temperature
Eh = Redox potential
mg/L = milligrams per liter

μS/cm = microsiemens per centimeter deg C = degrees Celius mV = millivolts V = volts NTU = nephelometric turbidity unit



# TABLE 3 DECEMBER 2023 METALS CONCENTRATIONS IN GROUNDWATER

December 2023 - January 2024 Groundwater Data Analysis Report TWAAFA Site

Tacoma, Washington

| Location          | Date       | Fraction  | Aluminum | Arsenic | Chromium | Copper | Iron  | Ferrous Iron | Lead | Manganese | Mercury | Nickel | Zinc |
|-------------------|------------|-----------|----------|---------|----------|--------|-------|--------------|------|-----------|---------|--------|------|
| Units             |            |           | μg/L     | μg/L    | μg/L     | μg/L   | μg/L  | μg/L         | μg/L | μg/L      | μg/L    | μg/L   | μg/L |
| DGWP Screening Le | vel        |           |          | 8*      | 11       | 2.4    |       |              | 8.1  | 100       | 0.025   | 10     | 81   |
| CCW-1A            | 12/18/2023 | Dissolved | 10 U     | 6.26    |          | 2.65   | 528   |              |      | 371       |         |        |      |
| CCW-1B            | 12/18/2023 | Dissolved | 10 U     | 1 U     |          | 2 U    | 1850  |              |      | 574       |         |        |      |
| CCW-1C            | 12/18/2023 | Dissolved | 10 U     | 2.39    |          | 2 U    | 4350  |              |      | 299       |         |        |      |
| CCW-2A            | 12/14/2023 | Dissolved | 35.3     | 2.09    |          | 0.669  | 12100 |              |      | 836       |         |        |      |
| CCW-2B            | 12/14/2023 | Dissolved | 10 U     | 1150    |          | 0.6 U  | 4180  |              |      | 200       |         |        |      |
| CCW-2C            | 12/14/2023 | Dissolved | 10 U     | 2.95    |          | 0.576  | 7420  |              |      | 145       |         |        |      |
| CCW-3A            | 12/14/2023 | Dissolved | 10 U     | 67.9    |          | 0.913  | 15000 |              | 1 U  | 81.6      |         | 148    | 433  |
| CCW-3B            | 12/14/2023 | Dissolved | 10 U     | 3.08    |          | 0.48 U | 4990  |              |      | 959       |         |        |      |
| CCW-3C            | 12/14/2023 | Dissolved | 10 U     | 1.56    |          | 0.484  | 8180  |              |      | 868       |         |        |      |
| CCW-4C            | 12/18/2023 | Dissolved | 10 U     | 1.7     |          | 2 U    | 9480  |              |      | 463       |         |        |      |
| CCW-5B            | 12/19/2023 | Dissolved | 154      | 1200    |          | 2.4 U  | 15200 |              | 11   | 989       |         |        |      |
| CCW-5C            | 12/19/2023 | Dissolved | 11.7     | 2 U     |          | 2.4 U  | 15300 |              |      | 878       |         |        |      |
| CCW-6B            | 12/19/2023 | Dissolved | 992      | 6.29    |          | 3.53   | 22300 |              | 17.6 | 892       |         |        | 167  |
| CCW-6B DUP        | 12/19/2023 | Dissolved | 998      | 5.36    |          | 3.67   | 19300 |              | 17.5 | 866       |         |        | 137  |
| CCW-6C            | 12/19/2023 | Dissolved | 64.8     | 5.98    | 19.8     | 2.4 U  | 15100 |              |      | 220       |         |        |      |
| CCW-7B            | 12/19/2023 | Dissolved | 1020     | 2.06    |          | 2.4 U  | 18200 |              |      | 802       |         |        |      |
| CCW-7B DUP        | 12/19/2023 | Dissolved | 1020     | 2.08    |          | 2.4 U  | 19300 |              |      | 799       |         |        |      |
| CCW-7C            | 12/19/2023 | Dissolved | 10 U     | 2.13    |          | 2.4 U  | 6340  |              |      | 217       |         |        |      |
| CCW-8B            | 12/18/2023 | Dissolved | 10 U     | 2.07    |          | 2 U    | 30300 |              |      | 563       |         |        |      |
| CTMW-11R2         | 12/15/2023 | Dissolved | 394      | 5 U     |          | 2.4 U  | 4260  |              |      | 5 U       |         |        |      |
| CTMW-12           | 12/15/2023 | Dissolved | 10 U     | 5 U     |          | 2 U    | 9720  |              |      | 1180      |         |        |      |
| CTMW-14           | 12/13/2023 | Dissolved | 21.4     | 3.78    |          | 5.62   | 156   |              |      | 3.53      |         |        |      |
| CTMW-15           | 12/13/2023 | Dissolved | 10 U     | 1.82    |          | 2.4 U  | 8230  |              |      | 246       |         |        |      |
| CTMW-17           | 12/15/2023 | Dissolved | 44.8     | 194     | 9.01     | 65.6   | 571   |              |      | 316       | 0.02 U  |        |      |
| CTMW-17D          | 12/15/2023 | Dissolved | 10 U     | 5 U     |          | 2 U    | 9280  |              |      | 337       |         |        |      |
| CTMW-18           | 12/13/2023 | Dissolved | 29.1     | 5.08    |          | 8.11   | 1190  |              |      | 1540      |         |        |      |
| CTMW-20           | 12/13/2023 | Dissolved | 10 U     | 6       |          | 2.4 U  | 19100 |              |      | 1280      |         |        |      |
| CTMW-23R2         | 12/15/2023 | Dissolved | 22.8     | 3.59    |          | 0.607  | 660   |              |      | 493       |         |        |      |
| CTMW-24           | 12/11/2023 | Dissolved | 23.1     | 1 U     |          | 1 U    | 999   |              |      | 94.2      |         |        |      |
| CTMW-24D          | 12/11/2023 | Dissolved | 13       | 5 U     |          | 1 U    | 7370  |              |      | 211       |         |        |      |
| CTMW-25D          | 12/13/2023 | Dissolved | 59.2 J+  | 5.71    | 12.6 J+  | 2.4 U  | 7560  |              |      | 263       |         |        |      |
| CTMW-5            | 12/13/2023 | Dissolved | 392      | 49.5    |          | 163    | 1130  |              |      | 71.9      |         | 19     | 556  |
| CTMW-7            | 12/13/2023 | Dissolved | 10 U     | 5 U     |          | 2.12   | 16700 |              |      | 558       |         |        |      |
| CTMW-8            | 12/12/2023 | Dissolved | 212      | 5 U     |          | 1 U    | 4270  |              |      | 1 U       |         |        |      |
| CTMW-9            | 12/12/2023 | Dissolved | 10 U     | 8.65    |          | 1 U    | 4460  |              |      | 373       |         |        |      |
| MW-1              | 12/13/2023 | Dissolved | 16.6 U   | 3.88    |          | 2.4 U  | 6960  |              |      | 69.4      |         |        |      |
| MW-4              | 12/18/2023 | Dissolved | 10 U     | 1.42    |          | 2 U    | 4590  |              |      | 282       |         |        |      |
| PZ-7              | 12/11/2023 | Dissolved | 46.7     | 5 U     |          |        | 207   |              | 1 U  | 10.8      |         | 3.43   | 26.6 |



# TABLE 3 DECEMBER 2023 METALS CONCENTRATIONS IN GROUNDWATER

December 2023 - January 2024 Groundwater Data Analysis Report TWAAFA Site

Tacoma, Washington

| Location          | Date       | Fraction  | Aluminum | Arsenic | Chromium | Copper  | Iron  | Ferrous Iron | Lead | Manganese | Mercury | Nickel | Zinc |
|-------------------|------------|-----------|----------|---------|----------|---------|-------|--------------|------|-----------|---------|--------|------|
| Units             |            |           | μg/L     | μg/L    | μg/L     | μg/L    | μg/L  | μg/L         | μg/L | μg/L      | μg/L    | μg/L   | μg/L |
| DGWP Screening Le | rvel       |           |          | 8*      | 11       | 2.4     |       |              | 8.1  | 100       | 0.025   | 10     | 81   |
| PZ-8              | 12/11/2023 | Dissolved | 51.1     | 5 U     |          |         | 44800 |              | 1 U  | 1280      |         | 11.7   | 25 U |
| PZ-9              | 12/12/2023 | Dissolved | 19.3     | 8.57    |          |         | 34600 |              | 1 U  | 3090      |         | 5 U    | 25 U |
| SB-1A             | 12/12/2023 | Dissolved | 10 U     | 2.13    |          | 2.4 U   | 2220  |              |      | 141       |         |        |      |
| SB-2A             | 12/12/2023 | Dissolved | 11.1 U   | 2.61    |          | 2.4 U   | 1770  |              |      | 510       |         |        |      |
| SB-3A             | 12/13/2023 | Dissolved | 10 U     | 1.89    |          | 2.4 U   | 2600  |              |      | 118       |         |        |      |
| TWA-1             | 12/12/2023 | Dissolved | 10 U     | 1 U     |          | 3.57 J+ | 568   |              |      | 3.57 J+   |         |        |      |
| TWA-2             | 12/12/2023 | Dissolved | 10 U     | 28.6    |          | 10.2 J+ | 413   |              |      | 347       |         |        |      |
| TWA-3             | 12/12/2023 | Dissolved | 10 U     | 2.26    |          | 4.21 J+ | 691   |              |      | 465       |         | 10.1   |      |
| TWA-3 DUP         | 12/12/2023 | Dissolved | 10 U     | 2.26    |          | 3.76 J+ | 681   |              |      | 452       |         | 9.66   |      |
| TWA-4D            | 12/12/2023 | Dissolved | 10 U     | 10.3    |          | 1.18    | 4040  |              |      | 106       |         |        |      |
| TWA-5D            | 12/13/2023 | Dissolved | 11.4 U   | 5.26    |          | 2.4 U   | 1780  |              |      | 181       |         |        |      |
| TWA-6D            | 12/13/2023 | Dissolved | 49.9 J+  | 6.68    | 21       | 2.4 U   | 2950  |              |      | 753       |         |        |      |
| TWA-7D            | 12/12/2023 | Dissolved | 10 U     | 7.82    |          | 1 U     | 1510  |              |      | 118       |         |        |      |
| TWA-8D            | 12/13/2023 | Dissolved | 10 U     | 15.9    |          | 3.57    | 2250  |              |      | 389       |         |        |      |
| TWA-9D            | 12/14/2023 | Dissolved | 10 U     | 15.6    |          | 1.1     | 461   |              |      | 49.2      |         |        |      |
| TWA-10D           | 12/12/2023 | Dissolved | 14.3 U   | 10.2    |          | 2.4 U   | 1030  |              |      | 42.2      |         |        |      |
| CCW-1A            | 12/18/2023 | Total     | 10 U     | 7.45    |          | 6.05    | 522   | 182 J        |      | 339       |         |        |      |
| CCW-1B            | 12/18/2023 | Total     | 34.2     | 1 U     |          | 2 U     | 2000  | 668          |      | 567       |         |        |      |
| CCW-1C            | 12/18/2023 | Total     | 21       | 2.64    |          | 2 U     | 4270  | 1320         |      | 290       |         |        |      |
| CCW-2A            | 12/14/2023 | Total     | 41.7     | 4.88    |          | 7.59    | 14000 | 10700        |      | 883       |         |        |      |
| CCW-2B            | 12/14/2023 | Total     | 10 U     | 1140    |          | 0.73    | 4430  | 747          |      | 211       |         |        |      |
| CCW-2C            | 12/14/2023 | Total     | 11.5     | 2.8     |          | 2.4 U   | 7620  | 1980         |      | 156       |         |        |      |
| CCW-3A            | 12/14/2023 | Total     | 49       | 94.3    |          | 4.78    | 19500 | 9080         | 33.4 | 87.5      |         | 175    | 583  |
| CCW-3B            | 12/14/2023 | Total     | 12.6     | 3.1     |          | 2.4 U   | 4490  | 2420         |      | 965       |         |        |      |
| CCW-3C            | 12/14/2023 | Total     | 34.8     | 1.5     |          | 2.4 U   | 8750  | 3240         |      | 978       |         |        |      |
| CCW-4C            | 12/18/2023 | Total     | 10 U     | 1.8     |          | 2 U     | 10900 | 2010         |      | 530       |         |        |      |
| CCW-5B            | 12/19/2023 | Total     | 170      | 1470    |          | 11.6    | 12200 | 10300 J      | 68.7 | 927       |         |        |      |
| CCW-5C            | 12/19/2023 | Total     | 28       | 4.47    |          | 2.4 U   | 12600 | 8020 J       |      | 957       |         |        |      |
| CCW-6B            | 12/19/2023 | Total     | 952      | 7.72    |          | 14.5    | 18700 | 19700 J      | 65.1 | 793       |         |        | 236  |
| CCW-6B DUP        | 12/19/2023 | Total     | 986      | 7.73    |          | 15.2    | 19300 | 20200 J      | 65.6 | 838       |         |        | 243  |
| CCW-6C            | 12/19/2023 | Total     | 85.3     | 6.06    | 20.6     | 2.4 U   | 16500 | 10500 J      |      | 221       |         |        |      |
| CCW-7B            | 12/19/2023 | Total     | 1030     | 2.55    |          | 3.74    | 16300 | 20300 J      |      | 753       |         |        |      |
| CCW-7B DUP        | 12/19/2023 | Total     | 1070     | 2.41    |          | 3.62    | 15500 | 16000 J      |      | 755       |         |        |      |
| CCW-7C            | 12/19/2023 | Total     | 25.9     | 1.86    |          | 2.4 U   | 5300  | 1160 J       |      | 197       |         |        |      |
| CCW-8B            | 12/18/2023 | Total     | 13.1     | 2.65    |          | 2 U     | 31200 | 13800 J      |      | 561       |         |        |      |
| CTMW-11R2         | 12/15/2023 | Total     | 397      | 5 U     |          | 1.67    | 3520  | 150 U        |      | 2 U       |         |        |      |
| CTMW-12           | 12/15/2023 | Total     | 20.7     | 2.51    |          | 0.502   | 8270  | 1410 J       |      | 844       |         |        |      |
| CTMW-14           | 12/13/2023 | Total     | 55.2     | 5 U     |          | 4.73    | 220   | 150 U        |      | 5 U       |         |        |      |



## TABLE 3

## **DECEMBER 2023 METALS CONCENTRATIONS IN GROUNDWATER**

December 2023 - January 2024 Groundwater Data Analysis Report
TWAAFA Site
Tacoma, Washington

| Location          | Date       | Fraction | Aluminum | Arsenic | Chromium | Copper  | Iron  | Ferrous Iron | Lead | Manganese      | Mercury | Nickel | Zinc |
|-------------------|------------|----------|----------|---------|----------|---------|-------|--------------|------|----------------|---------|--------|------|
| Units             |            |          | μg/L     | μg/L    | μg/L     | μg/L    | μg/L  | μg/L         | μg/L | μg/L           | μg/L    | μg/L   | μg/L |
| DGWP Screening Le | evel       |          |          | 8*      | 11       | 2.4     |       |              | 8.1  | 100            | 0.025   | 10     | 81   |
| CTMW-15           | 12/13/2023 | Total    | 10 U     | 1.79    |          | 2.4 U   | 7710  |              |      | 272            |         |        |      |
| CTMW-17           | 12/15/2023 | Total    | 169      | 230     | 36.3     | 382     | 768   | 372 J        |      | 300            | 0.13    |        |      |
| CTMW-17D          | 12/15/2023 | Total    | 27.4     | 2.29    |          | 2.25    | 9160  | 886 J        |      | 318            |         |        |      |
| CTMW-18           | 12/13/2023 | Total    | 189      | 6.04    |          | 20      | 1320  | 1000         |      | 1430           |         |        |      |
| CTMW-20           | 12/13/2023 | Total    | 10 U     | 5.86    |          | 2.4 U   | 17700 |              |      | 1130           |         |        |      |
| CTMW-23R2         | 12/15/2023 | Total    | 77.2     | 3.45    |          | 1.92    | 780   | 272          |      | 542            |         |        |      |
| CTMW-24           | 12/11/2023 | Total    | 40.2     | 1 U     |          | 1 U     | 919   | 1190 J       |      | 79.8           |         |        |      |
| CTMW-24D          | 12/11/2023 | Total    | 13.6     | 5 U     |          | 1 U     | 7370  | 877 J        |      | 211            |         |        |      |
| CTMW-25D          | 12/13/2023 | Total    | 88 J+    | 6.33    | 15.9 J+  | 2.74 U  | 8210  |              |      | 299            |         |        |      |
| CTMW-5            | 12/13/2023 | Total    | 425      | 55.7    |          | 200     | 1200  | 454          |      | 70.7           |         | 17.8   | 568  |
| CTMW-7            | 12/13/2023 | Total    | 10 U     | 5 U     |          | 1 U     | 16100 | 13500        |      | 552            |         |        |      |
| CTMW-8            | 12/12/2023 | Total    | 218      | 5 U     |          | 1.14    | 4300  | 150 U        |      | 2.45           |         |        |      |
| CTMW-9            | 12/12/2023 | Total    | 25.9     | 8.91    |          | 1.1     | 8430  | 889          |      | 398            |         |        |      |
| MW-1              | 12/13/2023 | Total    | 71.1 J+  | 4.22    |          | 6.59 J+ | 6840  |              |      | 70.1           |         |        |      |
| MW-4              | 12/18/2023 | Total    | 12.5     | 2.28    |          | 6.81    | 5240  | 904          |      | 294            |         |        |      |
| PZ-7              | 12/11/2023 | Total    | 49.9     | 5.02    |          |         | 1660  | 41700        | 11.1 | 37.2           |         | 4.08   | 35.3 |
| PZ-8              | 12/11/2023 | Total    | 401      | 5.19    |          |         | 47400 | 266          | 1 U  | 1250           |         | 10.1   | 75.7 |
| PZ-9              | 12/12/2023 | Total    | 27.6     | 9.82    |          |         | 38700 | 35100 J      | 1 U  | 2970           |         | 5 U    | 25 U |
| SB-1A             | 12/12/2023 | Total    | 10 U     | 2.41    |          | 2.57 U  | 2720  |              |      | 147            |         |        |      |
| SB-2A             | 12/12/2023 | Total    | 49.9 J+  | 2.47    |          | 2.4 U   | 2060  |              |      | 528            |         |        |      |
| SB-3A             | 12/13/2023 | Total    | 10 U     | 1.8     |          | 2.4 U   | 2940  |              |      | 121            |         |        |      |
| TWA-1             | 12/12/2023 | Total    | 14.8 J+  | 1.37    |          | 3.88 J+ | 1850  |              |      | <b>11.2</b> J+ |         |        |      |
| TWA-2             | 12/12/2023 | Total    | 34.1 J+  | 26.3    |          | 10.4 J+ | 530   |              |      | 338            |         |        |      |
| TWA-3             | 12/12/2023 | Total    | 10 U     | 2.72    |          | 4.5 J+  | 786   |              |      | 445            |         | 10.7   |      |
| TWA-3 DUP         | 12/12/2023 | Total    | 10 U     | 3.04    |          | 4.66 J+ | 832   |              |      | 467            |         | 10.2   |      |
| TWA-4D            | 12/12/2023 | Total    | 10.2     | 9.85    |          | 1.03    | 4080  | 831 J        |      | 105            |         |        |      |
| TWA-5D            | 12/13/2023 | Total    | 19.7 J+  | 5.16    |          | 2.4 U   | 2010  |              |      | 182            |         |        |      |
| TWA-6D            | 12/13/2023 | Total    | 75.6 J+  | 7.26    | 24.4     | 2.97 U  | 3030  |              |      | 749            |         |        |      |
| TWA-7D            | 12/12/2023 | Total    | 10 U     | 7.86    |          | 0.75    | 1590  | 381 J        |      | 113            |         |        |      |
| TWA-8D            | 12/13/2023 | Total    | 10 U     | 14.9    |          | 2 U     | 1980  | 408          |      | 348            |         |        |      |
| TWA-9D            | 12/14/2023 | Total    | 10 U     | 11.7    |          | 2.4 U   | 806   | 399          |      | 63.1           |         |        |      |
| TWA-10D           | 12/12/2023 | Total    | 46.4 J+  | 9.03    |          | 4.11 J+ | 1240  |              |      | 45.7           |         |        |      |

## Notes:

**Bold = Detection** 

DGWP screening level exceedance

\* = Background level utilized per communication with Ecology



## TABLE 3

## **DECEMBER 2023 METALS CONCENTRATIONS IN GROUNDWATER**

December 2023 - January 2024 Groundwater Data Analysis Report
TWAAFA Site
Tacoma, Washington

| Location             | Date | Fraction | Aluminum | Arsenic | Chromium | Copper | Iron | Ferrous Iron | Lead | Manganese | Mercury | Nickel | Zinc |
|----------------------|------|----------|----------|---------|----------|--------|------|--------------|------|-----------|---------|--------|------|
| Units                | μg/L | μg/L     | μg/L     | μg/L    | μg/L     | μg/L   | μg/L | μg/L         | μg/L | μg/L      | μg/L    |        |      |
| DGWP Screening Level |      |          | -        | 8*      | 11       | 2.4    |      |              | 8.1  | 100       | 0.025   | 10     | 81   |

## Abbreviations:

DGWP = Data Gaps Work Plan

-- = not available

mg/L = milligrams per liter

μg/L = micrograms per liter

DUP = field duplicate

U = the value was not detected above the laboratory provided limit.

J = the value was estimated.



## TABLE 4 JANUARY 2024 PFAS GROUNDWATER RESULTS

TWAAFA Site Tacoma, Washington

|                                       |           |           | All units | s provided in na | nograms per lite | er (ng/L) |           |             | All units  | s provided in na | nograms per lite | er (ng/L)   |                               |                               | Marine Surface                                           |
|---------------------------------------|-----------|-----------|-----------|------------------|------------------|-----------|-----------|-------------|------------|------------------|------------------|-------------|-------------------------------|-------------------------------|----------------------------------------------------------|
|                                       | CCW-2A    | CCW-2B    | CCW-2C    | CCW-3A           | CCW-3A DUP       | CCW-3B    | CTMW-17   | Field Blank | TWA-3      | TWA-3 DUP        | SB-2A            | Field Blank | MTCA Method<br>B <sup>1</sup> | MTCA Method<br>C <sup>1</sup> | Water Protection<br>Based<br>Concentrations <sup>2</sup> |
| Analyte                               | 1/11/2024 | 1/11/2024 | 1/11/2024 | 1/11/2024        | 1/11/2024        | 1/11/2024 | 1/11/2024 | 1/11/2024   | 12/12/2023 | 12/12/2023       | 12/12/2023       | 12/12/2023  |                               |                               | Concentrations                                           |
| Perfluorobutanoic acid (PFBA)         | 13        | 35        | 7.2 U     | 31               | 35               | 70        | 1500      | 8.4 U       | 20         | 19               | 23               | 8 U         | 8,000                         | 18,000                        |                                                          |
| Perfluoroundecanoic acid (PFUnA)      | 1.9 U     | 1.8 U     | 1.8 U     | 1.9 U            | 1.8 U            | 1.8 U     | 11        | 2.1 U       | 2 U        | 2.1 U            | 2 U              | 2 U         |                               |                               |                                                          |
| 6:2 FTS                               | 7.7 U     | 7.2 U     | 7.2 U     | 7.5 U            | 7.3 U            | 7.3 U     | 86        | 8.4 U       | 8.2 U      | 8.2 U            | 8.1 U            | 8 U         |                               |                               |                                                          |
| Perfluoropentanoic acid (PFPeA)       | 7.1       | 3.6 U     | 3.6 U     | 40 U             | 40 U             | 44        | 40 U      | 4.2 U       | 43         | 43               | 4.1 U            | 4 U         |                               |                               |                                                          |
| Perfluorohexanoic acid (PFHxA)        | 6.6       | 4         | 5.2       | 20 U             | 1.8 U            | 32        | 39        | 2.1 U       | 32         | 29               | 2 U              | 2 U         | 8,000                         | 18,000                        |                                                          |
| Perfluoroheptanoic acid (PFHpA)       | 3.6       | 2.5       | 2.1       | 10               | 9.1              | 15        | 20        | 2.1 U       | 10         | 9.7              | 2 U              | 2 U         |                               |                               |                                                          |
| Perfluorooctanoic acid (PFOA)         | 6.4       | 17        | 12        | 96               | 93               | 61        | 54        | 2.1 U       | 25         | 25               | 4.1              | 2 U         | 48                            | 110                           | 119,000                                                  |
| Perfluorononanoic acid (PFNA)         | 1.9 U     | 1.8 U     | 1.8 U     | 1.9 U            | 1.8 U            | 4.1       | 44        | 2.1 U       | 2.1        | 2.6              | 2 U              | 2 U         | 40                            | 88                            | 10,400                                                   |
| Perfluorobutanesulfonic acid (PFBS)   | 1.9       | 1.8 U     | 1.8 U     | 3.5              | 2.9              | 6.5       | 2100      | 2.1 U       | 75         | 81               | 2 U              | 2 U         | 4,800                         | 11,000                        | 127,000,000                                              |
| Perfluorohexanesulfonic acid (PFHxS)  | 5.3       | 7         | 5.7       | 9.4              | 9.5              | 23        | 38        | 2.1 U       | 6.3        | 6.3              | 2 U              | 2 U         | 160                           | 340                           |                                                          |
| Perfluorooctanesulfonic acid (PFOS)   | 12        | 27        | 1.8 U     | 19               | 22               | 20        | 110       | 2.1 U       | 16         | 18               | 2 U              | 2 U         | 48                            | 110                           | 1,100                                                    |
| Perfluorooctanesulfonamide (FOSA)     | 1.9 U     | 1.8       | 1.8 U     | 1.9 U            | 1.8 U            | 1.8 U     | 20 U      | 2.1 U       | 2 U        | 2.1 U            | 2 U              | 2 U         |                               |                               |                                                          |
| NEtFOSAA                              | 1.9 U     | 2.2       | 1.8 U     | 10               | 9.6              | 2.4       | 1.9 U     | 2.1 U       | 2 U        | 2.1 U            | 2 U              | 2 U         |                               |                               |                                                          |
| Perfluoropentanesulfonic acid (PFPeS) | 1.9 U     | 1.8 U     | 1.8 U     | 1.9 U            | 15 J             | 4.2       | 20 U      | 2.1 U       | 2 U        | 2.1 U            | 2 U              | 2 U         |                               |                               |                                                          |

### Notes:

- 1. Source of values- Table 3, Ecology Guidance for Investigating and Remediating PFAS Contamination in Washington State. (Publication No. 22-09-058. June 2023) and CLARC database (accessed October 2023).
- 2. Source of values- Table B-1, Ecology Guidance for Investigating and Remediating PFAS Contamination in Washington State. (Publication No. 22-09-058. June 2023).

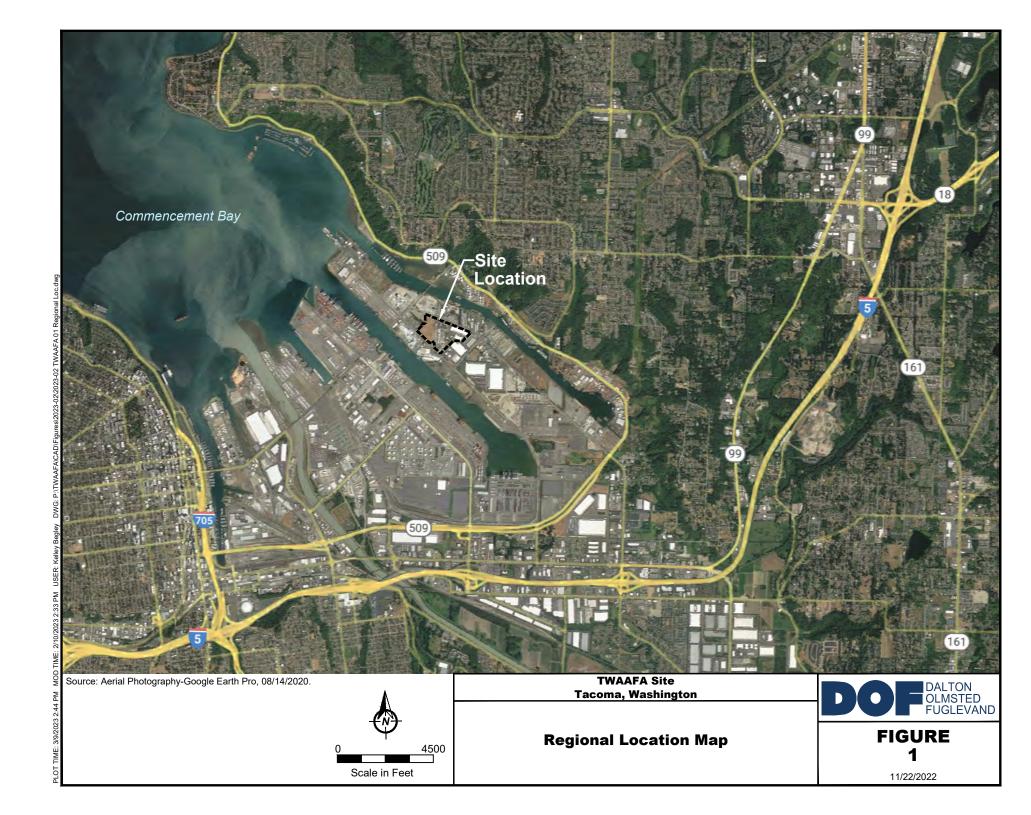
### **Abbreviations:**

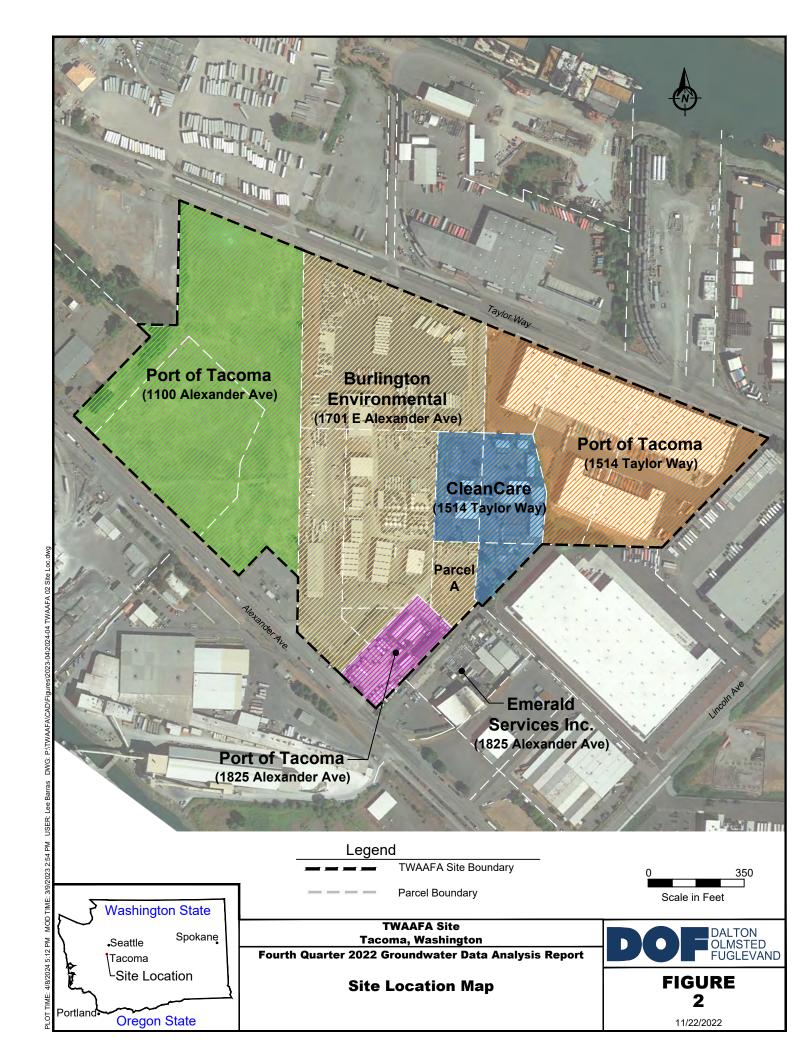
-- = not available

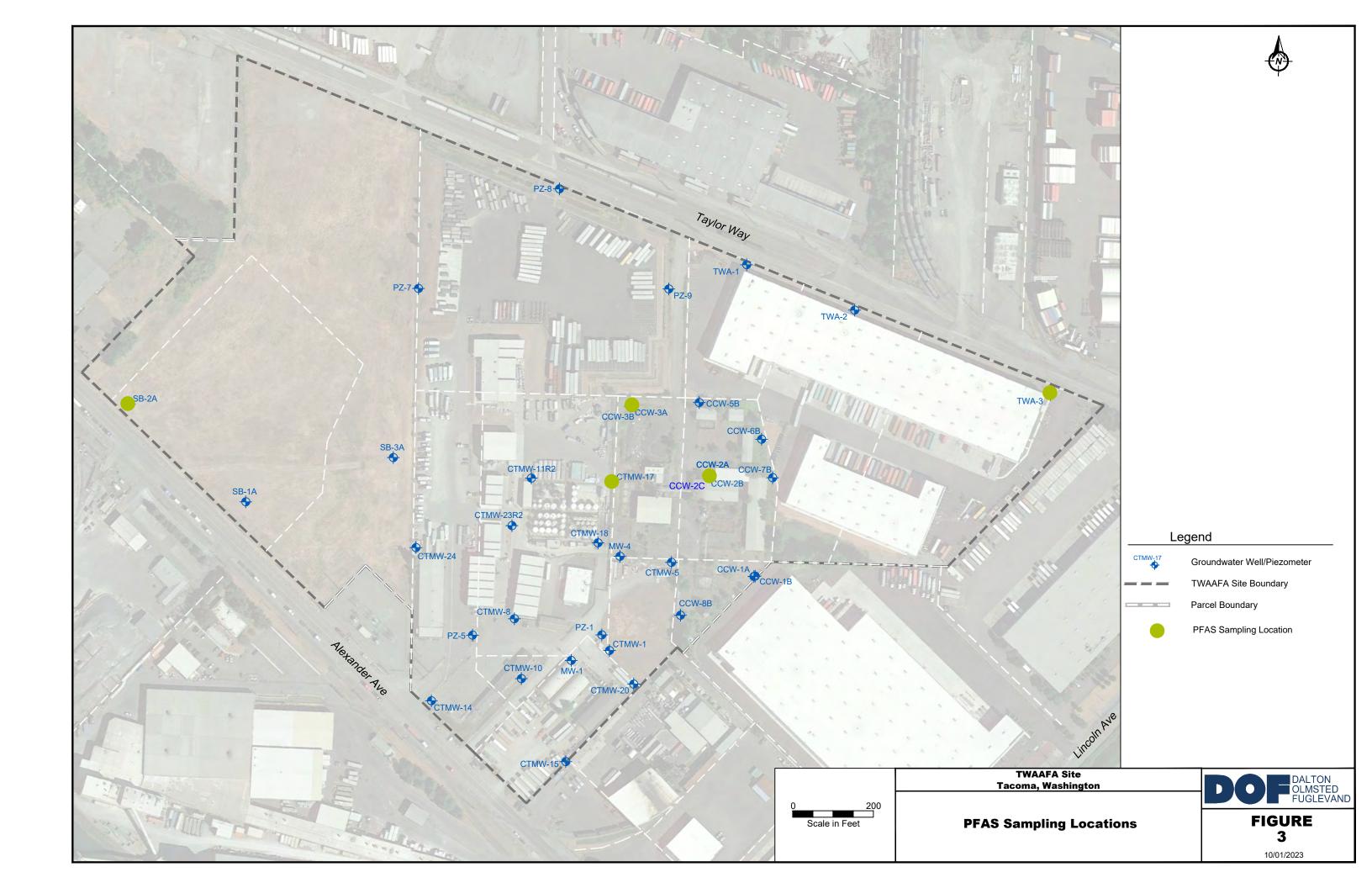
U = the value was not detected above the laboratory limit provided.

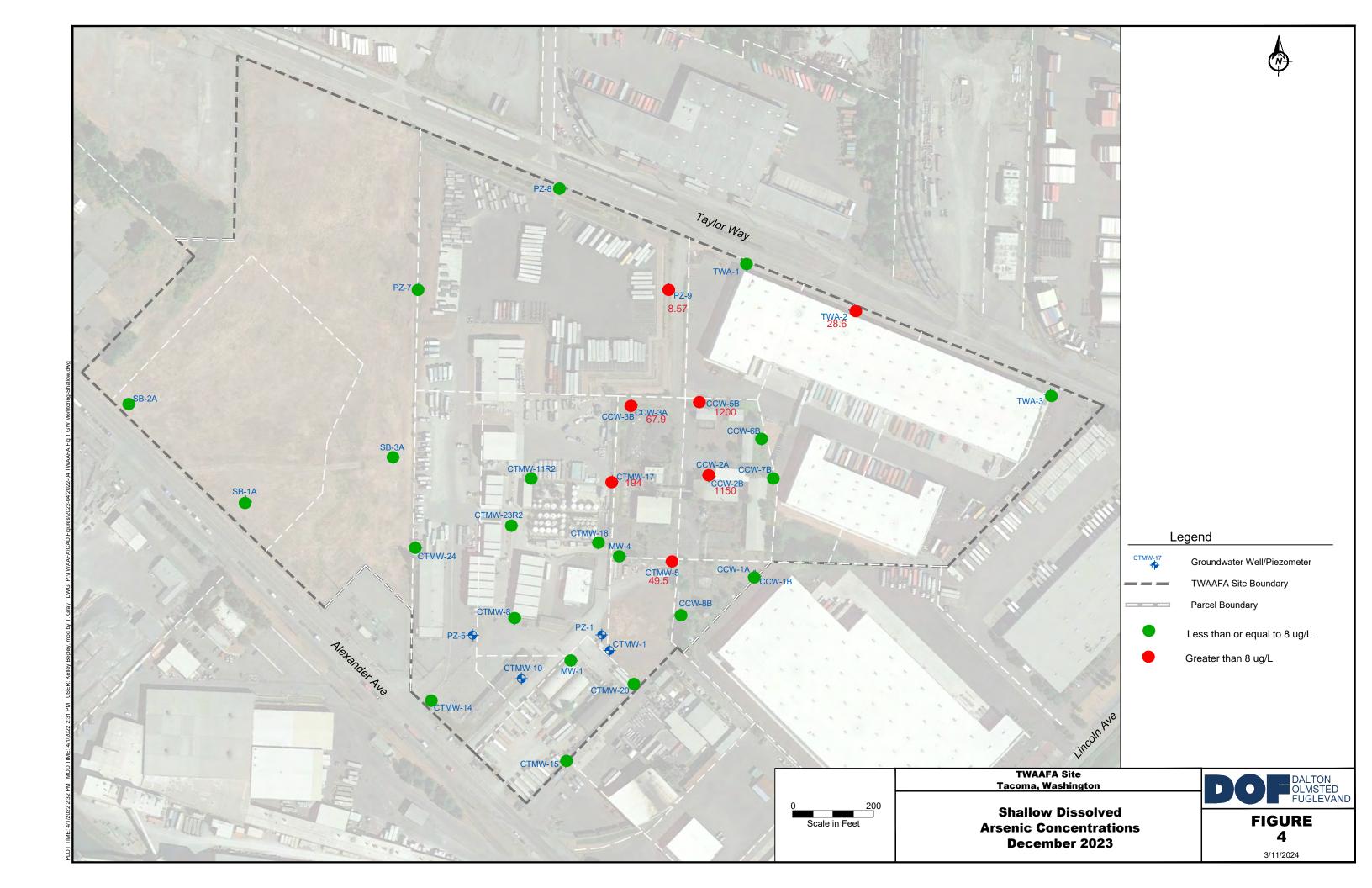
J = the value was estimated.

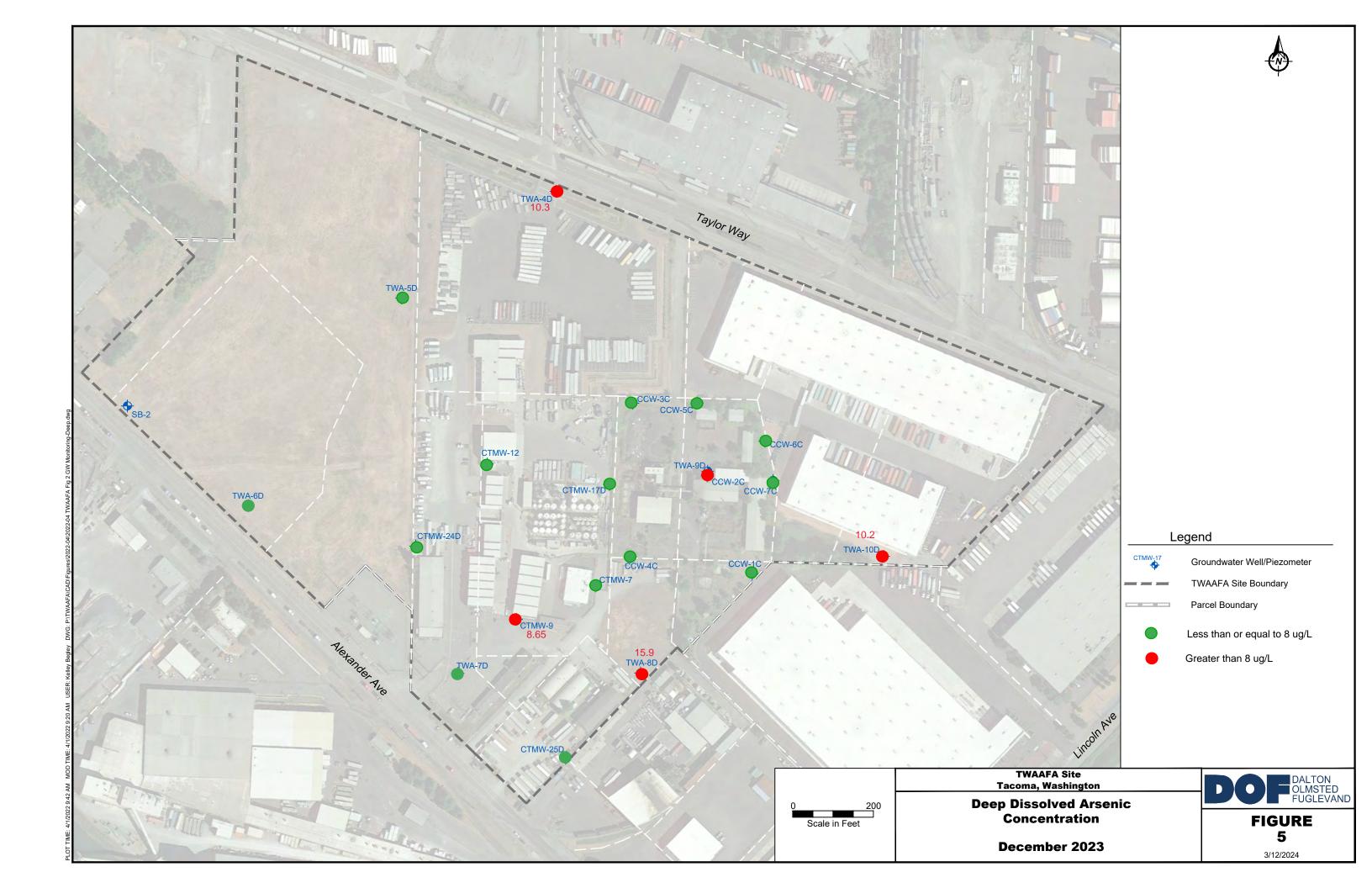
MTCA = Model Toxics Control Act

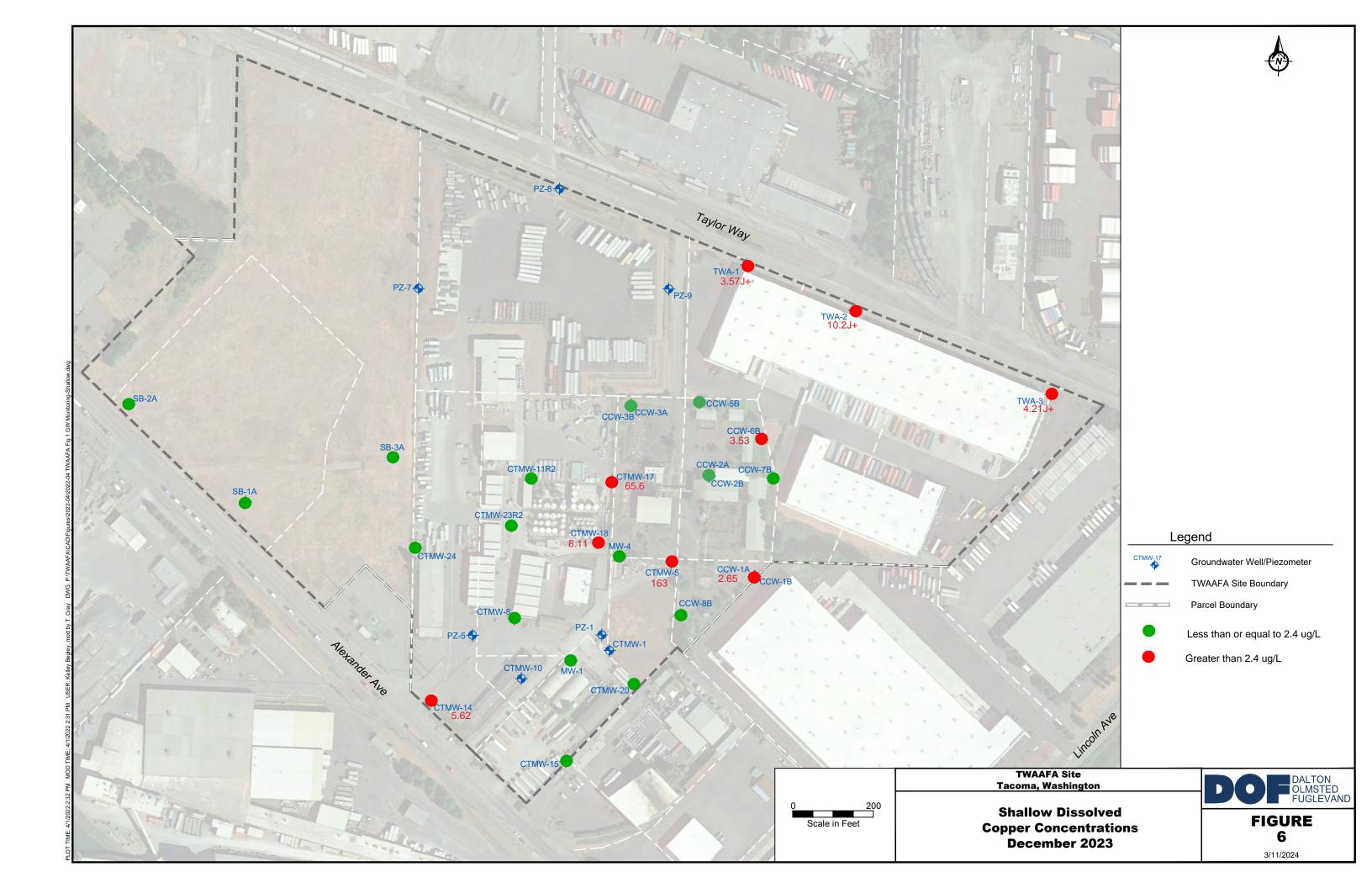

DUP = field duplicate

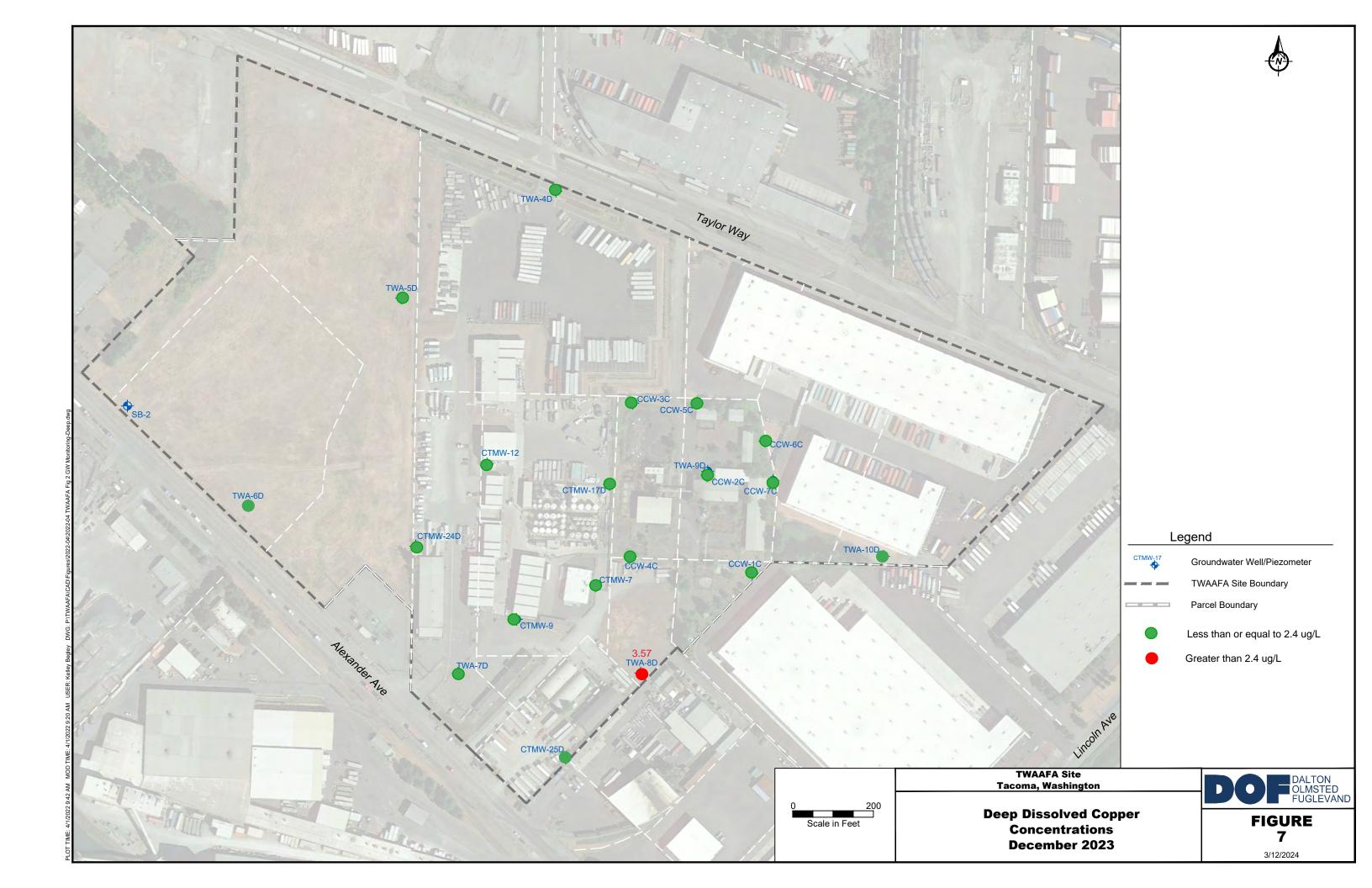

**Bold** = detected

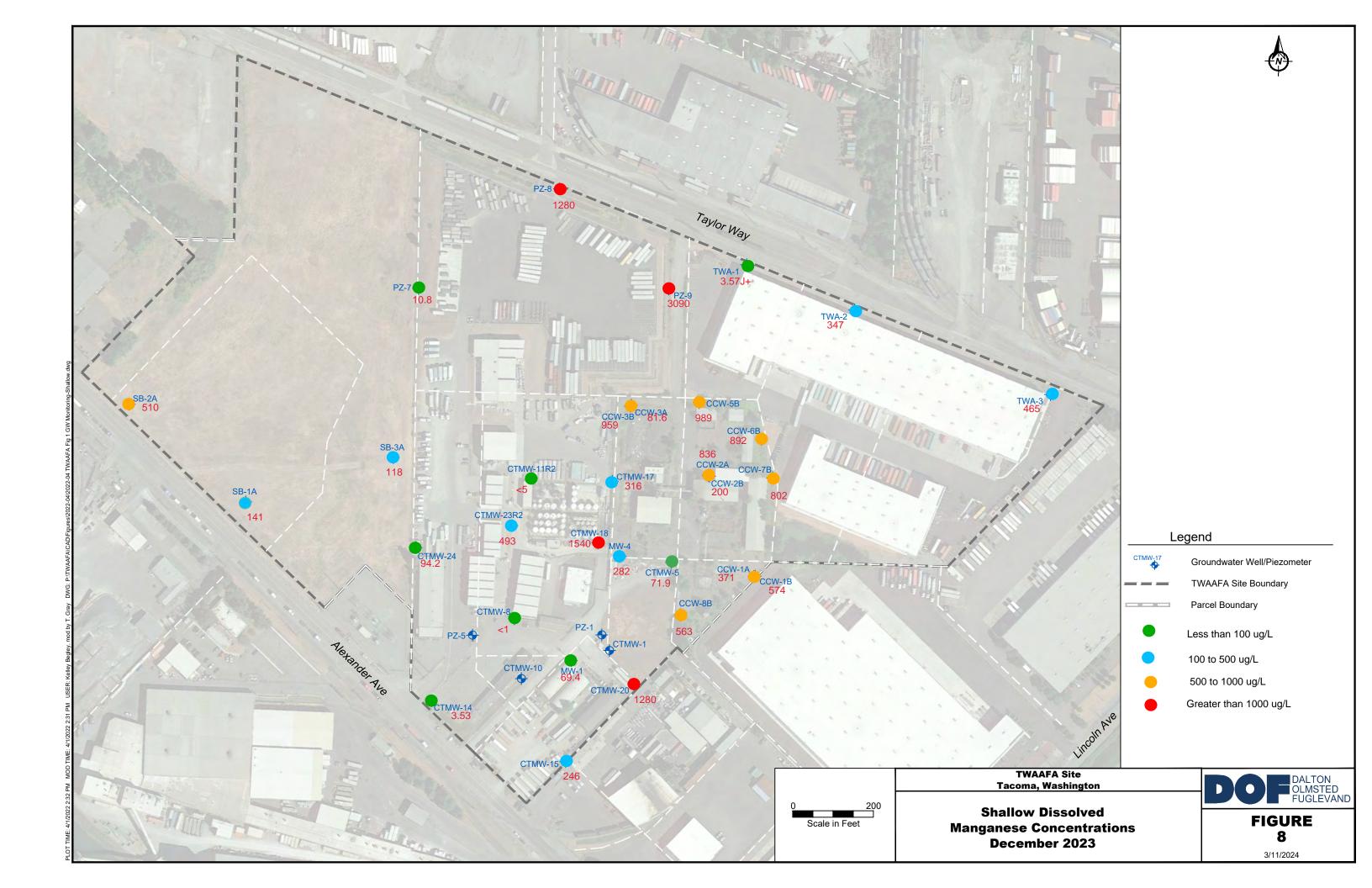


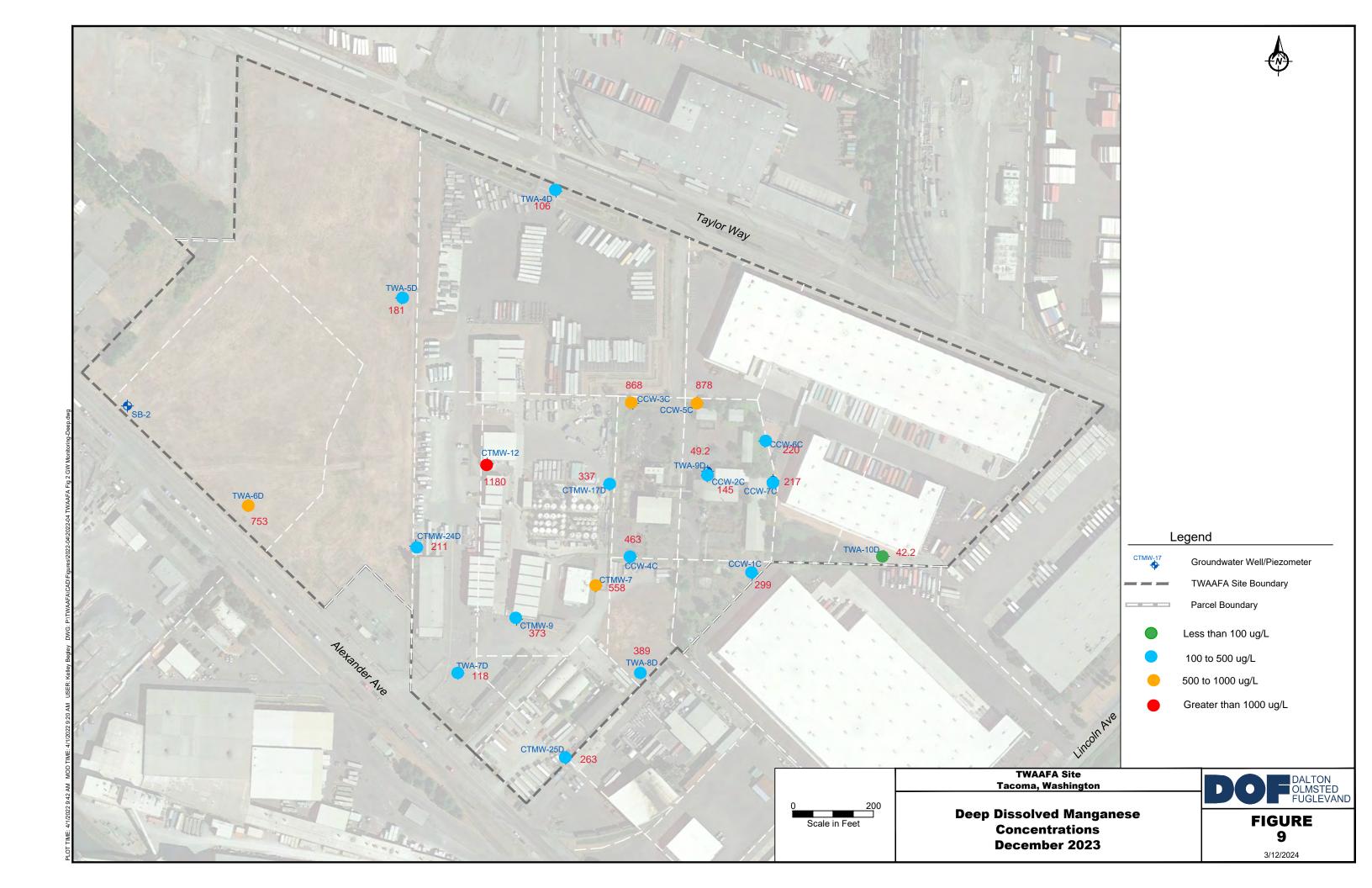





# **Figures**
















# **Appendix A**

**Groundwater Sampling Field Sheets** 

| _              | OF P                          | LMSTED<br>UGLEVAND | Wonttoring                    | Well Samplin                                                                                                                          | g Field Sheet          | Well No. Field Blank#1-1223 Facility/Project: TWAAFA                                          |                     |                                         |  |  |  |  |
|----------------|-------------------------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|--|--|--|--|
| Date: 1        | 2/15/23                       |                    | Sampling Pers                 | onnel:                                                                                                                                |                        | Initial Headspace (ppm)                                                                       |                     |                                         |  |  |  |  |
|                | g Method:                     |                    |                               | S/MW                                                                                                                                  |                        | Intial-Water Level before purge (ft. BTOC)                                                    |                     |                                         |  |  |  |  |
|                | ent Used:                     |                    |                               | (total well depth - water                                                                                                             | r level)               | End-Water Level post purge/sample with pump on (ft. BTOC):                                    |                     |                                         |  |  |  |  |
| VL-            | PID -                         |                    |                               |                                                                                                                                       |                        | Pump Intake Depth (ft.BTOC):                                                                  |                     |                                         |  |  |  |  |
| VQ -<br>'urb - | Pump                          | •                  | Well Volume ≖                 |                                                                                                                                       |                        | CZ SWY W YMY                                                                                  |                     |                                         |  |  |  |  |
|                | Purge start time:             |                    | Initial Flow Rate:            |                                                                                                                                       | Flow cell disconnected | d prior to sampling :                                                                         |                     |                                         |  |  |  |  |
|                | Purge stop time:              |                    | Final Flow Rate:              |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               | Water Qualit                                                                                                                          | ty Measuremen          | ts                                                                                            | Q                   |                                         |  |  |  |  |
| Time           | Water level                   | Purge Rate         | рН                            | Conductivity                                                                                                                          | Temperature            | Dissoved<br>Oxygen                                                                            | Redox Potential     | Turbidity                               |  |  |  |  |
| (military)     | ft                            | (mL/min)           | pH Units                      | uS/cm                                                                                                                                 | °C                     | mg/L                                                                                          | mV _                | (NTU)                                   |  |  |  |  |
|                | < 0.33 ft from<br>2nd reading | < 500 mL           | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV             | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        | Project: T                                                                                    | NAAFA 4Q23          |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        | Samplers:                                                                                     |                     |                                         |  |  |  |  |
|                |                               |                    |                               | -                                                                                                                                     |                        |                                                                                               | : Field Blank#1-122 |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        | Date: 12/1                                                                                    | 5/23 Time: 1015     |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        | Analysis:<br>Preservati                                                                       | ve:                 |                                         |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     | -                                       |  |  |  |  |
|                |                               |                    |                               |                                                                                                                                       |                        |                                                                                               |                     |                                         |  |  |  |  |
| otes:          | *Per EPA (2022) OP            | P direct measurem  | ent data recorded is          | "ORP referenced to                                                                                                                    |                        | electrode". Electrode                                                                         | calibrated in       | solution.                               |  |  |  |  |
| otes.          |                               |                    |                               | CTHW-23                                                                                                                               | 22 (m                  |                                                                                               | @ CE Tacoma         |                                         |  |  |  |  |
| ٤ :            |                               | int fumes          |                               | a peak, as                                                                                                                            |                        |                                                                                               |                     |                                         |  |  |  |  |
| 7              | Battles and Ar                | alveger            | (collected in or              | der helowl                                                                                                                            | 7                      | 10000                                                                                         |                     |                                         |  |  |  |  |
| (1)            | 1 x                           | mL HDPE w/         | HNO <sub>3</sub> 6020 Total M | letals AAOO                                                                                                                           | .@.@.@.@.@.            | and 1631E (Hg)                                                                                | <u> </u>            |                                         |  |  |  |  |
| (1)            | O x-                          | ML HDPE W/         | HNO <sub>3</sub> 6020 Dissolv | ed Metals (Al, As, C                                                                                                                  | r, Cu, Fe, Mn, Ni, Pl  | o, Zn) and 1631E (Hg)                                                                         | Field F             | iltered (0.45µm)                        |  |  |  |  |
| (1)            | Y                             | 250ml HO           | PE for Ferro                  | stron                                                                                                                                 | _ 175                  |                                                                                               |                     |                                         |  |  |  |  |

| U              | OF                                 | ALTON<br>LMSTED<br>JGLEVAND    | Monitoring            | Well Sampling                                                                                                                           | g Field Sheet           | Well No. Filld Blank#2-1223 Facility/Project: TWAAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                           |  |  |  |  |
|----------------|------------------------------------|--------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|--|--|--|--|
| Date:          | 12/18/2                            | 3                              | Sampling Pers         | onnel:                                                                                                                                  |                         | Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                           |  |  |  |  |
|                | g Method:                          | 3                              |                       | 144                                                                                                                                     |                         | Intial-Water Level before purge (ft. BTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                           |  |  |  |  |
| auinme         | ent Used:                          |                                |                       | (total well depth - wate                                                                                                                | r level)                | End-Water Level post purge/sample with pump on (ft. BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                           |  |  |  |  |
| VL -           | PID -                              |                                | 77 411 79141110 39127 | (total from depth from                                                                                                                  | 1010/                   | The state of the s |                                     |                                           |  |  |  |  |
| VQ -<br>'urb - | Pump                               |                                | Well Volume ≈         |                                                                                                                                         |                         | Pump Intake Depth (ft.BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                           |  |  |  |  |
|                | Purge start time:                  |                                | Initial Flow Rate:    | 1 - 1                                                                                                                                   | Flour cell disconnectes | Indicate constitution [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                           |  |  |  |  |
|                | Purge stop time:                   |                                | Final Flow Rate:      |                                                                                                                                         | Flow cell disconnected  | d prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ш                                   |                                           |  |  |  |  |
|                |                                    |                                | C                     | Water Qualit                                                                                                                            | ty Measuremen           | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 1                                         |  |  |  |  |
| Time           | Water level                        | Purge Rate                     | рН                    | Conductivity                                                                                                                            | Temperature             | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential                     | Turbidity                                 |  |  |  |  |
| (military)     | ft                                 | (mL/min)                       | pH Units              | uS/cm                                                                                                                                   | °C                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                                  | (NTU)                                     |  |  |  |  |
|                | < 0.33 ft from<br>2nd reading      | < 500 mL                       | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10 mV                             | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |  |  |  |
|                |                                    |                                |                       |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                           |  |  |  |  |
|                |                                    |                                |                       |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                           |  |  |  |  |
|                |                                    |                                |                       |                                                                                                                                         |                         | Project: TWA Samplers: ES Sample ID: Date: 12/18/ Analysis: Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Field Blank#2-1223<br>23 Time: 1310 |                                           |  |  |  |  |
|                |                                    |                                |                       |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                           |  |  |  |  |
| Notes:         | - Take<br>- Spill<br>Bottles and A | en Q M<br>ed PYCS.<br>nalyses: | Collected in co       | Metals (A) (A) (C), (C                                                                                                                  | <b>₩</b> ®®             | electrode". Electrod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | solution.                                 |  |  |  |  |
| (i)            |                                    |                                | Re for Ferr           |                                                                                                                                         | ci, cu, re, ivili, Ni,  | Pb, Zn) and 1631E (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rielo                               | Filtered (0.45µm)                         |  |  |  |  |

|                                                                                                              |                               | ALTON<br>LMSTED<br>UGLEVAND | 22/1/4/2015/4/3                                                                   | Well Sampling                                                                                                                           | g Field Sheet                           | Well No. CCW 18 CCW-1A Facility/Project: TWAAFA                                                 |                  |                                           |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|--|--|
| ate: /2                                                                                                      | 2/18/23                       |                             | Sampling Personnel:  ES/MW  Well volume = 0.17 * (total well depth - water level) |                                                                                                                                         |                                         | Initial Headspace (ppm)<br>Intial-Water Level befor                                             | U. Ppin          |                                           |  |  |
| ampling                                                                                                      | Method:/on                    | flow peri                   |                                                                                   |                                                                                                                                         |                                         | The second second second second                                                                 | (1)              | 12                                        |  |  |
| quipment Used:<br>VL - 1/0 # 7068 PID - RKI - 6000<br>VQ - YS) Proqueto Pump - Masterflik<br>urb - 1/0, turb |                               |                             |                                                                                   |                                                                                                                                         | THE RESERVE AND ADDRESS OF THE PARTY OF | urge/sample with pump on (ft.                                                                   | BTOC): 4, 19     |                                           |  |  |
|                                                                                                              |                               | Well Volume = ,11           | 5.35 - 4.1<br>Vilo - 4.                                                           | 2)= 0.2                                                                                                                                 | Pump Intake Depth (ft.E                 | off bottom                                                                                      | 10+ pulling      |                                           |  |  |
| - 1                                                                                                          | Purge start time:             | 102 6                       | Initial Flow Rate:                                                                | 400                                                                                                                                     |                                         |                                                                                                 | -1               | Bonon                                     |  |  |
|                                                                                                              | Purge stop time:              | 1101                        | Final Flow Rate:                                                                  |                                                                                                                                         | Flow cell disconnected                  | d prior to sampling:                                                                            | $\square$        |                                           |  |  |
|                                                                                                              |                               | 1101                        |                                                                                   | 200<br>Water Qualit                                                                                                                     | ty Measuremen                           | ts                                                                                              |                  |                                           |  |  |
| Time                                                                                                         | Water level                   | Purge Rate                  | рН                                                                                | SPC<br>Conductivity                                                                                                                     | Temperature                             | Dissoved                                                                                        | Redox Potential  | Turbidity                                 |  |  |
|                                                                                                              | CALCAS NOV                    | 10 W 6 15 W 6 1.            |                                                                                   | Conductivity                                                                                                                            | Temperature                             | Oxygen                                                                                          | *                | Tarbianty                                 |  |  |
| (military)                                                                                                   | ft                            | (mL/min)                    | pH Units                                                                          | uS/cm                                                                                                                                   | °C                                      | mg/L                                                                                            | mV               | (NTU)                                     |  |  |
|                                                                                                              | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                                                                        | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU (<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU (<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV          | {3 readings} < 5 NTU (<br>< 10% if >5 NTU |  |  |
| ०५०                                                                                                          | 4,21                          | 400                         | 6.83                                                                              | 1129                                                                                                                                    | 11.5                                    | 0.27                                                                                            | 60.1             | 4.37                                      |  |  |
| 043                                                                                                          | 4.29                          | 300                         | 6.75                                                                              | 1196                                                                                                                                    | 11.6                                    | 0.19                                                                                            | 59.6             | 4.62                                      |  |  |
| 010                                                                                                          | 4.29                          | 300                         | 6.75                                                                              | 1214                                                                                                                                    | 11.5                                    | 0.16                                                                                            | 58.2             | 4.68                                      |  |  |
| 649                                                                                                          | 4.18                          | 200                         | 6.75                                                                              | 1230                                                                                                                                    | 11.6                                    | 0.40                                                                                            | 51.1             | 3.17                                      |  |  |
| 052                                                                                                          | 4.18                          | 200                         | 6.75                                                                              | 1252                                                                                                                                    | 11.6                                    | 0.29                                                                                            | 51.7             | 2.66                                      |  |  |
| 055                                                                                                          | Collect                       | "CCW-                       | 1/c flow c                                                                        | ell                                                                                                                                     |                                         |                                                                                                 | WY = Y           | A Maria                                   |  |  |
|                                                                                                              |                               |                             | ,                                                                                 |                                                                                                                                         |                                         | Onder Control                                                                                   | t: TWAAFA 4Q23   |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         | Samplers: ES/MW Sample ID: CCW-1A-1223                                                          |                  |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         |                                                                                                 |                  |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         | Date:                                                                                           | 12/18/23 Time: 1 | 055                                       |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         |                                                                                                 | Analysis:        |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         | Preservative: —                                                                                 |                  |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         |                                                                                                 |                  |                                           |  |  |
|                                                                                                              |                               |                             |                                                                                   |                                                                                                                                         |                                         |                                                                                                 |                  |                                           |  |  |
| lotes:                                                                                                       | *Per EPA (2023), O            | RP direct measuren          | nent data recorded is                                                             | "ORP referenced to                                                                                                                      |                                         | electrode". Electrod                                                                            | le calibrated in | solution.                                 |  |  |
| otes.                                                                                                        |                               |                             |                                                                                   | ab for almi                                                                                                                             | ~                                       |                                                                                                 |                  |                                           |  |  |
|                                                                                                              | - Sampl                       |                             | gal                                                                               |                                                                                                                                         |                                         |                                                                                                 |                  |                                           |  |  |
|                                                                                                              | Bottles and A                 |                             | (collected in o                                                                   | rder below)                                                                                                                             | CAYADE ET                               |                                                                                                 |                  |                                           |  |  |
| (1)                                                                                                          | 1 x                           | 500 mL HDPF w/              | HNO. 6020 Total I                                                                 | Matale AD A Cr                                                                                                                          | D, @, @, Ni, Pb, Z                      | n) and 1631E (Hg)                                                                               | 1 4 6 6 1 1      |                                           |  |  |
| (1)                                                                                                          | 1 ×                           | 500 mL HDPE W/              | HNO <sub>3</sub> 6020 Dissol                                                      | ved Metals (A),(A),                                                                                                                     | Cr, O.O. O., Ni,                        | Pb, Zn) and 1631E (F                                                                            | lg) Y Field      | Filtered (0.45µm)                         |  |  |
| (1)                                                                                                          | 1 ×                           | 250ml HD1                   | PE for Ferra                                                                      | es Iron                                                                                                                                 |                                         |                                                                                                 |                  |                                           |  |  |
|                                                                                                              |                               | Y - Y                       |                                                                                   | S. /1                                                                                                                                   |                                         |                                                                                                 |                  |                                           |  |  |

| DOF DALTON OLMSTED FUGLEVAND |                               |                        | Monitoring Well Sampling Field Sheet Sampling Personnel: |                                                                                                                                       |                        | Well No. CCW - 1B Facility/Project: TWAAFA Initial Headspace (ppm) D. (e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------------|-------------------------------|------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                              |                               |                        | 일이 계면 가게 되었다.                                            |                                                                                                                                       |                        | Intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | , '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ampling                      | يده/ Method                   | How peri               | ES/MW                                                    | total well depth - water                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| quipment Used:               |                               | Well volume = 0.17 * ( | total well depth - water                                 | (level)                                                                                                                               |                        | ge/sample with pump on (ft,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8100): 4,04                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Q-451                        | Pio quetro Pump               | Mosterflex             | Well Volume =                                            | 0-372')×                                                                                                                              | gal                    | Pump Intake Depth (ft.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 of bottom                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              | Purge start time:             | 1112                   | Initial Flow Rate:                                       | 300                                                                                                                                   | Flow cell disconnected | Index to compliant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              | Purge stop time:              | 1147                   | Final Flow Rate:                                         | 400                                                                                                                                   | Flow cell disconnected | prior to sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       | y Measurement          | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       | Javar Grysal (C)       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Time                         | Water level                   | Purge Rate             | рН                                                       | SPC                                                                                                                                   | Temperature            | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential *                  | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| (military)                   | ft                            | (ml/min)               | pH Units                                                 | uS/cm                                                                                                                                 | °C                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                                 | (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                              | < 0.33 ft from<br>2nd reading | < 500 mL               | < 0.1 unit                                               | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 10 mV                            | {3 readings} < 5 NTU<br>< 10% if >5 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 113                          | 3,97                          | 300                    | 6.81                                                     | 582                                                                                                                                   | 12.7                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.2                               | 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 116                          | 3.99                          | 300                    | 6.86                                                     | 829                                                                                                                                   | 13.1                   | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69.7                               | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 119                          | 3.99                          | 300                    | 6.90                                                     | 883                                                                                                                                   | 13.3                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69.8                               | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 122                          | 3,99                          | 700                    | 6.91                                                     | 917                                                                                                                                   | 13.5                   | 0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69.60                              | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 125                          | 3,96                          | 300                    | 6.92                                                     | 936                                                                                                                                   | 13.5                   | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.0                               | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 128                          | 4.02                          | 400                    | 6.93                                                     | 946                                                                                                                                   | 13.7                   | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.1                               | 8.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 131                          | 4.04                          | 400                    | 6.94                                                     | 958                                                                                                                                   | 13.7                   | 0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.1                               | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 134                          | 4.04                          | 400                    | 6.94                                                     | 963                                                                                                                                   | 13.8                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.4                               | 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 137                          | 4.04                          | 400                    | 6.94                                                     | 970                                                                                                                                   | 13.8                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61.8                               | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                              | All paym                      | 5 Stalle               | de flow                                                  | cell                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 140                          | Collect                       | -ccw-                  | 1B-1223                                                  | " w/ E                                                                                                                                | KTRA VOL               | for MS/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SD:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TWAAFA 4Q23                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        | The second secon | S: ES/MW                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D: CCW-1B-1223<br>/18/23 Time: 114 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        | Date: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        | l'                                                       |                                                                                                                                       |                        | Analysis: Preserva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                              |                               |                        |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               |                        |                                                          |                                                                                                                                       | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              |                               | 1                      |                                                          |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | United States                      | The same of the sa |  |
| lotes:                       |                               | -                      | ment data recorded is                                    | s "ORP referenced to                                                                                                                  |                        | electrode". Electrod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | le calibrated in                   | solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                              | - MS/MS                       | VO1 + 2.5              | ed here!                                                 |                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                              | Bottles and                   |                        | (collected in c                                          | order helow)                                                                                                                          | 77.1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (2)                          |                               |                        | / HNO <sub>3</sub> 6020 Total                            |                                                                                                                                       | CO FO M. Ni. Ph        | Zn) and 1631F (Ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (3)                          |                               |                        |                                                          |                                                                                                                                       |                        | Pb, Zn) and 1631E (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lg) 🔽 Field                        | d Filtered (0.45µm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (3)                          |                               |                        | PE for Ferror                                            |                                                                                                                                       | S. C. G. C. J. M.,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J. LEI HER                         | е. со (о.нэµm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3,                           |                               |                        |                                                          | J 1. J. V                                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

|                    | OF 8                                 | ALTON<br>LMSTED<br>UGLEVAND | Monitoring<br>Sampling Pers | Well Sampling                                                                                                                            | g Field Sheet         | Well No. CCW - I C Facility/Project: TWAAFA Initial Headspace (ppm)                              |                                                              |                                            |  |
|--------------------|--------------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|--|
| Samplin            | a Mother 1                           | C                           | Jampling Pers               |                                                                                                                                          |                       | Intial-Water Level befor                                                                         | 0.0 ppm                                                      | 1                                          |  |
| Equipme            | g Method: اهم<br>ent Used:           | flow per.                   | Well volume = 0.17 *        | ES MW (total well depth - wate                                                                                                           | r Inval)              |                                                                                                  | urge/sample with pump on (ft                                 | TG'                                        |  |
| WL-920.            | VQ - YSi pro quato pump - Hosterflex |                             | Well Volume = 0.17          | (total well depth - wate                                                                                                                 | r level)              |                                                                                                  |                                                              | 100, 9.61                                  |  |
| NQ-YSi<br>Turb-Ges | pro quato pump                       | - Mouterflex<br>EXS         | Well Volume =               | 23' -9.56                                                                                                                                | 2.3                   | Pump Intake Depth (ft. E                                                                         | f bottom                                                     |                                            |  |
|                    |                                      | 1152                        | Initial Flow Rate:          | 400                                                                                                                                      |                       | a manage de la versa                                                                             | ব                                                            |                                            |  |
|                    | Purge stop time:                     | 1211                        | Final Flow Rate:            | 400                                                                                                                                      | Flow cell disconnecte | d prior to sampling :                                                                            | lacksquare                                                   |                                            |  |
|                    |                                      | 10.11                       |                             | THE LANGE OF STRAIN                                                                                                                      | ty Measuremen         | ts                                                                                               |                                                              |                                            |  |
| Time               | Water level                          | Purge Rate                  | рН                          | Conductivity                                                                                                                             | Temperature           | Dissoved<br>Oxygen                                                                               | Redox Potential                                              | Turbidity                                  |  |
| (military)         | ft                                   | (mL/min)                    | pH Units                    | uS/cm                                                                                                                                    | °C                    | mg/L                                                                                             | mV                                                           | (NTU)                                      |  |
|                    | < 0.33 ft from<br>2nd reading        | < 500 mL                    | < 0.1 unit                  | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                  | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                                                      | (3 readings) < 5 NTU or<br>< 10% if >5 NTU |  |
| 1153               | 9.61                                 | 430                         | 6.91                        | 7222                                                                                                                                     | 14.6                  | 0.15                                                                                             | 77.2                                                         | 10.2                                       |  |
| 1156               | 9.61                                 | 400                         | 7.03                        | 2160                                                                                                                                     | 14.7                  | 0.43                                                                                             | 63.8                                                         | 8.71                                       |  |
| 1159               | 9.61                                 | 400                         | 7.03                        | 2/00                                                                                                                                     | 14.7                  | 0.62                                                                                             | 55.0                                                         | 4,15                                       |  |
| 1202               | 9.61                                 | 400                         | 7.03                        | 2084                                                                                                                                     | 19.7                  | 0.53                                                                                             | 49.7                                                         | 3.21                                       |  |
| 1205               | 9.61                                 | 400                         | 7.03                        | 2080                                                                                                                                     | 14.7                  | 0:44                                                                                             | 45.1                                                         | 3.91                                       |  |
|                    | All pari                             | ns stab                     | 4 d/c flow                  | o cell                                                                                                                                   |                       |                                                                                                  |                                                              |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       |                                                                                                  |                                                              |                                            |  |
|                    | 1200                                 |                             |                             |                                                                                                                                          |                       | Proje                                                                                            | Project: TWAAFA 4Q23 Samplers: ES/MW                         |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       | Sam                                                                                              |                                                              |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       | Sam                                                                                              | Sample ID: CCW-1C-1223  Date: 12/18/23 Time: 1210  Analysis: |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       |                                                                                                  |                                                              |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       |                                                                                                  | rvative:                                                     |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       | .,,,,,                                                                                           | orvauve.                                                     |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       | 1 ==                                                                                             |                                                              | (11 11 11 11 11 11 11 11 11 11 11 11 11    |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       | A grant of the contract of                                                                       |                                                              |                                            |  |
| Notes:             | *Per EPA (2023), 0                   |                             | nent data recorded is       | "ORP referenced to                                                                                                                       |                       | electrode". Electrod                                                                             | e calibrated in                                              | solution.                                  |  |
| st                 | UTWEET THE                           | articles                    | feeth of the                |                                                                                                                                          |                       |                                                                                                  |                                                              |                                            |  |
| 9                  | Bottles and A                        |                             | _(collected in o            |                                                                                                                                          | 300 W 31 -            | -1 4 4 5 3 4 5 11 - 1                                                                            |                                                              |                                            |  |
| (1)                | 1 ×                                  | 250 mt HDPE W/              | HNO. 6020 Dis-              | Metals ( A) A, Cr, (                                                                                                                     | Cr. Ch. (Ch. Ch. H.)  | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                        | a) [7]                                                       | Filtered (0.45µm)                          |  |
| (1)                |                                      |                             | F for Ferral                |                                                                                                                                          | cr, Edite, Mil, I     | ro, Ziij and 16312 (H                                                                            | s) 🔽 Field                                                   | ritered (0.45μm)                           |  |
| 100                | X                                    | POOM LINE                   | - les Leiver                | 3 17 04                                                                                                                                  |                       |                                                                                                  |                                                              |                                            |  |
|                    |                                      |                             |                             |                                                                                                                                          |                       |                                                                                                  |                                                              |                                            |  |

| _          | OF P                                        |             | FE 1/13/11           | Well Sampling                                                                                                                         | g Field Sheet          | Well No. CCW - QA Facility/Project: TWAAFA                                                    |                               |                                         |  |
|------------|---------------------------------------------|-------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|--|
| Pate:      | 2/14/23                                     | 200000      | Sampling Pers        | onnel:                                                                                                                                |                        | Initial Headspace (ppm)                                                                       | UDAL -                        | let dissapate                           |  |
| amplin     | g Method: 1                                 | o flow per. | ES                   | /MW                                                                                                                                   |                        | Intial-Water Level befor                                                                      | e purge (ft. BTOC) 2.1        | 3                                       |  |
| - daibille | quipment Used:<br>12-9CO #7068 PID DVI 6000 |             | Well volume = 0.17 * | (total well depth - water                                                                                                             | r level)               | End-Water Level post po                                                                       | urge/sample with pump on (ft. | BTOC): 2.17                             |  |
| VC - 700   | Dra Gratia                                  | 14 6 800    | Well Volume =        |                                                                                                                                       |                        | Pump Intake Depth (ft.E                                                                       |                               |                                         |  |
| urb - ge   | tulo Pump                                   | E/S         | weii voiume =        | 1=07-21                                                                                                                               | 2 120.6                | ~1                                                                                            | off bottom                    |                                         |  |
| ju.        | Purge start time:                           | 1210        | Initial Flow Rate:   | 150                                                                                                                                   | Ober Many or Short or  |                                                                                               |                               |                                         |  |
|            | Purge stop time:                            |             | Final Flow Rate:     | 150                                                                                                                                   | Flow cell disconnected | prior to sampling :                                                                           |                               |                                         |  |
| _          |                                             | 1249        |                      | 100 CO                                                                                                                                |                        |                                                                                               |                               |                                         |  |
|            |                                             |             |                      | Water Quain                                                                                                                           | ty Measuremen          | ts                                                                                            |                               |                                         |  |
| Time       | Water level                                 | Purge Rate  | рН                   | SPC                                                                                                                                   | Temperature            | Dissoved<br>Oxygen                                                                            | Redox Potential               | Turbidity                               |  |
| (military) | ft                                          | (mL/min)    | pH Units             | uS/cm                                                                                                                                 | °C                     | mg/L                                                                                          | mV                            | (NTU)                                   |  |
|            | < 0.33 ft from<br>2nd reading               | < 500 mL    | < 0.1 unit           | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                       | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |
| 212        | 2.17                                        | 150         | 6.64                 | 1244                                                                                                                                  | 11.3                   | 0.14                                                                                          | 90.4                          | 4.94                                    |  |
| 215        | 5.0                                         | 150         | 10.54                | 1213                                                                                                                                  | 11.3                   | 0.07                                                                                          | 94.1                          | 4.06                                    |  |
| 218        | 207                                         | 150         | 6.54                 | 1215                                                                                                                                  | 11.4                   | 0.09                                                                                          | 94.6                          | 3.69                                    |  |
| 221        | 2.17                                        | 150         | 4.54                 | 1187                                                                                                                                  | 11.4                   | 0.13                                                                                          | 93.1                          | 2.70                                    |  |
| 224        | 2.17                                        | 150         | 6.54                 | 1141                                                                                                                                  | 11.5                   | 0.17                                                                                          | 91.1                          | 3.80                                    |  |
| 227        | 2.17                                        | 150         | 6.54                 | 1128                                                                                                                                  | 11.5                   | 0.14                                                                                          | 89.7                          | 2.51                                    |  |
| 230        | 2.17                                        | 150         | 6.54                 | 1093                                                                                                                                  | 11.5                   | 0.13                                                                                          | 87.4                          | 1.97                                    |  |
| 233        | 2.17                                        | 150         | 6.54                 | 1063                                                                                                                                  | 11.6                   | 0.13                                                                                          | 82.3                          | 1.76                                    |  |
| عادي       | 2.17                                        | 150         | 6.53                 | 1048                                                                                                                                  | 11.6                   | 0.12                                                                                          | 83.9                          | 3.51                                    |  |
| 237        | 2.17                                        | 150         | 6,53                 | 1034                                                                                                                                  | 11.6                   | 0.12                                                                                          | 81.9                          | 2.84                                    |  |
|            | All par                                     | ms stabl    |                      | cell                                                                                                                                  |                        |                                                                                               |                               |                                         |  |
| 245        | Collect                                     | -ccw-       | 2A-1223              | "                                                                                                                                     |                        |                                                                                               |                               |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        |                                                                                               |                               |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        |                                                                                               |                               |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        |                                                                                               |                               |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        | Project: TWA                                                                                  | AFA 4Q23                      |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        | Samplers: ES                                                                                  |                               |                                         |  |
| 1          |                                             |             |                      |                                                                                                                                       |                        |                                                                                               | CCW-2A-1223                   | <u> </u>                                |  |
|            |                                             |             |                      |                                                                                                                                       |                        | Date: 12/14/2                                                                                 | 23 Time: 1245                 |                                         |  |
|            |                                             |             |                      |                                                                                                                                       |                        | Analysis:                                                                                     |                               |                                         |  |
|            |                                             |             |                      | -                                                                                                                                     | -                      | Preservative:                                                                                 |                               | -                                       |  |
|            |                                             |             | -                    |                                                                                                                                       |                        |                                                                                               |                               |                                         |  |
|            |                                             | 0.707       |                      | WATER VENTORIAL AV                                                                                                                    |                        | S. // S. I. C.                                            | 21 - 12 - 12                  |                                         |  |
| lotes:     |                                             |             |                      | s "ORP referenced to                                                                                                                  |                        | electrode", Electro                                                                           | de calibrated in              | solution.                               |  |
|            | - Gw has                                    |             | My tubing (d         | wk)                                                                                                                                   |                        |                                                                                               |                               |                                         |  |
|            | - sample                                    |             | (collected in a      | redor holess                                                                                                                          |                        |                                                                                               |                               |                                         |  |
| 9          | Bottles and A                               |             |                      |                                                                                                                                       | 70 CD 11 71 71         | (a) and a coas (to )                                                                          |                               |                                         |  |
| (1)        |                                             |             |                      | Metals (A), (S) Cr, (                                                                                                                 |                        |                                                                                               | ua) 🗹 🖽                       | Eiltored (O. 45)                        |  |
| (1)        |                                             |             | DPE For Fer          |                                                                                                                                       | CI, CUI CO, NUI, NI,   | Pb, Zn) and 1631E (                                                                           | Hg) U Field                   | l Filtered (0.45μm)                     |  |
| 11         | , X                                         | L30 M       | MIE TON TEN          | vous Ivon                                                                                                                             |                        |                                                                                               |                               |                                         |  |

| ate: \                        | DOF DALTON OLMSTED FUGLEVAND    |                         |                       | Monitoring Well Sampling Field Sheet                                                                                                    |                          |                                                                                                 | Well No. CCW-2B Facility/Project: TWAAFA       |                                           |  |  |
|-------------------------------|---------------------------------|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|--|--|
| ampling                       | 2/14/23                         |                         | Sampling Pers         |                                                                                                                                         |                          | Initial Headspace (ppm)                                                                         | V.0 PF-                                        |                                           |  |  |
| ampling Method: low flow peri |                                 | flow peri               | ES/M                  | W                                                                                                                                       |                          |                                                                                                 | re purge (ft. BTOC) 2.8                        |                                           |  |  |
| quipmer                       | nt Used:                        | NACE AND SEC            | Well volume = 0.17 *  | (total well depth - water                                                                                                               | r level)                 | End-Water Level post po                                                                         | urge/sample with pump on (f)                   | BTOC): 3.02                               |  |  |
| 12-900 #                      | 17068 PID-                      | PIKI-WOOD<br>Masterturk | Well Volume =         | 1 92 1 1 7 1                                                                                                                            | . 17                     | Pump Intake Depth (ft.8                                                                         | втос):                                         |                                           |  |  |
| urb-gw                        | turb                            | E15                     | 17(1                  | 150                                                                                                                                     | 5)= gol                  | ~ /                                                                                             | off bottom                                     |                                           |  |  |
| 1.1                           | Purge start time:               |                         | Initial Flow Rate:    | 150                                                                                                                                     | Flow cell disconnected   | f prior to sampling :                                                                           | M                                              |                                           |  |  |
|                               | Purge stop time:                | 1413                    | Final Flow Rate:      | 150                                                                                                                                     | 77 - 17 - 17             |                                                                                                 |                                                |                                           |  |  |
|                               |                                 |                         |                       | Water Qualit                                                                                                                            | ty Measurement           | ts                                                                                              |                                                |                                           |  |  |
| Time                          | Water level                     | Purge Rate              | рН                    | SPC                                                                                                                                     | Temperature              | Dissoved<br>Oxygen                                                                              | Redox Potential                                | Turbidity                                 |  |  |
| (military)                    | ft                              | (mt/min)                | pH Units              | uS/cm                                                                                                                                   | °C                       | mg/L                                                                                            | mV                                             | (NTU)                                     |  |  |
|                               | < 0.33 ft from<br>2nd reading   | < 500 mL                | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                     | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                                        | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |  |
| 1338                          | 2.87                            | 150                     | 6.68                  | 1953                                                                                                                                    | 13.60                    | 0.20                                                                                            | 114.9                                          | 1.23                                      |  |  |
| 3411                          | 3.02                            | 150                     | 6.86                  | 1933                                                                                                                                    | 13.8                     | 0.14                                                                                            | 108.4                                          | 0.19                                      |  |  |
| 344                           | 3.08                            | 150                     | 60.99                 | 1934                                                                                                                                    | 13.8                     | 0.11                                                                                            | 103.2                                          | 0.78                                      |  |  |
| 13417                         | 3,13                            | 150                     | 7.04                  | 1931                                                                                                                                    | 13.8                     | 0.10                                                                                            | 99.9                                           | 1.50                                      |  |  |
| 350                           | 3.16                            | 150                     | 7.08                  | 1928                                                                                                                                    | 13.8                     | 0.09                                                                                            | 95,4                                           | 0.60                                      |  |  |
| 1                             |                                 | is Stable               | dic flow              |                                                                                                                                         |                          | 717 1                                                                                           |                                                |                                           |  |  |
|                               |                                 |                         |                       |                                                                                                                                         |                          |                                                                                                 |                                                |                                           |  |  |
|                               |                                 |                         |                       |                                                                                                                                         |                          |                                                                                                 |                                                |                                           |  |  |
|                               |                                 |                         |                       |                                                                                                                                         |                          | —— Samplers                                                                                     | D: CCW-28-1223<br>14/23 Time: 1355<br>**MS/M<1 | * ====================================    |  |  |
| _                             | *Per EPA (2023), OI<br>- Sample |                         | nent data recorded is | s "ORP referenced to                                                                                                                    |                          | electrode", Electrod                                                                            | e calibrated in                                | solution.                                 |  |  |
| <u> </u>                      | - MS/MS<br>Bottles and A        | O (sulec'inalyses:      | collected in c        | rder below)                                                                                                                             |                          |                                                                                                 | out Gorgot filter                              | 1                                         |  |  |
| 127 -                         | 3 x                             | 500 mL HDPF w/          | HNO, 6020 Discol      | Metals (A), (As, Cr, C)                                                                                                                 | Ni, Pb, Zr               | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                       | /                                              | ALACAS, VALOR                             |  |  |
| K -                           |                                 | 250 ml HC               | OPE for Ferra         | us Iron                                                                                                                                 | Cr, Cy, Cy, IVII), NI, P | rb, Zn) and 1631E (H                                                                            | lg)                                            | Filtered (0.45µm)                         |  |  |

|            | OF R                       | LMSTED<br>JGLEVAND | Monitoring<br>Sampling Pers   | Well Sampling                                                                                             | g Field Sheet           | Well No. CCW - 2C  Facility/Project: TWAAFA  Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|------------|----------------------------|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| anette     | 2/14/23                    |                    |                               |                                                                                                           |                         | Intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIZPP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43                   |  |
| ampling    | Method: /o                 | oflaw per.         | ES/M                          | (total well depth - water                                                                                 | r lavel)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W . 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PTOC): A = a         |  |
| - aaibiiie | THE LICENT                 |                    | Well volume = 0.17            | (total well depth - water                                                                                 | r level)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rge/sample with pump on (ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.73                 |  |
| VQ - VO F  | C- YO # 7008 PID. DX1-6000 |                    | Well Volume =                 |                                                                                                           | 2.6                     | Pump Intake Depth (ft.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1001 0 102 at 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| urb - que  | drut.                      | E13                | .17(1                         | 4' - 868                                                                                                  | ) = gol                 | ~2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | off bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |
|            | Purge start time:          | 1116               | Initial Flow Rate:            | 400                                                                                                       | Flow cell disconnected  | DAG TO A SHART TO SEE A STATE OF THE SECOND  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |
|            | Purge stop time:           | 1142               | Final Flow Rate:              | 400                                                                                                       |                         | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            |                    |                               | Water Qualit                                                                                              | ty Measuremen           | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| Time       | Water level                | Purge Rate         | рН                            | SPC                                                                                                       | Temperature             | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity            |  |
| (military) | ft                         | (mL/min)           | pH Units                      | uS/cm                                                                                                     | °C                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (NTU)                |  |
|            | < 0.33 ft from             |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | {3 readings} < 5 NTU |  |
|            | 2nd reading                | < 500 mL           | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>&lt; 10% if &gt;5 NTU</td></td> | < 3%                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 10% if >5 NTU      |  |
| 1117       | 8.73                       | 400                | 6.89                          | 1749                                                                                                      | 13.8                    | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.07                 |  |
| 1120       | 8.72                       | 400                | 6.92                          | 1723                                                                                                      | 13.8                    | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.82                 |  |
| 123        | 8.73                       | 400                | 6,93                          | 1707                                                                                                      | 13,9                    | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                 |  |
| 1126       | 8.73                       | 4/00               | 6.93                          | 1718                                                                                                      | 13.9                    | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81                 |  |
| 1129       | 8,73                       | 400                | 6,94                          | 1702                                                                                                      | 14.2                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.13                 |  |
| 132        | 8,73                       | 4/00               | 6.94                          | 1720                                                                                                      | 14.0                    | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                 |  |
| 1135       | 3.73                       | 4/00               | 6.94                          | 1707                                                                                                      | 13.9                    | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.99                 |  |
| 16.10      |                            |                    | 4, de Ho                      |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| 1140       | Collect                    | - cen              | -2c-12                        | 73.                                                                                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| _          |                            |                    | +                             |                                                                                                           | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |
|            | 11 11 11 11                |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of t |                      |  |
|            |                            |                    |                               | la garage                                                                                                 |                         | - ngayla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : TWAAFA 4Q23<br>ers: ES/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e ID: CCW-2C-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                    |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/14/23 Time: 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |
|            |                            |                    |                               |                                                                                                           |                         | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |  |
|            |                            |                    |                               |                                                                                                           |                         | The Part of the Pa | vative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |
|            |                            |                    |                               |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| Notes:     |                            |                    |                               | is "ORP referenced to                                                                                     |                         | electrode". Electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de calibrated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solution.            |  |
|            |                            | yol + 2            | is gol                        |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
|            |                            | ed off             | 9                             |                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| 7          | Bottles and                |                    | _(collected in                |                                                                                                           | 13.12.65                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| 111        | x                          | 500 mL HOPE W      | / HNO <sub>3</sub> 6020 Total | Metals (A), (Cr.                                                                                          | (O), (De, 1402, Ni, Pb, | Zn) and 1631E (Hg)<br>Pb, Zn) and 1631E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |
| (1)        |                            |                    | / UNIO CORO DI                | M. M. slestels A. Level                                                                                   | C. CO ES MA NI          | Dh 7n) and 1631E/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hal Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Filtered (0.45µm)    |  |
| (1)        |                            | 250 ml HDPEW       | ADPE For fer                  | ived ivietais (A), (S),                                                                                   | C1, 69, 04, 1811, 141,  | FB, 211) and 1031E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | riiterea (0.45µm)    |  |

(2) 3 = Total Bottles

|                   | OF P               |                                  |                                                                                  | g Well Sampling                                                                                           | g Field Sheet                                 | Well No. CCW - 3A Facility/Project: TWAAFA Initial Headspace (ppm) |                              |                                  |  |
|-------------------|--------------------|----------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|------------------------------|----------------------------------|--|
| Date: 1           | 2/14/23            |                                  | Sampling Per                                                                     | 1201                                                                                                      |                                               | 1100 51005 7505                                                    | Bilo PPM                     |                                  |  |
| Sampling          | g Method: المر     | s flow per.                      | ES/HV                                                                            |                                                                                                           |                                               | Intial-Water Level befor                                           |                              | 11, (38,000                      |  |
| equipme           | ent Used:          | 711-6000                         | Well volume = 0.17                                                               | total well depth - wate                                                                                   | r level)                                      | End-Water Level post p                                             | urge/sample with pump on (ft | . BTOC): 3,38                    |  |
| WQ-VSI            | Pro Questro Pump   | Masterfler                       | Well Volume =                                                                    |                                                                                                           | 175                                           | Pump Intake Depth (ft.)                                            |                              |                                  |  |
| Turb - 720        | turb.              | E15                              | 171                                                                              | 7.6'-3.3                                                                                                  | 4 )= gal                                      | ~                                                                  | 1" off bottom                |                                  |  |
|                   | Purge start time:  | 0948                             | Initial Flow Rate:                                                               | 300                                                                                                       | Flow cell disconnected                        | prior to sampling                                                  | N                            |                                  |  |
|                   | Purge stop time:   | 1011                             | Final Flow Rate:                                                                 | 150                                                                                                       |                                               |                                                                    |                              |                                  |  |
|                   |                    |                                  |                                                                                  |                                                                                                           | ty Measurement                                | ts                                                                 |                              |                                  |  |
| Time              | Water level        | Purge Rate                       | рН                                                                               | Conductivity                                                                                              | Temperature                                   | Dissoved                                                           | Redox Potential              | Turbidity                        |  |
| (military)        | ft                 | (mL/min)                         | pH Units                                                                         | uS/cm                                                                                                     | °C                                            | Oxygen<br>mg/L                                                     |                              | (NITH)                           |  |
| (mical f)         | < 0.33 ft from     |                                  |                                                                                  |                                                                                                           | - 700                                         | Laboration of the                                                  | mV                           | (NTU)<br>{3 readings} < 5 NTU or |  |
|                   | 2nd reading        | < 500 mL                         | < 0.1 unit                                                                       | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                          | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>&lt; 10% if &gt;5 NTU</td>  | < 10 mV                      | < 10% if >5 NTU                  |  |
| 0750              | 3.36               | 120                              | 6.81                                                                             | 1334                                                                                                      | 12.5                                          | 0.23                                                               | 119.1                        | 13.4                             |  |
| 5280              | 3.32               | 150                              | 4.76                                                                             | 1357                                                                                                      | 11.8                                          | D.23                                                               | 131.2                        | /1.38                            |  |
| 0956              | 3,30               | 150                              | 6.76                                                                             | 1365                                                                                                      | 11.9                                          | 0.43                                                               | 134.2                        | 11.9                             |  |
| 0959              | 3.31               | 150                              | 6.76                                                                             | 1377                                                                                                      | 11.8                                          | 0.42                                                               | 136.5                        | 10.7                             |  |
| 002               | 3.31<br>All pam    | 150                              | 6.76                                                                             | 1376                                                                                                      | 12.2                                          | 0:36                                                               | 137.4                        | 11.5                             |  |
|                   |                    |                                  |                                                                                  |                                                                                                           |                                               |                                                                    |                              |                                  |  |
|                   |                    |                                  |                                                                                  |                                                                                                           |                                               | Samplers: E                                                        | TWAAFA 4Q23<br>#s: ES/MW     |                                  |  |
|                   |                    |                                  |                                                                                  |                                                                                                           |                                               | Date: 12/14/ Analysis: Preservative                                | 23 Time: 1005                |                                  |  |
|                   | *Per EPA (2023), O |                                  |                                                                                  | s "ORP referenced to                                                                                      |                                               | electrode". Electrod                                               | e calibrated in              | solution.                        |  |
| (1)<br>(1)<br>(1) | 1 x.               | 500 mL HDPE w/<br>500 mL HDPE w/ | (collected in c<br>HNO <sub>3</sub> 6020 Total I<br>HNO <sub>3</sub> 6020 Dissol | Metals (A), (S) Cr, (C)<br>ved Metals (A), (A), (C)                                                       | <b>, , , , , , , , , , , , , , , , , , , </b> | ) and 1631E (Hg)<br>၍ ကြ) and 1631E (H                             | g) 🗹 Field F                 | Filtered (0.45µm)                |  |

|            | OF:                                     | LMSTED<br>UGLEVAND                              |                       | Well Samplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Field Sheet                                   | Well No. CC<br>Facility/Project:                                                                               | TMAAEA                       |                                           |
|------------|-----------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|
| Date: 1    | 2/14/23                                 |                                                 | Sampling Pers         | sonnel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | Initial Headspace (ppm)                                                                                        | ~28.5 ppm                    | 12-11-11-11-11-11-11-11-11-11-11-11-11-1  |
| Samplin    | g Method: /s                            | w Howper.                                       | ESIMO                 | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | Intial-water Level before                                                                                      | e purge (ft. BTOC)           | 3° (sticked)                              |
| Equipme    | ent Used.                               |                                                 | Well volume = 0.17 *  | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r level)                                        | End-Water Level post pu                                                                                        | rge/sample with pump on (ft. | BTOC): 4.17                               |
| WQ-45      | 47068 PID-                              | Martin                                          | Well Volume =         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7                                             | Pump Intake Depth (ft.B                                                                                        | TOC):                        |                                           |
| Turb - 34  | o. teurb                                | EIS                                             | 17/10                 | 1.8-3:73'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 900                                          | ~1                                                                                                             | off bottom                   |                                           |
|            | Purge start time:                       | 1022                                            | Initial Flow Rate:    | 25003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow cell disconnected                          | d prior to sampling                                                                                            | Tel Colonia                  |                                           |
|            | Purge stop time:                        | 1044                                            | Final Flow Rate:      | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | prior to sumpling .                                                                                            |                              |                                           |
|            |                                         |                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Measuremen                                    | ts                                                                                                             |                              |                                           |
| Time       | Water level                             | Purge Rate                                      | рН                    | SPC<br>Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature                                     | Dissoved<br>Oxygen                                                                                             | Redox Potential              | Turbidity                                 |
| (military) | ft                                      | (mL/min)                                        | pH Units              | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                                              | mg/L                                                                                                           | mV                           | (NTU)                                     |
|            | < 0.33 ft from<br>2nd reading           | < 500 mL                                        | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 3%                                            | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td>             | < 10 mV                      | {3 readings} < 5 NTU <<br>< 10% if >5 NTU |
| 1024       | 4.08                                    | 350                                             | 6.93                  | 1207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.9                                            | 0.51                                                                                                           | 123.6                        | 7.65                                      |
| 1027       | 41.13                                   | 350                                             | 6.86                  | 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1                                            | 0.57                                                                                                           | 119.0                        | 7.15                                      |
| 1030       | 4/13                                    | 350                                             | 6.85                  | 1238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1                                            | 0.53                                                                                                           | 114.7                        | 4.91                                      |
| 1033       | 4.16                                    | 350                                             | 6.84                  | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.2                                            | 0.44                                                                                                           | 112.5                        | 4.19                                      |
| 1036       | 4.16                                    | 350                                             | 6.84                  | 1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.3                                            | 0.38                                                                                                           | 110.5                        | 3.23                                      |
| 1040       | Court                                   | S Stables                                       | die flow              | cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIY H THE                                       | L WAY -                                                                                                        |                              |                                           |
|            |                                         |                                                 |                       | - Planto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                                                                                                |                              |                                           |
|            |                                         |                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Project: TW/ Samplers: E Sample ID:                                                                            | S/MW<br>CCW-3B-1223          |                                           |
|            |                                         |                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Date: 12/14 Analysis: Preservativ                                                                              |                              |                                           |
|            |                                         |                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                |                              |                                           |
|            |                                         |                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                |                              |                                           |
|            | *Per EPA (2023), Of                     | RP direct measuren                              | nent data recorded is | "ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | electrode". Electrode                                                                                          | calibrated in                | solution.                                 |
| Notes:     | - Poin has                              | s eday                                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                |                              |                                           |
| Notes:     |                                         |                                                 | Saal                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                |                              |                                           |
|            | - Sample                                |                                                 |                       | A STATE OF THE PARTY OF THE PAR |                                                 |                                                                                                                |                              |                                           |
| 7          | — Sawqu<br>Bottles and A                | nalyses:                                        | (collected in o       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                             | Augustus de la compansión |                              |                                           |
| 7 (1)      | - Sangu<br>Bottles and A                | nalyses:<br>500 mL HDPE w/                      | (collected in o       | Metals (A) (A) Cr. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ),(G), (M), Ni, Pb, Zi                          | n) and 1631E (Hg)                                                                                              | . 🗖                          |                                           |
| 7          | - Savigu<br>Bottles and A<br>  X<br>  X | nalyses:<br>500 mL HDPE w/<br>1分か<br>mL HDPE w/ | (collected in o       | Metals <b>(A),(G)</b> Cr, <b>(</b> C)<br>wed Metals <b>(A),(B</b> s, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ),(@, (Ø), Ni, Pb, Zi<br>cr, (Ø),(&, (ŵ), Ni, F | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                                      | g) 🗹 Field I                 | Filtered (0.45µm)                         |

|                       | OF                            | LMSTED<br>JGLEVAND | VINCTURE AND | Well Sampling                                                                                                                           | g Field Sheet                         | Facility/Project:                                                                               |                               |                                           |
|-----------------------|-------------------------------|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Date: \               | 2/14/23                       |                    | Sampling Pers                                    |                                                                                                                                         |                                       | Initial Headspace (ppm)                                                                         | C. I proc                     |                                           |
|                       | g Method: امن                 | flow Mer.          | FSIN                                             | W                                                                                                                                       |                                       | Intial-Water Level before                                                                       | e purge (ft. BTOC) 12 .3      | 13 (stroky                                |
| equipme               | ent Used:                     |                    |                                                  | (total well depth - wate                                                                                                                | r level)                              |                                                                                                 | urge/sample with pump on (ft. |                                           |
| Nr - Jro#             | Pro quido Pump                | K1-6000            | LICENSON T                                       |                                                                                                                                         |                                       | Pump Intake Depth (ft.                                                                          | STOC):                        | 12.02                                     |
| WQ - 35<br>Turb - 920 | turp.                         | E15                | Well Volume =<br>⇒17 (23'                        | -12.31 ) 2                                                                                                                              | 1.8gol                                | ~12 off                                                                                         | botton                        |                                           |
| (F_1)                 | Purge start time:             | 0909               | Initial Flow Rate:                               | 400                                                                                                                                     | Flow cell disconnected                | d prior to sampling :                                                                           | N                             |                                           |
|                       | Purge stop time:              | 0933               | Final Flow Rate:                                 | 300                                                                                                                                     |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  | Water Qualit                                                                                                                            | ty Measuremen                         | ts                                                                                              |                               |                                           |
| Time                  | Water level                   | Purge Rate         | рН                                               | SPC<br>Conductivity                                                                                                                     | Temperature                           | Dissoved<br>Oxygen                                                                              | Redox Potential               | Turbidity                                 |
| (military)            | ft                            | (mL/min)           | pH Units                                         | uS/cm                                                                                                                                   | °C                                    | mg/L                                                                                            | mV                            | (NTU)                                     |
|                       | < 0.33 ft from<br>2nd reading | < 500 mL           | < 0.1 unit                                       | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU c<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                  | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU c<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                       | {3 readings} < 5 NTU c<br>< 10% if >5 NTU |
| 0910                  | 12.32                         | 400                | 7.22                                             | 1336                                                                                                                                    | 14.0                                  | 2.89                                                                                            | 181.3                         | 5.05                                      |
| 0913                  | 12.31                         | 300                | 6.80                                             | 1341                                                                                                                                    | 14.0                                  | 2.91                                                                                            | 167.2                         | 4.48                                      |
| 0916                  | 12.32                         | 300                | 6.77                                             | 1361                                                                                                                                    | 14.1                                  | 2.95                                                                                            | 160.6                         | 4,10                                      |
| 0919                  | 12.32                         | 300                | 6:76                                             | 1387                                                                                                                                    | 14.0                                  | 2.55                                                                                            | 152.4                         | 41,411                                    |
| 0922                  | 12.32                         | 300                | 6.75                                             | 1408                                                                                                                                    | 141.1                                 | 0.20                                                                                            | 145.3                         | 3.83                                      |
| 0925                  | 12.32                         | 300                | 6.75                                             | 1424                                                                                                                                    | 14.1                                  | 0.19                                                                                            | 140.6                         | 1.31                                      |
| 0928                  | 12,32                         | 300                | 6.74                                             | 1436                                                                                                                                    | 14.1                                  | 0.19                                                                                            | 136.7                         | 1.73                                      |
|                       | All Pa                        | ums sta            | ple, d/c                                         | flow cell                                                                                                                               |                                       |                                                                                                 |                               |                                           |
| 0930                  | Collec                        | + "cch             | -3c-12                                           | 23"                                                                                                                                     |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       | 1                                                                                               |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 | AAFA 4Q23                     |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       | Samplers: E                                                                                     |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 | CCW-3C-1223                   |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       | Date: 12/14                                                                                     | 23 Time: 0930                 |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       | Analysis: Preservative                                                                          |                               |                                           |
|                       |                               |                    | -                                                |                                                                                                                                         |                                       | - rieseivauve                                                                                   | •                             |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
|                       |                               |                    |                                                  |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
| Notes:                | *Doc EDA (2022) O             | DD disagt          | and date of the second                           | lone (                                                                                                                                  |                                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                        |                               | - WAN / 1.2                               |
| 77,5702.4             | Sample 1                      |                    | nent data recorded is                            | ORP referenced to                                                                                                                       |                                       | electrode". Electrod                                                                            | e calibrated in               | solution.                                 |
|                       |                               |                    | gal                                              |                                                                                                                                         |                                       |                                                                                                 |                               |                                           |
|                       | Bottles and A                 |                    | se <u>Cliaved</u><br>(collected in o             | rder below)                                                                                                                             |                                       |                                                                                                 |                               |                                           |
| 7 (1)                 |                               |                    |                                                  | Metals 🚱, 🔇, Cr, 🥃                                                                                                                      | 1 60 60 MI DL -                       | (n) and 15315 (t)-1                                                                             |                               |                                           |
| (1)                   | - 1 ×                         | 500 mL HDPF w/     | HNO <sub>3</sub> 6020 Total I                    | vietais (A), (G), (Cr, (C                                                                                                               | Cr (2) (2) (1), PD, Z                 | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                       | (a) [7]                       | enanta (S. 15                             |
| (1)                   | 1 2                           | 150-4 400          | Flor Ferrons                                     | ved Metals (By, K),                                                                                                                     | راه راها المالية المحال المحال المحال | ru, znj and 1631E (F                                                                            | rield                         | Filtered (0.45µm)                         |
|                       |                               | IN 1101            | - WE VERLA                                       | 1 V CI A                                                                                                                                |                                       |                                                                                                 |                               |                                           |

(3) 3 = Total Bottles

|            | OF \$                                   | ALP, DATE STORES | Monitoring<br>Sampling Pers       | well Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Field Sheet             | Well No. Constitution Facility/Project: Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|------------|-----------------------------------------|------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|            |                                         |                  | ES/                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O. Oppio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ø,                      |
|            | g Method: ای                            |                  |                                   | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r level)                  | bearing and an arrangement of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rge/sample with pump on (ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BTOC): 10 70            |
| WL-9cot    | Pro Greater Pump                        | 2K1-6000         | M. Adenig Chief                   | Consider the state of the control of | 10000                     | Pump Intake Depth (ft.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.20                   |
| NO-AS      | pro quatro Pump                         | -Mastertlex      | Well Volume =                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                       | An investigation of the state o | off bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| Turb-ge    | O twb.  Purge start time:               | 610              | 171                               | 24' - 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B) ~ gre                  | ~ 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OH 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|            |                                         | 1328             | Initial Flow Rate:                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnected    | d prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|            | Purge stop time:                        | 1349             | Final Flow Rate:                  | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Section of              | 17 97 97 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   | Water Qualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ty Measuremen             | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Time       | Water level                             | Purge Rate       | рН                                | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temperature               | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Turbidity               |
| (military) | ft                                      | (mL/min)         | pH Units                          | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (NTU)                   |
|            | < 0.33 ft from                          | < 500 mL         | < 0.1 unit                        | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU or</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 3%                      | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU or</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3 readings) < 5 NTU or |
| 1330       | 2nd reading                             | 350              | 7,20                              | 2159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.71                     | 10.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,53                    |
| 333        | 10.20                                   | 400              | 10.98                             | 2139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.8                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.74                    |
| 1334       | 10.20                                   | 400              | 6. 43                             | 2122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.9                      | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. 25                   |
| 1339       | 10.20                                   | 400              | 6.92                              | 2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.8                      | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.93                    |
| 1342       | 10.20                                   | 400              | 6.91                              | 2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.9                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,93 20                 |
|            |                                         | ms Stabl         | 1 3/1 0                           | in cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 0.,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.12                   |
| 1345       | Collect                                 | "ccw-            | 4c-122                            | 3"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21100                   |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  | 2.1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THANKA ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|            | ,                                       |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : TWAAFA 4Q23<br>ers: ES/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e ID: CCW-4C-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                       |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/18/23 Time: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rvative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|            |                                         |                  | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLOR DE LA COLOR |                         |
|            |                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Notes:     |                                         |                  |                                   | s "ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | electrode". Electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e calibrated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solution.               |
|            | -S'Ample                                | 1st + 175        | sque                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| T          | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                  | /0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            | Bottles and A                           |                  | (collected in c                   | order below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S 60                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|            | Y                                       | DO ML HDPE W/    | HNO <sub>3</sub> 6020 Total       | Metals @ Cr, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y, 🔞 🧑, Ni, Pb, Z         | n) and 1631E (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| (1)        | ^_                                      | 500 1100-        | LINIO COOR                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ), Ni, Pb, Zn) and 1631E (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| (1)<br>(1) | X                                       | 500 mL HDPE w/   | HNO, 6020 Dissol<br>PE for Fervo. | ved Metals((Al)(A), (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cr, (3), (5), (1)n, Ni, F | Pb, Zn) and 1631E (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g) <u>V</u> Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Filtered (0.45µm)       |

| ate: /2    | <b>OF</b>                     | JGLEVAND   | wionitoring           | Well Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , rieid sneet                        | Well No. CC<br>Facility/Project:                                                              | TWAAFA                             |                                         |  |
|------------|-------------------------------|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|--|
| ampling N  | /19/23                        |            | Sampling Pers         | onnel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Initial Headspace (ppm) O.O ppm                                                               |                                    |                                         |  |
|            | Method:                       | Howperd    | ES/                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Intial-Water Level before purge (ft, BTOC)                                                    |                                    |                                         |  |
| quipment   | t Used:                       |            | Well volume = 0.17 *  | (total well depth - water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | level)                               | End-Water Level post purge/sample with pump on (ft. BTOC): 2.68                               |                                    |                                         |  |
| ges #7     | oquation pump                 | 2161-6000  | Well Volume =         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                                 | Fump Intake Depth (ft B                                                                       | TOC):                              | 2100                                    |  |
| urb-920 .+ |                               | E/5        | ורו.                  | 10'-2.66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1.25                               | ~2'                                                                                           | off bottom                         |                                         |  |
| F1.0 7     | Purge start time:             | 1250       | Initial Flow Rate:    | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the register of the second state and | TO LET COMPLEX FOR T                                                                          |                                    |                                         |  |
|            | Purge stop time:              | 1222       | Final Flow Rate:      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnected               | f prior to sampling :                                                                         | $\square$                          |                                         |  |
|            |                               | 1)1        |                       | The state of the s | y Measuremen                         | ts                                                                                            |                                    |                                         |  |
|            |                               | 20 CA 2077 |                       | SPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | Dissoved                                                                                      | Redox Potential                    |                                         |  |
| Celuid     | Water level                   | Purge Rate | рН                    | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temperature                          | Oxygen                                                                                        | *                                  | Turbidity                               |  |
| military)  | ft                            | (mL/min)   | pH Units              | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                                   | mg/L                                                                                          | mV                                 | (NTU)                                   |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL   | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 3%                                 | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                            | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |
|            | 2,68                          | 400        | 4.40                  | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.7                                 | 0.*                                                                                           | 88.5                               | 21,2                                    |  |
|            | 2.08                          | 400        | 6:41                  | 1390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13:60                                | 0.35                                                                                          | 88.7                               | 17.6                                    |  |
|            | 2.68                          | 400        | 6,42                  | 137008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.5                                 | 0.14                                                                                          | 84.9                               | 16.5                                    |  |
|            | 2,68                          | 400        | 6.40                  | 1447 1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 0.10                                                                                          | 83.0                               | 6.42                                    |  |
|            | 2:08                          | 400        | 6,42                  | 1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.5                                 | 0.09                                                                                          | 80.1                               | 5,60                                    |  |
|            | 2,68                          | 400        | 6142                  | 1293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                 | 0.10                                                                                          | 77.6                               | 4,12                                    |  |
|            | 7,68                          | 400        | 6,41                  | 1269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                 | 0,10                                                                                          | 75.6                               | 3:32                                    |  |
|            | 2.08                          | 400        | 6.40                  | 1253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                 | 0,10                                                                                          | 73.7                               | 4.63                                    |  |
| 315        | All parm                      |            | de flas               | cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                               | -                                  |                                         |  |
| 512        | Collect                       | · ccw ·    | 58-12                 | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                                                               |                                    |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                                    |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               | V                                  |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                                    |                                         |  |
| - 1        |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                                    |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                                    |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               | A STANKE WATER                     |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Proj                                                                                          | ect: TWAAFA 4Q23                   |                                         |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Sam                                                                                           | nplers: ES/MW<br>nple ID: CCW-58-1 | 223 —                                   |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               | e: 12/19/23 Tim                    | e: 1315 ——                              |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ( LL                                                                                          | e: 12 19125                        | -                                       |  |
|            |                               |            | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               | eservative:                        | -                                       |  |
|            |                               |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1.10                                                                                          |                                    |                                         |  |
|            |                               | Vic. minus | ment data recorded is | ASSESSMENT OF THE RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | electrode". Electrod                                                                          |                                    | solution.                               |  |

|            | OF &                          | ALTON<br>LMSTED<br>JGLEVAND | CAR AND                       | Well Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Field Sheet          | Well No. Facility/Project:                                          |                             |                      |
|------------|-------------------------------|-----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|-----------------------------|----------------------|
|            | 12/19/23                      |                             | Sampling Pers                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Initial Headspace (ppm)                                             | O.Oppm                      |                      |
| ampling    | g Method: low                 | colt c                      | ES                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Intial-Water Level before                                           |                             | 3'                   |
| quipme     | ent Used:                     | (                           | Well volume = 0.17 *          | (total well depth - water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r level)               | End-Water Level post pu                                             | rge/sample with pump on (ft | BTOC): 8,68'         |
| VO -VSI    | PID - (                       | 24.0000                     | Well Volume =                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Pump Intake Depth (ft.B                                             | TOC):                       |                      |
| urb - ge   | o trap                        | E/S                         | -17                           | (24' -8.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50                   | ~7.                                                                 | off bottom                  |                      |
| 9.         | Purge start time:             | 1329                        | Initial Flow Rate:            | - 8102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - gar                  |                                                                     |                             |                      |
|            | Purge stop time:              | 1356                        | Final Flow Rate:              | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnected | prior to sampling :                                                 | $\Box$                      |                      |
|            |                               | 1330                        |                               | The state of the s | 350                    |                                                                     |                             |                      |
|            |                               |                             |                               | water Quain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y Measurement          | is                                                                  |                             |                      |
| Time       | Water level                   | Purge Rate                  | рН                            | SPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature            | Dissoved<br>Oxygen                                                  | Redox Potential *           | Turbidity            |
| (military) | ft                            | (mL/min)                    | pH Units                      | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                     | mg/L                                                                | mV                          | (NTU)                |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU</td> | < 10 mV                     | {3 readings} < 5 NTU |
| 332        | 80.8                          | 350                         | 6.48                          | 1709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5                   | 0.11                                                                | 92.8                        | <10% if >5 NTU       |
| 335        | 8,68                          | 350                         | 6.52                          | 1709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.09                                                                | 89.4                        | 19.1                 |
| 1338       | 8.68                          | 350                         | 6.53                          | 1723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.13                                                                | 8607                        | 9.24                 |
| 341        | 8.68                          | 350                         | 10.53                         | 1725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.17                                                                | 84.8                        | 8.65                 |
| 1344       | 82.8                          | 350                         | 6.54                          | 1734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.16                                                                | 82.7                        | 3.73                 |
| 1347       | 8:68                          | 350                         | 6.54                          | 1724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.14                                                                | 81.0                        | 3.50                 |
| 1350       | 8.68                          | 350                         | 10.54                         | 1738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6                   | 0.17                                                                | 79.2                        | 4:39                 |
| 355        | Collect                       | " CCW -                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tara Land              | 1                                                                   |                             |                      |
| AIL        | parms s                       | stable,                     | a/c flow                      | cer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                                                     |                             |                      |
|            | 1                             |                             | 19-1-1-1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
|            |                               |                             | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
| -          |                               |                             | +                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
| _          |                               |                             | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      |                                                                     |                             |                      |
| _          |                               |                             | +                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
| -          |                               | -                           | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     | _                           |                      |
|            |                               |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
|            |                               |                             | 1                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                     | t: TWAAFA 4Q23              |                      |
|            |                               |                             | 1-2-2-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 7 20 20 20 20 20 20 20 20 20 20 20 20 20                            | lers: ES/MW                 |                      |
|            |                               |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2000 100                                                            | le ID: CCW-5C-122           |                      |
|            |                               |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             | : 1355 ———           |
|            |                               |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Analys                                                              | sis:<br>rvative:            | 1112                 |
|            |                               |                             |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Fiese                                                               | vauve.                      |                      |
|            |                               |                             | 11                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |
| Notes:     |                               |                             |                               | is "ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | electrode". Electrod                                                | e calibrated in             | solution.            |
|            | - Sampu                       | Vol + 2.5                   | s gal                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     | 1111                        |                      |
| ٤          |                               | nahanaa                     | (nallasts 1)                  | ender betein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                                                     |                             |                      |
|            | Bottles and A                 |                             | _ (collected in a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (C) 111 51 -         | 401,411,611                                                         |                             |                      |
| (1)        | X                             | MI HOPE W                   | / HNO <sub>3</sub> 6020 Total | Metals (A) (A), Cr, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cr. COLCED TO D. NI.   | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                           | n 17                        | Filtered (0.45       |
| (1)        |                               |                             | PE for Ferri                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ci, Wi, Ni,            | D, 211) and 1631E (H                                                | g) Field                    | Filtered (0.45µm)    |
| (1)        |                               | Proposition 112             | TEVVI                         | W 110K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                     |                             |                      |
|            |                               |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                     |                             |                      |

| Sampling Personnel:  Sampling Method: low flow flow  Equipment Used:  WL-960 H TOLO PID-RICI- 4000  WQ-751 Pro quarto Pump - Maskuflux  Turb-960 tavlo.  Purge start time: 0954  Purge stop time: 1037  Sampling Personnel:  Well volume = 0.17 * (total well depth - water level)  Well volume = 1.1  Initial Flow Rate: 350  Flow cell disco                    | Initial Headspace (ppm) O.Oppm Intial-Water Level before purge (ft. BTOC) /, 98'  End-Water Level post purge/sample with pump on (ft. BTOC): 1,98  Pump Intake Depth (ft.BTOC):  ~ 2' off both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Used:  WL-9(0, H-7008 PID-RU) - 1000  WQ-951 Pro quite Pump - Haskuffur  Furb-960, turb.  Purge start time: 0954  Well volume = 0.17 (total well depth - water level)  Well volume = 1.1  Well volume = 0.17 (total well depth - water level)  Well volume = 0.17 (total well depth - water level)  Well volume = 0.17 (total well depth - water level) | End-Water Level post purge/sample with pump on (ft. BTOC): 1.98  Pump Intake Depth (ft.BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VL-9(0, #7000 PID-RICI- 4000  VQ-951 Pro quarto Pump - Maskuffur Well Volume = 1.1  Furb-9(0, turb). E/S .17(9,5'-1.98') = quarto Purge start time: 0954 Initial Flow Rate: 350 Flow cell disco                                                                                                                                                                   | Pump Intake Depth (ft.BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Purb - 9(0, tavb. E/S .17(9.5' -1.79') = 900  Purge start time: 0954 Initial Flow Rate: 350 Flow cell disco                                                                                                                                                                                                                                                       | The than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purge start time: 0954 Initial Flow Rate: 350 Flow cell disco                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , ow tell disco                                                                                                                                                                                                                                                                                                                                                   | onnected prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1032                                                                                                                                                                                                                                                                                                                                                              | The state of the s |
| Water Quality Measure                                                                                                                                                                                                                                                                                                                                             | ements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time Water level Purge Rate pH Conductivity Tempera                                                                                                                                                                                                                                                                                                               | Dissoved Redox Potential Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (military) ft (mL/min) pH Units uS/cm °C                                                                                                                                                                                                                                                                                                                          | mg/L mV (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| < 0.33 ft from 2nd reading < 500 mL < 0.1 unit = 3% < 3%</td <td><!--= 0.3 mg/L < 10 mV {3 readings} < 5 NTU < 10% if -->5 NTU</td>                                                                                                                                                                                                                               | = 0.3 mg/L < 10 mV {3 readings} < 5 NTU < 10% if 5 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1956 1.98 350 7.68 814 12.6                                                                                                                                                                                                                                                                                                                                       | 2.28 29.8 63.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0959 1.98 400 6.78 879 04                                                                                                                                                                                                                                                                                                                                         | 12.7 58.3 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 002 1.98 400 6.55 924 12.7                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 005 1.98 400 6.42 973 12.7                                                                                                                                                                                                                                                                                                                                        | 0 70.4 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 008 1.98 400 6.37 1015 12.6                                                                                                                                                                                                                                                                                                                                       | 0 71.4 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 011 198 400 6.33 1050 12.7                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 014 1,98 400 6.31 1076 12.7                                                                                                                                                                                                                                                                                                                                       | 0 74.8 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 017 1.98 400 6.30 1103 12.6                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 020 1.78 400 6.29 1120 12.6                                                                                                                                                                                                                                                                                                                                       | 0 77.3 4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| All parms stable, exc flow cell                                                                                                                                                                                                                                                                                                                                   | 0 11.1 9.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 025 Couect "cow- 68-1223"                                                                                                                                                                                                                                                                                                                                         | Project: TWAAFA 4Q23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 030 Calect "ccw-9-6B-1223"                                                                                                                                                                                                                                                                                                                                        | Samplers: ES/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                   | Sample ID: CCW-68-1223  Date: 12/19/23 Time: 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                   | Date. 12 to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                   | Analysis:  Preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                   | Project: TWAAFA 4Q23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                   | Samplers: ES/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                   | Sample ID: CCW-9-68-1223 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                   | Date: 12/19/23 Time: 1030 —— Analysis: FIELD ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                   | Analysis: FIELD -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                   | Preservative: DuPE —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| D                       |                               | ALTON<br>DLMSTED<br>UGLEVAND | A MAYOUR              | Well Samplin                                                                                                                             | g Field Sheet         | Facility/Project:                                                                                |                               |                                            |  |
|-------------------------|-------------------------------|------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|--|
| Date:                   | 2/19/23                       |                              | Sampling Pers         | onnel:                                                                                                                                   |                       | Initial Headspace (ppm)                                                                          | U. U ppm                      |                                            |  |
| Samplin                 | g Method: 10.                 | s flow per.                  | ESIMU                 | )                                                                                                                                        |                       | Intial-Water Level before purge (ft. BTOC) 8.27                                                  |                               |                                            |  |
| Equipme                 | ent Used:                     |                              | Well volume = 0.17 *  | (total well depth - wate                                                                                                                 | r level)              | End-Water Level post pu                                                                          | urge/sample with pump on (ft. | BTOC): 8, 59 1                             |  |
| WQ - YSI (<br>Turb - ge | #7068 PID-1                   | -Mashathat<br>E15            | Well Volume =         | 3'-8.27)                                                                                                                                 | 2.5<br>= gal          | Pump Intake Depth (ft.BTOC): - 2" off bottom                                                     |                               |                                            |  |
|                         | Purge start time:             | 1039                         | Initial Flow Rate:    | 400                                                                                                                                      | Flow cell disconnecte | d prior to compling :                                                                            | ব                             |                                            |  |
|                         | Purge stop time:              | 1107                         | Final Flow Rate:      | 400                                                                                                                                      | Thow cell disconnecte | o prior to sampling .                                                                            |                               |                                            |  |
|                         |                               |                              |                       | Water Quali                                                                                                                              | ty Measuremen         | ts                                                                                               |                               |                                            |  |
| Time                    | Water level                   | Purge Rate                   | рН                    | SPC<br>Conductivity                                                                                                                      | Temperature           | Dissoved<br>Oxygen                                                                               | Redox Potential               | Turbidity                                  |  |
| (military)              | ft                            | (mL/min)                     | pH Units              | uS/cm                                                                                                                                    | °C                    | mg/L                                                                                             | mV                            | (NTU)                                      |  |
|                         | < 0.33 ft from<br>2nd reading | < 500 mL                     | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                  | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                       | {3 readings} < 5 NTU or<br>< 10% if >5 NTU |  |
| 1041                    | 8.59                          | 400                          | 6.43                  | 4369                                                                                                                                     | 13.8                  | 0*                                                                                               | 126.2                         | 15.6                                       |  |
| 1044                    | 8.59                          | 400                          | 6.51                  | 4258                                                                                                                                     | 13.8                  | 0                                                                                                | 117.2                         | 12.9                                       |  |
| 1047                    | 8.59                          | 400                          | 6.53                  | 4207                                                                                                                                     | 13.9                  | D                                                                                                | 111.8                         | 10.9                                       |  |
| 1050                    | 8.59                          | 400                          | 6.55                  | 4/185                                                                                                                                    | 13.9                  | 0                                                                                                | 108.3                         | 10.55                                      |  |
| 1053                    | 8.59                          | 0000                         | 6.56                  | 4146                                                                                                                                     | 14.1                  | 0                                                                                                | 95.4                          | 6.80                                       |  |
| 1056                    | 8,59                          | 400                          | 6.56                  | 4151                                                                                                                                     | 13.9                  | 0                                                                                                | 95.9                          | 4.50                                       |  |
| 1059                    | 8.59                          | 400                          | 10.57                 | 4/14/                                                                                                                                    | 13.9                  | 0                                                                                                | 95.9                          | 4.42                                       |  |
| 1102                    | 8.59                          | 400                          | (0.57                 | 4121                                                                                                                                     | 13.9                  | 0                                                                                                | 95.2                          | 3.83                                       |  |
|                         | All pari                      | ns Stak                      | se, 1/2 fl            | ow cell                                                                                                                                  |                       |                                                                                                  |                               | Transition in                              |  |
| 1105                    |                               |                              | 60-12                 |                                                                                                                                          |                       | (                                                                                                |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          | 1                     |                                                                                                  |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  |                               |                                            |  |
| -                       |                               |                              |                       |                                                                                                                                          |                       | P                                                                                                |                               |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  | 379                           |                                            |  |
|                         |                               |                              | ( =                   |                                                                                                                                          |                       | Pro                                                                                              | ject: TWAAFA 4Q23             | · -                                        |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  | mplers: ES/MW                 |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  | mple ID: CCW-6C-1             |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       | Da                                                                                               | te: 12/19/23 Tim              | e: 1105                                    |  |
| L E.                    |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  | alysis:                       |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       | Pre                                                                                              | eservative:                   |                                            |  |
|                         |                               |                              |                       |                                                                                                                                          |                       |                                                                                                  | 1                             |                                            |  |
| Notes:                  | *Per EPA (2023), O            |                              | ment data recorded is | "ORP referenced to                                                                                                                       |                       | electrode". Electrod                                                                             | e calibrated in               | solution.                                  |  |
|                         | - Swing vo                    | corded as                    | Day, A                | A 1.0                                                                                                                                    | E - 1002 1            | 103                                                                                              | 16 1 6 4                      |                                            |  |
| <u>*</u> -              | Bottles and A                 | nalyses:                     | (collected in c       | rder below)                                                                                                                              | 16 1053, 6            | er rudings Se                                                                                    | Hudown for Im.                | n                                          |  |
| <b>V</b>                |                               |                              |                       | Metals (A)A), (C), (C)                                                                                                                   | 0 50 M AII DL 7       | Re-dox                                                                                           | 1                             |                                            |  |
| (1)                     | + -                           | 120 HOPE W                   | HNO. 6020 Disc-1      | vietais (exe), ex (                                                                                                                      | 3 (C) (B) (N), PB, 2  | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                        | +                             | Cilbared (O. Ar )                          |  |
| (1)                     | 1 ×                           | 1604 1100                    | For Furous            | ved ivietais (A)(A),                                                                                                                     | O'CHACK, MI, NI,      | ru, 2n) and 1631E (F                                                                             | ig) Field                     | Filtered (0.45µm)                          |  |
| (0)                     | X                             | DAMA HIM                     | C ADI LANION?         | MON                                                                                                                                      |                       |                                                                                                  |                               |                                            |  |

(2) 3 = Total Bottles

| D          | OF                            | ALTON<br>LMSTED<br>UGLEVAND       | Monitoring           | Well Sampling                                                                                                                           | g Field Sheet          | Well No. CCW-78 Facility/Project: TWAAFA                                                        |                                     |                                           |  |
|------------|-------------------------------|-----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|--|
| ate:       | 21.050                        | 87.504-01.00                      | Sampling Pers        | onnel:                                                                                                                                  |                        | Initial Headspace (ppm                                                                          |                                     |                                           |  |
|            | 2/19/23                       | •                                 |                      |                                                                                                                                         |                        | Intial-Water Level befo                                                                         | 0.9                                 | 0'                                        |  |
| ampini     | g Method: /من                 | flas peri                         | ES/MW                | (total well depth - wate                                                                                                                | r level\               | 100 11110 0710 127                                                                              | 111                                 | 2'                                        |  |
| /L-Stot    | #7068 PID                     | 21/1-1/100                        | Tres volume = 0.17   | (total well depth - wate                                                                                                                | rievely                |                                                                                                 | ourge/sample with pump on (fi       | 1.92                                      |  |
| 10-42 I    | pro quetropump                | - Masterflux                      | Well Volume =        | ,                                                                                                                                       | 12                     | Pump Intake Depth (ft.BTOC):                                                                    |                                     |                                           |  |
| urb-ger    | turb.                         | E/S                               | -17                  | 400                                                                                                                                     | ) a got                | ~2'                                                                                             | off bottom                          |                                           |  |
|            | Purge start time:             | 1152                              | Initial Flow Rate:   | 400                                                                                                                                     | Flow cell disconnected | d prior to sampling :                                                                           | V                                   |                                           |  |
|            | Purge stop time:              | 1226                              | Final Flow Rate:     | 400                                                                                                                                     | 1000                   |                                                                                                 |                                     |                                           |  |
|            |                               | X                                 |                      | Water Quali                                                                                                                             | ty Measuremen          | ts                                                                                              |                                     |                                           |  |
| Time       | Water level                   | Purge Rate                        | рН                   | ゴPC<br>Conductivity                                                                                                                     | Temperature            | Dissoved<br>Oxygen                                                                              | Redox Potential                     | Turbidity                                 |  |
| (military) | ft                            | (mL/min)                          | pH Units             | uS/cm                                                                                                                                   | °C                     | mg/L                                                                                            | mV                                  | (NTU)                                     |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                          | < 0.1 unit           | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                             | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |
| 154        | 1.92                          | 400                               | 6.85                 | 842                                                                                                                                     | 12.9                   | 0.19                                                                                            | 34.6                                | 5.37                                      |  |
| 157        | 1.92                          | 400                               | 6.411                | 894                                                                                                                                     | 12.9                   | 0.14                                                                                            | 53.4                                | 4.03                                      |  |
| 100        | 1.92                          | 400                               | 6.34                 | 907                                                                                                                                     | 12.9                   | 0.13                                                                                            | 57.0                                | 4.00                                      |  |
| 203        | 1.42                          | 4/00                              | 6.31                 | 925                                                                                                                                     | 12.8                   | 0.14                                                                                            | 58.7                                | 4.42                                      |  |
| 200        | 1,92                          | 400                               | 6.29                 | 952                                                                                                                                     | 12.8                   | 0.15                                                                                            | 59.6                                | 4.73                                      |  |
| 209        | 1.92                          | 400                               | 6.28                 | 969                                                                                                                                     | 12.8                   | 0.16                                                                                            | 59.8                                | 4.73                                      |  |
| 212        | 1.92                          | 400                               | 6.28                 | 1007                                                                                                                                    | 12.8                   | 0.17                                                                                            | 6011                                | 3.77                                      |  |
| 215        | 1.92                          | 1/00                              | 6.27                 | 1017                                                                                                                                    | 12.9                   | 0.16                                                                                            | 60.0                                | 3,74                                      |  |
| 218        | 1.92                          | 400                               | 6.27                 | 1038                                                                                                                                    | 12.9                   | 0.14                                                                                            | 60.1                                | 4.23                                      |  |
|            | All parm                      |                                   | 7                    |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
| 220        | Court                         |                                   |                      | 23 *                                                                                                                                    |                        |                                                                                                 | - Project: TWAAFA                   |                                           |  |
| 225        | Collect                       | CW-                               | 1-10-10              | as                                                                                                                                      | -                      |                                                                                                 | _ Samplers: ES/MW                   |                                           |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | _ Sample ID: CCW-<br>Date: 12/19/23 | Time: 1220                                |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | _ Analysis:                         | THIRD: 1223                               |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | Preservative:                       | _                                         |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | Designate Tassa a Fall              |                                           |  |
|            |                               |                                   | j.                   |                                                                                                                                         |                        |                                                                                                 | Project: TWAAFA 4 Samplers: ES/MW   | Q23 —                                     |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | Sample ID: CCW-9                    | -7B-1223                                  |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 | Date: 12/19/23                      |                                           |  |
|            | 1 - 1                         |                                   |                      |                                                                                                                                         |                        |                                                                                                 | Analysis: FIEL                      | PE -                                      |  |
|            |                               |                                   | 1                    | 1.7                                                                                                                                     |                        |                                                                                                 | Preservative:                       | ,rc                                       |  |
|            |                               | 171-7                             |                      |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
| lotes:     | *Per EPA (2023), O            | RP direct measure                 | ment data recorded i | s "ORP referenced to                                                                                                                    |                        | electrode". Electro                                                                             | de calibrated in                    | solution.                                 |  |
|            | - Sample v                    | 1 + 2.5                           | gal                  |                                                                                                                                         |                        | A PARTY                                                                                         |                                     |                                           |  |
| +          | all the 17 T                  |                                   | 2510                 |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
| 7          | Bottles and A                 |                                   | _(collected in c     |                                                                                                                                         |                        | The White                                                                                       |                                     |                                           |  |
| (2)        |                               |                                   |                      | Metals (A), (G) Cr, (                                                                                                                   |                        |                                                                                                 | _1                                  |                                           |  |
| (1L)       |                               |                                   |                      |                                                                                                                                         | Cr, 🐧 📵 🔞 Ni,          | Pb, Zn) and 1631E                                                                               | Hg) 🔽 Field                         | filtered (0.45µm)                         |  |
| (2)        | 1 x                           | 250 ml HO                         | PE for Ferro         | us Iron                                                                                                                                 |                        | Y 1 07                                                                                          | The state of the                    | Y 1 1 1 1 1 1 1 1 1                       |  |
| 12.27      |                               | LOUVANIA                          |                      |                                                                                                                                         |                        |                                                                                                 |                                     | 2, 1                                      |  |
| 44.0       |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
| 18         |                               | Total Bottles<br>CW-9-71<br>DUPE! |                      |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |
|            |                               |                                   |                      |                                                                                                                                         |                        |                                                                                                 |                                     |                                           |  |

| D            |                                   | ALTON<br>LMSTED<br>JGLEVAND | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g Well Sampling                                                                                                                       | g Field Sheet                           | Facility/Project:                                                                             | CW - 7C<br>TWAAFA                 |                                         |  |  |
|--------------|-----------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|--|--|
| Date:        | 2/19/23                           |                             | Sampling Pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sonnel:                                                                                                                               |                                         | Initial Headspace (ppm)                                                                       | O.O.ppm<br>e purge (ft. BTOC) 8.3 | 7                                       |  |  |
| Sampling     | Method: /a.                       | flow orri                   | ESIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w                                                                                                                                     |                                         | Intial-Water Level before                                                                     | e purge (ft. BTOC)                | 1'                                      |  |  |
| Aaibille     | iii Usea:                         |                             | Well volume = 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | total well depth - water                                                                                                              | r level)                                | End-Water Level post pu                                                                       | rge/sample with pump on (ft.      | BTOC): 8,33 '                           |  |  |
| NL-910       | # 7068 PID-                       | SK1-6000                    | to Colorina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                         | Pump Intake Depth (ft.B                                                                       |                                   | 0.33                                    |  |  |
| urb - ca-    | Pump Pump                         | E/S                         | Well Volume =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
| Turb-geo     | Purge start time:                 |                             | Initial Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 450                                                                                                                                   | In gal                                  | ~ 2 5                                                                                         | penom                             |                                         |  |  |
|              | Purge stop time:                  | 1128                        | Final Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       | Flow cell disconnected                  | prior to sampling :                                                                           |                                   |                                         |  |  |
|              | 75201.160000                      | 1150                        | That How hate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                   |                                         |                                                                                               |                                   |                                         |  |  |
| 1            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Qualit                                                                                                                          | ty Measurement                          | ts                                                                                            |                                   |                                         |  |  |
| Time         | Water level                       | Purge Rate                  | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPL                                                                                                                                   | Temperature                             | Dissoved<br>Oxygen                                                                            | Redox Potential                   | Turbidity                               |  |  |
| (military)   | ft                                | (mL/min)                    | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uS/cm                                                                                                                                 | °C                                      | mg/L                                                                                          | mV                                | (NTU)                                   |  |  |
| 110          | < 0.33 ft from<br>2nd reading     | < 500 mL                    | < 0.1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                           | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |  |
| 1131         | 8.33                              | 400                         | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2013                                                                                                                                  | 13.8                                    | 0.35                                                                                          | 74.2                              | 4.38                                    |  |  |
| 1134         | 8.33                              | 400                         | 6.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2115                                                                                                                                  | 13.8                                    | 0.27                                                                                          | 78.2                              | 3.74                                    |  |  |
| 1137         | 8.33                              | 400                         | 6.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2100                                                                                                                                  | 13.8                                    | 0.28                                                                                          | 78.7                              | 3,94                                    |  |  |
| 1140         | 8.33                              | 400                         | 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2067                                                                                                                                  | 13.8                                    | 0:31                                                                                          | 78.4                              | 2.66                                    |  |  |
| 1143         | 8.33                              | 400                         | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2040                                                                                                                                  | 13.8                                    | 0.36                                                                                          | 77.8                              | 4.66                                    |  |  |
| 1145         | All parm                          |                             | d/c flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | all                                                                                                                                   |                                         |                                                                                               |                                   |                                         |  |  |
| 1142         | Collect                           | "ccw-                       | 1C-1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
| 7            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | J                                       |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         | Project: TV                                                                                   | VAAFA 4Q23                        |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         | Samplers:                                                                                     |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               | CCW-7C-1223                       |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         | Date: 12/19                                                                                   |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         | Analysis:                                                                                     |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         | Preservativ                                                                                   | ve:                               |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               | 1                                 |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             | Language and Committee and Com |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
| Notes:       | *Per EPA (2023), O<br>- Sample Vo |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is "ORP referenced to                                                                                                                 |                                         | electrode". Electrod                                                                          | e calibrated in                   | solution.                               |  |  |
|              | Sample V                          | 4 1112                      | gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |
|              | Bottles and A                     | nalyses:                    | (collected in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | order helow)                                                                                                                          |                                         |                                                                                               |                                   |                                         |  |  |
| <b>P</b> (1) |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metals (A) (A) Cr, (                                                                                                                  | DED ON NI Ph 7                          | n) and 1631E (Ua)                                                                             |                                   |                                         |  |  |
| (1)          | - 1 x                             | 500-mL HDPE W               | / HNO <sub>3</sub> 6020 Disea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lved Metals (A) (A)                                                                                                                   | Cr. Co.Fa. Ma Ni                        | n, and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                     | (g) D Field                       | Filtered (0.45µm)                       |  |  |
| (1)          | 1 X                               | 250 ml                      | HOPE FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erous Iron                                                                                                                            | , , , , , , , , , , , , , , , , , , , , | -/ and 1031E (F                                                                               | isi LM rield                      | merca (o.45µm)                          |  |  |
|              |                                   | 3                           | The Late of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 010003 1101                                                                                                                           |                                         |                                                                                               |                                   |                                         |  |  |
|              |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                               |                                   |                                         |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF 3                          | UGLEVAND                                | Monitoring<br>Sampling Per    | g Well Samplin                                                                                                                             | g Field Sheet          | Facility/Project                                                                                   |                                   |                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 4                                       |                               |                                                                                                                                            |                        | Intial-Water Level befor                                                                           | O.O ppm                           |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g Method:                     |                                         | Well volume = 0.17            | (total well depth - water                                                                                                                  | r level)               | End-Water Level post n                                                                             | urge/sample with nump on (ft      | BTOCh: 1                                  |  |
| WL JCO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Programs Pump                 | ZKI-6000<br>Masterflex<br>FIS           | Well Volume =                 |                                                                                                                                            | 12                     | Pump Intake Depth (ft.BTOC): 2.38'                                                                 |                                   |                                           |  |
| The part of the pa | Purge start time:             | 1938                                    | Initial Flow Rate             | 400                                                                                                                                        | gae                    | transcon, marin                                                                                    | _                                 |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purge stop time:              |                                         | Final Flow Rate:              | 400                                                                                                                                        | Flow cell disconnected | d prior to sampling :                                                                              |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1011                                    |                               |                                                                                                                                            | ty Measuremen          | ts                                                                                                 |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               | 111/02/11/11                                                                                                                               |                        |                                                                                                    |                                   |                                           |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water level                   | Purge Rate                              | рН                            | SPC                                                                                                                                        | Temperature            | Dissoved<br>Oxygen                                                                                 | Redox Potential *                 | Turbidity                                 |  |
| (military)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft                            | (mL/min)                                | pH Units                      | uS/cm                                                                                                                                      | °C                     | mg/L                                                                                               | mV                                | (NTU)                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.33 ft from<br>2nd reading | < 500 mL                                | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                           | (3 readings) < 5 NTU <<br>< 10% if >5 NTU |  |
| 0941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | 6.84                          | 881                                                                                                                                        | 14.1                   | 0.08                                                                                               | 93.1                              | 10.5                                      |  |
| 0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | 6.77                          | 926                                                                                                                                        | 14.2                   | 0.07                                                                                               | 89,7                              | 6.04                                      |  |
| 0947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,38                          | 400                                     | 6.78                          | 967                                                                                                                                        | 14.2                   | 0.06                                                                                               | 84.7                              | 3.11                                      |  |
| 0950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 4/00                                    | 6.78                          | 1005                                                                                                                                       | 14.1                   | 0.07                                                                                               | 81.2                              | 3.92                                      |  |
| 0953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | [0.80                         | 1039                                                                                                                                       | 14.1                   | 0.07                                                                                               | 77.8                              | 4.31                                      |  |
| 0956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | 6.81                          | 1064                                                                                                                                       | 14.0                   | 0.15                                                                                               | 75.5                              | 4.31                                      |  |
| 0959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | 6.81                          | 1090                                                                                                                                       | 14.1                   | 0.26                                                                                               | 72.8                              | 4.14                                      |  |
| 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                          | 400                                     | 6.82                          | 1103                                                                                                                                       | 14.0                   | 0.10                                                                                               | 71.0                              | 3.14                                      |  |
| 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,38                          | 400                                     | 6.82                          | TITI                                                                                                                                       | 14.1                   | 0:13                                                                                               | 69.0                              | 3.68                                      |  |
| 7.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All oa                        | vms stal                                | u de                          | flow cell                                                                                                                                  |                        |                                                                                                    |                                   | LYWY TO                                   |  |
| 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | count                         | - "CCW                                  | - 88 - 12                     |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         | 1                             |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | 5 to 9 to 11 to 2                 | _                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | ect: TWAAFA 4Q23                  | _                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | plers: ES/MW<br>ple ID: CCW-88-12 | 723                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               | /                                                                                                                                          |                        |                                                                                                    | : 12/18/23 Time:                  |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | lysis:                            |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | servative:                        |                                           |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    | 1                                 | -                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *Per EPA (2023). O            | RP direct measurem                      | ent data recorded is          | s "ORP referenced to                                                                                                                       |                        | electrode". Electrode                                                                              | calibrated in                     | solution.                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Saupe V                       |                                         | gal                           |                                                                                                                                            |                        |                                                                                                    |                                   | ***************************************   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Over 100                      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1                             |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bottles and A                 | nalyses:                                | (collected in c               | order below)                                                                                                                               | GAT SELECT             |                                                                                                    |                                   |                                           |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 ×                           | 500 mL HDPE w/                          | HNO <sub>3</sub> 6020 Total I | Metals Øl, Øs, Cr, Ø                                                                                                                       | , D, On, Ni, Pb, Zr    | n) and 1631E (Hg)                                                                                  | A 150 P. L.                       |                                           |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · x                           | 500 mL HDPE w/                          | HNO, 6020 Dissol              | ved Metals (A), (as, o                                                                                                                     | r, & @ @, M, Ni, P     | b, Zn) and 1631E (H                                                                                | g) Field F                        | Filtered (0.45µm)                         |  |
| 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                         | E for Ferron                  |                                                                                                                                            |                        |                                                                                                    |                                   | And the second second                     |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                         |                               |                                                                                                                                            |                        |                                                                                                    |                                   |                                           |  |

| 7.7.      | OF R                          | 7.07.40.40.42.4                                                                                 | Monitoring Sampling Pers                | Well Sampling                                                                                                                            | g Field Sheet          | Well No. C<br>Facility/Project<br>Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77                       |                                            |  |
|-----------|-------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|--|
|           | 2/13/23                       |                                                                                                 |                                         |                                                                                                                                          |                        | Intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7 ppm                  | 1' Osticka                                 |  |
| mpling    | Method: Bla                   | dder Pump                                                                                       | ES                                      |                                                                                                                                          | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                      |                                            |  |
| uipme     | ent Used:                     | KI-6000                                                                                         | Well volume = 0.17 *                    | (total well depth - wate                                                                                                                 | r level)               | End-Water Level post purge/sample with pump on (ft. BTOC): 3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                            |  |
| Q-421 F   | Pro Quetro Pump               | NCU Mirard<br>- #3020<br>DED HP-10 (whole                                                       | Well Volume =                           | 9.51-3.11                                                                                                                                | >= Igal                | fixed due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to bladder 1.D           | post proc.                                 |  |
|           | Purge start time:             | 1003                                                                                            | Initial Flow Rate:                      | BP 2003                                                                                                                                  | Flow cell disconnected | d prior to sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | पि                       |                                            |  |
|           | Purge stop time:              | 105-1                                                                                           | Final Flow Rate:                        |                                                                                                                                          |                        | a prior to sampling .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                        |                                            |  |
|           |                               | 103-1                                                                                           | 12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 350 ₽<br>Water Quali                                                                                                                     | ty Measuremen          | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                            |  |
| Time      | Water level                   | Purge Rate                                                                                      | рН                                      | Conductivity                                                                                                                             | Temperature            | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential          | Turbidity                                  |  |
| military) | ft                            | (mL/min)                                                                                        | pH Units                                | uS/cm                                                                                                                                    | °C                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                       | , (NTU)                                    |  |
|           | < 0.33 ft from<br>2nd reading | < 500 mL                                                                                        | < 0.1 unit                              | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU of<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU of<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10 mV                  | {3 readings} < 5 NTU of<br>< 10% if >5 NTU |  |
| 006       | 3.15                          | 30850                                                                                           | 9,29                                    | 224.1                                                                                                                                    | 11.2                   | 0:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -41.7                    | 11.1                                       |  |
| 009       | 3.13                          | 250                                                                                             | 8.47                                    | 167,2                                                                                                                                    | 11.2                   | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.2                    | 9.56                                       |  |
| 0/2       | 3.13                          | 250                                                                                             | 7.53                                    | 170.3                                                                                                                                    | 11.1                   | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.5                     | 10.20                                      |  |
| 015       | 3.13                          | 250                                                                                             | 7.09                                    | 172.2                                                                                                                                    | 11.0                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.6                     | 8.45                                       |  |
| 018       | 3.13                          | 250                                                                                             | 6,77                                    | 234.0                                                                                                                                    | 10.9                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.7                     | 6.49                                       |  |
| 021       | 3,13                          | 250                                                                                             | 6.60                                    | 244.9                                                                                                                                    | 10.9                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.9                     | 16.59 PS                                   |  |
| 024       | 3.13                          | 250                                                                                             | 6.47                                    | 251.3                                                                                                                                    | 11.0                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.4                     | 5.55                                       |  |
| 027       | 3.13                          | 250                                                                                             | 6.39                                    | 259.1                                                                                                                                    | 10.8                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.7                     | 5.52                                       |  |
| 030       | 3.13                          | 250                                                                                             | 6.36                                    | 241.6                                                                                                                                    | 10.9                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.8                     | 5.80                                       |  |
| 633       | 3,13                          | 250                                                                                             | 6:32                                    | 254.1                                                                                                                                    | 10.9                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.6                     | 5.83                                       |  |
|           | All pav                       | ns Stab                                                                                         | e, de                                   | flow cul                                                                                                                                 | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 4 1 7 7              |                                            |  |
| 040       | collect                       | CTULL                                                                                           | 4-5-12                                  | 13"                                                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                            |  |
|           |                               |                                                                                                 | 7.71                                    |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                            |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                            |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          |                        | That is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                   |                                            |  |
|           |                               |                                                                                                 | 4                                       |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TWAAFA 4Q23<br>rs: ES/MW |                                            |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          | 11                     | The second secon | ID: CTMW-5-1223          |                                            |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/13/23 Time: 104        | 0 —                                        |  |
| 1         |                               |                                                                                                 |                                         |                                                                                                                                          |                        | Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                            |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          |                        | Presen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                            |  |
|           | 100                           |                                                                                                 |                                         |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -                                          |  |
|           |                               |                                                                                                 |                                         |                                                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                            |  |
|           |                               |                                                                                                 |                                         | 1                                                                                                                                        |                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | A Value of the second                      |  |
| otes:     |                               |                                                                                                 |                                         | s "ORP referenced to                                                                                                                     |                        | electrode". Electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de calibrated in         | solution.                                  |  |
|           |                               | vol + 2.2                                                                                       | gal                                     | Man I I I                                                                                                                                |                        | much filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                            |  |
|           |                               | pump throl                                                                                      | (collected in                           | Act C 40 br                                                                                                                              | esh GW thro            | ing tires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                            |  |
| 2 (1)     | Bottles and A                 | Analyses:                                                                                       | _ (collected in C                       | Matale (M. Co. 4                                                                                                                         | 7 6 60 0 pt 6          | A) and 16315 (Ug)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                            |  |
| (1)       | X                             | - 250<br>- 250<br>- 150<br>- 150<br>- 150<br>- 150<br>- 150<br>- 150<br>- 150<br>- 150<br>- 150 | HNO 6020 Disco-                         | wetais (A), (As, Cr, (                                                                                                                   | 3, 6, 60, 0, Pb, 6     | g) and 1631E (Hg)<br>Pb, <b>(</b> ) and 1631E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hg) D Field              | Filtered (0.45µm)                          |  |
| (1)       |                               | 250 ml HD                                                                                       |                                         |                                                                                                                                          | C1, C1, C3, W/, W/,    | ro, Cur and 1031C (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161 LM Field             | , increa (o.45µm)                          |  |

| Det        |                                 | ALTON<br>LMSTED<br>UGLEVAND | 2000                 | Well Samplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Field Sheet         | Facility/Project:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
|------------|---------------------------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Date:      | 12/13/23                        | 3                           | Sampling Pers        | sonnel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Initial Headspace (ppm)                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |  |
| samplin    | g Method: Lo.                   | as flow eur.                | ES/M                 | 1W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Intial-Water Level befor                                                                        | re purge (ft. BTOC) 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3? (stick                                 |  |
| quipme     | ent Used:                       |                             |                      | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r level)              | End-Water Level post po                                                                         | urge/sample with pump on (ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E. BTOC):11.37 6                          |  |
| NO YOU     | #7068 PID.                      | PKI-GOOD                    | 46404                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Pump Intake Depth (ft.B                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
| Turb - S   | Pro Quetro Pump                 | - Masterfur<br>EIS          | Well Volume =        | 18.5'-11.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.1                 | ~1'0                                                                                            | 4 botton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |  |
| -          | Purge start time:               |                             | Initial Flow Rate:   | The state of the s |                       | Analogica witte                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |  |
|            | Purge stop time:                | 1145                        | Final Flow Rate:     | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnecte | d prior to sampling :                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
| -          |                                 | 1206                        | - Yallur 5 3         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monsuraman            | •-                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
| SE SE V    |                                 |                             | T                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ty Measuremen         | LS .                                                                                            | I was a second and a second a second and a second a second and a second a second and a second and a second a second a second a second and a second and a second a second a second a second a second and |                                           |  |
| Time       | Water level                     | Purge Rate                  | рН                   | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temperature           | Dissoved<br>Oxygen                                                                              | Redox Potential *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turbidity                                 |  |
| (military) | ft                              | (mL/min)                    | pH Units             | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                    | mg/L                                                                                            | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (NTU)                                     |  |
|            | < 0.33 ft from<br>2nd reading   | < 500 mL                    | < 0.1 unit           | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 3%                  | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |
| 1147       | 11.33                           | 350                         | 6:77                 | 2379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.7                  | 0.41                                                                                            | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.8                                      |  |
| 1150       | 11.37                           | 350                         | 6.83                 | 2391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.6                  | 0.32                                                                                            | 152.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.02                                      |  |
| 1153       | 11.37                           | 350                         | (0.81                | 2288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                  | 0.22                                                                                            | 145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.40                                      |  |
| 1156       | 11.37                           | 350                         | 6.81                 | 2237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.60                 | 0.19                                                                                            | 140.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.68                                      |  |
| 1159       | 11,37                           | 350                         | 6.82                 | 1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                  | 0.18                                                                                            | 135.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.85                                      |  |
| 1200       | Edu                             | it "CT                      | MW-7-1               | 753"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
|            |                                 |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
|            |                                 |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |  |
|            |                                 |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Sample                                                                                          | : TWAAFA 4Q23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |  |
|            |                                 |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Analysi                                                                                         | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |  |
|            |                                 |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                 | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |  |
| Notes:     | *Per EPA (2023), OR<br>Sampu Vi |                             | ent data recorded is | "ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Analysi                                                                                         | s:<br>vative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | solution.                                 |  |

| D                      |                               | ALTON<br>LMSTED<br>UGLEVAND | Monitoring                   | g Well Sampling                                                                                                                         | g Field Sheet           | Well No. CTI<br>Facility/Project:                                                               |                             |                                           |  |  |
|------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|--|--|
| Date:                  | 12/12/23                      |                             | Sampling Pers                | sonnel:                                                                                                                                 |                         | Initial Headspace (ppm)                                                                         | D. Dppm                     |                                           |  |  |
| Samplin                | g Method: /a                  | Han Devi                    | ES/H                         | ar                                                                                                                                      |                         | Intial-Water Level before                                                                       | purge (ft. BTOC) 5:4        | 1 Brow (Star ay                           |  |  |
| Equipme                | ent Head.                     |                             |                              | (total well depth - wate                                                                                                                | r level)                | End-Water Level post pur                                                                        | ge/sample with pump on (ft. | BTOC): 7. 43 BG                           |  |  |
| WL-720 \$              | 17008 PIDE                    | CK1-6000                    |                              |                                                                                                                                         |                         | Pump Intake Depth (ft.BTOC):                                                                    |                             |                                           |  |  |
| WQ - YSi<br>Turb - عرد | Pro Quetto Pump               | E13                         | Well Volume =                | 11,5'-5,41'                                                                                                                             | > = Igal                | ~1'off1                                                                                         | ootlone                     |                                           |  |  |
|                        | Purge start time:             | 1442                        | Initial Flow Rate:           | 250                                                                                                                                     | Flow cell disconnected  | d prior to sampling :                                                                           | pling:                      |                                           |  |  |
|                        | Purge stop time:              | 1532                        | Final Flow Rate:             | 150                                                                                                                                     |                         |                                                                                                 |                             |                                           |  |  |
|                        |                               |                             |                              | Water Qualit                                                                                                                            | ty Measuremen           | ts                                                                                              |                             |                                           |  |  |
| Time                   | Water level                   | Purge Rate                  | рН                           | SPC<br>Conductivity                                                                                                                     | Temperature             | Dissoved<br>Oxygen                                                                              | Redox Potential *           | Turbidity                                 |  |  |
| (military)             | ft                            | (mL/min)                    | pH Units                     | uS/cm                                                                                                                                   | °C                      | mg/L                                                                                            | mV                          | (NTU)                                     |  |  |
|                        | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                   | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                     | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |  |
| 1445                   | 5,95'                         | 250                         | 12.30                        | 5965                                                                                                                                    | 14.9                    | 0.11                                                                                            | -265.8                      | 110                                       |  |  |
| 1-1-18                 | 6.28                          | 250                         | 12.60                        | 10229                                                                                                                                   | 14,9                    | 0.06                                                                                            | -311.6                      | 28.5                                      |  |  |
| 1451                   | 10.55                         | 200                         | 12.65                        | 6270                                                                                                                                    | 14.8                    | 0.13                                                                                            | -325.5                      | 23.5                                      |  |  |
| 1424                   | 6.65                          | 150                         | 12.67                        | 6287                                                                                                                                    | 14.8                    | 0113                                                                                            | -335,6                      | 24.1                                      |  |  |
| 1457                   | 6.74                          | 150                         | 12.68                        | 10327                                                                                                                                   | 14.7                    | 0.16                                                                                            | -341.60                     | 22.3                                      |  |  |
| 1500                   | 18,01                         | 150                         | 12.71                        | 6350                                                                                                                                    | 14.7                    | 0.15                                                                                            | -345.60                     | 15.8                                      |  |  |
| 1503                   | 6.91                          | 150                         | 12.71                        | 6378                                                                                                                                    | 14.5                    | 0.16                                                                                            | -348,3                      | 12,0                                      |  |  |
| 1506                   | 6,97                          | 150                         | 12.72                        | 6364                                                                                                                                    | 14.6                    | 0,17                                                                                            | -350.4                      | 9,45                                      |  |  |
| 1509                   | 7,07                          | 150                         | 12,73                        | 6350                                                                                                                                    | 11.6                    | 0.16                                                                                            | -352.0                      | 8,22                                      |  |  |
| 1512                   | 7.18                          | 150                         | 12,73                        | 6319                                                                                                                                    | 1010                    | 0,16                                                                                            | -353.1                      | 7.02                                      |  |  |
| 1515                   | 7,23                          | 150                         | 12,73                        | 6304                                                                                                                                    | 14.60                   | 0,16                                                                                            | -353.8                      | 5.14                                      |  |  |
| 1518                   | 7,38                          | 150                         | 12,74                        | 6273                                                                                                                                    | 14.60                   | 0.19                                                                                            | -354.9                      | 6.35                                      |  |  |
| 1521                   | -                             | Stable, 1                   |                              | 272,                                                                                                                                    | > liellyd (             | ruged + tets                                                                                    | disset. 4d fitte            | ved) metals                               |  |  |
| 1525                   | Collect                       | " CTMW                      | -8-122                       | 5                                                                                                                                       |                         |                                                                                                 |                             | Collected.                                |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         |                                                                                                 |                             |                                           |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         | Project: TW                                                                                     | /AAFA 4Q23                  |                                           |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         | Samplers: E                                                                                     | ES/MW                       |                                           |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         |                                                                                                 | CTMW-8-1223                 |                                           |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         | Date: 12/12                                                                                     | /23 Time: 1525              | -                                         |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         | — Analysis:                                                                                     |                             | -                                         |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         | Preservative                                                                                    | e:                          | C.                                        |  |  |
|                        |                               |                             |                              |                                                                                                                                         |                         |                                                                                                 |                             | -                                         |  |  |
| Notes:                 | *Per EPA (2023), OI           | RP direct measurem          | ent data recorded is         | "ORP referenced to                                                                                                                      |                         | electrode". Electrode                                                                           | ralibrated in               | 2.10.100                                  |  |  |
| 4-7-71                 |                               | Vol + C                     |                              | 3.5.5.1664 10                                                                                                                           |                         | ciccioue . Liectrode (                                                                          | Campi ateu III              | solution.                                 |  |  |
|                        | Bottles and A                 | nalyses:                    | (collected in o              | rder below)                                                                                                                             |                         |                                                                                                 |                             |                                           |  |  |
| (1)                    | 1 x                           | 500 mL HDPE w/              | HNO₃ 6020 Total I            | Metals (A), (B), Cr, (C)                                                                                                                | ), (Fa), NO, Ni. Pb. 71 | n) and 1631E (Hg)                                                                               |                             |                                           |  |  |
| (1)                    | x                             | 500 mL HDPE w/              | HNO <sub>3</sub> 6020 Dissol | ved Metals (A), (A),                                                                                                                    | Cr, (0), (9, (M), Ni. F | b, Zn) and 1631E (Hg)                                                                           | Field F                     | iltered (0.45µm)                          |  |  |
| (1)                    | 1 X                           | 250ml HOY                   | E for ferrous                | Ivon                                                                                                                                    |                         |                                                                                                 |                             | εα (σ.+5μπ)                               |  |  |
| C.,                    |                               |                             | 7 9                          |                                                                                                                                         |                         |                                                                                                 |                             |                                           |  |  |

|            | OF P                          | ALTON<br>DLMSTED<br>UGLEVAND | Monitoring         | Well Sampling                                                                           | g Field Sheet          | Well No. C                                     | TMW-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|------------|-------------------------------|------------------------------|--------------------|-----------------------------------------------------------------------------------------|------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Date: 1    | 2/12/23                       |                              | Sampling Pers      | sonnel:                                                                                 |                        | Initial Headspace (ppm                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Sampling   | Method: 1                     | SHAN ALL                     | ES/                |                                                                                         |                        | Intial-Water Level befo                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84 (Sticke     |
| -daibwe    | ent Used.                     | TOTAL 201                    | Well volume = 0.17 | (total well depth - water                                                               | r level)               | End-Water Level post p                         | ourge/sample with pump on (ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01             |
| WL-980     | י בים פיצירא                  | BK1-1000                     |                    |                                                                                         |                        | Pump Intake Depth (ft.                         | BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.03          |
| Turb-Oli   | Pro Courte Pump               | - Maskyflex                  | Well Volume =      | 20 1 40 04 5                                                                            | 1000                   |                                                | off bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 1400       | Purge start time:             | (15)                         | Initial Flow Rate: | 30.1 - 10.84                                                                            | 1 - Su Egal            |                                                | 0 20.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 1400       | Purge stop time:              | 1958 905                     | Final Flow Rate:   | 350                                                                                     | Flow cell disconnected | d prior to sampling :                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|            | , ange stop time.             | 1434                         | Final Flow Rate:   | <i>3</i> 50                                                                             |                        |                                                | The state of the s |                |
|            |                               |                              |                    | Water Qualit                                                                            | ty Measuremen          | ts                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Time       | Water level                   | Purge Rate                   | рН                 | Conductivity                                                                            | Temperature            | Dissoved<br>Oxygen                             | Redox Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity      |
| (military) | ft                            | (mL/min)                     | pH Units           | uS/cm                                                                                   | °C                     | mg/L                                           | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (NTU)          |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                     | < 0.1 unit         | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>(3 readings) &lt; 5 NT</td></td> | < 3%                   | = 0.3 mg/L</td <td>(3 readings) &lt; 5 NT</td> | (3 readings) < 5 NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 1407       | 10.83                         | 350                          | 737                | 3540                                                                                    | 15.2                   | 7.10                                           | -10:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10% if >5 NTU |
| 1-40       | 10.83                         | 350                          | 7.06               | 3361                                                                                    | 15.6                   | 5.01                                           | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.77           |
| 1413       | 10.83                         | 350                          | 7.02               | 3379                                                                                    | 15.5                   | 2.28                                           | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.84           |
| 1-116      | 0.83                          | 350                          | 6.99               | 3393                                                                                    | 15.5                   | 0.17                                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18:1           |
| 1-117      | 10.83                         | 350                          | 6.98               | 3402                                                                                    | 15.5                   | 0.11                                           | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.3           |
| 1172       | 10.83                         | 350                          | 6,97               | 3397                                                                                    | 15,6                   | 0.11                                           | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.7           |
| 14125      | 10.83                         | 350                          | 6,97               | 3397                                                                                    | 15.6                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| M30        |                               | metres st                    | able, d/c f        | low cell                                                                                | 75.0                   | 0,11                                           | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.9           |
| H30        | All para                      | metres st                    | able, dief         | low cell                                                                                | 15.0                   | Pro Sai Sai Da An                              | oject: TWAAFA 4Q23 mplers: ES/MW mple ID: CTMW-9-1 te: 12/12/23 Time: alysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|            | All para                      | METTES ST<br>"CTMW-          | able, d/c f        | loù cell                                                                                | 15.0                   | Pro Sai Sai Da An                              | oject: TWAAFA 4Q23 mplers: ES/MW mple ID: CTMW-9-1 te: 12/12/23 Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1223           |
| Notes:     | All para                      | MCTUS ST<br>CTMW-            | able, d/c f        | ORP referenced to                                                                       | 15.0                   | Pro Sai Sai Da An                              | oject: TWAAFA 4Q23 mplers: ES/MW mple ID: CTMW-9-1 te: 12/12/23 Time: alysis: eservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1223           |

|                                         | OF P                          | ALTON<br>LMSTED<br>UGLEVAND | Monitoring<br>Sampling Pers | Well Samplin                                                                                                         | g Field Sheet                | Well No. CT<br>Facility/Project:<br>Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-11R2<br>TWAAFA                         |                        |  |
|-----------------------------------------|-------------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--|
|                                         | 2/15/23                       | /                           |                             |                                                                                                                      |                              | Intial-Water Level befor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                        |  |
|                                         | g Method: low                 | > flow peri                 |                             | S/MW<br>(total well depth - water                                                                                    | r level)                     | Total Control of the | ン・ さ<br>urge/sample with pump on (ft      |                        |  |
| Equipme                                 | ent Used:                     | 2x1-6000                    | vven voidine = 0.17         | (total well depth - water                                                                                            | Pump Intake Depth (ft.BTOC): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
| WQ-ysi 1<br>Turb-geo                    | Pump Pump                     | - Masterflex<br>E/S         | Well Volume =               | L13'-5.81                                                                                                            | 1.2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         | Purge start time:             | 1035                        | Initial Flow Rate:          |                                                                                                                      | Flow cell disconnected       | d prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                                         |                        |  |
|                                         | Purge stop time:              | 1110                        | Final Flow Rate:            | 100                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             | Water Qualit                                                                                                         | ty Measuremen                | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                        |  |
| Time                                    | Water level                   | Purge Rate                  | рН                          | ≶ℓ<br>Conductivity                                                                                                   | Temperature                  | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turbidity                                 |                        |  |
| (military)                              | ft                            | (mL/min)                    | pH Units                    | uS/cm                                                                                                                | °C                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mV                                        | (NTU)                  |  |
|                                         | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                  | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                         | = 0.3 mg/L</td <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |                        |  |
| 1038                                    | 6.03                          | 100                         | 12.27                       | 7590                                                                                                                 | 13.5                         | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -83.0                                     | 5.98                   |  |
| 1041                                    | 6.09                          | 100                         | 12 26                       | 7745                                                                                                                 | 12.8                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -90.3                                     | 3.84                   |  |
| 1044                                    | 6.13                          | 100                         | 12 36                       | 7896                                                                                                                 | 12.8                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -104.9                                    | 3.17                   |  |
| 1047                                    | i. 09                         | 100                         | 1284                        | 7980                                                                                                                 | 12.2                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -107.9                                    | 4.10                   |  |
| 1050                                    | 4.00                          | 100                         | 1285                        | 7952                                                                                                                 | 12.2                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -110.8                                    | 3.04                   |  |
| 1053                                    | 6.08                          | 100                         | 1286                        | 7908                                                                                                                 | 123                          | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -112.3                                    | 3.73                   |  |
| 1056                                    | All Pa                        | rms sta                     |                             | flow cell                                                                                                            | 1 5 1 2 1 3 7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                         |                        |  |
| 1059                                    | 1100 CX                       | lect =                      | CTHW-1                      | 122-122                                                                                                              | B"                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
| 1102                                    | 17.4                          | Trans 11                    |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         |                        |  |
|                                         |                               |                             |                             |                                                                                                                      | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
| _                                       |                               |                             |                             |                                                                                                                      |                              | Project Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                        |  |
|                                         | -                             |                             |                             |                                                                                                                      |                              | Samplers: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AAFA 4Q23                                 | -                      |  |
| -                                       |                               |                             | -                           |                                                                                                                      |                              | Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTMW-11R2-1223                            |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              | Date: 12/15/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23 Time: 1100                             |                        |  |
|                                         | -                             |                             |                             |                                                                                                                      |                              | Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time. 1100                                |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              | Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y                                         |                        |  |
|                                         |                               |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
| Notes:                                  | *Per FPA (2023) OI            | RP direct measurem          | ent data recorded is        | "ORP referenced to                                                                                                   |                              | electrode". Electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | calibrated in                             | solution.              |  |
| 100000000000000000000000000000000000000 | - Sample                      |                             |                             |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |
|                                         | Bottles and A                 | nalvses:                    | (collected in o             | rder below)                                                                                                          | 10.00                        | 110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                        |  |
| (1)                                     |                               |                             |                             | Metals (3), (5), Cr, (5)                                                                                             | ). (G, (M), Ni, Pb, Zr       | n) and 1631E (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                        |  |
| (1)                                     |                               |                             |                             |                                                                                                                      |                              | b, Zn) and 1631E (Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field (                                   | Filtered (0.45µm)      |  |
|                                         |                               |                             | for ferrous                 |                                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | N. V. C. C. Strategick |  |
| (1)                                     |                               | 23010                       | A. 151100                   | , ,,,,,,                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                        |  |

|                   | OF                                         | ALTON<br>LMSTED<br>JGLEVAND | Marian               | Well Sampling                                                                                                                        | g Field Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well No. CTI<br>Facility/Project:<br>Initial Headspace (ppm)                                     | TWAAFA                       |                                        |  |
|-------------------|--------------------------------------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|--|
| Pate: 12          | 115123                                     |                             | Sampling Pers        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intial-Water Level before                                                                        | 0.0                          | 7-1                                    |  |
| ampling           | Method: اصد                                | flow sevi                   | ESIMU                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 13:                          |                                        |  |
| quipme            | ent Used:                                  | 24 1-000                    | Well volume = 0.17 * | (total well depth - wate                                                                                                             | r level)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  | rge/sample with pump on (ft. | 15.20                                  |  |
| NC-JOH<br>NQ-YSIP | ent Used:<br>7068 PID-1<br>10 quality Pump | - Musterfux<br>E15          | Well Volume =        | 37' - 15.n                                                                                                                           | 3.7<br>)= gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump Intake Depth (ft.8"<br>~10" off<br>(~27                                                     | bottom<br>Bottom             |                                        |  |
| 415-900           | Purge start time:                          | 1140                        | Initial Flow Rate:   | 300                                                                                                                                  | Flow cell disconnected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nrior to sampling :                                                                              | ব                            |                                        |  |
| _                 | Purge stop time:                           | 1207                        | Final Flow Rate:     | 400                                                                                                                                  | Flow cell disconnected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | -                            |                                        |  |
| _                 |                                            | 1201                        | E 0 5 40 1 14 30     |                                                                                                                                      | y Measuremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ts                                                                                               |                              |                                        |  |
| Time              | Water level                                | Purge Rate                  | рН                   | Conductivity                                                                                                                         | A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR | Turbidity                                                                                        |                              |                                        |  |
| (military)        | ft                                         | (mL/min)                    | pH Units             | uS/cm                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                             | mV                           | (NTU)                                  |  |
| (mincul y)        | < 0.33 ft from<br>2nd reading              | < 500 mL                    | < 0.1 unit           | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NT<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NT<br/>&lt; 10% if &gt;5 NTU</td>     | < 10 mV                      | {3 readings} < 5 NT<br>< 10% if >5 NTU |  |
| 1143              | 15.24                                      | 300                         | 7.79                 | 1697                                                                                                                                 | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.33                                                                                             | -24.5                        | 2.89                                   |  |
| 1146              | 15.24                                      | 400                         | 8.54                 | 1780                                                                                                                                 | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.34                                                                                             | -28.2                        | 2.49                                   |  |
| 1-19              | 15:24                                      | 400                         | 7.43                 | 1823                                                                                                                                 | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.29                                                                                             | -10.2                        | 226                                    |  |
| 152               | 15.24                                      | COP                         | 7.13                 | 1870                                                                                                                                 | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24                                                                                             | 8.6                          | 4.30                                   |  |
| 1155              | 15.24                                      | 400                         | 7.00                 | 1914                                                                                                                                 | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.27                                                                                             | 23.2                         | 3.76                                   |  |
| 158               | 15.24                                      | 400                         | 6.93                 | 1944                                                                                                                                 | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26                                                                                             | 29,7                         | 3.03                                   |  |
| 201               | 15,24                                      | 400                         | 6.91                 | 1956                                                                                                                                 | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26                                                                                             | 31.3                         | 3.49                                   |  |
| 205               | Collect                                    | rms stab                    | N-12-1               | flow cell                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                              |                                        |  |
|                   |                                            |                             |                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                              |                                        |  |
|                   |                                            |                             |                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project: TWAAFA 4Q23 Samplers: ES/MW Sample ID: CTMW-12-1223 Date: 12/15/23 Time: 1205 Analysis: |                              |                                        |  |
|                   |                                            |                             |                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pres                                                                                             | servative:                   | achitica                               |  |
| Notes:            |                                            | vd + 7                      | collected in c       | s "ORP referenced to                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electrode". Electrode                                                                            | e calibrated in              | solution.                              |  |
| (1)               | 1 X                                        | 500 mL HDPE W/              | HNO, 6020 Total      | Metals (8), (8), Cr, (                                                                                                               | ), <b>⊙</b> , <b>ऒ</b> , Ni, Pb, Z<br>Cr, <b>⊙</b> , <b>ⓒ</b> , <b>ऒ</b> , Ni, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                        | g) 🗹 Field                   | Filtered (0.45µm)                      |  |

| Date:            | 12/13/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALTON<br>LMSTED<br>JGLEVAND | Sampling Pers                 | Well Sampling                                                                                                 | S ricia dilect               | Well No. C<br>Facility/Project<br>Initial Headspace (ppm              |                              |                        |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|------------------------------|------------------------|--|
| ampling          | يرها: Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (/ · · · ·                  | ES/I                          |                                                                                                               |                              | Intial-Water Level before                                             |                              | 2' (Stick              |  |
| - Adibilib       | DT Head.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                               | (total well depth - wate                                                                                      | r level)                     | Property and annual and the second                                    | urge/sample with pump on (ft | 6                      |  |
| NL-geo.          | Pro Quedeo PID Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111-6000                    | 25 25 15 100 2 100 2          | 190000000000000000000000000000000000000                                                                       | Pump Intake Depth (ft.BTOC): |                                                                       |                              |                        |  |
| NQ-YSI           | Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Masterler                   | Well Volume =                 |                                                                                                               | 1.3                          |                                                                       |                              |                        |  |
| Turb Tio         | Purge start time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EIS                         | 17/1                          | 1.17'-3.4                                                                                                     | 2)= ga                       | ~ 1' of                                                               | bottom                       |                        |  |
| _                | The Art of | 1344                        | T 107 No. 1                   | 300                                                                                                           | Flow cell disconnected       | d prior to sampling :                                                 |                              |                        |  |
|                  | Purge stop time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1420                        | Final Flow Rate:              | 175                                                                                                           | 100                          |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               | Water Qualit                                                                                                  | ty Measuremen                | ts                                                                    |                              |                        |  |
| Time             | Water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Purge Rate                  | рН                            | Conductivity                                                                                                  | Temperature                  | Dissoved<br>Oxygen                                                    | Redox Potential              | Turbidity              |  |
| (military)       | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mL/min)                    | pH Units                      | uS/cm                                                                                                         | °C                           | mg/L                                                                  | mV                           | (NTU)                  |  |
|                  | < 0.33 ft from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 500 mL                    | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o</td></td> | < 3%                         | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o</td> | < 10 mV                      | {3 readings} < 5 NTU o |  |
| 1346             | 2nd reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                               |                                                                                                               | 190                          |                                                                       |                              | < 10% if >5 NTU        |  |
| 349              | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 700                         | 7,94                          | 316.2                                                                                                         | 13.4                         | 2.93                                                                  | 37.3                         | 199                    |  |
| 1352             | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                         | 7,74                          | 314.6                                                                                                         | 13.2                         | 2,77                                                                  | 32.9                         | 143                    |  |
| 355              | 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                         | 8.03                          | 253.1                                                                                                         | 15.8                         | 2.48                                                                  | 34.2                         | 63.7                   |  |
| 1358             | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                         | 8,02                          | 260.7                                                                                                         | 12.6                         | 2.72                                                                  | 28.2                         | 18.1                   |  |
| 401              | 41.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                         | 8.26                          | 276.6                                                                                                         | 12.5                         | 2.15                                                                  | 26.3                         | 10.3                   |  |
| 404              | 41.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                         | 8.29                          | 282.4                                                                                                         | 12.4                         | 2.14                                                                  | 74.6                         | 11.6                   |  |
| 1407             | 4,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175                         | 8.31                          | 285.0                                                                                                         | 12.3                         | 2.10                                                                  | 25.5                         | 10.73                  |  |
| 1410             | 41,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                         | 9.33                          | 284.4                                                                                                         | 12.3                         | 2.11                                                                  | 25.1                         | 10.96                  |  |
|                  | All par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ms stab                     |                               | ow cell                                                                                                       |                              |                                                                       |                              |                        |  |
| 415              | Collec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " CTM                       | w-14-12                       | 234                                                                                                           |                              |                                                                       |                              |                        |  |
| 100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              | Project: T                                                            | WAAFA 4Q23                   |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              | Samplers                                                              |                              | -                      |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       | D: CTMW-14-1223              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              | Date: 12/                                                             | 13/23 Time: 1415             |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              | Analysis:                                                             | N. i.e.                      |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              | Preserval                                                             | uve:                         |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                               |                                                                                                               |                              |                                                                       |                              |                        |  |
| l-tos:           | *Per EPA (2023), O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP direct measuren          | nent data recorded is         | "ORP referenced to                                                                                            | •                            | electrode". Electrod                                                  | le calibrated in             | solution.              |  |
| Notes:           | Sample Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | gul                           | 7 - 7 - 1 - 1                                                                                                 |                              |                                                                       |                              |                        |  |
| 7-               | A working to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 05, call AL                   | c & he conf                                                                                                   | irmed readin                 | gs are expe                                                           | cted.                        |                        |  |
| A 11             | Bottles and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalyses:                    | (collected in o               | rder below)                                                                                                   |                              |                                                                       |                              |                        |  |
| V <sub>(1)</sub> | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 mL HDPE w/              | HNO <sub>3</sub> 6020 Total N | Metals (A) (B, Cr, (                                                                                          | 0, 60, 100, Ni, Pb, Zi       | n) and 1631E (Hg)                                                     | _                            |                        |  |
| (1)              | l x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500 mL HDPE w/              | HNO <sub>3</sub> 6020 Dissolv | ved Metals (A), (A),                                                                                          | Cr, 👁 📵 🖝, Ni, F             | b, Zn) and 1631E (F                                                   | lg) 🔽 Field                  | Filtered (0.45µm)      |  |
| 1-1              | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250 ml H                    | OPE for ferror                | stron                                                                                                         |                              |                                                                       |                              |                        |  |

|            | OF                            |                    |                       | Well Sampling                                                                                                                           | g Field Sheet                | Facility/Project:                                                                               |                    |                                           |  |  |
|------------|-------------------------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|--|--|
| ate: \     | 2/15/23                       | 3                  | Sampling Pers         | ionnel:                                                                                                                                 |                              | Initial Headspace (ppm)                                                                         | Headspace (ppm) 5. |                                           |  |  |
| ampling    | Method: 1-                    | inscalta           | 1 6                   | S/MW                                                                                                                                    |                              | Intial-Water Level before                                                                       |                    | 6' (stickup)                              |  |  |
| daibille   | iii Used:                     |                    |                       | (total well depth - water                                                                                                               | r level)                     | End-Water Level post purge/sample with pump on (ft. BTOC): 7.05                                 |                    |                                           |  |  |
| VL - year  | KLATOLOB PID . P              | (11-6000           | lians to see a        |                                                                                                                                         | Pump Intake Depth (ft.BTOC): |                                                                                                 |                    |                                           |  |  |
| urb - ge   | requalion pump                | EIS                | Well Volume =         | 111-1                                                                                                                                   | 1.5                          | ~2.5                                                                                            | of bottom          |                                           |  |  |
| - h        | Purge start time:             |                    | Initial Flow Rate:    | (13.3 - 6                                                                                                                               | 10 )2 got                    | 0.0                                                                                             |                    |                                           |  |  |
|            | Purge stop time:              | 1510               | Final Flow Rate:      | 250                                                                                                                                     | Flow cell disconnected       | d prior to sampling :                                                                           |                    |                                           |  |  |
|            | and and                       | 1349               | Fillal Flow Rate.     | LSU                                                                                                                                     |                              |                                                                                                 | 24                 |                                           |  |  |
|            |                               |                    |                       | Water Qualit                                                                                                                            | y Measuremen                 | ts                                                                                              |                    |                                           |  |  |
| Time       | Water level                   | Purge Rate         | рН                    | SPC                                                                                                                                     | Temperature                  | Oxygen                                                                                          | Redox Potential *  | Turbidity                                 |  |  |
| (military) | ft                            | (mL/min)           | pH Units              | uS/cm                                                                                                                                   | °C                           | mg/L                                                                                            | mV                 | (NTU)                                     |  |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL           | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU (<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                         | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU (<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV            | {3 readings} < 5 NTU (<br>< 10% if >5 NTU |  |  |
| 1315       | 7.03                          | 250                | 7.39                  | 940                                                                                                                                     | 12.5                         | -0.07 4                                                                                         | 26.5               | 31.1                                      |  |  |
| 1318       | 7.03                          | 250                | 88.0                  | 972                                                                                                                                     | 12.2                         | -0.01 x                                                                                         | 37.3               | 22.8                                      |  |  |
| 1321       | 7.03                          | 250                | 6.75                  | 1016                                                                                                                                    | 12.2                         | 0                                                                                               | 41.2               | 22.4                                      |  |  |
| 324        | 7.03                          | 250                | 6.73                  | 1053                                                                                                                                    | 12.0                         | 0                                                                                               | 42.7               | 20.8                                      |  |  |
| 327        | 7.03                          | 250                | 6.72                  | 1078                                                                                                                                    | 11.9                         | 0                                                                                               | 44.3               | 22.2                                      |  |  |
| 1330       | 7.03                          | 250                | 10.73                 | 1100                                                                                                                                    | 11.9                         | 0                                                                                               | 43.3               | 22.8                                      |  |  |
| 1333       | 7.05                          | 250                | 6.74                  | 1124                                                                                                                                    | 11.8                         | 0                                                                                               | 44.1               | 23.5                                      |  |  |
| 1336       | 7.05                          | 250                | 6,79                  | 1144                                                                                                                                    | 11.7                         | 0                                                                                               | 44.3               | 22.1                                      |  |  |
| 1331       | 7.05                          | 250                |                       | 1161                                                                                                                                    | 11.6                         | 0                                                                                               | 44.3               | 229:22                                    |  |  |
|            |                               |                    | ble, de f             |                                                                                                                                         |                              |                                                                                                 |                    |                                           |  |  |
| 1345       | Collec                        | + " CTM            | M-11-                 | 1223"                                                                                                                                   |                              |                                                                                                 |                    |                                           |  |  |
| _          |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 |                    |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 |                    |                                           |  |  |
| _          |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 |                    |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 | Inthospita .       |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 | VAAFA 4Q23         |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              | Samplers:                                                                                       |                    |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         | 1                            |                                                                                                 | : CTMW-17-1223     |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              | Date: 12/1                                                                                      | 5/23 Time: 134     | •                                         |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              | Analysis: Preservati                                                                            | ve.                |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              | Flescivau                                                                                       | <b>V</b> G.        |                                           |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 |                    | C-4-                                      |  |  |
|            |                               |                    |                       |                                                                                                                                         |                              |                                                                                                 |                    |                                           |  |  |
| Notes:     | *Per EPA (2023), O            | RP direct measuren | nent data recorded is | s "ORP referenced to                                                                                                                    |                              | electrode". Electrode                                                                           | calibrated in      | solution.                                 |  |  |
|            |                               |                    |                       | O (1321 for                                                                                                                             | word) per A                  | C(remote)                                                                                       |                    |                                           |  |  |
|            |                               | 12 th              |                       | Solve Esterió                                                                                                                           |                              | V - 14 1 - 1 - 1                                                                                |                    |                                           |  |  |
| N. The     | Bottles and A                 |                    | _(collected in c      |                                                                                                                                         | S COM OF T                   | n) and 16215 (C)                                                                                |                    |                                           |  |  |
| (1)        |                               |                    |                       | Metals (A) (A) (A)                                                                                                                      |                              | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (Hg                                                      | Field              | Filtered (0.45µm)                         |  |  |
| (1)        |                               |                    |                       |                                                                                                                                         | J. Cy. (e) IVII), NI, I      | -D, 211) and 1631E (18                                                                          | LVI rield          | mered (0.45µm)                            |  |  |
| · (1)      | 1 X                           | DOWN HAVE          | for Ferra             | 2 NOV                                                                                                                                   |                              |                                                                                                 |                    |                                           |  |  |

| Date: \                          | 2/15/2                        | ALTON<br>LMSTED<br>JGLEVAND | 100,100,000           | Well Samplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Field Sheet          | Facility/Project                                                      |                              |                        |
|----------------------------------|-------------------------------|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|------------------------------|------------------------|
|                                  | 24 (3/ 1                      |                             | Sampling Pers         | ES/HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Initial Headspace (ppm)                                               | 0.0                          |                        |
| Equipme                          | Method: low                   | flow peri                   | Wall and a second     | The second secon |                        | Intial-Water Level befor                                              | 10.                          |                        |
| WL-YOU                           | # 7068 PID                    | RW-6000                     | Well volume = 0,17 *  | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r level)               |                                                                       | urge/sample with pump on (ft | . BTOC): 13,24 '       |
| wa - Ysi<br><sub>Turb -</sub> ge | pro quatropump<br>o.turb      | -Masterflex<br>E15          | Well Volume =         | 0.75'-13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4' 1- 34               | Pump Intake Depth (ft. I                                              | off bottom                   |                        |
|                                  | Purge start time:             | 1400                        | Initial Flow Rate:    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      | ATTICK AND                                                            | _                            |                        |
|                                  | Purge stop time:              | 1428                        | Final Flow Rate:      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnected | d prior to sampling :                                                 | leftigg                      |                        |
|                                  |                               | 110.0                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ty Measuremen          | ts                                                                    |                              |                        |
| Time                             | Water level                   | Purge Rate                  | рН                    | SPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature            | Dissoved<br>Oxygen                                                    | Redox Potential              | Turbidity              |
| (military)                       | ft                            | (mL/min)                    | pH Units              | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                     | mg/L                                                                  | mV                           | (NTU)                  |
|                                  | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit            | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU o</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU o</td> | < 10 mV                      | (3 readings) < 5 NTU o |
| 1401                             | 13,27                         | 300                         | 6.83                  | 1804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.3                   | 0 *                                                                   | F1 0                         | <10% if >5 NTU         |
| 1404                             | 13.27                         | 300                         | 6.85                  | 1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5                   | 0.42                                                                  | 56.8                         | 10.5                   |
| <b>TOP1</b>                      | 13.27                         | 300                         | 10.566                | 1822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5                   | 0.28                                                                  | 52.6                         | 6:39                   |
| 1-110                            | 13.27                         | 300                         | 10.47                 | 1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,5                   | 0.22                                                                  | 51.5                         | 5.96                   |
| 1413                             | 13,27                         | 300                         | 6.87                  | 1817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4                   | 0                                                                     | 50.4                         | 4.71                   |
| 1416                             | 13.27                         | 300                         | 6.87                  | 1819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4                   | 0                                                                     | 49.3                         | 4.86                   |
| 1419                             | 13.27                         | 300                         | 10.87                 | 1825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,4                   | 0                                                                     | 48.1                         | 4.53                   |
|                                  | All par                       | ms stab                     | 1                     | lau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                       |                              | 1.33                   |
| 1425                             | Conect                        | " CTMV                      | 1-00-1                | 273"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                                                       |                              |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                       |                              |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                       |                              |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 =                   |                                                                       |                              |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Project: TW                                                           | /AAFA 4Q23                   |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | - Samplers: I                                                         |                              |                        |
|                                  | -                             |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Sample ID:                                                            | CTMW-17D-1223                |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Date: 12/15 Analysis: Preservativ                                     |                              |                        |
|                                  |                               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                       |                              |                        |
| Notes:                           | *Per EPA (2023) O             | RP direct measures          | nent data recorded is | "ORD referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | electrode". Electrod                                                  | a college of Co              | 597.527.1              |
| - Notes.                         | * (-) DO                      | is recorded                 | was o                 | OKP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | electrode", Electrod                                                  | e calibrated in              | solution.              |
| -                                | Sample                        |                             | gae                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                       |                              |                        |
| 7                                | Bottles and A                 |                             | _(collected in o      | rder below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. 2 Table            |                                                                       |                              |                        |
| (1)                              | x                             | 250 mL HDPE w/              | HNO, 6020 Total I     | Metals (A), (Cr, (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ), 👩, Øh, Ni, Pb, Z    | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                             |                              |                        |
| (1)                              | x                             | 500 mL HDPE w/              | PE For Fur            | ved Metals (A), (B),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr, 🕠, 📵, 🚳, Ni, I     | Pb, Zn) and 1631E (F                                                  | lg)                          | Filtered (0.45µm)      |
|                                  |                               | 1571. 0 111                 | IVE LEVIL             | / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                       |                              |                        |

|            | OF                            | ALTON<br>LMSTED<br>UGLEVAND | J. Maniharay                                                                      | Well Samplin                                                                                                                            | g Field Sheet                                                             | Facility/Project:                                                                               |                    |                                           |  |
|------------|-------------------------------|-----------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|--|
| Date:      | 2/13/23                       |                             | Sampling Pers                                                                     | sonnel:                                                                                                                                 |                                                                           | Initial Headspace (ppm)                                                                         | (), IPPM           |                                           |  |
| Samplin    | g Method: /a                  | s flow per                  | FS/MU                                                                             | S                                                                                                                                       |                                                                           | Intial-Water Level before                                                                       | e purge (ft. BTOC) | 13' (J:d.4)                               |  |
| -deibille  | ant used:                     |                             | Well volume = 0.17 *                                                              |                                                                                                                                         |                                                                           |                                                                                                 |                    |                                           |  |
| WO-VE      | Ro Quatroump                  | 41-6000                     | Well Volume =                                                                     |                                                                                                                                         |                                                                           | Pump Intake Depth (ft.8                                                                         |                    | E-DESCRIPTION OF                          |  |
| Turb - qu  | the grand-bumb                | EIS                         |                                                                                   | 13-673                                                                                                                                  | 1 = 1. Dlogal                                                             | ~) 0                                                                                            | 4 bottom           |                                           |  |
|            | Purge start time:             | 1219                        | Initial Flow Rate:                                                                | 300                                                                                                                                     | V                                                                         |                                                                                                 | 7/                 |                                           |  |
|            | Purge stop time:              |                             | Final Flow Rate:                                                                  | 175                                                                                                                                     | Flow cell disconnected                                                    | d prior to sampling :                                                                           |                    |                                           |  |
|            |                               | 1243                        | 1 - Auto-Garage                                                                   |                                                                                                                                         | ty Measuremen                                                             | te                                                                                              |                    |                                           |  |
|            |                               |                             |                                                                                   |                                                                                                                                         | ty ivieasuremen                                                           | L3                                                                                              |                    |                                           |  |
| Time       | Water level                   | Purge Rate                  | рН                                                                                | SPC<br>Conductivity                                                                                                                     | Temperature                                                               | Dissoved<br>Oxygen                                                                              | Redox Potential *  | Turbidity                                 |  |
| (military) | ft                            | (mL/min)                    | pH Units                                                                          | uS/cm                                                                                                                                   | °C                                                                        | mg/L                                                                                            | mV                 | (NTU)                                     |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                                                                        | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                                                      | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV            | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |
| 1220       | 6.89                          | 300                         | 10.51                                                                             | 992                                                                                                                                     | 15.9                                                                      | 1.72                                                                                            | 80.6               | 26.6                                      |  |
| 1223       | 6.98                          | 300                         | 6.70                                                                              | 980                                                                                                                                     | 15.8                                                                      | 1.63                                                                                            | 84.6               | 15.7                                      |  |
| 12210      | 7.07                          | 250                         | 6,64                                                                              | 910                                                                                                                                     | 15.5                                                                      | 0.38.                                                                                           | 83.8               | 17.6                                      |  |
| 1229       | 7.00                          | 175                         | 6.63                                                                              | 924                                                                                                                                     | 15.4                                                                      | 0.29                                                                                            | 82.3               | 16.8                                      |  |
| 1232       | 7.06                          | 175                         | 10101                                                                             | 935                                                                                                                                     | 15.3                                                                      | 0.31                                                                                            | 80.8               | 16.3                                      |  |
| 1235       | All parm                      | S Stable                    | 1-18-12                                                                           | 23"                                                                                                                                     |                                                                           |                                                                                                 | 1 2 2 2            | 30 V                                      |  |
|            |                               |                             |                                                                                   |                                                                                                                                         |                                                                           | Sample Sample                                                                                   |                    |                                           |  |
| Notes:     | Sample v                      | of t lgi                    | al                                                                                | s "ORP referenced to                                                                                                                    |                                                                           | electrode". Electrode                                                                           | e calibrated in    | solution.                                 |  |
| (1)<br>(1) | Bottles and A                 | 500 mL HDPE w/              | _(collected in c<br>HNO <sub>3</sub> 6020 Total I<br>HNO <sub>3</sub> 6020 Dissol | Metals (6), 69, Cr, Q                                                                                                                   | <b>0, 63</b> , 1 <b>60</b> , Ni, Pb, Zi<br>Cr, <b>(2) (9) (</b> 1), Ni, F | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (H                                                       | g) 🗹 Field         | Filtered (0.45µm)                         |  |

| D                               | OF R                          | ALTON<br>LMSTED<br>JGLEVAND | Monitoring                                                          | Well Sampling                                                                                                                           | g Field Sheet         | Well No. CTV<br>Facility/Project:                                                               | W-23R2<br>TWAAFA                      |                                           |  |  |
|---------------------------------|-------------------------------|-----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|--|--|
| Date: 1                         | 2/18/23                       |                             | Sampling Pers                                                       | onnel:                                                                                                                                  |                       | Initial Headspace (ppm)                                                                         |                                       |                                           |  |  |
| Sampling                        | g Method: 15                  | a flow peri                 | ESIMA                                                               | J                                                                                                                                       |                       | Intial-Water Level before                                                                       | purge (ft. BTOC) LI &I                |                                           |  |  |
| Equipme                         | mt Hand.                      |                             | Well volume = 0.17 *                                                | (total well depth - wate                                                                                                                | r level)              | End-Water Level post pu                                                                         | rge/sample with pump on (ft.          | BTOC): 5 48'                              |  |  |
| WC-920.<br>WQ-45. f<br>Turb que | 12 Juntos Pump                | Du-wood<br>Howkether<br>F15 | Well Volume = 1.3 Pump Intake Depth (ft.BTOC):  17(12.5-4.81) = See |                                                                                                                                         |                       |                                                                                                 |                                       |                                           |  |  |
|                                 | Purge start time:             | 0936                        | Initial Flow Rate:                                                  | 250                                                                                                                                     |                       | - CVOROR                                                                                        | _/                                    |                                           |  |  |
|                                 | Purge stop time:              | 1024                        | Final Flow Rate:                                                    |                                                                                                                                         | Flow cell disconnecte | d prior to sampling :                                                                           |                                       |                                           |  |  |
|                                 | Water Quality Measurements    |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 |                                       |                                           |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 |                                       |                                           |  |  |
| Time                            | Water level                   | Purge Rate                  | pH                                                                  | Conductivity                                                                                                                            | Temperature           | Dissoved<br>Oxygen                                                                              | Redox Potential *                     | Turbidity                                 |  |  |
| (military)                      | ft                            | (mL/min)                    | pH Units                                                            | uS/cm                                                                                                                                   | °C                    | mg/L                                                                                            | mV                                    | (NTU)                                     |  |  |
|                                 | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit                                                          | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                  | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                               | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |  |
| 0938                            | 5.02                          | 250                         | 7.75                                                                | 685                                                                                                                                     | 14.6                  | 0.67                                                                                            | 91.5                                  | 9.20                                      |  |  |
| D9-11                           | 5.19                          | 200                         | 7.31                                                                | 666                                                                                                                                     | 14.1                  | 0.13                                                                                            | 93.2                                  | 10.40                                     |  |  |
| 944                             | 5.28                          | 150                         | 7.17                                                                | 684                                                                                                                                     | 13.9                  | 0.18                                                                                            | 90.7                                  | 7.33                                      |  |  |
| 0947                            | 5.38                          | 120                         | 7.12                                                                | 699                                                                                                                                     | 13.9                  | 0113                                                                                            | 88.6                                  | 8.89                                      |  |  |
| 0950                            | 5.47                          | 150                         | 711                                                                 | 720                                                                                                                                     | 13.5                  | 0. 13                                                                                           | 874                                   | 8.64                                      |  |  |
| 0953                            | 5.49                          | 150                         | 7 11                                                                | 721                                                                                                                                     | 13.8                  | 0:14                                                                                            | 86.3                                  | 8.50                                      |  |  |
| 0956                            | 552                           | 100                         | 712                                                                 | 729                                                                                                                                     | 7.3.3                 | 9.15                                                                                            | 84.2                                  | 8 74                                      |  |  |
| 0959                            | 5.56                          | 100                         | 7.13                                                                | 727                                                                                                                                     | 13.4                  | 0.13                                                                                            | 83.2                                  | 8.36                                      |  |  |
| 1002                            | 5.56                          | 1.00                        | 7.14                                                                | 730                                                                                                                                     | 13.3                  | 0.12                                                                                            | 93.1                                  | 8.80                                      |  |  |
| 1005                            | 5 56                          | 100                         | 7.10                                                                | 731                                                                                                                                     | 13 2                  | 0.11                                                                                            | 82.8                                  | 8.19                                      |  |  |
| 1009                            |                               | /00                         | 7 17                                                                | 733<br>> >0.33A                                                                                                                         |                       | 0.10                                                                                            | 81.8                                  | 8.02                                      |  |  |
|                                 | All parm                      | S Stable                    | , drawdin.                                                          | C 70.55                                                                                                                                 | DIAST AC              | consumed                                                                                        | remoted that a                        | iny                                       |  |  |
| 0.0                             | +>                            | Sample                      | -2382-12                                                            | 234                                                                                                                                     |                       |                                                                                                 |                                       |                                           |  |  |
| 1010                            | coulect                       | CIMW                        | +.T2KT-17                                                           | 40.                                                                                                                                     |                       |                                                                                                 |                                       |                                           |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 |                                       |                                           |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 |                                       | ~ _                                       |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 | Project: TWAAFA 4Q<br>Samplers: ES/MW |                                           |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 | Sample ID: CTMW-2                     | 23R2-1223 —                               |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 |                                       | me: 1010 —                                |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 | Analysis:                             | -                                         |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       |                                                                                                 | Preservative:                         | _                                         |  |  |
|                                 |                               |                             |                                                                     |                                                                                                                                         |                       | -                                                                                               |                                       | _                                         |  |  |
| Mata:                           | *Por EBA (2022) O             | RP direct measures          | ment data recorded is                                               | "ORP referenced to                                                                                                                      |                       | electrode". Electrod                                                                            | e calibrated in                       | solution.                                 |  |  |
| Notes:                          | - Sample                      |                             | acl accorded                                                        | on referenced to                                                                                                                        | 1.000                 | Standard Laboratory                                                                             |                                       |                                           |  |  |
|                                 | - Paint Fu                    | mes her                     | er + Fi                                                             | eld Blank#                                                                                                                              | 1-1323"               | taken here                                                                                      |                                       |                                           |  |  |
| V                               | Bottles and A                 | nalyses:                    | _(collected in c                                                    | order below)                                                                                                                            |                       | 2=\ a=d 4 co4c (1)=\                                                                            |                                       |                                           |  |  |
| (1)                             | x                             | 250 mL HDPE w/              | HNO <sub>3</sub> 6020 Total                                         | Metals (A) (G), Cr, (C                                                                                                                  | G, Q, MI, NI, PB, 2   | (n) and 1631E (Hg)                                                                              | e) 🗹 Field                            | Filtered (0.45µm)                         |  |  |
| (1)                             | ) ×                           | 500 mL HDPE w/              | HNO <sub>3</sub> 6020 Dissol                                        | ved Metals (A), (A),                                                                                                                    | Cr, Ly, rg, Wh, Ni,   | Pb, Zn) and 1631E (H                                                                            | 81 Li Field                           | riiterea (0.45µm)                         |  |  |
| 63 1                            | 1 Y                           | DOWN LID                    | PE for ferrou                                                       | 2 Thow                                                                                                                                  |                       |                                                                                                 |                                       |                                           |  |  |

| Date:                   | 12/11/13                      | ALTON<br>LMSTED<br>UGLEVAND | Monitoring Sampling Per | g Well Sampling                                                                                                                         | g Field Sheet          | Well No. (Facility/Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | <u> </u>                                   |  |
|-------------------------|-------------------------------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|--|
|                         |                               | 6                           | Journal of City         | ES/MW                                                                                                                                   |                        | Intial-Water Level befo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re purge (ft. BTOC)       | 56' (Sticke                                |  |
| Sampin                  | g Method: ၂                   | o flow peri                 | Well volume = 0.17      | * (total well depth - wate                                                                                                              | r level)               | End-Water Level post purge/sample with pump on (ft. BTOC): 5.56 (Strock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                            |  |
| NI - Ges                | ent Usea:                     | 2000-14                     |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Intake Depth (ft.BTOC): |                                            |  |
| NQ - YSI<br>Turb - (72: | P. D Quet. Pump               | - Mastatuk<br>E15           | Well Volume =           | 17(11 - 5.50<br>= 0.92 gr                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | off bottom                |                                            |  |
|                         | Purge start time:             | 1027                        | Initial Flow Rate       |                                                                                                                                         | Flow cell disconnected | d prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                            |  |
|                         | Purge stop time:              | 1103                        | Final Flow Rate:        |                                                                                                                                         | Flow cell disconnected | prior to sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ш                         |                                            |  |
|                         |                               | ,,,,                        |                         |                                                                                                                                         | ty Measuremen          | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                            |  |
| Time                    | Water level                   | Purge Rate                  | рН                      | SPC<br>Conductivity                                                                                                                     | Temperature            | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential           | Turbidity                                  |  |
| (military)              | ft                            | (mL/min)                    | pH Units                | uS/cm                                                                                                                                   | °C                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                        | (NTU)                                      |  |
|                         | < 0.33 ft from<br>2nd reading | < 500 mL                    | < 0.1 unit              | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(NTU) {3 readings} &lt; 5 NTU &lt; 10% if &gt;5 NTU</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(NTU) {3 readings} &lt; 5 NTU &lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10 mV                   | (NTU) {3 readings} < 5 NTU < 10% if >5 NTU |  |
| 1029                    | 5.76                          | 300                         | 7.98                    | 650                                                                                                                                     | 11.4                   | 5.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144.6                     | 21.6                                       |  |
| 1032                    | 5.94                          | 300                         | 6.85                    | 271.5                                                                                                                                   | 11.3                   | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143.7                     | 12.5                                       |  |
| 1035                    | 5,58                          | 300                         | 6.50                    | 254.8                                                                                                                                   | 11,4                   | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145.8                     | 12.1                                       |  |
| 1038                    | 5,96                          | 300                         | 6.38                    | 255.5                                                                                                                                   | 11.4                   | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 147.0                     | 4.05                                       |  |
| 1041                    | 5,96                          | 300                         | 6.32                    | 256.0                                                                                                                                   | 11.5                   | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149.9                     | 2,70                                       |  |
| 1044                    | 5,96                          | 300                         | 6.27                    | 255.8                                                                                                                                   | 11.5                   | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152.0                     | 2.42                                       |  |
| 1047                    | 5.96                          | 300                         | 6.26                    | 262.1                                                                                                                                   | 11.5                   | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153.4                     | 2:21                                       |  |
| 1050                    | 5.96                          | 300                         | 6.27                    | 264.4                                                                                                                                   | 11.5                   | 0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153.3                     | 1.41                                       |  |
|                         | All parm                      | 15 Stable                   |                         | w cell                                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
| 1100                    | Collect                       | "CTMW-                      | 24-122                  | 3"                                                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WAAFA 4Q23                | 1                                          |  |
|                         |                               |                             |                         |                                                                                                                                         |                        | Samplers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | -                                          |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D: CTMW-24-1223           | · ·                                        |  |
|                         |                               |                             |                         |                                                                                                                                         |                        | Date: 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/23 Time: 1100          | -                                          |  |
|                         |                               |                             |                         |                                                                                                                                         |                        | Analysis: Preservat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hve:                      | -                                          |  |
|                         |                               |                             |                         |                                                                                                                                         |                        | 11000114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | -                                          |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
|                         |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
| Notes:                  | *Per FPA (2023) O             | RP direct measuren          | ent data recorded       | is "ORP referenced to                                                                                                                   |                        | electrode". Electrod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de calibrated in          | solution.                                  |  |
|                         | 2.5 aal                       | + Sample                    |                         |                                                                                                                                         |                        | The same of the sa |                           | Sold Holl                                  |  |
|                         | _                             |                             |                         | away due to                                                                                                                             | filling w/o f          | ilter How die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s. met.)                  |                                            |  |
|                         | Bottles and A                 |                             | (collected in           | order below)                                                                                                                            | 3 3/01                 | , (01 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                            |  |
| (1)                     |                               |                             |                         | Metals (A)(A) Cr, (C                                                                                                                    | ), Fe, M, Ni, Pb, Z    | n) and 1631E (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                         |                                            |  |
| (1)                     | 1 x                           | 500 mL HDPE W/              | HNO₃ 6020 Disso         | lved Metals (AI)(AS)                                                                                                                    | Cr, (0, F9, (1), Ni, I | Pb, Zn) and 1631E (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hg) 🗹 Field               | Filtered (0.45µm)                          |  |
| (1)                     |                               | 250ml HOPE                  |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |
| 1                       |                               |                             |                         |                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                            |  |

| Date:      |                               | ALTON<br>DLMSTED<br>UGLEVAND | Court of tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well Sampling                                                                                                                     | g Field Sheet                        | Well No. (Facility/Project:                                                               |                                    |                                      |  |
|------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--|
|            | 14/1/23                       | 1                            | Sampling Pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                      | Oit ppn                                                                                   |                                    |                                      |  |
| sampling   | g Method: )                   | · flow peri                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /MW                                                                                                                               |                                      |                                                                                           | 12.1                               |                                      |  |
| vi - Gro   | ent Used:                     | DV1-6-000                    | Well volume = 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                      |                                                                                           |                                    |                                      |  |
| NQ - YSI   | Pro Quett. Pump               | -Martenlee<br>EIS            | Well Volume = . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vell volume = . 17 (24.5 _ 12.94) = 2921  Pump Intake Depth (ft. BTOC):  1/ off bottom                                            |                                      |                                                                                           |                                    |                                      |  |
|            | Purge start time:             | 1125                         | Initial Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                               |                                      |                                                                                           |                                    |                                      |  |
|            | Purge stop time:              | 1248                         | Final Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350                                                                                                                               | Flow cell disconnected               | prior to sampling :                                                                       | V                                  |                                      |  |
|            | 200                           | 1210                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | ty Measuremen                        | ts                                                                                        |                                    |                                      |  |
| Time       | Water level                   | Purge Rate                   | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPC                                                                                                                               | Temperature                          | Dissoved<br>Oxygen                                                                        | Redox Potential                    | Turbidity                            |  |
| (military) | ft                            | (mL/min)                     | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uS/cm                                                                                                                             | °C                                   | mg/L                                                                                      | mV                                 | (NTU)                                |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                     | < 0.1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU &lt; 10% if &gt;5 NTU</td></td> | < 3%                                 | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU &lt; 10% if &gt;5 NTU</td> | < 10 mV                            | {3 readings} < 5 NTU < 10% if >5 NTU |  |
| 126        | 12.76                         | 300                          | V5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sint ff -                                                                                                                         | Black som                            | when turned                                                                               | back on                            | 3.14                                 |  |
| 129        | 12.96                         | 300                          | YS1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Troubleshor                                                                                                                       | tives.                               | 10-1-48                                                                                   |                                    |                                      |  |
| 132        |                               |                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vocesco J. Shi                                                                                                                    | 1                                    |                                                                                           |                                    |                                      |  |
| 1135       | Pun                           | off wh                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stixed                                                                                                                            |                                      |                                                                                           | ,                                  |                                      |  |
| 127        |                               | counces,                     | the state of the s | eries chan                                                                                                                        | 7                                    | unchishing pro                                                                            |                                    | A 50                                 |  |
| 728        | 12.91                         | 350                          | 6,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2626                                                                                                                              | 13.0                                 | 0.77                                                                                      | 150.3                              | 0.02                                 |  |
| 231        | 12.92                         | 350                          | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2625                                                                                                                              | 13.8                                 | 0:30                                                                                      | 146.0                              | 0.53                                 |  |
| 234        | 12.92                         | 350                          | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2637                                                                                                                              | 13.8                                 | 0:19                                                                                      | 140.6                              | 1.02                                 |  |
| 1237       |                               | 350                          | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | low cell                                                                                                                          | 13.8                                 | 0:11                                                                                      | 140.6                              | 11/4                                 |  |
| 245        | All par                       | CTHW                         | 240-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000 0200                                                                                                                         |                                      |                                                                                           |                                    |                                      |  |
| 2-10       | Cauce                         | Ciri                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                      |                                                                                           |                                    |                                      |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           |                                    |                                      |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           | ject: TWAAFA 4Q23                  | -                                    |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           | nplers: ES/MW<br>nple ID: CTMW-240 |                                      |  |
|            |                               |                              | 7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                      |                                                                                           |                                    | 1245                                 |  |
|            |                               |                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                      |                                                                                           | lysis:                             | 1245                                 |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      | Pre                                                                                       | servative;                         |                                      |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           |                                    |                                      |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           |                                    |                                      |  |
|            |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                      |                                                                                           |                                    | 1- A72700                            |  |
| lotes:     |                               | RP direct measurem           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s "ORP referenced to                                                                                                              |                                      | electrode". Electrod                                                                      | le calibrated in                   | solution.                            |  |
| -          | D 441 and A                   | - alvener                    | (collected in c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | order below)                                                                                                                      |                                      |                                                                                           |                                    |                                      |  |
| (1)        | Bottles and A                 | 500 mL HDPE w/               | HNO <sub>3</sub> 6020 Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metals (A) (G) Cr, (                                                                                                              | Q, <b>( Q</b> , <b>Q</b> , Ni, Pb, Z | n) and 1631E (Hg)                                                                         |                                    |                                      |  |
| (1)        | , x-                          | mL HDPE W/                   | HNO <sub>3</sub> 6020 Dissol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ved Metals (A)(A),                                                                                                                | cr, O, Fe) (6) NI,                   | (n) and 1631E (Hg)<br>Pb, Zn) and 1631E (I                                                | Hg) 🗹 Field                        | Filtered (0.45µm)                    |  |
| 11         | , v.                          | 250ml HO                     | 06 L T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cluna                                                                                                                             |                                      |                                                                                           |                                    |                                      |  |

(3) 3 = Total Bottles

| ampling   |                               |                | Campall - D                                                | autorii.                                                                                                      |                        | Well No. MW – 4 Facility/Project: TWAAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                        |  |  |
|-----------|-------------------------------|----------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|--|--|
| ampling   | 2/18/23                       |                | Sampling Pers                                              | 10 Years 1                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIU               |                        |  |  |
|           | g Method: /ow                 | stow peri      | ES/MV                                                      | (total well depth - wate                                                                                      |                        | Intial-Water Level befor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | B' (Stickup)           |  |  |
| quipme    | ent Used:                     | 2K1-10000      | Well volume = 0.17                                         | (total well depth - wate                                                                                      | r level)               | End-Water Level post purge/sample with pump on (ft. BTOC): 7, 6    Pump Intake Depth (ft.BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
| Q-451 P   | tub Pump                      | Masterflex     | Well Volume =                                              |                                                                                                               | 1.3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
| urb Geo   | Purge start time:             |                | .17(13                                                     | 1-5,18'\ x                                                                                                    | gal                    | ~ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | off bottom        |                        |  |  |
|           |                               | 1490           |                                                            | 400                                                                                                           | Flow cell disconnected | d prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M                 |                        |  |  |
| -         | Purge stop time:              | 1318           | Final Flow Rate:                                           | 100                                                                                                           |                        | The state of the s | NTY               |                        |  |  |
|           |                               |                |                                                            | Water Qualit                                                                                                  | ty Measurement         | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                        |  |  |
| Time      | Water level                   | Purge Rate     | pH Conductivity Temperature Dissoved Oxygen Redox Potentia | Redox Potential                                                                                               | Turbidity              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
| military) | ft                            | (mL/min)       | pH Units                                                   | uS/cm                                                                                                         | °C                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                | (NTU)                  |  |  |
|           | < 0.33 ft from<br>2nd reading | < 500 mL       | < 0.1 unit                                                 | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU o</td></td> | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU o</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10 mV           | (3 readings) < 5 NTU o |  |  |
| 243       | 6.31                          | 200            | 7.22                                                       | 2647                                                                                                          | 13.1                   | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.0              | <10% if >5 NTU         |  |  |
| 246       | 7.10                          | 100            | 7.16                                                       | 2698                                                                                                          | 12.8                   | 0 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.8              | 4.86                   |  |  |
| 49        | 7.12                          | 100            | 7.18                                                       | 2717                                                                                                          | 12.3                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.7              | 4.99                   |  |  |
| 252       | 7.13                          | 100            | 7.18                                                       | 2705                                                                                                          | 10.4                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5              | 4.38                   |  |  |
| 255       | 7.12                          | 100            | 7.19                                                       |                                                                                                               | 12.4                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.3              | 4.75                   |  |  |
| 258       | 7:11                          | 100            | 7.19                                                       | 2709                                                                                                          | 12.60                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,60             | 4.70                   |  |  |
| 1         | All parm                      | 5 Stable       |                                                            | cell                                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
| 305       | collect                       | HM1            | -1247                                                      |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 |                        |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           |                               |                | 1100000                                                    |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           | (4.4.7)                       |                |                                                            |                                                                                                               |                        | Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TWAAFA 4Q23       | Table 1                |  |  |
|           |                               |                |                                                            |                                                                                                               |                        | Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs: ES/MW         |                        |  |  |
|           | /                             |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID: MW-4-1223     | _                      |  |  |
|           |                               |                |                                                            |                                                                                                               |                        | Date: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | ·                      |  |  |
|           |                               |                |                                                            |                                                                                                               |                        | Analysis Preserv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | -                      |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                      |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
|           |                               |                |                                                            |                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |
| otes:     |                               |                | ent data recorded is                                       | "ORP referenced to                                                                                            |                        | electrode". Electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | solution.              |  |  |
| 7.273     | \$ (-100                      | recorded a     | rs D                                                       | to Initial                                                                                                    | pumping WL             | WAS @ 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | min , 50 6-31 = h | Flow                   |  |  |
| -         | Sample v                      | of + 0.75      | gal '                                                      | was                                                                                                           | reduced to 16          | Doul/mm & v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ul Stabilized @   | 27.12' (TRU            |  |  |
|           | Bottles and A                 |                | (collected in o                                            |                                                                                                               | MA MA NI SI -          | ) d 4 5 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.               | Pul                    |  |  |
| (1)       | 1 ×                           | 250 mL HDPE W/ | HNO <sub>3</sub> 6020 Total N                              | netals (AUAS, Cr, Cu                                                                                          | MA MA, Ni, Pb, Zn      | b) and 1631E (Hg)<br>b, Zn) and 1631E (Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s) Field F        | iltered (0.45µm)       |  |  |
| (1)       | x                             | 250 I LIDE     | F for Ferro                                                | ed Metals(B),(B), C                                                                                           | i, eg, es, wi, Ni, P   | u, 211/ and 1031E (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s/ LVI Field F    | iiterea (0.45μm)       |  |  |
| (1)       | · X                           | ESUM FIDE      | LAN FERIO                                                  | 02 1.01                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |  |  |

Field Blank#2-1223 taken Leve!

| D                       | OF:                                             | ALTON<br>DLMSTED<br>UGLEVAND | Monitoring                    | ; Well Samplin                                                                                                                             | g Field Sheet                                           | Well No. PZ - 7 Facility/Project: TWAAFA                                                           |                                                                                                   |                                           |  |
|-------------------------|-------------------------------------------------|------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| ate:                    | 12/11/23                                        |                              | Sampling Pers                 | onnel:                                                                                                                                     |                                                         |                                                                                                    |                                                                                                   | And the second                            |  |
| amplin                  | g Method: \_                                    | Has Devi                     |                               | MW                                                                                                                                         |                                                         | Initial Headspace (ppm) 0.0 ppm Initial-Water Level before purge (ft. BTOC) 10.94 BTOC (5)         |                                                                                                   |                                           |  |
| Adibille                | THE LICENT                                      |                              |                               | (total well depth - water                                                                                                                  | r level)                                                | End-Water Level post pur                                                                           | ge/sample with pump on (ft.                                                                       | BTOC): 11.06'                             |  |
| 12-421<br>12-421        | 17068 PID.                                      | - MasterAcx                  | Well Volume = .1              | 1(17, -10                                                                                                                                  | (40.0                                                   | Pump Intake Depth (ft.BT                                                                           | off bottom                                                                                        | 711.00                                    |  |
| 77                      | Purge start time:                               | =1322505                     | Initial Flow Rate:            | ≈ 1,03 gal                                                                                                                                 |                                                         |                                                                                                    |                                                                                                   |                                           |  |
| 00                      | Purge stop time:                                |                              | Final Flow Rate:              | 250                                                                                                                                        | Flow cell disconnected                                  | d prior to sampling :                                                                              |                                                                                                   |                                           |  |
|                         | - 1.4V- 0.2(mm3)                                | 1401                         |                               | U00<br>Water Qualit                                                                                                                        | y Measuremen                                            | tc                                                                                                 |                                                                                                   |                                           |  |
|                         |                                                 |                              |                               |                                                                                                                                            | y Wieasuremen                                           |                                                                                                    |                                                                                                   |                                           |  |
| Time                    | Water level                                     | Purge Rate                   | рН                            | SPC                                                                                                                                        | Temperature                                             | Dissoved<br>Oxygen                                                                                 | Redox Potential *                                                                                 | Turbidity                                 |  |
| military)               | ft                                              | (mL/min)                     | pH Units                      | uS/cm                                                                                                                                      | °C                                                      | mg/L                                                                                               | mV                                                                                                | (NTU)                                     |  |
|                         | < 0.33 ft from<br>2nd reading                   | < 500 mL                     | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU &lt;<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                                                                                           | (3 readings) < 5 NTU <<br>< 10% if >5 NTU |  |
| 322                     | Purge Sto                                       | vt -> Pu                     | mo died                       | , attemption                                                                                                                               | to charge                                               | luse via var                                                                                       | paser (plugge                                                                                     |                                           |  |
| 338                     | Purge S                                         | tart, usin                   | g van ge                      | nevator to                                                                                                                                 | paved pu                                                |                                                                                                    | , ,,                                                                                              |                                           |  |
| 338                     | 11.02                                           | 250                          | 6.37                          | 1644                                                                                                                                       | 14.6                                                    | 0.18                                                                                               | 129.2                                                                                             | 3.93                                      |  |
| 341                     | 11.04                                           | 400                          | 6.29                          | 1690                                                                                                                                       | 15.2                                                    | 0.14                                                                                               | 140.7                                                                                             | 5.60                                      |  |
| 344                     | 11.05                                           | 400                          | 6.27                          | 1725                                                                                                                                       | 15.4                                                    | 0.11                                                                                               | 146.2                                                                                             | 5.65                                      |  |
| 347                     | 11.06                                           | 400                          | 6.26                          | 1737                                                                                                                                       | 15.3                                                    | 0.07                                                                                               | 149.4                                                                                             | 4.94                                      |  |
| 350                     | 11,06                                           | 4/00                         | 6.25                          | 1752                                                                                                                                       | 15.4                                                    | 0.05                                                                                               | 151.0                                                                                             | 2.16                                      |  |
| 353                     | 11.06                                           | "PZ-7.                       | 6.25                          | 1765                                                                                                                                       | 15.5                                                    | 0.06                                                                                               | 151.4                                                                                             | 2.63                                      |  |
| 100                     | Collect                                         |                              | - 1223"                       |                                                                                                                                            |                                                         |                                                                                                    |                                                                                                   |                                           |  |
|                         |                                                 |                              |                               |                                                                                                                                            |                                                         |                                                                                                    |                                                                                                   |                                           |  |
|                         |                                                 |                              |                               |                                                                                                                                            |                                                         | Sa<br>Sa<br>Da<br>Ar                                                                               | pject: TWAAFA 4Q23 mplers: ES/MW mple ID: PZ-7-1223 hte: 12/11/23 Time: 1400 allysis: eservative: |                                           |  |
| -                       | *Per EPA (2023), OR<br>Sample<br>Bottles and Ai | vd + 1.5                     |                               | "ORP referenced to                                                                                                                         |                                                         | electrode". Electrode                                                                              | calibrated in                                                                                     | solution.                                 |  |
| (1) -<br>(1) -<br>(1) 2 | \ x                                             | 000 mL HDPE w/ H             | INO <sub>3</sub> 6020 Total N | Metals (A) (S) Cr, Cu                                                                                                                      | <b>்.டூ. மு. ரு.வி. மு</b><br>cr, cu, <b>டூ ரு. வி.</b> | ව) and 1631E (Hg)<br>නි.@) and 1631E (Hg                                                           | ;) 🚺 Field                                                                                        | Filtered (0.45µm)                         |  |

| Date: \    | 2/11/23                       | ALTON<br>DLMSTED<br>UGLEVAND | Sampling Pers                                                    |                                                                                                                                         |                | Facility/Project: TWAAFA  Initial Headspace (ppm) D, O PPM  Intial-Water Level before purge (ft. BTOC) 6,83 13750 (Stick)  End-Water Level post purge/sample with pump on (ft. BTOC): 1,97 3 |                          |                                           |  |  |
|------------|-------------------------------|------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--|--|
| Equipme    | Method: /cm                   | stlow per.                   |                                                                  | ES [MW<br>(total well depth - wate                                                                                                      | r level)       |                                                                                                                                                                                              |                          |                                           |  |  |
| - daibille | ent Used:                     |                              | COLORADA POR                                                     |                                                                                                                                         |                | 6.12                                                                                                                                                                                         |                          |                                           |  |  |
| NQ-YSI     | Pro Qualra Pump               | - Musterflex                 | Well volume = 117 (10:12' - 6.83') = 0:57 gal                    |                                                                                                                                         |                | Pump Intake Depth (ft.8TOC):  ~ 1 off bottom                                                                                                                                                 |                          |                                           |  |  |
| 1438       |                               | 1423                         | Initial Flow Rate: 300 Flow cell disconnected prior to sampling: |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
| = 1911-    | Purge stop time:              | 1501                         | Final Flow Rate:                                                 |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         | ty Measuremen  | ts                                                                                                                                                                                           |                          |                                           |  |  |
| Time       | Water level                   | Purge Rate                   | рН                                                               | Conductivity                                                                                                                            | Temperature    | Dissoved<br>Oxygen                                                                                                                                                                           | Redox Potential          | Turbidity                                 |  |  |
| (military) | ft                            | (mL/min)                     | pH Units                                                         | uS/cm                                                                                                                                   | °C             | mg/L                                                                                                                                                                                         | mV                       | (NTU)                                     |  |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL                     | < 0.1 unit                                                       | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%           | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td>                                                                                              | < 10 mV                  | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |  |
| 1423       | Purge Sta                     | ot, Tubing                   | is creases                                                       | , replacing                                                                                                                             | 3/ 1/4" he     | er Diameter                                                                                                                                                                                  | tubing (16).             |                                           |  |  |
| 438        |                               | eplaced,                     | ourge Sto                                                        | 7                                                                                                                                       | /              |                                                                                                                                                                                              |                          |                                           |  |  |
| 1439       | 6.88                          | 300                          | 6.35                                                             | 456.2                                                                                                                                   | 12.4           | 0.63                                                                                                                                                                                         | 120.1                    | 158                                       |  |  |
| 1442       | 6.92                          | 300                          | (0.31                                                            | 459.1                                                                                                                                   | 12.1           | 0.62                                                                                                                                                                                         | 124.6                    | 117                                       |  |  |
| 1445       | 69.92                         | 300                          | 6.26                                                             | 1/60,2                                                                                                                                  | 11.9           | 0.56                                                                                                                                                                                         | 128.6                    | 96.8                                      |  |  |
| 1-1-18     | 10.27                         | 300                          | 6.24                                                             | 460.7                                                                                                                                   | 11.7           | 0.45                                                                                                                                                                                         | 130.7                    | 67.4                                      |  |  |
| 1451       | 6.92                          | 300                          | 6.23                                                             | 461.4                                                                                                                                   | 11.60          | 0.40                                                                                                                                                                                         | 132.3                    | 49.0                                      |  |  |
| 1500       | Collect                       | irs                          |                                                                  |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
|            | pil parr                      |                              |                                                                  | turb, but                                                                                                                               | SOP-124        | ellows for s                                                                                                                                                                                 | Sampling                 | N                                         |  |  |
|            | as                            |                              |                                                                  | filtered te                                                                                                                             | interfered m   | etals sampl                                                                                                                                                                                  |                          |                                           |  |  |
|            | - ex                          | t. cond'n                    | & Conyligh                                                       | t + lab d/                                                                                                                              | D) require     | Sampling to                                                                                                                                                                                  | begin, now.              |                                           |  |  |
|            | c 11 a . L                    | - 1.07 - 1                   | 8-1223                                                           | /                                                                                                                                       |                |                                                                                                                                                                                              |                          |                                           |  |  |
| 1500       |                               | 172-                         | 0-1000                                                           |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
| 1501       | Purge Stol                    |                              |                                                                  |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         |                | Projects                                                                                                                                                                                     | TMA 454 4000             |                                           |  |  |
|            | 1                             |                              |                                                                  |                                                                                                                                         |                | Sample                                                                                                                                                                                       | TWAAFA 4Q23<br>rs: ES/MW |                                           |  |  |
|            |                               |                              | Production of the second                                         |                                                                                                                                         |                | Sample Sample                                                                                                                                                                                | ID: PZ-8-1223            |                                           |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         |                | Date: 12                                                                                                                                                                                     |                          | n —                                       |  |  |
|            |                               |                              | 1                                                                |                                                                                                                                         |                | Analysis                                                                                                                                                                                     |                          |                                           |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         |                | Preserv                                                                                                                                                                                      | ative:                   | -                                         |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         |                |                                                                                                                                                                                              | T                        | -                                         |  |  |
|            |                               |                              |                                                                  |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
|            |                               |                              | Org. Video woods.                                                |                                                                                                                                         |                | Land to the second second                                                                                                                                                                    | Lineary 102              | solution.                                 |  |  |
| Notes:     | *Per EPA (2023), O            | RP direct measurem           | ent data recorded is                                             | "ORP referenced to                                                                                                                      |                | electrode". Electrod                                                                                                                                                                         | e calibrated in          | solution.                                 |  |  |
|            | - 115 ga                      | 1 1 300.4                    | ~ V-(                                                            |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |
|            | Bottles and A                 | nalyses:                     | (collected in o                                                  | rder below)                                                                                                                             |                |                                                                                                                                                                                              |                          |                                           |  |  |
| · ·        |                               |                              |                                                                  | Metals (A), (Cr, C                                                                                                                      | u,19 (0,00 0). | (Hg) and 1631E (Hg)                                                                                                                                                                          | ,                        |                                           |  |  |
| (1)        | x.                            | 500 mL HDPE W/               | HNO, 6020 Dissol                                                 | ved Metals (A)                                                                                                                          |                | (H                                                                                                                                                                                           | g) 🗹 Field               | Filtered (0.45µm)                         |  |  |
| (1)        | Y                             | 250ml HD                     | PE for ferre                                                     | us Ivor                                                                                                                                 |                |                                                                                                                                                                                              |                          |                                           |  |  |
| rill:      |                               |                              |                                                                  |                                                                                                                                         |                |                                                                                                                                                                                              |                          |                                           |  |  |

| Date:      | OF                            | ALTON<br>DLMSTED<br>UGLEVAND |                        | Well Sampling                                                                                                                         | ,                                          | Well No. Project:                                                                                                                                                                   | TWAAFA 0.2 ppm        |                                         |  |  |
|------------|-------------------------------|------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|--|--|
|            | 12/12/13                      | 1.                           | Sampling Pers          |                                                                                                                                       |                                            |                                                                                                                                                                                     | purge (ft. BTOC) - 22 | 1 a- /sl-k.                             |  |  |
| Fauipme    | Method: Icu                   | oflow peri                   | ES/M                   | (total well depth - water                                                                                                             |                                            | Intial-Water Level before purge (ft. BTOC) 5.03 BTOC (Slick up) End-Water Level post purge/sample with pump on (ft. BTOC): 5.68 (Steen Pump Intake Depth (ft.BTOC):  ~1' off before |                       |                                         |  |  |
| WL-GLO     | #17068 PID-1                  | Meshallet                    | Well Volume =          | 7.04 2.04 (2.04)                                                                                                                      |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
| Turb-960   | Purge start time:             | E15                          | .17(10.2' - 5.03) %    |                                                                                                                                       | = 0,80gal                                  | 01, 00                                                                                                                                                                              | /                     |                                         |  |  |
| _          | Purge stop time:              | 1120                         | E422222222             | 300                                                                                                                                   | Flow cell disconnected prior to sampling : |                                                                                                                                                                                     |                       |                                         |  |  |
|            | raige stop time:              | 1146                         | rinal riow kate:       | Final Flow Rate: 250                                                                                                                  |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        | Water Quali                                                                                                                           | ty Measurement                             | ts                                                                                                                                                                                  |                       |                                         |  |  |
| Time       | Water level                   | Purge Rate                   | рН                     | SPC/<br>Conductivity                                                                                                                  | Temperature                                | Dissoved<br>Oxygen                                                                                                                                                                  | Redox Potential *     | Turbidity                               |  |  |
| (military) | ft                            | (mL/min)                     | pH Units               | uS/cm                                                                                                                                 | °C                                         | mg/L                                                                                                                                                                                | mV                    | (NTU)                                   |  |  |
| (          | < 0.33 ft from<br>2nd reading | < 500 mL                     | < 0.1 unit             | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                       | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td>                                                                                       | < 10 mV               | (3 readings) < 5 NTU<br>< 10% if >5 NTU |  |  |
| 1121       | 5.58                          | 300                          | 7.14                   | 11024                                                                                                                                 | 14.5                                       | 6.71                                                                                                                                                                                | -61.9                 | 12.2                                    |  |  |
| 1124       | 5.87                          | 300                          | (0.109                 | 1440                                                                                                                                  | 14.4                                       | 4.16                                                                                                                                                                                | -18.4                 | 8.97                                    |  |  |
| 1127       | 5.77                          | 300                          | 6.58                   | 1460                                                                                                                                  | 14.4                                       | 0.21                                                                                                                                                                                | 0.0                   | 12.40                                   |  |  |
| 1130       | 5.72                          | 250                          | 6.54                   | 1472                                                                                                                                  | 14.11                                      | 0.16                                                                                                                                                                                | 8.0                   | 12.60                                   |  |  |
| 1133       | 5:68                          | 250                          | 6.53                   | 1474                                                                                                                                  | 14.8                                       | 0,24                                                                                                                                                                                | 10.7                  | 12.40                                   |  |  |
| 51         | turned o                      |                              | 11-2-2-4               |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       | 12.30 8                                 |  |  |
| 1136       | 5.68                          | 250                          | 6.52                   | 1485                                                                                                                                  | 14.8                                       | 0,20                                                                                                                                                                                | 13.0                  | 12.30                                   |  |  |
| 1145       | All parm                      |                              |                        | cell                                                                                                                                  | 11 10 11 11                                |                                                                                                                                                                                     |                       |                                         |  |  |
| 1.47       | Collect                       | " P2-0                       | -1223"                 |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            | Projec                                                                                                                                                                              | t: TWAAFA 4Q23        |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            | Samp                                                                                                                                                                                | lers: ES/MW           |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       | 1                                          | Samp                                                                                                                                                                                | le ID: PZ-9-1223      |                                         |  |  |
|            |                               |                              |                        |                                                                                                                                       | 1                                          |                                                                                                                                                                                     | 12/12/23 Time: 1      | 145                                     |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            | Analy                                                                                                                                                                               |                       | 117                                     |  |  |
| -          |                               |                              |                        |                                                                                                                                       |                                            | Prese                                                                                                                                                                               | ervative:             |                                         |  |  |
| Notes:     | *Dox 504 (2022) -             | no dies                      | 2010XX 1278 ALTON 1278 | CHARLES CONTROL OF THE                                                                                                                |                                            |                                                                                                                                                                                     |                       | 1                                       |  |  |
| Notes:     |                               |                              |                        | is "ORP referenced to                                                                                                                 |                                            | electrode", Electro                                                                                                                                                                 | de calibrated in      | solution.                               |  |  |
| 1          | Added SI                      |                              | and                    | ng to allow !                                                                                                                         | or peri fur                                | upins                                                                                                                                                                               |                       |                                         |  |  |
|            | Bottles and A                 |                              | (collected in          | order helow)                                                                                                                          |                                            |                                                                                                                                                                                     |                       |                                         |  |  |
| * (1)      |                               |                              | HNO, 6020 Total        | Metals (A) A) Cr                                                                                                                      | ന വരു വരു പ                                | and sease week                                                                                                                                                                      |                       |                                         |  |  |
| (1)        | 1 X                           | SOO ML HDPE W                | HNO, 6020 Disso        | Ived Metals (A)                                                                                                                       | Cr. Cu. FO Min Min                         | (Hg) and 1631E (Hg)                                                                                                                                                                 | ua) П                 | 1 60.                                   |  |  |
| ( //)      | , v                           | 250 ml 1.11                  | OPE for ferre          | nov lun                                                                                                                               |                                            | Criedy and 1631E (                                                                                                                                                                  | ug) [v] Field         | l Filtered (0.45μm)                     |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       | -                                       |  |  |
|            |                               |                              |                        |                                                                                                                                       |                                            |                                                                                                                                                                                     |                       |                                         |  |  |

|            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALTON<br>LMSTED<br>JGLEVAND | Monitoring                                                        | Well Sampling                                                                                                                         | 5 i leiu sileet     | Well No. TWA - UD Facility/Project: TWAAFA                                                    |                    |                                         |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|--|--|
| Pate:      | 12/12/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 023                         | Sampling Pers                                                     | onnel:                                                                                                                                |                     | Initial Headspace (ppm)                                                                       |                    |                                         |  |  |
| amplin     | g Method: 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A. Aud                      | FS,                                                               |                                                                                                                                       |                     | Intial-Water Level befor                                                                      |                    | 0'                                      |  |  |
| quipme     | ent Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | Well volume = 0.17 *                                              | (total well depth - wate                                                                                                              | r level)            | End-Water Level post p                                                                        |                    |                                         |  |  |
| VL-9KO.    | #7068 PID-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2K1-6000                    | HOI4                                                              | 16.37                                                                                                                                 |                     | Pump Intake Depth (ft.BTOC):  ~ 1' off bottom                                                 |                    |                                         |  |  |
| urb - 52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Masterflar<br>E18          | Well Volume = 0                                                   |                                                                                                                                       | (o) ) =             |                                                                                               |                    |                                         |  |  |
|            | Purge start time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1001                        | Initial Flow Rate: 400 Flow cell disconnected prior to sampling : |                                                                                                                                       | 17                  |                                                                                               |                    |                                         |  |  |
|            | Purge stop time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1056                        | Final Flow Rate:                                                  | Final Flow Rate: 300                                                                                                                  |                     |                                                                                               |                    |                                         |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       | ty Measuremen       | ts                                                                                            | 780 . 3            |                                         |  |  |
| Time       | Water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Purge Rate                  | рН                                                                | SPC/<br>Conductivity                                                                                                                  | Temperature         | Dissoved<br>Oxygen                                                                            | Redox Potential    | Turbidity                               |  |  |
| (military) | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mL/min)                    | pH Units                                                          | uS/cm                                                                                                                                 | °C                  | mg/L                                                                                          | mV                 | (NTU)                                   |  |  |
|            | < 0.33 ft from<br>2nd reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 500 mL                    | < 0.1 unit                                                        | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV            | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |  |
| 1006       | 9,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                         | 7.57                                                              | 7808                                                                                                                                  | 5.70 4              | b 14,1                                                                                        | 101.8              | 4.21                                    |  |  |
| 1009       | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                         | 7.70                                                              | 7916                                                                                                                                  | 14.1                | 4.47                                                                                          | 93.3               | 4.27                                    |  |  |
| 1017       | 10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                         | 7174                                                              | 7911                                                                                                                                  | 14.0                | 3.29                                                                                          | 82.4               | 2.41                                    |  |  |
| 1415       | 10.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/00                        | 7.76                                                              | 7910                                                                                                                                  | 14.0                | 1.86                                                                                          | 57.7               | 2.62                                    |  |  |
| 1013       | 10.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/00                        | 7.76                                                              | 7705                                                                                                                                  | 14.0                | 0.64                                                                                          | 11.7               | 2.03                                    |  |  |
| 1021       | 10.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                         | 7.77                                                              | 7909                                                                                                                                  | 14.0                | 0.33                                                                                          | -16.6              | 2.03                                    |  |  |
| 024        | 10.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                         | 7.77                                                              | 7917                                                                                                                                  | 14.0                | 0.21                                                                                          | -35.2              | 2.94                                    |  |  |
| 1007       | 10.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.77                                                              | 7931                                                                                                                                  | 13.9                | 0.13                                                                                          | -60.3              | 1.32                                    |  |  |
| 030        | 10.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.78                                                              | 7955                                                                                                                                  | 13.8                | 0.07                                                                                          | - 80.1             | 0,02                                    |  |  |
| 033        | 10:68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.78                                                              | 1952                                                                                                                                  | 13.9                | 0.01                                                                                          | -85.0              | 1.18                                    |  |  |
| 030        | 10,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.78                                                              | 8009                                                                                                                                  | 13.8                | 0.04                                                                                          | -93,5              | 1.00                                    |  |  |
| 1039       | 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.78                                                              | 8048                                                                                                                                  | 13.8                | 0.03                                                                                          | -100.7             | 0.92                                    |  |  |
| 543        | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.79                                                              | 8002                                                                                                                                  | 13.8                | 0.03                                                                                          | -105.7             | 1.72                                    |  |  |
| 1045       | عاما ددا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                         | 7.79                                                              | 8122                                                                                                                                  | 13.9                | 0.04                                                                                          | -110.9             | 0.83                                    |  |  |
| अष         | 10,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                         | 7.79                                                              | \$151                                                                                                                                 | 13.8                | 0.04                                                                                          | -115.6             | 4,35                                    |  |  |
|            | All parms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stable,                     | d/c f100                                                          | cell                                                                                                                                  |                     |                                                                                               |                    | - 161400                                |  |  |
| 050        | Colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C+ "TW                      | A-40-12                                                           | 73"                                                                                                                                   | 1                   |                                                                                               | Set North Co.      |                                         |  |  |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       |                     | Proje                                                                                         | ct: TWAAFA 4Q23    |                                         |  |  |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       |                     |                                                                                               | olers: ES/MW       | 11 12 22                                |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       | 1                   |                                                                                               | ole ID: TWA-4D-122 |                                         |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       |                     | Analy                                                                                         | 12/12/23 Time: 10  | D50                                     |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       |                     |                                                                                               | ervative:          |                                         |  |  |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   |                                                                                                                                       |                     |                                                                                               | si vadvo.          |                                         |  |  |
|            | *Dev EDA /20221 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 dienet me                |                                                                   | llonn - f                                                                                                                             |                     |                                                                                               |                    | Lauren                                  |  |  |
| lotes:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                   | s "ORP referenced to                                                                                                                  |                     | electrode". Electro                                                                           | de calibrated in   | solution.                               |  |  |
|            | to avopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pumping vat                 |                                                                   | 5gal                                                                                                                                  |                     |                                                                                               |                    |                                         |  |  |
|            | Bottles and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | (collected in c                                                   |                                                                                                                                       |                     |                                                                                               |                    |                                         |  |  |
| 5 (1)      | The state of the s |                             |                                                                   |                                                                                                                                       | 3,69 (6), NI, Pb, Z | In) and teats (1)                                                                             |                    |                                         |  |  |
| (1)        | -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 ml HDPF w/              | HNO. 6020 Dissol                                                  | ved Metals (A) (A)                                                                                                                    | Cr. Co. Fa Kan NI   | n) and 1631E (Hg)<br>Pb, Zn) and 1631E (I                                                     |                    | ante de la late de                      |  |  |
| (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | F for fewer                                                       |                                                                                                                                       | - , Gr Gr Gr, NI,   | ru, 211) and 1631E (1                                                                         | field              | Filtered (0.45µm)                       |  |  |
| 1.1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E JOHN HIM                  | 20 4 LCAN                                                         | W) 14.00                                                                                                                              |                     |                                                                                               |                    |                                         |  |  |

|            | OF                  |                    | 255 76 675                    | Well Samplin                                                                                                    | g Field Sheet       |                                                                                   | ity/Project:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|------------|---------------------|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|            | 15/15/2             | 3                  | Sampling Pers                 |                                                                                                                 |                     | Initial Headspace (ppm) 2.7 ppm  Intial-Water Level before purge (ft. BTOC) 9,55° |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Samplin    | g Method: low       | flow peri          | ES/                           | MW<br>(total well depth - wate                                                                                  |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -quipme    | ent Used:           |                    | Well volume = 0.17 *          | (total well depth - wate                                                                                        | r level)            | End-Wa                                                                            | ater Level post p  | urge/sample with pump on (ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BTOC): /0.43'          |
| WO - YK    | #17068 PID-F        | TK1-6000           | Well Volume =                 |                                                                                                                 |                     |                                                                                   | ntake Depth (ft.E  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Turb- Ju   | turb.               | E/S                | 117( -9.55) =                 |                                                                                                                 |                     |                                                                                   | ~1                 | off bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 1 - 1      | Purge start time:   | 1215               | Initial Flow Rate:            | Initial Flow Rate:                                                                                              |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            | Purge stop time:    | 1323               | Final Flow Rate:              | Flow cell disconnected prior to sampling :                                                                      |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     | 1000               |                               |                                                                                                                 | ty Measuremen       | ts                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Time       | Water level         | Purge Rate         | рН                            | SPC                                                                                                             | Temperature         | 9                                                                                 | Dissoved<br>Oxygen | Redox Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity              |
| (military) | ft                  | (mL/min)           | pH Units                      | uS/cm                                                                                                           | °C                  |                                                                                   | mg/L               | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (NTU)                  |
|            | < 0.33 ft from      | - /                |                               |                                                                                                                 |                     |                                                                                   | 1000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | {3 readings} < 5 NTU o |
|            | 2nd reading         | < 500 mL           | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td>&lt;</td> <td>/= 0.3 mg/L</td> <td>&lt; 10 mV</td> <td>&lt; 10% if &gt;5 NTU</td> | < 3%                | <                                                                                 | /= 0.3 mg/L        | < 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 10% if >5 NTU        |
| 1216       | 10.08               | 400                | 7,45                          | 6199                                                                                                            | 15.9                | 2.83                                                                              |                    | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.72                   |
| 1219       | 10,60               | 300                | 7.74                          | 6307                                                                                                            | 16.1                | 0                                                                                 | 161                | -26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.93                   |
| 1223       | 10.89               | 300                | 7.80                          | 6254                                                                                                            | 16.0                | C                                                                                 | 1.12               | -46.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.60                   |
| 1225       | 10.89               | 300                | 7.82                          | 6188                                                                                                            | 16.1                |                                                                                   | 1.04               | -63.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.73                   |
| 1228       | 10.81               | 150                | 7.83                          | 6159                                                                                                            | 15.9                | 0                                                                                 | .0.3               | -68.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.13                   |
| 1231       | 10.60               | 150                | 7.84                          | 6158                                                                                                            | 15.9                |                                                                                   | .03                | -77.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.02                   |
| 1234       | 10.49               | 150                | 7.84                          | 6140                                                                                                            | 15.8                | C                                                                                 | 1,03               | -83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.51                   |
| 1237       | 10,41               | 150                | 7.84                          | 6097                                                                                                            | 15.8                | 0                                                                                 | 104                | -88.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.63                   |
| 1240       | 10.39<br>All        | 150                | 7.84                          | 4092                                                                                                            | 154                 |                                                                                   | 0.05               | -93./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.10                   |
| 245        | Collect             |                    | able, d/c                     | flow all                                                                                                        |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 7.3        | Coccer              | = TWA              | -70-12°                       | 28"                                                                                                             |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 | -                   | -                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     | -                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     | -                                                                                 |                    | TWAAFA 4Q23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|            |                     |                    |                               |                                                                                                                 | 1.50                |                                                                                   |                    | rs: ES/MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   |                    | ID: TWA-7D-1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   | Date: 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   | Analysis           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                      |
|            |                     |                    |                               |                                                                                                                 |                     | -                                                                                 |                    | duvo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
|            |                     |                    |                               |                                                                                                                 |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Notes:     | *Per EPA (2023), OI | RP direct measuren | nent data recorded is         | "ORP referenced to                                                                                              |                     | electr                                                                            | ode". Electrode    | ralibrated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.74.0                |
| -          | Sample v            | 1 + 2:             | 75 gal                        |                                                                                                                 |                     |                                                                                   | -ac relection      | . contrated III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | solution.              |
| -          | Throw a             | way 1x             | HNOZ PRIS.                    | 250, ml HOPE                                                                                                    | Horset Fil          | len                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 8          | Bottles and A       | naryses:           | (collected in o               | rder below)                                                                                                     |                     |                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| (1)        | x                   | 500 ml HDPE w/     | HNO <sub>3</sub> 6020 Total N | Metals (A) (G) Cr, (G                                                                                           | MO Ni, Pb, Zr       | and :                                                                             | 1631E (Hg)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| (1)        | 1 X                 | 500 ml HDPE w/     | HNO <sub>3</sub> 6020 Dissolv | red Metals (A), (A), (                                                                                          | Cr, Q, PG, NG NI, P | b, Zn) a                                                                          | and 1631E (H       | Field Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ltered (0.45µm)        |
| (0)        | 1 1                 | 230ml HOP          | E for Ferral                  | · Iron                                                                                                          | = +LLO 3 pr + 15 1  |                                                                                   |                    | The state of the s |                        |

|            | OF P                          | LMSTED<br>UGLEVAND | Monitoring<br>Sampling Pers   | Well Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Field Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well No. Facility/Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                           |  |
|------------|-------------------------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|--|
|            | 2/13/23                       | 1                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O,7 ppm                      | 01                                        |  |
| ampling    | g Method: اوسا                | tlad               | ESIM                          | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intial-Water Level before purge (ft. BTOC) 9.32' End-Water Level post purge/sample with pump on (ft. BTOC): 10.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |  |
| quipme     | ent Used:                     | 5000) - INC        | Well volume = 0.17            | (total well depth - wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THE PARTY OF THE P | A STATE OF THE STA | - Carlotte in the Challenger | 10,48                                     |  |
| NQ-751     | Productiopump                 | Hustertex<br>E15   | Well Volume =                 | 56'-9.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump Intake Depth (ft.BTOC):  ~ 1.5" off bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            | Purge start time:             | 0859               | Initial Flow Rate:            | Initial Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            | Purge stop time:              | 0931               | Final Flow Rate:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               | 5.                 |                               | Water Qualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                           |  |
| Time       | Water level                   | Purge Rate         | рН                            | Sec<br>Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential              | Turbidity                                 |  |
| (military) | ft                            | (mL/min)           | pH Units                      | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                           | (NTU)                                     |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL           | < 0.1 unit                    | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU o<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10 mV                      | {3 readings} < 5 NTU o<br>< 10% if >5 NTU |  |
| 0702       | 9.93                          | 250                | 7,91                          | 10724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171.5                        | 0.02                                      |  |
| 2090       | 10.32                         | 200                | 7.81                          | 10631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162.1                        | 1.24                                      |  |
| 0908       | 10.62                         | 200                | 7.80                          | 10635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155.1                        | 2.19                                      |  |
| 1100       | 10.81                         | 200                | 7.80                          | 10635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149.9                        | 3.02                                      |  |
| 0914       | 10.89                         | 200                | 7.79                          | 10638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146.6                        | 1.55                                      |  |
| 7190       | 10,98                         | 200                | 7.79                          | 10671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144.3                        | 1.72                                      |  |
| 0920       | 11.00                         | 200                | 7.79                          | 10753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141.4                        | 0.02                                      |  |
| 12.        | All pa                        |                    | bu de                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
| 0925       | 2 - 1   -                     |                    | 80-122                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    | 12                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O-minut 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                           |  |
|            | ( x                           |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TWAAFA 4Q23<br>s: ES/MW      |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID: TWA-80-1223              | 1                                         |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | -                                         |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | -                                         |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preserva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | -                                         |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                           |  |
|            | rate 1                        |                    | 111                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
|            |                               |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
| Notes:     |                               |                    | nent data recorded i          | s "ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electrode". Electrod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e calibrated in              | solution.                                 |  |
| -          | Sample vo                     | 1+1                | gal                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
| 1          | 12. 17. 17.                   |                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
| R          | Bottles and A                 |                    | _(collected in c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Land Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |
| (1)        | 1 x                           | 500 mL HDPE W/     | HNO <sub>3</sub> 6020 Total I | Metals (A), A, Cr, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ø, Ø, Øh, Ni, Pb, Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n) and 1631E (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |  |
| (1)        | 1 ×                           | 500 mL HDPE W/     | PE FOR FLYK                   | ved Metals (A), A3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cr, Qu, Fg, Mh, Ni, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b, Zn) and 1631E (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lg) Field                    | Filtered (0.45µm)                         |  |
|            |                               | 0 110              | ne I I                        | The second secon | The second section is a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |  |

| U          | OF                                               | LMSTED<br>JGLEVAND | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Well Sampling                                                                                                                         | g Field Sheet                           | Well No. TWA - 9D Facility/Project: TWAAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                         |  |  |
|------------|--------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--|--|
| ate:       | 12/14/23                                         |                    | Sampling Pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onnel:                                                                                                                                |                                         | Interest in the contract of th |                                  |                                         |  |  |
| amplina    | Method: /o                                       | · (h. s. a. :      | ESIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                         | Initial Headspace (ppm) O. I ppm Intial-Water Level before purge (ft. 8TOC) 9 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                         |  |  |
| quipme     | nt Used:                                         | +120 par           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (total well depth - wate                                                                                                              | r level)                                | Intial-Water Level before purge (ft. BTOC) 9.37  End-Water Level post purge/sample with pump on (ft. BTOC): 7.55?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                         |  |  |
| 11.900.    | #7068 PID.                                       | 541-6000           | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asim property and                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1,00                                    |  |  |
| urb-500    | Ro Quetro Pump                                   | Mesterfler<br>E/S  | Well Volume = 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                         | Pump Intake Depth (ft.BTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                         |  |  |
|            | Purge start time:                                | 1424               | Initial Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                         |  |  |
|            | Purge stop time:                                 | 1526               | Final Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350                                                                                                                                   | Plow cell disconnecter                  | a prior to sampling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                |                                         |  |  |
|            |                                                  | .000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | ty Measuremen                           | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                         |  |  |
|            |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPC                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the state of the    |                                         |  |  |
| Time       | Water level                                      | Purge Rate         | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conductivity                                                                                                                          | Temperature                             | Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Redox Potential *                | Turbidity                               |  |  |
| (military) | ft                                               | (mL/min)           | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uS/cm                                                                                                                                 | °C                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                               | (NTU)                                   |  |  |
|            | < 0.33 ft from<br>2nd reading                    | < 500 mL           | < 0.1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td></td> | < 3%                                    | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>{3 readings} &lt; 5 NTU<br/>&lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 10 mV                          | {3 readings} < 5 NTU<br>< 10% if >5 NTU |  |  |
| 12/26      | 9.53                                             | 300                | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12020                                                                                                                                 | 13.8                                    | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.1                            | 1.13                                    |  |  |
| 429        | 9.55                                             | 300                | 7.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12403                                                                                                                                 | 13.8                                    | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.0                             | 0.35                                    |  |  |
| 432        | 9.56                                             | 300                | 7.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11737                                                                                                                                 | 13.8                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.6                             | 0.02                                    |  |  |
| 435        | 9.58                                             | 300                | 7.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11025                                                                                                                                 | 14.0                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.4                             | 1.00                                    |  |  |
| 438        | 7.53                                             | 300                | 7.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9999                                                                                                                                  | 14.0                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.2                             | 0.00                                    |  |  |
| 441        | 9.58                                             | 350                | 7.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9613                                                                                                                                  | 14.0                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.6                             | 1,20                                    |  |  |
| -1-1-1     | 9.58                                             | 350                | 8.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9351                                                                                                                                  | 14.0                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.9                             | 0.80                                    |  |  |
| 447        | 9.58                                             | 350                | 4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9251                                                                                                                                  | 13.5                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                             | 0.02                                    |  |  |
| 450        | 7.58                                             | 350                | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9183                                                                                                                                  | 13,9                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                              | 0.02                                    |  |  |
| 153        | 9.28                                             | 350                | 8,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9127                                                                                                                                  | 14.0                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.8                             | 0.02                                    |  |  |
| 456        | 7.58                                             | 350                | 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9089                                                                                                                                  | 141.0                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17.8                            | 0.02                                    |  |  |
| 457        | 9.58                                             | 350                | 8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9070                                                                                                                                  | 14.0                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.8                            | 0.02                                    |  |  |
| 502        | 9.58                                             | 350                | 8,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9060                                                                                                                                  | 13.9                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -33.9                            | 0.02                                    |  |  |
| 505        | 9.58                                             | 350                | 8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9024                                                                                                                                  | 13.9                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -41.0                            | 0.02                                    |  |  |
| 208        | 9.58                                             | 350                | 8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9017                                                                                                                                  | 13.7                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -46.2                            | 0.02                                    |  |  |
| 211        | 9,58                                             | 350                | 8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9009                                                                                                                                  | 13.7                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.8                            | 0102                                    |  |  |
| 1514       | 9.58                                             | 350                | 8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8983                                                                                                                                  | 13.9                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -26.4                            | 0.02                                    |  |  |
| 1217       | 9.57                                             | 350                | 8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8977                                                                                                                                  | 13.8                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-60,6                           | 0.05                                    |  |  |
| -0-        |                                                  | ms Stak            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is cell                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project: TWAAFA 40               | )23                                     |  |  |
| 520        | Collect                                          | -DNA-              | 90-1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samplers: ES/MW Sample ID: TWA-9 | 0.4222                                  |  |  |
|            |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ime: 1520                               |  |  |
|            |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis:                        | . 1320                                  |  |  |
|            |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preservative:                    | -                                       |  |  |
| lotes:     | *Per EPA (2023), O                               | RP direct measure  | ment data recorded is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s "ORP referenced to                                                                                                                  |                                         | electrode". Electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :<br>de calibrated in            | solution.                               |  |  |
| 7.177%     | -sample                                          | Vol + S            | 3 gal t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1"2 gal                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                         |  |  |
| *          | Bottles and Analyses: (collected in order below) |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                         |  |  |
| , ,        |                                                  |                    | and the second s |                                                                                                                                       | 200                                     | -) d 16345 (U-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                         |  |  |
| (1)        |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | ③, ⑥ MG, Ni, Pb, Z<br>Cr, ⑥ ၉, MG Ni, I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | un 🗖 sala                        | Filtered (O ar                          |  |  |
| (1)        |                                                  |                    | OPE For ferro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       | CI, CU CE, IVIN NI,                     | ro, znj and 1631E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIEIG                            | Filtered (0.45µm)                       |  |  |

|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  | 11                                         |  |  |  |
|------------|------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|--|--|--|
| To the     |                                                                                                      |                    | T T                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Well No. CC                                                                                      | 1-2A                             |                                            |  |  |  |
|            |                                                                                                      | LMSTED             | Monitoring                  | Well Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Field Sheet          | Well No. CCI                                                                                     | TMAAFA                           |                                            |  |  |  |
| Date:      |                                                                                                      | - CELVAIND         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Facility/Project: TWAAFA                                                                         |                                  |                                            |  |  |  |
|            | 11/24                                                                                                |                    | Sampling Pers               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Initial-Water Level before purge (R. BTOC) 2.0                                                   |                                  |                                            |  |  |  |
| Equipm     | g Method: \F                                                                                         | PER 1              |                             | CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                  |                                  |                                            |  |  |  |
| WL-450     | INT. PID-                                                                                            |                    | Well volume = 0.17 *        | (total well depth - water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r level)               | 1.11.0700                                                                                        |                                  |                                            |  |  |  |
| WQ . VG    | PRE t O                                                                                              | -450 feri          | Well Volume . 1             | ,17(5.8-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                      | O.S' FREM BITTIN ~ 5.5'                                                                          |                                  |                                            |  |  |  |
| Turb - Leg | nie.                                                                                                 | 4. 100             |                             | = 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | U.S FILLIN CONT.                                                                                 |                                  |                                            |  |  |  |
|            | Purge start time                                                                                     | 1416               | Initial Flow Rate           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow cell disconnected | nnected prior to sampling                                                                        |                                  |                                            |  |  |  |
|            | Purge stop time                                                                                      | 1450               | Final Flow Rate             | 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             | Water Qualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Measuremen           | ts                                                                                               |                                  |                                            |  |  |  |
|            |                                                                                                      |                    | Γ                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ                      | Dissoved                                                                                         | Redox Potential                  | Turbidity                                  |  |  |  |
| Time       | Water level                                                                                          | Purge Rate         | pН                          | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temperature            |                                                                                                  | *                                | furbiaity                                  |  |  |  |
| (military) | ft                                                                                                   | (mL/min)           | pH Units                    | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C                     | mg/L                                                                                             | mV                               | (טדא)                                      |  |  |  |
| ,          | < 0.33 ft from                                                                                       |                    |                             | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 3%                   | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% if &gt;5 NTU</td> | < 10 mV                          | (3 readings) < 5 NTU or<br>< 10% if >5 NTU |  |  |  |
|            | 2nd reading                                                                                          | < 500 mL           | < 0.1 unit                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1.05                                                                                             | -48.2                            | 26.3                                       |  |  |  |
| 1413       | 2.03                                                                                                 | 200                | 6.99                        | 1054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.8                    | 0.70                                                                                             | -46.9                            | 13,9                                       |  |  |  |
| 1451       | 203                                                                                                  | 266                | 6.83                        | 1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.1                    | 0.75                                                                                             | -10.1                            | 12.7                                       |  |  |  |
| 1424       | 7,03                                                                                                 | 200                | 1.75                        | 1371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1                    | 0.52                                                                                             | -46.6<br>-50.2                   | 13,5                                       |  |  |  |
| 1427       | 7.03                                                                                                 | 200                | 6.76                        | 1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2                    | 8.41                                                                                             | -53.2                            | 12.5                                       |  |  |  |
| 1430       | 2.03                                                                                                 | 200                | 6,78                        | 1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,2                    | 0.41                                                                                             | - 59.1                           | 11.0                                       |  |  |  |
| 1433       | 2.03                                                                                                 | 700                | 6,77                        | 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 0.71                                                                                             | 37.1                             | 1.79                                       |  |  |  |
|            | ALL PARINS STABLE: FLEW LELL DISCONN.  RED TYRE = 18% >3 Well williames purche, METRIS NUT ANTITION. |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      | 4.2.1              |                             | yer = 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 60 611 031          | ones perces,                                                                                     |                                  |                                            |  |  |  |
| 1440       | CCW-2A-                                                                                              | 0129 6011          | हताहा)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  | l                                |                                            |  |  |  |
|            | *Per FPA (2023), O                                                                                   | RP direct measurem | ent data secorded is        | *ORP referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | electrode* Electrode                                                                             | calibrated in                    | salution.                                  |  |  |  |
| Notes:     | TOTAL GAL                                                                                            | eamen =            | 2 94                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
|            | Bottles and A                                                                                        |                    |                             | roer below)<br><u>detals (AL, As, C+, Co</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re tola el si - 2      | 1-ad 16215 (U.)                                                                                  | AC                               |                                            |  |  |  |
| (1)        |                                                                                                      |                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | u, zn) and 16312 (Hg                                                                             | ⊢ ∏ Field                        | Filtered (0.45µm)                          |  |  |  |
| (1)        | 25%                                                                                                  |                    | ino, <del>oozo oute</del> n | The same of the sa | 1 Will, 161, F         | 2, 211, 0110 10312 (118                                                                          | ,, , , , , , , , , , , , , , , , | cred (0.45)Billy                           |  |  |  |
|            |                                                                                                      |                    | <del>: 7 /6</del>           | <del>} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LIST.                  |                                                                                                  |                                  | •                                          |  |  |  |
|            |                                                                                                      | as of their        | ) , , ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  | N.                                         |  |  |  |
|            |                                                                                                      | Total Rottler      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |
| (2)        | 3 -                                                                                                  | 3 = Total Bottles  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                  |                                  |                                            |  |  |  |

| The same of the sa |                                         |                    |                             |                                         |                                         |                                                                      | p                      | FAS 1924               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|-----------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------|------------------------|------------------------|--|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF                                      | PALTON             | Monitoring                  | ; Well Samplin                          | g Field Sheet                           | Well No. CC                                                          |                        |                        |  |
| Date: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lul all                                 | DOLLVAND           |                             | , coen sumping                          | g rielu sheet                           | Facility/Project: TWAAFA                                             |                        |                        |  |
| Samoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111 74                                  |                    | Sampling Pers               |                                         | *************************************** | Initial Headspace (ppm) N/A                                          |                        |                        |  |
| Equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g Method: 15                            | rice               | A                           | c/co                                    |                                         | intial Water Level before                                            |                        | 1                      |  |
| WI. LECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IETA IMI PID                            |                    | Matt Majoure . 0 1% .       | Itotal well depth - wate                | r ievel)                                | End-Water Level post pur                                             | ge/sample with nump on | 1 BTOX): 3.83          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.44 1 0                                | Mit                | Wes values 0.17 (12.3-1.64) |                                         |                                         | Pump Intake Depth (R B)                                              |                        | 3,83                   |  |
| Turb - GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V71.6                                   | 4001601            | = 1.9 q-l.                  |                                         |                                         | 21 FROM E                                                            |                        | ~10.3' BTOC            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aurge start hme                         | 1325               | Indial Flow Rate            | 350                                     | T                                       |                                                                      |                        | 10.5 0100              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purse stop time                         | 1461               | Final Flow Rate             | Tribile (all discounded by the familie) |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             | <u> </u>                                | ly Measuremen                           | ts                                                                   |                        |                        |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water level                             | Purge Rate         | рН                          | Conductivity                            | Temperature                             | Dissoved<br>Oxygen                                                   | Redox Potential        | Turbidity              |  |
| (contary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft                                      | (mt/min)           | pH Units                    | uS/cm                                   | ·c                                      | mg/L                                                                 | mV                     | (NTU)                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.33 ft from<br>2nd reading           | < 500 mL           | <01 unit                    | c/= 3%                                  | < 3%                                    | =0.3 mg/L</td <td>&lt; 10 mV</td> <td>Breadings   &lt; 5 NTU or</td> | < 10 mV                | Breadings   < 5 NTU or |  |
| 1378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.35                                    | 300                | 6.99                        |                                         | -                                       |                                                                      |                        | < 10% if >5 NTU        |  |
| 1331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.75                                    | 360                | 7.52                        | 1851                                    | 11.4                                    | 0.17                                                                 | -27.9                  | 44.2                   |  |
| 1314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.25                                    | 260                | 7,12                        | 1829                                    | 11.5                                    | 0.16                                                                 | - <b>41.</b> 0         | 40.0<br>33.0           |  |
| 1357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.73                                    | 200                | 7.12                        | 1325                                    | 11.4                                    | 0,13                                                                 | -05.0                  | 24-9                   |  |
| 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.28                                    | 200                | 7.14                        | 1823                                    | 11.4                                    | 0.17                                                                 | -75.7                  | 27.2                   |  |
| 1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.30                                    | 700                | 7.19                        | 1867                                    | 11.7                                    | 61.0                                                                 | - 88.2                 | 23.2                   |  |
| 1346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.47                                    | 200                | 7.19                        | 1311                                    | 11.7                                    | Fire                                                                 | -90.7                  | 26.2                   |  |
| 1349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.64                                    | 200                | 7.19                        | 13/2                                    | 11.7                                    | 0.17                                                                 | -95.2                  | 27.4                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | All inchi          | STATSLE!                    | FLOW (FU )                              | ISCONNI                                 |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    | PLO TURB                    | = 15%, >1                               | avell value                             | ourged. Menzs                                                        | NET DARLY: CO          |                        |  |
| 1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGH-SE                                  | -0124 C            | ILECTED.                    |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        | <u> </u>               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      | -                      |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *Per EPA (2023), O                      | RP direct measurem | ent data recorded is        | *ORP referenced to                      |                                         | electrode" Electrode                                                 | calibrated in          | salution.              |  |
| ,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | fulle ull          |                             |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    | J                           |                                         |                                         |                                                                      |                        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bottles and A                           | nalyses:           | (collected in o             |                                         |                                         | n                                                                    |                        |                        |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    |                             | Actals (A), As, Cr, Ci                  |                                         |                                                                      |                        |                        |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    | WO, COOD Direct             | <del>red Metals (AI, As, C</del>        | r, Cu, Fe, Mn, No, F                    | 6, 2n) and 16322 (15)                                                | Field                  | Filtered (0.45µm)      |  |
| <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 x 17                                  |                    | 7 1637                      | -7×6-60                                 | think itst.                             |                                                                      |                        | -                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 15ml Prit          | ) (01)                      |                                         |                                         |                                                                      |                        | -                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    |                             |                                         |                                         |                                                                      |                        |                        |  |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٦ - "                                   | Total Bottles      |                             |                                         |                                         |                                                                      |                        |                        |  |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | 4,7             |                                             |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|-----------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------|--|--|
| 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALTON            |                                      |                                         |                        | 00                                                                                                                | 111-7C          |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LMSTED<br>LMSTED | Monitoring                           | Well Sampling                           | g Field Sheet          | Well No. CCW-2C Facility/Project: TWAAFA                                                                          |                 |                                             |  |  |
| _          | 1 11/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Samuellan Danie                      |                                         |                        | initial Headspace (ppm)                                                                                           |                 |                                             |  |  |
|            | Method: U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51011 4111       | Sampling Pers                        |                                         |                        |                                                                                                                   |                 | 7.1                                         |  |  |
| Equipme    | nt Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | thum text        |                                      | :/cp                                    |                        | innus:Water Level before purge (It. 8100) 2,36<br>ind:Water Level post purge/sample auth pump on (It. 8100). 3,35 |                 |                                             |  |  |
| WL-466     | TECH INT bin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | w/A              |                                      | (total well depth - wele                |                        |                                                                                                                   |                 | 8,38                                        |  |  |
| WQ . 451   | THE MI PID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SER PERI         | Well Valume x V 1 1 7 ( [4] - 5,76 ) |                                         |                        | Fump intain Depth (ft.8                                                                                           |                 | ~ 22'ETEC                                   |  |  |
| Turb - Sig | 0 1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                      | = 2.65 9                                | . پاک                  | 2.0 FM                                                                                                            | om butter       | 20 0/00                                     |  |  |
|            | Furge start time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1241             | instal Flow Rate                     | रक र                                    | Flow cell daconnected  | d prior to sampling                                                                                               |                 |                                             |  |  |
|            | Furge stop time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1304             | Funel Flore Rate:                    |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      | Water Qualit                            | y Measuremen           | 15                                                                                                                |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                                      |                                         | T                      | Dissoved                                                                                                          | Redox Potential |                                             |  |  |
| Time       | Water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Purge Rate       | рH                                   | Conductivity                            | Temperature            | Oxygen                                                                                                            | •               | Turbidity                                   |  |  |
| (military) | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mt/min)         | zrinu Kq                             | uS/cm                                   | °C                     | . meri                                                                                                            | Vns             | (1/TU)                                      |  |  |
|            | < 0.33 ft from<br>2nd reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 500 mt         | < 0.1 unit                           | «/» 3%                                  | < 3%                   | =03mg/L</td <td>&lt; 10 my</td> <td>(3 readings) &lt; 5 fVTU or<br/>&lt; 10% d &gt;5 fVTU</td>                    | < 10 my         | (3 readings) < 5 fVTU or<br>< 10% d >5 fVTU |  |  |
| 1245       | 8.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 350              | 6.96                                 | 1715                                    | 12.6                   | 0,46                                                                                                              | -68.9           | 13.7                                        |  |  |
| 1248       | 8,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 320              | 1.85                                 | 1710                                    | 12.6                   | 0.33                                                                                                              | -853            | 1.3                                         |  |  |
| 1251       | 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250              | 695                                  | 1708                                    | 12.6                   | 6.35                                                                                                              | -71.0           | 1,5                                         |  |  |
| 1254       | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250              | 6.94                                 | 1700                                    | 12.6                   | 0,31                                                                                                              | -15.0           | 7.1                                         |  |  |
| 1255       | su pone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s strick         | FILL IELL                            | bis (ent.                               |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | <u> </u>        |                                             |  |  |
| 1300       | CCW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0124             |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
| <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | +               |                                             |  |  |
| <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | -               |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | -               |                                             |  |  |
| <b> </b>   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                      |                                         | <b></b>                |                                                                                                                   | +               |                                             |  |  |
| ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         | <del> </del>           |                                                                                                                   | 1               |                                             |  |  |
| <b> </b>   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
| <b> </b>   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | <b> </b>                             | *************************************** |                        |                                                                                                                   |                 |                                             |  |  |
|            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
| -          | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      | ·                                       |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   | -               |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>         | <u> </u>                             |                                         | <u> </u>               |                                                                                                                   | <del></del>     |                                             |  |  |
| Notes:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            | TETAL FUPLE VOL= 1.25 gd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
|            | Bottles and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | natyses:         | (collected in o                      | rder below)                             |                        |                                                                                                                   |                 | · · · · · · · · · · · · · · · · · · ·       |  |  |
| (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | _ *                                  | Sociale (E.L. S.c., Co., Co             | u, Sa, Ma, W, 10, 6    | n) and 16316 (ilg). F                                                                                             | ,c              |                                             |  |  |
| (1)        | Control of the Contro |                  |                                      | ectional till to                        | Er-Cu. Per trans His P | 6, 2m and 16316 (H)                                                                                               | D Field         | Filtered (0.45µm)                           |  |  |
| (1)        | रू रहे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                |                                      | 11:17                                   | THE CITY               | mark with                                                                                                         |                 |                                             |  |  |
|            | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sml 1998         |                                      | , (1)                                   | £ 14 - 21.21           | riter Ctv                                                                                                         |                 |                                             |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
| (2)        | ·/ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Bottles    |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |
| ,-,        | •,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                      |                                         |                        |                                                                                                                   |                 |                                             |  |  |

| person.      |                              |                                           |                        |                              |                       |                                               |                              | 1117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|--------------|------------------------------|-------------------------------------------|------------------------|------------------------------|-----------------------|-----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | TI CO                        | Min                                       | Monttoring             | y Well Samplin               | g Field Sheet         | Well Ho. CCL                                  | 1.31                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1            |                              | THOSE AVIND                               |                        | ,                            |                       |                                               | Facility/Project: TW/AFA     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Date         | 1 11 2014                    |                                           | Sampling Pay           | semuel                       |                       | Initial theadense (cpm) #1//                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Samplin      | & Method L                   | 11/11                                     | 10/0                   | : p                          |                       | Intel Water Level native poreafte BIOCI 3, GV |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Lanthen      | ent Used:                    |                                           | 1                      | (total Mail depth - Male     | i lessi)              | and Water Level post p                        | nike/samble with Limb in the | 6100 3, 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| W. LEC       | Test lest's con              | color                                     |                        | 11/22 16                     | 7                     | Fump intate frepth (ft #                      | atra)                        | scocal =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| M. 471       | Falt Funn                    | , GEARLIN                                 | Print yellins . 0      | 11 (5,8 = 3.0)<br>= 0.72 3   | ( )                   |                                               | om BUTTLA                    | 6.3 - 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Tunt ST      | entill were                  | 15/61                                     |                        | = 0.72 5                     | · · ·                 |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| man lagrania | Perga start time             | 1011                                      | bullal flew Pate       | 360 ml/min                   | Flog cell distinuecto | 4 poor to tampling                            | N                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| l            | Purpestop time               | 1051                                      | final flow flate       |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              | 1-1-1                                     | Janes e, land a market |                              | y Mensuremen          | 14                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| fime         | Water level                  | Purge Rate                                | pH                     | Conductivity                 | Temperature           | Dissoved<br>Oxygen                            | Redox Potential              | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| tmilitary    | 11                           | (mt/min)                                  | pil Units              | u5/cm                        | "C                    | mel                                           | Von                          | (MTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| -            | < 0.1) ft from               |                                           |                        |                              | . 19                  | */=03me/L                                     | × 10 m√                      | (3 readings) < 5 fifth of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|              | Zod reading                  | < 500 mL                                  | < 0.1 unti             | e/= 3%                       | # 1%                  | The second                                    | = -consistence               | × 16% if >5 HTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1611         | Parat                        | Britis                                    |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1513         | 174                          | 100                                       | 6.80                   | 475                          | 7.5                   | 1.15                                          | -44.6                        | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1016         | 3,13                         | 200                                       | 4 87                   | 1461                         | 7.6                   | 1.60                                          | -65.9                        | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 199          | 3.14                         | 100                                       | 4.82                   | 1461                         | 7.7                   | 1.05                                          | -10,3                        | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1023         | 3.16                         | 100                                       | 6.80                   | 1456                         | 10,0                  | 1,64                                          | -14.7                        | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1025         | 1 11                         | 760                                       | 6.81                   | 1457                         | 10,5                  | 1:10                                          | -14.3                        | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1078         | 3.30                         | 700                                       | 4,81                   | 1457                         | 10.1                  | 1.10                                          | 71.0                         | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| -13.0        |                              | CAMETELS                                  | STABLE - C             | GIN CKIL DI                  | 16,VNECTE+            | ,                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              | B. L. |                        |                              |                       |                                               |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | CCW-3                        | 1-0/24                                    |                        |                              | ,                     |                                               |                              | And the second s |  |  |  |
|              | 1035                         | 7                                         |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 1422                         |                                           |                        |                              |                       |                                               | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | + FILLD 1                    | 40                                        |                        |                              |                       |                                               | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              | 71-014                                    |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 1040                         | 71-4167-                                  |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | -1016-                       |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|              |                              | -,                                        |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | *Pel EPA (2073), GF          |                                           | and the recorded is    | *ORP referenced to           |                       | electrode" Electrode                          | calibrated in                | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Notasi       | *Per EPA (2073), GF          | P. G. JOL S                               | 2 00 00                | 11                           |                       | ·                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 1011111 111                  | RUE YOU =                                 |                        |                              |                       | •                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              | national .                                | (collected in or       | der below)                   |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | Bottles and A                | THIS - I HOUSE HILL                       | DUCI. 6020 fotal M     | letals IAL As Cr. Cu.        | Fe. Mo. Ni. Ph. Zn    | o) and 1611E (Hg) /                           | ι,                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| (1)          |                              |                                           | was conditional.       | - 1 0 6 - 1 - 1 - 1 41 A- FE | Cu to the Mil to      | b Intend 1631F (th                            | a Marield                    | Filtered (0.45µm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| (1)          | <u> </u>                     | OU MIL HUPE W/                            | 7                      | 27                           | 0.2 / 1/ /            | 1117                                          | - David 24                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 7. x 500.00                  | UNITED                                    | 7-6                    | 3-1633-8-14-SPANIALA-615T-   |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 1 8 125 001                  | rature.                                   | 1                      |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              |                              |                                           |                        | A FIELD I                    | WHICHTE               | CEW-4.                                        | - 3A - 0124.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| (2)          | 3) + 3 self 24 start copies. |                                           |                        |                              |                       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 1 + 13                       | f fell                                    |                        | Ļ 1                          | , , , , , , , ,       |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | 144                          |                                           |                        | l v                          | 175ml 41              | ( ( X )                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

| -                                                                                          |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ρć                         | K 1974                                  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|--|
| 9                                                                                          |                                                                                                                          | PALTON<br>DLMSTED<br>UOLEVAND | Monitoring                      | Well Sampling                                                                                                                        | Field Sheet                               | Well No. CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .W -3B                     |                                         |  |
| wate.                                                                                      | 11112004                                                                                                                 |                               | Care III                        |                                                                                                                                      |                                           | Facility/Project: TWAAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                         |  |
| Samplin                                                                                    | G AA                                                                                                                     | C1011 051                     | Sampling Pers                   | sonnel:                                                                                                                              |                                           | Initial Headspace (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                         |  |
| Equipme                                                                                    | ent Used:                                                                                                                | TON FALL                      | Ac/                             |                                                                                                                                      |                                           | intial-Water Level before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | purge (ft. BTOC) 3.54      |                                         |  |
|                                                                                            |                                                                                                                          | 1.10-                         | Well volume • 0 17 •            | (total well depth - water                                                                                                            | r level)                                  | End-Water Level post pur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge/sample with pump on (ft |                                         |  |
| Ma. Al                                                                                     | I PACT Pump                                                                                                              | NIN-                          | Web Volume . 0,17 (10.8 - 3,59) |                                                                                                                                      |                                           | Pump Intake Depth (ft. BT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OC):                       |                                         |  |
| Turb. G                                                                                    |                                                                                                                          | 46-16 CHI JERI                |                                 | = 1.2 gd.                                                                                                                            | ')                                        | l' recon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SITTON = 9.8"              | !                                       |  |
|                                                                                            | Purge start time                                                                                                         | 1135                          | Initial Flow Pate               |                                                                                                                                      | ·                                         | 1 Ipart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,1                        | ·                                       |  |
|                                                                                            | Purge stop time.                                                                                                         |                               | Final Flow Rate:                | 715                                                                                                                                  | Flow cell disconnected prior to sampling: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          | 1111                          |                                 | 700                                                                                                                                  |                                           | A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                         |  |
|                                                                                            |                                                                                                                          | <u> </u>                      |                                 | water Qualit                                                                                                                         | y Measuremen                              | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                         |  |
| Time                                                                                       | Water level                                                                                                              | Purge Rate                    | pН                              | Conductivity                                                                                                                         | Temperature                               | Dissoved<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox Potential            | Turbidity                               |  |
| (military)                                                                                 | ft                                                                                                                       | (mt/min)                      | pH Units                        | uS/cm                                                                                                                                | °C                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mV                         | (NTU)                                   |  |
|                                                                                            | < 0.33 ft from<br>2nd reading                                                                                            | < 500 mL                      | < 0.1 unit                      | = 3%</td <td>&lt; 3%</td> <td><!--= 0.3 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU or &lt; 10% if &gt;5 NTU</td></td> | < 3%                                      | = 0.3 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU or &lt; 10% if &gt;5 NTU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 10 mV                    | (3 readings) < 5 NTU or < 10% if >5 NTU |  |
| 1135                                                                                       | PULLE                                                                                                                    | 654INS                        |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | < 10% II >5 N I U                       |  |
| 1138                                                                                       | 3.90                                                                                                                     | 225                           | 6.80                            | 1230                                                                                                                                 | 11.1                                      | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 10 1/                    | 44.2                                    |  |
| 1141                                                                                       | 3.91                                                                                                                     | 225                           | 6,81                            | 1233                                                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 10.4                     |                                         |  |
| 1146                                                                                       | 3.74                                                                                                                     | 175                           | 679                             |                                                                                                                                      | 11.1                                      | 0,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10.8                      | 27.8<br>38.2                            |  |
| 1149                                                                                       | 3.94                                                                                                                     | 250                           | 6,77                            | 1243                                                                                                                                 | 11.2                                      | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -31.1                      |                                         |  |
| 1152                                                                                       | 3,39                                                                                                                     | 200                           | 6.33                            | 1237                                                                                                                                 | 11.6                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -38.3                      | 35.2<br>18.1                            |  |
| 1155                                                                                       | 3.90                                                                                                                     | 100                           | 6,82                            | 1244                                                                                                                                 | 11.3                                      | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 16.9                                    |  |
| 1158                                                                                       | 3.91                                                                                                                     | 200                           | 6.82                            | 1249                                                                                                                                 | 11.3                                      | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4c.1<br>-51.2             | 16.4                                    |  |
| 11/1                                                                                       | ALL CAT                                                                                                                  |                               |                                 |                                                                                                                                      |                                           | Has 1/2 20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 10.1                                    |  |
|                                                                                            | 1000                                                                                                                     | 31/10                         |                                 | + 2 gall                                                                                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACTIONA.                   |                                         |  |
|                                                                                            | ·                                                                                                                        |                               |                                 | 1 E 91111                                                                                                                            | DITS PHENE                                | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del> </del>               |                                         |  |
| 1700                                                                                       | CCW-3B                                                                                                                   | -0124                         |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
| 1.01                                                                                       | COLECTI                                                                                                                  |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
| -                                                                                          | Louisir                                                                                                                  | <u> </u>                      |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            | FIELD BI                                                                                                                 | ANK#1-01                      | 24                              |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            | 110000                                                                                                                   | COLLECTE                      | o 6 ccm                         | 3B                                                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          | 2.0000                        |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •                                       |  |
| <u> </u>                                                                                   | 12 504 (2021) 0                                                                                                          | RP direct measurem            | ent data secorded is            | *ORP referenced to                                                                                                                   |                                           | electrode". Electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | calibrated in              | solution.                               |  |
| Notes:                                                                                     | 10172                                                                                                                    | PULLE                         | Vol = 20                        | 266.                                                                                                                                 |                                           | - Court of the Cou |                            | - Albuoit                               |  |
|                                                                                            | 10170                                                                                                                    | 14H7 EFFELV                   | FICENCE.                        | 3.17.                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          |                               | (collected in o                 | rder below)                                                                                                                          | ~~~~                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                |                                         |  |
| W. CO. T. UDDE W. UNIO. CO20 Years Motors (Al. As. Cr. Cu. Fe. Mrs. NI. Rb. 70) and 16315. |                                                                                                                          |                               |                                 |                                                                                                                                      | A lost strate bosts                       | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                         |  |
| (1)                                                                                        | x_500 mL HDPE w/ HNO; 6020 Dissolved Metals (Al, As, Cr, Gu, Fe, Mn, Ni, Pb, Zn) and 16315 (Hg)  Field Filtered (0.45µm) |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
| (1)                                                                                        | 2 x 500 ml 7 1133 B24 STANDAND LIST.                                                                                     |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |
|                                                                                            |                                                                                                                          | Sinh 1                        | 1655                            | 1324 STA                                                                                                                             | Motor) (18                                | <del>'</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | •                                       |  |
|                                                                                            |                                                                                                                          | 3,110                         |                                 | *                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •                                       |  |
|                                                                                            |                                                                                                                          |                               |                                 |                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |  |

(2) Total Bottles

Mile To the property of the grand of the later

|            |                               | ALTON               | Monitoring           | Well Sampling                                                                                                                          | Field Sheet            | Well No. CT                                                                                    | mw-17                      |                                            |  |
|------------|-------------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|--|
|            | WIL E                         | UOLEVAND            | Monitoring           | , wen samping                                                                                                                          | g ricia sincer         | Facility/Project: TWAAFA                                                                       |                            |                                            |  |
| Date:      | 111124                        |                     | Sampling Pers        | onnel:                                                                                                                                 |                        | initial Headspace (ppm)                                                                        | 11/0                       |                                            |  |
| Sampling   | Method: LF                    | - O O -             |                      | c/co                                                                                                                                   |                        | Intial-Water Level before                                                                      | purge (ft BTOC) 6,54       |                                            |  |
| Equipme    | ent Usad:                     | TEXT                |                      | (total well depth - water                                                                                                              | r level)               | End-Water Level post pur                                                                       | ge/sample with pump on (ft | 81OC)                                      |  |
| WL - 460   | INT- PID-                     | MA.                 |                      |                                                                                                                                        |                        | Pump Intake Depth (ft. 81)                                                                     | OC)                        | ,                                          |  |
| WQ - Y51   | fil Pump                      | 'LEC PERI           | Well Volume = C.     | 17 (15.5-65                                                                                                                            | 4)                     | 2' 8261                                                                                        | n botten                   | ~13.5 BTOC.                                |  |
| Turb - 461 | CINUS                         | HEC LAICE           | =                    | 1,5gd.                                                                                                                                 |                        |                                                                                                |                            |                                            |  |
|            | Purge start time              | 1540                | Initial Flow Fate    |                                                                                                                                        | Flow cell disconnected | d prior to sampling :                                                                          | $\square$                  |                                            |  |
|            | Purge stop time               | 1612                | Final Flow Rate:     | 300                                                                                                                                    |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      | Water Qualit                                                                                                                           | y Measuremen           | ts                                                                                             |                            |                                            |  |
| Time       | Water level                   | Purge Rate          | рН                   | Conductivity                                                                                                                           | Temperature            | Dissoved<br>Oxygen                                                                             | Redox Potential            | Turbidity                                  |  |
| (ynditary) | ft                            | (mL/min)            | pH Units             | uS/cm                                                                                                                                  | °C                     | m€/L                                                                                           | mV                         | (NTU)                                      |  |
|            | < 0.33 ft from<br>2nd reading | < 500 mL            | < 0.1 unit           | = 3%</td <td>&lt; 3%</td> <td><!--=03 mg/L</td--><td>&lt; 10 mV</td><td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% If &gt;5 NTU</td></td> | < 3%                   | =03 mg/L</td <td>&lt; 10 mV</td> <td>(3 readings) &lt; 5 NTU or<br/>&lt; 10% If &gt;5 NTU</td> | < 10 mV                    | (3 readings) < 5 NTU or<br>< 10% If >5 NTU |  |
| 1540       | Pulle DEG                     | NE 300              |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| 1544       | 7.01                          | 300                 | 6.86                 | LAO                                                                                                                                    | 10.0                   | 0,49                                                                                           | - 30                       | 27.7                                       |  |
| 1547       | 7.05                          | 300                 | 4.84                 | 612                                                                                                                                    | 9,8                    | 0,43                                                                                           | -31                        | 27.9                                       |  |
| 1550       | 707                           | 500                 | 6.88                 | 603                                                                                                                                    | 9,5                    | 0.33                                                                                           | -44                        |                                            |  |
| 1553       | 7.09                          | 300                 | 6.89                 | 604                                                                                                                                    | 9.4                    | 0.34                                                                                           | -53                        | 2 <b>7.8</b><br>25.4                       |  |
| 1556       | 7.11                          | 300                 | 1,90                 | 603                                                                                                                                    | 9.4                    | 0,37                                                                                           | -58                        | 29.5                                       |  |
| 1559       | 7.11                          | 300                 | 6.41                 | 601                                                                                                                                    | 9,3                    | 0.31                                                                                           |                            |                                            |  |
|            |                               | ALL PAR             | DS STADLE;           | TURB, RPD =                                                                                                                            |                        | ETALS JAMPLED                                                                                  | PEU VIC. TURY              | , 0                                        |  |
|            |                               |                     |                      |                                                                                                                                        | NOM                    | ETALS JAMPLEO                                                                                  |                            |                                            |  |
| 1600       | (1)116-1                      | - 0124              | COLLECTED            |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        | ·····                                                                                          |                            |                                            |  |
|            | <u> </u>                      |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| <b></b>    |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            | <b>_</b>                      |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| -          |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| ļ          |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| <b> </b>   |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
|            | <del> </del>                  |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| Notari     | 15 - 524 (2021) O             | and direct measurem | ent data recorded is | *ORP referenced to                                                                                                                     |                        | electrode". Electrode e                                                                        | ralibrated in              | solution.                                  |  |
| Notes:     | A Tellis                      | TI AN (FEE IN       | VICINITY D           | HLING SAMPL                                                                                                                            | É                      |                                                                                                |                            |                                            |  |
|            | प निगदा प                     | volume =            | 2,5                  | al,                                                                                                                                    |                        |                                                                                                |                            |                                            |  |
|            | Bottles and A                 |                     | (collected in o      | rder below)                                                                                                                            |                        | A                                                                                              | •                          |                                            |  |
| (1)        | х                             | 500 mt HOPE w/      | HNO, 6320 Total I    | Metals (Al. As, Cr, Cu                                                                                                                 | Fe. Ma. Ni. Ph. Ze     | 1) and 16312 (Mg)                                                                              |                            | ,                                          |  |
| (1)        | х                             | SOO ME HOPE W!      | HNO, 6020 Diecel     | ed Motals (Al, As, C                                                                                                                   | z, Cv, Fe, Ma, Ni, P   | b, Zo) and 1631E (Hg)                                                                          | Field                      | Filtered (0.45µm)                          |  |
| (*)        |                               | on Hore             | 7 1173               | 248 570                                                                                                                                | _                      |                                                                                                |                            |                                            |  |
|            |                               | 15 at Hoff          | 3 1c3.               | C 10 310                                                                                                                               | (I)                    |                                                                                                |                            | ·                                          |  |
|            |                               |                     |                      |                                                                                                                                        |                        |                                                                                                |                            |                                            |  |
| (2)        | <u>fs) =</u>                  | Total Bottles       |                      |                                                                                                                                        | ¥                      |                                                                                                |                            |                                            |  |



| Client Name                                                |                     |               | Port of Taco               | ma            | Sampling Lo     | cation            | TWA-1          |         |                                                                                                                      |  |
|------------------------------------------------------------|---------------------|---------------|----------------------------|---------------|-----------------|-------------------|----------------|---------|----------------------------------------------------------------------------------------------------------------------|--|
| Project #                                                  |                     |               | M0615.20.01                | 2             | Sampling Da     | nte               | 12/12/2023     |         |                                                                                                                      |  |
| Project Nam                                                | ne                  |               | TWAAFA Addi<br>Groundwater |               | Sampler         |                   | B. Murphy      |         |                                                                                                                      |  |
| Sampling Ev                                                | /ent                |               | December 2                 | 2023          | Sample Nan      | ••                | TWA-1-1223     |         |                                                                                                                      |  |
| Sub Area                                                   | Sub Area            |               |                            | Nay           | sample wan      | ie                | TVVA-1-1223    |         |                                                                                                                      |  |
| FSDS QA                                                    |                     |               | C. Sifford                 |               | Sample Dep      | th                | 10.0           |         | Pore Volume 9.60 1.56  ORP Turbidity  85.3 55.2 -19.7 230 -38.2 317 7.1 52.6 32.4 25.9 47.9 17.5 55.2 10.6 61.9 9.80 |  |
| Hydrology/l                                                | Level Measur        | ements        |                            |               | Purge Metho     | od                | Peristaltic Pu | ımp     |                                                                                                                      |  |
| Date                                                       |                     |               | Time                       | DT-Bottom     | DT-Product      | DT-Water          | DTP-DTW        | DTB-DTW | Pore Volume                                                                                                          |  |
|                                                            | 12/12/2023          |               | 13:38                      | 13.54         |                 | 3.94              |                | 9.60    | 1.56                                                                                                                 |  |
| All depths measured from top of casing of monitoring well. |                     |               |                            |               |                 |                   |                |         |                                                                                                                      |  |
|                                                            |                     |               |                            | Water Qu      | ality Data      |                   |                |         |                                                                                                                      |  |
| Time                                                       | Purge Vol<br>(gal)  | Water Level   | Flowrate<br>L/min          | рН            | Temp (C)        | E Cond<br>(uS/cm) | DO (mg/L)      | ORP     | Turbidity                                                                                                            |  |
| BEGAN PURG                                                 | <b>E AT</b> : 13:39 |               |                            |               |                 |                   |                |         |                                                                                                                      |  |
| Allowed p                                                  | urge water to       | clear prior t | o hooking up               | ysı. Water ir | nitially orange | and turbid.       |                |         |                                                                                                                      |  |
| 13:42                                                      | 0.2                 | 3.99          | 0.25                       |               |                 |                   |                |         | 85.3                                                                                                                 |  |
| 13:45                                                      | 0.5                 | 3.99          | 0.25                       |               |                 |                   |                |         | 55.2                                                                                                                 |  |
| 13:48                                                      | 0.7                 | 3.99          | 0.25                       | 6.96          | 11.0            | 942               | 3.24           | -19.7   | 230                                                                                                                  |  |
| 13:51                                                      | 0.9                 | 3.99          | 0.25                       | 6.86          | 11.0            | 898               | 2.48           | -38.2   | 317                                                                                                                  |  |
| 13:54                                                      | 1.0                 | 3.99          | 0.25                       | 6.85          | 10.7            | 886               | 3.33           | 7.1     | 52.6                                                                                                                 |  |
| 13:57                                                      | 1.2                 | 3.99          | 0.25                       | 6.84          | 10.2            | 870               | 3.43           | 32.4    | 25.9                                                                                                                 |  |
| 14:00                                                      | 1.4                 | 3.99          | 0.25                       | 6.83          | 10.4            | 856               | 3.52           | 47.9    | 17.5                                                                                                                 |  |
| 14:03                                                      | 1.6                 | 3.99          | 0.25                       | 6.83          | 10.4            | 855               | 3.52           | 55.2    | 10.6                                                                                                                 |  |
| 14:06                                                      | 1.8                 | 3.99          | 0.25                       | 6.83          | 10.4            | 851               | 3.54           | 61.9    | 9.80                                                                                                                 |  |
| 14:09                                                      | 2.0                 | 3.99          | 0.25                       | 6.82          | 10.4            | 849               | 3.50           | 66.8    | 8.06                                                                                                                 |  |
| 14:12                                                      | 2.2                 | 3.99          | 0.25                       | 6.82          | 10.3            | 846               | 3.54           | 70.2    | 6.56                                                                                                                 |  |



| Client Name | Port of Tacoma | Sampling Location | TWA-1      |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/12/2023 |

### Water Quality Observations:

Cloudy then clear; brown tint then colorless; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 14:15            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 2.2 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name                                                |                    |               | Port of Taco               | ma        | Sampling Lo | cation            | TWA-2          |         |             |  |
|------------------------------------------------------------|--------------------|---------------|----------------------------|-----------|-------------|-------------------|----------------|---------|-------------|--|
| Project #                                                  |                    |               | M0615.20.01                | 2         | Sampling Da | ite               | 12/12/2023     |         |             |  |
| Project Nam                                                | е                  |               | TWAAFA Addi<br>Groundwater |           | Sampler     |                   | C. Sifford     |         |             |  |
| Sampling Event                                             |                    |               | December 2                 | 2023      | Sample Nam  | 20                | TWA-2-1223     |         |             |  |
| Sub Area                                                   |                    |               | 1514 Taylor \              | Way       | sample Man  | ie                | TVVA-2-1223    |         |             |  |
| FSDS QA                                                    |                    |               | C. Sifford                 |           | Sample Dep  | th                | 6.5            |         |             |  |
| Hydrology/Level Measurements                               |                    |               |                            |           | Purge Metho | od                | Peristaltic Pu | mp      |             |  |
|                                                            | Date               |               | Time                       | DT-Bottom | DT-Product  | DT-Water          | DTP-DTW        | DTB-DTW | Pore Volume |  |
| 12/12/2023                                                 |                    |               | 13:51                      | 9.09      |             | 2.05              |                | 7.04    | 1.15        |  |
| All depths measured from top of casing of monitoring well. |                    |               |                            |           |             |                   |                |         |             |  |
| Water Quality Data                                         |                    |               |                            |           |             |                   |                |         |             |  |
| Time                                                       | Purge Vol<br>(gal) | Water Level   | Flowrate<br>L/min          | рН        | Temp (C)    | E Cond<br>(uS/cm) | DO (mg/L)      | ORP     | Turbidity   |  |
| BEGAN PURGE                                                | <b>AT</b> : 13:53  |               |                            |           |             |                   |                |         |             |  |
| Allowed pu                                                 | urge water to      | clear prior t | o hooking up               | YSI.      |             |                   |                |         |             |  |
| 13:56                                                      | 0.2                | 2.26          | 0.25                       |           |             |                   |                |         | 20.0        |  |
| 13:59                                                      | 0.4                | 2.29          | 0.25                       | 7.04      | 11.0        | 1362              | 2.93           | 120.1   | 13.7        |  |
| 14:02                                                      | 0.6                | 2.30          | 0.25                       | 7.04      | 11.0        | 1267              | 1.66           | 115.8   | 9.78        |  |
| 14:05                                                      | 0.8                | 2.31          | 0.25                       | 7.07      | 10.9        | 1207              | 1.07           | 111.1   | 6.53        |  |
| 14:08                                                      | 0.9                | 2.31          | 0.25                       | 7.08      | 11.0        | 1188              | 0.81           | 106.9   | 5.24        |  |
| 14:11                                                      | 1.0                | 2.32          | 0.25                       | 7.09      | 11.0        | 1168              | 0.66           | 102.9   | 4.65        |  |
| 14:14                                                      | 1.2                | 2.31          | 0.25                       | 7.11      | 11.0        | 1135              | 0.58           | 98.0    | 3.66        |  |
| 14:17                                                      | 1.4                | 2.31          | 0.25                       | 7.13      | 11.0        | 1123              | 0.54           | 94.8    | 3.21        |  |
| 14:20                                                      | 1.6                | 2.32          | 0.25                       | 7.13      | 11.0        | 1112              | 0.50           | 91.4    | 3.25        |  |



|                            |               | Location TWA-2       |     |
|----------------------------|---------------|----------------------|-----|
| <b>Project #</b> M0615.20. | .012 Sampling | <b>Date</b> 12/12/20 | )23 |

### Water Quality Observations:

Clear; slight yellow tint; no odor; no sheen.

### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 14:25            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 223663

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.6 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name                                                | )                  |               | Port of Taco               | ma        | Sampling Lo | cation            | TWA-3          |         |             |  |
|------------------------------------------------------------|--------------------|---------------|----------------------------|-----------|-------------|-------------------|----------------|---------|-------------|--|
| Project #                                                  |                    |               | M0615.20.01                | 2         | Sampling Da | ite               | 12/12/2023     |         |             |  |
| Project Nam                                                | ie                 |               | TWAAFA Addi<br>Groundwater |           | Sampler     |                   | C. Sifford     |         |             |  |
| Sampling Event                                             |                    |               | December 2                 | 2023      | Sample Nam  | 20                | TWA-3-1223     |         |             |  |
| Sub Area                                                   |                    |               | 1514 Taylor \              | Way       | sample wan  | ie                | TVVA-3-1223    |         |             |  |
| FSDS QA                                                    |                    |               | C. Sifford                 |           | Sample Dep  | th                | 8.5            |         |             |  |
| Hydrology/Level Measurements                               |                    |               |                            |           | Purge Metho | od                | Peristaltic Pu | mp      |             |  |
|                                                            | Date               |               | Time                       | DT-Bottom | DT-Product  | DT-Water          | DTP-DTW        | DTB-DTW | Pore Volume |  |
| 12/12/2023                                                 |                    |               | 12:07                      | 9.74      |             | 6.78              |                | 2.96    | 0.48        |  |
| All depths measured from top of casing of monitoring well. |                    |               |                            |           |             |                   |                |         |             |  |
| Water Quality Data                                         |                    |               |                            |           |             |                   |                |         |             |  |
| Time                                                       | Purge Vol<br>(gal) | Water Level   | Flowrate<br>L/min          | рН        | Temp (C)    | E Cond<br>(uS/cm) | DO (mg/L)      | ORP     | Turbidity   |  |
| BEGAN PURGE                                                | <b>AT:</b> 12:09   |               |                            |           |             |                   |                |         |             |  |
| Allowed pu                                                 | urge water to      | clear prior t | o hooking up               | YSI.      |             |                   |                |         |             |  |
| 12:12                                                      | 0.1                | 6.84          | 0.15                       |           |             |                   |                |         | 53.6        |  |
| 12:17                                                      | 0.2                | 6.86          | 0.15                       | 6.67      | 10.7        | 2467              | 2.07           | 190.0   | 26.9        |  |
| 12:20                                                      | 0.4                | 6.87          | 0.15                       | 6.68      | 10.7        | 2380              | 1.15           | 174.1   | 19.30       |  |
| 12:23                                                      | 0.5                | 6.86          | 0.15                       | 6.69      | 10.7        | 2276              | 0.73           | 162.6   | 8.49        |  |
| 12:26                                                      | 0.6                | 6.86          | 0.15                       | 6.69      | 10.8        | 2214              | 0.58           | 156.4   | 7.19        |  |
| 12:29                                                      | 0.7                | 6.86          | 0.15                       | 6.70      | 10.7        | 2169              | 0.48           | 151.2   | 6.27        |  |
| 12:32                                                      | 0.9                | 6.87          | 0.15                       | 6.70      | 10.7        | 2111              | 0.39           | 145.1   | 4.02        |  |
| 12:35                                                      | 1.1                | 6.86          | 0.15                       | 6.70      | 10.7        | 2081              | 0.33           | 141.0   | 1.91        |  |
| 12:38                                                      | 1.2                | 6.86          | 0.15                       | 6.70      | 10.8        | 2074              | 0.31           | 138.9   | 1.62        |  |



| Client Name | Port of Tacoma | Sampling Location | TWA-3      |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/12/2023 |

### Water Quality Observations:

Clear; slight orange tint; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 12:40            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    | 3 | No       |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 5 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Waterra WS-2 PFAS Free; Serial Number WS2-00616

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.2 gallons.

Field duplicate sample TWA-9-3-1223 collected at this location.

Rinsate Blank1-1223 collected at this location.

ORP referenced to Ag/AgCl electrode.



| Client Name | e                  |                 | Port of Taco               | ma           | Sampling Lo    | cation            | TWA-10D        |          |             |
|-------------|--------------------|-----------------|----------------------------|--------------|----------------|-------------------|----------------|----------|-------------|
| Project #   |                    |                 | M0615.20.01                | 2            | Sampling Da    | ite               | 12/12/2023     |          |             |
| Project Nan | ne                 |                 | TWAAFA Addi<br>Groundwater |              | Sampler        |                   | B. Murphy      | . Murphy |             |
| Sampling Ev | vent               |                 | December 2                 | 2023         | Sample Nan     |                   | TWA-10D-122    | າວ       |             |
| Sub Area    | Sub Area           |                 |                            | Nay          | sample wan     | ie                | 100-122        | 23       |             |
| FSDS QA     |                    |                 | C. Sifford                 |              | Sample Dep     | th                | 53.5           |          |             |
| Hydrology/  | Level Measur       | ements          |                            |              | Purge Metho    | d                 | Peristaltic Pu | mp       |             |
| Date        |                    |                 | Time                       | DT-Bottom    | DT-Product     | DT-Water          | DTP-DTW        | DTB-DTW  | Pore Volume |
|             | 12/12/2023         |                 | 12:14                      | 58.66        |                | 9.84              |                | 48.82    | 7.96        |
|             |                    | All c           | depths measu               | red from top | o of casing of | monitoring        | well.          |          |             |
|             |                    |                 |                            | Water Qu     | ality Data     |                   |                |          |             |
| Time        | Purge Vol<br>(gal) | Water Level     | Flowrate<br>L/min          | рН           | Temp (C)       | E Cond<br>(uS/cm) | DO (mg/L)      | ORP      | Turbidity   |
| BEGAN PURG  | <b>E AT:</b> 12:15 |                 | _                          |              |                |                   |                |          | _           |
| Allowed p   | ourge water to     | o clear prior t | o hooking up               | YSI.         |                |                   |                |          |             |
| 12:18       | 0.2                | 9.93            | 0.24                       |              |                |                   |                |          | 2.75        |
| 12:21       | 0.3                | 9.93            | 0.24                       |              |                |                   |                |          | 3.41        |
| 12:24       | 0.5                | 9.92            | 0.24                       | 8.06         | 12.5           | 7149              | 0.23           | -156.3   | 6.62        |
| 12:27       | 0.8                | 9.92            | 0.24                       | 8.15         | 12.4           | 7542              | 0.17           | -193.8   | 4.82        |
| 12:30       | 1.0                | 9.92            | 0.24                       | 8.17         | 12.4           | 7639              | 0.16           | -205.3   | 8.93        |
| 12:33       | 1.2                | 9.92            | 0.24                       | 8.18         | 12.6           | 7641              | 0.10           | -212.2   | 3.77        |
| 12:36       | 1.3                | 9.91            | 0.24                       | 8.19         | 12.6           | 7697              | 0.13           | -216.7   | 8.81        |
| 12:39       | 1.6                | 9.91            | 0.24                       | 8.19         | 12.6           | 7708              | 0.13           | -219.1   | 4.02        |
| 12:42       | 1.8                | 9.91            | 0.24                       | 8.20         | 12.5           | 7739              | 0.09           | -221.2   | 4.35        |
| 12:45       | 2.0                | 9.91            | 0.24                       | 8.20         | 12.4           | 7743              | 0.09           | -221.8   | 3.90        |
| 12:48       | 2.2                | 9.91            | 0.24                       | 8.20         | 12.5           | 7752              | 0.09           | -222.3   | 3.93        |
| 12:51       | 2.3                | 9.91            | 0.24                       | 8.21         | 12.5           | 7782              | 0.08           | -222.1   | 3.52        |



| Client Name | Port of Tacoma | Sampling Location | TWA-10D    |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/12/2023 |

### Water Quality Observations:

Clear; brown tint then colorless; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 12:53            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 2.3 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Nam                  | е                                                 |                 | Port of Taco               | ma        | Sampling Lo    | cation            | SB-1A                   | SB-1A     |           |  |  |
|-----------------------------|---------------------------------------------------|-----------------|----------------------------|-----------|----------------|-------------------|-------------------------|-----------|-----------|--|--|
| Project #                   |                                                   |                 | M0615.20.01                | 2         | Sampling Da    | nte               | 12/12/2023              |           |           |  |  |
| Project Nar                 | ne                                                |                 | TWAAFA Addi<br>Groundwater |           | Sampler        |                   | B. Murphy               | B. Murphy |           |  |  |
| Sampling E                  | vent                                              |                 | December 2                 | 2023      | Cample Nam     | ••                | CD 1 A 1000             |           |           |  |  |
| Sub Area                    |                                                   |                 | Hylebos Mar                | rsh       | Sample Nan     | ie                | SB-1A-1223              |           |           |  |  |
| FSDS QA                     | SDS QA C. Sifford Sample Depth 7.5                |                 |                            |           |                |                   |                         |           |           |  |  |
| Hydrology/                  | /Level Measurements Purge Method Peristaltic Pump |                 |                            |           |                |                   |                         |           |           |  |  |
|                             | Date                                              |                 | Time                       | DT-Bottom | DT-Product     | DT-Water          | DTP-DTW DTB-DTW Pore Vo |           |           |  |  |
|                             | 12/12/2023                                        |                 | 15:28                      | 11.56     |                | 2.06              |                         | 9.50      | 1.55      |  |  |
| All depths measured from to |                                                   |                 |                            |           | o of casing of | monitoring        | well.                   |           |           |  |  |
|                             |                                                   |                 |                            | Water Qu  | uality Data    |                   |                         |           |           |  |  |
| Time                        | Purge Vol<br>(gal)                                | Water Level     | Flowrate<br>L/min          | рН        | Temp (C)       | E Cond<br>(uS/cm) | DO (mg/L)               | ORP       | Turbidity |  |  |
| BEGAN PURG                  | <b>SE AT:</b> 15:29                               |                 |                            |           |                |                   |                         |           |           |  |  |
| Allowed p                   | ourge water to                                    | o clear prior t | o hooking up               | YSI.      |                |                   |                         |           |           |  |  |
| 15:32                       | 0.2                                               | 2.43            | 0.24                       |           |                |                   |                         |           | 22.4      |  |  |
| 15:35                       | 0.4                                               | 2.45            | 0.24                       | 7.70      | 11.5           | 482.6             | 1.30                    | -94.0     | 20.8      |  |  |
| 15:38                       | 0.6                                               | 2.45            | 0.24                       | 7.49      | 11.6           | 481.3             | 0.89                    | -94.0     | 17.0      |  |  |
| 15:41                       | 0.7                                               | 2.45            | 0.24                       | 7.45      | 11.6           | 472.2             | 0.70                    | -89.9     | 8.58      |  |  |
| 15:44                       | 1.0                                               | 2.46            | 0.24                       | 7.44      | 11.6           | 457.1             | 0.63                    | -90.2     | 7.02      |  |  |
| 15:47                       | 1.1                                               | 2.47            | 0.24                       | 7.42      | 11.7           | 454.5             | 0.51                    | -88.1     | 5.18      |  |  |
| 15:50                       | 1.3                                               | 2.47            | 0.24                       | 7.42      | 11.6           | 452.3             | 0.51                    | -89.3     | 4.60      |  |  |
| 15:53                       | 1.5                                               | 2.47            | 0.24                       | 7.40      | 11.7           | 452.0             | 0.47                    | -88.6     | 4.14      |  |  |
| 15:56                       | 1.7                                               | 2.47            | 0.24                       | 7.40      | 11.7           | 454.5             | 0.47                    | -87.6     | 4.08      |  |  |
|                             |                                                   |                 |                            |           |                |                   |                         |           |           |  |  |
|                             |                                                   |                 |                            |           |                | -                 |                         | _         |           |  |  |



| Client Name | Port of Tacoma | Sampling Location | SB-1A      |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/12/2023 |
|             |                |                   |            |

### Water Quality Observations:

Clear; colorless; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container # Code/Preservative |   | Filtered |
|------------------|-------------|------------------|-------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 16:00            | VOA-Glass                     |   |          |
|                  |             |                  | Amber Glass                   |   |          |
|                  |             |                  | Yellow Poly                   |   |          |
|                  |             |                  | Green Poly                    |   |          |
|                  |             |                  | Red Total Poly                | 3 | No       |
|                  |             |                  | Red Dissolved Poly            | 3 | Yes      |
|                  |             |                  | Total Bottles                 | 6 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.7 gallons.

MS/MSD collected at this location.

ORP referenced to Ag/AgCl electrode.



| Client Name                                                | 9                  |                 | Port of Taco               | ma        | Sampling Lo | cation            | SB-2A            |                         |           |  |
|------------------------------------------------------------|--------------------|-----------------|----------------------------|-----------|-------------|-------------------|------------------|-------------------------|-----------|--|
| Project #                                                  |                    |                 | M0615.20.01                | 2         | Sampling Da | ite               | 12/12/2023       |                         |           |  |
| Project Nam                                                | ne                 |                 | TWAAFA Addi<br>Groundwater |           | Sampler     |                   | C. Sifford       |                         |           |  |
| Sampling Ev                                                | vent               |                 | December 2                 | 2023      | Sample Nam  |                   | CD 2A 1222       |                         |           |  |
| Sub Area                                                   |                    |                 | Hylebos Mar                | sh        | sample wan  | ie                | 3D-2A-1223       | SB-2A-1223              |           |  |
| FSDS QA                                                    |                    |                 | C. Sifford                 |           | Sample Dep  | th                | 10.0             |                         |           |  |
| Hydrology/                                                 | Level Measur       | ements          |                            |           | Purge Metho | od                | Peristaltic Pump |                         |           |  |
|                                                            | Date               |                 | Time                       | DT-Bottom | DT-Product  | DT-Water          | DTP-DTW          | DTP-DTW DTB-DTW Pore Vo |           |  |
|                                                            | 12/12/2023         |                 | 15:37                      | 12.76     |             | 3.63              |                  | 9.13                    | 1.49      |  |
| All depths measured from top of casing of monitoring well. |                    |                 |                            |           | •           |                   |                  |                         |           |  |
|                                                            |                    |                 |                            | Water Qu  | ality Data  |                   |                  |                         |           |  |
| Time                                                       | Purge Vol<br>(gal) | Water Level     | Flowrate<br>L/min          | рН        | Temp (C)    | E Cond<br>(uS/cm) | DO (mg/L)        | ORP                     | Turbidity |  |
| BEGAN PURG                                                 | <b>E AT:</b> 15:38 |                 |                            |           |             |                   |                  |                         |           |  |
| Allowed p                                                  | urge water to      | o clear prior t | o hooking up               | YSI.      |             |                   |                  |                         |           |  |
| 15:41                                                      | 0.1                | 3.84            | 0.25                       |           |             |                   |                  |                         | 35.2      |  |
| 15:44                                                      | 0.2                | 3.84            | 0.25                       | 7.13      | 12.0        | 589               | 3.14             | 87                      | 31.0      |  |
| 15:47                                                      | 0.4                | 3.83            | 0.25                       | 7.06      | 12.2        | 592               | 1.47             | 67.3                    | 16.3      |  |
| 15:50                                                      | 0.5                | 3.87            | 0.25                       | 7.02      | 12.3        | 600               | 0.80             | 28.1                    | 11.1      |  |
| 15:53                                                      | 0.7                | 3.88            | 0.25                       | 7.00      | 12.3        | 601               | 0.61             | 10.7                    | 7.58      |  |
| 15:57                                                      | 0.9                | 3.88            | 0.25                       | 6.97      | 12.4        | 598               | 0.45             | -7.5                    | 8.60      |  |
| 16:01                                                      | 1.1                | 3.88            | 0.25                       | 6.96      | 12.3        | 596               | 0.34             | -18.9                   | 5.63      |  |
| 16:04                                                      | 1.2                | 3.89            | 0.25                       | 6.95      | 12.4        | 595               | 0.31             | -22.7                   | 7.08      |  |
| 16:07                                                      | 1.4                | 3.88            | 0.25                       | 6.95      | 12.3        | 592               | 0.27             | -29.9                   | 3.40      |  |
| 16:11                                                      | 1.6                | 3.88            | 0.25                       | 6.95      | 12.3        | 589               | 0.24             | -32.8                   | 4.56      |  |
| 16:14                                                      | 1.8                | 3.89            | 0.25                       | 6.94      | 12.3        | 587               | 0.22             | -35.3                   | 3.84      |  |
| _                                                          |                    | _               | _                          | _         |             | _                 |                  | _                       | _         |  |



| Client Name | Port of Tacoma | Sampling Location | SB-2A      |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/12/2023 |
|             |                |                   |            |

### Water Quality Observations:

Clear; colorless; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type Sampling Time |       | Container<br>Code/Preservative | #  | Filtered |
|------------------|---------------------------|-------|--------------------------------|----|----------|
| Peristaltic Pump | Groundwater               | 16:15 | VOA-Glass                      |    |          |
|                  |                           |       | Amber Glass                    |    |          |
|                  |                           |       | Yellow Poly                    | 9  | No       |
|                  |                           |       | Green Poly                     |    |          |
|                  |                           |       | Red Total Poly                 | 1  | No       |
|                  |                           |       | Red Dissolved Poly             | 1  | Yes      |
|                  |                           |       | Total Bottles                  | 11 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Waterra WS-2 PFAS Free; Serial Number WS2-00616

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.8 gallons. Field Blank1-1223 collected at this location. Rinsate Blank2-1223 collected at this location. PFAS MS/MSD collected at this location.

ORP referenced to Ag/AgCl electrode.



| Client Name                                                | e                                  |                                       | Port of Taco               | ma        | Sampling Lo              | cation            | TWA-5D           |         |             |
|------------------------------------------------------------|------------------------------------|---------------------------------------|----------------------------|-----------|--------------------------|-------------------|------------------|---------|-------------|
| Project #                                                  |                                    | M0615.20.012 Sampling Date 12/13/2023 |                            |           |                          |                   |                  |         |             |
| Project Nan                                                | ne                                 |                                       | TWAAFA Addi<br>Groundwater |           | Sampler                  |                   | B. Murphy        |         |             |
| Sampling Ev                                                | vent                               |                                       | December 2                 | 2023      | Commission Table 50 1000 |                   |                  |         |             |
| Sub Area                                                   |                                    |                                       | Hylebos Mar                | sh        | Sample Nan               | ie                | TWA-5D-1223      |         |             |
| FSDS QA                                                    | OS QA C. Sifford Sample Depth 28.0 |                                       |                            |           |                          |                   |                  |         |             |
| Hydrology/                                                 | Level Measur                       | ements                                | •                          |           | Purge Metho              | od                | Peristaltic Pump |         |             |
|                                                            | Date                               |                                       | Time                       | DT-Bottom | DT-Product               | DT-Water          | DTP-DTW          | DTB-DTW | Pore Volume |
|                                                            | 12/13/2023                         |                                       | 9:12                       | 33.09     |                          | 11.67             |                  | 21.42   | 3.49        |
| All depths measured from top of casing of monitoring well. |                                    |                                       |                            |           |                          |                   | -                |         |             |
| Water Quality Data                                         |                                    |                                       |                            |           |                          |                   |                  |         |             |
| Time                                                       | Purge Vol<br>(gal)                 | Water Level                           | Flowrate<br>L/min          | рН        | Temp (C)                 | E Cond<br>(uS/cm) | DO (mg/L)        | ORP     | Turbidity   |
| BEGAN PURG                                                 | <b>SE AT:</b> 9:13                 |                                       |                            |           |                          |                   | -                |         | -           |
| Allowed p                                                  | ourge water to                     | o clear prior t                       | o hooking up               | YSI.      |                          |                   |                  |         |             |
| 9:16                                                       | 0.2                                | 11.71                                 | 0.27                       |           |                          |                   |                  |         | 2.45        |
| 9:19                                                       | 0.5                                | 11.71                                 | 0.27                       | 7.45      | 12.7                     | 3734              | 0.45             | -91.4   | 1.32        |
| 9:22                                                       | 0.7                                | 11.71                                 | 0.27                       | 7.49      | 12.8                     | 3728              | 0.20             | -122.3  | 1.27        |
| 9:25                                                       | 0.9                                | 11.71                                 | 0.27                       | 7.50      | 12.9                     | 3731              | 0.14             | -134.4  | 0.59        |
| 9:28                                                       | 1.1                                | 11.70                                 | 0.27                       | 7.50      | 13.0                     | 3738              | 0.11             | -140.8  | 0.56        |
| 9:31                                                       | 1.3                                | 11.70                                 | 0.27                       | 7.49      | 12.9                     | 3739              | 0.10             | -144.3  | 0.65        |



| Project # M0615.20.01 | 2 Sampling Dat | te 12/13/2023 |
|-----------------------|----------------|---------------|

### Water Quality Observations:

Clear; light brownish-yellow tint; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 9:35             | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.3 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name          | <b>;</b>           |                 | Port of Taco                           | ma           | Sampling Lo    | cation            | TWA-6D           |         |             |
|----------------------|--------------------|-----------------|----------------------------------------|--------------|----------------|-------------------|------------------|---------|-------------|
| Project #            |                    |                 | M0615.20.01                            | 2            | Sampling Da    | ite               | 12/13/2023       |         |             |
| Project Nam          | ie                 |                 | TWAAFA Additional Groundwater Sampling |              | Sampler        |                   | C. Sifford       |         |             |
| Sampling Ev          | ent                |                 | December 2                             | 2023         | Comple Non     | ••                | TMA 4 D 1000     | )       |             |
| Sub Area             |                    |                 | Hylebos Mar                            | sh           | Sample Nan     | ie                | TWA-6D-1223      |         |             |
| FSDS QA              |                    |                 | C. Sifford                             |              | Sample Dep     | th                | 31.5             |         |             |
| Hydrology/l          | evel Measur        | ements          |                                        |              | Purge Metho    | od                | Peristaltic Pump |         |             |
|                      | Date               |                 | Time                                   | DT-Bottom    | DT-Product     | DT-Water          | DTP-DTW          | DTB-DTW | Pore Volume |
|                      | 12/13/2023         |                 | 9:09                                   | 33.92        |                | 11.32             |                  | 22.60   | 3.68        |
|                      |                    | All c           | lepths measu                           | red from top | o of casing of | monitoring \      | vell.            |         |             |
|                      |                    |                 |                                        | Water Qu     | ality Data     |                   |                  |         |             |
| Time                 | Purge Vol<br>(gal) | Water Level     | Flowrate<br>L/min                      | рН           | Temp (C)       | E Cond<br>(uS/cm) | DO (mg/L)        | ORP     | Turbidity   |
| BEGAN PURGE AT: 9:10 |                    |                 |                                        |              |                |                   |                  |         |             |
| Allowed p            | urge water to      | o clear prior t | o hooking up                           | YSI.         |                |                   |                  |         |             |
| 9:14                 | 0.1                | 11.35           | 0.20                                   |              |                |                   |                  |         | 3.41        |
| 9:17                 | 0.3                | 11.35           | 0.20                                   | 6.75         | 10.9           | 3853              | 3.27             | 158.3   | 2.17        |
| 9:20                 | 0.4                | 11.35           | 0.20                                   | 6.80         | 11.2           | 3886              | 1.77             | 90.7    | 2.32        |
| 9:23                 | 0.5                | 11.35           | 0.20                                   | 6.93         | 11.2           | 3893              | 1.07             | 19.1    | 2.27        |
| 9:26                 | 0.7                | 11.34           | 0.20                                   | 6.93         | 11.6           | 3893              | 0.61             | -32.7   | 1.56        |
| 9:29                 | 0.9                | 11.34           | 0.20                                   | 6.92         | 11.6           | 3893              | 0.47             | -45.5   | 1.29        |
| 9:32                 | 1.1                | 11.34           | 0.20                                   | 6.92         | 11.6           | 3889              | 0.37             | -55.7   | 1.55        |
| 9:35                 | 1.3                | 11.32           | 0.20                                   | 6.91         | 11.7           | 3891              | 0.32             | -61.6   | 1.46        |
| 9:38                 | 1.6                | 11.32           | 0.20                                   | 6.90         | 11.7           | 3889              | 0.26             | -68.1   | 1.32        |
| 9:41                 | 1.9                | 11.32           | 0.20                                   | 6.88         | 11.7           | 3893              | 0.22             | -70.9   | 1.23        |



| Project # M0615.20.012 Sampling Date 12/13/2023 | Client Name | Port of Tacoma | Sampling Location | TWA-6D     |
|-------------------------------------------------|-------------|----------------|-------------------|------------|
|                                                 | Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |

### Water Quality Observations:

Clear; strong yellowish-brown tint; no odor; no sheen.

### Sample Information:

| Sampling Method  | Sample Type      | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|------------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater 9:45 |                  | VOA-Glass                      |   |          |
|                  |                  |                  | Amber Glass                    |   |          |
|                  |                  |                  | Yellow Poly                    |   |          |
|                  |                  |                  | Green Poly                     |   |          |
|                  |                  |                  | Red Total Poly                 | 1 | No       |
|                  |                  |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |                  |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 223663

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.9 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name                                                | е                      |             | Port of Taco               | ma            | Sampling Location SB-3A |                   |            |         |             |
|------------------------------------------------------------|------------------------|-------------|----------------------------|---------------|-------------------------|-------------------|------------|---------|-------------|
| Project #                                                  |                        |             | M0615.20.01                | 2             | Sampling Da             | ite               | 12/13/2023 |         |             |
| Project Nan                                                | ne                     |             | TWAAFA Addi<br>Groundwater |               | Sampler B. Murphy       |                   |            |         |             |
| Sampling Ev                                                | vent                   |             | December 2                 | 2023          | Sample Nan              | 20                | SB-3A-1223 |         |             |
| Sub Area                                                   | Sub Area Hylebos Marsh |             | sample wan                 | ie            | 3D-3A-1223              |                   |            |         |             |
| FSDS QA                                                    | FSDS QA C. Sifford     |             |                            |               | Sample Dep              | th                | 8.0        |         |             |
| Hydrology/Level Measurements Purge Method Peristaltic Pump |                        |             | ımp                        |               |                         |                   |            |         |             |
|                                                            | Date                   |             | Time                       | DT-Bottom     | DT-Product              | DT-Water          | DTP-DTW    | DTB-DTW | Pore Volume |
|                                                            | 12/13/2023             |             | 10:00                      | 12.77         |                         | 2.87              |            | 9.90    | 1.61        |
|                                                            |                        | All c       | lepths measu               | ured from top | o of casing of          | monitoring \      | well.      |         |             |
|                                                            |                        |             |                            | Water Qu      | ality Data              |                   |            |         |             |
| Time                                                       | Purge Vol<br>(gal)     | Water Level | Flowrate<br>L/min          | рН            | Temp (C)                | E Cond<br>(uS/cm) | DO (mg/L)  | ORP     | Turbidity   |
| BEGAN PURG                                                 | <b>E AT:</b> 10:01     |             |                            |               |                         |                   |            |         |             |
| 10:04                                                      | 0.4                    | 2.99        | 0.30                       | 7.50          | 12.7                    | 799               | 0.24       | -40.0   | 15.9        |
| 10:07                                                      | 0.7                    | 2.99        | 0.30                       | 7.50          | 12.7                    | 746               | 0.14       | -83.90  | 13.8        |
| 10:10                                                      | 0.9                    | 2.99        | 0.30                       | 7.47          | 12.7                    | 726               | 0.11       | -107.4  | 8.87        |
| 10:13                                                      | 1.1                    | 2.99        | 0.30                       | 7.48          | 12.7                    | 699               | 0.10       | -122.9  | 6.11        |
| 10:16                                                      | 1.3                    | 2.99        | 0.30                       | 7.49          | 12.8                    | 680               | 0.09       | -130.7  | 5.41        |
| 10:19                                                      | 1.5                    | 2.99        | 0.30                       | 7.49          | 12.6                    | 668               | 0.08       | -135.3  | 4.71        |
| 10:22                                                      | 1.7                    | 2.99        | 0.30                       | 7.50          | 12.6                    | 660               | 0.07       | -138.7  | 4.32        |
| 10:25                                                      | 1.9                    | 2.99        | 0.30                       | 7.50          | 12.6                    | 653.7             | 0.07       | -141.3  | 4.04        |



| Client Name | Port of Tacoma | Sampling Location | SB-3A      |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |
|             |                |                   |            |

### Water Quality Observations:

| Clear. | colorless: | no  | odor. | nο  | sheen    |
|--------|------------|-----|-------|-----|----------|
| CiCai, | COIONCSS   | 110 | odoi, | 110 | 3110011. |

#### Sample Information:

| Sampling Method  | Sample Type       | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater 10:30 |                  | VOA-Glass                      |   |          |
|                  |                   |                  | Amber Glass                    |   |          |
|                  |                   |                  | Yellow Poly                    |   |          |
|                  |                   |                  | Green Poly                     |   |          |
|                  |                   |                  | Red Total Poly                 | 1 | No       |
|                  |                   |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |                   |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.9 gallons.

ORP referenced to Ag/AgCl electrode.



|                                      |                                                            |             |                   |                           |                          |                   |                  |         | 1           |
|--------------------------------------|------------------------------------------------------------|-------------|-------------------|---------------------------|--------------------------|-------------------|------------------|---------|-------------|
| Client Nam                           | е                                                          |             | Port of Taco      | ma                        | Sampling Location        |                   | CTMW-25D         |         |             |
| Project #                            |                                                            |             | M0615.20.01       | 2                         | Sampling Date 12/13/2023 |                   | 12/13/2023       | }       |             |
| Project Nan                          | TWAAFA Additional Groundwater Sampling  Sampler  B. Murphy |             |                   |                           |                          |                   |                  |         |             |
| Sampling E                           | vent                                                       |             | December 2        | 2023                      | Comple Non               | OT 111            |                  | 1222    |             |
| Sub Area                             | Sub Area Potter Parcel                                     |             | затріе мат        | Sample Name CTMW-25D-1223 |                          |                   |                  |         |             |
| FSDS QA C. Sifford Sample Depth 18.0 |                                                            |             |                   |                           |                          |                   |                  |         |             |
| Hydrology/                           | Level Measur                                               | ements      |                   |                           | Purge Metho              | od                | Peristaltic Pump |         |             |
|                                      | Date                                                       |             | Time              | DT-Bottom                 | DT-Product               | DT-Water          | DTP-DTW          | DTB-DTW | Pore Volume |
|                                      | 12/13/2023                                                 |             |                   | 22.78                     |                          | 9.59              |                  | 13.19   | 2.15        |
|                                      |                                                            | All c       | depths measu      | red from top              | of casing of             | monitoring \      | vell.            | •       |             |
|                                      |                                                            |             |                   | Water Qu                  | ality Data               |                   |                  |         |             |
| Time                                 | Purge Vol<br>(gal)                                         | Water Level | Flowrate<br>L/min | рН                        | Temp (C)                 | E Cond<br>(uS/cm) | DO (mg/L)        | ORP     | Turbidity   |
| BEGAN PURG                           | <b>SE AT:</b> 11:49                                        |             |                   |                           |                          |                   |                  |         |             |
| 11:52                                | 0.2                                                        | 9.61        | 0.30              | 7.14                      | 13.5                     | 3210              | 0.40             | -114.7  | 4.04        |
| 11:55                                | 0.5                                                        | 9.61        | 0.30              | 7.14                      | 13.6                     | 3030              | 0.2              | -122.70 | 1.92        |
| 11:58                                | 0.7                                                        | 9.61        | 0.30              | 7.14                      | 13.6 2943                |                   | 0.12             | -126.9  | 2.31        |
| 12:01                                | 0.9                                                        | 9.61        | 0.30              | 7.13                      | 13.7 2856                |                   | 0.09             | -129.8  | 1.50        |
| 12:04                                | 1.2                                                        | 9.61        | 0.30              | 7.13                      | 13.6                     | 2809              | 0.08             | -131.6  | 2.96        |
|                                      | •                                                          |             |                   |                           |                          |                   |                  |         |             |



| Client Name | Port of Tacoma | Sampling Location | CTMW-25D   |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |

### Water Quality Observations:

Clear; light brownish-yellow tint; no odor; no sheen.

### Sample Information:

| Sampling Method  | Sample Type S     |  | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------------|--|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater 12:05 |  | VOA-Glass                      |   |          |
|                  |                   |  | Amber Glass                    |   |          |
|                  |                   |  | Yellow Poly                    |   |          |
|                  |                   |  | Green Poly                     |   |          |
|                  |                   |  | Red Total Poly                 | 1 | No       |
|                  |                   |  | Red Dissolved Poly             | 1 | Yes      |
|                  |                   |  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.2 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name                  | е                  |                 | Port of Taco               | ma            | Sampling Lo              | cation            | CTMW-20       |         |             |
|------------------------------|--------------------|-----------------|----------------------------|---------------|--------------------------|-------------------|---------------|---------|-------------|
| Project #                    |                    |                 | M0615.20.01                | 2             | Sampling Date 12/13/2023 |                   |               |         |             |
| Project Nan                  | ne                 |                 | TWAAFA Addi<br>Groundwater |               | Sampler                  |                   | C. Sifford    |         |             |
| Sampling Ev                  | vent               |                 | December 2                 | 2023          | Sample Nan               | 20                | CTN/IN/ 20 12 | 22      |             |
| Sub Area Potter Parcel       |                    | ė               | sample wan                 | ie            | CTMW-20-1223             |                   |               |         |             |
| FSDS QA C. Sifford           |                    |                 |                            | Sample Dep    | th                       | 7.0               |               |         |             |
| Hydrology/Level Measurements |                    |                 |                            | Purge Metho   | od                       | Peristaltic Pu    | ımp           |         |             |
|                              | Date               |                 | Time                       | DT-Bottom     | DT-Product               | DT-Water          | DTP-DTW       | DTB-DTW | Pore Volume |
| 12/13/2023                   |                    |                 | 11:38                      | 10.64         |                          | 1.28              |               | 9.36    | 1.53        |
|                              |                    | All c           | lepths measu               | ured from top | of casing of             | monitoring        | well.         |         |             |
|                              |                    |                 |                            | Water Qu      | ality Data               |                   |               |         |             |
| Time                         | Purge Vol<br>(gal) | Water Level     | Flowrate<br>L/min          | рН            | Temp (C)                 | E Cond<br>(uS/cm) | DO (mg/L)     | ORP     | Turbidity   |
| BEGAN PURG                   | <b>E AT:</b> 11:41 |                 | _                          |               |                          |                   |               |         |             |
| Allowed p                    | ourge water to     | o clear prior t | o hooking up               | YSI.          |                          |                   |               |         |             |
| 11:43                        | 0.2                | 1.37            | 0.35                       |               |                          |                   |               |         | 14.1        |
| 11:47                        | 0.4                | 1.39            | 0.35                       | 6.87          | 11.9                     | 1952              | 2.11          | -88.4   | 8.99        |
| 11:51                        | 0.7                | 1.39            | 0.35                       | 6.85          | 11.9                     | 1863              | 1.03          | -105.5  | 5.66        |
| 11:54                        | 1.1                | 1.39            | 0.35                       | 6.86          | 11.7                     | 1689              | 0.61          | -113.1  | 5.02        |
| 11:57                        | 1.5                | 1.39            | 0.35                       | 6.86          | 11.8                     | 1622              | 0.47          | -115.9  | 4.99        |
| 12:00                        | 1.8                | 1.39            | 0.35                       | 6.86          | 11.7                     | 1604              | 0.41          | -117.5  | 3.86        |
| 12:03                        | 2.1                | 1.39            | 0.35                       | 6.86          | 11.7                     | 1584              | 0.34          | -118.9  | 3.42        |



| Client Name | Port of Tacoma | Sampling Location | CTMW-20    |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |

### Water Quality Observations:

Clear; colorless; moderate petroleum hydrocarbon-like odor; no sheen; slightly foamy.

### Sample Information:

| Sampling Method  | Sample Type Sa    |  | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------------|--|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater 12:10 |  | VOA-Glass                      |   |          |
|                  |                   |  | Amber Glass                    |   |          |
|                  |                   |  | Yellow Poly                    |   |          |
|                  |                   |  | Green Poly                     |   |          |
|                  |                   |  | Red Total Poly                 | 1 | No       |
|                  |                   |  | Red Dissolved Poly             | 1 | Yes      |
|                  |                   |  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 223663

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 2.1 gallons.

ORP referenced to Ag/AgCl electrode.



| Client Name                  |                    |                                         | Port of Taco      | <br>ma        | Sampling Lo    | cation                   | CTMW-15    |         |             |
|------------------------------|--------------------|-----------------------------------------|-------------------|---------------|----------------|--------------------------|------------|---------|-------------|
| Project #                    |                    |                                         | M0615.20.01       |               | Sampling Da    |                          | 12/13/2023 |         |             |
| •                            |                    |                                         | TWAAFA Addi       |               |                |                          |            |         |             |
| Project Nam                  | e                  |                                         | Groundwater       |               | Sampler        |                          | B. Murphy  |         |             |
| Sampling Ev                  | ent                |                                         | December 2        | .023          | Sample Nan     | Sample Name CTMW-15-1223 |            |         |             |
| Sub Area                     |                    | Potter Parcel Sample Name Children 1923 |                   |               | 20             |                          |            |         |             |
| FSDS QA                      |                    |                                         | C. Sifford        |               | Sample Dep     | th                       | 7.0        |         |             |
| Hydrology/Level Measurements |                    |                                         |                   | Purge Metho   | od             | Peristaltic Pu           | mp         |         |             |
|                              | Date               |                                         | Time              | DT-Bottom     | DT-Product     | DT-Water                 | DTP-DTW    | DTB-DTW | Pore Volume |
| 12/13/2023                   |                    |                                         | 12:30             | 10.46         |                | 4.84                     |            | 5.62    | 0.92        |
|                              |                    | All c                                   | depths measu      | ired from top | o of casing of | monitoring \             | well.      |         |             |
| Water Quality Data           |                    |                                         |                   |               |                |                          |            |         |             |
| Time                         | Purge Vol<br>(gal) | Water Level                             | Flowrate<br>L/min | рН            | Temp (C)       | E Cond<br>(uS/cm)        | DO (mg/L)  | ORP     | Turbidity   |
| BEGAN PURGE                  | <b>AT</b> : 12:31  |                                         |                   |               |                |                          |            |         |             |
| 12:34                        | 0.3                | 6.25                                    | 0.30              | 7.00          | 12.4           | 754                      | 0.21       | 14.1    | 38.6        |
| 12:37                        | 0.5                | 6.81                                    | 0.30              | 6.97          | 12.1           | 725                      | 0.2        | 5.10    | 30.2        |
| 12:40                        | 0.5                | 7.09                                    | 0.10              | 7.09          | 11.9           | 707                      | 0.18       | -2.8    | 37.7        |
| 12:43                        | 0.6                | 7.35                                    | 0.10              | 6.97          | 11.7           | 698                      | 0.18       | -9.8    | 38.7        |
| 12:46                        | 0.7                | 7.53                                    | 0.10              | 6.97          | 11.8           | 695                      | 0.19       | -16.8   | 29.8        |
| 12:49                        | 0.7                | 7.72                                    | 0.10              | 6.97          | 11.8           | 691                      | 0.18       | -26.7   |             |
| 12:55                        | 0.8                | 8.04                                    | 0.10              | 6.97          | 11.9           | 691                      | 0.15       | -42.4   | 29.8        |
| 12:58                        | 1.0                | 8.12                                    | 0.10              | 6.96          | 11.9           | 690                      | 0.15       | -48.9   | 18.0        |
| 13:01                        | 1.0                | 8.12                                    | 0.10              | 6.96          | 12.0           | 690                      | 0.15       | -62.3   | 11.2        |
| 13:04                        | 1.1                | 8.12                                    | 0.10              | 6.94          | 12.0           | 687                      | 0.19       | -79.9   | 4.80        |
| 13:07                        | 1.1                | 8.12                                    | 0.10              | 6.94          | 12.0           | 678                      | 0.17       | -89.4   | 2.68        |
| 13:10                        | 1.2                | 8.10                                    | 0.10              | 6.94          | 12.0           | 660.4                    | 0.15       | -97.3   | 1.76        |



| Client Name | Port of Tacoma | Sampling Location | CTMW-15    |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |

### Water Quality Observations:

Cloudy, then clear; brownish-yellow tint, then colorless; no odor; no sheen.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 13:20            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Solinst Model 101; Serial Number 531501

Water Quality Meter: YSI Professional Plus; Serial Number 19K102418

Turbidity Meter: HACH 2100P; Serial Number 040500035330

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 1.2 gallons.

Flowrate reduced due to significant drawdown. Continued purging until parameters generally stabilized. Confirmed with A. Hackett in the field.

ORP referenced to Ag/AgCl electrode.



| Client Name Port of Tacoma |                                       |               |                   |              | Sampling Lo    | cation            | MW-1           |         |             |  |
|----------------------------|---------------------------------------|---------------|-------------------|--------------|----------------|-------------------|----------------|---------|-------------|--|
|                            |                                       |               |                   |              |                |                   |                |         |             |  |
| Project #                  |                                       |               | M0615.20.01       |              | Sampling Date  |                   | 12/13/2023     |         |             |  |
| Project Nam                | Project Name TWAAFA Addit Groundwater |               |                   | Sampler      |                | C. Sifford        |                |         |             |  |
| Sampling Event             |                                       |               | December 2        | 2023         | Sample Nam     | ne                | MW-1-1223      |         |             |  |
| Sub Area                   |                                       |               | Potter Parce      | <u> </u>     | sample Hall    |                   | 10100-1-1223   |         |             |  |
| FSDS QA                    |                                       |               | C. Sifford        |              | Sample Dep     | th                | 6.0            |         |             |  |
| Hydrology/L                | evel Measur                           | ements        | •                 |              | Purge Metho    | od                | Peristaltic Pu | ımp     |             |  |
|                            | Date                                  |               | Time              | DT-Bottom    | DT-Product     | DT-Water          | DTP-DTW        | DTB-DTW | Pore Volume |  |
|                            | 12/13/2023                            |               | 12:32             | 8.30         | 0.93           | 0.94              | 0.01           | 7.36    | 1.20        |  |
|                            |                                       | All c         | lepths measu      | red from top | o of casing of | monitoring        | well.          |         |             |  |
|                            |                                       |               |                   | Water Qu     | ality Data     |                   |                |         |             |  |
| Time                       | Purge Vol<br>(gal)                    | Water Level   | Flowrate<br>L/min | рН           | Temp (C)       | E Cond<br>(uS/cm) | DO (mg/L)      | ORP     | Turbidity   |  |
| BEGAN PURGE                | <b>AT:</b> 12:33                      |               |                   |              |                |                   |                |         |             |  |
| Allowed pu                 | urge water to                         | clear prior t | o hooking up      | YSI.         |                |                   |                |         |             |  |
| 12:36                      | 0.1                                   | 2.03          | 0.38              |              |                |                   |                |         | 59.9        |  |
| 12:50                      | 1.0                                   | 1.85          | 0.25              | 6.64         | 10.2           | 210.5             | 3.76           | -79.4   | 37.8        |  |
| 12:53                      | 1.2                                   |               | 0.25              | 6.42         | 10.1           | 208.9             | 1.84           | -67.3   | 35.1        |  |
| 12:59                      | 1.7                                   |               | 0.25              | 6.37         | 10.2           | 223.5             | 0.78           | -63.0   | 35.6        |  |
| 13:02                      | 1.9                                   |               | 0.25              | 6.34         | 10.0           | 216.3             | 0.56           | -61.5   | 30.7        |  |
| 13:05                      | 2.1                                   |               | 0.25              | 6.34         | 10.2           | 227.9             | 0.42           | -60.8   | 28.7        |  |
| 13:08                      | 2.3                                   |               | 0.25              | 6.36         | 10.2           | 233.2             | 0.36           | -61.6   | 26.6        |  |
| 13:11                      | 2.5                                   |               | 0.25              | 6.34         | 10.2           | 226.4             | 0.30           | -60.6   | 26.7        |  |



| Client Name | Port of Tacoma | Sampling Location | MW-1       |
|-------------|----------------|-------------------|------------|
| Project #   | M0615.20.012   | Sampling Date     | 12/13/2023 |

### Water Quality Observations:

Clear; gray tint; strong petroleum hydrocarbon-like odor; heavy rainbow sheen; tar-like blebs present.

#### Sample Information:

| Sampling Method  | Sample Type | Sampling<br>Time | Container<br>Code/Preservative | # | Filtered |
|------------------|-------------|------------------|--------------------------------|---|----------|
| Peristaltic Pump | Groundwater | 13:15            | VOA-Glass                      |   |          |
|                  |             |                  | Amber Glass                    |   |          |
|                  |             |                  | Yellow Poly                    |   |          |
|                  |             |                  | Green Poly                     |   |          |
|                  |             |                  | Red Total Poly                 | 1 | No       |
|                  |             |                  | Red Dissolved Poly             | 1 | Yes      |
|                  |             |                  | Total Bottles                  | 2 |          |

### **General Sampling Comments:**

Equipment Used:

Water Level Meter: Geotech Interface Probe; Serial Number 4514

Water Quality Meter: YSI ProDSS; Serial Number 22C 102235

Turbidity Meter: HACH 2100Q; Serial Number 2301D000512

Filter: SingleSample 0.45 µm Groundwater Filter Capsule; Batch AMJ 10-27-20

Total purge volume prior to sampling: 2.5 gallons.

LNAPL coating the interface probe prevented water level readings after 12:53.

E Cond readings oscillated between 210 and 240 uS/cm throughout purge.

ORP referenced to Ag/AgCl electrode.



### **Appendix B**

Analytical Laboratory Reports and Data Validation Review Reports

### QA/QC SOLUTIONS, LLC



James J. Mc Ateer, Jr., BS, MRSC Managing Member 7532 Champion Hill Rd. SE Salem, Oregon 97306

Telephone: 503.763.6948 Facsimile: 503.566.2114 Cellular: 503.881.1501 email: jjmcateer@msn.com

February 18, 2023

Tasya Gray, LG DOF Dalton, Olmsted & Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, Washington 98134

Subject: Taylor Way and Alexander Ave Fill Area (TWAAFA) Site - 4thQ 2023 Groundwater

Sampling Data Validation Summary

Client Project No., Task Order No.: Not Specified, Task No. 9

QA/QC Solutions, LLC Project No.: 010524.1

### Dear Tasya:

This letter documents the results of the data validation summary of selected elements completed on groundwater samples associated with Taylor Way and Alexander Ave Fill Area (TWAAFA) Site – Fourth Quarter 2023 Sampling event located in Tacoma, Washington.

The available data were validated to verify applicable laboratory quality assurance and quality control (QA/QC) measurements were reported, documented, and of sufficient quality to support its intended purpose(s). A summary of the overall assessment of data quality, the data set, a summary of the analytical methods used to complete the chemical analyses, a summary of the data validation procedures used, and a summary of the reasons why data were qualified (including other items noted during data validation) is presented below.

### **Overall Assessment of Data Quality**

Overall, the data reported are of good quality and the results for the applicable QA/QC measurements that were used by the laboratories during the analysis of the samples were generally acceptable. Some sample results required qualification during data validation because method-specific QA/QC criteria were not met and/or based on best professional judgement. Data users should note that selected sample results maybe qualified for more than one reason. During data validation the following actions were taken:

- A total of 18 results reported as detected required qualification as estimated and were assigned a *J* data validation qualifier.
- No results reported as detected required restatement as undetected (*U*).
- $\triangleright$  No results required rejection (R).

Analytical data that did not meet method- and/or laboratory-established control limits for applicable quality control measurements or based on best professional judgment were qualified as estimated (J) by the laboratory or during data validation. These qualified data are usable and represent data of good quality and

Tasya Gray, LG February 18, 2023 Page 2

reasonable confidence and have an acceptable degree of uncertainty (i.e., may be less precise or less accurate than unqualified data).

### **Data Set**

The data set consisted of 38 groundwater samples, 2 field duplicates, and 2 field blanks that were collected in December 2023. A summary of the samples collected and the analyses completed are summarized in Table 1.

Analyses were completed by Friedman & Bruya, Inc. (FBI) located in Seattle, Washington and Fremont Analytical, Inc. (FAI) located in Seattle, Washington. The data and electronic data deliverable (EDDs) were reported in a total of 11 deliverables.

### **Analytical Methods**

The analytical methods used to complete the elemental analyses are listed as follows (see also Table 1).

- ➤ Total metals (arsenic, copper, iron, lead, manganese, nickel, and zinc) by digestion and analysis by inductively coupled plasma-mass spectrometry (ICP-MS) EPA Method 6020B (U.S. EPA 2023).
- Dissolved metals (arsenic, copper, iron, lead, manganese, nickel, and zinc) by field filtration through 0.45 μm pore diameter membrane filter and analysis by ICP-MS EPA Method 6020B (U.S. EPA 2023).
- > Total mercury by oxidation, purge and trap, and Cold Vapor Atomic Fluorescence Spectrometry by Method 1631, Revision E (U.S. EPA 2002a).
- ➤ Total aluminum by digestion and analysis by ICP-MS using EPA Method 200.8 (U.S. EPA 1994).
- > Dissolved aluminum by field filtration through 0.45 μm pore diameter membrane filter and analysis by ICP-MS EPA Method 200.8 (U.S. EPA 1994).
- Ferrous iron by reducing ferrous iron into solion (phenanthroline method) and colorimetric (spectrophotometric) detection using Standard Method (SM) 3500-Fe B (APHA 2012).

### **Data Validation Procedures**

Data validation procedures included evaluating a summary of the sample results and applicable quality control results reported by the laboratory; this level of validation is also referred to as an abbreviated data review (equivalent to "Stage 2A/2B" review per U.S. EPA 2009. The analytical data were validated generally following the applicable guidance and requirements:

- ➤ Method-specific and laboratory-established quality control requirements, as applicable.
- ➤ Guidance on Environmental Data Verification and Validation (U.S. EPA 2002b)
- ➤ Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. (U.S. EPA 2009).
- National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OLEM 9240.1-66, EPA 542-R-20-006, November 2020. U.S. Environmental

Tasya Gray, LG February 18, 2023 Page 3

Protection Agency (EPA), Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, DC. (U.S. EPA 2020).

The laboratory data deliverables that were validated and available for review included the following:

- > Case narratives discussing analytical problems (if any) and procedures.
- > Chain-of-custody documentation to verify completeness of the data set.
- > Sample preparation logs or laboratory summary result forms to verify analytical holding times were met.
- Results for applicable method blanks and field blanks to determine whether an analyte that may have been reported as detected in a sample was the result of possible contamination introduced at the laboratory or during sampling, respectively.
- Results for applicable QC measurements (e.g., instrument calibration data, laboratory control sample (LCS) (i.e., blank spike), duplicate LCS, matrix spike [MS], and matrix spike duplicate [MSD] recoveries to assess analytical accuracy.
- Results for applicable laboratory duplicate sample, duplicate LCS, and MSD analyses to assess analytical precision as are applicable.
- > Results for the field duplicate samples to provide additional information.
- Laboratory summaries of analytical results reported for the analyses competed.

Verification and validation of 100-percent of all applicable laboratory calculations, transcriptions, review of instrument printouts, and review of bench sheets were not completed during the data validation review. There may be analytical problems that could only be identified by reviewing every instrument printout and associated analytical quality control results. Verification of all possible factors that could result in the degradation of data quality was not completed nor should be inferred at this time. The laboratory case narratives did not indicate any significant problems with data that were not reviewed during data validation. The adequacy of the sampling procedures was not completed during the data validation.

Performance based control limits established by the laboratory, applicable control limits specified in the analytical methods, and best professional judgement were used to evaluate data quality and to determine if specific data required qualification. Data qualifiers were assigned during data validation following guidance specified by U.S. EPA (2002b, 2020a, and 2020b) to the EDD when applicable QC measurement criteria were not met and qualification of the data was warranted.

### **Reasons for Data Qualification**

A total of 18 ferrous iron results reported as detected were qualified as estimated (*J*) because analyses were completed greater than 24 hrs. from time of sample collection.

Data users should note the referenced SM 3500-Fe B (APHA 2012) does not state a definitive holding time limitation; however, an industry standard of "analyze immediately", with a default of <24 hrs. from time of collection are used by laboratories.

The ferrous iron data qualified during data validation are as follows:

| Sample ID                 | Analyta                     | Concentration  | Data<br>Validation | DL<br>(mg/L)     | RL<br>(mg/L)   |
|---------------------------|-----------------------------|----------------|--------------------|------------------|----------------|
| Sample ID<br>CTMW-24-1224 | Analyte Iron, Ferrous, Fe+2 | (mg/L)<br>1.19 | Qualifier<br>J     | (mg/L)<br>0.0602 | (mg/L)<br>0.15 |
| CTMW-24D-1224             | Iron, Ferrous, Fe+2         | 0.877          | J                  | 0.0602           | 0.15           |
| C11V1VV-24D-1224          | iioii, reiious, re+z        | 0.677          | J                  | 0.0002           | 0.13           |
| PZ-9-1223                 | Iron, Ferrous, Fe+2         | 35.1           | J                  | 6.02             | 15             |
| TWA-4D-1223               | Iron, Ferrous, Fe+2         | 0.831          | J                  | 0.0602           | 0.15           |
| TWA-7D-1223               | Iron, Ferrous, Fe+2         | 0.381          | J                  | 0.0602           | 0.15           |
| CTMW-12-1223              | Iron, Ferrous, Fe+2         | 1.41           | J                  | 0.0602           | 0.15           |
| CTMW-17-1223              | Iron, Ferrous, Fe+2         | 0.372          | J                  | 0.0602           | 0.15           |
| CTMW-17D-1223             | Iron, Ferrous, Fe+2         | 0.886          | J                  | 0.0602           | 0.15           |
| CCW-1A-1223               | Iron, Ferrous, Fe+2         | 0.182          | J                  | 0.0602           | 0.15           |
| CCW-8B-1223               | Iron, Ferrous, Fe+2         | 13.8           | J                  | 1.51             | 3.75           |
| CCW-5B-1223               | Iron, Ferrous, Fe+2         | 10.3           | J                  | 1.51             | 3.75           |
| CCW-5C-1223               | Iron, Ferrous, Fe+2         | 8.02           | J                  | 1.51             | 3.75           |
| CCW-6B-1223               | Iron, Ferrous, Fe+2         | 19.7           | J                  | 1.51             | 3.75           |
| CCW-6C-1223               | Iron, Ferrous, Fe+2         | 10.5           | J                  | 1.51             | 3.75           |
| CCW-7B-1223               | Iron, Ferrous, Fe+2         | 20.3           | J                  | 1.51             | 3.75           |
| CCW-7C-1223               | Iron, Ferrous, Fe+2         | 1.16           | J                  | 0.0602           | 0.15           |
| CCW-9-6B-1223             | Iron, Ferrous, Fe+2         | 20.2           | J                  | 1.51             | 3.75           |
| CCW-9-7B-1223             | Iron, Ferrous, Fe+2         | 16             | J                  | 1.51             | 3.75           |

#### Notes

DL - detection limit

RL - reporting limit

### **General Comments:**

- > Data users should refer to the laboratory data packages for complete information pertinent to the analyses completed.
- > Some sample results were reported from a dilution analysis that was required. In these instances, all other sample results were reported from the undiluted analysis.
- In some instances, continuing calibration and/or ongoing precision and accuracy (OPR) QC limits were not met. Qualification of associated sample results were not required because the exceedances were due to an increase of instrument sensitivity and the applicable target element was not detected in the associated sample.
- ➤ Chromium was detected in both field blanks and manganese was detected in the field blank #1. Associated sample results did not require qualification for this reason.

Tasya Gray, LG February 18, 2023 Page 5

➤ Batch QC data (e.g., MS/MSDs) were associated with several data packages. Results from batch QC samples were not used to determine whether sample data required qualification.

This concludes the data validation review. Should you have any questions regarding the information presented herein, please contact me by telephone at 503.763.6948 or by e-mail at jjmcateer@msn.com.

Cordially,

James J. Mc Ateer, Jr., BS, MRSC

Managing Member

cc: Trevor Louviere, DOF Dalton, Olmsted & Fuglevand, Inc.

Attachments

Tasya Gray, LG February 18, 2023 Page 6

### References

APHA 2012. Standard Methods for the Examination of Water and Wastewater. 22<sup>nd</sup> Edition. Prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Environment Federation, American Public Health Association, and Washington, DC.

U.S. EPA. 1994. Methods for the determination of metals in environmental samples. EPA-600/R-94-111. May 1994. Determination of trace elements in waters and wastes by inductively coupled plasma - mass spectrometry (EPA Method 200.8, Revision 5.4) Environmental Monitoring Systems Laboratory. Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, Ohio.

U.S. EPA 2002a. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. EPA-821-R-02-019. August 2002. U.S. Environmental Protection Agency, Office of Water, Washington, DC

U.S. EPA 2002b. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA/240/R-02/004. November 2002. U.S. Environmental Protection Agency, Office of Environmental Information, Washington DC.

U.S. EPA 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. January 13, 2009. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA 2020. National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OLEM 9240.1-66 EPA 542-R-20-006. November 2020. Office of Superfund Remediation and Technology Innovation (OSRTI), U.S. Environmental Protection Agency.

U.S. EPA 2024. SW-846 on-line. Test methods for evaluating solid wastes, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-compendium (last updated on June 21, 2023). U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC.

Table 1. Summary of Samples Collected and Analyses Completed

| Sample Number                           | Laboratory ID | Laboratory | Date<br>Collected | Time<br>Collected | Total and Dissolved<br>Metals by SW-846<br>Method 6020B | Total and Dissolved<br>Aluminum by EPA<br>Method 200.8 | Ferrous Iron by<br>SM 3500-Fe B | Total<br>Mercury by<br>EPA 1631E |
|-----------------------------------------|---------------|------------|-------------------|-------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|
| CTMW-24-1223                            | 312179-01     | FBI        | 12/11/23          | 12:45             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312283-001   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-24D-1223                           | 312179-02     | FBI        | 12/11/23          | 12:45             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312283-002   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| PZ-7-1223                               | 312179-03     | FBI        | 12/11/23          | 14:00             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312283-003   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| PZ-8-1223                               | 312179-04     | FBI        | 12/11/23          | 15:00             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312283-004   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| TWA-4D-1223                             | 312209-01     | FBI        | 12/12/23          | 10:50             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312296-001   | FAI        |                   |                   | ,                                                       | ✓                                                      | ✓                               |                                  |
| PZ-9-1223                               | 312209-02     | FBI        | 12/12/23          | 11:45             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
|                                         | 2312296-002   | FAI        |                   |                   |                                                         |                                                        |                                 |                                  |
| TWA-7D-1223                             | 312209-03     | FBI        | 12/12/23          | 12:45             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312296-003   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-9-1223                             | 312222-01     | FBI        | 12/12/23          | 15:25             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312314-001   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-8-1223                             | 312222-02     | FBI        | 12/12/23          | 15:25             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312314-002   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| TWA-8D-1223                             | 312245-01     | FBI        | 12/13/23          | 09:25             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312328-001   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-5-1223                             | 312245-02     | FBI        | 12/13/23          | 10:40             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312328-002   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-7-1223                             | 312245-03     | FBI        | 12/13/23          | 12:00             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312328-003   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-18-1223                            | 312245-04     | FBI        | 12/13/23          | 12:35             | ✓                                                       |                                                        |                                 |                                  |
|                                         | 2312328-004   | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CTMW-14-1223                            | 312249-01     | FBI        | 12/13/23          | 14:15             | ✓                                                       |                                                        |                                 |                                  |
| - ····· · · · · · · · · · · · · · · · · | 2312338-001   | FAI        | _, •              |                   |                                                         | ✓                                                      | <b>√</b>                        |                                  |

| Sample Number       | Laboratory ID            | Laboratory | Date<br>Collected | Time<br>Collected | Total and Dissolved<br>Metals by SW-846<br>Method 6020B | Total and Dissolved<br>Aluminum by EPA<br>Method 200.8 | Ferrous Iron by<br>SM 3500-Fe B | Total<br>Mercury by<br>EPA 1631E |
|---------------------|--------------------------|------------|-------------------|-------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|
| CCW-3C-1223         | 312260-01                | FBI        | 12/14/23          | 09:30             | ✓                                                       |                                                        |                                 |                                  |
|                     | 2312350-001              | FAI        |                   |                   |                                                         | ✓                                                      | ✓                               |                                  |
| CCW-3A-1223         | 312260-02<br>2312350-002 | FBI<br>FAI | 12/14/23          | 10:05             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| CCW-3B-1223         | 312260-03<br>2312350-003 | FBI<br>FAI | 12/14/23          | 10:40             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| CCW-2C-1223         | 312260-04<br>2312350-004 | FBI<br>FAI | 12/14/23          | 11:40             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| CCW-2A-1223         | 312273-01<br>2312365-001 | FBI<br>FAI | 12/14/23          | 12:45             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| CCMW-2B-1223        | 2312365-002<br>312273-02 | FBI<br>FAI | 12/14/23          | 13:55             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
| TWA-9D-1223         | 312273-03<br>2312365-003 | FBI<br>FAI | 12/14/23          | 15:20             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
| CTMW-23R2-1223      | 312301-01<br>2312392-001 | FBI<br>FAI | 12/15/23          | 10:10             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| Field Blank #1-1223 | 312301-02<br>2312392-002 | FBI<br>FAI | 12/15/23          | 10:15             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        | ✓                                |
| CTMW-11R2-1223      | 312301-03<br>2312392-003 | FBI<br>FAI | 12/15/23          | 11:00             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
| CTMW-12-1223        | 312311-01<br>2312396-001 | FBI<br>FAI | 12/15/23          | 12:05             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
| CTMW-17-1223        | 312311-02<br>2312396-002 | FBI<br>FAI | 12/15/23          | 13:45             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        | ✓                                |
| CTMW-17D-1223       | 312311-03<br>2312396-003 | FBI<br>FAI | 12/15/23          | 14:25             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| CCW-8B-1223         | 312337-01<br>2312424-001 | FBI<br>FAI | 12/18/23          | 10:10             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |

Table 1, continued

| Sample Number       | Laboratory ID            | Laboratory | Date<br>Collected | Time<br>Collected | Total and Dissolved<br>Metals by SW-846<br>Method 6020B | Total and Dissolved<br>Aluminum by EPA<br>Method 200.8 | Ferrous Iron by<br>SM 3500-Fe B | Total<br>Mercury by<br>EPA 1631E |
|---------------------|--------------------------|------------|-------------------|-------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|
| CCW-1A-1223         | 312337-02<br>2312424-002 | FBI<br>FAI | 12/18/23          | 10:55             | √                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| CCW-1B-1223         | 312337-03<br>2312424-003 | FBI<br>FAI | 12/18/23          | 11:40             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| CCW-1C-1223         | 312337-04<br>2312424-004 | FBI<br>FAI | 12/18/23          | 12:10             | ✓                                                       | ✓                                                      | <b>√</b>                        |                                  |
| MW-4-1223           | 312337-05<br>2312424-005 | FBI<br>FAI | 12/18/23          | 13:05             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| Field Blank #2-1223 | 312337-06<br>2312424-006 | FBI<br>FAI | 12/18/23          | 13:10             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        | ✓                                |
| CCW-4C-1223         | 312337-07<br>2312424-007 | FBI<br>FAI | 12/18/23          | 13:45             | ✓                                                       | <b>√</b>                                               | <b>√</b>                        |                                  |
| CCW-6B-1223         | 312367-01<br>2312462-001 | FBI<br>FAI | 12/19/23          | 10:25             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| CCW-9-6B-1223       | 312367-02<br>2312462-002 | FBI<br>FAI | 12/19/23          | 10:30             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| CCW-6C-1223         | 312367-03<br>2312462-003 | FBI<br>FAI | 12/19/23          | 11:05             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| CCW-7C-1223         | 312367-04<br>2312462-004 | FBI<br>FAI | 12/19/23          | 11:45             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| CCW-7B-1223         | 312367-05<br>2312462-005 | FBI<br>FAI | 12/19/23          | 12:20             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| CCW-9-7B-1223       | 312367-06<br>2312462-006 | FBI<br>FAI | 12/19/23          | 12:25             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| CCW-5B-1223         | 312367-07<br>2312462-007 | FBI<br>FAI | 12/19/23          | 13:15             | ✓                                                       | ✓                                                      | ✓                               |                                  |
| CCW-5C-1223         | 312367-08<br>2312462-008 | FBI<br>FAI | 12/19/23          | 13:55             | ✓                                                       | <b>√</b>                                               | ✓                               |                                  |
| Notes               |                          | Tota       | l Number of       | Samples:          | 42                                                      | 42                                                     | 42                              | 3                                |

FAI - Fremont Analytical, Inc.

FAI - Friedman & Bruya, Inc.

# QA/QC SOLUTIONS, LLC



James J. Mc Ateer, Jr., BS, MRSC Managing Member 7532 Champion Hill Rd. SE Salem, Oregon 97306

Telephone: 503.763.6948
Facsimile: 503.566.2114
Cellular: 503.881.1501
email: jjmcateer@msn.com

February 18, 2023

Tasya Gray, LG DOF Dalton, Olmsted & Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, Washington 98134

Subject: Taylor Way and Alexander Ave Fill Area (TWAAFA) Site - 1Q2024 PFAS Groundwater

Sampling Data Validation Summary

Client Project No., Task Order No.: Not Specified, Task No. 10

QA/QC Solutions, LLC Project No.: 020324.1.1

## Dear Tasya:

This letter documents the results of the data validation summary for the analysis of Per- and Polyfluoroalkyl Substances (PFAS) completed on groundwater samples and various blank samples associated with Taylor Way and Alexander Ave Fill Area (TWAAFA) Site – First Quarter 2024 PFAS Groundwater Sampling event located in Tacoma, Washington.

The available data were validated to verify applicable laboratory quality assurance and quality control (QA/QC) measurements were reported, documented, and of sufficient quality to support its intended purpose(s). A summary of the overall assessment of data quality, the data set, a summary of the analytical methods used to complete the chemical analyses, a summary of the data validation procedures used, and a summary of the reasons why data were qualified (including other items noted during data validation) is presented below.

# **Overall Assessment of Data Quality**

Overall, the data reported are of good quality and the results for the applicable QA/QC measurements that were used by the laboratories during the analysis of the samples were generally acceptable. One sample result required qualification during data validation because a method-specific QA/QC criterion was not met. During data validation the following actions were taken:

- ➤ One result reported as detected for Perfluoropentanesulfonic acid (PFPeS) in Sample CCW-9-3A-0124 was qualified as estimated and assigned a *J* data validation qualifier.
- > No results reported as detected required restatement as undetected.
- $\triangleright$  No results required rejection (R).

Analytical data that did not meet method- and/or laboratory-established control limits for applicable quality control measurements or based on best professional judgment were qualified as estimated (J) by the laboratory or during data validation. These qualified data are usable and represent data of good quality and

Tasya Gray, LG February 18, 2023 Page 2

reasonable confidence and have an acceptable degree of uncertainty (i.e., may be less precise or less accurate than unqualified data).

### **Data Set**

The data set consisted of six groundwater samples, one field duplicate groundwater sample, one field blank sample, one rinsate blank sample, and one trip source water blank sample that were collected in January 11, 2024. A summary of the samples collected and the analyses completed are as follows:

| Sample Number                  | Laboratory<br>Sample Number | Date<br>Collected | Time<br>Collected |
|--------------------------------|-----------------------------|-------------------|-------------------|
| CCW-3A-0124                    | 320-108677-1                | 1/11//24          | 1035              |
| CCW-9-3A-0124                  | 320-108677-2                | 1/11//24          | 1046              |
| CCW-3B-0124                    | 320-108677-3                | 1/11//24          | 1200              |
| Field Blank #1-0124            | 320-108677-4                | 1/11//24          | 1115              |
| CCW-2C -0124                   | 320-108677-5                | 1/11//24          | 1300              |
| CCW-2B-0124                    | 320-108677-6                | 1/11//24          | 1355              |
| CCW-2A-0124                    | 320-108677-7                | 1/11//24          | 1440              |
| CTMW-17-0124                   | 320-108677-8                | 1/11//24          | 1600              |
| Rinsate Blank #1-0124          | 320-108677-9                | 1/11//24          | 1630              |
| Trip Source Water Blank#1-0124 | 320-108677-10               | 1/11//24          | 0900              |

Analyses were completed by Eurofins Sacramento located in Sacramento California. The data and electronic data deliverable (EDDs) were reported in of one deliverable.

## **Analytical Methods**

PFASs were analyzed using 4<sup>th</sup> Draft Method 1633\* Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS (U.S. EPA 2023). Results for 40 target compounds were reported.

### **Data Validation Procedures**

Data validation procedures included evaluating a summary of the sample results and applicable quality control results reported by the laboratory. For this data validation effort, the data were subjected to a Stage 2B level-of-effort (U.S. EPA 2009). The analytical data were validated generally following the applicable guidance and requirements:

- ➤ Method-specific and laboratory-established quality control requirements, as applicable.
- > Guidance on Environmental Data Verification and Validation (U.S. EPA 2002)
- ➤ Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. (U.S. EPA 2009).

<sup>\*</sup>Finalized for the Aqueous Matrices: Wastewater, Surface Water, and Groundwater

Data users should note there currently is no EPA National Functional Guidelines for the validation of non-drinking water matrices.

The laboratory data deliverables that were validated and available for review included the following:

- > Case narratives discussing analytical problems (if any) and procedures.
- > Chain-of-custody documentation to verify completeness of the data set.
- > Sample preparation logs or laboratory summary result forms to verify analytical holding times were met. Holding times were acceptable.
- Results for applicable initial (ICAL) and continuing calibration (CCV) standards results (see pages 1,287 to 2,388 in the Tier 4 data package).
  - o The maximum ICAL QC limit for the relative standard deviation/relative standard error (RSE) is ≤20%
    - ICAL results are acceptable.
  - The maximum CCV QC limit for the relative standard deviation (RSD) is  $\pm 30\%$ 
    - CCV results are acceptable.
- Results for applicable method blanks, the field blanks, the rinsate blank and the trip source water blank to determine whether an analyte that may have been reported as detected in a sample was the result of possible contamination introduced at the laboratory or during sampling.
  - o No PFASs were detected in any blank
- Results for applicable a labeled isotope dilution analytes (IDA) were reviewed to assess the correction of the bias of the sample results.
  - IDA recoveries are acceptable. See summary of IDA recoveries for each sample reported with accompanying applicable QC limits in the data package
- > Results for applicable internal standards to assess sensitivity and response is stable during each analysis.
  - o A QC limit for internal standards area count is 50–200 percent
    - Internal standards results are acceptable
- ➤ Results for all ion ratios (see pages 748 to 793 in the Tier 4 data package) to assess if matrix interferences may have resulted in a potential bias of the results quantified
  - o A QC limit for the transition ion ratios is 50-150%
    - Ion ratios are acceptable with one exception; see Reasons for Data Qualification section below for details
- Recoveries for laboratory control sample (LCS) (i.e., blank spike) and low-level LCS to assess analytical accuracy in absence of matrix effects.
  - o See summary of LCS and LLCS recoveries in the data per with accompanying applicable QC limits in the data package

- LCS and LLCS recoveries are acceptable
- > RPDs for the duplicate sample analysis to assess analytical precision.
  - o A QC limit for the RPD for sample duplicate results is  $\pm 30\%$ 
    - RPDS for duplicate sample analysis are acceptable
- Results for the field duplicate samples to provide additional information.
- Laboratory summaries of analytical results reported for the analyses competed.

Verification and validation of 100-percent of all applicable laboratory calculations, transcriptions, review of instrument printouts, and review of bench sheets were not completed during the data validation review. There may be analytical problems that could only be identified by reviewing every instrument printout and associated analytical quality control results. Verification of all possible factors that could result in the degradation of data quality was not completed nor should be inferred at this time. The laboratory case narratives did not indicate any significant problems with data that were not reviewed during data validation. The adequacy of the sampling procedures was not completed during the data validation.

Performance based control limits established by the laboratory, applicable control limits specified in the analytical methods, and best professional judgement were used to evaluate data quality and to determine if specific data required qualification. Data qualifiers were assigned during data validation following guidance specified by U.S. EPA (2002) to the EDD when applicable QC measurement criteria were not met and qualification of the data was warranted.

### **Reasons for Data Qualification**

The result reported as detected for Perfluoropentanesulfonic acid (PFPeS) for Sample CCW-9-3A-0124 required qualification as estimated (J) data validation qualifier because the mass ion ratio was outside the QC limit of 50-150%. An ion ratio of 16.073 was reported for PFPeS (see page 748 of 2,903 in the Tier 4 data package). The target ratio is 1.838 and the ion limits are 0.93 - 2.80.

Eurofins Sacramento noted the following in the case narrative regarding this exceedance:

"Method 1633: The "I" qualifier means the transition mass ratio for the indicated analyte for Perfluoropentanesulfonic acid (PFPeS) was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte: CCW-9-3A-0124 (320-108687-2). The sample was reanalyzed with concurring result, therefore, the best set of data was reported."

### **General Comments:**

- > Data users should refer to the laboratory data packages for complete information pertinent to the analyses completed.
- As noted in the case narrative:
  - o "The following continuing calibration blank (CCB) was flagged for Isotope Dilution Analyte (IDA) recovery above the method recommended limit: CCB 320-735099/5. The purpose of the CCB is to test for instrument contamination. As the CCB was non-detect for all native analytes, the bracketing continuing calibration verification (CCV) was in

Tasya Gray, LG February 18, 2023 Page 5

control, and the IDA of the associated samples recovered within limits, there is no adverse impact on data quality; therefore, the data have been reported." None of the associated sample results required qualification for this reason\

➤ An RPD of 38 was reported for PFPeS-RA (a reanalysis) for the duplicate sample analysis completed on CCW-3B-0124. Since concentration of 4.2 ng/L and 2.84 ng/L were reported, the control limit of ±30% is not applicable because these concentrations are not >5x the reporting limit of 2.0 ng/L.

This concludes the data validation review. Should you have any questions regarding the information presented herein, please contact me by telephone at 503.763.6948 or by e-mail at jjmcateer@msn.com.

Cordially,

James J. Mc Ateer, Jr., BS, MRSC

Managing Member

cc: Trevor Louviere, DOF Dalton, Olmsted & Fuglevand, Inc.

Attachments

Tasya Gray, LG February 18, 2023 Page 6

### References

U.S. EPA 2002 Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA/240/R-02/004. November 2002. U.S. Environmental Protection Agency, Office of Environmental Information, Washington DC.

U.S. EPA 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. January 13, 2009. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA 2023. 4<sup>th</sup> Draft Method 1633\* Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. EPA 821-D-23-001. U.S. Environmental Protection Agency. Office of Water (4303T), Office of Science and Technology Engineering and Analysis Division. 1200 Pennsylvania Avenue, NW Washington, DC 20460.

U.S. EPA 2024. SW-846 on-line. Test methods for evaluating solid wastes, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-compendium (last updated on June 21, 2023). U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC.

# Data Quality Assurance/Quality Control Review

## Project No. M0615.20.012 | February 8, 2024 | Port of Tacoma

Maul Foster & Alongi, Inc. (MFA), conducted an independent review of the quality of analytical results for groundwater and associated quality control samples collected on December 12 and 13, 2023, at the Taylor Way and Alexander Avenue Fill Area in Tacoma, Washington.

Friedman & Bruya, Inc. (F&B), Fremont Analytical, Inc. (Fremont), and Eurofins Environment Testing Northern California, LLC, located in West Sacramento, California (Eurofins-WS), performed the analyses. MFA reviewed F&B report number 312247 and Eurofins-WS report number 320-108065-1. F&B subcontracted total and dissolved aluminum analysis to Fremont and the results are included in report 312247. The analyses performed and the samples analyzed are listed in the following tables. Not all analyses were performed on all samples.

| Analysis                            | Reference            |
|-------------------------------------|----------------------|
| Per- and polyfluoroalkyl substances | EPA 1633             |
| Total and dissolved metals          | EPA 6020B, EPA 200.8 |

#### Note

EPA = U.S. Environmental Protection Agency.

| Samples Analyzed  |                    |                     |  |  |  |
|-------------------|--------------------|---------------------|--|--|--|
| Report            | 312247             | Report 320-108065-1 |  |  |  |
| TWA-3-1223        | Filter Blank1-1223 | TWA-3-1223          |  |  |  |
| TWA-9-3-1223      | TWA-5D-1223        | TWA-9-3-1223        |  |  |  |
| TWA-10D-1223      | TWA-6D-1223        | Rinsate Blank1-1223 |  |  |  |
| TWA-1-1223        | SB-3A-1223         | Field Blank1-1223   |  |  |  |
| TWA-2-1223        | CTMW-25D-1223      | SB-2A-1223          |  |  |  |
| Field Blank1-1223 | CTMW-20-1223       | Rinsate Blank2-1223 |  |  |  |
| SB-1A-1223        | MW-1-1223          | Trip Blank1-1223    |  |  |  |
| SB-2A-1223        | CTMW-15-1223       |                     |  |  |  |

# **Data Qualification**

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (EPA 1986, Eurofins-WS 2023, F&B 2022, Fremont 2023).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

### Final data qualifiers:

- J+ = result is estimated, but the result may be biased high.
- K = result is an estimated maximum potential concentration.
- U = result is non-detect at the method reporting limit (MRL).

• UJ = result is non-detect with an estimated MRL.

### **Total and Dissolved Compounds**

For report 312247, total and dissolved EPA Methods 6020B and 200.8 metals results were compared. Where dissolved metals results were greater than their associated total results, qualification was not required when the relative percent difference (RPD) was less than 20 percent.

All detected total metals results were greater than their associated dissolved metals results or met the RPD acceptance criteria.

### **Estimated Maximum Potential Concentration Results**

According to the case narrative accompanying report 320-108065-1, the EPA Method 1633 transition mass ratio for PFOS was outside the established ratio limits for samples TWA-3-1223 and TWA-9-3-1223. The laboratory noted that the samples were reanalyzed with similar results. The laboratory qualified the associated sample results as estimated maximum potential concentrations, and the reviewer accepted the laboratory qualifications, as shown in the following table.

| Report       | Sample       | Analyte | Original Result<br>(ng/L) | Qualified Result<br>(ng/L) |
|--------------|--------------|---------|---------------------------|----------------------------|
| 320-108065-1 | TWA-3-1223   | PFOS    | 16 K                      | 16 K <sup>(a)</sup>        |
| 320-106063-1 | TWA-9-3-1223 | PF05    | 18 K                      | 18 K <sup>(a)</sup>        |

#### Notes

K = result is an estimated maximum potential concentration.

## **Sample Conditions**

### Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

### **Holding Times**

Extractions and analyses were performed within the recommended holding times.

### **Preservation and Sample Storage**

According to the case narrative accompanying report 320-108065-1, the EPA Method 1633 portion of sample SB-2A-1223 had a thin layer of sediment present in the bottom of the bottle prior to extraction. Qualification by the reviewer due to the presence of sediment was not required.

The samples were preserved and stored appropriately.

### Sample Filtration

Field samples for dissolved EPA Method 6020B and 200.8 analysis were field-filtered with a 0.45-micron filter during sample collection.

ng/L = nanograms per liter.

<sup>(</sup>a)Qualification from the laboratory was accepted by the reviewer.

## **Reporting Limits**

The laboratories evaluated results to MRLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised MRLs.

The reviewer confirmed that when samples were diluted for analysis or when a higher sample volume was used for the extraction F&B provided the preparation or dilution factor after the laboratory sample identification number.

### **Blanks**

Field quality sample results may be qualified as a result of laboratory instrument or batch information, but original or unvalidated laboratory results associated with field quality control samples are used to assess impact on field samples.

When the sample result was greater than the MRL and within five (for organics) or ten (for inorganics) times the associated blank concentration, the reviewer qualified the sample result with J+. Non-detect sample results and sample results greater than five (for organics) or ten (for inorganics) times the blank concentration did not require qualification.

### **Calibration Blanks**

Initial calibration blanks (ICBs) and continuing calibration blanks (CCBs) are used to assess analytical background contamination. ICB and CCB results were not required for validation but were reviewed when provided by Fremont for EPA Method 200.8 in report 312247.

All ICB and CCB results reviewed were non-detect to MRLs.

### **Method Blanks**

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blank results were non-detect to MRLs.

### **Equipment Rinsate Blanks**

Equipment rinsate blanks are used to evaluate field equipment decontamination.

Two equipment rinsate blanks were submitted with sample delivery group (SDG) 320-108065-1 for EPA Method 1633 analysis. Groundwater samples are associated with equipment rinsate blanks based on sample locations, as shown in the following table.

| Report       | Equipment Rinsate Blank | Associated Sample(s) |
|--------------|-------------------------|----------------------|
| 320-108065-1 | Rinsate Blank1-1223     | TWA-3-1223           |
|              | RINSate Blank1-1223     | TWA-9-3-1223         |
|              | Rinsate Blank2-1223     | SB-2A-1223           |

All equipment rinsate blank results were non-detect to MRLs.

### Field Blanks

Field blanks are used to assess if contamination from field conditions was introduced during sampling, preservation, and shipment to the laboratory.

A field blank sample (Field Blank1-1223) was submitted with SDG 312247 for EPA Methods 6020B and 200.8 total metals analysis and with SDG 320-108065-1 for EPA Method 1633 analysis. The field blank is associated with all groundwater sample results provided in reports 312247 and 320-108065-1. The field blank had several detections above MRLs, as shown in the table below.

| Report | Analysis  | Analyte         | Field Blank Result<br>(ug/L) |
|--------|-----------|-----------------|------------------------------|
|        |           | Total chromium  | 1.72                         |
| 312247 | EPA 6020B | Total copper    | 3.07                         |
| 312247 |           | Total manganese | 1.44                         |
|        | EPA 200.8 | Total aluminum  | 19.4                         |

#### **Notes**

EPA = U.S. Environmental Protection Agency.

ug/L = micrograms per liter.

Similar dissolved chromium, dissolved manganese, and dissolved aluminum detections are present in the filter blank, as described and evaluated in the section below. However, the field blank had a total copper detection while the filter blank did not have a dissolved copper detection. In lieu of similar field and filter blank copper detections, the reviewer evaluated dissolved copper sample results based on the field blank total copper detection and qualified accordingly. Qualifications by the reviewer based on the field blank are shown in the following table:

| Report | Sample        | Analyte            | Field Blank<br>Result (ug/L) | Original<br>Result (ug/L) | Qualified<br>Result (ug/L) |
|--------|---------------|--------------------|------------------------------|---------------------------|----------------------------|
|        | TWA-3-1223    |                    |                              | 4.21                      | 4.21 J+                    |
|        | TWA-9-3-1223  | Discolus disconner | 2.07(a)                      | 3.76                      | 3.76 J+                    |
|        | TWA-1-1223    | Dissolved copper   | 3.07 <sup>(a)</sup>          | 3.57                      | 3.57 J+                    |
|        | TWA-2-1223    |                    |                              | 10.2                      | 10.2 J+                    |
|        | TWA-3-1223    |                    |                              | 4.50                      | 4.50 J+                    |
|        | TWA-9-3-1223  |                    |                              | 4.66                      | 4.66 J+                    |
|        | TWA-10D-1223  |                    | 3.07                         | 4.11                      | 4.11 J+                    |
|        | TWA-1-1223    | Total copper       |                              | 3.88                      | 3.88 J+                    |
|        | TWA-2-1223    |                    |                              | 10.4                      | 10.4 J+                    |
| 312247 | SB-1A-1223    |                    |                              | 2.57                      | 2.57 J+                    |
| 312241 | TWA-6D-1223   |                    |                              | 2.97                      | 2.97 J+                    |
|        | CTMW-25D-1223 |                    |                              | 2.74                      | 2.74 J+                    |
|        | MW-1-1223     |                    |                              | 6.59                      | 6.59 J+                    |
|        | TWA-1-1223    | Total manganese    | 1.44                         | 11.2                      | 11.2 J+                    |
|        | CTMW-25D-1223 | Total chromium     | 1.72                         | 15.9                      | 15.9 J+                    |
|        | TWA-10D-1223  |                    |                              | 46.4                      | 46.4 J+                    |
|        | TWA-1-1223    |                    |                              | 14.8                      | 14.8 J+                    |
|        | TWA-2-1223    | Total aluminum     | 19.4                         | 34.1                      | 34.1 J+                    |
|        | SB-2A-1223    |                    |                              | 49.9                      | 49.9 J+                    |
|        | TWA-5D-1223   |                    |                              | 19.7                      | 19.7 J+                    |

| Report | Sample        | Analyte | Field Blank<br>Result (ug/L) | Original<br>Result (ug/L) | Qualified<br>Result (ug/L) |
|--------|---------------|---------|------------------------------|---------------------------|----------------------------|
|        | TWA-6D-1223   |         |                              | 75.6                      | 75.6 J+                    |
|        | CTMW-25D-1223 |         |                              | 88.0                      | 88.0 J+                    |
|        | MW-1-1223     |         |                              | 71.1                      | 71.1 J+                    |

#### Notes

J+ = result is estimated, but the result may be biased high.

ug/L = micrograms per liter.

(a)Field blank result for total copper.

All remaining field blank results were non-detect to MRLs.

### **Filter Blanks**

Filter blanks are used to evaluate whether contamination was introduced during field filtering procedures.

A filter blank sample (Filter Blank1-1223) was submitted with SDG 312247 for EPA Method 6020B and 200.8 dissolved metals analysis. The filter blank is associated with all dissolved groundwater sample metals results provided in report 312247, since all dissolved groundwater samples were collected and filtered using consistent sampling protocols. The filter blank had several detections above MRLs, as shown in the table below.

| Report | Analysis  | Analyte             | Filter Blank Result<br>(ug/L) |
|--------|-----------|---------------------|-------------------------------|
|        | EPA 6020B | Dissolved chromium  | 1.71                          |
| 312247 | EPA 0020B | Dissolved manganese | 1.87                          |
|        | EPA 200.8 | Dissolved aluminum  | 17.5                          |

### **Notes**

EPA = U.S. Environmental Protection Agency.

ug/L = micrograms per liter.

Similar total chromium, total manganese, and total aluminum detections are present in the field blank, but dissolved metals sample results are evaluated based on the filter blank detections, except for dissolved copper, which is qualified in the Field Blank section above. Qualifications by the reviewer based on the filter blank are shown in the following table:

| Report                     | Sample        | Analyte             | Filter Blank<br>Result (ug/L) | Original<br>Result (ug/L) | Qualified<br>Result (ug/L) |
|----------------------------|---------------|---------------------|-------------------------------|---------------------------|----------------------------|
|                            | TWA-1-1223    | Dissolved manganese | 1.87                          | 3.57                      | 3.57 J+                    |
|                            | CTMW-25D-1223 | Dissolved chromium  | 1.71                          | 12.6                      | 12.6 J+                    |
|                            | TWA-10D-1223  | Dissolved aluminum  | 17.5                          | 14.3                      | 14.3 J+                    |
| 312247                     | SB-2A-1223    |                     |                               | 11.1                      | 11.1 J+                    |
| TWA-5D-1223<br>TWA-6D-1223 | TWA-5D-1223   |                     |                               | 11.4                      | 11.4 J+                    |
|                            | TWA-6D-1223   |                     | 17.5                          | 49.9                      | 49.9 J+                    |
|                            | CTMW-25D-1223 |                     |                               | 59.2                      | 59.2 J+                    |
|                            | MW-1-1223     |                     |                               | 16.6                      | 16.6 J+                    |

#### **Notes**

J+ = result is estimated, but the result may be biased high. ug/L = micrograms per liter.

All remaining filter blank results were non-detect to MRLs.

### **Trip Blanks**

Trip blanks are used to evaluate whether per- and polyfluoroalkyl substance contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

A trip blank (Trip Blank1-1223) was submitted with SDG 320-108065-1 for EPA Method 1633 analysis. The trip blank is associated with all groundwater and associated quality control samples submitted with SDG report 320-108065-1, since all samples were shipped together in a single cooler.

All trip blank results were non-detect to MRLs.

## Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS were prepared and analyzed at the required frequency. No LCSDs were reported; thus, laboratory precision was evaluated using matrix spike (MS) and matrix spike duplicate (MSD) results.

In report 320-108065-1, Eurofins-WS reported an "LLCS" for EPA Method 1633. The reviewer confirmed that this is a low-level LCS.

All LCS results were within acceptance limits for percent recovery.

## **Laboratory Duplicate Results**

Laboratory duplicate results are used to evaluate laboratory precision.

Laboratory duplicate results were only reported by Fremont in report 312247 for dissolved aluminum by EPA Method 200.0. This laboratory duplicate sample was prepared and analyzed at the required frequency. Laboratory precision was evaluated using MS and MSD results for the remaining batches.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

The laboratory duplicate result met the acceptance criterion.

# Matrix Spike and Matrix Spike Duplicate Results

MS and MSD results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. All MS and MSD samples were prepared and analyzed at the required frequency.

When MS and MSD were prepared from samples with high concentrations of target analytes, associated MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because spike concentrations could not be accurately quantified. High concentrations of target analytes are defined as four times the spike amount for all analyses.

According to report 320-108065-1, EPA Method 1633 batch 733325 MSD prepared with sample SB-2A-1223 had a PFHxA result above the upper percent recovery acceptance limit of 145 percent, at 150 percent. The associated PFHxA sample result was non-detect and thus did not require

qualification by the reviewer. The MSD also had a PFDoS result below the lower percent recovery acceptance limit of 50 percent, at 43 percent. The reviewer qualified the associated sample result, as shown in the following table.

| Report       | Sample     | Analyte | Original Result<br>(ng/L) | Qualified Result<br>(ng/L) |
|--------------|------------|---------|---------------------------|----------------------------|
| 320-108065-1 | SB-2A-1223 | PFDoS   | 2.0 U                     | 2.0 UJ                     |

#### Notes

ng/L = nanograms per liter.

U = result is non-detect at the method reporting limit.

UJ = result is non-detect with an estimated method reporting limit.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

## **Isotope Dilution Results**

According to report 320-108065-1, EPA Method 1633 samples were spiked with isotopically labeled carbon-13 or deuterated analog standards to quantify the relative response of analytes in each sample.

The reviewer confirmed that Eurofins-WS performed calibration by isotope dilution for the 24 available target analytes and quantitated the remaining target analytes using a closely related labeled analog.

All isotope dilution recoveries were within acceptance limits.

## **Calibration Verification Results**

Initial calibration verification (ICV) and continuing calibration verification (CCV) results are used to verify the accuracy of the instrument calibration and demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not required for validation but were reviewed when provided by Fremont for EPA Method 200.8 in report 312247.

All CCV results provided were within percent recovery acceptance limits.

## **Field Duplicate Results**

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

| Reports      | Parent Sample | Field Duplicate Sample |
|--------------|---------------|------------------------|
| 312247 and   | TWA-3-1223    | TWA-9-3-1223           |
| 320-108065-1 | TWA-3-1223    | TWA-9-3-1223           |

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect.

All field duplicate results met the RPD acceptance criteria.

# **Data Package**

The data packages were reviewed for transcription errors, omissions, and anomalies.

The reviewer confirmed with the laboratories that F&B and Fremont are not accredited for aluminum analysis by EPA Method 6020B, which was requested on the COC form accompanying report 312247. Fremont is accredited for aluminum analysis by EPA Method 200.8. F&B subcontracted the total and dissolved aluminum analysis to Fremont for analysis by EPA Method 200.8 to meet accreditation requirements.

At MFA's request, report 312247 was revised on February 8, 2024, to correct the sample name for the field duplicate sample. The name was updated from TWA-9-1223 to TWA-9-3-1223.

No other issues were found.

### References

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review.* EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. *National Functional Guidelines for Organic Superfund Methods Data Review.* EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- Eurofins-WS. 2023. *Quality Assurance Manual*. Rev. 6.3. Eurofins Environment Testing Northern California, LLC: West Sacramento, CA. November 14.
- F&B. 2022. Quality Assurance Manual. Rev. 18. Friedman & Bruya, Inc.: Seattle, WA. December 9.
- Fremont. 2023. Quality Assurance. Rev. 3.7. Fremont Analytical, Inc.: Seattle, WA. April 18.

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 22, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 11, 2023 from the TWAAFA-001, F&BI 312179 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1222R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 11, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312179 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <b>Dalton Olmsted Fuglevand</b> |
|----------------------|---------------------------------|
| 312179 -01           | CTMW-24-1223                    |
| 312179 -02           | CTMW-24D-1223                   |
| 312179 -03           | PZ-7-1223                       |
| 312179 -04           | PZ-8-1223                       |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

The 6020B total and dissolved arsenic calibration standard exceeded the acceptance criteria for sample CTMW-24-1223 and for the iron calibration standard in the total method blank. The metals were not detected, therefore this did not represent an out of control condition.

Lead and zinc in the 6020B dissolved matrix spike and matrix spike duplicate did not meet the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

All other quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-24-1223 Client: Dalton Olmsted Fuglevand

Date Received: 12/11/23Project: TWAAFA-001 Lab ID: Date Extracted: 12/12/23 312179-01Date Analyzed: 12/16/23 Data File: 312179-01.196 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

Arsenic <1 k Copper <1 Iron 999 Manganese 94.2

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-24D-1223 Client: Dalton Olmsted Fuglevand

Date Received: 12/11/23Project: TWAAFA-001 Lab ID: 312179-02 Date Extracted: 12/12/23 Date Analyzed: 12/16/23 Data File: 312179-02.197 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <1 Manganese 211

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-24D-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/12/23
 Lab ID:
 312179-02 x5

 Date Analyzed:
 12/15/23
 Data File:
 312179-02 x5.171

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Arsenic <5 Iron 7,370

# ENVIRONMENTAL CHEMISTS

# Analysis For Dissolved Metals By EPA Method $6020\mathrm{B}$

| Client ID:      | PZ-7-1223   | Client:     | Dalton Olmsted Fuglevand |
|-----------------|-------------|-------------|--------------------------|
| Date Received:  | 12/11/23    | Project:    | TWAAFA-001               |
| Date Extracted: | 12/12/23    | Lab ID:     | 312179-03                |
| Date Analyzed:  | 12/16/23    | Data File:  | 312179-03.198            |
| Matrix:         | Water       | Instrument: | ICPMS2                   |
| Units:          | 11g/L (nnh) | Operator    | SP                       |

| Cilius.   | ug/Li (ppb)           | Operato |
|-----------|-----------------------|---------|
| Analyte:  | Concentra<br>ug/L (pp |         |
| Iron      | 207                   |         |
| Lead      | <1                    |         |
| Manganese | 10.8                  |         |
| Nickel    | 3.43                  |         |
| Zinc      | 26.6                  |         |

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-7-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/12/23
 Lab ID:
 312179-03 x5

 Date Analyzed:
 12/15/23
 Data File:
 312179-03 x5.172

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-8-1223 Client: Dalton Olmsted Fuglevand

Date Received: 12/11/23Project: TWAAFA-001 Lab ID: Date Extracted: 12/12/23 312179-04 Date Analyzed: 12/16/23 Data File: 312179-04.199 Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration ug/L (ppb)

Lead <1

Analyte:

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-8-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/12/23
 Lab ID:
 312179-04 x5

 Date Analyzed:
 12/15/23
 Data File:
 312179-04 x5.173

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 <5</td>

 Manganese
 1,280

 Nickel
 11.7

 Zinc
 <25</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-8-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/12/23
 Lab ID:
 312179-04 x200

 Date Analyzed:
 12/20/23
 Data File:
 312179-04 x200.047

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 44,800

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID: | Method Blank | Client: | Dalton Olmsted Fuglevand |
|------------|--------------|---------|--------------------------|
|            |              | _       |                          |

Date Received: Not Applicable Project: TWAAFA-001
Date Extracted: 12/12/23 Lab ID: I3-977 mb2
Date Analyzed: 12/15/23 Data File: I3-977 mb2.167

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

|          | Concentration |
|----------|---------------|
| Analyte: | ug/L (ppb)    |

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Date Received: 12/11/23Project: TWAAFA-001Lab ID: Date Extracted: 12/13/23 312179-01Date Analyzed: 12/16/23 Data File: 312179-01.207 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

Arsenic <1 k Copper <1 Iron 919 Manganese 79.8

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-24D-1223 Client: Dalton Olmsted Fuglevand

Date Received: 12/11/23Project: TWAAFA-001 Lab ID: 312179-02 Date Extracted: 12/13/23 Date Analyzed: 12/16/23 Data File: 312179-02.208 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <1 Manganese 211

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-24D-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/13/23
 Lab ID:
 312179-02 x5

 Date Analyzed:
 12/15/23
 Data File:
 312179-02 x5.182

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5 Iron 7,370

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| PZ-7-1223 | Client:                          | Dalton Olmsted Fuglevand                                     |
|-----------|----------------------------------|--------------------------------------------------------------|
| 12/11/23  | Project:                         | TWAAFA-001                                                   |
| 12/13/23  | Lab ID:                          | 312179-03                                                    |
| 12/16/23  | Data File:                       | 312179-03.209                                                |
| Water     | Instrument:                      | ICPMS2                                                       |
|           | 12/11/23<br>12/13/23<br>12/16/23 | 12/11/23 Project:<br>12/13/23 Lab ID:<br>12/16/23 Data File: |

Matrix: Water Instrument: ICI Units: ug/L (ppb) Operator: SP

|          | Concentration |
|----------|---------------|
| Analyte: | ug/L (ppb)    |
| Iron     | 1.660         |

Lead 11.1 Manganese 37.2 Nickel 4.08 Zinc 35.3

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-7-1223 Client: Dalton Olmsted Fuglevand

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 5.02

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-8-1223 Client: Dalton Olmsted Fuglevand

Date Received: 12/11/23Project: TWAAFA-001Lab ID: 312179-04 Date Extracted: 12/13/23 Date Analyzed: 12/16/23 Data File: 312179-04.210 Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <1

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID: | PZ-8-1223 | Client: | Dalton Olmsted Fuglevand |
|------------|-----------|---------|--------------------------|
|            |           |         |                          |

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/13/23
 Lab ID:
 312179-04 x5

 Date Analyzed:
 12/16/23
 Data File:
 312179-04 x5.184

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 5.19

 Manganese
 1,250

 Nickel
 10.1

 Zine
 75.7

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-8-1223 Client: Dalton Olmsted Fuglevand

 Date Received:
 12/11/23
 Project:
 TWAAFA-001

 Date Extracted:
 12/13/23
 Lab ID:
 312179-04 x100

 Date Analyzed:
 12/18/23
 Data File:
 312179-04 x100.084

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 47,400

## **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID: | Method Blank | Client: | Dalton Olmsted Fuglevand |
|------------|--------------|---------|--------------------------|
|------------|--------------|---------|--------------------------|

Date Received:Not ApplicableProject:TWAAFA-001Date Extracted:12/13/23Lab ID:I3-981 mb2Date Analyzed:12/13/23Data File:I3-981 mb2.053

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50 k</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/22/23 Date Received: 12/11/23

Project: TWAAFA-001, F&BI 312179

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312157-01 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 2.50   | 75 b     | 76 b     | 75-125     | 1 b        |
| Copper    | ug/L (ppb) | 20    | <5     | 75       | 77       | 75 - 125   | 3          |
| Iron      | ug/L (ppb) | 100   | 9,650  | 0 b      | 0 b      | 75 - 125   | nm         |
| Lead      | ug/L (ppb) | 10    | <1     | 71 vo    | 73 vo    | 75 - 125   | 3          |
| Manganese | ug/L (ppb) | 20    | 1,800  | 0 b      | 0 b      | 75 - 125   | nm         |
| Nickel    | ug/L (ppb) | 20    | 50.9   | 66 b     | 69 b     | 75 - 125   | 4 b        |
| Zinc      | ug/L (ppb) | 50    | <5     | 73  vo   | 74  vo   | 75 - 125   | 1          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 92       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 90       | 80-120     |
| Lead      | ug/L (ppb) | 10    | 95       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 85       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 93       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 96       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/22/23 Date Received: 12/11/23

Project: TWAAFA-001, F&BI 312179

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312178-02 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |                  |
|-----------|------------|-------|--------|----------|----------|------------|------------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD              |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20)       |
| Arsenic   | ug/L (ppb) | 10    | 1.64   | 93       | 92       | 75-125     | 1                |
| Copper    | ug/L (ppb) | 20    | <5     | 85       | 87       | 75 - 125   | 2                |
| Iron      | ug/L (ppb) | 100   | 503    | 117 b    | 115 b    | 75 - 125   | 2 b              |
| Lead      | ug/L (ppb) | 10    | <1     | 77       | 78       | 75 - 125   | 1                |
| Manganese | ug/L (ppb) | 20    | 118    | 119 b    | 121 b    | 75 - 125   | $2 \mathrm{\ b}$ |
| Nickel    | ug/L (ppb) | 20    | 2.74   | 89       | 89       | 75 - 125   | 0                |
| Zinc      | ug/L (ppb) | 50    | <5     | 92       | 94       | 75 - 125   | 2                |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 93       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 97       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 101      | 80-120     |
| Lead      | ug/L (ppb) | 10    | 90       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 96       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 98       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

# **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

|                                  |                  |                             |                 | SAMPI            | LE CHA                     | IN OI                                                 | F CUS                                              | STO                 | $\mathbf{DY}$           |                       |                           | 121      | 11   | 123                   |                 |                         | 4                                                          |
|----------------------------------|------------------|-----------------------------|-----------------|------------------|----------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------|-------------------------|-----------------------|---------------------------|----------|------|-----------------------|-----------------|-------------------------|------------------------------------------------------------|
| 312179                           | · / //           | T                           |                 | SAMI             | PLERS (sa                  | ignature                                              | 40                                                 | <del></del>         |                         |                       | •                         |          | - 1  | Pag                   |                 | ROLIN                   | OF                                                         |
| Report To: Anthony C Company DOF |                  | evor Louvie<br>CC: Tasya Gr |                 | PROJ             | IECT NAI                   | ME<br>TWAAI                                           |                                                    | <u> </u>            | 1,000,000               | TW                    | PO#                       |          |      | Standa:RUSH Rush cha: | rd Tu           | ırnaro                  | ound                                                       |
| Address 1001 SW F                |                  |                             |                 | Dissolv          | ARKS<br>ved metals s       | amples fie                                            |                                                    | ed at 0             | .45)                    | IN                    | VOIC                      |          |      | SA<br>Dispose         | MPLI<br>e after | E DIS                   | SPOSAL                                                     |
| Phone 215-767-7749               | Email <u>ace</u> | erruti@dofn                 | w.com           | Projec           | before anal<br>ct Specific | e RLs -                                               | Yes)/ 1                                            | No                  |                         |                       | DOF                       |          |      | Archive<br>Other_     |                 |                         | QUESTED                                                    |
| Sample ID                        | Lab ID           | Date<br>Sampled             | Time<br>Sampled | Sample<br>Matrix | # of<br>Bottles            | Total Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb,<br>Zn) | Dissolved Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb, | Total Mercury 1631E | Dissolved Mercury 1631E | Total Metals (Al, Fe) | Dissolved Metals (Al, Fe) | Ferrous  |      | ANAL                  |                 | MS/MSD Collected? (Y/N) | Notes                                                      |
| CTHW-24-1223                     | 01 A-C           | 12/11/23                    | 1100            | W                | 3                          | $\times$                                              | X                                                  |                     |                         | X                     | X                         | X        |      |                       |                 |                         | Tot/O.SS Hetals!<br>Al, As, Cu, Fe, Mn                     |
| TMW-24D-1223                     | 02               | 12/11/13                    | 1245            | W                | 3                          | $\geq$                                                | $\geq$                                             |                     |                         | $\geq$                | $\geq$                    | $\geq$   |      |                       |                 |                         | Tot/Diss netals i<br>Al, As, Cu, Fe, Ha<br>Tot Diss metals |
| PZ-7-1223                        | 03               | 12/11/23                    | 1400            | W                | 3                          | $\geq$                                                | $\times$                                           |                     |                         | $\geq$                | X                         | $\times$ |      |                       |                 |                         | AI, AS, Fe, Mr, N. P.                                      |
| PZ-8-1223                        | 04 1             | 12/11/23                    | 1200            | W                | 3                          | $\times$                                              | X                                                  |                     |                         | $\times$              | $\times$                  | $\times$ |      |                       |                 |                         | Al, As, Fr, Ma, Ni, Ph                                     |
|                                  |                  |                             |                 |                  |                            |                                                       |                                                    |                     |                         |                       |                           |          |      |                       |                 |                         |                                                            |
|                                  | 5                |                             |                 |                  |                            |                                                       |                                                    |                     |                         |                       |                           |          |      |                       |                 |                         |                                                            |
|                                  |                  |                             |                 |                  |                            |                                                       |                                                    |                     |                         | S                     | ampl                      | es rec   | eivo | dat_                  | × °             | C                       |                                                            |
|                                  |                  | SI                          | CNATURE         |                  |                            | T                                                     | PRINT                                              | NAM                 | E                       |                       | T                         | CO       | MPA  | NY                    | $\overline{}$   | DA                      | TE TIME                                                    |

Friedman & Bruya, Inc. 3012 16<sup>th</sup> Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

|   | SIGNATURE        | PRINT NAME     | COMPANY     | DATE     | TIME  |
|---|------------------|----------------|-------------|----------|-------|
|   | Relinquished by: | Michael her st | Clean Earth | 12/11/23 | 16:4  |
|   | Received by:     | ANH PHAN       | F86         | 12/11/23 | 16:47 |
|   | Relinquished by: |                |             |          | 98    |
| , | Received by:     |                |             |          |       |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312179

Work Order Number: 2312283

December 19, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 4 sample(s) on 12/12/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



Date: 12/19/2023

CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312179 **Work Order:** 2312283

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received |
|---------------|------------------|---------------------|--------------------|
| 2312283-001   | CTMW-24-1224     | 12/11/2023 11:00 AM | 12/12/2023 9:30 AM |
| 2312283-002   | CTMW-24D-1224    | 12/11/2023 12:45 PM | 12/12/2023 9:30 AM |
| 2312283-003   | PZ-7-1223        | 12/11/2023 2:00 PM  | 12/12/2023 9:30 AM |
| 2312283-004   | PZ-8-1223        | 12/11/2023 3:00 PM  | 12/12/2023 9:30 AM |

Original Page 2 of 11



### **Case Narrative**

WO#: **2312283**Date: **12/19/2023** 

CLIENT: Friedman & Bruya

**Project:** 312179

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original Page 3 of 11



# **Qualifiers & Acronyms**

WO#: **2312283** 

Date Reported: 12/19/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312283

Date Reported: 12/19/2023

**CLIENT:** Friedman & Bruya

**Project:** 312179

**Lab ID:** 2312283-001 **Collection Date:** 12/11/2023 11:00:00 AM

Client Sample ID: CTMW-24-1224 Matrix: Water

| Chome Campions:                | · <b>-</b> · |         |       |          |                       |  |
|--------------------------------|--------------|---------|-------|----------|-----------------------|--|
| Analyses                       | Result       | RL Qual | Units | DF       | Date Analyzed         |  |
| Dissolved Metals by EPA Method | 1 200.8      |         | Batc  | h ID: 42 | 343 Analyst: JR       |  |
| Aluminum                       | 23.1         | 10.0    | μg/L  | 1        | 12/15/2023 4:15:00 PM |  |
| Total Metals by EPA Method 200 | <u>).8</u>   |         | Batc  | h ID: 42 | 345 Analyst: JR       |  |
| Aluminum                       | 40.2         | 10.0    | μg/L  | 1        | 12/15/2023 1:55:00 PM |  |
| Ferrous Iron by SM3500-Fe B    |              |         | Batc  | h ID: R8 | 8304 Analyst: FG      |  |
| Ferrous Iron                   | 1.19         | 0.150 H | mg/L  | 1        | 12/12/2023 2:17:54 PM |  |

**Lab ID:** 2312283-002 **Collection Date:** 12/11/2023 12:45:00 PM

Client Sample ID: CTMW-24D-1224 Matrix: Water

| Official Campic ID. Of MAY-24D | 1227     |         | Watin. V | vator     |                       |
|--------------------------------|----------|---------|----------|-----------|-----------------------|
| Analyses                       | Result   | RL Qual | Units    | DF        | Date Analyzed         |
| Dissolved Metals by EPA Metho  | od 200.8 |         | Batc     | h ID: 420 | 343 Analyst: JR       |
| Aluminum                       | 13.0     | 10.0    | μg/L     | 1         | 12/15/2023 4:17:00 PM |
| Total Metals by EPA Method 20  | 0.8      |         | Batc     | h ID: 420 | 345 Analyst: JR       |
| Aluminum                       | 13.6     | 10.0    | μg/L     | 1         | 12/15/2023 1:57:00 PM |
| Ferrous Iron by SM3500-Fe B    |          |         | Batc     | h ID: R8  | 8304 Analyst: FG      |
| Ferrous Iron                   | 0.877    | 0.150 H | mg/L     | 1         | 12/12/2023 2:17:54 PM |

Original Page 5 of 11



# **Analytical Report**

Work Order: 2312283

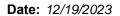
Date Reported: 12/19/2023

**CLIENT:** Friedman & Bruya

**Project:** 312179

**Lab ID:** 2312283-003 **Collection Date:** 12/11/2023 2:00:00 PM

Client Sample ID: PZ-7-1223 Matrix: Water


| Analyses                       | Result    | RL Qual | Units | DF        | Date Analyzed         |
|--------------------------------|-----------|---------|-------|-----------|-----------------------|
| Dissolved Metals by EPA Method | 1 200.8   |         | Batcl | h ID: 423 | 343 Analyst: JR       |
| Aluminum                       | 46.7      | 10.0    | μg/L  | 1         | 12/15/2023 4:08:00 PM |
| Total Metals by EPA Method 200 | <u>.8</u> |         | Batcl | h ID: 420 | Analyst: JR           |
| Aluminum                       | 49.9      | 10.0    | μg/L  | 1         | 12/15/2023 2:00:00 PM |
| Ferrous Iron by SM3500-Fe B    |           |         | Batcl | h ID: R8  | 8304 Analyst: FG      |
| Ferrous Iron                   | 41.7      | 15.0 D  | mg/L  | 100       | 12/12/2023 2:17:54 PM |

**Lab ID:** 2312283-004 **Collection Date:** 12/11/2023 3:00:00 PM

Client Sample ID: PZ-8-1223 Matrix: Water

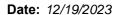
| Analyses                      | Result         | RL Qual | Units | DF        | Date Analyzed         |
|-------------------------------|----------------|---------|-------|-----------|-----------------------|
| Dissolved Metals by EPA Metho | <u>d 200.8</u> |         | Batch | n ID: 423 | 343 Analyst: JR       |
| Aluminum                      | 51.1           | 10.0    | μg/L  | 1         | 12/15/2023 4:25:00 PM |
| Total Metals by EPA Method 20 | 0.8            |         | Batch | n ID: 423 | 345 Analyst: JR       |
| Aluminum                      | 401            | 10.0    | μg/L  | 1         | 12/15/2023 2:02:00 PM |
| Ferrous Iron by SM3500-Fe B   |                |         | Batch | ı ID: R8  | 8304 Analyst: FG      |
| Ferrous Iron                  | 0.266          | 0.150   | mg/L  | 1         | 12/12/2023 2:17:54 PM |

Original Page 6 of 11





**CLIENT:** Friedman & Bruya


**Project:** 312179

**QC SUMMARY REPORT** 

Ferrous Iron by SM3500-Fe B

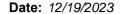
| Ferrous Iron   ND   0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Project:</b> 312179            |                         |       |           |             |      |               |                  | i cirous ii | on by om          | 0000 1 0 2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-------|-----------|-------------|------|---------------|------------------|-------------|-------------------|------------|
| Analyte Result RL SPK value SPK Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample ID: MB-R88304              | SampType: MBLK          |       |           | Units: mg/L |      | Prep Date     | 12/12/2023       | RunNo       | o: <b>88304</b>   |            |
| Sample ID: LCS-R88304   SampType: LCS   Units: mg/L   Prep Date: 12/12/2023   RunNo: 88304   Analysis Date: 12/12/2023   SeqNo: 1843422   Analyse   Result   RL   SPK value   SPK Ref Val   SPK Ref Val   SPK Ref Val   Rep Date: 12/12/2023   RunNo: 88304   RunNo | Client ID: MBLKW                  | Batch ID: <b>R88304</b> |       |           |             |      | Analysis Date | 12/12/2023       | SeqNo       | o: <b>1843421</b> |            |
| Sample ID: LCS-R88304   SampType: LCS   Units: mg/L   Prep Date: 12/12/2023   SeqNo: 1843422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Re | ef Val %    | RPD RPDL          | imit Qual  |
| Client ID: LCSW   Batch ID: R88304   Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val   %RPD   RPDLimit   QRPD   Ref Val   Ref Val   Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val   %RPD   RPDLimit   QRPD   Ref Val   | Ferrous Iron                      | ND                      | 0.150 |           |             |      |               |                  |             |                   |            |
| Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Ferrous Iron 0.393 0.150 0.4000 0 98.3 85 115  Sample ID: 2312283-004ADUP SampType: DUP Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Analyse Date: 12/12/2023 SeqNo: 1843550  Sample ID: 2312283-004AMS SampType: MS Units: mg/L Prep Date: 12/12/2023 SeqNo: 1843551  Sample ID: 2312283-004AMS SampType: MS Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Analyse Date: 12/12/2023 RunNo: 88304  SampType: MS Units: mg/L Prep Date: 12/12/2023 SeqNo: 1843551  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Ferrous Iron 0.735 0.150 0.4000 0.2663 117 70 130  Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample ID: LCS-R88304             | SampType: <b>LCS</b>    |       |           | Units: mg/L |      | Prep Date     | : 12/12/2023     | RunNo       | D: <b>88304</b>   |            |
| Ferrous Iron 0.393 0.150 0.4000 0 98.3 85 115  Sample ID: 2312283-004ADUP SampType: DUP Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  Client ID: PZ-8-1223 Batch ID: R88304 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  Sample ID: 2312283-004AMS SampType: MS Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  Client ID: PZ-8-1223 Batch ID: R88304 PRDLimit Q  Sample ID: 2312283-004AMS SampType: MS Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  Client ID: PZ-8-1223 Batch ID: R88304 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  Ferrous Iron 0.735 0.150 0.4000 0.2663 117 70 130  Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304  Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client ID: LCSW                   | Batch ID: <b>R88304</b> |       |           |             |      | Analysis Date | 12/12/2023       | SeqNo       | o: <b>1843422</b> |            |
| Sample ID: 2312283-004ADUP         SampType: DUP         Units: mg/L         Prep Date: 12/12/2023         RunNo: 88304           Client ID: PZ-8-1223         Batch ID: R88304         Result         RL SPK value         SPK Ref Val         %REC LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Q           Ferrous Iron         0.327         0.150         Units: mg/L         Prep Date: 12/12/2023         RunNo: 88304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Re | ef Val %    | RPD RPDL          | imit Qual  |
| Client ID:   PZ-8-1223   Batch ID:   R88304   Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val   %RPD   RPDLimit   Q   Ref Val   Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val   %RPD   RPDLimit   Q   Ref Val   Ref Va | Ferrous Iron                      | 0.393                   | 0.150 | 0.4000    | 0           | 98.3 | 85            | 115              |             |                   |            |
| Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Ferrous Iron 0.327 0.150 Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Ferrous Iron 0.735 0.150 0.4000 0.2663 117 70 130  Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Analysis Date: 12/12/2023 SeqNo: 1843551  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Client ID: PZ-8-1223 Batch ID: R88304 Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Client ID: PZ-8-1223 Batch ID: R88304 Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID: <b>2312283-004ADUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L |      | Prep Date     | 12/12/2023       | RunNo       | D: <b>88304</b>   |            |
| Ferrous Iron 0.327 0.150 Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Ferrous Iron 0.735 0.150 0.4000 0.2663 117 70 130  Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 RunNo: 88304  Analysis Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Ranalysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client ID: <b>PZ-8-1223</b>       | Batch ID: <b>R88304</b> |       |           |             |      | Analysis Date | 12/12/2023       | SeqNo       | o: <b>1843550</b> |            |
| Sample ID: 2312283-004AMS         SampType: MS         Units: mg/L         Prep Date: 12/12/2023         12/12/2023         RunNo: 88304           Client ID: PZ-8-1223         Batch ID: R88304         Analysis Date: 12/12/2023         SeqNo: 1843551           Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Q           Ferrous Iron         0.735         0.150         0.4000         0.2663         117         70         130           Sample ID: 2312283-004AMSD         SampType: MSD         Units: mg/L         Prep Date: 12/12/2023         RunNo: 88304           Client ID: PZ-8-1223         Batch ID: R88304         Analysis Date: 12/12/2023         SeqNo: 1843552           Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Re | ef Val %    | RPD RPDL          | imit Qual  |
| Client ID:         PZ-8-1223         Batch ID:         R88304         Analysis Date:         12/12/2023         SeqNo:         1843551           Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Q           Ferrous Iron         0.735         0.150         0.4000         0.2663         117         70         130         Total Control Co                                                                                                                                                                                                                                                                                                                    | Ferrous Iron                      | 0.327                   | 0.150 |           |             |      |               | 0.               | 2663        | 20.4              | 20         |
| Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Q           Ferrous Iron         0.735         0.150         0.4000         0.2663         117         70         130           Sample ID: 2312283-004AMSD         SampType: MSD         Units: mg/L         Prep Date: 12/12/2023         RunNo: 88304           Client ID: PZ-8-1223         Batch ID: R88304         Analysis Date: 12/12/2023         SeqNo: 1843552           Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID: <b>2312283-004AMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date     | 12/12/2023       | RunNo       | p: <b>88304</b>   |            |
| Ferrous Iron         0.735         0.150         0.4000         0.2663         117         70         130           Sample ID: 2312283-004AMSD         SampType: MSD         Units: mg/L         Prep Date: 12/12/2023         RunNo: 88304           Client ID: PZ-8-1223         Batch ID: R88304         Analysis Date: 12/12/2023         SeqNo: 1843552           Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client ID: <b>PZ-8-1223</b>       | Batch ID: R88304        |       |           |             |      | Analysis Date | 12/12/2023       | SeqNo       | o: <b>1843551</b> |            |
| Sample ID: 2312283-004AMSD SampType: MSD Units: mg/L Prep Date: 12/12/2023 RunNo: 88304 Client ID: PZ-8-1223 Batch ID: R88304 Analysis Date: 12/12/2023 SeqNo: 1843552 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Re | ef Val %    | RPD RPDL          | imit Qual  |
| Client ID: PZ-8-1223 Batch ID: R88304 Analysis Date: 12/12/2023 SeqNo: 1843552  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ferrous Iron                      | 0.735                   | 0.150 | 0.4000    | 0.2663      | 117  | 70            | 130              |             |                   |            |
| Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID: <b>2312283-004AMSD</b> | SampType: <b>MSD</b>    |       |           | Units: mg/L |      | Prep Date     | 12/12/2023       | RunNo       | p: <b>88304</b>   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client ID: <b>PZ-8-1223</b>       | Batch ID: <b>R88304</b> |       |           |             |      | Analysis Date | 12/12/2023       | SeqNo       | o: <b>1843552</b> |            |
| Ferrous Iron 0.738 0.150 0.4000 0.2663 118 70 130 0.7348 0.410 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Re | ef Val %    | RPD RPDL          | imit Qual  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ferrous Iron                      | 0.738                   | 0.150 | 0.4000    | 0.2663      | 118  | 70            | 130 0.           | 7348 0      | 0.410             | 30         |

Original Page 7 of 11





**CLIENT:** Friedman & Bruya


**Project:** 312179

# **QC SUMMARY REPORT**

# **Dissolved Metals by EPA Method 200.8**

| ,                                 |                       |      |           |             |                                                   |        |
|-----------------------------------|-----------------------|------|-----------|-------------|---------------------------------------------------|--------|
| Sample ID: MB-42343               | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                |        |
| Client ID: MBLKW                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845895          |        |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit | Qual   |
| Aluminum                          | ND                    | 10.0 |           |             |                                                   |        |
| Sample ID: LCS-42343              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                |        |
| Client ID: LCSW                   | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845896          |        |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit | Qual   |
| Aluminum                          | 1,050                 | 10.0 | 1,000     | 0           | 105 85 115                                        |        |
| Sample ID: <b>2312283-003CDUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                |        |
| Client ID: <b>PZ-7-1223</b>       | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845898          |        |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit | d Qual |
| Aluminum                          | 47.4                  | 10.0 |           |             | 46.74 1.47 30                                     | )      |
| Sample ID: <b>2312283-003CMS</b>  | SampType: <b>MS</b>   |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                |        |
| Client ID: PZ-7-1223              | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845899          |        |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit | . Qual |
| Aluminum                          | 1,130                 | 10.0 | 1,000     | 46.74       | 108 50 150                                        |        |
| Sample ID: <b>2312328-003BMS</b>  | SampType: <b>MS</b>   |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                |        |
| Client ID: BATCH                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845913          |        |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit | d Qual |
| Aluminum                          | 1,040                 | 10.0 | 1,000     | 3.483       | 103 50 150                                        |        |
|                                   |                       |      |           |             |                                                   |        |

Original Page 8 of 11





**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Dissolved Metals by EPA Method 200.8** 

**Project:** 312179

Sample ID: MB-42344 FB

SampType: MBLK Units: µg/L

RL

Prep Date: 12/14/2023

RunNo: **88400** 

Client ID: MBLKW

Batch ID: 42343

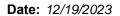
Analysis Date: 12/15/2023

SeqNo: 1845923

Analyte

Daton 1D. **42040** 

Result


SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 9 of 11





**CLIENT:** Friedman & Bruya

**Project:** 312179

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| Froject. 312179                   |                      |      |           |             |      |                |                       | -                     |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|------|
| Sample ID: <b>MB-42345</b>        | SampType: MBLK       |      |           | Units: µg/L |      | Prep Date:     | 12/14/2023            | RunNo: 88387          |      |
| Client ID: MBLKW                  | Batch ID: 42345      |      |           |             |      | Analysis Date: | 12/15/2023            | SeqNo: <b>1845604</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                |                       |                       |      |
| Sample ID: LCS-42345              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>88387</b>   |      |
| Client ID: LCSW                   | Batch ID: 42345      |      |           |             |      | Analysis Date: | 12/15/2023            | SeqNo: <b>1845563</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,030                | 10.0 | 1,000     | 0           | 103  | 85             | 115                   |                       |      |
| Sample ID: <b>2312355-001DDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>88387</b>   |      |
| Client ID: BATCH                  | Batch ID: 42345      |      |           |             |      | Analysis Date: | 12/15/2023            | SeqNo: <b>1845565</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                | 16.30                 | 97.4 30               |      |
| Sample ID: <b>2312355-001DMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>88387</b>   |      |
| Client ID: BATCH                  | Batch ID: 42345      |      |           |             |      | Analysis Date: | 12/15/2023            | SeqNo: <b>1845566</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 16.30       | 102  | 70             | 130                   |                       |      |
| Sample ID: <b>2312277-002AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>88387</b>   |      |
| Client ID: BATCH                  | Batch ID: 42345      |      |           |             |      | Analysis Date: | 12/15/2023            | SeqNo: <b>1845584</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,240                | 10.0 | 1,000     | 153.4       | 109  | 70             | 130                   |                       |      |
|                                   |                      |      |           |             |      |                |                       |                       |      |

Original Page 10 of 11



# Sample Log-In Check List

| Client Name:                  | FB                                                                   |                     | Work Order Numb | per: 2312283 |                      |
|-------------------------------|----------------------------------------------------------------------|---------------------|-----------------|--------------|----------------------|
| Logged by:                    | Lyann Rivera                                                         |                     | Date Received:  | 12/12/202    | 3 9:30:00 AM         |
| Chain of Cus                  | stody                                                                |                     |                 |              |                      |
| 1. Is Chain of                | Custody complete?                                                    |                     | Yes 🗸           | No 🗌         | Not Present          |
| 2. How was th                 | ne sample delivered?                                                 |                     | <u>Courier</u>  |              |                      |
| <u>Log In</u>                 |                                                                      |                     |                 |              |                      |
| 3. Custody Se<br>(Refer to co | als present on shipping containe<br>omments for Custody Seals not ir | r/cooler?<br>itact) | Yes             | No 🗌         | Not Present <b>✓</b> |
| 4. Was an atte                | empt made to cool the samples?                                       |                     | Yes 🗹           | No 🗌         | NA $\square$         |
| 5. Were all ite               | ms received at a temperature of                                      | >2°C to 6°C *       | Yes 🗹           | No 🗌         | na 🗆                 |
| 6. Sample(s) i                | n proper container(s)?                                               |                     | Yes 🗸           | No $\square$ |                      |
| 7. Sufficient sa              | ample volume for indicated test(s                                    | 3)?                 | Yes 🗸           | No 🗌         |                      |
| 8. Are sample                 | s properly preserved?                                                |                     | Yes 🗸           | No $\square$ |                      |
| 9. Was preser                 | vative added to bottles?                                             |                     | Yes 🗸           | No $\square$ | NA $\square$         |
|                               |                                                                      |                     |                 |              | HCL, HNO3            |
| 10. Is there hea              | adspace in the VOA vials?                                            |                     | Yes 🗌           | No 📙         | NA 🗸                 |
| 11. Did all sam               | ples containers arrive in good co                                    | ndition(unbroken)?  |                 | No 📙         |                      |
| 12. Does paper                | work match bottle labels?                                            |                     | Yes 🗹           | No 🗌         |                      |
| 13. Are matrice               | s correctly identified on Chain of                                   | Custody?            | Yes 🗸           | No 🗌         |                      |
| 14. Is it clear w             | hat analyses were requested?                                         |                     | Yes 🗸           | No 🗌         |                      |
| 15. Were all ho be met?       | ld times (except field parameters                                    | , pH e.g.) able to  | Yes             | No 🗸         |                      |
|                               | dling (if applicable)                                                |                     |                 |              |                      |
| =                             | t notified of all discrepancies with                                 | this order?         | Yes             | No 🗌         | NA 🗸                 |
| Pers                          | on Notified:                                                         |                     | Pate:           |              |                      |
| By W                          | /hom:                                                                | V                   | ′ia:            | one  Fax     | ☐ In Person          |
| Rega                          | arding:                                                              |                     |                 |              |                      |
| Clien                         | t Instructions:                                                      |                     |                 |              |                      |
| 17. Additional                | remarks:                                                             |                     |                 |              |                      |
| Item Information              | on                                                                   |                     |                 |              |                      |
|                               | Item #                                                               | Temp °C             |                 |              |                      |
| Sample                        |                                                                      | 0.1                 |                 |              |                      |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Original Page 11 of 11

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl

Company Friedman and Bruya, Inc.

Address 5500 4th Ave S

City, State, ZIP Seattle, WA 98108

Phone # (206) 285-8282 merdahl@friedmanandbruya.com

| REMARKS | 312179  | PROJECT NAME/NO. | SUBCONTRACTER<br>Fremont |
|---------|---------|------------------|--------------------------|
|         | D-589   | PO#              |                          |
|         | REMARKS | 312179           |                          |

|                                                                                  | PO#<br>D-589                                                     |
|----------------------------------------------------------------------------------|------------------------------------------------------------------|
| SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions | TURNAROUND TIME  Standard TAT  RUSH  Rush charges authorized by: |

| Fax (206) 283-5044 | Seattle, WA 98119-2029 Ph. (206) 285-8282 | 3012 16th Avenue We | Friedman & Bruya, Inc. |   |   |  |  | PZ-8-1223  | PZ-7-1223  | CTMW-24D-1223 | CTMW-24-1223 | Sample ID       |                   |
|--------------------|-------------------------------------------|---------------------|------------------------|---|---|--|--|------------|------------|---------------|--------------|-----------------|-------------------|
|                    |                                           |                     |                        |   |   |  |  |            |            |               |              | Lab<br>ID       |                   |
| Received by:       | Relinquished by:                          |                     | SI                     |   |   |  |  | 12/11/2023 | 12/11/2023 | 12/11/2023    | 12/11/2023   | Date<br>Sampled |                   |
|                    |                                           | tothe               | SIGNATURE              |   |   |  |  | 1500       | 1400       | 1245          | 1100         | Time<br>Sampled |                   |
|                    |                                           |                     | 1                      |   |   |  |  | 1500 water | 1400 water | 1245 water    | 1100 water   | Matrix          |                   |
|                    | 8                                         | MICHA               | Michael                |   |   |  |  | 1          |            | 1             | 1            | # of<br>jars    |                   |
|                    | "colon                                    | Michael Bruani      | PR                     |   |   |  |  | ×          | ×          | ×             | ×            | ferrous iron    |                   |
|                    | 3                                         | 111                 | PRINT NAME             |   |   |  |  |            |            |               |              | sulfate         |                   |
|                    | 6                                         |                     | AME                    |   |   |  |  |            |            |               |              | alkalinity      | 1                 |
|                    | t                                         | 2                   |                        |   |   |  |  |            |            |               |              | ferrous iron    | NAL               |
|                    | C                                         |                     |                        |   |   |  |  |            |            |               |              | dissolved gases | NALYSES REQUESTED |
|                    |                                           | Tited               | Fried                  |   |   |  |  |            |            |               |              | TOC             | REQ               |
|                    | 7                                         | Than t              | COM                    |   |   |  |  | ж          | ×          | ×             | ×            | Total Al        | UEST              |
|                    | 1                                         | ) 2                 | COMPANY                |   |   |  |  | ×          | K          | ×             | *            | Desolved Al     | ED                |
|                    |                                           | 94                  | 20                     | Ц |   |  |  | -          | _          | -             |              | - FF            |                   |
|                    | 12/12/2                                   | 12/12/28            | DATE                   |   | 1 |  |  |            |            |               |              |                 |                   |
|                    | 3 730                                     | 246                 | TIME                   |   |   |  |  |            |            |               |              | Notes           |                   |

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 21, 2023 from the TWAAFA-001, F&BI 312209 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1227R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312209 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Dalton Olmsted Fuglevand |
|----------------------|--------------------------|
| 312209 -01           | TWA-4D-1223              |
| 312209 -02           | PZ-9-1223                |
| 312209 -03           | TWA-7D-1223              |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

The 6020B iron total and dissolved calibration standard associated with the method blanks exceeded the acceptance criteria. The metal was not detected in the method blanks, therefore this did not represent an out of control condition.

All other quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-4D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Lab ID: Date Extracted: 12/13/23 312209-01 Date Analyzed: 12/16/23 Data File: 312209-01.200 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Copper
 1.18

 Iron
 4,040

 Manganese
 106

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-4D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-01 x5

 Date Analyzed:
 12/15/23
 Data File:
 312209-01 x5.174

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 10.3

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-02

 Date Analyzed:
 12/16/23
 Data File:
 312209-02.201

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration ug/L (ppb)

Lead <1

Analyte:

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-02 x5

 Date Analyzed:
 12/15/23
 Data File:
 312209-02 x5.175

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 8.57

 Manganese
 3,090

 Nickel
 <5</td>

 Zinc
 <25</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-02 x200

 Date Analyzed:
 12/20/23
 Data File:
 312209-02 x200.048

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 34,600

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-7D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Lab ID: Date Extracted: 12/13/23 312209-03 Date Analyzed: 12/16/23 Data File: 312209-03.202 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper<1</th>Iron1,510Manganese118

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-7D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-03 x5

 Date Analyzed:
 12/15/23
 Data File:
 312209-03 x5.176

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 7.82

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 13-980 mb2

 Date Analyzed:
 12/13/23
 Data File:
 13-980 mb2.052

 Materials:
 12/13/23
 Data File:
 13-980 mb2.052

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50 k</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-4D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Lab ID: Date Extracted: 12/13/23 312209-01 Date Analyzed: 12/16/23 Data File: 312209-01.211 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Copper
 1.03

 Iron
 4,080

 Manganese
 105

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-4D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-01 x5

 Date Analyzed:
 12/16/23
 Data File:
 312209-01 x5.185

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 9.85

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Lab ID: Date Extracted: 12/13/23 312209-02 Date Analyzed: 12/16/23 Data File: 312209-02.212 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead <1

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Analyte: Concentration ug/L (ppb)

 Arsenic
 9.82

 Manganese
 2,970

 Nickel
 <5</td>

 Zinc
 <25</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: PZ-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

 Date Extracted:
 12/13/23
 Lab ID:
 312209-02 x100

 Date Analyzed:
 12/18/23
 Data File:
 312209-02 x100.085

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 38,700

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-7D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Lab ID: Date Extracted: 12/13/23 312209-03 Date Analyzed: 12/16/23 Data File: 312209-03.213 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Copper
 0.750

 Iron
 1,590

 Manganese
 113

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-7D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/21/23 Project: TWAAFA-001, F&BI 312209

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 7.86

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312209

Date Extracted: 12/13/23 Lab ID: I3-981 mb2
Date Analyzed: 12/13/23 Data File: I3-981 mb2.053
Matrix: Water Instrument: ICPMS2

Units: water Instrument: ICP:
Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <0.4</td>

 Iron
 <50 k</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/27/23 Date Received: 12/21/23

Project: TWAAFA-001, F&BI 312209

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312178-01 (Matrix Spike)

|           |            |       |        | Percent           | Percent  |            |            |
|-----------|------------|-------|--------|-------------------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery          | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS                | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1.16   | 99                | 103      | 75-125     | 4          |
| Copper    | ug/L (ppb) | 20    | <5     | 90                | 91       | 75 - 125   | 1          |
| Iron      | ug/L (ppb) | 100   | 350    | $95 \mathrm{\ b}$ | 98 b     | 75 - 125   | 3 b        |
| Lead      | ug/L (ppb) | 10    | <1     | 78                | 80       | 75 - 125   | 3          |
| Manganese | ug/L (ppb) | 20    | 150    | 113 b             | 118 b    | 75 - 125   | 4 b        |
| Nickel    | ug/L (ppb) | 20    | 4.66   | 96 b              | 96 b     | 75 - 125   | 0 b        |
| Zinc      | ug/L (ppb) | 50    | <5     | 96                | 98       | 75 - 125   | 2          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 97       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 95       | 80-120     |
| Lead      | ug/L (ppb) | 10    | 90       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 97       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 98       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/27/23 Date Received: 12/21/23

Project: TWAAFA-001, F&BI 312209

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312178-02 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |                  |
|-----------|------------|-------|--------|----------|----------|------------|------------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD              |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20)       |
| Arsenic   | ug/L (ppb) | 10    | 1.64   | 93       | 92       | 75-125     | 1                |
| Copper    | ug/L (ppb) | 20    | <5     | 85       | 87       | 75 - 125   | 2                |
| Iron      | ug/L (ppb) | 100   | 503    | 117 b    | 115 b    | 75 - 125   | 2 b              |
| Lead      | ug/L (ppb) | 10    | <1     | 77       | 78       | 75 - 125   | 1                |
| Manganese | ug/L (ppb) | 20    | 118    | 119 b    | 121 b    | 75 - 125   | $2 \mathrm{\ b}$ |
| Nickel    | ug/L (ppb) | 20    | 2.74   | 89       | 89       | 75 - 125   | 0                |
| Zinc      | ug/L (ppb) | 50    | <5     | 92       | 94       | 75 - 125   | 2                |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 93       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 97       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 101      | 80-120     |
| Lead      | ug/L (ppb) | 10    | 90       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 96       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 98       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

# **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

312209

Report To: Anthony Cerruti / Trevor Louviere CC: Tasya Gray

Company DOF

Address\_ 1001 SW Klickitat Way

City, State, ZIP Seattle, WA 98134

Phone 215-767-7749 Email acerruti@dofnw.com

Project Specific RLs (Yes)/ No

Dissolved metals samples field filtered at 0.45 micron before analysis

REMARKS

PROJECT NAME

TWAAFA

SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)

12/12/25

Page#\_

TURNAROUND TIME

Standard Turnaround

Rush charges authorized by: \_RUSH\_

TWAAFA-001

PO#

INVOICE TO

DOF

Dispose after 30 days Other Archive Samples SAMPLE DISPOSAL

| Friedman & Bruya, Inc.   |    |              |    |    |       | 8 |   |                    | SEPT-CI-AMI     | (                    | DV 12 1516                             | IWA-40-1223      |                                                                                                      |         |
|--------------------------|----|--------------|----|----|-------|---|---|--------------------|-----------------|----------------------|----------------------------------------|------------------|------------------------------------------------------------------------------------------------------|---------|
|                          |    | ,            | 13 |    |       |   |   |                    | 03 1            | 20                   | <u>-</u>                               | 01 A-C           | Lab ID                                                                                               |         |
| SIGN<br>Relinquished by: |    |              |    |    | et .  |   |   |                    | Shti cto        | 012110               | 101010                                 | 01 A-C 12/12/23  | Date<br>Sampled                                                                                      |         |
| SIGNATURE                |    |              |    |    |       |   |   | ±€                 | Shti            | 110                  |                                        | 1050             | Time<br>Sampled                                                                                      |         |
|                          |    |              |    |    |       |   |   |                    | ٤               | _ 2                  | -                                      | ٤                | Sample<br>Matrix                                                                                     |         |
|                          |    |              |    |    |       |   |   |                    | S               | 3                    | )                                      | w                | # of<br>Bottles                                                                                      |         |
| PRINT NAME               |    |              |    | .\ |       |   | - |                    | X               |                      | *                                      | X                | Total Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, Zn)  Dissolved Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, Zn) |         |
| Æ                        |    |              |    |    |       |   |   |                    |                 |                      |                                        |                  | Total Mercury 1631E  Dissolved Mercury 1631E                                                         |         |
| -                        |    |              |    |    |       |   | 1 | 7/                 | X               | $\nearrow$           | $\chi$                                 | $\setminus$      | Total Metals (Al, Fe)                                                                                |         |
| COMPANY                  |    | Samp1        |    |    |       |   |   |                    | X               | X                    | ************************************** | X                | Dissolved Metals (Al, Fe) Fivou S Ivon                                                               |         |
| YNY                      |    | les received |    |    |       | 1 |   |                    |                 |                      |                                        |                  | , and a                                                                                              | ANATA   |
| DATE                     | V. | ved at 1     |    |    | \<br> |   |   | 4                  | . 4             | D-                   | 7                                      | . 4              | MS/MSD Collected? (Y/N) Note                                                                         | Odd Ddo |
| TIME                     |    | +°C          |    |    |       |   |   | AI, AS, CL. FE, HA | ot/0:35 Hetacs: | All As F. Mr. N. Pb7 | 1, As, Fe, Mn, Cu                      | Tot/0.25 Hetals; | Notes                                                                                                | Tipompi |

Ph. (206) 285-8282

Received by:

Relinquished by:

Courbered under

Custody Send by

Delivery Express

12/12/23

1320

12/12/23 DATE

1320

TIME

Nhan

Phan

FEBI

12/12/23

14/0

Ellioth Schamann

DAT

Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc.

Relinquished by: 205

Received by:



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312209

Work Order Number: 2312296

December 19, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 3 sample(s) on 12/12/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/19/2023



CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312209 **Work Order:** 2312296

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received |
|---------------|------------------|---------------------|--------------------|
| 2312296-001   | TWA-4D-1223      | 12/12/2023 10:50 AM | 12/12/2023 3:07 PM |
| 2312296-002   | PZ-9-1223        | 12/12/2023 11:45 AM | 12/12/2023 3:07 PM |
| 2312296-003   | TWA-7D-1223      | 12/12/2023 12:45 PM | 12/12/2023 3:07 PM |

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned



### **Case Narrative**

WO#: **2312296**Date: **12/19/2023** 

CLIENT: Friedman & Bruya

**Project:** 312209

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



# **Qualifiers & Acronyms**

WO#: **2312296** 

Date Reported: 12/19/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312296

Date Reported: 12/19/2023

**CLIENT:** Friedman & Bruya

**Project:** 312209

**Lab ID:** 2312296-001 **Collection Date:** 12/12/2023 10:50:00 AM

Client Sample ID: TWA-4D-1223 Matrix: Water

| Analyses                       | Result    | RL Qual | Units | DF     | Date Analyzed          |
|--------------------------------|-----------|---------|-------|--------|------------------------|
| Dissolved Metals by EPA Method | 200.8     |         | Batch | ID: 42 | 343 Analyst: JR        |
| Aluminum                       | ND        | 10.0    | μg/L  | 1      | 12/15/2023 4:27:00 PM  |
| Total Metals by EPA Method 200 | <u>.8</u> |         | Batch | ID: 42 | 377 Analyst: JR        |
| Aluminum                       | 10.2      | 10.0    | μg/L  | 1      | 12/19/2023 12:58:00 PM |
| Ferrous Iron by SM3500-Fe B    |           |         | Batch | ID: R8 | 8304 Analyst: FG       |
| Ferrous Iron                   | 0.831     | 0.150   | mg/L  | 1      | 12/12/2023 2:17:54 PM  |

**Lab ID:** 2312296-002 **Collection Date:** 12/12/2023 11:45:00 AM

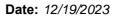
Client Sample ID: PZ-9-1223 Matrix: Water

| Analyses                       | Result         | RL Qual | Units  | DF       | Date Analyzed         |
|--------------------------------|----------------|---------|--------|----------|-----------------------|
| Dissolved Metals by EPA Method | <u>I 200.8</u> |         | Batc   | h ID: 42 | 343 Analyst: JR       |
| Aluminum                       | 19.3           | 10.0    | μg/L   | 1        | 12/15/2023 4:30:00 PM |
| Total Metals by EPA Method 200 | <u>).8</u>     |         | Batc   | h ID: 42 | 377 Analyst: JR       |
| Aluminum                       | 27.6           | 10.0    | μg/L   | 1        | 12/19/2023 1:01:00 PM |
| Ferrous Iron by SM3500-Fe B    |                |         | Batc   | h ID: R8 | 8304 Analyst: FG      |
| Ferrous Iron                   | 35.1           | 15.0 E  | ) mg/L | 100      | 12/12/2023 2:17:54 PM |



# **Analytical Report**

Work Order: **2312296**Date Reported: **12/19/2023** 


**CLIENT:** Friedman & Bruya

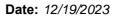
**Project:** 312209

**Lab ID:** 2312296-003 **Collection Date:** 12/12/2023 12:45:00 PM

Client Sample ID: TWA-7D-1223 Matrix: Water

| Analyses                       | Result         | RL Qual | Units | DF       | Date Analyzed         |
|--------------------------------|----------------|---------|-------|----------|-----------------------|
| Dissolved Metals by EPA Method | <u>d 200.8</u> |         | Batch | n ID: 42 | 343 Analyst: JR       |
| Aluminum                       | ND             | 10.0    | μg/L  | 1        | 12/15/2023 4:32:00 PM |
| Total Metals by EPA Method 200 | <u>).8</u>     |         | Batch | n ID: 42 | 377 Analyst: JR       |
| Aluminum                       | ND             | 10.0    | μg/L  | 1        | 12/19/2023 1:03:00 PM |
| Ferrous Iron by SM3500-Fe B    |                |         | Batch | ı ID: R8 | 8304 Analyst: FG      |
| Ferrous Iron                   | 0.381          | 0.150   | mg/L  | 1        | 12/12/2023 2:17:54 PM |






CLIENT: Friedman & Bruya **QC SUMMARY REPORT** 

Ferrous Iron by SM3500-Fe B

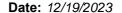
| <b>Project</b> : 312209          |                         |       |           |             | rerrous from by Swissou-Fe                             |
|----------------------------------|-------------------------|-------|-----------|-------------|--------------------------------------------------------|
| Sample ID: MB-R88304             | SampType: MBLK          |       |           | Units: mg/L | Prep Date: 12/12/2023 RunNo: 88304                     |
| Client ID: MBLKW                 | Batch ID: R88304        |       |           |             | Analysis Date: 12/12/2023 SeqNo: 1843421               |
| Analyte                          | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Ferrous Iron                     | ND                      | 0.150 |           |             |                                                        |
| Sample ID: LCS-R88304            | SampType: LCS           |       |           | Units: mg/L | Prep Date: 12/12/2023 RunNo: 88304                     |
| Client ID: LCSW                  | Batch ID: <b>R88304</b> |       |           |             | Analysis Date: 12/12/2023 SeqNo: 1843422               |
| Analyte                          | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Ferrous Iron                     | 0.393                   | 0.150 | 0.4000    | 0           | 98.3 85 115                                            |
| Sample ID: 2312283-004ADUP       | SampType: <b>DUP</b>    |       |           | Units: mg/L | Prep Date: 12/12/2023 RunNo: 88304                     |
| Client ID: BATCH                 | Batch ID: R88304        |       |           |             | Analysis Date: 12/12/2023 SeqNo: 1843550               |
| Analyte                          | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Ferrous Iron                     | 0.327                   | 0.150 |           |             | 0.2663 20.4 20                                         |
| Sample ID: <b>2312283-004AMS</b> | SampType: <b>MS</b>     |       |           | Units: mg/L | Prep Date: 12/12/2023 RunNo: 88304                     |
| Client ID: BATCH                 | Batch ID: R88304        |       |           |             | Analysis Date: 12/12/2023 SeqNo: 1843551               |
| Analyte                          | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Ferrous Iron                     | 0.735                   | 0.150 | 0.4000    | 0.2663      | 117 70 130                                             |
| Sample ID: 2312283-004AMSD       | SampType: <b>MSD</b>    |       |           | Units: mg/L | Prep Date: 12/12/2023 RunNo: 88304                     |
| Client ID: BATCH                 | Batch ID: R88304        |       |           |             | Analysis Date: 12/12/2023 SeqNo: 1843552               |
| Analyte                          | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Ferrous Iron                     | 0.738                   | 0.150 | 0.4000    | 0.2663      | 118 70 130 0.7348 0.410 30                             |

Page 7 of 12 Original





**CLIENT:** Friedman & Bruya


**Project:** 312209

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

| <b>Project:</b> 312209            |                       |      |           |             | •                                                     |
|-----------------------------------|-----------------------|------|-----------|-------------|-------------------------------------------------------|
| Sample ID: <b>MB-42343</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                    |
| Client ID: MBLKW                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845895              |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum                          | ND                    | 10.0 |           |             |                                                       |
| Sample ID: LCS-42343              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/14/2023 RunNo: 88400                    |
| Client ID: LCSW                   | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845896              |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum                          | 1,050                 | 10.0 | 1,000     | 0           | 105 85 115                                            |
| Sample ID: <b>2312283-003CDUP</b> | SampType: <b>DUP</b>  |      |           | Units: μg/L | Prep Date: 12/14/2023 RunNo: 88400                    |
| Client ID: BATCH                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845898              |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum                          | 47.4                  | 10.0 |           |             | 46.74 1.47 30                                         |
| Sample ID: <b>2312283-003CMS</b>  | SampType: <b>MS</b>   |      |           | Units: μg/L | Prep Date: 12/14/2023 RunNo: 88400                    |
| Client ID: BATCH                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845899              |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum                          | 1,130                 | 10.0 | 1,000     | 46.74       | 108 50 150                                            |
| Sample ID: <b>2312328-003BMS</b>  | SampType: <b>MS</b>   |      |           | Units: μg/L | Prep Date: 12/14/2023 RunNo: 88400                    |
| Client ID: BATCH                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023 SeqNo: 1845913              |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum                          | 1,040                 | 10.0 | 1,000     | 3.483       | 103 50 150                                            |
|                                   |                       |      |           |             |                                                       |

Original Page 8 of 12





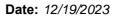
**Project:** 

**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

312209

**Dissolved Metals by EPA Method 200.8** 


Sample ID: MB-42344 FB SampType: MBLK Units: µg/L Prep Date: 12/14/2023 RunNo: 88400

Client ID: **MBLKW** Batch ID: **42343** Analysis Date: **12/15/2023** SeqNo: **1845923** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 9 of 12





**CLIENT:** Friedman & Bruya

**Project:** 312209

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| 110ject. 012200                   |                       |      |           |             |      |               |                       |                       |      |
|-----------------------------------|-----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Sample ID: <b>MB-42377</b>        | SampType: <b>MBLK</b> |      |           | Units: μg/L |      | Prep Date:    | 12/18/2023            | RunNo: <b>88449</b>   |      |
| Client ID: MBLKW                  | Batch ID: 42377       |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847008</b> |      |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit F    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                    | 10.0 |           |             |      |               |                       |                       |      |
| Sample ID: LCS-42377              | SampType: <b>LCS</b>  |      |           | Units: µg/L |      | Prep Date:    | 12/18/2023            | RunNo: <b>88449</b>   |      |
| Client ID: LCSW                   | Batch ID: 42377       |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847009</b> |      |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit F    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,050                 | 10.0 | 1,000     | 0           | 105  | 85            | 115                   |                       |      |
| Sample ID: <b>2312404-001ADUP</b> | SampType: <b>DUP</b>  |      |           | Units: μg/L |      | Prep Date:    | 12/18/2023            | RunNo: <b>88449</b>   |      |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847011</b> |      |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit F    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 132                   | 10.0 |           |             |      |               | 128.3                 | 2.76 30               |      |
| Sample ID: <b>2312404-001AMS</b>  | SampType: <b>MS</b>   |      |           | Units: μg/L |      | Prep Date:    | 12/18/2023            | RunNo: <b>88449</b>   |      |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847012</b> |      |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit F    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,170                 | 10.0 | 1,000     | 128.3       | 105  | 70            | 130                   |                       |      |
| Sample ID: <b>2312318-001CMS</b>  | SampType: <b>MS</b>   |      |           | Units: μg/L |      | Prep Date:    | 12/18/2023            | RunNo: <b>88449</b>   |      |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1846967</b> |      |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit F    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,130                 | 10.0 | 1,000     | 76.68       | 106  | 70            | 130                   |                       |      |
|                                   |                       |      |           |             |      |               |                       |                       |      |

Original Page 10 of 12



# Sample Log-In Check List

| Clie             | ent Name:                   | FB                                                                |                  | W     | ork Order Nu  | mber: 2312296 |                      |  |
|------------------|-----------------------------|-------------------------------------------------------------------|------------------|-------|---------------|---------------|----------------------|--|
| Log              | gged by:                    | Lyann Rivera                                                      |                  | D     | ate Received: | 12/12/202     | 23 3:07:00 PM        |  |
| Chai             | n of Custo                  | <u>ody</u>                                                        |                  |       |               |               |                      |  |
| 1. 1             | s Chain of Cu               | ustody complete?                                                  |                  |       | Yes 🗸         | No 🗌          | Not Present          |  |
| 2. F             | low was the                 | sample delivered?                                                 |                  |       | Client        |               |                      |  |
| Log I            | <u>In</u>                   |                                                                   |                  |       |               |               |                      |  |
|                  |                             | s present on shipping container<br>ments for Custody Seals not in |                  |       | Yes           | No 🗌          | Not Present <b>✓</b> |  |
| 4. V             | Vas an attem                | pt made to cool the samples?                                      |                  |       | Yes 🗸         | No 🗌          | NA $\square$         |  |
| 5. W             | Vere all items              | received at a temperature of                                      | >2°C to 6°C      | *     | Yes 🗹         | No 🗌          | NA 🗌                 |  |
| 6. S             | Sample(s) in p              | proper container(s)?                                              |                  |       | Yes 🗸         | No 🗌          |                      |  |
| 7. S             | Sufficient sam              | ple volume for indicated test(s                                   | ?                |       | Yes 🗸         | No $\square$  |                      |  |
| 8. A             | re samples p                | properly preserved?                                               |                  |       | Yes 🗸         | No $\square$  |                      |  |
| 9. V             | Vas preserva                | tive added to bottles?                                            |                  |       | Yes           | No 🗹          | NA $\square$         |  |
| 10. ls           | s there heads               | space in the VOA vials?                                           |                  |       | Yes           | No 🗌          | NA 🗹                 |  |
| 11. D            | oid all sample              | s containers arrive in good cor                                   | dition(unbroker  | n)?   | Yes 🗸         | No 🗌          |                      |  |
| 12. <sup>D</sup> | oes paperwo                 | ork match bottle labels?                                          |                  |       | Yes 🗸         | No 🗌          |                      |  |
| 13. A            | Are matrices o              | correctly identified on Chain of                                  | Custody?         |       | Yes 🗸         | No 🗌          |                      |  |
| 14. ls           | s it clear what             | t analyses were requested?                                        |                  |       | Yes 🗸         | No 🗌          |                      |  |
|                  | Vere all hold to<br>be met? | times (except field parameters                                    | pH e.g.) able to | 0     | Yes 🗸         | No 🗌          |                      |  |
|                  |                             | ing (if applicable)                                               |                  |       |               |               |                      |  |
| 16.              | Was client no               | otified of all discrepancies with                                 | this order?      |       | Yes           | No 🗌          | NA 🗸                 |  |
|                  | Person                      | Notified:                                                         |                  | Date: |               |               |                      |  |
|                  | By Who                      | om:                                                               |                  | Via:  | eMail 🗌       | Phone  Fax    | ☐ In Person          |  |
|                  | Regardi                     | ing:                                                              |                  |       |               |               |                      |  |
|                  | Client Ir                   | nstructions:                                                      |                  |       |               |               |                      |  |
| 17.              | Additional re               | marks:                                                            |                  |       |               |               |                      |  |
| Item I           | <u>Information</u>          |                                                                   |                  |       |               |               |                      |  |
|                  |                             | Item #                                                            | Temp ⁰C          |       |               |               |                      |  |
|                  | Sample                      |                                                                   | 1.0              |       |               |               |                      |  |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| Phone #_ (206) 285-8282 merdahl@friedmanandbruya.com | City, State, ZIP Seattle, WA 98108 | Address 5500 4th Ave S | Company Friedman and Bruya, Inc. | Send Report To Michael Erdahl |
|------------------------------------------------------|------------------------------------|------------------------|----------------------------------|-------------------------------|
| В                                                    | REMARKS                            | 312209                 | PROJECT NAME/NO.                 | SUBCONTRACTER<br>Fremont      |
|                                                      |                                    | D-589                  | PO#                              |                               |

| FCUSTODY | 2525                                  |       |
|----------|---------------------------------------|-------|
|          | Page #1 of1                           |       |
|          | TURNAROUND TIME                       |       |
| PO#      | ⊠ Standard TAT<br>RUSH                | of 12 |
| D-589    | Rush charges authorized by:           | 12    |
|          | SAMPLE DISPOSAL Dispose after 30 days | Page  |
|          | Return samples                        |       |
|          | Will call with instructions           |       |

| Fax (206) 283-5044 | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruya, Inc. |          |         |   |  |  |   | TWA-7D-1223 | PZ-9-1223  | TWA-4D-1223 | Sample ID                   |                   |
|--------------------|--------------------|------------------------|-----------------------|------------------------|----------|---------|---|--|--|---|-------------|------------|-------------|-----------------------------|-------------------|
|                    |                    | _                      | _                     | nc.                    |          |         |   |  |  |   |             |            |             | Lab<br>ID                   |                   |
| Received by:       | Relinquished by    | Received by:           | Relinguisher by: O    | SI                     |          |         |   |  |  |   | 12/12/2023  | 12/12/2023 | 12/12/2023  | Date<br>Sampled             |                   |
|                    | 0000               | MAN                    | Sul                   | SIGNATURE              |          |         |   |  |  |   | 1245        | 1145       | 1050        | Time<br>Sampled             |                   |
|                    |                    |                        |                       |                        |          |         |   |  |  |   | water       | 1145 water | water       | Matrix                      |                   |
|                    |                    | Alli                   | Michael Erdahl        |                        |          |         |   |  |  |   | ಬ           | 3          | 3           | # of<br>jars                |                   |
|                    |                    |                        | l Erde                | PR                     |          |         |   |  |  |   | ×           | ×          | х           | ferrous iron                | П                 |
|                    |                    | Miller                 | Ы                     | PRINT NAME             |          |         |   |  |  |   | ×           | ×          | ×           | total aluminum<br>dissolved |                   |
|                    |                    | 19                     |                       | ME                     | <u> </u> | $\perp$ | - |  |  | _ | ×           | ×          | ×           | aluminum                    | A                 |
|                    |                    |                        |                       |                        |          |         |   |  |  |   |             |            |             | ferrous iron                | NAL               |
|                    |                    |                        |                       |                        | Щ        |         |   |  |  |   |             |            |             | dissolved gases             | SES               |
|                    |                    | 7                      | Fried                 |                        | Ш        |         |   |  |  |   |             |            |             | TOC                         | REQ               |
|                    |                    | 7                      | man                   | CON                    |          |         |   |  |  |   |             |            |             |                             | NALYSES REQUESTED |
|                    |                    |                        | Friedman & Bruya      | COMPANY                |          |         |   |  |  |   |             |            |             |                             | CED               |
|                    |                    |                        | ıya                   | Y                      |          |         |   |  |  |   |             |            |             |                             |                   |
|                    |                    | 12/                    | 12                    | D                      | Ш        |         |   |  |  |   | L           |            | L           |                             | Ц                 |
|                    |                    | 12/12/23               | 12/11/13              | DATE                   |          |         |   |  |  |   |             |            |             | N                           |                   |
|                    |                    | 1507                   | 1436                  | TIME                   |          |         |   |  |  |   |             |            |             | Notes                       |                   |

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 22, 2023

Anthony Cerruti, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Cerruti:

Included are the results from the testing of material submitted on December 12, 2023 from the TWAAFA-001, F&BI 312222 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Trevor Louviere, Tasya Gray

DOF1222R.DOC

### **ENVIRONMENTAL CHEMISTS**

### **CASE NARRATIVE**

This case narrative encompasses samples received on December 12, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312222 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <u>Dalton Olmsted Fuglevand</u> |
|----------------------|---------------------------------|
| 010000 01            | OMM (NIII 0 1000                |

312222 -01 CTMW-9-1223 312222 -02 CTMW-8-1223

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

All quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

Lab ID: Date Extracted: 12/13/23 312222-01Date Analyzed: 12/16/23 Data File: 312222-01.203 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <1 Iron 4,460 Manganese 373

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

 Date Extracted:
 12/13/23
 Lab ID:
 312222-01 x5

 Date Analyzed:
 12/15/23
 Data File:
 312222-01 x5.177

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 8.65

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-8-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

Lab ID: Date Extracted: 12/13/23 312222-02 Date Analyzed: 12/16/23 Data File: 312222-02.206 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <1 Iron 4,270 Manganese <1

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-8-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

 Date Extracted:
 12/13/23
 Lab ID:
 312222-02 x5

 Date Analyzed:
 12/15/23
 Data File:
 312222-02 x5.178

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312222

 Date Extracted:
 12/13/23
 Lab ID:
 I3-980 mb2

 Date Analyzed:
 12/13/23
 Data File:
 I3-980 mb2.052

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50 k</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Copper1.10Manganese398

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-9-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

 Date Extracted:
 12/13/23
 Lab ID:
 312222-01 x5

 Date Analyzed:
 12/16/23
 Data File:
 312222-01 x5.188

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 8.91 Iron 8,430

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-8-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

Lab ID: 312222-02 Date Extracted: 12/13/23 Date Analyzed: 12/16/23 Data File:  $312222 \hbox{-} 02.215$ Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Copper
 1.14

 Iron
 4,300

 Manganese
 2.45

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-8-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/12/23 Project: TWAAFA-001, F&BI 312222

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312222

 Date Extracted:
 12/13/23
 Lab ID:
 I3-978 mb2

 Date Analyzed:
 12/18/23
 Data File:
 I3-978 mb2.041

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

Arsenic <1 Copper <1 Iron <50 Manganese <1

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/22/23 Date Received: 12/12/23

Project: TWAAFA, F&BI 312222

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312178-01 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1.16   | 99       | 103      | 75-125     | 4          |
| Copper    | ug/L (ppb) | 20    | <5     | 90       | 91       | 75 - 125   | 1          |
| Iron      | ug/L (ppb) | 100   | 350    | 95 b     | 98 b     | 75 - 125   | 3 b        |
| Manganese | ug/L (ppb) | 20    | 150    | 113 b    | 118 b    | 75 - 125   | 4 b        |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 97       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 95       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/22/23 Date Received: 12/12/23

Project: TWAAFA, F&BI 312222

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312177-01 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | <1     | 112      | 110      | 75-125     | 2          |
| Copper    | ug/L (ppb) | 20    | <5     | 100      | 97       | 75 - 125   | 3          |
| Iron      | ug/L (ppb) | 100   | 419    | 118 b    | 103 b    | 75 - 125   | 14 b       |
| Manganese | ug/L (ppb) | 20    | 335    | 96 b     | 21 b     | 75 - 125   | 128 b      |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 97       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 93       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 89       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

# **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

|                               |             |              |         | SAMPI    | LE CHA       | AIN O                                              | F CUS                                              | STO                 | DY                      | 12                      | //2                       | 12                      | 3   | ۷3                  |                   |        | 1              |
|-------------------------------|-------------|--------------|---------|----------|--------------|----------------------------------------------------|----------------------------------------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|-----|---------------------|-------------------|--------|----------------|
| 312222                        |             |              |         | SAMI     | PLERS (si    | ignature                                           | 2)                                                 |                     |                         |                         |                           |                         |     | Page                | #                 | of     |                |
| Report To: Anthony C          | erruti / Tr | evor Louvie  | re      |          |              | 4                                                  | 08                                                 |                     |                         |                         |                           |                         | I   | TUR                 | NAROU             | ND TI  | ME             |
| atoport 10. <u>minority 0</u> |             | CC: Tasya Gr |         | PROJ     | ECT NAI      |                                                    | - 0                                                |                     |                         |                         | PO#                       | :                       |     | Standar             |                   |        |                |
| Company DOF                   |             |              |         | _        |              |                                                    | 7.4                                                |                     |                         | TW                      | AAFA                      | -001                    | -   | _ RUSH<br>Rush char |                   |        | h              |
| Address1001 SW K              | dickitat W  | /av          |         |          |              | TWAA                                               | f'A                                                |                     |                         |                         |                           |                         | 1 1 | tusn cnar           | ges autn          | orizea | by:            |
| 114410001001.0771.            |             | ay           |         | REM      | ARKS         |                                                    |                                                    |                     |                         | IN                      | VOICE                     | E TO                    | 11  |                     | MPLE D            |        | AL             |
| City, State, ZIP Seat         | ttle, WA 9  | 8134         |         | Dissolv  | ved metals s |                                                    | eld filtere                                        | ed at 0             | .45                     |                         |                           |                         |     | Dispose             |                   |        |                |
| Phone_215-767-7749            | Email ac    | erruti@dofn  | w com   | Project  | t Specific   | ysis<br>RLs (                                      | Yes / 1                                            | No                  |                         |                         | DOF                       | •                       |     | Archive Other_      | Samples           | 3      |                |
| 1 none_210-101-1140           | Dman_ac     | cii anoam    | W.COIII | _ [110]0 | o o pecific  | 71020                                              |                                                    |                     |                         |                         |                           |                         |     |                     | ana ni            |        | CMDD           |
|                               |             | T            | Ι       |          |              |                                                    | T                                                  |                     | (H)                     |                         |                           |                         |     | ANALY               | SES RE            | CQUE   | STED           |
|                               |             |              |         |          |              | )B<br>Pb,                                          | 20B<br>Pb,                                         | Œ                   | 631]                    | (e)                     | l, Fe                     |                         |     |                     | 9                 |        |                |
|                               |             |              |         |          |              | 602(<br>, Ni                                       | ls 60,                                             | 163                 | ry 1                    | [AI, ]                  | s (A                      |                         |     |                     | lecte             |        |                |
| Sample ID                     | Lab ID      | Date         | Time    | Sample   | # of         | Total Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb, Zn) | feta<br>Mn                                         | Total Mercury 1631E | Dissolved Mercury 1631E | Total Metals (Al, Fe)   | Dissolved Metals (Al, Fe) | 220                     |     |                     | MS/MSD Collected? | (N)    | Notes          |
| Sample 1D                     | Labib       | Sampled      | Sampled | Matrix   | Bottles      | Me,<br>Cu                                          | ed N<br>Cu                                         | Mer                 | M b                     | Met                     | M pe                      | 3 >                     |     |                     | USD<br>USD        |        |                |
|                               |             |              |         |          |              | otal<br>, Cr                                       | solv<br>, Cr                                       | otal                | solve                   | otal                    | solve                     | Ferrens                 |     |                     | AS/               |        |                |
|                               |             |              |         |          |              | T (As                                              | Dissolved Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb, | Ĭ                   | Diss                    | Ĺ                       | Disa                      | 11                      |     |                     |                   | 79     |                |
| CTUM-9-1773                   | 11 1 6      | 10/10/62     | 1430    | W        | 3            |                                                    |                                                    |                     |                         | X                       | $\searrow$                | X                       |     |                     |                   | 1 .    | 10.55 Metals   |
| CTMW-9-1223                   |             | 12/12/23     | 1130    | 1/4      |              | $\langle \cdot \rangle$                            | $\langle \cdot \rangle$                            |                     |                         | $\langle \cdot \rangle$ | $\langle \cdot \rangle$   | $\langle \cdot \rangle$ |     |                     |                   |        | DS Metals:     |
| CTMW-8-1223                   | 02 V        | 12/12/23     | 1525    | W        | 3            | X                                                  | $\angle$                                           |                     |                         | X                       | X                         | $\times$                |     |                     |                   |        | As, Cu, Fe, Hn |
|                               |             | -            |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   | -      |                |
|                               |             | -            |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   | _      |                |
| •                             |             | -            |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   | +      |                |
|                               |             |              |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
|                               |             | <b>†</b>     |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
|                               |             |              |         | ,        |              | ļ.,                                                |                                                    |                     |                         |                         |                           |                         |     |                     |                   | -      |                |
|                               |             |              | N       |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
| ,                             |             |              | 93/     |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
|                               |             |              |         |          |              | -                                                  | -                                                  |                     |                         | -                       |                           | -                       |     |                     |                   |        |                |
|                               |             |              |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
|                               |             |              |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
|                               |             | 1            |         |          |              |                                                    |                                                    |                     |                         |                         |                           |                         |     |                     |                   |        |                |
| T                             | D-1         | SI           | GNATURE | 1/2      | _            |                                                    | PRINT                                              |                     | E                       |                         | -                         |                         | MPA |                     |                   | ATE    | TIME           |
| Friedman & Bruya, I           |             |              | rhel    | MAN      | 01           | Mich                                               | ael                                                | hel                 | roge                    | P                       | $\perp C$                 | eon                     | Fa  | All                 | 12,               | 10/2   | 3 17:39        |
| 3012 16th Avenue Wes          | t Recei     | ived by:     |         |          | `            | JOE M                                              | HAMMÉ                                              | -<br>-              |                         | `                       |                           | FBI                     |     |                     | 21/12             | 13     | 17:39          |
| Seattle, WA 98119-20.         | 29 Relin    | quished by:  |         |          |              |                                                    |                                                    |                     | Sami                    | oles re                 | caive                     |                         | 2   | ٥C                  | 1 1               | (0)    |                |

Received by:

Ph. (206) 285-8282



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312222

Work Order Number: 2312314

December 20, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 2 sample(s) on 12/13/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



Date: 12/20/2023

CLIENT: Friedman & Bruya Work Order Sample Summary

**Project**: 312222 **Work Order**: 2312314

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2312314-001
 CTMW-9-1223
 12/12/2023 2:30 PM
 12/13/2023 11:05 AM

 2312314-002
 CTMW-8-1223
 12/12/2023 3:25 PM
 12/13/2023 11:05 AM

Original Page 2 of 10



### **Case Narrative**

WO#: **2312314**Date: **12/20/2023** 

CLIENT: Friedman & Bruya

**Project:** 312222

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original Page 3 of 10



# **Qualifiers & Acronyms**

WO#: **2312314** 

Date Reported: 12/20/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312314

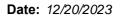
Date Reported: 12/20/2023

**CLIENT:** Friedman & Bruya

**Project:** 312222

**Lab ID:** 2312314-001 **Collection Date:** 12/12/2023 2:30:00 PM

Client Sample ID: CTMW-9-1223 Matrix: Water


| Analyses                        | Result   | PQL Qual | Units | DF       | Date Analyzed          |
|---------------------------------|----------|----------|-------|----------|------------------------|
| Dissolved Metals by EPA Method  | 200.8    |          | Batch | n ID: 42 | 343 Analyst: JR        |
| Aluminum                        | ND       | 10.0     | μg/L  | 1        | 12/18/2023 1:09:00 PM  |
| Total Metals by EPA Method 200. | <u>8</u> |          | Batch | n ID: 42 | 377 Analyst: JR        |
| Aluminum                        | 25.9     | 10.0     | μg/L  | 1        | 12/19/2023 1:10:00 PM  |
| Ferrous Iron by SM3500-Fe B     |          |          | Batch | ı ID: R8 | 8320 Analyst: FG       |
| Ferrous Iron                    | 0.889    | 0.150    | mg/L  | 1        | 12/13/2023 12:30:00 PM |

**Lab ID:** 2312314-002 **Collection Date:** 12/12/2023 3:25:00 PM

Client Sample ID: CTMW-8-1223 Matrix: Water

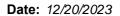
| Analyses                        | Result   | PQL Qual | Units | DF        | Date Analyzed          |
|---------------------------------|----------|----------|-------|-----------|------------------------|
| Dissolved Metals by EPA Method  | 200.8    |          | Batch | n ID: 420 | 343 Analyst: JR        |
| Aluminum                        | 212      | 10.0     | μg/L  | 1         | 12/18/2023 1:11:00 PM  |
| Total Metals by EPA Method 200. | <u>8</u> |          | Batch | n ID: 423 | 377 Analyst: JR        |
| Aluminum                        | 218      | 10.0     | μg/L  | 1         | 12/19/2023 1:13:00 PM  |
| Ferrous Iron by SM3500-Fe B     |          |          | Batch | ı ID: R8  | 8320 Analyst: FG       |
| Ferrous Iron                    | ND       | 0.150    | mg/L  | 1         | 12/13/2023 12:30:00 PM |

Original Page 5 of 10





**CLIENT:** Friedman & Bruya


**Project:** 312222

**QC SUMMARY REPORT** 

Ferrous Iron by SM3500-Fe B

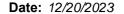
| <b>Project</b> : 312222           |                         |       |           |             | I GIIV                              | ous Iron by Swissou-i e L |
|-----------------------------------|-------------------------|-------|-----------|-------------|-------------------------------------|---------------------------|
| Sample ID: MB-R88320              | SampType: MBLK          |       |           | Units: mg/L | Prep Date: 12/13/2023               | RunNo: <b>88320</b>       |
| Client ID: MBLKW                  | Batch ID: <b>R88320</b> |       |           |             | Analysis Date: 12/13/2023           | SeqNo: <b>1844051</b>     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual        |
| Ferrous Iron                      | ND                      | 0.150 |           |             |                                     |                           |
| Sample ID: LCS-R88320             | SampType: <b>LCS</b>    |       |           | Units: mg/L | Prep Date: 12/13/2023               | RunNo: <b>88320</b>       |
| Client ID: LCSW                   | Batch ID: <b>R88320</b> |       |           |             | Analysis Date: 12/13/2023           | SeqNo: <b>1844052</b>     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual        |
| Ferrous Iron                      | 0.436                   | 0.150 | 0.4000    | 0           | 109 85 115                          |                           |
| Sample ID: <b>2312314-002CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L | Prep Date: 12/13/2023               | RunNo: <b>88320</b>       |
| Client ID: CTMW-8-1223            | Batch ID: <b>R88320</b> |       |           |             | Analysis Date: 12/13/2023           | SeqNo: <b>1844056</b>     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual        |
| Ferrous Iron                      | ND                      | 0.150 |           |             | 0                                   | 20                        |
| Sample ID: <b>2312314-002CMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L | Prep Date: 12/13/2023               | RunNo: <b>88320</b>       |
| Client ID: CTMW-8-1223            | Batch ID: <b>R88320</b> |       |           |             | Analysis Date: 12/13/2023           | SeqNo: <b>1844057</b>     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual        |
| Ferrous Iron                      | 0.390                   | 0.150 | 0.4000    | 0           | 97.6 70 130                         |                           |
| Sample ID: <b>2312314-002CMSD</b> | SampType: <b>MSD</b>    |       |           | Units: mg/L | Prep Date: 12/13/2023               | RunNo: <b>88320</b>       |
| Client ID: CTMW-8-1223            | Batch ID: <b>R88320</b> |       |           |             | Analysis Date: 12/13/2023           | SeqNo: <b>1844058</b>     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual        |
| Ferrous Iron                      | 0.433                   | 0.150 | 0.4000    | 0           | 108 70 130 0.3902                   | 10.3 30                   |

Original Page 6 of 10





**CLIENT:** Friedman & Bruya


**Project:** 312222

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

| Sample ID: I | MB-42343        | SampType: MBLK       |      |           | Units: µg/L |      | Prep Date: 12/14/2023            | RunNo: <b>88400</b>   |
|--------------|-----------------|----------------------|------|-----------|-------------|------|----------------------------------|-----------------------|
| Client ID:   | MBLKW           | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023        | SeqNo: <b>1845895</b> |
| Analyte      |                 | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |
| Aluminum     |                 | ND                   | 10.0 |           |             |      |                                  |                       |
| Sample ID: I | LCS-42343       | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date: 12/14/2023            | RunNo: <b>88400</b>   |
| Client ID:   | LCSW            | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023        | SeqNo: <b>1845896</b> |
| Analyte      |                 | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |
| Aluminum     |                 | 1,050                | 10.0 | 1,000     | 0           | 105  | 85 115                           |                       |
| Sample ID:   | 2312283-003CDUP | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date: 12/14/2023            | RunNo: <b>88400</b>   |
| Client ID:   | BATCH           | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023        | SeqNo: <b>1845898</b> |
| Analyte      |                 | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |
| Aluminum     |                 | 47.4                 | 10.0 |           |             |      | 46.74                            | 1.47 30               |
| Sample ID: : | 2312283-003CMS  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date: 12/14/2023            | RunNo: <b>88400</b>   |
| Client ID:   | BATCH           | Batch ID: 42343      |      |           |             |      | Analysis Date: <b>12/15/2023</b> | SeqNo: <b>1845899</b> |
| Analyte      |                 | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |
| Aluminum     |                 | 1,130                | 10.0 | 1,000     | 46.74       | 108  | 50 150                           |                       |
| Sample ID:   | 2312328-003BMS  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date: 12/14/2023            | RunNo: <b>88400</b>   |
| Client ID:   | ВАТСН           | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023        | SeqNo: <b>1845913</b> |
| Analyte      |                 | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |
| Aluminum     |                 | 1,040                | 10.0 | 1,000     | 3.483       | 103  | 50 150                           |                       |

Original Page 7 of 10





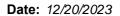
**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Dissolved Metals by EPA Method 200.8** 

**Project:** 312222

Sample ID: MB-42344 FB


SampType: MBLK Units: µg/L Prep Date: 12/14/2023 RunNo: 88400

Client ID: MBLKW Batch ID: 42343 Analysis Date: 12/15/2023 SeqNo: 1845923

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 8 of 10





**CLIENT:** Friedman & Bruya

**Project:** 312222

#### **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| 110ject. 012222                   |                       |      |           |             |                                                        |
|-----------------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: <b>MB-42377</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/18/2023 RunNo: 88449                     |
| Client ID: MBLKW                  | Batch ID: 42377       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847008               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: LCS-42377              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/18/2023 RunNo: 88449                     |
| Client ID: LCSW                   | Batch ID: 42377       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847009               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,050                 | 10.0 | 1,000     | 0           | 105 85 115                                             |
| Sample ID: <b>2312404-001ADUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/18/2023 RunNo: 88449                     |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847011               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 132                   | 10.0 |           |             | 128.3 2.76 30                                          |
| Sample ID: <b>2312404-001AMS</b>  | SampType: <b>MS</b>   |      |           | Units: µg/L | Prep Date: 12/18/2023 RunNo: 88449                     |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847012               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,170                 | 10.0 | 1,000     | 128.3       | 105 70 130                                             |
| Sample ID: 2312318-001CMS         | SampType: <b>MS</b>   |      |           | Units: µg/L | Prep Date: 12/18/2023 RunNo: 88449                     |
| Client ID: BATCH                  | Batch ID: 42377       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1846967               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,130                 | 10.0 | 1,000     | 76.68       | 106 70 130                                             |
|                                   |                       |      |           |             |                                                        |

Original Page 9 of 10



# Sample Log-In Check List

| Client Name: FB                                            |                         |                 |       | Work Order Nu  | mber: 2312314 |                      |
|------------------------------------------------------------|-------------------------|-----------------|-------|----------------|---------------|----------------------|
| Logged by: Lyann                                           | Rivera                  |                 |       | Date Received: | 12/13/202     | 3 11:05:00 AM        |
| Chain of Custody                                           |                         |                 |       |                |               |                      |
| 1. Is Chain of Custody o                                   | omplete?                |                 |       | Yes 🗸          | No 🗌          | Not Present          |
| 2. How was the sample                                      | delivered?              |                 |       | Client         |               |                      |
| <u>Log In</u>                                              |                         |                 |       |                |               |                      |
| Custody Seals present (Refer to comments for the comments) |                         |                 |       | Yes            | No 🗌          | Not Present <b>✓</b> |
| 4. Was an attempt made                                     | to cool the samples?    |                 |       | Yes 🗸          | No 🗌          | NA $\square$         |
| 5. Were all items receive                                  | ed at a temperature of  | >2°C to 6°C     | *     | Yes 🗸          | No 🗌          | NA $\square$         |
| 6. Sample(s) in proper c                                   | ontainer(s)?            |                 |       | Yes 🗸          | No $\square$  |                      |
| 7. Sufficient sample volu                                  | me for indicated test(s | s)?             |       | Yes 🗸          | No 🗌          |                      |
| 8. Are samples properly                                    | preserved?              |                 |       | Yes 🗸          | No 🗌          |                      |
| 9. Was preservative add                                    | ed to bottles?          |                 |       | Yes            | No 🗸          | NA $\square$         |
| 10. Is there headspace in                                  | the VOA vials?          |                 |       | Yes            | No 🗌          | NA 🗸                 |
| 11. Did all samples contain                                | ners arrive in good co  | ndition(unbroke | en)?  | Yes 🗸          | No 🗌          |                      |
| 12. Does paperwork match                                   | h bottle labels?        |                 |       | Yes 🗹          | No 🗌          |                      |
| 13. Are matrices correctly                                 | identified on Chain of  | Custody?        |       | Yes 🗸          | No 🗌          |                      |
| 14. Is it clear what analys                                | es were requested?      |                 |       | Yes 🗸          | No 🗌          |                      |
| 15. Were all hold times (e be met?                         | xcept field parameters  | , pH e.g.) able | e to  | Yes 🗸          | No 🗌          |                      |
| Special Handling (if                                       | applicable)             |                 |       |                |               |                      |
| 16. Was client notified of                                 |                         | this order?     |       | Yes            | No 🗌          | NA 🗸                 |
| Person Notified                                            | : -                     |                 | Date: |                |               |                      |
| By Whom:                                                   |                         |                 | Via:  | eMail          | Phone  Fax    | In Person            |
| Regarding:                                                 |                         |                 |       |                |               |                      |
| Client Instruction                                         | ns:                     |                 |       |                |               |                      |
| 17. Additional remarks:                                    |                         |                 |       |                |               |                      |
| Item Information                                           |                         |                 |       |                |               |                      |
|                                                            | m #                     | Temp °C         |       |                |               |                      |
| Sample                                                     |                         | 2.3             |       |                |               |                      |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Original Page 10 of 10

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| Send Report To | Send Report To Michael Erdahl   |
|----------------|---------------------------------|
| Company        | Friedman and Bruya, Inc.        |
| Address        | 5500 4th Ave S                  |
| City State ZIP | City State ZIP Seattle WA 98108 |

| City State ZIP Seattle WA 98108 REMARKS | Address 5500 4th Ave S | ruya, Inc.       | Send Report To Michael Erdahl SUBCON |
|-----------------------------------------|------------------------|------------------|--------------------------------------|
| EMARKS                                  | 312222                 | PROJECT NAME/NO. | SUBCONTRACTER<br>Fremont             |
|                                         | D-589                  | PO#              |                                      |

| SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions | ■ Standard TAT RUSH Rush charges authorized by: | Page #l ofl |
|----------------------------------------------------------------------------------|-------------------------------------------------|-------------|
|                                                                                  |                                                 |             |

| Fax (206) 283-5044 | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruva. |     |    |   |  |  | CTMW-8-1223 | CTMW-9-1223 | Sample ID             |                    |
|--------------------|--------------------|------------------------|-----------------------|-------------------|-----|----|---|--|--|-------------|-------------|-----------------------|--------------------|
|                    |                    |                        |                       | Inc.              |     |    |   |  |  |             |             | Lab<br>ID             |                    |
| Received by:       | Relinquished by:   | Received by:           | Relimquished by: Q    | SI                |     |    |   |  |  | 12/12/2023  | 12/12/2023  | Date<br>Sampled       |                    |
|                    |                    | /                      | Lux                   | SIGNATURE         |     |    |   |  |  | 1525        | 1430        | Time<br>Sampled       |                    |
|                    |                    |                        | 0                     | 1                 |     |    |   |  |  | 1525 water  | 1430 water  | Matrix                |                    |
|                    |                    | Non                    | Michael Erdahl        |                   |     |    |   |  |  | 3           | ယ           | # of jars             |                    |
|                    |                    | Norther la PR          | el Erdi               | PI                | - 1 |    |   |  |  | ×           | ×           | total aluminum        |                    |
|                    |                    | 6                      | ahl                   | TNIS              |     |    |   |  |  | ×           | ×           | dissolved<br>aluminum |                    |
|                    |                    | Res                    |                       | PRINT NAME        |     |    |   |  |  | ×           | ×           | ferrous iron          |                    |
|                    |                    |                        |                       |                   |     |    |   |  |  |             |             | ferrous iron          | ANAI               |
|                    |                    |                        |                       |                   |     |    |   |  |  |             |             | dissolved gases       | ANALYSES REQUESTED |
|                    |                    |                        | Fried                 |                   |     |    |   |  |  |             |             | TOC                   | REQ                |
|                    |                    | FA                     | lman                  | CON               |     |    |   |  |  |             |             |                       | UEST               |
|                    |                    | 1                      | Friedman & Bruya      | COMPANY           |     | 17 |   |  |  |             |             |                       | ED                 |
|                    |                    |                        | ya                    | Y                 |     |    |   |  |  |             |             |                       |                    |
|                    |                    | 13/13/43               | 17/18/75              | DATE              |     | +  | H |  |  |             |             |                       |                    |
|                    |                    |                        |                       | I                 |     |    |   |  |  |             |             | Notes                 |                    |
|                    |                    | 105                    | 23.39                 | TIME              |     |    |   |  |  |             |             |                       |                    |

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 28, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 13, 2023 from the TWAAFA-001, F&BI 312245 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1228R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on December 13, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312245 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <b>Dalton Olmsted Fuglevand</b> |
|----------------------|---------------------------------|
| 312245 -01           | TWA-8D-1223                     |
| 312245 -02           | CTMW-5-1223                     |
| 312245 -03           | CTMW-7-1223                     |
| 312245 -04           | CTMW-18-1223                    |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

The 6020B total arsenic calibration standard exceeded the acceptance criteria in sample CTMW-7-1223. The metal was not detected, therefore this did not represent an out of control condition.

Several metals in the total 6020B matrix spike and matrix spike duplicate failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

All other quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:     | TWA-8D-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|-------------|----------|--------------------------|
| Date Received: | 12/13/23    | Project: | TWAAFA-001, F&BI 312245  |
| Data Extracted | 19/10/99    | I oh ID: | 212245 01 75             |

 Date Extracted:
 12/19/23
 Lab ID:
 312245-01 x5

 Date Analyzed:
 12/21/23
 Data File:
 312245-01 x5.213

389

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

| Analyte: | Concentration<br>ug/L (ppb) |
|----------|-----------------------------|
| Arsenic  | 15.9                        |
| Copper   | 3.57                        |
| Iron     | 2,250                       |

Manganese

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:      | CTMW-5-1223 | Client:    | Dalton Olmsted Fuglevand |
|-----------------|-------------|------------|--------------------------|
| Date Received:  | 12/13/23    | Project:   | TWAAFA-001, F&BI 312245  |
| Date Extracted: | 12/19/23    | Lab ID:    | 312245-02  x5            |
| Date Analyzed:  | 12/21/23    | Data File: | 312245-02  x5.214        |

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | 49.5                     |
| Copper    | 163                      |
| Iron      | 1,130                    |
| Manganese | 71.9                     |
| Nickel    | 19.0                     |
| Zinc      | 556                      |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-7-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312245

 Date Extracted:
 12/19/23
 Lab ID:
 312245-03 x5

 Date Analyzed:
 12/21/23
 Data File:
 312245-03 x5.215

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 <5</td>

 Copper
 2.12

 Iron
 16,700

 Manganese
 558

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:     | CTMW-18-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|--------------|----------|--------------------------|
| Date Received: | 12/13/23     | Project: | TWAAFA-001, F&BI 312245  |
|                |              |          |                          |

 Date Extracted:
 12/19/23
 Lab ID:
 312245-04 x5

 Date Analyzed:
 12/21/23
 Data File:
 312245-04 x5.219

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 5.08

 Copper
 8.11

 Iron
 1,190

 Manganese
 1,540

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312245

 Date Extracted:
 12/19/23
 Lab ID:
 I3-1001 mb2

 Date Analyzed:
 12/20/23
 Data File:
 I3-1001 mb2.152

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <0.4</td>

 Iron
 <50</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | TWA-8D-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|-------------|----------|--------------------------|
| Date Received: | 12/13/23    | Project: | TWAAFA-001, F&BI 312245  |

 Date Extracted:
 12/14/23
 Lab ID:
 312245-01 x2

 Date Analyzed:
 12/18/23
 Data File:
 312245-01 x2.099

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 14.9

 Copper
 <2</td>

 Iron
 1,980

 Manganese
 348

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-5-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312245

Lab ID: Date Extracted: 12/14/23 312245-02 Date Analyzed: 12/16/23 Data File: 312245-02.219 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Copper
 200

 Nickel
 17.8

 Zinc
 568

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-5-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312245

 Date Extracted:
 12/14/23
 Lab ID:
 312245-02 x5

 Date Analyzed:
 12/16/23
 Data File:
 312245-02 x5.191

Concentration ug/L (ppb)

Analyte: ug/L (ppb)

Arsenic 55.7

 Arsenic
 55.7

 Iron
 1,200

 Manganese
 70.7

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-7-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312245

Lab ID: Date Extracted: 12/14/23 312245-03 Date Analyzed: 12/16/23 Data File: 312245-03.220 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-7-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312245

 Date Extracted:
 12/14/23
 Lab ID:
 312245-03 x5

 Date Analyzed:
 12/16/23
 Data File:
 312245-03 x5.194

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & <5 \text{ k} \\ \text{Iron} & 16,100 \\ \text{Manganese} & 552 \end{array}$ 

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | CTMW-18-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|--------------|----------|--------------------------|
| Date Received: | 12/13/23     | Project: | TWAAFA-001, F&BI 312245  |

 Date Extracted:
 12/14/23
 Lab ID:
 312245-04 x5

 Date Analyzed:
 12/21/23
 Data File:
 312245-04 x5.115

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 6.04

 Copper
 20.0

 Iron
 1,320

 Manganese
 1,430

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | Method Blank   | Client:  | Dalton Olmsted Fuglevand |
|----------------|----------------|----------|--------------------------|
| Date Received: | Not Applicable | Project: | TWAAFA-001, F&BI 312245  |
| T . T          |                | T 1 TT   | T                        |

Date Extracted: 12/14/23Lab ID: I3-989 mbDate Analyzed: 12/18/23 Data File: I3-989 mb.068 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

<1

<5

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | <1                       |
| Copper    | <1                       |
| Iron      | < 50                     |
| Manganese | <1                       |

Nickel

Zinc

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/28/23 Date Received: 12/13/23

Project: TWAAFA-001, F&BI 312245

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |                      |
|-----------|------------|-------|--------|----------|----------|------------|----------------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20)           |
| Arsenic   | ug/L (ppb) | 10    | 1,110  | 304 b    | 625 b    | 75-125     | 69 b                 |
| Copper    | ug/L (ppb) | 20    | < 50   | 89       | 87       | 75 - 125   | 2                    |
| Iron      | ug/L (ppb) | 100   | 4,770  | 133 b    | 210 b    | 75 - 125   | 45 b                 |
| Manganese | ug/L (ppb) | 20    | 188    | 103 b    | 110 b    | 75 - 125   | 7 b                  |
| Nickel    | ug/L (ppb) | 20    | 12.4   | 90 b     | 86 b     | 75 - 125   | $5~\mathrm{b}$       |
| Zinc      | ug/L (ppb) | 50    | < 50   | 94       | 96       | 75-125     | 2                    |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 87       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 83       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 91       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 95       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/28/23 Date Received: 12/13/23

Project: TWAAFA-001, F&BI 312245

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312250-01 (Matrix Spike)

|           |            |       |        | Percent  | Percent             |            |            |
|-----------|------------|-------|--------|----------|---------------------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery            | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD                 | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 11.8   | 99 b     | 99 b                | 75-125     | 0 b        |
| Copper    | ug/L (ppb) | 20    | <5     | 50 vo    | 52  vo              | 75 - 125   | 4          |
| Iron      | ug/L (ppb) | 100   | 23,400 | 2160 b   | $3270 \mathrm{\ b}$ | 75 - 125   | 41 b       |
| Manganese | ug/L (ppb) | 20    | 1,220  | 531 b    | 816 b               | 75 - 125   | 42 b       |
| Nickel    | ug/L (ppb) | 20    | <1     | 51  vo   | 54  vo              | 75 - 125   | 6          |
| Zinc      | ug/L (ppb) | 50    | <5     | 57 vo    | 58 vo               | 75 - 125   | 2          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 91       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 83       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 94       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 89       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

#### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

# SAMPLE CHAIN OF CUSTODY

12/13/25 L3

Page#\_

Standard Turnaround TURNAROUND TIME

Rush charges authorized by: SAMPLE DISPOSAL

Dispose after 30 days Other\_ Archive Samples

SAMPLERS (signature) Project Specific RLs (Yes)/ No Dissolved metals samples field filtered at 0.45 REMARKS PROJECT NAME micron before analysis TWAAFA 3 TWAAFA-001 INVOICE TO PO# DOF

Phone 215-767-7749 Email acerruti@dofnw.com

City, State, ZIP Seattle, WA 98134

Address\_\_

1001 SW Klickitat Way

Company\_DOF

Report To: Anthony Cerruti / Trevor Louviere

CC: Tasya Gray

312245

CTHW-18-1223 TWA-80-1223 2861-1-MMIJ CTMW-5-1223 Sample ID 05 40 01 A-C Lab ID 12/13/23 12/13/13 12/13/23 12/10/21 | CC/C1/E1 Sampled | Sampled Date 1235 1040 2590 Time Sample Matrix 3 Z Z I Bottles (1) W W # of  $\omega$ Total Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, Zn) Dissolved Metals 6020B, (As, Cr, Cu, Mn, Ni, Pb, Total Mercury 1631E Samples received Dissolved Mercury 1631E Total Metals (Al, Fe) Dissolved Metals (Al, Fe) Ferrows ANALYSES REQUESTED MS/MSD Collected? (Y/N) AIR CUTE, HA Al, As Cu Fe, Ha, Ni Tet/Diss Metals: Tot/piss Hetais: A1, As, Cu, Fx, H. Al, AS, Cu, Fa, Ha CONTROL BUILDING Notes

Seattle, WA 9811: 3012 16th Avenue Friedman & Brus Ph. (206) 285-828

| Received by:   | 19-2029 Relinquished by: | e West Received by:                              | vya, Inc. Relinquished by: WS |            |
|----------------|--------------------------|--------------------------------------------------|-------------------------------|------------|
| m              |                          | Courieved under                                  | by: GDS                       | SIGNATURE  |
| ANH PHAN       |                          | Sourieved under Custody seal by Delivery Frances | Elicott Scheumann             | PRINT NAME |
| F86            |                          | Fupress                                          | Dot-                          | COMPANY    |
| 12/13/25/15:07 |                          | 12/13/23 134C                                    | 12/13/23 1340                 | DATE       |
| 40:51          |                          | 1340                                             | 1340                          | TIME       |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312245

Work Order Number: 2312328

December 20, 2023

#### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 4 sample(s) on 12/13/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



Date: 12/20/2023

CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312245 **Work Order:** 2312328

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received |
|---------------|------------------|---------------------|--------------------|
| 2312328-001   | TWA-8D-1223      | 12/13/2023 9:25 AM  | 12/13/2023 4:00 PM |
| 2312328-002   | CTMW-5-1223      | 12/13/2023 10:40 AM | 12/13/2023 4:00 PM |
| 2312328-003   | CTMW-7-1223      | 12/13/2023 12:00 PM | 12/13/2023 4:00 PM |
| 2312328-004   | CTMW-18-1223     | 12/13/2023 12:35 PM | 12/13/2023 4:00 PM |

Original Page 2 of 19



#### **Case Narrative**

WO#: **2312328**Date: **12/20/2023** 

**CLIENT:** Friedman & Bruya

**Project:** 312245

#### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original Page 3 of 19



# **Qualifiers & Acronyms**

WO#: **2312328** 

Date Reported: 12/20/2023

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

#### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312328

Date Reported: 12/20/2023

**CLIENT:** Friedman & Bruya

**Project:** 312245

**Lab ID:** 2312328-001 **Collection Date:** 12/13/2023 9:25:00 AM

Client Sample ID: TWA-8D-1223 Matrix: Water

| Analyses                      | Result     | RL Qual | Units | DF        | Date Analyzed         |
|-------------------------------|------------|---------|-------|-----------|-----------------------|
| Dissolved Metals by EPA Metho | d 200.8    |         | Batc  | h ID: 420 | 343 Analyst: JR       |
| Aluminum                      | ND         | 10.0    | μg/L  | 1         | 12/18/2023 1:13:00 PM |
| Total Metals by EPA Method 20 | <u>0.8</u> |         | Batcl | h ID: 423 | 378 Analyst: JR       |
| Aluminum                      | ND         | 10.0    | μg/L  | 1         | 12/19/2023 5:14:00 PM |
| Ferrous Iron by SM3500-Fe B   |            |         | Batc  | h ID: R8  | 8336 Analyst: SLL     |
| Ferrous Iron                  | 0.408      | 0.150   | mg/L  | 1         | 12/14/2023 8:06:01 AM |

**Lab ID:** 2312328-002 **Collection Date:** 12/13/2023 10:40:00 AM

Client Sample ID: CTMW-5-1223 Matrix: Water

| Analyses                             | Result | RL Qual | Units | DF       | Date Analyzed         |
|--------------------------------------|--------|---------|-------|----------|-----------------------|
| Dissolved Metals by EPA Method 200.8 |        |         |       | n ID: 42 | 343 Analyst: JR       |
| Aluminum                             | 392    | 10.0    | μg/L  | 1        | 12/18/2023 1:16:00 PM |
| Total Metals by EPA Method 200.8     |        |         |       | n ID: 42 | 378 Analyst: JR       |
| Aluminum                             | 425    | 10.0    | μg/L  | 1        | 12/19/2023 5:07:00 PM |
| Ferrous Iron by SM3500-Fe B          |        |         | Batch | n ID: R8 | 8336 Analyst: SLL     |
| Ferrous Iron                         | 0.454  | 0.150   | mg/L  | 1        | 12/14/2023 8:06:01 AM |

Original Page 5 of 19



# **Analytical Report**

Work Order: 2312328

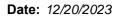
Date Reported: 12/20/2023

**CLIENT:** Friedman & Bruya

**Project:** 312245

**Lab ID:** 2312328-003 **Collection Date:** 12/13/2023 12:00:00 PM

Client Sample ID: CTMW-7-1223 Matrix: Water


| Analyses                         | Result   | RL Qual | Units | DF       | Date Analyzed         |
|----------------------------------|----------|---------|-------|----------|-----------------------|
| Dissolved Metals by EPA Method 2 | 200.8    |         | Batch | n ID: 42 | 343 Analyst: JR       |
| Aluminum                         | ND       | 10.0    | μg/L  | 1        | 12/18/2023 1:18:00 PM |
| Total Metals by EPA Method 200.8 | <u>3</u> |         | Batch | n ID: 42 | 378 Analyst: JR       |
| Aluminum                         | ND       | 10.0    | μg/L  | 1        | 12/19/2023 5:17:00 PM |
| Ferrous Iron by SM3500-Fe B      |          |         | Batcl | n ID: R8 | 8336 Analyst: SLL     |
| Ferrous Iron                     | 13.5     | 3.75 D  | mg/L  | 25       | 12/14/2023 8:06:01 AM |

**Lab ID:** 2312328-004 **Collection Date:** 12/13/2023 12:35:00 PM

Client Sample ID: CTMW-18-1223 Matrix: Water

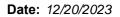
| Analyses                         | Result   | RL Qual | Units | DF       | Date Analyzed         |
|----------------------------------|----------|---------|-------|----------|-----------------------|
| Dissolved Metals by EPA Method 2 | 200.8    |         | Batch | n ID: 42 | 343 Analyst: JR       |
| Aluminum                         | 29.1     | 10.0    | μg/L  | 1        | 12/15/2023 4:54:00 PM |
| Total Metals by EPA Method 200.8 | <u>3</u> |         | Batch | n ID: 42 | 378 Analyst: JR       |
| Aluminum                         | 189      | 10.0    | μg/L  | 1        | 12/19/2023 5:19:00 PM |
| Ferrous Iron by SM3500-Fe B      |          |         | Batch | ı ID: R8 | 8336 Analyst: SLL     |
| Ferrous Iron                     | 1.00     | 0.150   | mg/L  | 1        | 12/14/2023 8:06:01 AM |

Original Page 6 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

#### **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| 110,000                           |                         |       |           |             |      |                |                       |                   |          |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|------|----------------|-----------------------|-------------------|----------|------|
| Sample ID: CCV-R88336A            | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883        | 36       |      |
| Client ID: CCV                    | Batch ID: <b>R88336</b> |       |           |             | A    | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> | 4402     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.414                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |                   |          |      |
| Sample ID: MB-R88336              | SampType: <b>MBLK</b>   |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883        | 36       |      |
| Client ID: MBLKW                  | Batch ID: <b>R88336</b> |       |           |             | A    | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> | 4403     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |      |                |                       |                   |          |      |
| Sample ID: LCS-R88336             | SampType: <b>LCS</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883        | 36       |      |
| Client ID: LCSW                   | Batch ID: R88336        |       |           |             | ,    | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> | 4404     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.417                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |                   |          |      |
| Sample ID: <b>2312328-001CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883        | 36       |      |
| Client ID: TWA-8D-1223            | Batch ID: R88336        |       |           |             | ,    | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> | 4406     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.445                   | 0.150 |           |             |      |                | 0.4084                | 8.50              | 20       |      |
| Sample ID: <b>2312328-001CMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883        | 36       |      |
| Client ID: TWA-8D-1223            | Batch ID: <b>R88336</b> |       |           |             | ,    | Analysis Date: | 12/14/2023            | SeqNo: 184        | 4407     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.910                   | 0.150 | 0.4000    | 0.4084      | 125  | 70             | 130                   |                   |          |      |
|                                   |                         |       |           |             |      |                |                       |                   |          |      |

Original Page 7 of 19





**CLIENT:** Friedman & Bruya

**Project:** 312245

#### **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| Sample ID: 2312328-001CMSD   SampType: MSD   Batch ID: R88336   Result   RL   SPK value   SPK Ref Val   SPK Ref    |                            |                      |       |           |             |      |               |                       |                       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample ID: 2312328-001CMSD | SampType: <b>MSD</b> |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Ferrous Iron         0.925         0.150         0.4000         0.4084         129         70         130         0.9100         1.65         30           Sample ID: CCV-R88336B         SampType: CCV         Units: mg/L         Prep Date: 12/14/2023         RunNo: 88336         RunNo: 88336         SeqNo: 1844412         SeqNo: 1844412         SeqNo: 1844412         Analysis Date: 12/14/2023         RunNo: 88336         SeqNo: 1844412         SeqNo: 1844413         SeqNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client ID: TWA-8D-1223     | Batch ID: R88336     |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1844408</b> |      |
| Sample   D: CCV-R88336B   SampType: CCV   Batch   D: R88336   Result   RL   SPK value   SPK Ref Val   WREC   LowLimit   HighLimit   RPD Ref Val   WRPD   RPDLimit   Result   RL   SPK value   SPK Ref Val   WREC   LowLimit   HighLimit   RPD Ref Val   WRPD   RPDLimit   Result   RESULT   Result   RL   SPK value   SPK Ref Val   WREC   LowLimit   HighLimit   RPD Ref Val   WRPD   RPDLimit   Result   RE   | Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Client ID:   CCV   Batch ID:   R88336   Result   RL   SPK value   SPK Ref Val   SPK    | Ferrous Iron               | 0.925                | 0.150 | 0.4000    | 0.4084      | 129  | 70            | 130 0.9100            | 1.65 30               |      |
| Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           Ferrous Iron         0.427         0.150         0.4000         0         107         85         115         SEQ No: 1844         \$\text{Value}\$         \$\text{Value}\$         \$\text{Virits: mg/L}\$         Prep Date: 12/14/2023         RunNo: 88336         \$\text{SeqNo: 1844}13         \$\text{Value}\$         \$\text{Value}\$         \$\text{SPK value}\$         \$\text{SPK value}\$         \$\text{SPK Ref Val}\$         \$\text{WREC}\$         \$\text{LowLimit}\$         \$\text{HighLimit}\$         \$\text{RPD Ref Val}\$         \$\text{Reg No: 1844}13         \$\text{SeqNo: 1844}13         \$\text{SeqNo: 1844}13         \$\text{Reg Noise}\$         \$\text{Ref Val}\$         \$\text{NREC}\$         \$\text{LowLimit}\$         \$\text{HighLimit}\$         \$\text{RPD Ref Val}\$         \$\text{Reg Noise}\$         \$Reg Noi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID: CCV-R88336B     | SampType: <b>CCV</b> |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Ferrous Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Client ID: CCV             | Batch ID: R88336     |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1844412</b> |      |
| Sample ID: CCB-R88336B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Client ID:   CCB   Batch ID:   R88336   Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val   %RPD   RPDLimit   Refrous Iron   ND   0.150   ND   ND   0.150   ND   ND   ND   ND   ND   ND   ND   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ferrous Iron               | 0.427                | 0.150 | 0.4000    | 0           | 107  | 85            | 115                   |                       |      |
| Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           Ferrous Iron         ND         0.150         Units: mg/L         Prep Date: 12/14/2023         RunNo: 88336         RunNo: 88336         RunNo: 88336         SeqNo: 1845060         Analysis Date: 12/14/2023         SeqNo: 1845060         Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           Ferrous Iron         0.448         0.150         0.4000         0         112         85         115         RunNo: 88336         RunNo: 88336         RunNo: 88336         RunNo: 88336         Analysis Date: 12/14/2023         RunNo: 88336         RunNo: 88336 <t< td=""><td>Sample ID: CCB-R88336B</td><td>SampType: CCB</td><td></td><td></td><td>Units: mg/L</td><td></td><td>Prep Date</td><td>e: 12/14/2023</td><td>RunNo: <b>88336</b></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID: CCB-R88336B     | SampType: CCB        |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Ferrous Iron ND 0.150  SampType: CCV Units: mg/L Prep Date: 12/14/2023 RunNo: 88336 Client ID: CCV-R88336C SampType: CCV Units: mg/L Analysis Date: 12/14/2023 SeqNo: 1845060 Analyte Result RL SPK value SPK Ref Val REC LowLimit HighLimit RPD Ref Val RPD RPDLimit  Ferrous Iron 0.448 0.150 0.4000 0 112 85 115  Sample ID: CCB-R88336C SampType: CCB Units: mg/L Prep Date: 12/14/2023 RunNo: 88336 Client ID: CCB Batch ID: R88336 Analyte Result RL SPK value SPK Ref Val REC LowLimit HighLimit RPD Ref Val Report Result RL SPK value SPK Ref Val REC LowLimit HighLimit RPD Ref Val Report Re | Client ID: CCB             | Batch ID: R88336     |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1844413</b> |      |
| Sample ID: CCV-R88336C       SampType: CCV       Units: mg/L       Prep Date: 12/14/2023       12/14/2023       RunNo: 88336         Client ID: CCV       Batch ID: R88336       Result       RESPK value       SPK Ref Val       %REC       LowLimit       HighLimit       RPD Ref Val       %RPD       RPDLimit         Ferrous Iron       0.448       0.150       0.4000       0       112       85       115       Image: CCB Reset of the control of the contr                                                                                                                                                                                                                                                                                                   | Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Client ID:         CCV         Batch ID:         R88336         REsult         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           Ferrous Iron         0.448         0.150         0.4000         0         112         85         115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ferrous Iron               | ND                   | 0.150 |           |             |      |               |                       |                       |      |
| Analyte         Result         RL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           Ferrous Iron         0.448         0.150         0.4000         0         112         85         115         Image: CCB Reseasce of the company of the com                                                                                                                                                                                                                     | Sample ID: CCV-R88336C     | SampType: <b>CCV</b> |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Ferrous Iron         0.448         0.150         0.4000         0         112         85         115           Sample ID: CCB-R88336C         SampType: CCB         Units: mg/L         Prep Date: 12/14/2023         RunNo: 88336           Client ID: CCB         Batch ID: R88336         Analysis Date: 12/14/2023         SeqNo: 1845068           Analyte         Result         Result         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Client ID: CCV             | Batch ID: R88336     |       |           |             |      | Analysis Date | e: <b>12/14/2023</b>  | SeqNo: <b>1845060</b> |      |
| Sample ID: CCB-R88336C SampType: CCB Units: mg/L Prep Date: 12/14/2023 RunNo: 88336 Client ID: CCB Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845068 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Client ID: CCB Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845068  Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ferrous Iron               | 0.448                | 0.150 | 0.4000    | 0           | 112  | 85            | 115                   |                       |      |
| Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample ID: CCB-R88336C     | SampType: <b>CCB</b> |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client ID: CCB             | Batch ID: R88336     |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1845068</b> |      |
| Ferrous Iron ND 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ferrous Iron               | ND                   | 0.150 |           |             |      |               |                       |                       |      |

Original Page 8 of 19





**CLIENT:** Friedman & Bruya

**Project:** 312245

Client ID: CCV

**QC SUMMARY REPORT** 

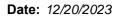
Ferrous Iron by SM3500-Fe B

Sample ID: CCV-R88336D SampType: CCV Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Batch ID: **R88336** Analysis Date: **12/14/2023** SeqNo: **1845066** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Ferrous Iron 0.433 0.150 0.4000 0 108 85 115


Sample ID: CCB-R88336D SampType: CCB Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Client ID: CCB Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845067

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

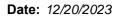
Ferrous Iron ND 0.150

Original Page 9 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

#### **QC SUMMARY REPORT**

#### **Dissolved Metals by EPA Method 200.8**

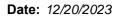
| <b>Project:</b> 312245            |                       |      |           |             | Dissolved Met                       | uis by El A Metriou 200. |
|-----------------------------------|-----------------------|------|-----------|-------------|-------------------------------------|--------------------------|
| Sample ID: ICB                    | SampType: ICB         |      |           | Units: µg/L | Prep Date: 12/15/2023               | RunNo: <b>88400</b>      |
| Client ID: ICB                    | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845892</b>    |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual       |
| Aluminum                          | ND                    | 10.0 |           |             |                                     |                          |
| Sample ID: ICV                    | SampType: <b>ICV</b>  |      |           | Units: μg/L | Prep Date: 12/15/2023               | RunNo: <b>88400</b>      |
| Client ID: ICV                    | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845893</b>    |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual       |
| Aluminum                          | 1,470                 | 10.0 | 1,500     | 0           | 98.0 90 110                         |                          |
| Sample ID: <b>MB-42343</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/14/2023               | RunNo: <b>88400</b>      |
| Client ID: MBLKW                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845895</b>    |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual       |
| Aluminum                          | ND                    | 10.0 |           |             |                                     |                          |
| Sample ID: LCS-42343              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/14/2023               | RunNo: <b>88400</b>      |
| Client ID: LCSW                   | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845896</b>    |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual       |
| Aluminum                          | 1,050                 | 10.0 | 1,000     | 0           | 105 85 115                          |                          |
| Sample ID: <b>2312283-003CDUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/14/2023               | RunNo: <b>88400</b>      |
| Client ID: BATCH                  | Batch ID: 42343       |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845898</b>    |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual       |
| Aluminum                          | 47.4                  | 10.0 |           |             | 46.74                               | 1.47 30                  |
|                                   |                       |      |           |             |                                     |                          |

Original Page 10 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

#### **QC SUMMARY REPORT**

#### **Dissolved Metals by EPA Method 200.8**

| Sample ID: 2312283-003CMS        | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date: 12/14/2023          | RunNo: <b>88400</b>   |
|----------------------------------|----------------------|------|-----------|-------------|------|--------------------------------|-----------------------|
| Client ID: BATCH                 | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023      | SeqNo: <b>1845899</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,130                | 10.0 | 1,000     | 46.74       | 108  | 50 150                         |                       |
| Sample ID: CCV-42343A            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date: 12/15/2023          | RunNo: <b>88400</b>   |
| Client ID: CCV                   | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023      | SeqNo: <b>1845902</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,050                | 10.0 | 1,000     | 0           | 105  | 90 110                         |                       |
| Sample ID: CCB-42343A            | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date: 12/15/2023          | RunNo: <b>88400</b>   |
| Client ID: CCB                   | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023      | SeqNo: <b>1845903</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | ND                   | 10.0 |           |             |      |                                |                       |
| Sample ID: <b>2312328-003BMS</b> | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date: 12/14/2023          | RunNo: <b>88400</b>   |
| Client ID: CTMW-7-1223           | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023      | SeqNo: <b>1845913</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,040                | 10.0 | 1,000     | 3.483       | 103  | 50 150                         |                       |
| Sample ID: CCV-42343B            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date: 12/15/2023          | RunNo: <b>88400</b>   |
| Client ID: CCV                   | Batch ID: 42343      |      |           |             |      | Analysis Date: 12/15/2023      | SeqNo: <b>1845914</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,080                | 10.0 | 1,000     | 0           | 108  | 90 110                         |                       |
|                                  |                      |      |           |             |      |                                |                       |

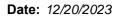
Original Page 11 of 19





Friedman & Bruya

**Project:** 312245


**CLIENT:** 

#### **QC SUMMARY REPORT**

#### **Dissolved Metals by EPA Method 200.8**

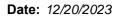
| <b>Project:</b> 312245 |                      |      |           |             |                                     | •                     |
|------------------------|----------------------|------|-----------|-------------|-------------------------------------|-----------------------|
| Sample ID: CCB-42343B  | SampType: CCB        |      |           | Units: µg/L | Prep Date: 12/15/2023               | RunNo: <b>88400</b>   |
| Client ID: CCB         | Batch ID: 42343      |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845915</b> |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum               | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: MB-42344 FB | SampType: MBLK       |      |           | Units: µg/L | Prep Date: 12/14/2023               | RunNo: <b>88400</b>   |
| Client ID: MBLKW       | Batch ID: 42343      |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845923</b> |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum               | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: CCV-42343C  | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/15/2023               | RunNo: <b>88400</b>   |
| Client ID: CCV         | Batch ID: 42343      |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845924</b> |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum               | 1,070                | 10.0 | 1,000     | 0           | 107 90 110                          |                       |
| Sample ID: CCB-42343C  | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/15/2023               | RunNo: <b>88400</b>   |
| Client ID: CCB         | Batch ID: 42343      |      |           |             | Analysis Date: 12/15/2023           | SeqNo: <b>1845925</b> |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum               | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: ICB         | SampType: <b>ICB</b> |      |           | Units: µg/L | Prep Date: 12/18/2023               | RunNo: <b>88400</b>   |
| Client ID: ICB         | Batch ID: 42343      |      |           |             | Analysis Date: 12/18/2023           | SeqNo: <b>1846208</b> |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum               | ND                   | 10.0 |           |             |                                     |                       |

Original Page 12 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

#### **QC SUMMARY REPORT**

#### **Dissolved Metals by EPA Method 200.8**

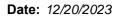
| F10ject. 312243       |                      |      |           |             |      |                |                       | •                    |              |
|-----------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|----------------------|--------------|
| Sample ID: <b>ICV</b> | SampType: <b>ICV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/18/2023            | RunNo: <b>8840</b> ( | 0            |
| Client ID: ICV        | Batch ID: 42343      |      |           |             |      | Analysis Date: | 12/18/2023            | SeqNo: <b>1846</b> 2 | 209          |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD F               | RPDLimit Qua |
| Aluminum              | 1,480                | 10.0 | 1,500     | 0           | 98.4 | 90             | 110                   |                      |              |
| Sample ID: CCV-42343D | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/18/2023            | RunNo: <b>8840</b> ( | 0            |
| Client ID: CCV        | Batch ID: 42343      |      |           |             |      | Analysis Date: | 12/18/2023            | SeqNo: <b>1846</b> 1 | 190          |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD F               | RPDLimit Qua |
| Aluminum              | 1,060                | 10.0 | 1,000     | 0           | 106  | 90             | 110                   |                      |              |
| Sample ID: CCB-42343D | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date:     | 12/18/2023            | RunNo: <b>8840</b> 0 | 0            |
| Client ID: CCB        | Batch ID: 42343      |      |           |             |      | Analysis Date: | 12/18/2023            | SeqNo: <b>1846</b> 1 | 191          |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD F               | RPDLimit Qua |
| Aluminum              | ND                   | 10.0 |           |             |      |                |                       |                      |              |
| Sample ID: CCV-42343E | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/18/2023            | RunNo: <b>8840</b> ( | 0            |
| Client ID: CCV        | Batch ID: 42343      |      |           |             |      | Analysis Date: | 12/18/2023            | SeqNo: <b>1846</b> 1 | 196          |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD F               | RPDLimit Qua |
| Aluminum              | 1,050                | 10.0 | 1,000     | 0           | 105  | 90             | 110                   |                      |              |
| Sample ID: CCB-42343E | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/18/2023            | RunNo: <b>8840</b> 0 | 0            |
| Client ID: CCB        | Batch ID: 42343      |      |           |             |      | Analysis Date: | 12/18/2023            | SeqNo: <b>1846</b> 1 | 197          |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD F               | RPDLimit Qua |
| Aluminum              | ND                   | 10.0 |           |             | _    |                |                       |                      |              |
|                       |                      |      |           |             |      |                |                       |                      |              |

Original Page 13 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

#### **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

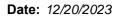
| <b>Project:</b> 312245 |                       |      |           |             |                                                        |
|------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB         | SampType: ICB         |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88458                     |
| Client ID: ICB         | Batch ID: 42378       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847318               |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | ND                    | 10.0 |           |             |                                                        |
| Sample ID: ICV         | SampType: <b>ICV</b>  |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88458                     |
| Client ID: ICV         | Batch ID: 42378       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847319               |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | 1,470                 | 10.0 | 1,500     | 0           | 98.3 90 110                                            |
| Sample ID: CCV-42378A  | SampType: <b>CCV</b>  |      |           | Units: μg/L | Prep Date: 12/19/2023 RunNo: 88458                     |
| Client ID: CCV         | Batch ID: 42378       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847321               |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | 1,060                 | 10.0 | 1,000     | 0           | 106 90 110                                             |
| Sample ID: CCB-42378A  | SampType: <b>CCB</b>  |      |           | Units: μg/L | Prep Date: 12/19/2023 RunNo: 88458                     |
| Client ID: CCB         | Batch ID: 42378       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847322               |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | ND                    | 10.0 |           |             |                                                        |
| Sample ID: MB-42378    | SampType: <b>MBLK</b> |      |           | Units: μg/L | Prep Date: 12/18/2023 RunNo: 88458                     |
| Client ID: MBLKW       | Batch ID: 42378       |      |           |             | Analysis Date: 12/19/2023 SeqNo: 1847323               |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | ND                    | 10.0 |           |             |                                                        |
|                        |                       |      |           |             |                                                        |

Original Page 14 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

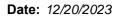
| Sample ID: LCS-42378              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date     | : 12/18/2023          | RunNo: <b>88458</b>   |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Client ID: LCSW                   | Batch ID: 42378      |      |           |             |      | Analysis Date | : 12/19/2023          | SeqNo: <b>1847324</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 85            | 115                   |                       |      |
| Sample ID: <b>2312328-002ADUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date     | : 12/18/2023          | RunNo: <b>88458</b>   |      |
| Client ID: CTMW-5-1223            | Batch ID: 42378      |      |           |             |      | Analysis Date | : 12/19/2023          | SeqNo: <b>1847326</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 416                  | 20.0 |           |             |      |               | 424.5                 | 1.99 30               |      |
| Sample ID: <b>2312328-002AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date     | : 12/18/2023          | RunNo: <b>88458</b>   |      |
| Client ID: CTMW-5-1223            | Batch ID: 42378      |      |           |             |      | Analysis Date | : 12/19/2023          | SeqNo: <b>1847327</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 2,530                | 20.0 | 2,000     | 424.5       | 105  | 70            | 130                   |                       |      |
| Sample ID: CCV-42378B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date     | : 12/19/2023          | RunNo: <b>88458</b>   |      |
| Client ID: CCV                    | Batch ID: 42378      |      |           |             |      | Analysis Date | : 12/19/2023          | SeqNo: <b>1847332</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,070                | 10.0 | 1,000     | 0           | 107  | 90            | 110                   |                       |      |
| Sample ID: CCB-42378B             | SampType: CCB        |      |           | Units: μg/L |      | Prep Date     | : 12/19/2023          | RunNo: <b>88458</b>   |      |
| Client ID: CCB                    | Batch ID: 42378      |      |           |             |      | Analysis Date | : 12/19/2023          | SeqNo: <b>1847333</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |               |                       |                       |      |

Original Page 15 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

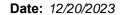
| 110ject. 012240                  |                      |      |           |             |      |               |                       |                       |         |
|----------------------------------|----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|---------|
| Sample ID: CCV-42378C            | SampType: CCV        |      |           | Units: μg/L |      | Prep Date     | 12/19/2023            | RunNo: <b>88458</b>   |         |
| Client ID: CCV                   | Batch ID: 42378      |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847344</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,040                | 10.0 | 1,000     | 0           | 104  | 90            | 110                   |                       |         |
| Sample ID: CCB-42378C            | SampType: CCB        |      |           | Units: µg/L |      | Prep Date     | 12/19/2023            | RunNo: <b>88458</b>   |         |
| Client ID: CCB                   | Batch ID: 42378      |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847345</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | ND                   | 10.0 |           |             |      |               |                       |                       |         |
| Sample ID: <b>2312336-001AMS</b> | SampType: <b>MS</b>  |      |           | Units: μg/L |      | Prep Date     | : 12/18/2023          | RunNo: <b>88458</b>   |         |
| Client ID: BATCH                 | Batch ID: 42378      |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847346</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,080                | 10.0 | 1,000     | 49.99       | 103  | 70            | 130                   |                       |         |
| Sample ID: CCV-42378D            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date     | : 12/19/2023          | RunNo: <b>88458</b>   |         |
| Client ID: CCV                   | Batch ID: 42378      |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847353</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,030                | 10.0 | 1,000     | 0           | 103  | 90            | 110                   |                       |         |
| Sample ID: CCB-42378D            | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date     | : 12/19/2023          | RunNo: <b>88458</b>   |         |
| Client ID: CCB                   | Batch ID: 42378      |      |           |             |      | Analysis Date | 12/19/2023            | SeqNo: <b>1847354</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | ND                   | 10.0 |           |             |      |               |                       |                       |         |
|                                  |                      |      |           |             |      |               |                       |                       |         |

Original Page 16 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312245

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| <b>Project:</b> 312245 |                      |      |           |             | Total metals by El A method 200                       |
|------------------------|----------------------|------|-----------|-------------|-------------------------------------------------------|
| Sample ID: ICB         | SampType: ICB        |      |           | Units: µg/L | Prep Date: 12/20/2023 RunNo: 88458                    |
| Client ID: ICB         | Batch ID: 42378      |      |           |             | Analysis Date: 12/20/2023 SeqNo: 1847455              |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum               | ND                   | 10.0 |           |             |                                                       |
| Sample ID: ICV         | SampType: <b>ICV</b> |      |           | Units: µg/L | Prep Date: 12/20/2023 RunNo: 88458                    |
| Client ID: ICV         | Batch ID: 42378      |      |           |             | Analysis Date: 12/20/2023 SeqNo: 1847456              |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum               | 1,490                | 10.0 | 1,500     | 0           | 99.0 90 110                                           |
| Sample ID: CCV-42378E  | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/20/2023 RunNo: 88458                    |
| Client ID: CCV         | Batch ID: 42378      |      |           |             | Analysis Date: 12/20/2023 SeqNo: 1847458              |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum               | 1,030                | 10.0 | 1,000     | 0           | 103 90 110                                            |
| Sample ID: CCB-42378E  | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/20/2023 RunNo: 88458                    |
| Client ID: CCB         | Batch ID: 42378      |      |           |             | Analysis Date: 12/20/2023 SeqNo: 1847459              |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum               | ND                   | 10.0 |           |             |                                                       |
| Sample ID: CCV-42378F  | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/20/2023 RunNo: 88458                    |
| Client ID: CCV         | Batch ID: 42378      |      |           |             | Analysis Date: 12/20/2023 SeqNo: 1847465              |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua |
| Aluminum               | 1,040                | 10.0 | 1,000     | 0           | 104 90 110                                            |
|                        |                      |      |           |             |                                                       |

Original Page 17 of 19





**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Total Metals by EPA Method 200.8** 

**Project:** 312245

Sample ID: CCB-42378F

SampType: CCB Units: µg/L

Prep Date: 12/20/2023 RunNo: 88458

Client ID: CCB Batch ID: 42378 Analysis Date: 12/20/2023 SeqNo: 1847466

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 18 of 19



# Sample Log-In Check List

| Clie             | ent Name:               | FB                |                                           |                   | Work (            | Order Num   | ber: 2312328 |               |  |
|------------------|-------------------------|-------------------|-------------------------------------------|-------------------|-------------------|-------------|--------------|---------------|--|
| Log              | gged by:                | Morgan Wils       | son                                       |                   | Date R            | eceived:    | 12/13/20     | 23 4:00:00 PM |  |
| Chai             | n of Custo              | ody               |                                           |                   |                   |             |              |               |  |
| 1. 1             | s Chain of C            | ustody comple     | ete?                                      |                   | Yes               | · 🗸         | No 🗌         | Not Present   |  |
| 2. F             | How was the             | sample delive     | red?                                      |                   | Clie              | <u>nt</u>   |              |               |  |
| Log l            | <u>In</u>               |                   |                                           |                   |                   |             |              |               |  |
| •                |                         |                   | hipping container/<br>tody Seals not into |                   | Yes               |             | No 🗌         | Not Present 🗹 |  |
| 4. V             | Vas an attem            | pt made to co     | ol the samples?                           |                   | Yes               | <b>✓</b>    | No 🗌         | NA $\square$  |  |
| 5. W             | Vere all items          | s received at a   | temperature of >                          | ·2°C to 6°C *     | Yes               | <b>✓</b>    | No 🗌         | NA 🗆          |  |
| 6. S             | ample(s) in p           | proper contain    | er(s)?                                    |                   | Yes               |             | No 🗸         |               |  |
| 7. S             | Sufficient sam          | nple volume fo    | r indicated test(s)                       | ?                 | Yes               | <b>✓</b>    | No 🗌         |               |  |
| 8. A             | re samples p            | properly prese    | rved?                                     |                   | Yes               | <b>✓</b>    | No 🗌         |               |  |
| 9. W             | Vas preserva            | tive added to     | bottles?                                  |                   | Yes               | <b>✓</b>    | No $\square$ | NA $\square$  |  |
|                  |                         |                   |                                           |                   |                   |             | _            | HCL           |  |
| 10. ls           | s there heads           | space in the V    | OA vials?                                 |                   | Yes               |             | No 🗌         | NA 🗸          |  |
| 11. D            | id all sample           | es containers a   | arrive in good cond                       | dition(unbroken)? | Yes               | <b>✓</b>    | No 🗌         |               |  |
| 12. <sup>D</sup> | oes paperwo             | ork match bott    | le labels?                                |                   | Yes               | ✓           | No 📙         |               |  |
| 13. A            | are matrices            | correctly identi  | ified on Chain of C                       | Custody?          | Yes               | <b>✓</b>    | No 🗌         |               |  |
| 14. ls           | s it clear wha          | t analyses we     | re requested?                             |                   | Yes               | ✓           | No 🗌         |               |  |
|                  | Vere all hold<br>e met? | times (except     | field parameters,                         | pH e.g.) able to  | Yes               | ✓           | No 🗌         |               |  |
| Spec             | cial Handl              | ling (if app      | <u>licable)</u>                           |                   |                   |             |              |               |  |
| 16.              | Was client n            | otified of all di | screpancies with t                        | his order?        | Ye                | s $\square$ | No 🗌         | NA 🗹          |  |
|                  | Person                  | Notified:         |                                           | D                 | ate:              |             |              |               |  |
|                  | By Who                  | om:               |                                           | V                 | 'ia:           eM | lail 🔲 Pl   | hone  Fax    | ☐ In Person   |  |
|                  | Regard                  | ing:              |                                           |                   |                   |             |              |               |  |
|                  | Client I                | nstructions:      |                                           |                   |                   |             |              |               |  |
| 17.              | Additional re           | marks:            |                                           |                   |                   |             |              |               |  |
| Item I           | Inform ation            |                   |                                           |                   |                   |             |              |               |  |
|                  |                         | Item #            |                                           | Temp °C           |                   |             |              |               |  |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Sample

Original Page 19 of 19

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| Send Report To    | Send Report To Michael Erdahl      |  |
|-------------------|------------------------------------|--|
| Company           | Friedman and Bruya, Inc.           |  |
| Address           | 5500 4th Ave S                     |  |
| City, State, ZIP_ | City, State, ZIP Seattle, WA 98108 |  |
|                   |                                    |  |

| Phone # (206) 285-8282 merdahl@friedmanandbruya.com | City, State, ZIP Seattle, WA 98108 | Address 5500 4th Ave S | Company Friedman and Bruya, Inc. | Send Report To Michael Erdahl |
|-----------------------------------------------------|------------------------------------|------------------------|----------------------------------|-------------------------------|
| TIER IV REPORT                                      | REMARKS                            | 312245 D-594           | PROJECT NAME/NO. PO#             | SUBCONTRACTER<br>Fremont      |

| Page # 1 of TURNAROUND TIME  I Standard TAT RUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                    |                                              |                       | . 1                    |          |         | <br>              | 10           |             |             | ات          |                       |                   |
|--------------------|----------------------------------------------|-----------------------|------------------------|----------|---------|-------------------|--------------|-------------|-------------|-------------|-----------------------|-------------------|
| Fax (206) 283-5044 | Seattle, WA 98119-2029<br>Ph. (206) 285-8282 | 3012 16th Avenue West | Friedman & Bruya, Inc. |          |         |                   | CTMW-18-1223 | CTMW-7-1223 | CTMW-5-1223 | TWA-8D-1223 | Sample ID             |                   |
|                    |                                              |                       | с.<br>П                |          |         |                   |              |             |             |             | Lab<br>ID             |                   |
| Received by:       | Received by:<br>Relinquished by:             | Relinquished by:      | SI                     |          |         |                   | 12/13/2023   | 12/13/2023  | 12/13/2023  | 12/13/2023  | Date<br>Sampled       |                   |
|                    | as Marilla                                   | 2 y                   | SIGNATURE              |          |         |                   | 1235         | 1200        | 1040        | 925         | Time<br>Sampled       |                   |
|                    |                                              |                       |                        | 2        |         |                   | 1235 water   | 1200 water  | 1040 water  | 925 water   | Matrix                |                   |
|                    | 1                                            | Micha                 |                        |          |         |                   | 3            | <u>ى</u>    | ယ           | 3           | # of<br>jars          |                   |
|                    | All Milver                                   | Michael Erdahl        | PF                     |          |         |                   | ×            | ×           | ×           | х           | total aluminum        |                   |
|                    | 4116                                         | ıhl                   | PRINT NAME             |          |         |                   | ×            | ×           | ×           | ×           | dissolved<br>aluminum |                   |
|                    | 1                                            |                       | AME                    |          |         |                   | ×            | ×           | ×           | ×           | ferrous iron          | A                 |
|                    |                                              |                       |                        | $\vdash$ |         | ++                | +            | -           | _           |             |                       | NALYS             |
|                    |                                              | দ                     |                        |          |         | +                 | +            |             |             |             |                       | NALYSES REQUESTED |
|                    | 7                                            | Friedman & Bruya      | C                      |          | $\Box$  | $\dagger \dagger$ | +            |             |             |             |                       | SQUES             |
|                    | 4                                            | ın & B                | COMPANY                |          | $\Box$  | T                 | $\dagger$    |             |             |             |                       | STED              |
|                    |                                              | ruya                  | YY                     |          |         |                   |              |             |             |             |                       |                   |
|                    | 12                                           | 12                    |                        |          | $\perp$ |                   | +            |             |             |             |                       | Ц                 |
|                    | 2/3/23                                       | 12/15/21              | DATE                   |          |         |                   |              |             |             |             | Notes                 |                   |
|                    | 1600                                         | 4151                  | TIME                   |          |         |                   |              |             |             |             | ø<br>G                |                   |

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2024

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the amended results from the testing of material submitted on December 13, 2023 from the TWAAFA-001, F&BI 312249 project. The sample ID was corrected.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1227R.DOC

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 13, 2023 from the TWAAFA-001, F&BI 312249 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1227R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 13, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312249 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Dalton Olmsted Fuglevand</u>

312249 -01 CTMW-14-1223

Sample CTMW-14-1223 was sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

Copper in the 6020B total matrix spike and matrix spike duplicate did not meet the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

The 6020B total arsenic calibration standard exceeded the acceptance criteria in sample CTMW-14-1223. The metal was not detected, therefore this did not represent an out of control condition.

All other quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:      | CTMW-14-1223 | Client:  | Dalton Olmsted Fuglevand |
|-----------------|--------------|----------|--------------------------|
| Date Received:  | 12/13/23     | Project: | TWAAFA-001, F&BI 312249  |
| Date Extracted: | 12/19/23     | Lab ID:  | 312249-01                |

 Date Extracted:
 12/19/25
 Lab ID:
 512249-01

 Date Analyzed:
 12/21/23
 Data File:
 312249-01.305

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

Analyte: Concentration ug/L (ppb)

Arsenic 3.78
Iron 156
Manganese 3.53

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-14-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312249

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Copper 5.62

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312249

 Date Extracted:
 12/19/23
 Lab ID:
 I3-1001 mb2

 Date Analyzed:
 12/20/23
 Data File:
 I3-1001 mb2.152

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | CTMW-14-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|--------------|----------|--------------------------|
| Date Received: | 12/13/23     | Project: | TWAAFA-001, F&BI 312249  |
|                |              |          |                          |

312249-01Date Extracted: 12/14/23Lab ID: Date Analyzed: 12/16/23 Data File: 312249 - 01.225Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Copper
 4.73

 Iron
 220

 Manganese
 <5</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-14-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/13/23 Project: TWAAFA-001, F&BI 312249

 Date Extracted:
 12/14/23
 Lab ID:
 312249-01 x5

 Date Analyzed:
 12/20/23
 Data File:
 312249-01 x5.067

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5 k

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312249

12/14/23 Lab ID: Date Extracted: I3-989 mb Date Analyzed: 12/15/23 Data File: I3-989 mb.094 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Copper
 <1</td>

 Iron
 <50</td>

 Manganese
 <5</td>

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/27/23 Date Received: 12/13/23

Project: TWAAFA-001, F&BI 312249

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,110  | 304 b    | 625 b    | 75-125     | 69 b       |
| Copper    | ug/L (ppb) | 20    | < 50   | 89       | 87       | 75 - 125   | 2          |
| Iron      | ug/L (ppb) | 100   | 4,770  | 133 b    | 210 b    | 75 - 125   | 45 b       |
| Manganese | ug/L (ppb) | 20    | 188    | 103 b    | 110 b    | 75 - 125   | 7 b        |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 87       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 83       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/27/23 Date Received: 12/13/23

Project: TWAAFA-001, F&BI 312249

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312250-01 (Matrix Spike)

|           |            |       |        | Percent  | Percent             |            |                 |
|-----------|------------|-------|--------|----------|---------------------|------------|-----------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery            | Acceptance | RPD             |
| Analyte   | Units      | Level | Result | MS       | MSD                 | Criteria   | (Limit 20)      |
| Arsenic   | ug/L (ppb) | 10    | 11.8   | 99 b     | 99 b                | 75-125     | 0 b             |
| Copper    | ug/L (ppb) | 20    | <5     | 50 vo    | 52 vo               | 75 - 125   | 4               |
| Iron      | ug/L (ppb) | 100   | 23,400 | 2160 b   | $3270 \mathrm{\ b}$ | 75 - 125   | 41 b            |
| Manganese | ug/L (ppb) | 20    | 1,220  | 531 b    | 816 b               | 75 - 125   | $42 \mathrm{b}$ |

Laboratory Code: Laboratory Control Sample

|           |            |       | $\operatorname{Percent}$ |            |
|-----------|------------|-------|--------------------------|------------|
|           | Reporting  | Spike | Recovery                 | Acceptance |
| Analyte   | Units      | Level | LCS                      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 91                       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91                       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 83                       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87                       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To: Anthony Cerruti / Trevor Louviere

Address 1001 SW Klickitat Way

Company DOF

City, State, ZIP\_Seattle, WA 98134

Phone 215-767-7749 Email acerruti@dofnw.com

# SAMPLE CHAIN OF CUSTODY 12/13/25 LI

| SAMPLERS (signature)                            |            |
|-------------------------------------------------|------------|
| PROJECT NAME                                    | PO#        |
| -                                               | TWAAFA-001 |
| TWAAFA                                          |            |
| REMARKS                                         | INVOICE TO |
| Dissolved metals samples field filtered at 0.45 |            |
| micron before analysis                          | DOF        |
| Project Specific RLs - (Yes)/ No                |            |
|                                                 |            |

Standard Turnaround
RUSH
Rush charges authorized by:

TURNAROUND TIME

Page#\_

Dispose after 30 days

SAMPLE DISPOSAL

**Archive Samples** 

Other\_

| Friedman & Bruya, Inc. |            |   |   |             | " (Called | ~ | Mary State | Secretaria de la composición del composición de la composición de la composición de la composición del composición de la composición del composición de la composición del composición del composición de la composición del composición del composición del composición del composición del composición del | And the second s |   | CTHW-14-1223    | Sample ID                                             |                    |
|------------------------|------------|---|---|-------------|-----------|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|-------------------------------------------------------|--------------------|
|                        |            |   |   |             | 0         |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 01 A-C 12/13/23 | Lab ID                                                |                    |
| Relinquished by        | ) fS       |   |   |             | 9         | > |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 12/13/23        | Date<br>Sampled                                       |                    |
| 7                      | SIGNATURE  |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 1412            | Time<br>Sampled                                       |                    |
| A                      |            |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Σ               | Sample<br>Matrix                                      |                    |
| 7                      |            |   |   |             |           |   | \          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ω               | # of<br>Bottles                                       |                    |
| Miller                 | P          |   | 2 |             |           |   |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | X               | Total Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb,<br>Zn) |                    |
| 6                      | PRINT NAME |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | X               | Dissolved Metals 6020B<br>(As, Cr, Cu, Mn, Ni, Pb,    | 8                  |
| Love                   | AME        |   |   | Samp]       |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + |                 | Total Mercury 1631E  Dissolved Mercury 1631E          |                    |
|                        |            | - |   | ples re     |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | X               | Total Metals (Al, Fe)                                 |                    |
| 7                      |            |   |   | es received |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | X               | Dissolved Metals (Al, Fe)                             | 4                  |
| Moan                   | CO         |   |   | 22          |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | X               | Firrans                                               |                    |
| M                      | COMPANY    |   |   | ٥<br>•      |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 |                                                       |                    |
| and the                | YY         |   |   | റ്          |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 |                                                       | ANALYSES REQUESTED |
| S                      | DATE       |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 | MS/MSD Collected?<br>(Y/N)                            | ES REG             |
| 2/2                    | Н          |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 124/0:<br>11/AS | 7                                                     | UEST               |
| 15:59                  | TIME       |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 701/0:53 repos  | Notes                                                 | ED                 |
|                        |            |   |   |             |           |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M | 16              |                                                       |                    |

Friedman & Bruya, Inc.
3012 16<sup>th</sup> Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282

|             | SIGNATUKE        | PRINT NAME    | COMPANY     | DATE          | TIME  |
|-------------|------------------|---------------|-------------|---------------|-------|
| Bruya, Inc. | Relinquished by  | Mochael Wordt | Clark Earth | 12/10/23 15:5 | 15:5  |
| nue West    |                  | ANHPHAN       | FAA         | 12/13/23      | 15:59 |
| 8119-2029   | Relinquished by: |               |             |               | 9     |
| -8282       | Received by:     |               |             |               |       |
|             |                  |               |             |               |       |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312249

Work Order Number: 2312339

December 21, 2023

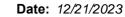
### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 1 sample(s) on 12/14/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910





CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312249 **Work Order:** 2312339

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2312339-001 CTMW-14-1223 12/13/2023 2:15 PM 12/14/2023 10:36 AM



### **Case Narrative**

WO#: **2312339**Date: **12/21/2023** 

**CLIENT:** Friedman & Bruya

**Project:** 312249

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



# **Qualifiers & Acronyms**

WO#: **2312339** 

Date Reported: 12/21/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

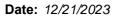
Surr - Surrogate



# **Analytical Report**

Work Order: **2312339**Date Reported: **12/21/2023** 

Client: Friedman & Bruya Collection Date: 12/13/2023 2:15:00 PM


**Project**: 312249

**Lab ID:** 2312339-001 **Matrix:** Water

Client Sample ID: CTMW-14-1223

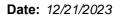
| Analyses                      | Result         | RL    | Qual | Units | DF    | Date Analyzed          |
|-------------------------------|----------------|-------|------|-------|-------|------------------------|
| Dissolved Metals by EPA Metho | <u>d 200.8</u> |       |      | Batcl | n ID: | 42413 Analyst: SLL     |
| Aluminum                      | 21.4           | 10.0  |      | μg/L  | 1     | 12/21/2023 10:59:00 AM |
| Total Metals by EPA Method 20 | 0.8            |       |      | Batcl | n ID: | 42397 Analyst: SLL     |
| Aluminum                      | 55.2           | 10.0  |      | μg/L  | 1     | 12/21/2023 2:31:00 PM  |
| Ferrous Iron by SM3500-Fe B   |                |       |      | Batcl | n ID: | R88336 Analyst: SLL    |
| Ferrous Iron                  | ND             | 0.150 |      | mg/L  | 1     | 12/14/2023 11:00:00 AM |

Original





**CLIENT:** Friedman & Bruya


**Project:** 312249

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| 110ject. 012240                   |                         |       |           |             |      |                |                       |                     |          |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|------|----------------|-----------------------|---------------------|----------|------|
| Sample ID: CCV-R88336A            | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>883</b> 3 | 36       |      |
| Client ID: CCV                    | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> 4 | 4402     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD                | RPDLimit | Qual |
| Ferrous Iron                      | 0.414                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |                     |          |      |
| Sample ID: MB-R88336              | SampType: <b>MBLK</b>   |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>883</b> 3 | 36       |      |
| Client ID: MBLKW                  | Batch ID: <b>R88336</b> |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> 4 | 4403     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Val | %RPD                | RPDLimit | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |      |                |                       |                     |          |      |
| Sample ID: LCS-R88336             | SampType: LCS           |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>883</b> 3 | 36       |      |
| Client ID: LCSW                   | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> 4 | 4404     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Ferrous Iron                      | 0.417                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |                     |          |      |
| Sample ID: <b>2312328-001CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 8833         | 36       |      |
| Client ID: BATCH                  | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> 4 | 4406     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Ferrous Iron                      | 0.445                   | 0.150 |           |             |      |                | 0.4084                | 8.50                | 20       |      |
| Sample ID: <b>2312328-001CMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: <b>883</b> 3 | 36       |      |
| Client ID: BATCH                  | Batch ID: <b>R88336</b> |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: <b>184</b> 4 | 4407     |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Ferrous Iron                      | 0.910                   | 0.150 | 0.4000    | 0.4084      | 125  | 70             | 130                   |                     |          |      |
|                                   |                         |       |           |             |      |                |                       |                     |          |      |

Original Page 6 of 16





**CLIENT:** Friedman & Bruya

**Project:** 312249

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| 110ject. 012240            |                         |       |           |             |      |               |                       |                       |      |
|----------------------------|-------------------------|-------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Sample ID: 2312328-001CMSD | SampType: MSD           |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Client ID: BATCH           | Batch ID: R88336        |       |           |             |      | Analysis Date | e: <b>12/14/2023</b>  | SeqNo: <b>1844408</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.925                   | 0.150 | 0.4000    | 0.4084      | 129  | 70            | 130 0.9100            | 1.65 30               |      |
| Sample ID: CCV-R88336B     | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Client ID: CCV             | Batch ID: <b>R88336</b> |       |           |             |      | Analysis Date | e: <b>12/14/2023</b>  | SeqNo: <b>1844412</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.427                   | 0.150 | 0.4000    | 0           | 107  | 85            | 115                   |                       |      |
| Sample ID: CCB-R88336B     | SampType: CCB           |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Client ID: CCB             | Batch ID: R88336        |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1844413</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | ND                      | 0.150 |           |             |      |               |                       |                       |      |
| Sample ID: CCV-R88336C     | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Client ID: CCV             | Batch ID: R88336        |       |           |             |      | Analysis Date | e: 12/14/2023         | SeqNo: <b>1845060</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.448                   | 0.150 | 0.4000    | 0           | 112  | 85            | 115                   |                       |      |
| Sample ID: CCB-R88336C     | SampType: CCB           |       |           | Units: mg/L |      | Prep Date     | e: 12/14/2023         | RunNo: <b>88336</b>   |      |
| Client ID: CCB             | Batch ID: <b>R88336</b> |       |           |             |      | Analysis Date | e: <b>12/14/2023</b>  | SeqNo: <b>1845068</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | ND                      | 0.150 |           |             |      |               |                       |                       |      |
|                            |                         |       |           |             |      |               |                       |                       |      |

Original Page 7 of 16

Date: 12/21/2023



Work Order: 2312339

**CLIENT:** Friedman & Bruya

**Project:** 312249

Client ID: CCV

**QC SUMMARY REPORT** 

Ferrous Iron by SM3500-Fe B

Sample ID: CCV-R88336D SampType: CCV Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Batch ID: **R88336** Analysis Date: **12/14/2023** SeqNo: **1845066** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Ferrous Iron 0.433 0.150 0.4000 0 108 85 115


Sample ID: CCB-R88336D SampType: CCB Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Client ID: CCB Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845067

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

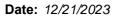
Ferrous Iron ND 0.150

Original Page 8 of 16





**CLIENT:** Friedman & Bruya


**Project:** 312249

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

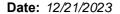
| <b>Project</b> : 312249           |                       |      |           |             | Dissolved metals by El A method 200.0                  |
|-----------------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB                    | SampType: ICB         |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: ICB                    | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848083               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: ICV                    | SampType: <b>ICV</b>  |      |           | Units: μg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: ICV                    | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848084               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,450                 | 10.0 | 1,500     | 0           | 96.8 90 110                                            |
| Sample ID: <b>MB-42413</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: MBLKW                  | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848085               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: LCS-42413              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: LCSW                   | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848086               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 906                   | 10.0 | 1,000     | 0           | 90.6 85 115                                            |
| Sample ID: <b>2312341-007BDUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: BATCH                  | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848088               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             | 0 30                                                   |
|                                   |                       |      |           |             |                                                        |

Original Page 9 of 16





**CLIENT:** Friedman & Bruya


**Project:** 312249

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

| Sample ID: <b>2312341-007BMS</b>  | SampType: MS         |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88496</b>   |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|----------------------|-----------------------|------|
| Client ID: BATCH                  | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848089</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 50             | 150                  |                       |      |
| Sample ID: <b>2312341-007BMSD</b> | SampType: MSD        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88496</b>   |      |
| Client ID: BATCH                  | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848090</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,170                | 10.0 | 1,000     | 0           | 117  | 50             | 150 1,022            | 13.2 30               |      |
| Sample ID: CCV-42413A             | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848092</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 993                  | 10.0 | 1,000     | 0           | 99.3 | 90             | 110                  |                       |      |
| Sample ID: CCB-42413A             | SampType: CCB        |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88496</b>   |      |
| Client ID: CCB                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848093</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                |                      |                       |      |
| Sample ID: CCV-42413B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848104</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 90             | 110                  |                       |      |

Original Page 10 of 16





**Project:** 

**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

312249

Dissolved Metals by EPA Method 200.8

 Sample ID: CCB-42413B
 SampType: CCB
 Units: μg/L
 Prep Date: 12/21/2023
 RunNo: 88496

Client ID: CCB Batch ID: 42413 Analysis Date: 12/21/2023 SeqNo: 1848105

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

 Sample ID: 2312350-004BMS
 SampType: MS
 Units: μg/L
 Prep Date: 12/21/2023
 RunNo: 88496

Client ID: **BATCH** Batch ID: **42413** Analysis Date: **12/21/2023** SeqNo: **1848114** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum 1,050 10.0 1,000 8.025 105 50 150

Sample ID: CCV-42413C SampType: CCV Units: μg/L Prep Date: 12/21/2023 RunNo: 88496

Client ID: CCV Batch ID: 42413 Analysis Date: 12/21/2023 SeqNo: 1848115

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum 1,010 10.0 1,000 0 101 90 110


Sample ID: CCB-42413C SampType: CCB Units: μg/L Prep Date: 12/21/2023 RunNo: 88496

Client ID: **CCB** Batch ID: **42413** Analysis Date: **12/21/2023** SeqNo: **1848116** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

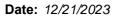
Aluminum ND 10.0

Original Page 11 of 16





**CLIENT:** Friedman & Bruya


**Project:** 312249

# **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

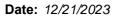
| Project:        | 312249    |           |        |      |           |             |      |                |                       | •                  |          |      |
|-----------------|-----------|-----------|--------|------|-----------|-------------|------|----------------|-----------------------|--------------------|----------|------|
| Sample ID: ICB  |           | SampType  | : ICB  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>8850</b> | 9        |      |
| Client ID: ICB  |           | Batch ID: | 42397  |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848</b> | 375      |      |
| Analyte         |           | F         | Result | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | HighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum        |           |           | ND     | 10.0 |           |             |      |                |                       |                    |          |      |
| Sample ID: ICV  |           | SampType  | : ICV  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>8850</b> | 9        |      |
| Client ID: ICV  |           | Batch ID: | 42397  |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848</b> | 376      |      |
| Analyte         |           | F         | Result | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum        |           |           | 1,450  | 10.0 | 1,500     | 0           | 96.8 | 90             | 110                   |                    |          |      |
| Sample ID: CCV- | 42397A    | SampType  | : CCV  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>8850</b> | 19       |      |
| Client ID: CCV  |           | Batch ID: | 42397  |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848</b> | 377      |      |
| Analyte         |           | F         | Result | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum        |           |           | 986    | 10.0 | 1,000     | 0           | 98.6 | 90             | 110                   |                    |          |      |
| Sample ID: CCB- | 42397A    | SampType  | : ССВ  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>8850</b> | 19       |      |
| Client ID: CCB  |           | Batch ID: | 42397  |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848</b> | 378      |      |
| Analyte         |           | F         | Result | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum        |           |           | ND     | 10.0 |           |             |      |                |                       |                    |          |      |
| Sample ID: MB-4 | 2397      | SampType  | : MBLK |      |           | Units: μg/L |      | Prep Date:     | 12/19/2023            | RunNo: <b>8850</b> | )9       |      |
| Client ID: MBL  | <b>KW</b> | Batch ID: | 42397  |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848</b> | 379      |      |
| Analyte         |           | F         | Result | RL   | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum        |           |           | ND     | 10.0 |           |             | _    | _              |                       |                    |          |      |

Original Page 12 of 16





**CLIENT:** Friedman & Bruya


**Project:** 312249

# **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

| Sample ID: <b>2312365-002AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88509                   |
|-----------------------------------|----------------------|------|-----------|-------------|------------------------------------------------------|
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848382             |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu |
| Aluminum                          | 728                  | 10.0 | 1,000     | 0           | 72.8 70 130                                          |
| Sample ID: <b>2312365-002AMSD</b> | SampType: MSD        |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88509                   |
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848383             |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu |
| Aluminum                          | 926                  | 10.0 | 1,000     | 0           | 92.6 70 130 728.2 24.0 30                            |
| Sample ID: CCV-42397B             | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88509                   |
| Client ID: CCV                    | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848393             |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu |
| Aluminum                          | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                                           |
| Sample ID: CCB-42397B             | SampType: CCB        |      |           | Units: μg/L | Prep Date: 12/21/2023 RunNo: 88509                   |
| Client ID: CCB                    | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848394             |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu |
| Aluminum                          | ND                   | 10.0 |           |             |                                                      |
| Sample ID: <b>2312350-001AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88509                   |
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848396             |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu |
| Aluminum                          | 865                  | 10.0 | 1,000     | 34.80       | 83.1 70 130                                          |

Original Page 13 of 16





**CLIENT:** Friedman & Bruya

**Project:** 312249

# **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

| Sample ID: CCV-42397C | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: <b>12/2</b> | 21/2023         | RunNo: 885        | 09       |      |
|-----------------------|----------------------|------|-----------|-------------|------------------------|-----------------|-------------------|----------|------|
| Client ID: CCV        | Batch ID: 42397      |      |           |             | Analysis Date: 12/2    | 21/2023         | SeqNo: 184        | 8405     |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLin   | mit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Aluminum              | 998                  | 10.0 | 1,000     | 0           | 99.8 90 1              | 10              |                   |          |      |
| Sample ID: CCB-42397C | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: <b>12/2</b> | 21/2023         | RunNo: 885        | 09       |      |
| Client ID: CCB        | Batch ID: 42397      |      |           |             | Analysis Date: 12/2    | 21/2023         | SeqNo: 184        | 8406     |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLin   | nit RPD Ref Val | %RPD              | RPDLimit | Qual |
| Aluminum              | ND                   | 10.0 |           |             |                        |                 |                   |          |      |
| Sample ID: CCV-42397D | SampType: <b>CCV</b> |      |           | Units: μg/L | Prep Date: 12/2        | 21/2023         | RunNo: 885        | 09       |      |
| Client ID: CCV        | Batch ID: 42397      |      |           |             | Analysis Date: 12/2    | 21/2023         | SeqNo: 184        | 8412     |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLin   | nit RPD Ref Val | %RPD              | RPDLimit | Qua  |
| Aluminum              | 986                  | 10.0 | 1,000     | 0           | 98.6 90 1              | 10              |                   |          |      |
| Sample ID: CCB-42397D | SampType: CCB        |      |           | Units: μg/L | Prep Date: 12/2        | 21/2023         | RunNo: 885        | 09       |      |
| Client ID: CCB        | Batch ID: 42397      |      |           |             | Analysis Date: 12/2    | 21/2023         | SeqNo: <b>184</b> | 8413     |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLin   | nit RPD Ref Val | %RPD              | RPDLimit | Qua  |
| Aluminum              | ND                   | 10.0 |           |             |                        |                 |                   |          |      |
| Sample ID: LCS-42397  | SampType: <b>LCS</b> |      |           | Units: μg/L | Prep Date: <b>12/1</b> | 19/2023         | RunNo: 885        | 09       |      |
| Client ID: LCSW       | Batch ID: 42397      |      |           |             | Analysis Date: 12/2    | 21/2023         | SeqNo: 184        | 8471     |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLin   | mit RPD Ref Val | %RPD              | RPDLimit | Qua  |
|                       |                      |      |           |             |                        |                 |                   |          |      |

Original Page 14 of 16



# Sample Log-In Check List

| Cli         | ent Name:                | FB                |                                        |               |        | Work O  | rder Numb | per: 2312339 |                    |   |
|-------------|--------------------------|-------------------|----------------------------------------|---------------|--------|---------|-----------|--------------|--------------------|---|
| Lo          | gged by:                 | Morgan Wils       | son                                    |               |        | Date Re | eceived:  | 12/14/20     | 23 10:36:00 AM     |   |
| Chai        | in of Custo              | ody               |                                        |               |        |         |           |              |                    |   |
| 1.          | ls Chain of C            | ustody comple     | ete?                                   |               |        | Yes     | ✓         | No 🗌         | Not Present        |   |
| 2.          | How was the              | sample delive     | red?                                   |               |        | Clier   | <u>nt</u> |              |                    |   |
| <u>Log</u>  | <u>In</u>                |                   |                                        |               |        |         |           |              |                    |   |
|             |                          |                   | hipping container<br>tody Seals not in |               |        | Yes     |           | No 🗌         | Not Present 🗹      |   |
| 4. V        | Was an attem             | npt made to co    | ol the samples?                        |               |        | Yes     | ✓         | No $\square$ | NA $\square$       |   |
| 5. V        | Were all items           | s received at a   | temperature of                         | >2°C to 6°C   | *      | Yes     | •         | No 🗌         | NA 🗆               |   |
| 6. 5        | Sample(s) in             | proper contain    | er(s)?                                 |               |        | Yes     | <b>✓</b>  | No 🗌         |                    |   |
| 7. 5        | Sufficient sam           | nple volume fo    | r indicated test(s                     | )?            |        | Yes     | ✓         | No $\square$ |                    |   |
| 8. <i>F</i> | re samples ہ             | properly prese    | rved?                                  |               |        | Yes     | <b>✓</b>  | No $\square$ |                    |   |
| 9. V        | Was preserva             | ative added to    | bottles?                               |               |        | Yes     | ✓         | No $\square$ | NA $\square$       |   |
| 10 l        | s there heads            | space in the V    | ΩA vials?                              |               |        | Yes     |           | No 🗆         | HCL<br>NA <b>✓</b> |   |
| -           |                          |                   | arrive in good cor                     | ndition(unbro | oken)? | Yes     | <u>✓</u>  | No $\square$ | 10.                |   |
|             |                          | ork match bott    |                                        |               | ,.     | Yes     | <b>✓</b>  | No 🗆         |                    |   |
|             |                          |                   |                                        |               |        |         |           |              |                    |   |
| -           |                          |                   | fied on Chain of                       | Custody?      |        | Yes     | <b>✓</b>  | No ∐         |                    |   |
|             |                          | it analyses wei   |                                        |               |        | Yes     |           | No ∐         |                    |   |
|             | Were all hold<br>be met? | times (except     | field parameters                       | , рн e.g.) аb | ole to | Yes     | ✓         | No 🗀         |                    |   |
| <u>Spe</u>  | <u>cial Handl</u>        | ling (if appl     | <u>licable)</u>                        |               |        |         |           |              |                    |   |
| 16.         | Was client n             | otified of all di | screpancies with                       | this order?   |        | Yes     | ; 🗌       | No 🗌         | NA 🗹               | _ |
|             | Person                   | Notified:         |                                        |               | Date:  |         |           |              |                    |   |
|             | By Who                   | om:               |                                        |               | Via:   | eM      | ail 🗌 Ph  | one 🗌 Fax    | ☐ In Person        |   |
|             | Regard                   | ling:             |                                        |               |        |         |           |              |                    |   |
|             | Client I                 | nstructions:      |                                        |               |        |         |           |              |                    |   |
| 17.         | Additional re            | marks:            |                                        |               |        |         |           |              |                    | _ |
| Item        | <u>Information</u>       |                   |                                        |               |        |         |           |              |                    |   |
|             |                          | Item #            |                                        | Temp ⁰C       |        |         |           |              |                    |   |
|             | Sample                   |                   |                                        | 5.2           |        |         |           |              |                    |   |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

| Fremont                             |          |
|-------------------------------------|----------|
| SUBCONTRACTER                       |          |
|                                     |          |
| SUBCONTRACT SAMPLE CHAIN OF CUSTOMY | SUBCONTR |

Page # 1 of TURNAROUND TIME

Page 16 of 16

| Send Report To Mich Company Friec Address 5500 City, State, ZIP Seatt Phone # (206) 285-82  CTMW-14-1223 | Michael Erdal Friedman and 5500 4th Ave S Seattle, WA 9th Lab ID Sa 12 | Michael Erdahl Friedman and Bruya, Inc 5500 4th Ave S Seattle, WA 98108  Lab Date ID Sampled  12/13/2023 | Time    |               | PROJECT NAME/NO.  312249  REMARKS  TIER IV, EIN  atrix # of aluminum dissolved | T NAME/NO.  312249  TIER IV, EIM  dissolved  x  total aluminum  dissolved | dissolved aluminum | × ferrous iron |   | ferrous iron  dissolved gases  TOC  TOC  REQUESTED | TOC REQUESTION AND TOC | JEST    | ED R. N | TURNAROL  RUSH Rush charges auth  SAMPLE I  Dispose after 30  Return samples  Will call with in | ard T.  ard T.  AMPI  a after a fine | horize DISPO 0 days s nstruc | Notes |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------|---------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|----------------|---|----------------------------------------------------|------------------------|---------|---------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|
| 7000 CT 1000                                                                                             |                                                                        | 10/10/0000                                                                                               | 1415    | - Laboratoria |                                                                                |                                                                           |                    | e l            | 4 | _                                                  | _                      | 4       |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               | 1                                                                              |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               | 1                                                                              |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
|                                                                                                          |                                                                        |                                                                                                          |         |               |                                                                                | 1                                                                         |                    |                | 1 |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
| Friedman & Bruva Inc                                                                                     |                                                                        | S                                                                                                        | GNATURE | 1             |                                                                                | PH                                                                        | PRINT NAME         | AME            |   | 1                                                  |                        | COMPANY | PAN     | Y                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE                         | -     |
| 3012 16th Avenue West                                                                                    |                                                                        | Restrigenstreet by & M                                                                                   | the or  | 1             | Micha                                                                          | Michael Erdahl                                                            | hl                 |                |   |                                                    | Friedman & Bruya       | man &   | Br      | uya                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/M/21                       |       |
| Seattle, WA 98119-2029                                                                                   |                                                                        | Received by:                                                                                             | Milment |               |                                                                                | Ahi                                                                       | Miller             | 3              |   |                                                    | 7                      | A)      |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                            | 1     |
| Ph. (206) 285-8282                                                                                       |                                                                        | Relinquished by:                                                                                         |         |               |                                                                                |                                                                           |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |
| Fax (206) 283-5044                                                                                       |                                                                        | Received by:                                                                                             |         |               |                                                                                | 1                                                                         |                    |                |   |                                                    |                        |         |         |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 14, 2023 from the TWAAFA-001, F&BI 312260 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1229R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312260 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <b>Dalton Olmsted Fuglevand</b> |
|----------------------|---------------------------------|
| 312260 -01           | CCW-3C-1223                     |
| 312260 -02           | CCW-3A-1223                     |
| 312260 -03           | CCW-3B-1223                     |
| 312260 -04           | CCW-2C-1223                     |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

All quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Lab ID: Date Extracted: 12/18/23 312260-01Date Analyzed: 12/21/23 Data File: 312260-01.238 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.56 Copper 0.484 Manganese 868

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-3C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 312260-01 x5

 Date Analyzed:
 12/22/23
 Data File:
 312260-01 x5.157

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 8,180

## **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:      | CCW-3A-1223 | Client:     | Dalton Olmsted Fuglevand |
|-----------------|-------------|-------------|--------------------------|
| Date Received:  | 12/14/23    | Project:    | TWAAFA-001, F&BI 312260  |
| Date Extracted: | 12/18/23    | Lab ID:     | 312260-02                |
| Date Analyzed:  | 12/21/23    | Data File:  | 312260-02.239            |
| Matrix:         | Water       | Instrument: | ICPMS2                   |

Matrix: Water ug/L (ppb) Units: Operator: SP

| Analyte:  | Concentration<br>ug/L (ppb) |
|-----------|-----------------------------|
| Arsenic   | 67.9                        |
| Copper    | 0.913                       |
| Lead      | <1                          |
| Manganese | 81.6                        |
| Nickel    | 148                         |
| Zinc      | 433                         |

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-3A-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 312260-02 x5

 Date Analyzed:
 12/22/23
 Data File:
 312260-02 x5.158

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 15,000

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-3B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

Lab ID: Date Extracted: 12/18/23 312260-03 Date Analyzed: 12/21/23 Data File: 312260-03.240 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 3.08

 Copper
 <0.48</td>

 Iron
 4,990

 Manganese
 959

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

Lab ID: Date Extracted: 12/18/23 312260-04 Date Analyzed: 12/21/23 Data File: 312260-04.241 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 2.95 Copper 0.576 Manganese 145

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 312260-04 x5

 Date Analyzed:
 12/22/23
 Data File:
 312260-04 x5.160

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 7,420

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312260

Date Extracted: 12/18/23 Lab ID: I3-1003 mb
Date Analyzed: 12/18/23 Data File: I3-1003 mb.143
Matrix: Water Instrument: ICPMS2

Matrix: Water Instrument: ICPMS
Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <0.48</td>

 Iron
 <50</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Lab ID: Date Extracted: 12/18/23 312260-01Date Analyzed: 12/21/23 Data File: 312260-01.294 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.50 Manganese 978

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-3C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 312260-01 x5

 Date Analyzed:
 12/22/23
 Data File:
 312260-01 x5.161

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Copper <2.4 Iron 8,750

#### ENVIRONMENTAL CHEMISTS

## Analysis For Total Metals By EPA Method 6020B

| Client ID:     | CCW-3A-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|-------------|----------|--------------------------|
| Date Received: | 12/14/23    | Project: | TWAAFA-001, F&BI 312260  |
|                |             |          |                          |

| Analyte:  | Concentration<br>ug/L (ppb) |
|-----------|-----------------------------|
| Arsenic   | 94.3                        |
| Copper    | 4.78                        |
| Iron      | 19,500                      |
| Lead      | 33.4                        |
| Manganese | 87.5                        |
| Nickel    | 175                         |
| Zinc      | 583                         |

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-3B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

Lab ID: Date Extracted: 12/18/23 312260-03 Date Analyzed: 12/21/23 Data File: 312260-03.296 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 3.10

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-3B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Copper
 <2.4</td>

 Iron
 4,490

 Manganese
 965

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-2C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

Lab ID: Date Extracted: 12/18/23 312260-04 Date Analyzed: 12/21/23 Data File: 312260-04.297 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 2.80 Manganese 156

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-2C-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 312260-04 x5

 Date Analyzed:
 12/22/23
 Data File:
 312260-04 x5.164

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{c} \text{Copper} & <2.4 \\ \text{Iron} & 7,620 \end{array}$ 

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312260

 Date Extracted:
 12/18/23
 Lab ID:
 13-1004 mb

 Date Analyzed:
 12/18/23
 Data File:
 13-1004 mb.145

 Materials:
 12/18/23
 Data File:
 13-1004 mb.145

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <0.48</td>

 Iron
 <50</td>

 Lead
 <1</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

 Zinc
 <5</td>

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/14/23

Project: TWAAFA-001, F&BI 312260

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312247-07 (Matrix Spike)

|           |            |       |        | Percent  | Percent          |            |            |
|-----------|------------|-------|--------|----------|------------------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery         | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD              | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 2.13   | 105 b    | 104 b            | 75-125     | 1 b        |
| Copper    | ug/L (ppb) | 20    | <5     | 85       | 85               | 75 - 125   | 0          |
| Iron      | ug/L (ppb) | 100   | 2,320  | 84 b     | $125 \mathrm{b}$ | 75 - 125   | 39 b       |
| Lead      | ug/L (ppb) | 10    | <1     | 80       | 79               | 75 - 125   | 1          |
| Manganese | ug/L (ppb) | 20    | 141    | 84 b     | 99 b             | 75 - 125   | 16 b       |
| Nickel    | ug/L (ppb) | 20    | 3.29   | 89       | 88               | 75 - 125   | 1          |
| Zinc      | ug/L (ppb) | 50    | <5     | 92       | 93               | 75 - 125   | 1          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 94       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 100      | 80-120     |
| Lead      | ug/L (ppb) | 10    | 91       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 94       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 94       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/14/23

Project: TWAAFA-001, F&BI 312260

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312247-07 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |                      |
|-----------|------------|-------|--------|----------|----------|------------|----------------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | $\operatorname{RPD}$ |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20)           |
| Arsenic   | ug/L (ppb) | 10    | 2.41   | 105 b    | 103 b    | 75-125     | 2 b                  |
| Copper    | ug/L (ppb) | 20    | <5     | 83       | 81       | 75 - 125   | 2                    |
| Iron      | ug/L (ppb) | 100   | 2,950  | 88 b     | 0 b      | 75 - 125   | 200 b                |
| Lead      | ug/L (ppb) | 10    | <1     | 78       | 76       | 75 - 125   | 3                    |
| Manganese | ug/L (ppb) | 20    | 147    | 89 b     | 78 b     | 75 - 125   | 13 b                 |
| Nickel    | ug/L (ppb) | 20    | 3.28   | 88       | 84       | 75 - 125   | 5                    |
| Zinc      | ug/L (ppb) | 50    | <5     | 91       | 89       | 75 - 125   | 2                    |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 95       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 95       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 96       | 80-120     |
| Lead      | ug/L (ppb) | 10    | 94       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 89       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 97       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 97       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

#### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

CCW-38-1273 CCW-3A-1223 CCW-2C-1223 Company\_DOF Report To: Anthony Cerruti / Trevor Louviere Address\_ Phone 215-767-7749 Email acerruti@dofnw.com City, State, ZIP Seattle, WA 98134 CCN-3C-1723 Sample ID Seattle, WA 98119-2029 3011 16th Avenue West Friedman & Bruya, Inc. Ph. (206) 285-8282 1001 SW Klickitat Way Ö 10 20 0 Lab ID A-C 17/14/23/09:30 Relinquished by: Relinquished by: Received by: Received by: CC: Tasya Gray 52/11/23 Sampled 12/4/23 21/11/23 Date SIGNATURE 1005 Sampled 1140 0401 Time Western S 9 SAMPLE CHAIN OF CUSTODY Matrix Sample SAMPLERS (signature) PROJECT NAME 2 2 Project Specific RLs -Dissolved metals samples field filtered at 0.45 REMARKS 2 2 micron before analysis Bottles # of W C W 6 TWAAFA TRSYA Total Metals 6020B Elliett Scheumann Wesley Frank (As, Cr, Cu, Mn, Ni, Pb, Yes)/ No Dissolved Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, 7n) PRINT NAME 2 ~~~~ FULB Total Mercury 1631E Dissolved Mercury 1631E TWAAFA-001 Total Metals (Al, Fe) INVOICE TO PO# DOF samples received at Dissolved Metals (Al, Fe) 12/14/23 Ferrous 7007 097 DOF 18 Iron COMPANY Rush charges authorized by: Standard Turnaround Other\_ Dispose after 30 days ANALYSES REQUESTED RUSH Archive Samples TURNAROUND TIME Page # SAMPLE DISPOSAL MS/MSD Collected? 12/14/23 12/1/23 1302 12/14/23 2/14/23/1302 DATE (Y/N) 20 M. AS, Car, Fe, As, V Al As Cu, Fe Ma Tat/RS) Metals: Totals Hetais. MI, As, Co., Fe, Ha Al, As, Ci, To, Mi 1 Spaper Sent Le Notes 05(1 1150 TIME



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312260

Work Order Number: 2312350

December 21, 2023

#### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 4 sample(s) on 12/14/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/21/2023



CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312260 **Work Order:** 2312350

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received |
|---------------|------------------|---------------------|--------------------|
| 2312350-001   | CCW-3C-1223      | 12/14/2023 9:30 AM  | 12/14/2023 2:15 PM |
| 2312350-002   | CCW-3A-1223      | 12/14/2023 10:05 AM | 12/14/2023 2:15 PM |
| 2312350-003   | CCW-3B-1223      | 12/14/2023 10:40 AM | 12/14/2023 2:15 PM |
| 2312350-004   | CCW-2C-1223      | 12/14/2023 11:40 AM | 12/14/2023 2:15 PM |

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned



#### **Case Narrative**

WO#: **2312350**Date: **12/21/2023** 

CLIENT: Friedman & Bruya

**Project:** 312260

#### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



## **Qualifiers & Acronyms**

WO#: **2312350** 

Date Reported: 12/21/2023

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

#### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



## **Analytical Report**

Work Order: **2312350**Date Reported: **12/21/2023** 

**CLIENT:** Friedman & Bruya

**Project:** 312260

**Lab ID:** 2312350-001 **Collection Date:** 12/14/2023 9:30:00 AM

Client Sample ID: CCW-3C-1223 Matrix: Water

| Chone Campions. Con Co 122     | Matrix: Water |         |       |           |                        |   |
|--------------------------------|---------------|---------|-------|-----------|------------------------|---|
| Analyses                       | Result        | RL Qual | Units | DF        | Date Analyzed          | _ |
| Dissolved Metals by EPA Method | d 200.8       |         | Batc  | h ID: 424 | 413 Analyst: SLL       |   |
| Aluminum                       | ND            | 10.0    | μg/L  | 1         | 12/21/2023 11:45:00 AM |   |
| Total Metals by EPA Method 20  | 0.8           |         | Batc  | h ID: 42: | 397 Analyst: SLL       |   |
| Aluminum                       | 34.8          | 10.0    | μg/L  | 1         | 12/21/2023 2:43:00 PM  |   |
| Ferrous Iron by SM3500-Fe B    |               |         | Batc  | h ID: R8  | 8336 Analyst: SLL      |   |
| Ferrous Iron                   | 3.24          | 0.750 D | mg/L  | 5         | 12/14/2023 6:10:01 PM  |   |

**Lab ID:** 2312350-002 **Collection Date:** 12/14/2023 10:05:00 AM

Client Sample ID: CCW-3A-1223 Matrix: Water

**Analyses** Result **RL Qual** Units DF **Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum ND 10.0 12/21/2023 11:48:00 AM Batch ID: 42397 Analyst: SLL **Total Metals by EPA Method 200.8** 10.0 12/21/2023 2:47:00 PM Aluminum 49.0 μg/L Ferrous Iron by SM3500-Fe B Batch ID: R88336 Analyst: SLL Ferrous Iron 9.08 3.75 25 12/14/2023 6:10:01 PM mg/L



# **Analytical Report**

Work Order: 2312350

Date Reported: 12/21/2023

**CLIENT:** Friedman & Bruya

**Project:** 312260

**Lab ID:** 2312350-003 **Collection Date:** 12/14/2023 10:40:00 AM


Client Sample ID: CCW-3B-1223 Matrix: Water

| Analyses                             | Result | RL Qual | Units  | DF       | Date Analyzed          |
|--------------------------------------|--------|---------|--------|----------|------------------------|
| Dissolved Metals by EPA Method 200.8 |        |         | Batc   | h ID: 42 | 413 Analyst: SLL       |
| Aluminum                             | ND     | 10.0    | μg/L   | 1        | 12/21/2023 11:50:00 AM |
| Total Metals by EPA Method 20        | 0.8    |         | Batc   | h ID: 42 | 397 Analyst: SLL       |
| Aluminum                             | 12.6   | 10.0    | μg/L   | 1        | 12/21/2023 2:50:00 PM  |
| Ferrous Iron by SM3500-Fe B          |        |         | Batc   | h ID: R8 | 8336 Analyst: SLL      |
| Ferrous Iron                         | 2.42   | 0.750   | O mg/L | 5        | 12/14/2023 6:10:01 PM  |

**Lab ID:** 2312350-004 **Collection Date:** 12/14/2023 11:40:00 AM

Client Sample ID: CCW-2C-1223 Matrix: Water

| Analyses                       | Result  | RL Qual | Units  | DF        | Date Analyzed          |
|--------------------------------|---------|---------|--------|-----------|------------------------|
| Dissolved Metals by EPA Method | d 200.8 |         | Batc   | h ID: 424 | 413 Analyst: SLL       |
| Aluminum                       | ND      | 10.0    | μg/L   | 1         | 12/21/2023 11:53:00 AM |
| Total Metals by EPA Method 20  | 0.8     |         | Batc   | h ID: 42  | 397 Analyst: SLL       |
| Aluminum                       | 11.5    | 10.0    | μg/L   | 1         | 12/21/2023 2:52:00 PM  |
| Ferrous Iron by SM3500-Fe B    |         |         | Batc   | h ID: R8  | 8336 Analyst: SLL      |
| Ferrous Iron                   | 1.98    | 0.750   | D mg/L | 5         | 12/14/2023 6:10:01 PM  |





**CLIENT:** Friedman & Bruya


**Project:** 312260

## **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| F10ject. 312200                   |                         |       |           |             |      |                |                       |            | •        |     |
|-----------------------------------|-------------------------|-------|-----------|-------------|------|----------------|-----------------------|------------|----------|-----|
| Sample ID: CCV-R88336A            | SampType: CCV           |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883 | 336      |     |
| Client ID: CCV                    | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: 184 | 44402    |     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua |
| Ferrous Iron                      | 0.414                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |            |          |     |
| Sample ID: MB-R88336              | SampType: <b>MBLK</b>   |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883 | 336      |     |
| Client ID: MBLKW                  | Batch ID: <b>R88336</b> |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: 184 | 44403    |     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua |
| Ferrous Iron                      | ND                      | 0.150 |           |             |      |                |                       |            |          |     |
| Sample ID: LCS-R88336             | SampType: <b>LCS</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883 | 336      |     |
| Client ID: LCSW                   | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: 184 | 44404    |     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua |
| Ferrous Iron                      | 0.417                   | 0.150 | 0.4000    | 0           | 104  | 85             | 115                   |            |          |     |
| Sample ID: <b>2312328-001CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883 | 336      |     |
| Client ID: BATCH                  | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: 184 | 44406    |     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua |
| Ferrous Iron                      | 0.445                   | 0.150 |           |             |      |                | 0.4084                | 8.50       | 20       |     |
| Sample ID: <b>2312328-001CMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date:     | 12/14/2023            | RunNo: 883 | 336      |     |
| Client ID: BATCH                  | Batch ID: R88336        |       |           |             |      | Analysis Date: | 12/14/2023            | SeqNo: 184 | 44407    |     |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit F     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua |
| Ferrous Iron                      | 0.910                   | 0.150 | 0.4000    | 0.4084      | 125  | 70             | 130                   |            |          |     |
|                                   |                         |       |           |             |      |                |                       |            |          |     |

Original Page 7 of 17





**CLIENT:** Friedman & Bruya

**Project:** 312260

## **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| Sample ID: 2312328-001CMSD | SampType: <b>MSD</b> |       |           | Units: mg/L |      | Prep Date     | 12/14/2023            | RunNo: <b>88336</b>   |      |
|----------------------------|----------------------|-------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Client ID: BATCH           | Batch ID: R88336     |       |           |             |      | Analysis Date | 12/14/2023            | SeqNo: <b>1844408</b> |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.925                | 0.150 | 0.4000    | 0.4084      | 129  | 70            | 130 0.9100            | 1.65 30               |      |
| Sample ID: CCV-R88336B     | SampType: <b>CCV</b> |       |           | Units: mg/L |      | Prep Date     | : 12/14/2023          | RunNo: <b>88336</b>   |      |
| Client ID: CCV             | Batch ID: R88336     |       |           |             |      | Analysis Date | 12/14/2023            | SeqNo: <b>1844412</b> |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.427                | 0.150 | 0.4000    | 0           | 107  | 85            | 115                   |                       |      |
| Sample ID: CCB-R88336B     | SampType: <b>CCB</b> |       |           | Units: mg/L |      | Prep Date     | 12/14/2023            | RunNo: <b>88336</b>   |      |
| Client ID: CCB             | Batch ID: R88336     |       |           |             |      | Analysis Date | 12/14/2023            | SeqNo: <b>1844413</b> |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | ND                   | 0.150 |           |             |      |               |                       |                       |      |
| Sample ID: CCV-R88336C     | SampType: <b>CCV</b> |       |           | Units: mg/L |      | Prep Date     | : 12/14/2023          | RunNo: <b>88336</b>   |      |
| Client ID: CCV             | Batch ID: R88336     |       |           |             |      | Analysis Date | 12/14/2023            | SeqNo: <b>1845060</b> |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | 0.448                | 0.150 | 0.4000    | 0           | 112  | 85            | 115                   |                       |      |
| Sample ID: CCB-R88336C     | SampType: <b>CCB</b> |       |           | Units: mg/L |      | Prep Date     | 12/14/2023            | RunNo: <b>88336</b>   |      |
| Client ID: CCB             | Batch ID: R88336     |       |           |             |      | Analysis Date | 12/14/2023            | SeqNo: <b>1845068</b> |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron               | ND                   | 0.150 |           |             |      |               |                       |                       |      |
|                            |                      |       |           |             |      |               |                       |                       |      |

Original Page 8 of 17

Date: 12/21/2023



Work Order: 2312350

**CLIENT:** Friedman & Bruya

**Project:** 312260

**QC SUMMARY REPORT** 

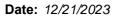
Ferrous Iron by SM3500-Fe B

Sample ID: CCV-R88336D SampType: CCV Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Client ID: CCV Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845066

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Ferrous Iron 0.433 0.150 0.4000 0 108 85 115


Sample ID: CCB-R88336D SampType: CCB Units: mg/L Prep Date: 12/14/2023 RunNo: 88336

Client ID: CCB Batch ID: R88336 Analysis Date: 12/14/2023 SeqNo: 1845067

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Ferrous Iron ND 0.150

Original Page 9 of 17



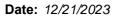


Aluminum

**QC SUMMARY REPORT** 

30

**CLIENT:** Friedman & Bruya


Dissolved Metals by EPA Method 200.8

| Project: 312               | 260                   |      |           |             | Dissolved Metals by EPA Method 200.                    |
|----------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB             | SampType: ICB         |      |           | Units: μg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: ICB             | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848083               |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | ND                    | 10.0 |           |             |                                                        |
| Sample ID: ICV             | SampType: <b>ICV</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: ICV             | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848084               |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | 1,450                 | 10.0 | 1,500     | 0           | 96.8 90 110                                            |
| Sample ID: <b>MB-42413</b> | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: MBLKW           | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848085               |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | ND                    | 10.0 |           |             |                                                        |
| Sample ID: LCS-42413       | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: LCSW            | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848086               |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | 906                   | 10.0 | 1,000     | 0           | 90.6 85 115                                            |
| Sample ID: 2312341-007     | BDUP SampType: DUP    |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: BATCH           | Batch ID: 42413       |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848088               |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |

Original Page 10 of 17

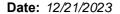
ND

10.0





**CLIENT:** Friedman & Bruya


**Project:** 312260

## **QC SUMMARY REPORT**

#### **Dissolved Metals by EPA Method 200.8**

| Sample ID: <b>2312341-007BMS</b>  | SampType: MS         |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|------|
| Client ID: BATCH                  | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848089</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 50             | 150                   |                       |      |
| Sample ID: <b>2312341-007BMSD</b> | SampType: MSD        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: BATCH                  | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848090</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,170                | 10.0 | 1,000     | 0           | 117  | 50             | 150 1,022             | 13.2 30               |      |
| Sample ID: CCV-42413A             | SampType: CCV        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848092</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 993                  | 10.0 | 1,000     | 0           | 99.3 | 90             | 110                   |                       |      |
| Sample ID: CCB-42413A             | SampType: CCB        |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCB                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848093</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                |                       |                       |      |
| Sample ID: CCV-42413B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848104</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 90             | 110                   |                       |      |

Original Page 11 of 17



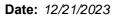


Friedman & Bruya CLIENT:

ND

10.0

312260 **Project:** 


Aluminum

#### **QC SUMMARY REPORT**

#### Dissolved Metals by EPA Method 200.8

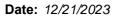
Sample ID: CCB-42413B SampType: CCB Prep Date: 12/21/2023 RunNo: 88496 Units: µg/L Client ID: CCB Analysis Date: 12/21/2023 Batch ID: 42413 SeqNo: 1848105 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Aluminum ND 10.0 Sample ID: 2312350-004BMS SampType: MS Units: µq/L Prep Date: 12/21/2023 RunNo: 88496 Client ID: CCW-2C-1223 Batch ID: 42413 Analysis Date: 12/21/2023 SeqNo: 1848114 LowLimit HighLimit RPD Ref Val Analyte Result RI SPK value SPK Ref Val. %REC %RPD RPDLimit Qual Aluminum 1,050 10.0 1,000 8.025 105 50 150 Sample ID: CCV-42413C SampType: CCV Units: µq/L Prep Date: 12/21/2023 RunNo: 88496 Client ID: CCV Batch ID: 42413 Analysis Date: 12/21/2023 SeqNo: 1848115 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 0 90 Aluminum 1,010 10.0 1,000 101 110 Sample ID: CCB-42413C SampType: CCB Units: µg/L Prep Date: 12/21/2023 RunNo: 88496 Client ID: CCB Batch ID: 42413 Analysis Date: 12/21/2023 SeqNo: 1848116 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Qual

Page 12 of 17 Original





**CLIENT:** Friedman & Bruya


**Project:** 312260

## **QC SUMMARY REPORT**

#### **Total Metals by EPA Method 200.8**

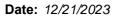
| <b>Project:</b> 312260 |                       |      |           |             |      |                |                       | ,                     |          |
|------------------------|-----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|----------|
| Sample ID: ICB         | SampType: <b>ICB</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |          |
| Client ID: ICB         | Batch ID: 42397       |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848375</b> |          |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qual |
| Aluminum               | ND                    | 10.0 |           |             |      |                |                       |                       |          |
| Sample ID: ICV         | SampType: ICV         |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |          |
| Client ID: ICV         | Batch ID: 42397       |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848376</b> |          |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qual |
| Aluminum               | 1,450                 | 10.0 | 1,500     | 0           | 96.8 | 90             | 110                   |                       |          |
| Sample ID: CCV-42397A  | SampType: <b>CCV</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |          |
| Client ID: CCV         | Batch ID: 42397       |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848377</b> |          |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qual |
| Aluminum               | 986                   | 10.0 | 1,000     | 0           | 98.6 | 90             | 110                   |                       |          |
| Sample ID: CCB-42397A  | SampType: CCB         |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |          |
| Client ID: CCB         | Batch ID: 42397       |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848378</b> |          |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua  |
| Aluminum               | ND                    | 10.0 |           |             |      |                |                       |                       |          |
| Sample ID: MB-42397    | SampType: <b>MBLK</b> |      |           | Units: μg/L |      | Prep Date:     | 12/19/2023            | RunNo: <b>88509</b>   |          |
| Client ID: MBLKW       | Batch ID: 42397       |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848379</b> |          |
| Analyte                | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua  |
| Aluminum               | ND                    | 10.0 |           |             |      |                |                       |                       |          |

Original Page 13 of 17





**CLIENT:** Friedman & Bruya


**Project:** 312260

## **QC SUMMARY REPORT**

#### **Total Metals by EPA Method 200.8**

| Sample ID: <b>2312365-002AMS</b>  | SampType: <b>MS</b>  |      |           | Units: μg/L | Prep Date: 12/19/2023         | RunNo: <b>88509</b>    |
|-----------------------------------|----------------------|------|-----------|-------------|-------------------------------|------------------------|
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023     | SeqNo: <b>1848382</b>  |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLimit RPD Re | Val %RPD RPDLimit Qual |
| Aluminum                          | 728                  | 10.0 | 1,000     | 0           | 2.8 70 130                    |                        |
| Sample ID: <b>2312365-002AMSD</b> | SampType: MSD        |      |           | Units: µg/L | Prep Date: 12/19/2023         | RunNo: <b>88509</b>    |
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023     | SeqNo: <b>1848383</b>  |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLimit RPD Re | Val %RPD RPDLimit Qual |
| Aluminum                          | 926                  | 10.0 | 1,000     | 0           | 2.6 70 130 7                  | 28.2 24.0 30           |
| Sample ID: CCV-42397B             | SampType: <b>CCV</b> |      |           | Units: μg/L | Prep Date: 12/21/2023         | RunNo: <b>88509</b>    |
| Client ID: CCV                    | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023     | SeqNo: <b>1848393</b>  |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLimit RPD Re | Val %RPD RPDLimit Qual |
| Aluminum                          | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                    |                        |
| Sample ID: CCB-42397B             | SampType: CCB        |      |           | Units: μg/L | Prep Date: 12/21/2023         | RunNo: <b>88509</b>    |
| Client ID: CCB                    | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023     | SeqNo: <b>1848394</b>  |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLimit RPD Re | Val %RPD RPDLimit Qual |
| Aluminum                          | ND                   | 10.0 |           |             |                               |                        |
| Sample ID: <b>2312350-001AMS</b>  | SampType: <b>MS</b>  |      |           | Units: μg/L | Prep Date: 12/19/2023         | RunNo: <b>88509</b>    |
| Client ID: CCW-3C-1223            | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023     | SeqNo: <b>1848396</b>  |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | REC LowLimit HighLimit RPD Re | Val %RPD RPDLimit Qual |
| Aluminum                          | 865                  | 10.0 | 1,000     | 34.80       | 33.1 70 130                   |                        |

Original Page 14 of 17





**CLIENT:** Friedman & Bruya

**Project:** 312260

## **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| 110ject. 512200       |                      |      |           |             |      |                |                      |                       |      |
|-----------------------|----------------------|------|-----------|-------------|------|----------------|----------------------|-----------------------|------|
| Sample ID: CCV-42397C | SampType: CCV        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88509</b>   |      |
| Client ID: CCV        | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848405</b> |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum              | 998                  | 10.0 | 1,000     | 0           | 99.8 | 90             | 110                  |                       |      |
| Sample ID: CCB-42397C | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88509</b>   |      |
| Client ID: CCB        | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848406</b> |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum              | ND                   | 10.0 |           |             |      |                |                      |                       |      |
| Sample ID: CCV-42397D | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88509</b>   |      |
| Client ID: CCV        | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848412</b> |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum              | 986                  | 10.0 | 1,000     | 0           | 98.6 | 90             | 110                  |                       |      |
| Sample ID: CCB-42397D | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023           | RunNo: <b>88509</b>   |      |
| Client ID: CCB        | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023           | SeqNo: <b>1848413</b> |      |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | ighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum              | ND                   | 10.0 |           |             |      |                |                      |                       |      |

Original Page 15 of 17



# Sample Log-In Check List

| Cli         | ent Name:                | FB                                                                |                  | Woi      | k Order Num   |              |                      |   |
|-------------|--------------------------|-------------------------------------------------------------------|------------------|----------|---------------|--------------|----------------------|---|
| Lo          | gged by:                 | Morgan Wilson                                                     |                  | Date     | e Received:   | 12/14/202    | 3 2:15:00 PM         |   |
| Chai        | in of Custo              | odv                                                               |                  |          |               |              |                      |   |
|             |                          | ustody complete?                                                  |                  | ,        | Yes ✓         | No 🗌         | Not Present          |   |
|             |                          | sample delivered?                                                 |                  | <u>(</u> | <u>Client</u> |              |                      |   |
| Log         | In                       |                                                                   |                  |          |               |              |                      |   |
| _           |                          |                                                                   |                  |          | . $\Box$      | $\Box$       |                      |   |
|             |                          | s present on shipping container<br>ments for Custody Seals not in |                  | Y        | ′es □         | No 📙         | Not Present <b>✓</b> |   |
| 4. V        | Was an attem             | pt made to cool the samples?                                      |                  | Υ        | es 🗸          | No 🗌         | NA $\square$         |   |
| 5. V        | Were all items           | received at a temperature of                                      | >2°C to 6°C      | * Y      | es 🗸          | No 🗌         | NA 🗌                 |   |
| 6. S        | Sample(s) in բ           | proper container(s)?                                              |                  | Υ        | es 🗸          | No 🗌         |                      |   |
| 7. 8        | Sufficient sam           | ple volume for indicated test(s                                   | )?               | Υ        | es 🗸          | No $\square$ |                      |   |
| 8. <i>P</i> | Are samples p            | properly preserved?                                               |                  | Υ        | es 🗸          | No $\square$ |                      |   |
| 9. V        | Was preserva             | tive added to bottles?                                            |                  | Υ        | 'es 🗸         | No $\square$ | NA $\square$         |   |
|             |                          |                                                                   |                  |          |               |              | HCL                  |   |
| _           |                          | space in the VOA vials?                                           |                  |          | ′es ∐         | No 🗀         | NA 🗸                 |   |
|             |                          | es containers arrive in good cor                                  | ıdition(unbrokeı | •        | ′es ⊻         | No 🗀         |                      |   |
| 12. [       | Does paperwo             | ork match bottle labels?                                          |                  | Y        | ′es ✔         | No 🗀         |                      |   |
| 13. A       | Are matrices o           | correctly identified on Chain of                                  | Custody?         | Υ        | ′es ✓         | No 🗌         |                      |   |
| 14. ls      | s it clear wha           | t analyses were requested?                                        |                  | Υ        | 'es 🗸         | No 🗌         |                      |   |
|             | Were all hold<br>be met? | times (except field parameters                                    | pH e.g.) able t  | to Y     | es 🗸          | No 🗌         |                      |   |
|             |                          | ing (if applicable)                                               |                  |          |               |              |                      |   |
| 16.         | Was client no            | otified of all discrepancies with                                 | this order?      |          | Yes           | No 🗌         | NA 🗹                 | _ |
|             | Person                   | Notified:                                                         |                  | Date:    |               |              |                      |   |
|             | By Who                   | om:                                                               |                  | Via:     | eMail 🔲 F     | Phone  Fax   | In Person            |   |
|             | Regard                   | ing:                                                              |                  |          |               |              |                      |   |
|             | Client In                | nstructions:                                                      |                  |          |               |              |                      |   |
| 17.         | Additional re            | marks:                                                            |                  |          |               |              |                      |   |
| ltem        | <u>Information</u>       |                                                                   |                  |          |               |              |                      |   |
| 1.5111      |                          | Item #                                                            | Temp °C          |          |               |              |                      |   |
|             | Comple                   |                                                                   | 0.8              |          |               |              |                      |   |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| Send Report To  | Send Report To Michael Erdahl                       | Fremont          |       |
|-----------------|-----------------------------------------------------|------------------|-------|
| Company         | Friedman and Bruva, Inc.                            | PROJECT NAME/NO. | PO#   |
|                 |                                                     | 312260           | D-596 |
| Address         | 5500 4th Ave S                                      |                  |       |
| City State ZIP  | City State ZIP Seattle WA 98108                     | REMARKS          |       |
| Phone # (206) 2 | Phone # (206) 285-8282 merdahl@friedmanandbruya.com | m TIER IV, EIM   |       |

| Fax (206) 288-5044 | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruya, Inc. | CCW-2C-1223 | CCW-3B-1223 | CCW-3A-1223 | CCW-3C-1223 | Sample ID Lab               |                 |
|--------------------|--------------------|------------------------|-----------------------|------------------------|-------------|-------------|-------------|-------------|-----------------------------|-----------------|
| Received by.       | Relinquished by:   | Received by:           | Relinquished by:      | SJ                     | 12/14/2023  | 12/14/2023  | 12/14/2023  | 12/14/2023  | Date<br>Sampled             |                 |
|                    |                    | ) (                    | and                   | SIGNATURE              | 1140        | 1040        | 1005        | 930         | Time<br>Sampled             |                 |
|                    |                    |                        |                       |                        | 1140 water  | 1040 water  | 1005 water  | 930 water   | Matrix                      |                 |
|                    |                    | Nont                   | Micha                 |                        | ω.          | 3           | 33          | ಎ           | # of<br>jars                |                 |
|                    |                    | Sylven                 | Michael Erdahl        | PRI                    | ×           | ×           | ×           | х           | total aluminum<br>dissolved |                 |
|                    |                    | 13                     |                       | PRINT NAME             | * ×         | x           | x           | x           | aluminum                    |                 |
|                    |                    | 8                      |                       | ME                     |             |             |             |             | ferrous iron                | UNI             |
|                    |                    |                        |                       |                        |             |             |             |             | dissolved gases             | PIST            |
|                    |                    |                        | Fried                 |                        |             |             |             |             | TOC                         | ALIONO BEACEDIA |
|                    |                    | TA                     | Friedman & Bruya      | COMPANY                |             |             | -           |             |                             | TIGHT           |
|                    |                    | 7                      | Bruya                 | ANY                    |             |             |             |             |                             | -               |
|                    |                    | 12/4/2                 | 12/14/25              | DATE                   |             |             |             |             | No                          |                 |
|                    |                    | 1415                   | 1327                  | TIME                   |             |             |             |             | Notes                       |                 |

Rush charges authorized by: ⊠ Standard TAT RUSH Return samples Will call with instructions Dispose after 30 days TURNAROUND TIME SAMPLE DISPOSAL Page #

Page 17 of 17

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 14, 2023 from the TWAAFA-001, F&BI 312273 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1229R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 14, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312273 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <b>Dalton Olmsted Fuglevand</b> |
|----------------------|---------------------------------|
| 312273 -01           | CCW-2A-1223                     |
| 312273 -02           | CCW-2B-1223                     |
| 312273 -03           | TWA-9D-1223                     |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

All quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2A-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

Lab ID: Date Extracted: 12/18/23 312273-01Date Analyzed: 12/19/23 Data File: 312273 - 01.286Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 2.09 Copper 0.669 Manganese 836

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2A-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

Date Extracted: 12/18/23 Lab ID: 312273-01 x50
Date Analyzed: 12/20/23 Data File: 312273-01 x50.075

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 12,100

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

Lab ID: Date Extracted: 12/18/23 312273-02 Date Analyzed: 12/19/23 Data File: 312273 - 02.266Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper <0.6 Manganese 200

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-02 x5

 Date Analyzed:
 12/19/23
 Data File:
 312273-02 x5.251

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 1,150

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CCW-2B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-02 x50

 Date Analyzed:
 12/20/23
 Data File:
 312273-02 x50.050

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 4,180

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-9D-1223 Client: Dalton Olmsted Fuglevand
Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273
Date Extracted: 12/18/23 Lab ID: 312273-03

 Date Extracted:
 12/18/23
 Lab ID:
 312273-03

 Date Analyzed:
 12/19/23
 Data File:
 312273-03.287

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

Analyte: Concentration ug/L (ppb)

Copper1.10Iron461Manganese49.2

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: TWA-9D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-03 x5

 Date Analyzed:
 12/19/23
 Data File:
 312273-03 x5.252

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 15.6

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312273

Date Extracted: 12/18/23 Lab ID: I3-1001 mb
Date Analyzed: 12/18/23 Data File: I3-1001 mb.051
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Copper
 <0.6</td>

 Iron
 <50</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | CCW-2A-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|-------------|----------|--------------------------|
| Date Received: | 12/14/23    | Project: | TWAAFA-001, F&BI 312273  |
| T . T          |             |          |                          |

Date Extracted: 12/18/23Lab ID: 312273-01Date Analyzed: 12/19/23 Data File: 312273-01.290 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

Arsenic 4.88 Copper 7.59 Manganese 883

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-2A-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

Date Extracted: 12/18/23 Lab ID: 312273-01 x100
Date Analyzed: 12/20/23 Data File: 312273-01 x100.051

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 14,000

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-2B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

Lab ID: Date Extracted: 12/18/23 312273-02 Date Analyzed: 12/19/23 Data File: 312273-02.279 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Copper 0.730 Manganese 211

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CCW-2B-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-02 x50

 Date Analyzed:
 12/20/23
 Data File:
 312273-02 x50.052

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 1,140 Iron 4,430

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-9D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-03 x4

 Date Analyzed:
 12/20/23
 Data File:
 312273-03 x4.060

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Copper <2.4

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: TWA-9D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/14/23 Project: TWAAFA-001, F&BI 312273

 Date Extracted:
 12/18/23
 Lab ID:
 312273-03 x10

 Date Analyzed:
 12/19/23
 Data File:
 312273-03 x10.137

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic 11.7 Iron 806 Manganese 63.1

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312273

Lab ID: Date Extracted: 12/18/23 I3-999 mb Date Analyzed: 12/18/23 Data File: I3-999 mb.049 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Copper
 <0.6</td>

 Iron
 <50</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/14/23

Project: TWAAFA-001, F&BI 312273

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,110  | 304 b    | 625 b    | 75-125     | 69 b       |
| Copper    | ug/L (ppb) | 20    | < 50   | 89       | 87       | 75 - 125   | 2          |
| Iron      | ug/L (ppb) | 100   | 4,770  | 133 b    | 210 b    | 75 - 125   | 45 b       |
| Manganese | ug/L (ppb) | 20    | 188    | 103 b    | 110 b    | 75 - 125   | 7 b        |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 87       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 83       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/14/23

Project: TWAAFA-001, F&BI 312273

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,200  | 0 b      | 0 b      | 75-125     | nm         |
| Copper    | ug/L (ppb) | 20    | < 50   | 91       | 90       | 75 - 125   | 1          |
| Iron      | ug/L (ppb) | 100   | 5,320  | 0 b      | 0 b      | 75 - 125   | nm         |
| Manganese | ug/L (ppb) | 20    | 205    | 13 b     | 37 b     | 75 - 125   | 96 b       |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 89       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 88       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| Ph. (206) 285-8282 Received by: | 3012 16th Avenue West  Seattle, WA 98119-2029  Received by: | Friedman & Bruya, Inc.  Before is the by:  Before is the base of t |             |   | A FA |                   |                        | TWA-9D-1223 03 A-C 12/14/23 1520 | CCW-28-1273 01 A-I 12/24/13 1355 | CCW-2A-1223 01 A-C 12/14/23 1245 | Sample ID  Lab ID  Date Time Sampled Sampled         |                        | Phone 215-767-7749 Email acerruti@dofnw.com | City, State, ZIP_Seattle, WA 98134               |                             | Company DOF         | Report To: Anthony Cerruti / Trevor Louviere | 3/2173              |
|---------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|------|-------------------|------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------------|------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------|---------------------|----------------------------------------------|---------------------|
|                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |      |                   |                        | ٤                                | ٤                                | ٤                                | Sample<br>Matrix B                                   |                        | Project S                                   | REMARKS<br>Dissolved met                         |                             | PROJEC              |                                              | SAMPLE CHAIN OF CUS |
|                                 |                                                             | 1/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |   |      | _                 |                        | W                                | 2                                | W                                | Bottles  Total Metals 6020B                          |                        | Project Specific RLs                        | REMARKS  Dissolved metals samples field filtered | TW                          | PROJECT NAME        | ć                                            | MPLE CHAIN OF       |
|                                 |                                                             | PRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |   |      | $\mid \cdot \mid$ |                        | X                                |                                  |                                  | (As, Cr, Cu, Mn, Ni, Pb, Zn)  Dissolved Metals 6020B | *                      | s (Yes)/                                    | les field filt                                   | TWAAFA                      |                     | 503                                          | OF CU               |
|                                 | Que -                                                       | TNAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |   |      |                   |                        |                                  |                                  |                                  | Zn) Total Mercury 1631E                              |                        | No                                          | ered at 0.45                                     |                             |                     | ,                                            | JSTODY              |
|                                 | 0                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |      |                   |                        | X                                | X                                | X                                | Dissolved Mercury 1631E  Total Metals (Al, Fe)       |                        |                                             |                                                  |                             |                     |                                              | X                   |
|                                 |                                                             | Cle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |   |      |                   |                        | X                                |                                  | X                                | Dissolved Metals (Al, Fe)                            | *                      | DOF                                         | INVOICE TO                                       |                             | PO#<br>TWAAFA-001   |                                              | 12/1                |
|                                 | T                                                           | COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Samples     |   |      |                   | $\left  \cdot \right $ | X                                | X                                | X                                | Ferrors                                              | $\left  \cdot \right $ |                                             | TO                                               | <u> </u>                    | )<br>               |                                              | 4/23                |
|                                 |                                                             | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | les rece    | , |      |                   |                        |                                  |                                  |                                  |                                                      | ANALY                  | Other_                                      | SAI<br>Dispose                                   | Rush char                   | Standar<br>RUSH     | TUR                                          | Page#               |
|                                 | h/K/                                                        | DATE 19/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | received at |   |      |                   |                        | Z                                | ~                                | Z                                | MS/MSD Collected?<br>(Y/N)                           | ANALYSES REQUESTED     | Other                                       | SAMPLE DISPOSAL Dispose after 30 days            | Rush charges authorized by: | Standard Turnaround | TURNAROUND TIME                              | # 23                |
|                                 | 16                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to o        |   |      |                   |                        | A1, A5, C-                       |                                  | AI, AS, C., TR, H-               | $N_0$                                                | QUESTE                 | =                                           | POSAL                                            | rized by:                   | ound                | D TIME                                       | of                  |
|                                 | 1651                                                        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |   |      |                   |                        | 5, G. K. T.                      | 77,77                            | AI, AS, C., TR, H.               | Notes                                                | D                      |                                             |                                                  |                             |                     |                                              |                     |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312273

Work Order Number: 2312365

December 27, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 3 sample(s) on 12/15/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/27/2023



CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312273 **Work Order:** 2312365

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received  |
|---------------|------------------|---------------------|---------------------|
| 2312365-001   | CCMW-2A-1223     | 12/14/2023 12:45 PM | 12/15/2023 11:45 AM |
| 2312365-002   | CCMW-2B-1223     | 12/14/2023 1:55 PM  | 12/15/2023 11:45 AM |
| 2312365-003   | TWA-9D-1223      | 12/14/2023 3:20 PM  | 12/15/2023 11:45 AM |



### **Case Narrative**

WO#: **2312365**Date: **12/27/2023** 

CLIENT: Friedman & Bruya

**Project:** 312273

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

### Notations:

In the original Ferrous Iron run, sample "TWA-9D-1223" was inadvertently used for the MS/MSD in place of "CCMW-2B-1223". To correct for the issue, "CCMW-2B-1223" was used for the MS/MSD in the following run and the results are presented in this report.



# **Qualifiers & Acronyms**

WO#: **2312365** 

Date Reported: 12/27/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312365

Date Reported: 12/27/2023

Client: Friedman & Bruya Collection Date: 12/14/2023 12:45:00 PM

**Project:** 312273

**Lab ID:** 2312365-001 **Matrix:** Water

Client Sample ID: CCMW-2A-1223

| Analyses                     | Result   | RL   | Qual | Units | DF        | Date Analyzed          |
|------------------------------|----------|------|------|-------|-----------|------------------------|
| Dissolved Metals by EPA Meth | od 200.8 |      |      | Batc  | n ID: 424 | 426 Analyst: SS        |
| Aluminum                     | 35.3     | 10.0 |      | μg/L  | 1         | 12/22/2023 7:33:00 PM  |
| Total Metals by EPA Method 2 | 00.8     |      |      | Batcl | n ID: 420 | 397 Analyst: SLL       |
| Aluminum                     | 41.7     | 10.0 |      | μg/L  | 1         | 12/21/2023 2:26:00 PM  |
| Ferrous Iron by SM3500-Fe B  |          |      |      | Batcl | n ID: R8  | 8407 Analyst: FG       |
| Ferrous Iron                 | 10.7     | 3.75 | D    | mg/L  | 25        | 12/15/2023 12:17:59 PM |



# **Analytical Report**

Work Order: **2312365**Date Reported: **12/27/2023** 

Client: Friedman & Bruya Collection Date: 12/14/2023 1:55:00 PM

**Project:** 312273

**Lab ID:** 2312365-002 **Matrix:** Water

Client Sample ID: CCMW-2B-1223

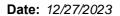
| Analyses                       | Result      | RL (  | Qual | Units | DF    | Date Analyzed          |
|--------------------------------|-------------|-------|------|-------|-------|------------------------|
| Dissolved Metals by EPA Method | 1 200.8     |       |      | Batch | n ID: | 42426 Analyst: SS      |
| Aluminum                       | ND          | 10.0  |      | μg/L  | 1     | 12/22/2023 7:24:00 PM  |
| Total Metals by EPA Method 200 | ) <u>.8</u> |       |      | Batch | n ID: | 42397 Analyst: SLL     |
| Aluminum                       | ND          | 10.0  |      | μg/L  | 1     | 12/21/2023 2:19:00 PM  |
| Ferrous Iron by SM3500-Fe B    |             |       |      | Batch | n ID: | R88407 Analyst: FG     |
| Ferrous Iron                   | 0.747       | 0.150 |      | mg/L  | 1     | 12/15/2023 12:17:59 PM |



# **Analytical Report**

Work Order: 2312365

Date Reported: 12/27/2023


Client: Friedman & Bruya Collection Date: 12/14/2023 3:20:00 PM

**Project:** 312273

**Lab ID:** 2312365-003 **Matrix:** Water

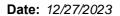
Client Sample ID: TWA-9D-1223

| Analyses                       | Result     | RL C  | Qual | Units | DF    | Date Analyzed          |
|--------------------------------|------------|-------|------|-------|-------|------------------------|
| Dissolved Metals by EPA Method | 1 200.8    |       |      | Batch | n ID: | 42426 Analyst: SS      |
| Aluminum                       | ND         | 10.0  |      | μg/L  | 1     | 12/22/2023 7:35:00 PM  |
| Total Metals by EPA Method 200 | <u>).8</u> |       |      | Batch | n ID: | 42397 Analyst: SLL     |
| Aluminum                       | ND         | 10.0  |      | μg/L  | 1     | 12/21/2023 2:28:00 PM  |
| Ferrous Iron by SM3500-Fe B    |            |       |      | Batch | n ID: | R88407 Analyst: FG     |
| Ferrous Iron                   | 0.399      | 0.150 |      | mg/L  | 1     | 12/15/2023 12:17:59 PM |





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

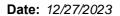
| 512273                            |                         |       |           |             |               |                       | -                     |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|---------------|-----------------------|-----------------------|------|
| Sample ID: CCV-R88407A            | SampType: <b>CCV</b>    |       |           | Units: mg/L | Prep Dat      | e: <b>12/15/2023</b>  | RunNo: <b>88407</b>   |      |
| Client ID: CCV                    | Batch ID: <b>R88407</b> |       |           |             | Analysis Dat  | e: <b>12/15/2023</b>  | SeqNo: <b>1846072</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.439                   | 0.150 | 0.4000    | 0           | 110 85        | 115                   |                       |      |
| Sample ID: CCB-R88407             | SampType: <b>CCB</b>    |       |           | Units: mg/L | Prep Dat      | e: <b>12/15/2023</b>  | RunNo: <b>88407</b>   |      |
| Client ID: CCB                    | Batch ID: <b>R88407</b> |       |           |             | Analysis Dat  | e: <b>12/15/2023</b>  | SeqNo: <b>1846073</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |               |                       |                       |      |
| Sample ID: LCS-R88407             | SampType: <b>LCS</b>    |       |           | Units: mg/L | Prep Dat      | e: <b>12/15/2023</b>  | RunNo: <b>88407</b>   |      |
| Client ID: LCSW                   | Batch ID: <b>R88407</b> |       |           |             | Analysis Dat  | e: <b>12/15/2023</b>  | SeqNo: <b>1846074</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.454                   | 0.150 | 0.4000    | 0           | 113 85        | 115                   |                       |      |
| Sample ID: MB-R88407              | SampType: <b>MBLK</b>   |       |           | Units: mg/L | Prep Dat      | e: <b>12/15/2023</b>  | RunNo: <b>88407</b>   |      |
| Client ID: MBLKW                  | Batch ID: R88407        |       |           |             | Analysis Dat  | e: <b>12/15/2023</b>  | SeqNo: <b>1846075</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |               |                       |                       |      |
| Sample ID: <b>2312365-003CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L | Prep Dat      | e: <b>12/15/2023</b>  | RunNo: <b>88407</b>   |      |
| Client ID: TWA-9D-1223            | Batch ID: <b>R88407</b> |       |           |             | Analysis Dat  | e: <b>12/15/2023</b>  | SeqNo: <b>1846079</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.396                   | 0.150 |           |             |               | 0.3993                | 0.760 20              |      |
|                                   |                         |       |           |             |               |                       |                       |      |

Original Page 8 of 21





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| <b>Project:</b> 312273            |                             |             |               |                     |      |               |                       | •                     |      |
|-----------------------------------|-----------------------------|-------------|---------------|---------------------|------|---------------|-----------------------|-----------------------|------|
| Sample ID: <b>2312365-003CMS</b>  | SampType: MS                |             |               | Units: mg/L         |      | Prep Date     | : 12/15/2023          | RunNo: <b>88407</b>   |      |
| Client ID: TWA-9D-1223            | Batch ID: <b>R88407</b>     |             |               |                     |      | Analysis Date | 12/15/2023            | SeqNo: <b>1846080</b> |      |
| Analyte                           | Result                      | RL          | SPK value     | SPK Ref Val         | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.789                       | 0.150       | 0.4000        | 0.3993              | 97.5 | 70            | 130                   |                       |      |
| Sample ID: <b>2312365-003CMSD</b> | SampType: <b>MSD</b>        |             |               | Units: mg/L         |      | Prep Date     | : 12/15/2023          | RunNo: <b>88407</b>   |      |
| Client ID: TWA-9D-1223            | Batch ID: <b>R88407</b>     |             |               |                     |      | Analysis Date | 12/15/2023            | SeqNo: <b>1846081</b> |      |
| Analyte                           | Result                      | RL          | SPK value     | SPK Ref Val         | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron NOTES:               | 0.934                       | 0.150       | 0.4000        | 0.3993              | 134  | 70            | 130 0.7892            | 16.8 30               | S    |
| S - Spiked amount was low related | tive to sample concentratio | n. Outlying | spike recover | ies may be expected | l    |               |                       |                       |      |
| Sample ID: CCV-R88407B            | SampType: CCV               |             |               | Units: mg/L         |      | Prep Date     | 12/15/2023            | RunNo: <b>88407</b>   |      |
| Client ID: CCV                    | Batch ID: <b>R88407</b>     |             |               |                     |      | Analysis Date | 12/15/2023            | SeqNo: <b>1846236</b> |      |
| Analyte                           | Result                      | RL          | SPK value     | SPK Ref Val         | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.433                       | 0.150       | 0.4000        | 0                   | 108  | 85            | 115                   |                       |      |
| Sample ID: CCB-R88407B            | SampType: CCB               |             |               | Units: mg/L         |      | Prep Date     | : 12/15/2023          | RunNo: <b>88407</b>   |      |
| Client ID: CCB                    | Batch ID: R88407            |             |               |                     |      | Analysis Date | 12/15/2023            | SeqNo: <b>1846237</b> |      |
| Analyte                           | Result                      | RL          | SPK value     | SPK Ref Val         | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | ND                          | 0.150       |               |                     |      |               |                       |                       |      |
| Sample ID: CCV-R88407C            | SampType: <b>CCV</b>        |             |               | Units: mg/L         |      | Prep Date     | : 12/15/2023          | RunNo: <b>88407</b>   |      |
| Client ID: CCV                    | Batch ID: <b>R88407</b>     |             |               |                     |      | Analysis Date | 12/15/2023            | SeqNo: <b>1846241</b> |      |
| Analyte                           | Result                      | RL          | SPK value     | SPK Ref Val         | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron                      | 0.405                       | 0.150       | 0.4000        | 0                   | 101  | 85            | 115                   |                       |      |
|                                   |                             |             |               |                     |      |               |                       |                       |      |

Original Page 9 of 21



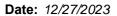


**CLIENT:** Friedman & Bruya

**Project:** 312273

Ferrous Iron

**QC SUMMARY REPORT** 


Ferrous Iron by SM3500-Fe B

| <b>Project:</b> 312273 |                         |       |           |             |               |                       | •                     |      |
|------------------------|-------------------------|-------|-----------|-------------|---------------|-----------------------|-----------------------|------|
| Sample ID: CCB-R88407C | SampType: CCB           |       |           | Units: mg/L | Prep D        | ate: 12/15/2023       | RunNo: <b>88407</b>   |      |
| Client ID: CCB         | Batch ID: R88407        |       |           |             | Analysis D    | ate: 12/15/2023       | SeqNo: <b>1846242</b> |      |
| Analyte                | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron           | ND                      | 0.150 |           |             |               |                       |                       |      |
| Sample ID: CCV-R88521  | SampType: <b>CCV</b>    |       |           | Units: mg/L | Prep D        | ate: 12/18/2023       | RunNo: <b>88521</b>   |      |
| Client ID: CCV         | Batch ID: <b>R88521</b> |       |           |             | Analysis D    | ate: 12/18/2023       | SeqNo: <b>1848523</b> |      |
| Analyte                | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron           | 0.417                   | 0.150 | 0.4000    | 0           | 104 85        | 115                   |                       |      |
| Sample ID: CCB-R88521  | SampType: CCB           |       |           | Units: mg/L | Prep D        | ate: 12/18/2023       | RunNo: <b>88521</b>   |      |
| Client ID: CCB         | Batch ID: <b>R88521</b> |       |           |             | Analysis D    | ate: 12/18/2023       | SeqNo: <b>1848524</b> |      |
| Analyte                | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron           | ND                      | 0.150 |           |             |               |                       |                       |      |
| Sample ID: LCS-R88521  | SampType: <b>LCS</b>    |       |           | Units: mg/L | Prep D        | ate: 12/18/2023       | RunNo: <b>88521</b>   |      |
| Client ID: LCSW        | Batch ID: <b>R88521</b> |       |           |             | Analysis D    | ate: 12/18/2023       | SeqNo: <b>1848525</b> |      |
| Analyte                | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Ferrous Iron           | 0.448                   | 0.150 | 0.4000    | 0           | 112 85        | 115                   |                       |      |
| Sample ID: MB-R88521   | SampType: <b>MBLK</b>   |       |           | Units: mg/L | Prep D        | ate: 12/18/2023       | RunNo: <b>88521</b>   |      |
| Client ID: MBLKW       | Batch ID: <b>R88521</b> |       |           |             | Analysis D    | ate: 12/18/2023       | SeqNo: <b>1848526</b> |      |
| Analyte                | Result                  | RL    | SPK value | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |

Original Page 10 of 21

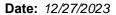
ND

0.150





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| Sample ID: 2312396-002ADUP        | SampType: <b>DUP</b>    |       |           | Units: mg/L |      | Prep Date     | 12/18/2023      |         | RunNo: 885        | 521      |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|------|---------------|-----------------|---------|-------------------|----------|------|
| Client ID: BATCH                  | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date | 12/18/2023      |         | SeqNo: <b>184</b> | 18529    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD F | Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.363                   | 0.150 |           |             |      |               |                 | 0.3721  | 2.47              | 20       | Н    |
| Sample ID: 2312396-002AMS         | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date     | : 12/18/2023    |         | RunNo: 885        | 521      |      |
| Client ID: BATCH                  | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date | 12/18/2023      |         | SeqNo: <b>184</b> | 18530    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD F | Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.798                   | 0.150 | 0.4000    | 0.3721      | 107  | 70            | 130             |         |                   |          | Н    |
| Sample ID: <b>2312396-002AMSD</b> | SampType: <b>MSD</b>    |       |           | Units: mg/L |      | Prep Date     | 12/18/2023      |         | RunNo: 885        | 521      |      |
| Client ID: BATCH                  | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date | 12/18/2023      |         | SeqNo: <b>184</b> | 18531    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD F | Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.777                   | 0.150 | 0.4000    | 0.3721      | 101  | 70            | 130             | 0.7982  | 2.69              | 30       | Н    |
| Sample ID: CCV-R88521             | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date     | 12/18/2023      |         | RunNo: 885        | 521      |      |
| Client ID: CCV                    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date | 12/18/2023      |         | SeqNo: <b>184</b> | 18533    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD F | Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | 0.457                   | 0.150 | 0.4000    | 0           | 114  | 85            | 115             |         |                   |          |      |
| Sample ID: CCB-R88521             | SampType: <b>CCB</b>    |       |           | Units: mg/L |      | Prep Date     | 12/18/2023      |         | RunNo: 885        | 521      |      |
| Client ID: CCB                    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date | 12/18/2023      |         | SeqNo: <b>184</b> | 18534    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD F | Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |      |               |                 |         |                   |          |      |
|                                   |                         |       |           |             |      |               |                 |         |                   |          |      |

Original Page 11 of 21





**CLIENT:** Friedman & Bruya

**Project:** 312273

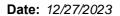
### **QC SUMMARY REPORT**

### Ferrous Iron by SM3500-Fe B

| Sample ID: 2312365-002CMS                               | SampType: MS                      |                      |                          | Units: mg/L                  |      | Prep Da     | te: 12/18/2        | 2023        | RunNo: 885        | 521      |      |
|---------------------------------------------------------|-----------------------------------|----------------------|--------------------------|------------------------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: CCMW-2B-1223                                 | Batch ID: <b>R88521</b>           |                      |                          |                              |      | Analysis Da | te: 12/18/2        | 2023        | SeqNo: <b>184</b> | 18536    |      |
| Analyte                                                 | Result                            | RL                   | SPK value                | SPK Ref Val                  | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Ferrous Iron  NOTES: S - Spiked amount was low related. | 0.647 ive to sample concentration | 0.150<br>n. Outlying | 0.4000<br>spike recoveri | 0.5262<br>es may be expected | 30.2 | 70          | 130                |             |                   |          | SH   |
| Sample ID: <b>2312365-002CMSD</b>                       | SampType: MSD                     |                      |                          | Units: mg/L                  |      | Prep Da     | te: <b>12/18/2</b> | 2023        | RunNo: 885        | 521      |      |

| Sample ID: 2312365-002CMSD | SampType: MSD           |       |           | Units: mg/L |      | Prep Dat    | te: <b>12/18/2</b> | 023         | RunNo: 885         | 521          |      |
|----------------------------|-------------------------|-------|-----------|-------------|------|-------------|--------------------|-------------|--------------------|--------------|------|
| Client ID: CCMW-2B-1223    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Da | te: <b>12/18/2</b> | 023         | SeqNo: <b>18</b> 4 | <b>↓8537</b> |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit     | Qual |
| Ferrous Iron               | 0.659                   | 0.150 | 0.4000    | 0.5262      | 33.2 | 70          | 130                | 0.6471      | 1.85               | 30           | SH   |

### NOTES:


S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

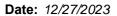
| Sample ID: CCV-R88521 | SampType: CCV           |       |           | Units: mg/L |      | Prep Da     | te: <b>12/18/2</b> | 023         | RunNo: 885 | 521      |      |
|-----------------------|-------------------------|-------|-----------|-------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: CCV        | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Da | te: <b>12/18/2</b> | 2023        | SeqNo: 184 | 18538    |      |
| Analyte               | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Ferrous Iron          | 0.439                   | 0.150 | 0.4000    | 0           | 110  | 85          | 115                |             |            |          |      |

| Sample ID: CCB-R88521 | SampType: CCB           |    | Units: mg/L           |      | Prep Date: 12/18/2023            | RunNo: <b>88521</b>   |
|-----------------------|-------------------------|----|-----------------------|------|----------------------------------|-----------------------|
| Client ID: CCB        | Batch ID: <b>R88521</b> |    |                       |      | Analysis Date: <b>12/18/2023</b> | SeqNo: <b>1848539</b> |
| Analyte               | Result                  | RL | SPK value SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val   | %RPD RPDLimit Qual    |

Ferrous Iron ND 0.150

Original Page 12 of 21






**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

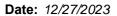
| Project: 3          | 12273                 |      |           |             |      |               | Dissolved Me          | tals by EPA Method    | 200.8 |
|---------------------|-----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|-------|
| Sample ID: ICB      | SampType: ICB         |      |           | Units: µg/L |      | Prep Date     | 12/22/2023            | RunNo: <b>88568</b>   |       |
| Client ID: ICB      | Batch ID: <b>4242</b> | 6    |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849551</b> |       |
| Analyte             | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual  |
| Aluminum            | ND                    | 10.0 |           |             |      |               |                       |                       |       |
| Sample ID: ICV      | SampType: <b>ICV</b>  |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |       |
| Client ID: ICV      | Batch ID: 4242        | 6    |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849552</b> |       |
| Analyte             | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual  |
| Aluminum            | 1,510                 | 10.0 | 1,500     | 0           | 101  | 90            | 110                   |                       |       |
| Sample ID: CCV-4252 | 26A SampType: CCV     |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |       |
| Client ID: CCV      | Batch ID: 4242        | 6    |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849555</b> |       |
| Analyte             | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual  |
| Aluminum            | 996                   | 10.0 | 1,000     | 0           | 99.6 | 90            | 110                   |                       |       |
| Sample ID: CCB-4252 | 26A SampType: CCB     |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |       |
| Client ID: CCB      | Batch ID: <b>4242</b> | 6    |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849556</b> |       |
| Analyte             | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual  |
| Aluminum            | ND                    | 10.0 |           |             |      |               |                       |                       |       |
| Sample ID: MB-42420 | SampType: MBL         | K    |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |       |
| Client ID: MBLKW    | Batch ID: <b>4242</b> | 6    |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849557</b> |       |
| Analyte             | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual  |
| Aluminum            | ND                    | 10.0 |           |             |      |               |                       |                       |       |

Page 13 of 21 Original





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

# **Dissolved Metals by EPA Method 200.8**

| 110ject. 012270                   |                      |      |           |             |      |               |                       |                       |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Sample ID: LCS-42426              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |      |
| Client ID: LCSW                   | Batch ID: 42426      |      |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849558</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | I %RPD RPDLimit       | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 85            | 115                   |                       |      |
| Sample ID: <b>2312365-002BDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date     | 12/22/2023            | RunNo: <b>88568</b>   |      |
| Client ID: CCMW-2B-1223           | Batch ID: 42426      |      |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849560</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | I %RPD RPDLimit       | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |               | 0                     | 30                    |      |
| Sample ID: <b>2312365-002BMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date     | 12/22/2023            | RunNo: <b>88568</b>   |      |
| Client ID: CCMW-2B-1223           | Batch ID: 42426      |      |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849561</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | I %RPD RPDLimit       | Qual |
| Aluminum                          | 1,030                | 10.0 | 1,000     | 0           | 103  | 50            | 150                   |                       |      |
| Sample ID: <b>2312365-002BMSD</b> | SampType: <b>MSD</b> |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |      |
| Client ID: CCMW-2B-1223           | Batch ID: 42426      |      |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849562</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | I %RPD RPDLimit       | Qual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 50            | 150 1,032             | 2 0.643 30            |      |
| Sample ID: CCV-42526B             | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date     | : 12/22/2023          | RunNo: <b>88568</b>   |      |
| Client ID: CCV                    | Batch ID: 42426      |      |           |             |      | Analysis Date | 12/22/2023            | SeqNo: <b>1849567</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | I %RPD RPDLimit       | Qual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 90            | 110                   |                       |      |
|                                   |                      |      |           |             |      |               |                       |                       |      |

Original Page 14 of 21





**CLIENT:** Friedman & Bruya

**Project:** 312273

# **QC SUMMARY REPORT**

# **Dissolved Metals by EPA Method 200.8**

| Project: 3122/3                  |                      |      |           |             |      |                |                       | ,                     |         |
|----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|---------|
| Sample ID: CCB-42526B            | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88568</b>   |         |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849568</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | ND                   | 10.0 |           |             |      |                |                       |                       |         |
| Sample ID: <b>2312427-001CMS</b> | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88568</b>   |         |
| Client ID: BATCH                 | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849578</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 50             | 150                   |                       |         |
| Sample ID: CCV-42526C            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88568</b>   |         |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849579</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                       |         |
| Sample ID: CCB-42526C            | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88568</b>   |         |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849580</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | ND                   | 10.0 |           |             |      |                |                       |                       |         |
| Sample ID: CCV-42526D            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88568</b>   |         |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849694</b> |         |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLi            | mit Qua |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                       |         |
|                                  |                      |      |           |             |      |                |                       |                       |         |

Original Page 15 of 21

Date: 12/27/2023



Work Order: 2312365

**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Dissolved Metals by EPA Method 200.8** 

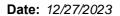
**Project:** 312273

Sample ID: CCB-42526C

SampType: CCB Units: µg/L

Prep Date: 12/22/2023 RunN

RunNo: 88568


Client ID: CCB Batch ID: 42426

Analysis Date: 12/22/2023 SeqNo: 1849695

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

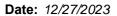
Aluminum ND 10.0

Original Page 16 of 21





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

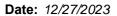
| 512273                     |                       |      |           |             |                                     | -                     |
|----------------------------|-----------------------|------|-----------|-------------|-------------------------------------|-----------------------|
| Sample ID: ICB             | SampType: ICB         |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: ICB             | Batch ID: 42397       |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848375</b> |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                   | ND                    | 10.0 |           |             |                                     |                       |
| Sample ID: <b>ICV</b>      | SampType: <b>ICV</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: ICV             | Batch ID: 42397       |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848376</b> |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                   | 1,450                 | 10.0 | 1,500     | 0           | 96.8 90 110                         |                       |
| Sample ID: CCV-42397A      | SampType: <b>CCV</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCV             | Batch ID: 42397       |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848377</b> |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                   | 986                   | 10.0 | 1,000     | 0           | 98.6 90 110                         |                       |
| Sample ID: CCB-42397A      | SampType: <b>CCB</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCB             | Batch ID: 42397       |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848378</b> |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                   | ND                    | 10.0 |           |             |                                     |                       |
| Sample ID: <b>MB-42397</b> | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/19/2023               | RunNo: <b>88509</b>   |
| Client ID: MBLKW           | Batch ID: 42397       |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848379</b> |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                   | ND                    | 10.0 |           |             |                                     |                       |

Original Page 17 of 21





**CLIENT:** Friedman & Bruya


**Project:** 312273

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| Sample ID: 2312365-002AMS         | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/19/2023            | RunNo: <b>88509</b>   |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|------|
| Client ID: CCMW-2B-1223           | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848382</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 728                  | 10.0 | 1,000     | 0           | 72.8 | 70             | 130                   |                       |      |
| Sample ID: <b>2312365-002AMSD</b> | SampType: MSD        |      |           | Units: µg/L |      | Prep Date:     | 12/19/2023            | RunNo: <b>88509</b>   |      |
| Client ID: CCMW-2B-1223           | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848383</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 926                  | 10.0 | 1,000     | 0           | 92.6 | 70             | 130 728.2             | 24.0 30               |      |
| Sample ID: CCV-42397B             | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |      |
| Client ID: CCV                    | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848393</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                       |      |
| Sample ID: CCB-42397B             | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88509</b>   |      |
| Client ID: CCB                    | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848394</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                |                       |                       |      |
| Sample ID: <b>2312350-001AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/19/2023            | RunNo: <b>88509</b>   |      |
| Client ID: BATCH                  | Batch ID: 42397      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848396</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 865                  | 10.0 | 1,000     | 34.80       | 83.1 | 70             | 130                   |                       |      |
|                                   |                      |      |           |             |      |                |                       |                       |      |

Original Page 18 of 21





**CLIENT:** Friedman & Bruya

**Project:** 312273

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| 512273                |                      |      |           |             |                                     | •                     |
|-----------------------|----------------------|------|-----------|-------------|-------------------------------------|-----------------------|
| Sample ID: CCV-42397C | SampType: <b>CCV</b> |      |           | Units: μg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCV        | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848405</b> |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum              | 998                  | 10.0 | 1,000     | 0           | 99.8 90 110                         |                       |
| Sample ID: CCB-42397C | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCB        | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848406</b> |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum              | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: CCV-42397D | SampType: <b>CCV</b> |      |           | Units: μg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCV        | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848412</b> |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum              | 986                  | 10.0 | 1,000     | 0           | 98.6 90 110                         |                       |
| Sample ID: CCB-42397D | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/21/2023               | RunNo: <b>88509</b>   |
| Client ID: CCB        | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848413</b> |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum              | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: LCS-42397  | SampType: <b>LCS</b> |      |           | Units: μg/L | Prep Date: 12/19/2023               | RunNo: <b>88509</b>   |
| Client ID: LCSW       | Batch ID: 42397      |      |           |             | Analysis Date: 12/21/2023           | SeqNo: <b>1848471</b> |
| Analyte               | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum              | 1,020                | 10.0 | 1,000     | 0           | 102 85 115                          |                       |
|                       |                      |      |           |             |                                     |                       |

Original Page 19 of 21



# Sample Log-In Check List

| Clie                                                               | ent Name:                          | FB                                                              |                 |       | Work Orde | er Numbe | r: 2312365   |                      |   |
|--------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|-----------------|-------|-----------|----------|--------------|----------------------|---|
| Lo                                                                 | gged by:                           | Lyann Rivera                                                    |                 |       | Date Rece | eived:   | 12/15/202    | 3 11:45:00 AM        |   |
| <u>Chai</u>                                                        | in of Custo                        | ody                                                             |                 |       |           |          |              |                      |   |
| 1.                                                                 | ls Chain of C                      | ustody complete?                                                |                 |       | Yes 🖢     | /        | No 🗌         | Not Present          |   |
| 2. 1                                                               | How was the                        | sample delivered?                                               |                 |       | Courier   | [        |              |                      |   |
| Log                                                                | <u>In</u>                          |                                                                 |                 |       |           |          |              |                      |   |
|                                                                    |                                    | s present on shipping containe<br>ments for Custody Seals not i |                 |       | Yes       |          | No $\square$ | Not Present <b>✓</b> |   |
| 4. V                                                               | Nas an attem                       | pt made to cool the samples?                                    | )               |       | Yes 🛂     | •        | No $\square$ | NA 🗆                 |   |
| 5. V                                                               | Were all items                     | s received at a temperature of                                  | >2°C to 6°C     | *     | Yes 🛂     | •        | No 🗌         | NA $\square$         |   |
| 6. S                                                               | Sample(s) in                       | proper container(s)?                                            |                 |       | Yes 🗸     | •        | No $\square$ |                      |   |
| 7. 8                                                               | Sufficient sam                     | ple volume for indicated test(                                  | s)?             |       | Yes 🗸     | •        | No $\square$ |                      |   |
| 8. <i>P</i>                                                        | 8. Are samples properly preserved? |                                                                 |                 |       |           | •        | No $\square$ |                      |   |
| 9. V                                                               | Was preserva                       | tive added to bottles?                                          |                 |       | Yes       |          | No 🗸         | NA $\square$         |   |
| 10. ls                                                             | s there heads                      | space in the VOA vials?                                         |                 |       | Yes 🗆     |          | No $\square$ | NA 🗹                 |   |
| 11. Did all samples containers arrive in good condition(unbroken)? |                                    |                                                                 |                 |       | Yes 🗸     | •        | No 🗌         |                      |   |
| 12. 🛚                                                              | Does paperwo                       | ork match bottle labels?                                        |                 |       | Yes 🗸     | •        | No $\square$ |                      |   |
| 13. <sup>A</sup>                                                   | Are matrices                       | correctly identified on Chain o                                 | f Custody?      |       | Yes 🗸     | •        | No 🗌         |                      |   |
| 14. ls                                                             | s it clear wha                     | t analyses were requested?                                      |                 |       | Yes 🛂     | •        | No 🗌         |                      |   |
|                                                                    | Were all hold<br>be met?           | times (except field parameter                                   | s, pH e.g.) abl | le to | Yes 🛂     | •        | No $\square$ |                      |   |
| <u>Spe</u>                                                         | <u>cial Handl</u>                  | <u>ling (if applicable)</u>                                     |                 |       |           |          |              |                      |   |
| 16.                                                                | Was client n                       | otified of all discrepancies with                               | n this order?   |       | Yes       |          | No 🗌         | NA 🗸                 | _ |
|                                                                    | Person                             | Notified:                                                       |                 | Date  |           |          |              |                      |   |
|                                                                    | By Who                             | om:                                                             |                 | Via:  | eMail     | Phor     | ne 🗌 Fax     | ☐ In Person          |   |
|                                                                    | Regard                             | ing:                                                            |                 |       |           |          |              |                      |   |
|                                                                    | Client I                           | nstructions:                                                    |                 |       |           |          |              |                      |   |
| 17.                                                                | Additional re                      | marks:                                                          |                 |       |           |          |              |                      | _ |
| <u>Item</u>                                                        | <u>Information</u>                 |                                                                 |                 |       |           |          |              |                      |   |
|                                                                    |                                    | Item #                                                          | Temp °C         |       |           |          |              |                      |   |
|                                                                    | Sample                             |                                                                 | 2.6             |       |           |          |              |                      |   |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3012 16th Avenue West | Friedman & Bruya, Inc. | Sample ID  CCMW-2A-1223  CCMW-2B-1232  TWA-9D-1223        |                    | Phone # (206) 28                              | City, State, ZIP                         | Address                     | Company                 | Send Report To              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------------------------------------------|--------------------|-----------------------------------------------|------------------------------------------|-----------------------------|-------------------------|-----------------------------|
| 2 2029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | West                  | a, Inc.                | Lab                                                       |                    | 85-8282                                       | Seattle, V                               | 5500 4th Ave S              | Friedma                 | Michael Erdahl              |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/4                   | S                      | Date<br>Sampled<br>12/14/2023<br>12/14/2023<br>12/14/2023 |                    | (206) 285-8282 merdahl@friedmanandbruya.com   | Seattle, WA 98108                        | Ave S                       | Friedman and Bruya, Inc | Erdahl                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tra                   | SIGNATURE              | Time<br>Sampled<br>1245<br>1355<br>1520                   |                    | manandbruya.                                  |                                          |                             | nc.                     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                     | 7                      | Matrix water water water                                  |                    | com                                           | REN                                      |                             | PRO                     | SUB                         |
| Broke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Michael Erdahl        |                        | # of jars                                                 |                    | Tier                                          | REMARKS                                  |                             | PROJECT NAME/NO         | SUBCONTRACTER<br>Fremont    |
| The state of the s | el Erc                | .p                     | × × × total aluminum                                      |                    | IV, E                                         |                                          | 312273                      | AME                     | TRACTER<br>Fremont          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lahl                  | PRINT NAME             | × × × dissolved aluminum                                  |                    | Tier IV, EQuIS 4                              |                                          | 73                          | /NO.                    | ER<br>It                    |
| Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | NAM                    | × × × ferrous iron                                        |                    |                                               |                                          |                             |                         |                             |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | (3)                    | ferrous iron                                              | ANA                |                                               | -                                        | _                           |                         |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        | dissolved gases                                           | YSE                |                                               |                                          |                             |                         |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frie                  |                        | TOC                                                       | ANALYSES REQUESTED |                                               |                                          | D-596                       | PO#                     |                             |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Friedman & Bruya      | COI                    |                                                           | UEST               |                                               |                                          |                             |                         |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | & Bru                 | COMPANY                |                                                           | CED                |                                               |                                          | R                           | ×                       | 7                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıya                   | Y                      |                                                           |                    | Return<br>Will ca                             | S./<br>Dispose                           | ish cha                     | Standa                  | TU                          |
| 13/1923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/5/25               | DATE                   | MS/MD N                                                   |                    | Return samples<br>Will call with instructions | SAMPLE DISPOSAL<br>Dispose after 30 days | Rush charges authorized by: | ⊠ Standard TAT<br>RUSH  | Page # 1 of TURNAROUND TIME |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                     | -1                     | Notes                                                     |                    | tions                                         | DSAL                                     | d by:                       |                         | of                          |

TIME

9469

ニス

TURNAROUND TIME l of

Page 21 of 21

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 15, 2023 from the TWAAFA-001, F&BI 312301 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1229R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 15, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312301 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <b>Dalton Olmsted Fuglevand</b> |
|----------------------|---------------------------------|
| 312301 -01           | CTMW-23R2-1223                  |
| 312301 -02           | Field Blank #1-1223             |
| 312301 -03           | CTMW-11R2-1223                  |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

The 1631E calibration standard exceeded the acceptance criteria. Mercury was not detected, therefore this did not represent an out of control condition.

All other quality control requirements were acceptable.

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:      | CTMW-23R2-1223 | Client:  | Dalton Olmsted Fuglevand |
|-----------------|----------------|----------|--------------------------|
| Date Received:  | 12/15/23       | Project: | TWAAFA-001, F&BI 312301  |
| Date Extracted: | 12/18/23       | Lab ID:  | 312301-01                |
|                 |                | T . T111 |                          |

Date Analyzed: 12/19/23 Data File: 312301-01.288
Matrix: Water Instrument: ICPMS2
Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 3.59

 Copper
 0.607

 Iron
 660

 Manganese
 493

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-11R2-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312301

Date Extracted: 12/18/23 Lab ID: 312301-03 x4
Date Analyzed: 12/20/23 Data File: 312301-03 x4.059

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Copper <2.4

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-11R2-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312301

 Date Extracted:
 12/18/23
 Lab ID:
 312301-03 x5

 Date Analyzed:
 12/19/23
 Data File:
 312301-03 x5.254

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5 Manganese <5

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-11R2-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312301

 Date Extracted:
 12/18/23
 Lab ID:
 312301-03 x50

 Date Analyzed:
 12/19/23
 Data File:
 312301-03 x50.128

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 4,260

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312301

Date Extracted: 12/18/23 Lab ID: I3-1001 mb
Date Analyzed: 12/18/23 Data File: I3-1001 mb.051
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 <1</td>

 Copper
 <0.6</td>

 Iron
 <50</td>

 Manganese
 <1</td>

# ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 6020B

| Client ID:      | CTMW-23R2-1223 | Client:     | Dalton Olmsted Fuglevand |
|-----------------|----------------|-------------|--------------------------|
| Date Received:  | 12/15/23       | Project:    | TWAAFA-001, F&BI 312301  |
| Date Extracted: | 12/18/23       | Lab ID:     | 312301-01                |
| Date Analyzed:  | 12/19/23       | Data File:  | 312301-01.292            |
| Matrix:         | Water          | Instrument: | ICPMS2                   |
| Units:          | ug/L (ppb)     | Operator:   | SP                       |

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | 3.45                     |
| Copper    | 1.92                     |
| Iron      | 780                      |
| Manganese | 542                      |

# ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 6020B

| Client ID:      | Field Blank #1-1223 | Client:     | Dalton Olmsted Fuglevand |
|-----------------|---------------------|-------------|--------------------------|
| Date Received:  | 12/15/23            | Project:    | TWAAFA-001, F&BI 312301  |
| Date Extracted: | 12/18/23            | Lab ID:     | 312301-02                |
| Date Analyzed:  | 12/19/23            | Data File:  | 312301-02.293            |
| Matrix:         | Water               | Instrument: | ICPMS2                   |
| Units:          | ug/L (ppb)          | Operator:   | SP                       |

| Analyte:  | Concentration ug/L (ppb) |  |
|-----------|--------------------------|--|
| Arsenic   | <1                       |  |
| Chromium  | 1.22                     |  |
| Copper    | < 0.6                    |  |
| Iron      | <50                      |  |
| Lead      | <1                       |  |
| Manganese | 1.46                     |  |
| Nickel    | <1                       |  |
| Zinc      | <5                       |  |

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-11R2-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312301

 Date Extracted:
 12/18/23
 Lab ID:
 312301-03 x2

 Date Analyzed:
 12/19/23
 Data File:
 312301-03 x2.147

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{ll} \text{Copper} & 1.67 \\ \text{Iron} & 3,520 \\ \text{Manganese} & <2 \end{array}$ 

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-11R2-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312301

 Date Extracted:
 12/18/23
 Lab ID:
 312301-03 x5

 Date Analyzed:
 12/19/23
 Data File:
 312301-03 x5.265

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <5

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | Method Blank   | Client:  | Dalton Olmsted Fuglevand |
|----------------|----------------|----------|--------------------------|
| Date Received: | Not Applicable | Project: | TWAAFA-001, F&BI 312301  |
| T . T          |                | T 1 TT   | TO 000 1                 |

Date Extracted: 12/18/23Lab ID: I3-999 mbDate Analyzed: 12/18/23 Data File: I3-999 mb.049 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

<5

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | <1                       |
| Chromium  | <1                       |
| Copper    | < 0.6                    |
| Iron      | < 50                     |
| Lead      | <1                       |
| Manganese | <1                       |
| Nickel    | <1                       |

Zinc

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312301

Date Extracted: 12/18/23 Date Analyzed: 12/26/23

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Total Mercury

Laboratory ID

Field Blank #1-1223 <0.02 k

312301-02

Method Blank <0.02 k

i3-1000 MB

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312301

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |                |
|-----------|------------|-------|--------|----------|----------|------------|----------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD            |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20)     |
| Arsenic   | ug/L (ppb) | 10    | 1,110  | 304 b    | 625 b    | 75-125     | 69 b           |
| Chromium  | ug/L (ppb) | 20    | <10    | 86       | 84       | 75 - 125   | 2              |
| Copper    | ug/L (ppb) | 20    | < 50   | 89       | 87       | 75 - 125   | 2              |
| Iron      | ug/L (ppb) | 100   | 4,770  | 133 b    | 210 b    | 75 - 125   | 45 b           |
| Lead      | ug/L (ppb) | 10    | <10    | 82       | 79       | 75 - 125   | 4              |
| Manganese | ug/L (ppb) | 20    | 188    | 103 b    | 110 b    | 75 - 125   | 7 b            |
| Nickel    | ug/L (ppb) | 20    | 12.4   | 90 b     | 86 b     | 75 - 125   | $5~\mathrm{b}$ |
| Zinc      | ug/L (ppb) | 50    | < 50   | 94       | 96       | 75 - 125   | 2              |

Laboratory Code: Laboratory Control Sample

|           |            |       | $\operatorname{Percent}$ |            |
|-----------|------------|-------|--------------------------|------------|
|           | Reporting  | Spike | Recovery                 | Acceptance |
| Analyte   | Units      | Level | LCS                      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87                       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 90                       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91                       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 87                       | 80-120     |
| Lead      | ug/L (ppb) | 10    | 88                       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 83                       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 91                       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 95                       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312301

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,200  | 0 b      | 0 b      | 75-125     | nm         |
| Chromium  | ug/L (ppb) | 20    | <10    | 90       | 89       | 75 - 125   | 1          |
| Copper    | ug/L (ppb) | 20    | < 50   | 91       | 90       | 75 - 125   | 1          |
| Iron      | ug/L (ppb) | 100   | 5,320  | 0 b      | 0 b      | 75 - 125   | nm         |
| Lead      | ug/L (ppb) | 10    | <10    | 85       | 84       | 75 - 125   | 1          |
| Manganese | ug/L (ppb) | 20    | 205    | 13 b     | 37 b     | 75 - 125   | 96 b       |
| Nickel    | ug/L (ppb) | 20    | 12.4   | 92 b     | 89 b     | 75 - 125   | 3 b        |
| Zinc      | ug/L (ppb) | 50    | < 50   | 92       | 91       | 75 - 125   | 1          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 95       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 89       | 80-120     |
| Lead      | ug/L (ppb) | 10    | 91       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 88       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 94       | 80-120     |
| Zinc      | ug/L (ppb) | 50    | 95       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312301

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: Laboratory Control Sample

|         |            |       | Percent  | $\operatorname{Percent}$ |            |            |
|---------|------------|-------|----------|--------------------------|------------|------------|
|         | Reporting  | Spike | Recovery | Recovery                 | Acceptance | RPD        |
| Analyte | Units      | Level | LCS      | LCSD                     | Criteria   | (Limit 20) |
| Mercury | ug/L (ppb) | 0.01  | 109      | 118                      | 66-126     | 8          |

### **ENVIRONMENTAL CHEMISTS**

# **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

CTHW-23R2-1223 CTMW-1182-1223 Field Blank#1-1223 Address\_ Company DOF Report To: Anthony Cerruti / Trevor Louviere Phone 215-767-7749 Email acerruti@dofnw.com City, State, ZIP Seattle, WA 98134 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Ph. (206) 285-8282 Sample ID 1001 SW Klickitat Way 02 A-B 12/15/23 01 A-C 121,5/23 03 AC 12/15/13 Lab ID Received by: Relinquished by: Relinquished by: Received by: cc: Tasya Gray Sampled Date SIGNATURE Time Sampled 1015 1100 1010 proviewed Sample SAMPLE CHAIN OF CUSTODY Matrix E Z SAMPLERS (signature) Mygen Z PROJECT NAME Project Specific RLs micron before analysis Dissolved metals samples field filtered at 0.45 REMARKS Bottles  $\omega$ # of S Custody Seal by Delivery Express Ciliat Schuman When Phan TWAAFA Total Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, Zn) Yes / No PRINT NAME Dissolved Metals 6020B 23 (As, Cr, Cu, Mn, Ni, Pb, Zn) Total Mercury 1631E Dissolved Mercury 1631E Total Metals (Al, Fe) TWAAFA-001 INVOICE TO DOF Dissolved Metals (Al, Fe) 7827 Samples received Ferrous DOT COMPANY 115/23 Rush charges authorized by: Standard Turnaround Dispose after 30 days ANALYSES REQUESTED **Archive Samples** RUSH TURNAROUND TIME SAMPLE DISPOSAL at 12/15/23 | 1325 415113 12/15/23 MS/MSD Collected? DATE W (Y/N) ALL HOLD PO 27 Tot Mins Co Can Po ALL HOLD PO 27 Tot 10:55 Hetals ! Al, AS, Cu, Fe, Ma Al, AS, Cu, TR, Tax Tot/Diss Metals å Notes 1115 TIME

Z

In Mund



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312301

Work Order Number: 2312392

December 27, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 3 sample(s) on 12/15/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/27/2023



CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312301 **Work Order:** 2312392

| Lab Sample ID | Client Sample ID   | Date/Time Collected | Date/Time Received |
|---------------|--------------------|---------------------|--------------------|
| 2312392-001   | CTMW-23R2-1223     | 12/15/2023 10:10 AM | 12/15/2023 4:20 PM |
| 2312392-002   | Field Blank#1-1223 | 12/15/2023 10:15 AM | 12/15/2023 4:20 PM |
| 2312392-003   | CTMW-11R2-1223     | 12/15/2023 11:00 AM | 12/15/2023 4:20 PM |

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned



### **Case Narrative**

WO#: **2312392**Date: **12/27/2023** 

CLIENT: Friedman & Bruya

**Project:** 312301

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



# **Qualifiers & Acronyms**

WO#: **2312392** 

Date Reported: 12/27/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312392
Date Reported: 12/27/2023

Client: Friedman & Bruya Collection Date: 12/15/2023 10:10:00 AM

**Project:** 312301

**Lab ID:** 2312392-001 **Matrix:** Water

Client Sample ID: CTMW-23R2-1223

| Analyses                       | Result  | RL    | Qual | Units | DF      | Date Analyzed          |
|--------------------------------|---------|-------|------|-------|---------|------------------------|
| Dissolved Metals by EPA Method | d 200.8 |       |      | Batch | n ID: 4 | 2426 Analyst: SS       |
| Aluminum                       | 22.8    | 10.0  |      | μg/L  | 1       | 12/22/2023 7:38:00 PM  |
| Total Metals by EPA Method 200 | 0.8     |       |      | Batch | n ID: 4 | 2425 Analyst: SLL      |
| Aluminum                       | 77.2    | 10.0  |      | μg/L  | 1       | 12/22/2023 6:22:00 PM  |
| Ferrous Iron by SM3500-Fe B    |         |       |      | Batch | n ID: F | R88407 Analyst: FG     |
| Ferrous Iron                   | 0.272   | 0.150 |      | mg/L  | 1       | 12/15/2023 12:17:59 PM |

Original



# **Analytical Report**

Work Order: **2312392**Date Reported: **12/27/2023** 

Client: Friedman & Bruya Collection Date: 12/15/2023 10:15:00 AM

**Project:** 312301

**Lab ID:** 2312392-002 **Matrix:** Water

Client Sample ID: Field Blank#1-1223

| Analyses                         | Result | RL    | Qual | Units | DF       | Date Analyzed          |
|----------------------------------|--------|-------|------|-------|----------|------------------------|
| Total Metals by EPA Method 200.8 | 3      |       |      | Batch | n ID: 42 | 425 Analyst: SLL       |
| Aluminum                         | ND     | 10.0  |      | μg/L  | 1        | 12/22/2023 6:24:00 PM  |
| Ferrous Iron by SM3500-Fe B      |        |       |      | Batch | ı ID: R8 | 88407 Analyst: FG      |
| Ferrous Iron                     | ND     | 0.150 |      | mg/L  | 1        | 12/15/2023 12:17:59 PM |

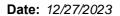
Original



# **Analytical Report**

Work Order: **2312392**Date Reported: **12/27/2023** 

Client: Friedman & Bruya Collection Date: 12/15/2023 11:00:00 AM


**Project:** 312301

**Lab ID:** 2312392-003 **Matrix:** Water

Client Sample ID: CTMW-11R2-1223

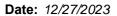
| Analyses                     | Result   | RL    | Qual | Units | DF      | Date Analyzed          |
|------------------------------|----------|-------|------|-------|---------|------------------------|
| Dissolved Metals by EPA Meth | od 200.8 |       |      | Batch | n ID: 4 | 2426 Analyst: SS       |
| Aluminum                     | 394      | 10.0  |      | μg/L  | 1       | 12/22/2023 7:40:00 PM  |
| Total Metals by EPA Method 2 | 00.8     |       |      | Batch | n ID: 4 | 2425 Analyst: SLL      |
| Aluminum                     | 397      | 10.0  |      | μg/L  | 1       | 12/22/2023 6:27:00 PM  |
| Ferrous Iron by SM3500-Fe B  |          |       |      | Batch | ı ID: R | 88407 Analyst: FG      |
| Ferrous Iron                 | ND       | 0.150 |      | mg/L  | 1       | 12/15/2023 12:17:59 PM |

Original





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

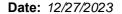
| 512301                            |                         |       |           |             |                                                               |                              |                     |                       | -                     |      |  |
|-----------------------------------|-------------------------|-------|-----------|-------------|---------------------------------------------------------------|------------------------------|---------------------|-----------------------|-----------------------|------|--|
| Sample ID: CCV-R88407A            | SampType: <b>CCV</b>    |       |           | Units: mg/L | Prep Date: <b>12/15/2023</b> Analysis Date: <b>12/15/2023</b> |                              |                     | RunNo: 884            | 407                   |      |  |
| Client ID: CCV                    | Batch ID: <b>R88407</b> |       |           |             |                                                               |                              |                     | SeqNo: <b>1846072</b> |                       |      |  |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC Low                                                      | vLimit HighLimit             | RPD Ref Val         | %RPD                  | RPDLimit              | Qual |  |
| Ferrous Iron                      | 0.439                   | 0.150 | 0.4000    | 0           | 110                                                           | 85 115                       |                     |                       |                       |      |  |
| Sample ID: CCB-R88407             | SampType: <b>CCB</b>    |       |           | Units: mg/L | Prep Date: 12/15/2023                                         |                              |                     | RunNo: <b>88407</b>   |                       |      |  |
| Client ID: CCB                    | Batch ID: <b>R88407</b> |       |           |             | Analysis Date: 12/15/2023                                     |                              |                     | SeqNo: <b>1846073</b> |                       |      |  |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC Low                                                      | vLimit HighLimit             | RPD Ref Val         | %RPD                  | RPDLimit              | Qual |  |
| Ferrous Iron                      | ND                      | 0.150 |           |             |                                                               |                              |                     |                       |                       |      |  |
| Sample ID: LCS-R88407             | SampType: <b>LCS</b>    |       |           | Units: mg/L | Prep Date: 12/15/2023                                         |                              |                     | RunNo: <b>88407</b>   |                       |      |  |
| Client ID: LCSW                   | Batch ID: <b>R88407</b> |       |           |             | Analysis Date: 12/15/2023                                     |                              |                     | SeqNo: <b>1846074</b> |                       |      |  |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC Low                                                      | vLimit HighLimit             | RPD Ref Val         | %RPD                  | RPDLimit              | Qual |  |
| Ferrous Iron                      | 0.454                   | 0.150 | 0.4000    | 0           | 113                                                           | 85 115                       |                     |                       |                       |      |  |
| Sample ID: MB-R88407              | SampType: <b>MBLK</b>   |       |           | Units: mg/L | Prep Date: 12/15/2023                                         |                              | RunNo: <b>88407</b> |                       |                       |      |  |
| Client ID: MBLKW                  | Batch ID: <b>R88407</b> |       |           |             | Analy                                                         | /sis Date: <b>12/15/2</b>    | 023                 | SeqNo: 184            | 46075                 |      |  |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC Low                                                      | vLimit HighLimit             | RPD Ref Val         | %RPD                  | RPDLimit              | Qual |  |
| Ferrous Iron                      | ND                      | 0.150 |           |             |                                                               |                              |                     |                       |                       |      |  |
| Sample ID: <b>2312365-003CDUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L | Pi                                                            | rep Date: <b>12/15/2</b>     | 023                 | RunNo: <b>88407</b>   |                       |      |  |
| Client ID: BATCH                  | Batch ID: <b>R88407</b> |       |           |             | Analy                                                         | Analysis Date: 12/15/2023 Se |                     |                       | SeqNo: <b>1846079</b> |      |  |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC Low                                                      | vLimit HighLimit             | RPD Ref Val         | %RPD                  | RPDLimit              | Qual |  |
| Ferrous Iron                      | 0.396                   | 0.150 |           |             |                                                               |                              | 0.3993              | 0.760                 | 20                    |      |  |
|                                   |                         |       |           |             |                                                               |                              |                     |                       |                       |      |  |

Original Page 8 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| Sample ID: 2312365-         | 003CMS SampTyp             | ne. MS               |             |                | Units: mg/L        |                       | Pren Date:                | 12/15/2023            | RunNo: <b>88407</b>   |      |  |
|-----------------------------|----------------------------|----------------------|-------------|----------------|--------------------|-----------------------|---------------------------|-----------------------|-----------------------|------|--|
| Client ID: BATCH            | 1 31                       | Batch ID: R88407     |             |                | orinto. Ing/L      |                       | Analysis Date:            |                       | SeqNo: <b>1846080</b> |      |  |
| Analyte                     | ButoniB                    | Result               | RL          | SPK value      | SPK Ref Val        | %REC                  | •                         | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |  |
|                             |                            |                      |             |                |                    |                       |                           |                       | 7010 D IN DEIIIII     | Quai |  |
| Ferrous Iron                |                            | 0.789                | 0.150       | 0.4000         | 0.3993             | 97.5                  | 70                        | 130                   |                       |      |  |
| Sample ID: <b>2312365</b> - | 003CMSD SampTyp            | SampType: <b>MSD</b> |             |                | Units: mg/L        |                       | Prep Date: 12/15/2023     |                       | RunNo: <b>88407</b>   |      |  |
| Client ID: BATCH            | Batch ID:                  | R88407               |             |                |                    |                       | Analysis Date: 12/15/2023 |                       | SeqNo: <b>1846081</b> |      |  |
| Analyte                     |                            | Result               | RL          | SPK value      | SPK Ref Val        | %REC                  | LowLimit H                | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |  |
| Ferrous Iron NOTES:         |                            | 0.934                | 0.150       | 0.4000         | 0.3993             | 134                   | 70                        | 130 0.7892            | 16.8 30               | S    |  |
| S - Spiked amount           | was low relative to sample | concentration        | n. Outlying | spike recoveri | es may be expected | -                     |                           |                       |                       |      |  |
| Sample ID: CCV-R88          | <b>107B</b> SampTyp        | e: CCV               |             |                | Units: mg/L        | Prep Date: 12/15/2023 |                           |                       | RunNo: 88407          |      |  |
| Client ID: CCV              | Batch ID:                  | R88407               |             |                |                    |                       | Analysis Date:            | 12/15/2023            | SeqNo: <b>1846236</b> |      |  |
| Analyte                     |                            | Result               | RL          | SPK value      | SPK Ref Val        | %REC                  | LowLimit F                | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |  |
| Ferrous Iron                |                            | 0.433                | 0.150       | 0.4000         | 0                  | 108                   | 85                        | 115                   |                       |      |  |
| Sample ID: CCB-R88          | <b>407B</b> SampTyp        | SampType: CCB        |             |                | Units: mg/L        | Prep Date:            |                           | 12/15/2023            | RunNo: <b>88407</b>   |      |  |
| Client ID: CCB              | Batch ID:                  | R88407               |             |                |                    |                       | Analysis Date:            | 12/15/2023            | SeqNo: <b>1846237</b> |      |  |
| Analyte                     |                            | Result               | RL          | SPK value      | SPK Ref Val        | %REC                  | LowLimit F                | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |  |
| Ferrous Iron                |                            | ND                   | 0.150       |                |                    |                       |                           |                       |                       |      |  |
| Sample ID: CCV-R88          | <b>107C</b> SampTyp        | pe: CCV              |             |                | Units: mg/L        |                       | Prep Date:                | 12/15/2023            | RunNo: <b>88407</b>   |      |  |
| Client ID: CCV              | Batch ID:                  | R88407               |             |                |                    |                       | Analysis Date:            | 12/15/2023            | SeqNo: <b>1846241</b> |      |  |
| Analyte                     |                            | Result               | RL          | SPK value      | SPK Ref Val        | %REC                  | LowLimit F                | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |  |
|                             |                            | 0.405                |             | 0.4000         |                    |                       |                           |                       |                       |      |  |

Original Page 9 of 19



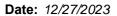


**CLIENT:** Friedman & Bruya

**Project:** 312301

**QC SUMMARY REPORT** 

Ferrous Iron by SM3500-Fe B


Sample ID: CCB-R88407C SampType: CCB Units: mg/L Prep Date: 12/15/2023 RunNo: 88407

Client ID: **CCB** Batch ID: **R88407** Analysis Date: **12/15/2023** SeqNo: **1846242** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Ferrous Iron ND 0.150

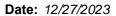
Original Page 10 of 19





Friedman & Bruya

**Project:** 312301


CLIENT:

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

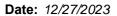
| 110ject. 012001       |                       |      |           |             |      |                |                       |            |          |      |
|-----------------------|-----------------------|------|-----------|-------------|------|----------------|-----------------------|------------|----------|------|
| Sample ID: ICB        | SampType: <b>ICB</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 88  | 568      |      |
| Client ID: ICB        | Batch ID: 42426       |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: 184 | 49551    |      |
| Analyte               | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum              | ND                    | 10.0 |           |             |      |                |                       |            |          |      |
| Sample ID: ICV        | SampType: <b>ICV</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 88  | 568      |      |
| Client ID: ICV        | Batch ID: 42426       |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: 184 | 49552    |      |
| Analyte               | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum              | 1,510                 | 10.0 | 1,500     | 0           | 101  | 90             | 110                   |            |          |      |
| Sample ID: CCV-42526A | SampType: <b>CCV</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 88  | 568      |      |
| Client ID: CCV        | Batch ID: 42426       |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: 184 | 49555    |      |
| Analyte               | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum              | 996                   | 10.0 | 1,000     | 0           | 99.6 | 90             | 110                   |            |          |      |
| Sample ID: CCB-42526A | SampType: <b>CCB</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 88  | 568      |      |
| Client ID: CCB        | Batch ID: 42426       |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: 184 | 49556    |      |
| Analyte               | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum              | ND                    | 10.0 |           |             |      |                |                       |            |          |      |
| Sample ID: MB-42426   | SampType: <b>MBLK</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 88  | 568      |      |
| Client ID: MBLKW      | Batch ID: 42426       |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: 184 | 49557    |      |
| Analyte               | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua  |
| Aluminum              | ND                    | 10.0 |           |             |      |                |                       |            |          |      |

Original Page 11 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

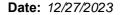
| Sample ID: LCS-42426              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> |                |       |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|--------------------|----------------|-------|
| Client ID: LCSW                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 558            |       |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual  |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 85             | 115                   |                    |                |       |
| Sample ID: <b>2312365-002BDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del>    |       |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 560            |       |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | ()ual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                | 0                     |                    | 30             |       |
| Sample ID: <b>2312365-002BMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del> 88 |       |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | )561           |       |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual  |
| Aluminum                          | 1,030                | 10.0 | 1,000     | 0           | 103  | 50             | 150                   |                    |                |       |
| Sample ID: <b>2312365-002BMSD</b> | SampType: MSD        |      |           | Units: μg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del>    |       |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 562            |       |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual  |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 50             | 150 1,032             | 0.643              | 30             |       |
| Sample ID: CCV-42526B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <br>88         |       |
| Client ID: CCV                    | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | )567           |       |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual  |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 90             | 110                   |                    |                |       |

Original Page 12 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

| 512301                           |                      |      |           |             |      |                |                       | -                   |          |      |
|----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|---------------------|----------|------|
| Sample ID: CCB-42526B            | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 885          | 68       |      |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>184</b> 9 | 9568     |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD                | RPDLimit | Qual |
| Aluminum                         | ND                   | 10.0 |           |             |      |                |                       |                     |          |      |
| Sample ID: <b>2312427-001CMS</b> | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 885          | 68       |      |
| Client ID: BATCH                 | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>184</b> 9 | 9578     |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD                | RPDLimit | Qual |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 50             | 150                   |                     |          |      |
| Sample ID: CCV-42526C            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 885          | 68       |      |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>184</b> 9 | 9579     |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                     |          |      |
| Sample ID: CCB-42526C            | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 885          | 68       |      |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>184</b> 9 | 9580     |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Aluminum                         | ND                   | 10.0 |           |             |      |                |                       |                     |          |      |
| Sample ID: CCV-42526D            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: 885          | 68       |      |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>184</b> 9 | 9694     |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD                | RPDLimit | Qua  |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                     |          |      |
|                                  |                      |      |           |             |      |                |                       |                     |          |      |

Original Page 13 of 19



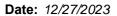


**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Dissolved Metals by EPA Method 200.8** 

**Project:** 312301


Sample ID: CCB-42526C SampType: CCB Units: μg/L Prep Date: 12/22/2023 RunNo: 88568

Client ID: CCB Batch ID: 42426 Analysis Date: 12/22/2023 SeqNo: 1849695

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

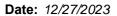
Aluminum ND 10.0

Original Page 14 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

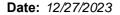
| <b>Project</b> : 312301           |                       |      |           |             | Total Metals by El A Metalou 200                       |
|-----------------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB                    | SampType: <b>ICB</b>  |      |           | Units: μg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: ICB                    | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849410               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: ICV                    | SampType: <b>ICV</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: ICV                    | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849411               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,510                 | 10.0 | 1,500     | 0           | 101 90 110                                             |
| Sample ID: <b>MB-42425</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: MBLKW                  | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849412               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: LCS-42425              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: LCSW                   | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849413               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,040                 | 10.0 | 1,000     | 0           | 104 85 115                                             |
| Sample ID: <b>2312443-001ADUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: BATCH                  | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849415               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 644                   | 10.0 |           |             | 599.3 7.21 30                                          |
|                                   |                       |      |           |             |                                                        |

Original Page 15 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312301

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| 110,000                          |                      |      |           |             |      |                |                       |                       |      |
|----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|------|
| Sample ID: 2312443-001AMS        | SampType: MS         |      |           | Units: μg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88561</b>   |      |
| Client ID: BATCH                 | Batch ID: 42425      |      |           |             | ,    | Analysis Date: | 12/22/2023            | SeqNo: <b>1849416</b> |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                         | 1,680                | 10.0 | 1,000     | 599.3       | 108  | 70             | 130                   |                       |      |
| Sample ID: CCV-42425A            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88561</b>   |      |
| Client ID: CCV                   | Batch ID: 42425      |      |           |             | ,    | Analysis Date: | 12/22/2023            | SeqNo: <b>1849421</b> |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                         | 1,020                | 10.0 | 1,000     | 0           | 102  | 90             | 110                   |                       |      |
| Sample ID: CCB-42425A            | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88561</b>   |      |
| Client ID: CCB                   | Batch ID: 42425      |      |           |             | ,    | Analysis Date: | 12/22/2023            | SeqNo: <b>1849422</b> |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                         | ND                   | 10.0 |           |             |      |                |                       |                       |      |
| Sample ID: <b>2312391-001CMS</b> | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88561</b>   |      |
| Client ID: BATCH                 | Batch ID: 42425      |      |           |             | ,    | Analysis Date: | 12/22/2023            | SeqNo: <b>1849463</b> |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                         | 1,090                | 10.0 | 1,000     | 39.95       | 105  | 70             | 130                   |                       |      |
| Sample ID: CCV-42425B            | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>88561</b>   |      |
| Client ID: CCV                   | Batch ID: 42425      |      |           |             | ,    | Analysis Date: | 12/22/2023            | SeqNo: <b>1849464</b> |      |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qua  |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101  | 90             | 110                   |                       |      |
|                                  |                      |      |           |             |      |                |                       |                       |      |

Original Page 16 of 19





**CLIENT:** Friedman & Bruya

**Project:** 312301

**QC SUMMARY REPORT** 

**Total Metals by EPA Method 200.8** 

Sample ID: CCB-42425B SampType: CCB Units: μg/L Prep Date: 12/22/2023 RunNo: 88561

Client ID: **CCB** Batch ID: **42425** Analysis Date: **12/22/2023** SeqNo: **1849465** 

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Sample ID: CCV-42425C SampType: CCV Units: µg/L Prep Date: 12/22/2023 RunNo: 88561

Client ID: CCV Batch ID: 42425 Analysis Date: 12/22/2023 SeqNo: 1849476

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum 1,020 10.0 1,000 0 102 90 110

Sample ID: CCB-42425C SampType: CCB Units: µg/L Prep Date: 12/22/2023 RunNo: 88561

Client ID: CCB Batch ID: 42425 Analysis Date: 12/22/2023 SeqNo: 1849477

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 17 of 19



# Sample Log-In Check List

| Clie        | ent Name:          | FB                |                                        |               |       | Work O  | rder Numb   | er: 2312392  | 2                  |  |
|-------------|--------------------|-------------------|----------------------------------------|---------------|-------|---------|-------------|--------------|--------------------|--|
| Lo          | gged by:           | Morgan Wils       | on                                     |               |       | Date Re | eceived:    | 12/15/20     | 023 4:20:00 PM     |  |
| Chai        | in of Custo        | od <u>v</u>       |                                        |               |       |         |             |              |                    |  |
|             |                    | ustody comple     | te?                                    |               |       | Yes     | <b>✓</b>    | No 🗌         | Not Present        |  |
| 2. I        | How was the        | sample deliver    | red?                                   |               |       | Cou     | <u>rier</u> |              |                    |  |
| <u>Log</u>  | <u>In</u>          |                   |                                        |               |       |         |             |              |                    |  |
|             |                    |                   | nipping container<br>tody Seals not in |               |       | Yes     |             | No 🗌         | Not Present ✓      |  |
| 4. V        | Nas an attem       | pt made to co     | ol the samples?                        |               |       | Yes     | ✓           | No 🗌         | NA $\square$       |  |
| 5. V        | Were all items     | s received at a   | temperature of                         | >2°C to 6°C   | *     | Yes     | •           | No 🗌         | na 🗆               |  |
| 6. S        | Sample(s) in       | proper containe   | er(s)?                                 |               |       | Yes     | <b>✓</b>    | No 🗌         |                    |  |
| 7. 5        | Sufficient sam     | ple volume for    | r indicated test(s                     | )?            |       | Yes     | <b>✓</b>    | No $\square$ |                    |  |
| 8. <i>P</i> | re samples ہ       | properly preser   | ved?                                   |               |       | Yes     | <b>✓</b>    | No $\square$ |                    |  |
| 9. V        | Was preserva       | tive added to b   | oottles?                               |               |       | Yes     | ✓           | No $\square$ | NA 🗆               |  |
| 10 ls       | s there heads      | space in the V0   | OA vials?                              |               |       | Yes     |             | No 🗌         | HCL<br>NA <b>⊻</b> |  |
| -           |                    |                   | rrive in good cor                      | ndition(unbro | ken)? | Yes     | <b>✓</b>    | No $\square$ |                    |  |
|             |                    | ork match bottle  |                                        | •             | ,     | Yes     | <b>✓</b>    | No 🗌         |                    |  |
| 12 /        | Are matrices       | correctly identif | fied on Chain of                       | Custody2      |       | Yes     | <b>✓</b>    | No 🗆         |                    |  |
| -           |                    | t analyses wer    |                                        | ouotody:      |       | Yes     | <b>✓</b>    | No $\square$ |                    |  |
| 15. V       |                    |                   | field parameters                       | , pH e.g.) ab | le to | Yes     | <b>✓</b>    | No $\square$ |                    |  |
|             |                    | ing (if appl      | icable)                                |               |       |         |             |              |                    |  |
| -           |                    |                   | screpancies with                       | this order?   |       | Yes     | s 🗌         | No 🗌         | NA 🗸               |  |
|             | Person             | Notified:         |                                        |               | Date: |         |             |              |                    |  |
|             | By Who             | om:               |                                        |               | Via:  | eM      | ail 🗌 Ph    | one 🗌 Fax    | In Person          |  |
|             | Regard             | ing:              |                                        |               |       |         |             |              |                    |  |
|             | Client I           | nstructions:      |                                        |               |       |         |             |              |                    |  |
| 17.         | Additional re      | marks:            |                                        |               |       |         |             |              |                    |  |
| Item        | <u>Information</u> |                   |                                        |               |       |         |             |              |                    |  |
|             |                    | Item #            |                                        | Temp °C       |       |         |             |              |                    |  |
|             | Sample             |                   |                                        | 4.9           |       |         |             |              |                    |  |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| REMARKS   | Address 5500 4th Ave S  City, State, ZIP Seattle, WA 98108  Phone # (206) 285-8282 merdahl@friedmanandbruya.com |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| PROJECT N | Common and Burns Inc                                                                                            |
| Ta,       | Send Report To Michael Erdahl                                                                                   |

| REMARKS | 312301 | PROJECT NAME/NO. | SUBCONTRACTER Fremont |  |
|---------|--------|------------------|-----------------------|--|
|         | D-599  | PO#              |                       |  |
|         |        |                  |                       |  |

| Matrix # of water   10 water   2 % x   total aluminum   dissolved aluminum   dissolved aluminum   x   x   ferrous iron   ferrous iron   dissolved gases   TOC    Michael Erdahl   Friedman & Bruya   2/8/33   1830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Received by:                           | Fax (206) 283-5044 Rec     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|
| PRINT NAME  PRINT NAME  PRINT NAME  PRINT NAME  Priedman & Bruya  Z/8/3  Note  Note  Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Relinquished by:                       |                            |
| # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Received by:                           | Seattle, WA 98119-2029 Rec |
| PRINT NAME  Note  Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                      | 3012 16th Avenue West Rel  |
| The state of the s | GNATURE                                |                            |
| The state of the s |                                        |                            |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                            |
| P   F   Of   To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                            |
| P   F   F   Of     X   X   X   total aluminum     X   X   X   ferrous iron     X   X   X   ferrous iron     X   X   X   ferrous iron     X   X   TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                            |
| V S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                            |
| V S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                            |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                      | CTMW-11R2-1223             |
| total aluminum  total aluminum  total aluminum  ferrous iron  dissolved gases  TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                    | Field Blank#1-1223         |
| total aluminum dissolved aluminum ferrous iron dissolved gases TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | þŧ                                     | CTMW-23R2-1223             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ji. # g of of total aluminum dissolved | Sample ID Lab              |
| ANALYSES REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                            |

Page # 1 of 1

TURNAROUND TIME

X Standard TAT

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days

Return samples

Will call with instructions

### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2023

Trevor Louviere, Project Manager Dalton Olmsted Fuglevand 1001 SW Klickitat Way, Suite 200B Seattle, WA 98134

Dear Mr Louviere:

Included are the results from the testing of material submitted on December 15, 2023 from the TWAAFA-001, F&BI 312311 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Anthony Cerruti, Tasya Gray

DOF1229R.DOC

### **ENVIRONMENTAL CHEMISTS**

### CASE NARRATIVE

This case narrative encompasses samples received on December 15, 2023 by Friedman & Bruya, Inc. from the Dalton Olmsted Fuglevand TWAAFA-001, F&BI 312311 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | <u>Dalton Olmsted Fuglevand</u> |
|----------------------|---------------------------------|
| 312311 -01           | CTMW-12-1223                    |
| 312311 -02           | CTMW-17-1223                    |
| 312311 -03           | CTMW-17D-1223                   |

The samples were sent to Fremont Analytical for ferrous iron, total aluminum, and dissolved aluminum analyses. The report is enclosed.

All quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:     | CTMW-12-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|--------------|----------|--------------------------|
| Date Received: | 12/15/23     | Project: | TWAAFA-001, F&BI 312311  |

 Date Extracted:
 12/19/23
 Lab ID:
 312311-01 x5

 Date Analyzed:
 12/21/23
 Data File:
 312311-01 x5.209

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <5</td>

 Copper
 <2</td>

 Iron
 9,720

 Manganese
 1,180

# **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

| Client ID:      | CTMW-17-1223 | Client:    | Dalton Olmsted Fuglevand |
|-----------------|--------------|------------|--------------------------|
| Date Received:  | 12/15/23     | Project:   | TWAAFA-001, F&BI 312311  |
| Date Extracted: | 12/19/23     | Lab ID:    | 312311-02  x5            |
| Date Analyzed:  | 12/21/23     | Data File: | 312311-02 x5.210         |

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | 194                      |
| Chromium  | 9.01                     |
| Copper    | 65.6                     |
| Iron      | 571                      |
| Manganese | 316                      |

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: CTMW-17D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312311

 Date Extracted:
 12/19/23
 Lab ID:
 312311-03 x5

 Date Analyzed:
 12/21/23
 Data File:
 312311-03 x5.211

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 <5</td>

 Copper
 <2</td>

 Iron
 9,280

 Manganese
 337

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312311

 Date Extracted:
 12/19/23
 Lab ID:
 I3-1001 mb2

 Date Analyzed:
 12/20/23
 Data File:
 I3-1001 mb2.152

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Chromium
 <1</td>

 Copper
 <0.4</td>

 Iron
 <50</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-12-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312311

Lab ID: Date Extracted: 12/19/23 312311-01Date Analyzed: 12/22/23 Data File: 312311 - 01.245Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration
Analyte: ug/L (ppb)

Arsenic 2.51 Copper 0.502 Manganese 844

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-12-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312311

Date Extracted: 12/19/23 Lab ID: 312311-01 x20
Date Analyzed: 12/22/23 Data File: 312311-01 x20.133

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 8,270

### ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 6020B

| Client ID:     | CTMW-17-1223 | Client:  | Dalton Olmsted Fuglevand |
|----------------|--------------|----------|--------------------------|
| Date Received: | 12/15/23     | Project: | TWAAFA-001, F&BI 312311  |
| D + D + + 1    | 10/10/00     | T 1 TD   | 010011 00 #              |

 Date Extracted:
 12/19/23
 Lab ID:
 312311-02 x5

 Date Analyzed:
 12/22/23
 Data File:
 312311-02 x5.134

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

| Analyte:  | Concentration ug/L (ppb) |
|-----------|--------------------------|
| Arsenic   | 230                      |
| Chromium  | 36.3                     |
| Copper    | 382                      |
| Iron      | 768                      |
| Manganese | 300                      |

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

| Client ID:       | CTMW-17D-1223 | Client:  | Dalton Olmsted Fuglevand |
|------------------|---------------|----------|--------------------------|
| Date Received:   | 12/15/23      | Project: | TWAAFA-001, F&BI 312311  |
| Data E-t-sastad. | 10/10/09      | Lak ID.  | 210211 02                |

Date Extracted: 12/19/23Lab ID: 312311-03Date Analyzed: 12/22/23 Data File: 312311-03.247 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

Arsenic 2.29 Copper 2.25 Manganese 318

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-17D-1223 Client: Dalton Olmsted Fuglevand Date Received: 12/15/23 Project: TWAAFA-001, F&BI 312311

 Date Extracted:
 12/19/23
 Lab ID:
 312311-03 x20

 Date Analyzed:
 12/22/23
 Data File:
 312311-03 x20.135

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron 9,160

### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Dalton Olmsted Fuglevand Date Received: Not Applicable Project: TWAAFA-001, F&BI 312311

 Date Extracted:
 12/19/23
 Lab ID:
 I3-999 mb2

 Date Analyzed:
 12/26/23
 Data File:
 I3-999 mb2.075

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 <1</td>

 Chromium
 <1</td>

 Copper
 <0.48</td>

 Iron
 <50</td>

 Manganese
 <1</td>

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

Date Extracted: 12/26/23 Date Analyzed: 12/27/23

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID
Laboratory ID

Dissolved Mercury

CTMW-17-1223 <0.02

312311-02 x10

Method Blank <0.02

i3-1021 MB

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

Date Extracted: 12/26/23 Date Analyzed: 12/27/23

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID    | <u>Total Mercury</u> |
|-------------------------------|----------------------|
| CTMW-17-1223<br>312311-02 x10 | 0.13                 |
| Method Blank                  | < 0.02               |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,110  | 304 b    | 625 b    | 75-125     | 69 b       |
| Chromium  | ug/L (ppb) | 20    | <10    | 86       | 84       | 75 - 125   | 2          |
| Copper    | ug/L (ppb) | 20    | < 50   | 89       | 87       | 75 - 125   | 2          |
| Iron      | ug/L (ppb) | 100   | 4,770  | 133 b    | 210 b    | 75 - 125   | 45 b       |
| Manganese | ug/L (ppb) | 20    | 188    | 103 b    | 110 b    | 75 - 125   | 7 b        |

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 90       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 87       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 83       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312273-02 x10 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 1,200  | 0 b      | 0 b      | 75-125     | nm         |
| Chromium  | ug/L (ppb) | 20    | <10    | 90       | 89       | 75 - 125   | 1          |
| Copper    | ug/L (ppb) | 20    | < 50   | 91       | 90       | 75 - 125   | 1          |
| Iron      | ug/L (ppb) | 100   | 5,320  | 0 b      | 0 b      | 75 - 125   | nm         |
| Manganese | ug/L (ppb) | 20    | 205    | 13 b     | 37 b     | 75 - 125   | 96 b       |

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 87       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 95       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 91       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 89       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 88       | 80-120     |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

|         |            |       | Percent  | Percent  |            |            |
|---------|------------|-------|----------|----------|------------|------------|
|         | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Mercury | ug/L (ppb) | 0.01  | 99       | 107      | 66-126     | 8          |

### **ENVIRONMENTAL CHEMISTS**

Date of Report: 12/29/23 Date Received: 12/15/23

Project: TWAAFA-001, F&BI 312311

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

|         |            |       | Percent  | Percent  |            |            |
|---------|------------|-------|----------|----------|------------|------------|
|         | Reporting  | Spike | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | LCS      | LCSD     | Criteria   | (Limit 20) |
| Mercury | ug/L (ppb) | 0.01  | 99       | 107      | 66-126     | 8          |

### **ENVIRONMENTAL CHEMISTS**

### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282  SIGNATURE Retriquished by: Received by: Received by: | 208              | CTHW-17D-1723 03 V 12/15/23 14/25 | CTMW-17-1223 O1 A-C 121/5/123 1245 | Sample ID  Lab ID  Date Time Sampled Sampled                                                                                                       | 3 1 2 3 11  Report To: Anthony Cerruti / Trevor Louviere  CC: Tasya Gray  Company DOF  Address 1001 SW Klickitat Way  City, State, ZIP Seattle, WA 98134  Phone 215-767-7749 Email acerruti@dofnw.com |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              |                  | ک<br>س                            | 2 2                                | Sample # of<br>Matrix Bottles                                                                                                                      | SAMPLE CHAIN OF CUST  SAMPLERS (signature)  PROJECT NAME  TWAAFA  REMARKS  Dissolved inetals samples field filtered micron before analysis  Project Specific RLs (Yes)/ N                             |
| PRINT NAME Chael Wage                                                                                                                        |                  |                                   |                                    | Total Metals 6020B (As, Cr, Cu, Mn, Ni, Pb, Zn)  Dissolved Metals 6020R (As, Cr, Cu, Mn, Ni, Pb, Zn)  Total Mercury 1631E  Dissolved Mercury 1631E | CUSTOD  100  A  A  Ces)/ No                                                                                                                                                                           |
| COMP<br>T Clean<br>F8                                                                                                                        | Samples received | X                                 |                                    | Total Metals (Al, Fe)  Dissolved Metals (Al, Fe)  Ferrous                                                                                          | PO# TWAAFA-001 INVOICE TO DOF                                                                                                                                                                         |
| COMPANY AN Enth                                                                                                                              | ve da at         |                                   |                                    |                                                                                                                                                    | Page # of of of                                                                                                                                                                                       |
| DATE TIME 19/15/23/16:12                                                                                                                     | Ĉ                | Al, M, Cu, Fe, K                  | All As Cr. Cr. F                   |                                                                                                                                                    | Page #   of    TURNAROUND TIME Indard Turnaround ISH charges authorized by:  SAMPLE DISPOSAL pose after 30 days hive Samples  her ALYSES REQUESTED                                                    |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312311

Work Order Number: 2312396

December 27, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 3 sample(s) on 12/18/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Ferrous Iron by SM3500-Fe B Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/27/2023



CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312311 **Work Order:** 2312396

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received  |
|---------------|------------------|---------------------|---------------------|
| 2312396-001   | CTMW-12-1223     | 12/15/2023 12:05 PM | 12/18/2023 10:15 AM |
| 2312396-002   | CTMW-17-1223     | 12/15/2023 1:45 PM  | 12/18/2023 10:15 AM |
| 2312396-003   | CTMW-17D-1223    | 12/15/2023 2:25 PM  | 12/18/2023 10:15 AM |



### **Case Narrative**

WO#: **2312396**Date: **12/27/2023** 

CLIENT: Friedman & Bruya

**Project:** 312311

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



# **Qualifiers & Acronyms**

WO#: **2312396** 

Date Reported: 12/27/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



# **Analytical Report**

Work Order: 2312396
Date Reported: 12/27/2023

Client: Friedman & Bruya Collection Date: 12/15/2023 12:05:00 PM

**Project:** 312311

**Lab ID:** 2312396-001 **Matrix:** Water

Client Sample ID: CTMW-12-1223

| Analyses                     | Result    | RL    | Qual | Units | DF        | Date Analyzed         |
|------------------------------|-----------|-------|------|-------|-----------|-----------------------|
| Dissolved Metals by EPA Meth | nod 200.8 |       |      | Batc  | h ID: 4   | 42426 Analyst: SS     |
| Aluminum                     | ND        | 10.0  |      | μg/L  | 1         | 12/22/2023 7:47:00 PM |
| Total Metals by EPA Method 2 | 200.8     |       |      | Batc  | h ID: 4   | 42425 Analyst: SLL    |
| Aluminum                     | 20.7      | 10.0  |      | μg/L  | 1         | 12/22/2023 6:31:00 PM |
| Ferrous Iron by SM3500-Fe B  |           |       |      | Batc  | h ID:   i | R88521 Analyst: AM    |
| Ferrous Iron                 | 1.41      | 0.150 | Н    | mg/L  | 1         | 12/18/2023 4:00:00 PM |

Original



# **Analytical Report**

Work Order: **2312396**Date Reported: **12/27/2023** 

Client: Friedman & Bruya Collection Date: 12/15/2023 1:45:00 PM

**Project:** 312311

**Lab ID:** 2312396-002 **Matrix:** Water

Client Sample ID: CTMW-17-1223

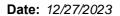
| Analyses                       | Result     | RL    | Qual | Units | DF       | Date Analyzed         |
|--------------------------------|------------|-------|------|-------|----------|-----------------------|
| Dissolved Metals by EPA Method | 1 200.8    |       |      | Batc  | h ID: 4  | 42426 Analyst: SS     |
| Aluminum                       | 44.8       | 10.0  |      | μg/L  | 1        | 12/22/2023 7:50:00 PM |
| Total Metals by EPA Method 200 | <u>).8</u> |       |      | Batc  | h ID: 4  | 42425 Analyst: SLL    |
| Aluminum                       | 169        | 10.0  |      | μg/L  | 1        | 12/22/2023 6:34:00 PM |
| Ferrous Iron by SM3500-Fe B    |            |       |      | Batc  | h ID:  F | R88521 Analyst: AM    |
| Ferrous Iron                   | 0.372      | 0.150 | Н    | mg/L  | 1        | 12/18/2023 4:00:00 PM |



# **Analytical Report**

Work Order: 2312396
Date Reported: 12/27/2023

Client: Friedman & Bruya Collection Date: 12/15/2023 2:25:00 PM


**Project:** 312311

**Lab ID:** 2312396-003 **Matrix:** Water

Client Sample ID: CTMW-17D-1223

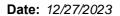
| Analyses                       | Result    | RL    | Qual | Units | DF    | Date Analyzed         |
|--------------------------------|-----------|-------|------|-------|-------|-----------------------|
| Dissolved Metals by EPA Method | 200.8     |       |      | Batcl | n ID: | 42426 Analyst: SS     |
| Aluminum                       | ND        | 10.0  |      | μg/L  | 1     | 12/22/2023 7:52:00 PM |
| Total Metals by EPA Method 200 | <u>.8</u> |       |      | Batcl | n ID: | 42425 Analyst: SLL    |
| Aluminum                       | 27.4      | 10.0  |      | μg/L  | 1     | 12/22/2023 6:36:00 PM |
| Ferrous Iron by SM3500-Fe B    |           |       |      | Batcl | n ID: | R88521 Analyst: AM    |
| Ferrous Iron                   | 0.886     | 0.150 | Н    | mg/L  | 1     | 12/18/2023 4:00:00 PM |

Original





**CLIENT:** Friedman & Bruya


**Project:** 312311

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| 110ject. 012011                   |                         |       |           |             |        |               |                      |                    |          |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|--------|---------------|----------------------|--------------------|----------|------|
| Sample ID: CCV-R88521             | SampType: <b>CCV</b>    |       |           | Units: mg/L |        | Prep Date:    | 12/18/2023           | RunNo: 885         | 521      |      |
| Client ID: CCV                    | Batch ID: <b>R88521</b> |       |           |             | Ar     | nalysis Date: | 12/18/2023           | SeqNo: <b>18</b> 4 | 48523    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC I | LowLimit H    | ighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Ferrous Iron                      | 0.417                   | 0.150 | 0.4000    | 0           | 104    | 85            | 115                  |                    |          |      |
| Sample ID: CCB-R88521             | SampType: <b>CCB</b>    |       |           | Units: mg/L |        | Prep Date:    | 12/18/2023           | RunNo: 885         | 521      |      |
| Client ID: CCB                    | Batch ID: <b>R88521</b> |       |           |             | Ar     | nalysis Date: | 12/18/2023           | SeqNo: 184         | 48524    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC I | LowLimit H    | ighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |        |               |                      |                    |          |      |
| Sample ID: LCS-R88521             | SampType: <b>LCS</b>    |       |           | Units: mg/L |        | Prep Date:    | 12/18/2023           | RunNo: 885         | 521      |      |
| Client ID: LCSW                   | Batch ID: <b>R88521</b> |       |           |             | Ar     | nalysis Date: | 12/18/2023           | SeqNo: <b>18</b> 4 | 48525    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC I | LowLimit H    | ighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Ferrous Iron                      | 0.448                   | 0.150 | 0.4000    | 0           | 112    | 85            | 115                  |                    |          |      |
| Sample ID: MB-R88521              | SampType: <b>MBLK</b>   |       |           | Units: mg/L |        | Prep Date:    | 12/18/2023           | RunNo: 885         | 521      |      |
| Client ID: MBLKW                  | Batch ID: <b>R88521</b> |       |           |             | Ar     | nalysis Date: | 12/18/2023           | SeqNo: <b>18</b> 4 | 48526    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC I | LowLimit H    | ighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |        |               |                      |                    |          |      |
| Sample ID: <b>2312396-002ADUP</b> | SampType: <b>DUP</b>    |       |           | Units: mg/L |        | Prep Date:    | 12/18/2023           | RunNo: 885         | 521      |      |
| Client ID: CTMW-17-1223           | Batch ID: <b>R88521</b> |       |           |             | Ar     | nalysis Date: | 12/18/2023           | SeqNo: 184         | 48529    |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC I | LowLimit H    | ighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Ferrous Iron                      | 0.363                   | 0.150 |           |             |        |               | 0.3721               | 2.47               | 20       | Н    |
|                                   |                         |       |           |             |        |               |                      |                    |          |      |

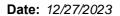
Original Page 8 of 19





**CLIENT:** Friedman & Bruya

**Project:** 312311


## **QC SUMMARY REPORT**

## Ferrous Iron by SM3500-Fe B

| Sample ID: 2312396-002AMS         | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date:     | 12/18/2023           | RunNo: <b>88521</b>   |      |
|-----------------------------------|-------------------------|-------|-----------|-------------|------|----------------|----------------------|-----------------------|------|
| Client ID: CTMW-17-1223           | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date: | 12/18/2023           | SeqNo: <b>1848530</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Va | 8 WRPD RPDLimit       | Qual |
| Ferrous Iron                      | 0.798                   | 0.150 | 0.4000    | 0.3721      | 107  | 70             | 130                  |                       | Н    |
| Sample ID: <b>2312396-002AMSD</b> | SampType: <b>MSD</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/18/2023           | RunNo: <b>88521</b>   |      |
| Client ID: <b>CTMW-17-1223</b>    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date: | 12/18/2023           | SeqNo: <b>1848531</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Va | 8 WRPD RPDLimit       | Qual |
| Ferrous Iron                      | 0.777                   | 0.150 | 0.4000    | 0.3721      | 101  | 70             | 130 0.7982           | 2.69 30               | Н    |
| Sample ID: CCV-R88521             | SampType: <b>CCV</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/18/2023           | RunNo: <b>88521</b>   |      |
| Client ID: CCV                    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date: | 12/18/2023           | SeqNo: <b>1848533</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Va | 8 WRPD RPDLimit       | Qual |
| Ferrous Iron                      | 0.457                   | 0.150 | 0.4000    | 0           | 114  | 85             | 115                  |                       |      |
| Sample ID: CCB-R88521             | SampType: <b>CCB</b>    |       |           | Units: mg/L |      | Prep Date:     | 12/18/2023           | RunNo: <b>88521</b>   |      |
| Client ID: CCB                    | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date: | 12/18/2023           | SeqNo: <b>1848534</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Va | 8 WRPD RPDLimit       | Qual |
| Ferrous Iron                      | ND                      | 0.150 |           |             |      |                |                      |                       |      |
| Sample ID: <b>2312365-002CMS</b>  | SampType: <b>MS</b>     |       |           | Units: mg/L |      | Prep Date:     | 12/18/2023           | RunNo: <b>88521</b>   |      |
| Client ID: BATCH                  | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Date: | 12/18/2023           | SeqNo: <b>1848536</b> |      |
| Analyte                           | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit H     | HighLimit RPD Ref Va | 8 WRPD RPDLimit       | Qual |
| Ferrous Iron NOTES:               | 0.647                   | 0.150 | 0.4000    | 0.5262      | 30.2 | 70             | 130                  |                       | SH   |

S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

Original Page 9 of 19





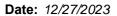
**CLIENT:** Friedman & Bruya

**Project:** 312311

# **QC SUMMARY REPORT**

Ferrous Iron by SM3500-Fe B

| Sample ID: 2312365-002CMSD | SampType: <b>MSD</b>    |       |           | Units: mg/L |      | •           | te: <b>12/18/2</b> |             | RunNo: 88  |          |      |
|----------------------------|-------------------------|-------|-----------|-------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: BATCH           | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Da | te: <b>12/18/2</b> | 023         | SeqNo: 184 | 18537    |      |
| Analyte                    | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Ferrous Iron NOTES:        | 0.659                   | 0.150 | 0.4000    | 0.5262      | 33.2 | 70          | 130                | 0.6471      | 1.85       | 30       | SH   |


S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

| Sample ID: CCV-R88521 | SampType: CCV           |       |           | Units: mg/L |      | Prep Da     | te: <b>12/18/2</b> | 2023        | RunNo: 885 | 521      |      |
|-----------------------|-------------------------|-------|-----------|-------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: CCV        | Batch ID: <b>R88521</b> |       |           |             |      | Analysis Da | te: <b>12/18/2</b> | 2023        | SeqNo: 184 | 18538    |      |
| Analyte               | Result                  | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Ferrous Iron          | 0.439                   | 0.150 | 0.4000    | 0           | 110  | 85          | 115                |             |            |          |      |

| Sample ID: CCB-R88521 | SampType: CCB           | Units: mg/L              | Prep Date: 12/18/2023               | RunNo: <b>88521</b>   |
|-----------------------|-------------------------|--------------------------|-------------------------------------|-----------------------|
| Client ID: CCB        | Batch ID: <b>R88521</b> |                          | Analysis Date: 12/18/2023           | SeqNo: <b>1848539</b> |
| Analyte               | Result                  | RL SPK value SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |

Ferrous Iron ND 0.150

Original Page 10 of 19

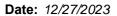




Aluminum

**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya


**Dissolved Metals by EPA Method 200.8** 

| <b>Project:</b> 312311 |                      |      |           |             | Dissolved Metals by EPA Method 200.                    |
|------------------------|----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB         | SampType: ICB        |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88568                     |
| Client ID: ICB         | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849551               |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | ND                   | 10.0 |           |             |                                                        |
| Sample ID: ICV         | SampType: <b>ICV</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88568                     |
| Client ID: ICV         | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849552               |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | 1,510                | 10.0 | 1,500     | 0           | 101 90 110                                             |
| Sample ID: CCV-42526A  | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88568                     |
| Client ID: CCV         | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849555               |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | 996                  | 10.0 | 1,000     | 0           | 99.6 90 110                                            |
| Sample ID: CCB-42526A  | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88568                     |
| Client ID: CCB         | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849556               |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum               | ND                   | 10.0 |           |             |                                                        |
| Sample ID: MB-42426    | SampType: MBLK       |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88568                     |
| Client ID: MBLKW       | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849557               |
| Analyte                | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |

Original Page 11 of 19

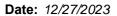
ND

10.0





**CLIENT:** Friedman & Bruya


**Project:** 312311

# **QC SUMMARY REPORT**

## **Dissolved Metals by EPA Method 200.8**

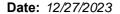
| Sample ID: LCS-42426              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> |                |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|--------------------|----------------|------|
| Client ID: LCSW                   | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 558            |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 85             | 115                   |                    |                |      |
| Sample ID: <b>2312365-002BDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del>    |      |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 560            |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                | 0                     |                    | 30             |      |
| Sample ID: <b>2312365-002BMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del> 88 |      |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | )561           |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual |
| Aluminum                          | 1,030                | 10.0 | 1,000     | 0           | 103  | 50             | 150                   |                    |                |      |
| Sample ID: <b>2312365-002BMSD</b> | SampType: MSD        |      |           | Units: μg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <del></del>    |      |
| Client ID: BATCH                  | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | 562            |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 50             | 150 1,032             | 0.643              | 30             |      |
| Sample ID: CCV-42526B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date:     | 12/22/2023            | RunNo: <b>8856</b> | <br>88         |      |
| Client ID: CCV                    | Batch ID: 42426      |      |           |             |      | Analysis Date: | 12/22/2023            | SeqNo: <b>1849</b> | )567           |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD               | RPDLimit Qu    | (ual |
| Aluminum                          | 1,040                | 10.0 | 1,000     | 0           | 104  | 90             | 110                   |                    |                |      |

Original Page 12 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312311

# **QC SUMMARY REPORT**

## **Dissolved Metals by EPA Method 200.8**

| Project. 312311                  |                      |      |           |             |                                     | •                     |
|----------------------------------|----------------------|------|-----------|-------------|-------------------------------------|-----------------------|
| Sample ID: CCB-42526B            | SampType: CCB        |      |           | Units: µg/L | Prep Date: 12/22/2023               | RunNo: <b>88568</b>   |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023           | SeqNo: <b>1849568</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: <b>2312427-001CMS</b> | SampType: <b>MS</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023               | RunNo: <b>88568</b>   |
| Client ID: BATCH                 | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023           | SeqNo: <b>1849578</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101 50 150                          |                       |
| Sample ID: CCV-42526C            | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/22/2023               | RunNo: <b>88568</b>   |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023           | SeqNo: <b>1849579</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                          |                       |
| Sample ID: CCB-42526C            | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/22/2023               | RunNo: <b>88568</b>   |
| Client ID: CCB                   | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023           | SeqNo: <b>1849580</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | ND                   | 10.0 |           |             |                                     |                       |
| Sample ID: CCV-42526D            | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/22/2023               | RunNo: <b>88568</b>   |
| Client ID: CCV                   | Batch ID: 42426      |      |           |             | Analysis Date: 12/22/2023           | SeqNo: <b>1849694</b> |
| Analyte                          | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                         | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                          |                       |
|                                  |                      |      |           |             |                                     |                       |

Original Page 13 of 19





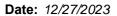
**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Dissolved Metals by EPA Method 200.8** 

**Project:** 312311

Client ID: CCB


Sample ID: CCB-42526C SampType: CCB Units: µg/L Prep Date: 12/22/2023 RunNo: 88568

Batch ID: 42426 Analysis Date: 12/22/2023 SeqNo: 1849695

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

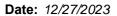
Aluminum ND 10.0

Original Page 14 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312311

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

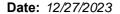
| <b>Project</b> : 312311           |                       |      |           |             | Total Metals by El A Metalou 200.                      |
|-----------------------------------|-----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: ICB                    | SampType: <b>ICB</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: ICB                    | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849410               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: ICV                    | SampType: <b>ICV</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: ICV                    | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849411               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,510                 | 10.0 | 1,500     | 0           | 101 90 110                                             |
| Sample ID: <b>MB-42425</b>        | SampType: <b>MBLK</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: MBLKW                  | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849412               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | ND                    | 10.0 |           |             |                                                        |
| Sample ID: LCS-42425              | SampType: <b>LCS</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: LCSW                   | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849413               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 1,040                 | 10.0 | 1,000     | 0           | 104 85 115                                             |
| Sample ID: <b>2312443-001ADUP</b> | SampType: <b>DUP</b>  |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: BATCH                  | Batch ID: 42425       |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849415               |
| Analyte                           | Result                | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                          | 644                   | 10.0 |           |             | 599.3 7.21 30                                          |
|                                   |                       |      |           |             |                                                        |

Original Page 15 of 19





**CLIENT:** Friedman & Bruya


**Project:** 312311

# **QC SUMMARY REPORT**

**Total Metals by EPA Method 200.8** 

| Sample ID: 2312443-001AN | SampType: MS         |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
|--------------------------|----------------------|------|-----------|-------------|--------------------------------------------------------|
| Client ID: BATCH         | Batch ID: 42425      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849416               |
| Analyte                  | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                 | 1,680                | 10.0 | 1,000     | 599.3       | 108 70 130                                             |
| Sample ID: CCV-42425A    | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: CCV           | Batch ID: 42425      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849421               |
| Analyte                  | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                 | 1,020                | 10.0 | 1,000     | 0           | 102 90 110                                             |
| Sample ID: CCB-42425A    | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: CCB           | Batch ID: 42425      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849422               |
| Analyte                  | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                 | ND                   | 10.0 |           |             |                                                        |
| Sample ID: 2312391-001CM | AS SampType: MS      |      |           | Units: μg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: BATCH         | Batch ID: 42425      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849463               |
| Analyte                  | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                 | 1,090                | 10.0 | 1,000     | 39.95       | 105 70 130                                             |
| Sample ID: CCV-42425B    | SampType: <b>CCV</b> |      |           | Units: μg/L | Prep Date: 12/22/2023 RunNo: 88561                     |
| Client ID: CCV           | Batch ID: 42425      |      |           |             | Analysis Date: 12/22/2023 SeqNo: 1849464               |
| Analyte                  | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                 | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                                             |

Original Page 16 of 19





Friedman & Bruya

**Project:** 312311

CLIENT:

Client ID: CCB

**QC SUMMARY REPORT** 

**Total Metals by EPA Method 200.8** 

Sample ID: CCB-42425B SampType: CCB Units: μg/L Prep Date: 12/22/2023 RunNo: 88561

Batch ID: 42425 Analysis Date: 12/22/2023 SeqNo: 1849465

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Sample ID: CCV-42425C SampType: CCV Units: µg/L Prep Date: 12/22/2023 RunNo: 88561

Client ID: CCV Batch ID: 42425 Analysis Date: 12/22/2023 SeqNo: 1849476

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum 1,020 10.0 1,000 0 102 90 110

Sample ID: CCB-42425C SampType: CCB Units: µg/L Prep Date: 12/22/2023 RunNo: 88561

| Client ID: CCB | Batch ID: 42425 | Analysis Date: 12/22/2023 | SeqNo: 1849477

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Original Page 17 of 19



# Sample Log-In Check List

| Clien         | nt Name:             | FB               |                                          |               |        | Work O  | rder Numb   | er: 2312396  | 3              |   |
|---------------|----------------------|------------------|------------------------------------------|---------------|--------|---------|-------------|--------------|----------------|---|
| Logge         | ed by:               | Morgan Wil       | son                                      |               |        | Date Re | eceived:    | 12/18/20     | 23 10:15:00 AM |   |
| Chain         | of Custo             | ody              |                                          |               |        |         |             |              |                | - |
|               |                      | ustody compl     | ete?                                     |               |        | Yes     | <b>✓</b>    | No 🗌         | Not Present    |   |
| 2. Ho         | ow was the           | sample delive    | ered?                                    |               |        | Cou     | <u>rier</u> |              |                |   |
| Log In        | <u>1</u>             |                  |                                          |               |        |         |             |              |                |   |
|               |                      |                  | shipping contained<br>stody Seals not in |               |        | Yes     |             | No 🗌         | Not Present ✓  |   |
| 4. Wa         | as an attem          | pt made to co    | ool the samples?                         |               |        | Yes     | ✓           | No $\square$ | NA $\square$   |   |
| 5. We         | ere all items        | received at a    | a temperature of                         | >2°C to 6°C   | *      | Yes     | <b>✓</b>    | No 🗌         | NA 🗆           |   |
| 6. Sar        | mple(s) in p         | oroper contair   | ner(s)?                                  |               |        | Yes     | <b>✓</b>    | No $\square$ |                |   |
| 7. Suf        | fficient sam         | ple volume fo    | or indicated test(s                      | )?            |        | Yes     | <b>✓</b>    | No 🗌         |                |   |
| 8. Are        | e samples p          | properly prese   | erved?                                   |               |        | Yes     | ✓           | No $\square$ |                |   |
| 9. Wa         | as preserva          | tive added to    | bottles?                                 |               |        | Yes     | <b>✓</b>    | No 🗌         | NA $\square$   |   |
|               |                      |                  |                                          |               |        |         |             |              | HCL, HNO3      |   |
| -             |                      | pace in the V    |                                          |               |        | Yes     |             | No 🗌         | NA 🗹           |   |
|               |                      |                  | arrive in good cor                       | ndition(unbro | oken)? | Yes     | <b>✓</b>    | No 🗀         |                |   |
| 12. Do        | es paperwo           | ork match bot    | tle labels?                              |               |        | Yes     | ✓           | No 🗀         |                |   |
| 13. Are       | e matrices o         | correctly ident  | tified on Chain of                       | Custody?      |        | Yes     | <b>✓</b>    | No $\square$ |                |   |
| 14. Is it     | t clear wha          | t analyses we    | ere requested?                           |               |        | Yes     | ✓           | No 🗌         |                |   |
|               | ere all hold<br>met? | times (except    | field parameters                         | , pH e.g.) ab | le to  | Yes     | ✓           | No 🗌         |                |   |
| <u>Specia</u> | ial Handl            | ing (if app      | <u>licable)</u>                          |               |        |         |             |              |                |   |
| 16. W         | /as client no        | otified of all d | iscrepancies with                        | this order?   |        | Yes     | ; <u> </u>  | No 🗆         | NA 🗸           |   |
|               | Person               | Notified:        |                                          |               | Date   |         |             |              |                |   |
|               | By Who               | om:              |                                          |               | Via:   | eM      | ail 🗌 Ph    | one 🗌 Fax    | ☐ In Person    |   |
|               | Regard               | ing:             |                                          |               |        |         |             |              |                |   |
|               | Client Ir            | nstructions:     |                                          |               |        |         |             |              |                |   |
| 17. Ad        | dditional re         | marks:           |                                          |               |        |         |             |              |                | _ |
| Item Inf      | <u>formation</u>     |                  |                                          |               |        |         |             |              |                |   |
|               |                      | Item #           |                                          | Temp °C       |        |         |             |              |                |   |
| S             | ample                |                  |                                          | 2.8           |        |         |             |              |                |   |

<sup>\*</sup> Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

# SUBCONTRACT SAMPLE CHAIN OF CUSTODY

| end Report To    | Send Report To Michael Erdahl      |
|------------------|------------------------------------|
| Company          | Friedman and Bruya, Inc.           |
| Address          | 5500 4th Ave S                     |
| ity, State, ZIP_ | Sity, State, ZIP_Seattle, WA 98108 |

| Phone #(206) 285-8282_merdahl@friedmanandbruya.com | City, State, ZIP Seattle, WA 98108 | Address 5500 4th Ave S | Company Friedman and Bruya, Inc. | Send Report To Michael Erdahl |
|----------------------------------------------------|------------------------------------|------------------------|----------------------------------|-------------------------------|
| EIM and Tier IV reprot                             | REMARKS                            | 312311                 | PROJECT NAME/NO.                 | SUBCONTRACTER<br>Fremont      |
|                                                    |                                    | D-599                  | PO#                              |                               |

|                    | Seat. Ph. (                               | 3012                  | Fried                  |  |  |  |  |  | CTM           | CTM          | CTM          | Sec. 1                |                   |
|--------------------|-------------------------------------------|-----------------------|------------------------|--|--|--|--|--|---------------|--------------|--------------|-----------------------|-------------------|
| Fax (206) 283-5044 | Seattle, WA 98119-2029 Ph. (206) 285-8282 | 3012 16th Avenue West | Friedman & Bruya, Inc. |  |  |  |  |  | CTMW-17D-1223 | CTMW-17-1223 | CTMW-12-1223 | Sample ID             |                   |
|                    |                                           |                       |                        |  |  |  |  |  |               |              |              | Lab<br>ID             |                   |
| Received by:       | Received by:                              | Relinguished by:      | SI                     |  |  |  |  |  | 12/15/2023    | 12/15/2023   | 12/15/2023   | Date<br>Sampled       |                   |
|                    | 1                                         | Cal                   | SIGNATURE              |  |  |  |  |  | 1425          | 1345         | 1205         | Time<br>Sampled       |                   |
|                    | 7                                         | \                     |                        |  |  |  |  |  | 1425 water    | 1345 water   | 1205 water   | Matrix                |                   |
|                    | NN                                        | Michael Erdahl        |                        |  |  |  |  |  | 3             | 3            | 3            | # of jars             |                   |
|                    |                                           | Erdal                 | PRI                    |  |  |  |  |  | х             | ×            | x            | ferrous iron          | Γ                 |
|                    |                                           | 2                     | PRINT NAME             |  |  |  |  |  | ×             | ×            | х            | dissolved<br>aluminum |                   |
|                    |                                           |                       | AME                    |  |  |  |  |  | ×             | ×            | ×            | total aluminum        |                   |
|                    |                                           |                       |                        |  |  |  |  |  |               |              |              | ferrous iron          | ANAL              |
|                    |                                           |                       |                        |  |  |  |  |  |               |              |              | dissolved gases       | YSES              |
|                    | 17                                        | Fried                 |                        |  |  |  |  |  |               |              |              | TOC                   | NALYSES REQUESTED |
|                    |                                           | Friedman & Bruya      | COM                    |  |  |  |  |  |               |              |              |                       | UEST              |
|                    |                                           | k Bru                 | COMPANY                |  |  |  |  |  |               |              |              |                       | ŒD                |
|                    |                                           | 7a                    |                        |  |  |  |  |  |               |              |              |                       |                   |
| +                  | 121                                       | 12                    | ם                      |  |  |  |  |  |               |              |              |                       |                   |
|                    | 18/23                                     | 16/25                 | DATE                   |  |  |  |  |  |               |              |              | <b></b>               |                   |
|                    | 10:15                                     | 0730                  | TIME                   |  |  |  |  |  |               |              |              | Notes                 |                   |

| SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions | Rush charges authorized by: | ⊠ Standard TAT | TURNAROUND TIME | Page #1 of1_ | ( ( ( ) |
|----------------------------------------------------------------------------------|-----------------------------|----------------|-----------------|--------------|---------|
| Pa                                                                               | nge 19                      | of             | 19              |              |         |

13 14

115

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Trevor Louviere Dalton, Olmsted & Fuglevand, Inc 1001 SW Klickitat Way Suite 200B Seattle, Washington 98134 Generated 1/31/2024 4:58:23 PM

# **JOB DESCRIPTION**

PFAS, Tacoma WA

# **JOB NUMBER**

320-108687-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605



# **Eurofins Sacramento**

#### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

## **Authorization**

Generated 1/31/2024 4:58:23 PM

Nathaniel Horner, Project Management Assistant I Nathaniel.Horner@et.eurofinsus.com (916)374-4306

# **Table of Contents**

| Cover Page               | 1  |
|--------------------------|----|
| Table of Contents        | 3  |
| Definitions/Glossary     | 4  |
| Case Narrative           | 5  |
| Detection Summary        | 6  |
| Client Sample Results    | 8  |
| Isotope Dilution Summary | 25 |
| QC Sample Results        | 28 |
| QC Association Summary   | 40 |
| Lab Chronicle            | 42 |
| Certification Summary    | 44 |
| Method Summary           | 45 |
| Sample Summary           | 46 |
| Chain of Custody         | 47 |
| Receipt Checklists       | 49 |

3

4

6

8

46

11

13

14

15

## **Definitions/Glossary**

Client: Dalton, Olmsted & Fuglevand, Inc

Job ID: 320-108687-1 Project/Site: PFAS, Tacoma WA

#### **Qualifiers**

|   | $\sim$ | N/  | c |
|---|--------|-----|---|
| _ | U      | I۷I | J |
|   |        |     |   |

Qualifier **Qualifier Description** F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.

Value is EMPC (estimated maximum possible concentration).

#### **Glossary**

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Redischemistry)                                                               |

DLC Decision Level Concentration (Radiochemistry) **EDL** Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

**PQL Practical Quantitation Limit** 

**PRES** Presumptive **Quality Control** QC

**RER** Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

**TEF** Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Sacramento** 

Page 4 of 49 1/31/2024

#### **Case Narrative**

Client: Dalton, Olmsted & Fuglevand, Inc

Project: PFAS, Tacoma WA

#### Job ID: 320-108687-1 Eurofins Sacramento

#### Receipt

The samples were received on 1/13/2024 8:05 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 4.7° C and 4.9° C.

#### LCMS

Method 1633: The following continuing calibration blank (CCB) was flagged for Isotope Dilution Analyte (IDA) recovery above the method recommended limit: CCB 320-735099/5. The purpose of the CCB is to test for instrument contamination. As the CCB was non-detect for all native analytes, the bracketing continuing calibration verification (CCV) was in control, and the IDA of the associated samples recovered within limits, there is no adverse impact on data quality; therefore, the data have been reported.

Method 1633: The "I" qualifier means the transition mass ratio for the indicated analyte for Perfluoropentanesulfonic acid (PFPeS) was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte: CCW-9-3A-0124 (320-108687-2). The sample was reanalyzed with concurring result, therefore, the best set of data was reported.

Method 1633: The sample duplicate (DUP) precision for preparation batch 320-734182 and analytical batch 320-735099 was outside control limits. Sample matrix interference is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Organic Prep**

Method 1633: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-734182.

Method 1633: The following samples were diluted due to low isotope recoveries: CCW-3A-0124 (320-108687-1), CCW-9-3A-0124 (320-108687-2) and CTMW-17-0124 (320-108687-8). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

**Eurofins Sacramento** 

Job ID: 320-108687-1

Page 5 of 49 1/31/2024

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Lab Sample ID: 320-108687-1 Client Sample ID: CCW-3A-0124

| Analyte                                  | Result Qualifier | RL  | MDL | Unit | Dil Fac | D | Method | Prep Type |
|------------------------------------------|------------------|-----|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA)            | 31               | 7.5 |     | ng/L |         | _ | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)          | 10               | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)            | 96               | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)     | 9.4              | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)      | 19               | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |
| NEtFOSAA                                 | 10               | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - RA | 3.5              | 1.9 |     | ng/L | 1       |   | 1633   | Total/NA  |

Client Sample ID: CCW-9-3A-0124

| Analyte                                  | Result ( | Qualifier | RL  | MDL | Unit | Dil Fac | D | Method | Prep Type |
|------------------------------------------|----------|-----------|-----|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA)            | 35       |           | 7.3 |     | ng/L |         | _ | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)          | 9.1      |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)            | 93       |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoropentanesulfonic acid<br>(PFPeS) | 15 I     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)     | 9.5      |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)      | 22       |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| NEtFOSAA                                 | 9.6      |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - RA | 2.9      |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |

Client Sample ID: CCW-3B-0124

| Analyte                                    | Result | Qualifier | RL  | MDL | Unit | Dil Fac | D | Method | Prep Type |
|--------------------------------------------|--------|-----------|-----|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA)              | 70     |           | 7.3 |     | ng/L |         | _ | 1633   | Total/NA  |
| Perfluoropentanoic acid (PFPeA)            | 44     |           | 3.6 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanoic acid (PFHxA)             | 32     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)            | 15     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 61     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorononanoic acid (PFNA)              | 4.1    |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 6.5    |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 23     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 20     |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| NEtFOSAA                                   | 2.4    |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoropentanesulfonic acid (PFPeS) - RA | 4.2    |           | 1.8 |     | ng/L | 1       |   | 1633   | Total/NA  |

Client Sample ID: FIELD BLANK #1-0124

No Detections.

Client Sample ID: CCW-2C-0124

| Analyte                              | Result Qualifier | RL  | MDL Unit | Dil Fac D | Method | Prep Type |
|--------------------------------------|------------------|-----|----------|-----------|--------|-----------|
| Perfluorohexanoic acid (PFHxA)       | 5.2              | 1.8 | ng/L     |           | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)      | 2.1              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 12               | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 5.7              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |

Client Sample ID: CCW-2B-0124

| Analyte                       | Result Qualifier | RL  | MDL Unit | Dil Fac D Method | Prep Type |
|-------------------------------|------------------|-----|----------|------------------|-----------|
| Perfluorobutanoic acid (PFBA) | 35               | 7.2 | ng/L     | 1 1633           | Total/NA  |

This Detection Summary does not include radiochemical test results.

**Eurofins Sacramento** 

Job ID: 320-108687-1

Lab Sample ID: 320-108687-2

Lab Sample ID: 320-108687-3

Lab Sample ID: 320-108687-4

Lab Sample ID: 320-108687-5

Lab Sample ID: 320-108687-6

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Lab Sample ID: 320-108687-6

Lab Sample ID: 320-108687-7

Lab Sample ID: 320-108687-8

Lab Sample ID: 320-108687-9

Lab Sample ID: 320-108687-10

# Client Sample ID: CCW-2B-0124 (Continued)

| Analyte                              | Result Qualifier | RL  | MDL Unit | Dil Fac D | Method | Prep Type |
|--------------------------------------|------------------|-----|----------|-----------|--------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 2.5              | 1.8 | ng/L     |           | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 17               | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 7.0              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 27               | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorooctanesulfonamide (FOSA)    | 1.8              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| NEtFOSAA                             | 2.2              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |
| Perfluorohexanoic acid (PFHxA) - RA  | 4.0              | 1.8 | ng/L     | 1         | 1633   | Total/NA  |

#### Client Sample ID: CCW-2A-0124

| Analyte                              | Result Qualifie | r RL | MDL | Unit | Dil Fac | D | Method | Prep Type |
|--------------------------------------|-----------------|------|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA)        | 13              | 7.7  |     | ng/L | 1       | _ | 1633   | Total/NA  |
| Perfluorohexanoic acid (PFHxA)       | 6.6             | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)      | 3.6             | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 6.4             | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 1.9             | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 5.3             | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 12              | 1.9  |     | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoropentanoic acid (PFPeA) - RA | 7.1             | 3.8  |     | ng/L | 1       |   | 1633   | Total/NA  |

#### Client Sample ID: CTMW-17-0124

|                                             | <u> </u> |           |     |     |      |         |   | .p.c .z. czc |           |
|---------------------------------------------|----------|-----------|-----|-----|------|---------|---|--------------|-----------|
| Analyte                                     | Result   | Qualifier | RL  | MDL | Unit | Dil Fac | D | Method       | Prep Type |
| Perfluorobutanoic acid (PFBA)               | 1500     |           | 7.6 |     | ng/L | 1       | _ | 1633         | Total/NA  |
| Perfluoroundecanoic acid (PFUnA)            | 11       |           | 1.9 |     | ng/L | 1       |   | 1633         | Total/NA  |
| 6:2 FTS                                     | 86       |           | 7.6 |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorohexanoic acid (PFHxA) - RE         | 39       |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - RE        | 20       |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorooctanoic acid (PFOA) - RE          | 54       |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorononanoic acid (PFNA) - RE          | 44       |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - RE    | 2100     |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - RE   | 38       |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -<br>RE | 110      |           | 20  |     | ng/L | 1       |   | 1633         | Total/NA  |

#### Client Sample ID: RINSATE BLANK #1-0124

No Detections.

Client Sample ID: TRIP SOURCE WATER BLANK #1-0124

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-3A-0124

Date Collected: 01/11/24 10:35
Date Received: 01/13/24 08:05

Lab Sample ID: 320-108687-1

**Matrix: Water** 

Job ID: 320-108687-1

| l Analyzed         | Dil                                                         |
|--------------------|-------------------------------------------------------------|
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| .01 01/10/21 20:12 | -                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 |                                                             |
|                    |                                                             |
| :51 01/18/24 23:42 | 2                                                           |
| :51 01/18/24 23:42 | 2                                                           |
| l Analyzed         | Di                                                          |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
|                    |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
| :51 01/18/24 23:42 |                                                             |
|                    |                                                             |
|                    |                                                             |
|                    | :51 01/18/24 23:4<br>:51 01/18/24 23:4<br>:51 01/18/24 23:4 |

**Eurofins Sacramento** 

Page 8 of 49

2

3

5

7

9

10

12

14

Le

1/31/2024

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-3A-0124

Date Collected: 01/11/24 10:35 Date Received: 01/13/24 08:05

M2-4:2 FTS

Lab Sample ID: 320-108687-1

**Matrix: Water** 

Job ID: 320-108687-1

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| d7-N-MeFOSE-M    | 21        |           | 10 - 130 | 01/17/24 11:51 | 01/18/24 23:42 | 1       |
| d9-N-EtFOSE-M    | 26        |           | 10 - 130 | 01/17/24 11:51 | 01/18/24 23:42 | 1       |
| d5-NEtPFOSA      | 38        |           | 10 - 130 | 01/17/24 11:51 | 01/18/24 23:42 | 1       |
| d3-NMePFOSA      | 34        |           | 10 - 130 | 01/17/24 11:51 | 01/18/24 23:42 | 1       |

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RA

| Analyte                               | Result C    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|-------------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Perfluorononanoic acid (PFNA)         | ND ND       |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 17:47 | 1       |
| Perfluorobutanesulfonic acid (PFBS)   | 3.5         |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 17:47 | 1       |
| Perfluoropentanesulfonic acid (PFPeS) | ND          |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 17:47 | 1       |
| Isotope Dilution                      | %Recovery G | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 4000 DENIA                            |             |           | 10 100 |     |      |   | 04/47/04 44 54 | 04/40/04 47 47 |         |

| Isotope Dilution | %Recovery | Qualitier | Limits   | Prepared       | Anaiyzea       | DII Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C9 PFNA        | 66        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 17:47 | 1       |
| 13C3 PFBS        | 61        |           | 40 - 135 | 01/17/24 11:51 | 01/19/24 17:47 | 1       |
| 13C3 PFHxS       | 100       |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 17:47 | 1       |

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RE

| Analyte                         | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Perfluoropentanoic acid (PFPeA) | ND        |           | 40       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| Perfluorohexanoic acid (PFHxA)  | ND        |           | 20       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| 4:2 FTS                         | ND        |           | 80       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| PFMBA                           | ND        |           | 40       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| NFDHA                           | ND        |           | 40       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| PFMPA                           | ND        |           | 40       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| PFEESA                          | ND        |           | 40       |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| 3:3 FTCA                        | ND        |           | 100      |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| 5:3 FTCA                        | ND        |           | 500      |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| 7:3 FTCA                        | ND        |           | 500      |     | ng/L |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| Isotope Dilution                | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C5 PFPeA                      | 79        |           | 40 - 130 |     |      |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |
| 13C5 PFHxA                      | 83        |           | 40 - 130 |     |      |   | 01/22/24 04:23 | 01/26/24 16:51 | 1       |

Client Sample ID: CCW-9-3A-0124 Lab Sample ID: 320-108687-2

40 - 200

Date Collected: 01/11/24 10:40 **Matrix: Water** Date Received: 01/13/24 08:05

| Analyte                             | Result Qualifier | RL  | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|------------------|-----|----------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)       | 35               | 7.3 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorohexanoic acid (PFHxA)      | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluoroheptanoic acid (PFHpA)     | 9.1              | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorooctanoic acid (PFOA)       | 93               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorononanoic acid (PFNA)       | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorodecanoic acid (PFDA)       | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluoroundecanoic acid (PFUnA)    | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorododecanoic acid (PFDoA)    | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorotridecanoic acid (PFTrDA)  | ND               | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorotetradecanoic acid (PFTeA) | ND               | 1.8 | na/L     |   | 01/17/24 11:51 | 01/19/24 00:00 | 1       |

**Eurofins Sacramento** 

01/22/24 04:23 01/26/24 16:51

Page 9 of 49 1/31/2024

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Date Collected: 01/11/24 10:40 Matrix: Water Date Received: 01/13/24 08:05

| PFHAS    Perfluoroloctanesulfonic acid   ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     PFHOS    Perfluoroctanesulfonic acid   PFNS    ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonic acid   PFNS    ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00     Perfluoroctanesulfonamide   PFNS    ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00     NBEFOSA   ND   1.8   ng/L   01/17/24 11:51   01/19/24 00:00     NBEFOSA   ND   7.3   ng/L   01/17/24 11:51   01/19/24    | Method: EPA 1633 - Per- and I<br>Analyte | Result Qualifi    | •         | MDL Unit | D Prepared     | Analyzed       | Dil Fac |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-----------|----------|----------------|----------------|---------|
| Perfluorochexanesulfonic acid   PSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 15 I              | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 |         |
| PFHSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                   |           |          |                |                |         |
| PFHoS    Perfluoroctanosulfonic acid   22   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFNS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     Perfluoroctanosulfonic acid (PFDS)   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSA   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSA   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   1.8   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NEIFOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NINGHOSE   ND   7.3   ng L   0.1171724 11:51   0.119124 00:00     NINGHOSE   ND      |                                          | 9.5               | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorocotanesulfonic acid   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Perfluoroheptanesulfonic acid            | ND                | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorononanesulfonia acid (PFNS) ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 Perfluorododocanesulfonia acid (PFDS) ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 PFDOS) Perfluorododocanesulfonia acid (PFDS) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 PFDOS) PERFLOS) PERFLOS PERFLOS PERFLOS PERFLOS PERFLOS PERFLOS ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51  | Perfluorooctanesulfonic acid             | 22                | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorodocanesulfonic acid (PFDS) ND 1.8 ng.L 01/17/24 11:51 01/19/24 00:00 Perfluorodocanesulfonic acid (PFDS) ND 1.8 ng.L 01/17/24 11:51 01/19/24 00:00 Perfluorodocanesulfonic acid (PFDS) ND 7.3 ng.L 01/17/24 11:51 01/19/24 00:00 ND 1.8 | •                                        | ND                | 1.8       | na/l     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| Perfluorododecanesulfonic acid ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 7.2 PFDOS)  1.2 FTS ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS)  1.2 FTS ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  1.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSE ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSE ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  NBEFOSA ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDOS  ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 0.52 PFTDO |                                          |                   |           |          |                |                |         |
| PEDOS  22:FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · ·                                    |                   |           | -        |                |                |         |
| 1.2 FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PFDoS)                                   |                   |           |          |                |                |         |
| Perfluorocotanesulfonamide (FOSA)   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                   |           |          |                |                |         |
| NMEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSAA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSAA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NOINDEFOSAA 9.6 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NOINDEFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NOINDEFOSE ND 7.3 ng/L 01/17/24 11:51 01/19 |                                          |                   |           | •        |                |                | 1       |
| NEIFOSA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSAA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSAA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSA ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSA ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NMeFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24  | Perfluorooctanesulfonamide (FOSA)        | ND                |           | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| NMEFOSAA ND 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSAA 9.6 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSA 9.6 1.8 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSE ND 18 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSA ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 NEIFOSE ND 7.3 ng/L 01/17/24 11:51 01/19/24 00: |                                          | ND                |           | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| NEFFOSE   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NEtFOSA                                  |                   |           | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| NMEFOSE ND 18 ng/L 01/17/24 11:51 01/19/24 00:00 PEFOSE ND 18 ng/L 01/17/24 11:51 01/19/24 00:00 PEFOSE ND 18 ng/L 01/17/24 11:51 01/19/24 00:00 PEFO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 PEFO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 PEFOSEA ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 PEFESA ND 7.3 ng/L 01/ | NMeFOSAA                                 | ND                | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| NEIFOSE ND 18 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng/L 01/17/24 11:51 01/19/24 00:00 14FPO-DA (GenX) ND 7.3 ng | NEtFOSAA                                 | 9.6               | 1.8       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| HEPO-DA (GenX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NMeFOSE                                  | ND                | 18        | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 1,8-Dioxa-3H-perfluorononanoic acid   ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00   ADONA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NEtFOSE                                  | ND                | 18        | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| ADONA)  ADONA  A | HFPO-DA (GenX)                           | ND                | 7.3       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| NFDHA ND 3.6 ng/L 01/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/19/24 00:00 11/17/24 11:51 01/ |                                          | ND                | 7.3       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| ND   7.3   ng/L   01/17/24 11:51   01/19/24 00:00   17.52   17.53   ng/L   01/17/24 11:51   01/19/24 00:00   17.53   17.54   17.54   17.54   17.55   17.54   17.55   17.54   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55   17.55     | •                                        | ND                | 3.6       | ng/L     | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OCI-PF3ONS                               | ND                |           | -        | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| PEESA ND 3.6 ng/L 01/17/24 11:51 01/19/24 00:00 16:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 17:3 FTCA ND 01 | I1CI-PF3OUdS                             | ND                | 7.3       |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 63.3 FTCA         ND         46         ng/L         01/17/24 11:51         01/19/24 00:00         7.3 FTCA         ND         46         ng/L         01/17/24 11:51         01/19/24 00:00         7.3 FTCA         ND         46         ng/L         01/17/24 11:51         01/19/24 00:00         7.4 FTCA         11         5. 130         01/17/24 11:51         01/19/24 00:00         7.5 FTCA         7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PFEESA                                   | ND                |           | -        | 01/17/24 11:51 | 01/19/24 00:00 |         |
| RESTCA ND 46 ng/L 01/17/24 11:51 01/19/24 00:00 18 13C4 PFBA 11 5-130 01/17/24 11:51 01/19/24 00:00 13C5 PFHXA 43 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFHXA 56 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 57 30-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 57 30-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 57 30-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 50 10-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 50 10-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 50 10-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 45 10-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 44 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 44 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 45 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 46 40-130 01/17/24 11:51 01/19/24 00:00 13C5 PFDA 40-130 01/17/24 11:51 01/19/2 |                                          |                   |           | •        |                |                | 1       |
| 13C4 PFBA 11 5 - 130 01/17/24 11:51 01/19/24 00:00 13C5 PFHxA 43 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFHpA 76 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C9 PFNA 64 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 65 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 66 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 67 40 - 300 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 68 69 60 60 60 60 60 60 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7:3 FTCA                                 | ND                | 46        |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C5 PFHxA 43 40 - 130 01/17/24 11:51 01/19/24 00:00 13C4 PFHpA 76 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C9 PFNA 64 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDOA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDOA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POSA 56 50 POSA 56 POSA | sotope Dilution                          | %Recovery Qualifi | er Limits |          | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFHpA 76 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C9 PFNA 64 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDOA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDOA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHXS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 POS 60 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 POSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 PTS 79 40 - 200 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 10 - 130 01/17 | 13C4 PFBA                                | 11                | 5 - 130   |          | 01/17/24 11:51 | 01/19/24 00:00 |         |
| 13C8 PFOA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C9 PFNA 64 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDOA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/24 00:00 01/17/24 11:51 01/19/ | 13C5 PFHxA                               | 43                | 40 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C9 PFNA 64 40 - 130 01/17/24 11:51 01/19/24 00:00 13C6 PFDA 53 40 - 130 01/17/24 11:51 01/19/24 00:00 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDoA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 64 0 - 130 01/17/24 | 13C4 PFHpA                               | 76                | 40 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C6 PFDA       53       40 - 130       01/17/24 11:51       01/19/24 00:00         13C7 PFUnA       57       30 - 130       01/17/24 11:51       01/19/24 00:00         13C2 PFDoA       50       10 - 130       01/17/24 11:51       01/19/24 00:00         13C2 PFTeDA       45       10 - 130       01/17/24 11:51       01/19/24 00:00         13C3 PFHxS       59       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 PFOS       54       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 FOSA       44       40 - 130       01/17/24 11:51       01/19/24 00:00         13C5-NEIFOSAA       56       40 - 170       01/17/24 11:51       01/19/24 00:00         15C-PETS       79       40 - 200       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C4 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C5 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C7 HFBOSE-M       17       10 - 130       01/17/24 11:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13C8 PFOA                                | 56                | 40 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C7 PFUnA 57 30 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFDoA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFTeDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8-NMEFOSAA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C5-NEtFOSAA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 12C5-RTS 79 40 - 200 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 17 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-SE-M 17 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 HS-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13C9 PFNA                                | 64                | 40 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C2 PFDoA 50 10 - 130 01/17/24 11:51 01/19/24 00:00 13C2 PFTeDA 45 10 - 130 01/17/24 11:51 01/19/24 00:00 13C3 PFHxS 59 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 PFOS 54 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 44 40 - 130 01/17/24 11:51 01/19/24 00:00 13C8 FOSA 56 40 - 170 01/17/24 11:51 01/19/24 00:00 13C5 NEtFOSAA 63 25 - 135 01/17/24 11:51 01/19/24 00:00 13C6 PTS 79 40 - 200 01/17/24 11:51 01/19/24 00:00 13C8 PTS 87 40 - 300 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NEFOSE-M 17 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NEtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 13C5 NETFOSE-M 21 10 - 130 01/17/24  | 13C6 PFDA                                | 53                | 40 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C2 PFTeDA       45       10 - 130       01/17/24 11:51       01/19/24 00:00         13C3 PFHxS       59       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 PFOS       54       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 FOSA       44       40 - 130       01/17/24 11:51       01/19/24 00:00         13S-NMEFOSAA       56       40 - 170       01/17/24 11:51       01/19/24 00:00         13C5 PFTS       79       40 - 200       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C9-N-EtFOSE-M       17       10 - 130       01/17/24 11:51       01/19/24 00:00         13C9-N-EtFOSE-M       21       10 - 130       01/17/24 11:51       01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13C7 PFUnA                               | 57                | 30 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 |         |
| 13C2 PFTeDA       45       10 - 130       01/17/24 11:51       01/19/24 00:00         13C3 PFHxS       59       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 PFOS       54       40 - 130       01/17/24 11:51       01/19/24 00:00         13C8 FOSA       44       40 - 130       01/17/24 11:51       01/19/24 00:00         13S-NMEFOSAA       56       40 - 170       01/17/24 11:51       01/19/24 00:00         13C5 PFTS       79       40 - 200       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00         13C9-N-EtFOSE-M       17       10 - 130       01/17/24 11:51       01/19/24 00:00         13C9-N-EtFOSE-M       21       10 - 130       01/17/24 11:51       01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13C2 PFDoA                               | 50                | 10 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C3 PFHxS       59       40 - 130       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       01/19/24 00:00       01/17/24 11:51       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 45                | 10 - 130  |          | 01/17/24 11:51 | 01/19/24 00:00 | 1       |
| 13C8 PFOS       54       40 - 130       01/17/24 11:51       01/19/24 00:00       13C8 FOSA       01/17/24 11:51       01/19/24 00:00       13C8 FOSA       01/17/24 11:51       01/19/24 00:00       13C8 FOSAA       01/17/24 11:51       01/19/24 00:00       13C8 FOSAAA       01/17/24 11:51       01/19/24 00:00       13C8 FOSAAAA       01/17/24 11:51       01/19/24 00:00       13C8 FOSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13C3 PFHxS                               |                   |           |          | 01/17/24 11:51 | 01/19/24 00:00 |         |
| 13C8 FOSA       44       40 - 130       01/17/24 11:51       01/19/24 00:00       63         13-NMeFOSAA       56       40 - 170       01/17/24 11:51       01/19/24 00:00       63         15-NEtFOSAA       63       25 - 135       01/17/24 11:51       01/19/24 00:00       62         16-2 FTS       79       40 - 200       01/17/24 11:51       01/19/24 00:00       63         16-8:2 FTS       87       40 - 300       01/17/24 11:51       01/19/24 00:00       63         13C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00       64         17-N-MeFOSE-M       17       10 - 130       01/17/24 11:51       01/19/24 00:00       64         19-N-EtFOSE-M       21       10 - 130       01/17/24 11:51       01/19/24 00:00       64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |           |          | 01/17/24 11:51 | 01/19/24 00:00 |         |
| d3-NMeFOSAA       56       40 - 170       01/17/24 11:51       01/19/24 00:00       65         d5-NEtFOSAA       63       25 - 135       01/17/24 11:51       01/19/24 00:00       67         M2-6:2 FTS       79       40 - 200       01/17/24 11:51       01/19/24 00:00       67         M2-8:2 FTS       87       40 - 300       01/17/24 11:51       01/19/24 00:00       67         M3C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00       67         M3-N-EtFOSE-M       17       10 - 130       01/17/24 11:51       01/19/24 00:00       67         M3-N-EtFOSE-M       21       10 - 130       01/17/24 11:51       01/19/24 00:00       67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                   |           |          |                |                |         |
| d5-NEtFOSAA       63       25 - 135       01/17/24 11:51       01/19/24 00:00       1         M2-6:2 FTS       79       40 - 200       01/17/24 11:51       01/19/24 00:00       1         M2-8:2 FTS       87       40 - 300       01/17/24 11:51       01/19/24 00:00       1         M3C3 HFPO-DA       56       40 - 130       01/17/24 11:51       01/19/24 00:00       1         M7-N-MeFOSE-M       17       10 - 130       01/17/24 11:51       01/19/24 00:00       1         M9-N-EtFOSE-M       21       10 - 130       01/17/24 11:51       01/19/24 00:00       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |           |          |                |                |         |
| M2-6:2 FTS     79     40 - 200     01/17/24 11:51     01/19/24 00:00     6       M2-8:2 FTS     87     40 - 300     01/17/24 11:51     01/19/24 00:00     6       13C3 HFPO-DA     56     40 - 130     01/17/24 11:51     01/19/24 00:00     6       17-N-MeFOSE-M     17     10 - 130     01/17/24 11:51     01/19/24 00:00     6       19-N-EtFOSE-M     21     10 - 130     01/17/24 11:51     01/19/24 00:00     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                   |           |          |                |                |         |
| M2-8:2 FTS 87 40 - 300 01/17/24 11:51 01/19/24 00:00 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 17-N-MeFOSE-M 17 10 - 130 01/17/24 11:51 01/19/24 00:00 19-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                   |           |          |                |                |         |
| 13C3 HFPO-DA 56 40 - 130 01/17/24 11:51 01/19/24 00:00 17-N-MeFOSE-M 17 10 - 130 01/17/24 11:51 01/19/24 00:00 17-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00 17-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |           |          |                |                |         |
| 17-N-MeFOSE-M 17 10 - 130 01/17/24 11:51 01/19/24 00:00 19-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                   |           |          |                |                |         |
| d9-N-EtFOSE-M 21 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   |           |          |                |                | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                   |           |          |                |                |         |
| d5-NEtPFOSA 32 10 - 130 01/17/24 11:51 01/19/24 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                   |           |          |                |                |         |

**Eurofins Sacramento** 

1/31/2024

Page 10 of 49

2

Job ID: 320-108687-1

3

<u>.</u>

0

10

12

14

15

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-9-3A-0124

Date Collected: 01/11/24 10:40 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-2

**Matrix: Water** 

Job ID: 320-108687-1

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Isotope Dilution Limits Prepared %Recovery Qualifier Analyzed Dil Fac d3-NMePFOSA 31 10 - 130 01/17/24 11:51 01/19/24 00:00

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RA

Result Qualifier MDL Unit Prepared RLAnalyzed Dil Fac 01/17/24 11:51 01/19/24 18:04 Perfluorobutanesulfonic acid 1.8 2.9 ng/L (PFBS)

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 PFBS 81 40 - 135 01/17/24 11:51 01/19/24 18:04

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RE

|                                 | a i oijiiaoioaiiij | . Cabotanious by E | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |   |                |                |         |
|---------------------------------|--------------------|--------------------|----------------------------------------|---|----------------|----------------|---------|
| Analyte                         | Result Qu          | ualifier RL        | MDL Unit                               | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoropentanoic acid (PFPeA) | ND ND              | 40                 | ng/L                                   |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| 4:2 FTS                         | ND                 | 80                 | ng/L                                   |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| PFMBA                           | ND                 | 40                 | ng/L                                   |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| PFMPA                           | ND                 | 40                 | ng/L                                   |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| 3:3 FTCA                        | ND                 | 100                | ng/L                                   |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| Isotope Dilution                | %Recovery Qu       | ualifier Limits    |                                        |   | Prepared       | Analyzed       | Dil Fac |
| 13C5 PFPeA                      | 73                 | 40 - 130           |                                        |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
| M2-4:2 FTS                      | 99                 | 40 - 200           |                                        |   | 01/22/24 04:23 | 01/26/24 17:09 | 1       |
|                                 |                    |                    |                                        |   |                |                |         |

Client Sample ID: CCW-3B-0124 Lab Sample ID: 320-108687-3

Date Collected: 01/11/24 12:00 **Matrix: Water** 

Date Received: 01/13/24 08:05

| Method: EPA 1633 - | · Per- and Polyndoroalkyi Substances | S Dy L | .C/IVI3/IVI3, Q3IVI | Table D-24 |
|--------------------|--------------------------------------|--------|---------------------|------------|
| Analyte            | Result Qualifier                     | RL     | MDL Unit            | D P        |

| Analyte                                | Result | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)          | 70     |           | 7.3 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluoropentanoic acid (PFPeA)        | 44     |           | 3.6 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorohexanoic acid (PFHxA)         | 32     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluoroheptanoic acid (PFHpA)        | 15     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorooctanoic acid (PFOA)          | 61     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorononanoic acid (PFNA)          | 4.1    |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorodecanoic acid (PFDA)          | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluoroundecanoic acid (PFUnA)       | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorododecanoic acid (PFDoA)       | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorotridecanoic acid (PFTrDA)     | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorotetradecanoic acid (PFTeA)    | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorobutanesulfonic acid (PFBS)    | 6.5    |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)   | 23     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluoroheptanesulfonic acid (PFHpS)  | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorooctanesulfonic acid (PFOS)    | 20     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorononanesulfonic acid (PFNS)    | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorodecanesulfonic acid (PFDS)    | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| Perfluorododecanesulfonic acid (PFDoS) | ND     |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| 4:2 FTS                                | ND     |           | 7.3 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |
| 6:2 FTS                                | ND     |           | 7.3 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 00:17 | 1       |

**Eurofins Sacramento** 

Page 11 of 49

Client: Dalton, Olmsted & Fuglevand, Inc
Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

Trojocycho. Trito, Taocina Wit

Client Sample ID: CCW-3B-0124 Lab Sample ID: 320-108687-3

. Matrix: Water

Date Collected: 01/11/24 12:00

Date Received: 01/13/24 08:05

| Analyte                                     | Result Qu    | ualifier RL     | MDL Unit | D Prepared    | Analyzed         | Dil Fac |
|---------------------------------------------|--------------|-----------------|----------|---------------|------------------|---------|
| 8:2 FTS                                     | ND           | 7.3             | ng/L     | 01/17/24 11:5 | 01/19/24 00:17   | 1       |
| Perfluorooctanesulfonamide (FOSA)           | ND           | 1.8             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NMeFOSA                                     | ND           | 1.8             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NEtFOSA                                     | ND           | 1.8             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NMeFOSAA                                    | ND           | 1.8             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NEtFOSAA                                    | 2.4          | 1.8             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NMeFOSE                                     | ND           | 18              | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NEtFOSE                                     | ND           | 18              | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| HFPO-DA (GenX)                              | ND           | 7.3             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND           | 7.3             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| PFMBA                                       | ND           | 3.6             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| NFDHA                                       | ND           | 3.6             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| PFMPA                                       | ND           | 3.6             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 9CI-PF3ONS                                  | ND           | 7.3             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 11CI-PF3OUdS                                | ND           | 7.3             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| PFEESA                                      | ND           | 3.6             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 3:3 FTCA                                    | ND           | 9.1             | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 5:3 FTCA                                    | ND           | 46              | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 7:3 FTCA                                    | ND           | 46              | ng/L     | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| Isotope Dilution                            | %Recovery Qu | ualifier Limits |          | Prepared      | Analyzed         | Dil Fac |
| 13C4 PFBA                                   | 27           | 5 - 130         |          | 01/17/24 11:5 | 01/19/24 00:17   | 1       |
| 13C5 PFPeA                                  | 65           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C5 PFHxA                                  | 71           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C4 PFHpA                                  | 89           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C8 PFOA                                   | 75           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C9 PFNA                                   | 76           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C6 PFDA                                   | 74           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C7 PFUnA                                  | 71           | 30 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C2 PFDoA                                  | 58           | 10 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C2 PFTeDA                                 | 50           | 10 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C3 PFBS                                   | 73           | 40 - 135        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C3 PFHxS                                  | 82           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C8 PFOS                                   | 78           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C8 FOSA                                   | 84           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| d3-NMeFOSAA                                 | 96           | 40 - 170        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| d5-NEtFOSAA                                 | 93           | 25 - 135        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| M2-4:2 FTS                                  | 101          | 40 - 200        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| M2-6:2 FTS                                  | 123          | 40 - 200        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| M2-8:2 FTS                                  | 118          | 40 - 300        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| 13C3 HFPO-DA                                | 78           | 40 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| d7-N-MeFOSE-M                               | 44           | 10 - 130        |          | 01/17/24 11:5 | 1 01/19/24 00:17 | 1       |
| d9-N-EtFOSE-M                               | 37           | 10 - 130        |          |               | 1 01/19/24 00:17 | 1       |
| d5-NEtPFOSA                                 | 47           | 10 - 130        |          |               | 1 01/19/24 00:17 | 1       |
|                                             |              |                 |          |               |                  |         |

| Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RA |          |           |     |     |      |   |                |                |         |
|-----------------------------------------------------------------------------------------|----------|-----------|-----|-----|------|---|----------------|----------------|---------|
| Analyte                                                                                 | Result ( | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoropentanesulfonic acid (PFPeS)                                                   | 4.2      |           | 1.8 |     | ng/L |   | 01/17/24 11:51 | 01/19/24 18:20 | 1       |

**Eurofins Sacramento** 

Page 12 of 49

2

3

5

7

9

11

12

14

15

onns Sacramento

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-3B-0124 Lab Sample ID: 320-108687-3 Date Collected: 01/11/24 12:00

**Matrix: Water** 

Job ID: 320-108687-1

Date Received: 01/13/24 08:05

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C3 PFHxS       | 86        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 18:20 | 1       |

Client Sample ID: FIELD BLANK #1-0124 Lab Sample ID: 320-108687-4

Date Collected: 01/11/24 11:15 **Matrix: Water** 

Date Received: 01/13/24 08:05

| Analyte                                        | Result Quali | fier RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fa |
|------------------------------------------------|--------------|---------|----------|---|----------------|----------------|--------|
| Perfluorobutanoic acid (PFBA)                  | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluoropentanoic acid (PFPeA)                | ND           | 4.2     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorohexanoic acid (PFHxA)                 | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluoroheptanoic acid (PFHpA)                | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorooctanoic acid (PFOA)                  | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorononanoic acid (PFNA)                  | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorodecanoic acid (PFDA)                  | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluoroundecanoic acid (PFUnA)               | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorododecanoic acid (PFDoA)               | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorotridecanoic acid (PFTrDA)             | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorotetradecanoic acid (PFTeA)            | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorobutanesulfonic acid (PFBS)            | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluoropentanesulfonic acid<br>(PFPeS)       | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorohexanesulfonic acid (PFHxS)           | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorooctanesulfonic acid (PFOS)            | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorononanesulfonic acid (PFNS)            | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorodecanesulfonic acid (PFDS)            | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorododecanesulfonic acid<br>(PFDoS)      | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 4:2 FTS                                        | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 6:2 FTS                                        | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 8:2 FTS                                        | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| Perfluorooctanesulfonamide (FOSA)              | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NMeFOSA                                        | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NEtFOSA                                        | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NMeFOSAA                                       | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NEtFOSAA                                       | ND           | 2.1     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NMeFOSE                                        | ND           | 21      | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NEtFOSE                                        | ND           | 21      | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| HFPO-DA (GenX)                                 | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| PFMBA                                          | ND           | 4.2     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| NFDHA                                          | ND           | 4.2     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| PFMPA                                          | ND           | 4.2     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 9CI-PF3ONS                                     | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 11CI-PF3OUdS                                   | ND           | 8.4     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| PFEESA                                         | ND           | 4.2     | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 3:3 FTCA                                       | ND           | 11      | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 5:3 FTCA                                       | ND           | 53      | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |
| 7:3 FTCA                                       | ND           | 53      | ng/L     |   | 01/17/24 11:51 | 01/19/24 00:52 |        |

**Eurofins Sacramento** 

Page 13 of 49

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: FIELD BLANK #1-0124 Lab Sample ID: 320-108687-4 **Matrix: Water** 

Date Collected: 01/11/24 11:15 Date Received: 01/13/24 08:05

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C4 PFBA        | 74        |           | 5 - 130  | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C5 PFPeA       | 73        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C5 PFHxA       | 73        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C4 PFHpA       | 79        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C8 PFOA        | 78        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C9 PFNA        | 73        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C6 PFDA        | 73        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C7 PFUnA       | 73        |           | 30 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C2 PFDoA       | 72        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C2 PFTeDA      | 77        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C3 PFBS        | 76        |           | 40 - 135 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C3 PFHxS       | 75        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C8 PFOS        | 79        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C8 FOSA        | 74        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d3-NMeFOSAA      | 87        |           | 40 - 170 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d5-NEtFOSAA      | 81        |           | 25 - 135 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| M2-4:2 FTS       | 94        |           | 40 - 200 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| M2-6:2 FTS       | 93        |           | 40 - 200 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| M2-8:2 FTS       | 92        |           | 40 - 300 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| 13C3 HFPO-DA     | 63        |           | 40 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d7-N-MeFOSE-M    | 72        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d9-N-EtFOSE-M    | 68        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d5-NEtPFOSA      | 67        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |
| d3-NMePFOSA      | 59        |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 00:52 | 1       |

Client Sample ID: CCW-2C-0124 Lab Sample ID: 320-108687-5 Date Collected: 01/11/24 13:00 **Matrix: Water** 

Date Received: 01/13/24 08:05

| Analyte                                | Result Qualifi | er RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|----------------|-------|----------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)          | ND             | 7.2   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluoropentanoic acid (PFPeA)        | ND             | 3.6   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorohexanoic acid (PFHxA)         | 5.2            | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluoroheptanoic acid (PFHpA)        | 2.1            | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorooctanoic acid (PFOA)          | 12             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorononanoic acid (PFNA)          | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorodecanoic acid (PFDA)          | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluoroundecanoic acid (PFUnA)       | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorododecanoic acid (PFDoA)       | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorotridecanoic acid (PFTrDA)     | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorotetradecanoic acid (PFTeA)    | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorobutanesulfonic acid (PFBS)    | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)   | 5.7            | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluoroheptanesulfonic acid (PFHpS)  | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorooctanesulfonic acid (PFOS)    | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorononanesulfonic acid (PFNS)    | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorodecanesulfonic acid (PFDS)    | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorododecanesulfonic acid (PFDoS) | ND             | 1.8   | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |

**Eurofins Sacramento** 

Page 14 of 49

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Date Received: 01/13/24 08:05

Client Sample ID: CCW-2C-0124 Lab Sample ID: 320-108687-5 Date Collected: 01/11/24 13:00

**Matrix: Water** 

Job ID: 320-108687-1

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Analyte                                     | Result | Qualifier | RL  | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------------|--------|-----------|-----|----------|---|----------------|----------------|---------|
| 4:2 FTS                                     | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 6:2 FTS                                     | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 8:2 FTS                                     | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| Perfluorooctanesulfonamide (FOSA)           | ND     |           | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NMeFOSA                                     | ND     |           | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NEtFOSA                                     | ND     |           | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NMeFOSAA                                    | ND     |           | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NEtFOSAA                                    | ND     |           | 1.8 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NMeFOSE                                     | ND     |           | 18  | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NEtFOSE                                     | ND     |           | 18  | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| HFPO-DA (GenX)                              | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| PFMBA                                       | ND     |           | 3.6 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| NFDHA                                       | ND     |           | 3.6 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| PFMPA                                       | ND     |           | 3.6 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 9CI-PF3ONS                                  | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 11CI-PF3OUdS                                | ND     |           | 7.2 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| PFEESA                                      | ND     |           | 3.6 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 3:3 FTCA                                    | ND     |           | 9.0 | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 5:3 FTCA                                    | ND     |           | 45  | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 7:3 FTCA                                    | ND     |           | 45  | ng/L     |   | 01/17/24 11:51 | 01/19/24 01:10 | 1       |

| 7:3 FTCA ND                |           | 45       | ng/L | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
|----------------------------|-----------|----------|------|----------------|----------------|---------|
| Isotope Dilution %Recovery | Qualifier | Limits   |      | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA 55               |           | 5 - 130  |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C5 PFPeA 62              | <u>!</u>  | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C5 PFHxA 70              | )         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C4 PFHpA 78              |           | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C8 PFOA 80               | )         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C9 PFNA 78               | •         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C6 PFDA 74               |           | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C7 PFUnA 67              | •         | 30 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C2 PFDoA 57              | •         | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C2 PFTeDA 49             |           | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C3 PFBS 78               | 1         | 40 - 135 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C3 PFHxS 77              | •         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C8 PFOS 77               |           | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C8 FOSA 75               | i         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d3-NMeFOSAA 82             | !         | 40 - 170 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d5-NEtFOSAA 73             |           | 25 - 135 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| M2-4:2 FTS 90              | )         | 40 - 200 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| M2-6:2 FTS 83              | 1         | 40 - 200 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| M2-8:2 FTS 85              |           | 40 - 300 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| 13C3 HFPO-DA 62            | !         | 40 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d7-N-MeFOSE-M 47           | •         | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d9-N-EtFOSE-M 37           |           | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d5-NEtPFOSA 53             | 1         | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |
| d3-NMePFOSA 54             | !         | 10 - 130 |      | 01/17/24 11:51 | 01/19/24 01:10 | 1       |

**Eurofins Sacramento** 

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-2C-0124

Date Collected: 01/11/24 13:00 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-5

**Matrix: Water** 

Job ID: 320-108687-1

| motiod: 2171 1000 1 of and folyhadroamyr oabotanood by 20111071110, Qoin fable b 24 101 |                                       |                     |          |     |      |   |                |                |         |
|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------|----------|-----|------|---|----------------|----------------|---------|
|                                                                                         | Analyte                               | Result Qualifier    | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|                                                                                         | Perfluoropentanesulfonic acid (PFPeS) | ND                  | 1.8      |     | ng/L |   | 01/17/24 11:51 | 01/19/24 18:53 | 1       |
|                                                                                         | Isotope Dilution                      | %Recovery Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
|                                                                                         | 13C3 PFHxS                            | 79                  | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 18:53 | 1       |

Client Sample ID: CCW-2B-0124

Date Collected: 01/11/24 13:55 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-6

**Matrix: Water** 

| Analyte                                        | Result Qualifier | RL  | MDL Unit | D Prepared     | Analyzed       | Dil Fac |
|------------------------------------------------|------------------|-----|----------|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)                  | 35               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluoropentanoic acid (PFPeA)                | ND               | 3.6 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluoroheptanoic acid (PFHpA)                | 2.5              | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorooctanoic acid (PFOA)                  | 17               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorodecanoic acid (PFDA)                  | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluoroundecanoic acid (PFUnA)               | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorododecanoic acid (PFDoA)               | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorotridecanoic acid (PFTrDA)             | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorotetradecanoic acid (PFTeA)            | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorobutanesulfonic acid (PFBS)            | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorohexanesulfonic acid<br>(PFHxS)        | 7.0              | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorooctanesulfonic acid (PFOS)            | 27               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorononanesulfonic acid (PFNS)            | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorodecanesulfonic acid (PFDS)            | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorododecanesulfonic acid<br>(PFDoS)      | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 4:2 FTS                                        | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 6:2 FTS                                        | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 8:2 FTS                                        | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Perfluorooctanesulfonamide<br>(FOSA)           | 1.8              | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NMeFOSA                                        | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NEtFOSA                                        | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NMeFOSAA                                       | ND               | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NEtFOSAA                                       | 2.2              | 1.8 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NMeFOSE                                        | ND               | 18  | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NEtFOSE                                        | ND               | 18  | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| HFPO-DA (GenX)                                 | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| PFMBA ´                                        | ND               | 3.6 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| NFDHA                                          | ND               | 3.6 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| PFMPA                                          | ND               | 3.6 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 9CI-PF3ONS                                     | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 11CI-PF3OUdS                                   | ND               | 7.2 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| PFEESA                                         | ND               | 3.6 | ng/L     | 01/17/24 11:51 | 01/19/24 01:28 | 1       |

**Eurofins Sacramento** 

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-2B-0124

Date Collected: 01/11/24 13:55 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-6

**Matrix: Water** 

| Method: EPA 1633 - Per- | - and Polyfluoroalky | I Substances b | y LC/MS/MS, | <b>QSM Table E</b> | 3-24 (Continued | i) |
|-------------------------|----------------------|----------------|-------------|--------------------|-----------------|----|
|                         |                      |                |             |                    |                 |    |

| Analyte          | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| 3:3 FTCA         | ND        |           | 9.0      |     | ng/L |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 5:3 FTCA         | ND        |           | 45       |     | ng/L |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 7:3 FTCA         | ND        |           | 45       |     | ng/L |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| Isotope Dilution | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA        |           |           | 5 - 130  |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C5 PFPeA       | 61        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C5 PFHxA       | 73        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C4 PFHpA       | 94        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C8 PFOA        | 77        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C9 PFNA        | 86        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C6 PFDA        | 81        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C7 PFUnA       | 82        |           | 30 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C2 PFDoA       | 66        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C2 PFTeDA      | 50        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C3 PFBS        | 72        |           | 40 - 135 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C3 PFHxS       | 76        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C8 PFOS        | 81        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C8 FOSA        | 97        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d3-NMeFOSAA      | 107       |           | 40 - 170 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d5-NEtFOSAA      | 106       |           | 25 - 135 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| M2-4:2 FTS       | 99        |           | 40 - 200 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| M2-6:2 FTS       | 138       |           | 40 - 200 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| M2-8:2 FTS       | 134       |           | 40 - 300 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| 13C3 HFPO-DA     | 73        |           | 40 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d7-N-MeFOSE-M    | 33        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d9-N-EtFOSE-M    | 24        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d5-NEtPFOSA      | 58        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |
| d3-NMePFOSA      | 58        |           | 10 - 130 |     |      |   | 01/17/24 11:51 | 01/19/24 01:28 | 1       |

| Mathadi EDA 1622 Dai     | e and Dalufluaraallud Cubatanaaa  | by LC/MS/MS, QSM Table B-24 - RA       |
|--------------------------|-----------------------------------|----------------------------------------|
| - Weinoo: EPA 1655 - Per | r- and Polylluoroalkyi Substances | DV EC/IVIS/IVIS. USIVI TADIR B-24 - KA |

| Analyte                               | Result Qualifier    | RL       | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|---------------------|----------|----------|---|----------------|----------------|---------|
| Perfluorohexanoic acid (PFHxA)        | 4.0                 | 1.8      | ng/L     |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |
| Perfluorononanoic acid (PFNA)         | ND                  | 1.8      | ng/L     |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |
| Perfluoropentanesulfonic acid (PFPeS) | ND                  | 1.8      | ng/L     |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |
| Isotope Dilution                      | %Recovery Qualifier | Limits   |          |   | Prepared       | Analyzed       | Dil Fac |
| 13C5 PFHxA                            | 77                  | 40 - 130 |          |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |
| 13C9 PFNA                             | 87                  | 40 - 130 |          |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |
| 13C3 PFHxS                            | 93                  | 40 - 130 |          |   | 01/17/24 11:51 | 01/19/24 19:10 | 1       |

Client Sample ID: CCW-2A-0124

Date Collected: 01/11/24 14:40

Date Received: 01/13/24 08:05

Lab Sample ID: 320-108687-7

**Matrix: Water** 

| Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, Q |                |                                        |                             |
|-----------------------------------------------------------------------|----------------|----------------------------------------|-----------------------------|
|                                                                       | OSM Table R-24 | Dolyfluoroalbyl Substances by LC/MS/MS | Mothod: EDA 1633 - Dor- and |

| Wethou. E   | PA 1633 - Pei- allu Pu | nynuoroaikyi Substan | ices by LC/ | IVIO/IVIO, QOIVI TA | nie D- | 24             |                |         |
|-------------|------------------------|----------------------|-------------|---------------------|--------|----------------|----------------|---------|
| Analyte     |                        | Result Qualifier     | RL          | MDL Unit            | D      | Prepared       | Analyzed       | Dil Fac |
| Perfluorobu | itanoic acid (PFBA)    | 13                   | 7.7         | ng/L                |        | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| Perfluorohe | exanoic acid (PFHxA)   | 6.6                  | 1.9         | ng/L                |        | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| Perfluorohe | ptanoic acid (PFHpA)   | 3.6                  | 1.9         | ng/L                |        | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| Perfluorooc | tanoic acid (PFOA)     | 6.4                  | 1.9         | ng/L                |        | 01/17/24 11:51 | 01/19/24 02:21 | 1       |

**Eurofins Sacramento** 

Page 17 of 49

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-2A-0124

Lab Sample ID: 320-108687-7

Date Collected: 01/11/24 14:40 **Matrix: Water** Date Received: 01/13/24 08:05

|                                            |             | yl Substances by LC/N |          | · · · · · · · · · · · · · · · · · · ·                                  | B.: =     |
|--------------------------------------------|-------------|-----------------------|----------|------------------------------------------------------------------------|-----------|
| Analyte                                    | Result C    |                       | MDL Unit | D Prepared Analyzed                                                    | _ Dil Fac |
| Perfluorononanoic acid (PFNA)              | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| Perfluorodecanoic acid (PFDA)              | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| Perfluoroundecanoic acid (PFUnA)           | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorododecanoic acid (PFDoA)           | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorotridecanoic acid (PFTrDA)         | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorotetradecanoic acid (PFTeA)        | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorobutanesulfonic acid PFBS)         | 1.9         | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluoropentanesulfonic acid<br>PFPeS)    | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorohexanesulfonic acid (PFHxS)       | 5.3         | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluoroheptanesulfonic acid<br>PFHpS)    | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorooctanesulfonic acid               | 12          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorononanesulfonic acid (PFNS)        | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorodecanesulfonic acid (PFDS)        | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| Perfluorododecanesulfonic acid             | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| PFDoS)<br>1:2 FTS                          | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| 3:2 FTS                                    | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| 3:2 FTS                                    | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| Perfluorooctanesulfonamide (FOSA)          | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| NMeFOSA                                    | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| NEtFOSA                                    | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| IMeFOSAA                                   | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| IEtFOSAA                                   | ND          | 1.9                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| IMeFOSE                                    | ND          | 19                    | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| NEtFOSE                                    | ND          | 19                    | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| HFPO-DA (GenX)                             | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| I,8-Dioxa-3H-perfluorononanoic acid ADONA) | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| PFMBA                                      | ND          | 3.8                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| NFDHA                                      | ND          | 3.8                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| PFMPA                                      | ND          | 3.8                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |
| OCI-PF3ONS                                 | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| I1CI-PF3OUdS                               | ND          | 7.7                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| PFEESA                                     | ND          | 3.8                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 3:3 FTCA                                   | ND          | 9.6                   | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 5:3 FTCA                                   | ND          | 48                    | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 7:3 FTCA                                   | ND          | 48                    | ng/L     | 01/17/24 11:51 01/19/24 02:2                                           |           |
| sotope Dilution                            | %Recovery G |                       | iig/L    | Prepared Analyzed                                                      | Dil Fac   |
| 13C4 PFBA                                  | 50          | 5 - 130               |          | $\frac{11694164}{01/17/24 \ 11:51} \frac{Allary 264}{01/19/24 \ 02:2}$ | _         |
| 13C5 PFPeA                                 | 47          | 40 - 130              |          | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 13C5 PFHxA                                 | 49          | 40 - 130<br>40 - 130  |          | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 13C4 PFHpA                                 | 56          | 40 - 130              |          | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 13C8 PFOA                                  | 55          | 40 - 130<br>40 - 130  |          | 01/17/24 11:51 01/19/24 02:2                                           |           |
|                                            |             |                       |          |                                                                        |           |
| 13C9 PFNA                                  | 56          | 40 - 130              |          | 01/17/24 11:51 01/19/24 02:2                                           |           |
| 13C6 PFDA                                  | 51          | 40 - 130              |          | 01/17/24 11:51 01/19/24 02:2                                           | 21 1      |

**Eurofins Sacramento** 

Page 18 of 49

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-2A-0124

Lab Sample ID: 320-108687-7 Date Collected: 01/11/24 14:40 **Matrix: Water** 

Date Received: 01/13/24 08:05

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

|                  |           | ,                |                | - /            |         |
|------------------|-----------|------------------|----------------|----------------|---------|
| Isotope Dilution | %Recovery | Qualifier Limits | Prepared       | Analyzed       | Dil Fac |
| 13C2 PFDoA       | 38        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C2 PFTeDA      | 40        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C3 PFBS        | 49        | 40 - 135         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C3 PFHxS       | 57        | 40 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C8 PFOS        | 54        | 40 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C8 FOSA        | 52        | 40 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d3-NMeFOSAA      | 64        | 40 - 170         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d5-NEtFOSAA      | 58        | 25 - 135         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| M2-4:2 FTS       | 76        | 40 - 200         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| M2-6:2 FTS       | 79        | 40 - 200         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| M2-8:2 FTS       | 80        | 40 - 300         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| 13C3 HFPO-DA     | 42        | 40 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d7-N-MeFOSE-M    | 36        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d9-N-EtFOSE-M    | 31        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d5-NEtPFOSA      | 35        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| d3-NMePFOSA      | 35        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:21 | 1       |
| _                |           |                  |                |                |         |

# Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RA

| Analyte                         | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Perfluoropentanoic acid (PFPeA) | 7.1       |           | 3.8    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 19:27 | 1       |
|                                 |           |           |        |     |      |   |                |                |         |
| Isotope Dilution                | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |

Client Sample ID: CTMW-17-0124

Date Collected: 01/11/24 16:00

Date Received: 01/13/24 08:05

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

| Analyte                             | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)       | 1500      |           | 7.6    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| Perfluoroundecanoic acid (PFUnA)    | 11        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| Perfluorododecanoic acid (PFDoA)    | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| Perfluorotridecanoic acid (PFTrDA)  | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| Perfluorotetradecanoic acid (PFTeA) | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 4:2 FTS                             | ND        |           | 7.6    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 6:2 FTS                             | 86        |           | 7.6    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 8:2 FTS                             | ND        |           | 7.6    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| NMeFOSA                             | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| NEtFOSA                             | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| NEtFOSAA                            | ND        |           | 1.9    |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| NMeFOSE                             | ND        |           | 19     |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| NEtFOSE                             | ND        |           | 19     |     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| Isotope Dilution                    | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 12CA DEDA                           | 26        |           | 5 120  |     |      |   | 01/17/24 11:51 | 01/10/24 02:28 | 1       |

| isotope Dilution | %Recovery | Qualitier Limits | Prepared       | Anaiyzea       | DII Fac |
|------------------|-----------|------------------|----------------|----------------|---------|
| 13C4 PFBA        | 36        | 5 - 130          | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 13C7 PFUnA       | 31        | 30 - 130         | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 13C2 PFDoA       | 21        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| 13C2 PFTeDA      | 18        | 10 - 130         | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| d5-NEtFOSAA      | 40        | 25 - 135         | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| M2-4:2 FTS       | 59        | 40 - 200         | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
|                  |           |                  |                |                |         |

**Eurofins Sacramento** 

Lab Sample ID: 320-108687-8

**Matrix: Water** 

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: CTMW-17-0124

Date Collected: 01/11/24 16:00 Date Received: 01/13/24 08:05

13C3 PFBS

Lab Sample ID: 320-108687-8

Matrix: Water

Job ID: 320-108687-1

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery ( | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-------------|-----------|----------|----------------|----------------|---------|
| M2-6:2 FTS       | 68          |           | 40 - 200 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| M2-8:2 FTS       | 62          |           | 40 - 300 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| d7-N-MeFOSE-M    | 23          |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| d9-N-EtFOSE-M    | 20          |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| d5-NEtPFOSA      | 22          |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
| d3-NMePFOSA      | 23          |           | 10 - 130 | 01/17/24 11:51 | 01/19/24 02:38 | 1       |
|                  |             |           |          |                |                |         |

| Analyte                                     | Result    | Qualifier | RL       | MDL Unit | D Prepared     | Analyzed         | Dil Fac |
|---------------------------------------------|-----------|-----------|----------|----------|----------------|------------------|---------|
| Perfluoropentanoic acid (PFPeA)             | ND        |           | 40       | ng/L     | 01/22/24 04:23 | 01/26/24 17:26   | 1       |
| Perfluorohexanoic acid (PFHxA)              | 39        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluoroheptanoic acid (PFHpA)             | 20        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorooctanoic acid (PFOA)               | 54        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorononanoic acid (PFNA)               | 44        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorodecanoic acid (PFDA)               | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 01/26/24 17:26   | 1       |
| Perfluorobutanesulfonic acid (PFBS)         | 2100      |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluoropentanesulfonic acid (PFPeS)       | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)        | 38        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluoroheptanesulfonic acid (PFHpS)       | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorooctanesulfonic acid (PFOS)         | 110       |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorononanesulfonic acid (PFNS)         | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorodecanesulfonic acid (PFDS)         | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorododecanesulfonic acid (PFDoS)      | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Perfluorooctanesulfonamide (FOSA)           | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| NMeFOSAA                                    | ND        |           | 20       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| HFPO-DA (GenX)                              | ND        |           | 80       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND        |           | 80       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| PFMBA                                       | ND        |           | 40       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| NFDHA                                       | ND        |           | 40       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| PFMPA                                       | ND        |           | 40       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 9CI-PF3ONS                                  | ND        |           | 80       | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 11CI-PF3OUdS                                | ND        |           | 80       | ng/L     | 01/22/24 04:23 | 01/26/24 17:26   | 1       |
| PFEESA                                      | ND        |           | 40       | ng/L     | 01/22/24 04:23 | 01/26/24 17:26   | 1       |
| 3:3 FTCA                                    | ND        |           | 100      | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 5:3 FTCA                                    | ND        |           | 500      | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 7:3 FTCA                                    | ND        |           | 500      | ng/L     | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| Isotope Dilution                            | %Recovery | Qualifier | Limits   |          | Prepared       | Analyzed         | Dil Fac |
| 13C5 PFPeA                                  | 72        |           | 40 - 130 |          | 01/22/24 04:23 | 01/26/24 17:26   | 1       |
| 13C5 PFHxA                                  | 72        |           | 40 - 130 |          | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 13C4 PFHpA                                  | 76        |           | 40 - 130 |          | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 13C8 PFOA                                   | 75        |           | 40 - 130 |          | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 13C9 PFNA                                   | 78        |           | 40 - 130 |          | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |
| 13C6 PFDA                                   | 70        |           | 40 - 130 |          | 01/22/24 04:23 | 3 01/26/24 17:26 | 1       |

**Eurofins Sacramento** 

01/22/24 04:23 01/26/24 17:26

Page 20 of 49

40 - 135

79

2

3

6

0

9

11

16

14

15

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: CTMW-17-0124 Lab Sample ID: 320-108687-8

Date Collected: 01/11/24 16:00 **Matrix: Water** 

Date Received: 01/13/24 08:05

| Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RE (Continued) |                     |          |                |                |         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------|----------|----------------|----------------|---------|--|--|--|--|
| Isotope Dilution                                                                                    | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |  |  |  |  |
| 13C3 PFHxS                                                                                          | 75                  | 40 - 130 | 01/22/24 04:23 | 01/26/24 17:26 | 1       |  |  |  |  |
| 13C8 PFOS                                                                                           | 78                  | 40 - 130 | 01/22/24 04:23 | 01/26/24 17:26 | 1       |  |  |  |  |
| 13C8 FOSA                                                                                           | 71                  | 40 - 130 | 01/22/24 04:23 | 01/26/24 17:26 | 1       |  |  |  |  |
| d3-NMeFOSAA                                                                                         | 79                  | 40 - 170 | 01/22/24 04:23 | 01/26/24 17:26 | 1       |  |  |  |  |
| 13C3 HFPO-DA                                                                                        | 69                  | 40 - 130 | 01/22/24 04:23 | 01/26/24 17:26 | 1       |  |  |  |  |

Client Sample ID: RINSATE BLANK #1-0124

Lab Sample ID: 320-108687-9 Date Collected: 01/11/24 16:30 **Matrix: Water** 

Date Received: 01/13/24 08:05

| Analyte                                        | Result Qualifier | RL  | MDL Unit | D Prepared     | Analyzed       | Dil Fac |
|------------------------------------------------|------------------|-----|----------|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)                  | ND               | 8.2 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluoropentanoic acid (PFPeA)                | ND               | 4.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorohexanoic acid (PFHxA)                 | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluoroheptanoic acid (PFHpA)                | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorooctanoic acid (PFOA)                  | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorononanoic acid (PFNA)                  | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorodecanoic acid (PFDA)                  | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluoroundecanoic acid (PFUnA)               | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorododecanoic acid (PFDoA)               | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorotridecanoic acid (PFTrDA)             | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorotetradecanoic acid (PFTeA)            | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorobutanesulfonic acid (PFBS)            | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluoropentanesulfonic acid<br>(PFPeS)       | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)           | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND               | 2.1 | ng/L     |                | 01/19/24 02:56 |         |
| Perfluorooctanesulfonic acid (PFOS)            | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorononanesulfonic acid (PFNS)            | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorodecanesulfonic acid (PFDS)            | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Perfluorododecanesulfonic acid (PFDoS)         | ND               | 2.1 | ng/L     |                | 01/19/24 02:56 | 1       |
| 4:2 FTS                                        | ND               | 8.2 | ng/L     |                | 01/19/24 02:56 | 1       |
| 6:2 FTS                                        | ND               | 8.2 | ng/L     |                | 01/19/24 02:56 | 1       |
| 8:2 FTS                                        | ND               | 8.2 | ng/L     |                | 01/19/24 02:56 | 1       |
| Perfluorooctanesulfonamide (FOSA)              | ND               | 2.1 | ng/L     |                | 01/19/24 02:56 | 1       |
| NMeFOSA                                        | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| NEtFOSA                                        | ND               | 2.1 | ng/L     |                | 01/19/24 02:56 | 1       |
| NMeFOSAA                                       | ND               | 2.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| NEtFOSAA                                       | ND               | 2.1 | ng/L     |                | 01/19/24 02:56 | 1       |
| NMeFOSE                                        | ND               | 21  | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| NEtFOSE                                        | ND               | 21  | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| HFPO-DA (GenX)                                 | ND               | 8.2 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND               | 8.2 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| PFMBA                                          | ND               | 4.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| NFDHA                                          | ND               | 4.1 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| PFMPA                                          | ND               | 4.1 | ng/L     |                | 01/19/24 02:56 | 1       |
| 9CI-PF3ONS                                     | ND               | 8.2 | ng/L     | 01/17/24 11:51 | 01/19/24 02:56 | 1       |

**Eurofins Sacramento** 

Page 21 of 49

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Client Sample ID: RINSATE BLANK #1-0124

Date Collected: 01/11/24 16:30 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-9

01/17/24 11:51 01/19/24 02:56

Lab Sample ID: 320-108687-10

**Matrix: Water** 

**Matrix: Water** 

Job ID: 320-108687-1

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Analyte          | Result    | Qualifier | RL       | MDL ( | Jnit | D | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| 11CI-PF3OUdS     | ND        |           | 8.2      | r     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| PFEESA           | ND        |           | 4.1      | r     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 3:3 FTCA         | ND        |           | 10       | r     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 5:3 FTCA         | ND        |           | 52       | r     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 7:3 FTCA         | ND        |           | 52       | r     | ng/L |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| Isotope Dilution | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA        | 86        |           | 5 - 130  |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C5 PFPeA       | 87        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C5 PFHxA       | 86        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C4 PFHpA       | 92        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C8 PFOA        | 85        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C9 PFNA        | 81        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C6 PFDA        | 86        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C7 PFUnA       | 78        |           | 30 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C2 PFDoA       | 75        |           | 10 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C2 PFTeDA      | 81        |           | 10 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C3 PFBS        | 93        |           | 40 - 135 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C3 PFHxS       | 89        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C8 PFOS        | 92        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C8 FOSA        | 88        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| d3-NMeFOSAA      | 91        |           | 40 - 170 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| d5-NEtFOSAA      | 82        |           | 25 - 135 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| M2-4:2 FTS       | 111       |           | 40 - 200 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| M2-6:2 FTS       | 106       |           | 40 - 200 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| M2-8:2 FTS       | 111       |           | 40 - 300 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| 13C3 HFPO-DA     | 78        |           | 40 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| d7-N-MeFOSE-M    | 85        |           | 10 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| d9-N-EtFOSE-M    | 82        |           | 10 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |
| d5-NEtPFOSA      | 76        |           | 10 - 130 |       |      |   | 01/17/24 11:51 | 01/19/24 02:56 | 1       |

Client Sample ID: TRIP SOURCE WATER BLANK #1-0124

Date Collected: 01/11/24 09:00

70

Date Received: 01/13/24 08:05

d3-NMePFOSA

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

| Analyte                             | Result Qualifier | RL  | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|------------------|-----|----------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)       | ND               | 6.9 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluoropentanoic acid (PFPeA)     | ND               | 3.5 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorohexanoic acid (PFHxA)      | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluoroheptanoic acid (PFHpA)     | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorooctanoic acid (PFOA)       | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorononanoic acid (PFNA)       | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorodecanoic acid (PFDA)       | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluoroundecanoic acid (PFUnA)    | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorododecanoic acid (PFDoA)    | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorotridecanoic acid (PFTrDA)  | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorotetradecanoic acid (PFTeA) | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | ND               | 1.7 | ng/L     |   | 01/17/24 11:51 | 01/19/24 03:13 | 1       |

10 - 130

**Eurofins Sacramento** 

Page 22 of 49

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: TRIP SOURCE WATER BLANK #1-0124

Lab Sample ID: 320-108687-10

**Matrix: Water** 

Job ID: 320-108687-1

Date Collected: 01/11/24 09:00 Date Received: 01/13/24 08:05

| Analyte                                  | Result Qualifier    | RL                   | MDL Unit | D Prepared      | Analyzed          | Dil Fac |
|------------------------------------------|---------------------|----------------------|----------|-----------------|-------------------|---------|
| Perfluoropentanesulfonic acid (PFPeS)    | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    | •       |
| Perfluorohexanesulfonic acid (PFHxS)     | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| Perfluoroheptanesulfonic acid<br>(PFHpS) | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    | •       |
| Perfluorooctanesulfonic acid (PFOS)      | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| Perfluorononanesulfonic acid (PFNS)      | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| Perfluorodecanesulfonic acid (PFDS)      | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| Perfluorododecanesulfonic acid (PFDoS)   | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 4:2 FTS                                  | ND                  | 6.9                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 6:2 FTS                                  | ND                  | 6.9                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    | •       |
| 8:2 FTS                                  | ND                  | 6.9                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| Perfluorooctanesulfonamide (FOSA)        | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NMeFOSA                                  | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NEtFOSA                                  | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NMeFOSAA                                 | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NEtFOSAA                                 | ND                  | 1.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NMeFOSE                                  | ND                  | 17                   | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    | ,       |
| NEtFOSE                                  | ND                  | 17                   | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| HFPO-DA (GenX)                           | ND                  | 6.9                  | ng/L     |                 | 01/19/24 03:13    |         |
| 4,8-Dioxa-3H-perfluorononanoic acid      | ND                  | 6.9                  | ng/L     |                 | 01/19/24 03:13    |         |
| (ADONA)                                  | 2                   | 0.0                  | 9/=      | 0.7.1.72.1.1.01 | 0 1, 10,2 1 00110 |         |
| PFMBA                                    | ND                  | 3.5                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| NFDHA                                    | ND                  | 3.5                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| PFMPA                                    | ND                  | 3.5                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 9CI-PF3ONS                               | ND                  | 6.9                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 11CI-PF3OUdS                             | ND                  | 6.9                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| PFEESA                                   | ND                  | 3.5                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 3:3 FTCA                                 | ND                  | 8.7                  | ng/L     | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 5:3 FTCA                                 | ND                  | 43                   | ng/L     |                 | 01/19/24 03:13    |         |
| 7:3 FTCA                                 | ND                  | 43                   | ng/L     |                 | 01/19/24 03:13    |         |
| Isotope Dilution                         | %Recovery Qualifier |                      | 9.=      | Prepared        | Analyzed          | Dil Fa  |
| 13C4 PFBA                                | 93 Qualifier        | 5 - 130              |          |                 | 01/19/24 03:13    | Dil Fai |
| 13C5 PFPeA                               | 92                  | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C5 PFHxA                               | 92<br>89            | 40 - 130<br>40 - 130 |          |                 | 01/19/24 03:13    |         |
|                                          |                     | 40 - 130<br>40 - 130 |          |                 | 01/19/24 03:13    |         |
| 13C4 PFHpA                               | 102                 |                      |          |                 |                   |         |
| 13C8 PFOA                                | 92                  | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C9 PFNA                                | 95                  | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C6 PFDA                                | 92                  | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C7 PFUnA                               | 87                  | 30 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C2 PFDoA                               | 86                  | 10 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C2 PFTeDA                              | 94                  | 10 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C3 PFBS                                | 102                 | 40 - 135             |          |                 | 01/19/24 03:13    |         |
| 13C3 PFHxS                               | 102                 | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| 13C8 PFOS                                | 101                 | 40 - 130             |          | 01/17/24 11:51  | 01/19/24 03:13    |         |
| 13C8 FOSA                                | 94                  | 40 - 130             |          |                 | 01/19/24 03:13    |         |
| d3-NMeFOSAA                              | 109                 | 40 - 170             |          | 01/17/24 11:51  | 01/19/24 03:13    |         |
| d5-NEtFOSAA                              | 99                  | 25 - 135             |          | 01/17/24 11:51  | 01/19/24 03:13    |         |
| M2-4:2 FTS                               | 121                 | 40 - 200             |          | 04/47/04 44:54  | 01/19/24 03:13    |         |

**Eurofins Sacramento** 

1/31/2024

Page 23 of 49

Client: Dalton, Olmsted & Fuglevand, Inc Job ID: 320-108687-1

Project/Site: PFAS, Tacoma WA

Client Sample ID: TRIP SOURCE WATER BLANK #1-0124 Lab Sample ID: 320-108687-10

Date Collected: 01/11/24 09:00 Matrix: Water

Date Received: 01/13/24 08:05

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| M2-6:2 FTS       | 116                 | 40 - 200 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| M2-8:2 FTS       | 129                 | 40 - 300 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| 13C3 HFPO-DA     | 99                  | 40 - 130 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| d7-N-MeFOSE-M    | 91                  | 10 - 130 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| d9-N-EtFOSE-M    | 91                  | 10 - 130 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| d5-NEtPFOSA      | 93                  | 10 - 130 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |
| d3-NMePFOSA      | 81                  | 10 - 130 | 01/17/24 11:51 | 01/19/24 03:13 | 1       |

11

12

14

10

# **Isotope Dilution Summary**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

Matrix: Water Prep Type: Total/NA

|                      |                         |          |           | ent Isotope |             |            | ceptance L | imits)   |          |
|----------------------|-------------------------|----------|-----------|-------------|-------------|------------|------------|----------|----------|
|                      |                         | PFBA     | PFPeA     | 13C5PHA     | C4PFHA      | C8PFOA     | C9PFNA     | C6PFDA   | 13C7PU   |
| Lab Sample ID        | Client Sample ID        | (5-130)  | (40-130)  | (40-130)    | (40-130)    | (40-130)   | (40-130)   | (40-130) | (30-130) |
| 320-108687-1         | CCW-3A-0124             | 8        |           |             | 77          | 61         | 64         | 61       | 68       |
| 320-108687-1 - RA    | CCW-3A-0124             |          |           |             |             |            | 66         |          |          |
| 320-108687-1 - RE    | CCW-3A-0124             |          | 79        | 83          |             |            |            |          |          |
| 320-108687-2         | CCW-9-3A-0124           | 11       |           | 43          | 76          | 56         | 64         | 53       | 57       |
| 320-108687-2 - RA    | CCW-9-3A-0124           |          |           |             |             |            |            |          |          |
| 320-108687-2 - RE    | CCW-9-3A-0124           |          | 73        |             |             |            |            |          |          |
| 320-108687-3         | CCW-3B-0124             | 27       | 65        | 71          | 89          | 75         | 76         | 74       | 71       |
| 320-108687-3 - RA    | CCW-3B-0124             |          |           |             |             |            |            |          |          |
| 320-108687-3 DU      | CCW-3B-0124             | 29       | 67        | 74          | 92          | 75         | 89         | 79       | 81       |
| 320-108687-3 DU - RA | CCW-3B-0124             |          |           |             |             |            |            |          |          |
| 320-108687-4         | FIELD BLANK #1-0124     | 74       | 73        | 73          | 79          | 78         | 73         | 73       | 73       |
| 320-108687-5         | CCW-2C-0124             | 55       | 62        | 70          | 78          | 80         | 78         | 74       | 67       |
| 320-108687-5 - RA    | CCW-2C-0124             |          |           |             |             |            |            |          |          |
| 320-108687-6         | CCW-2B-0124             | 13       | 61        | 73          | 94          | 77         | 86         | 81       | 82       |
| 320-108687-6 - RA    | CCW-2B-0124             | .0       | ٠.        | 77          | 0.          |            | 87         | ٠.       | 0_       |
| 320-108687-7         | CCW-2A-0124             | 50       | 47        | 49          | 56          | 55         | 56         | 51       | 46       |
| 320-108687-7 - RA    | CCW-2A-0124             | 30       | 55        | 73          | 30          | 33         | 30         | 31       | 40       |
| 320-108687-8         | CTMW-17-0124            | 36       | 33        |             |             |            |            |          | 31       |
| 320-108687-8 - RE    | CTMW-17-0124            |          | 72        | 72          | 76          | 75         | 78         | 70       |          |
| 320-108687-9         | RINSATE BLANK #1-0124   | 86       | 87        | 86          | 92          | 7.5<br>85  | 76<br>81   | 86       | 78       |
| 320-108687-10        | TRIP SOURCE WATER BLANK |          | 92        |             |             | 92         | 95         | 92       | 76<br>87 |
|                      | #1-0124                 | 93       |           | 89          | 102         |            |            |          |          |
| LCS 320-734182/3-A   | Lab Control Sample      | 75       | 74        | 70          | 76          | 77         | 72         | 77       | 80       |
| LCS 320-735177/3-A   | Lab Control Sample      | 83       | 76        | 76          | 76          | 80         | 74         | 74       | 77       |
| LLCS 320-734182/2-A  | Lab Control Sample      | 73       | 74        | 73          | 76          | 73         | 72         | 78       | 74       |
| LLCS 320-735177/2-A  | Lab Control Sample      | 84       | 80        | 83          | 81          | 86         | 78         | 75       | 84       |
| MB 320-734182/1-A    | Method Blank            | 77       | 77        | 80          | 85          | 75         | 84         | 74       | 68       |
| MB 320-735177/1-A    | Method Blank            | 82       | 75        | 76          | 73          | 82         | 78         | 75       | 79       |
|                      |                         |          | Perc      | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits)   |          |
|                      |                         | PFDoA    | PFTDA     | C3PFBS      | C3PFHS      | C8PFOS     | PFOSA      | d3NMFOS  | d5NEFOS  |
| Lab Sample ID        | Client Sample ID        | (10-130) | (10-130)  | (40-135)    | (40-130)    | (40-130)   | (40-130)   | (40-170) | (25-135) |
| 320-108687-1         | CCW-3A-0124             | 56       | 57        | 52          | 67          | 68         | 53         | 63       | 73       |
| 320-108687-1 - RA    | CCW-3A-0124             |          |           | 61          | 100         |            |            |          |          |
| 320-108687-1 - RE    | CCW-3A-0124             |          |           |             |             |            |            |          |          |
| 320-108687-2         | CCW-9-3A-0124           | 50       | 45        |             | 59          | 54         | 44         | 56       | 63       |
| 320-108687-2 - RA    | CCW-9-3A-0124           | 00       | 10        | 81          | 00          | 01         |            | 00       | 00       |
| 320-108687-2 - RE    | CCW-9-3A-0124           |          |           | 01          |             |            |            |          |          |
| 320-108687-3         | CCW-3B-0124             | 58       | 50        | 73          | 82          | 78         | 84         | 96       | 93       |
|                      |                         | 50       | 30        | 73          |             | 70         | 04         | 90       | 93       |
| 320-108687-3 - RA    | CCW-3B-0124             | 00       | <b>50</b> | 70          | 86          | 0.4        | 00         | 00       | 400      |
| 320-108687-3 DU      | CCW-3B-0124             | 68       | 52        | 73          | 78          | 84         | 98         | 99       | 108      |
| 320-108687-3 DU - RA | CCW-3B-0124             |          |           |             | 106         |            |            |          |          |
| 320-108687-4         | FIELD BLANK #1-0124     | 72       | 77        | 76          | 75<br>      | 79         | 74         | 87       | 81       |
| 320-108687-5         | CCW-2C-0124             | 57       | 49        | 78          | 77          | 77         | 75         | 82       | 73       |
| 320-108687-5 - RA    | CCW-2C-0124             |          |           |             | 79          |            |            |          |          |
| 320-108687-6         | CCW-2B-0124             | 66       | 50        | 72          | 76          | 81         | 97         | 107      | 106      |
| 320-108687-6 - RA    | CCW-2B-0124             |          |           |             | 93          |            |            |          |          |
| 320-108687-7         | CCW-2A-0124             | 38       | 40        | 49          | 57          | 54         | 52         | 64       | 58       |
| 000 400007 7 DA      | CCM/ 24 0424            |          |           |             |             |            |            |          |          |
| 320-108687-7 - RA    | CCW-2A-0124             |          |           |             |             |            |            |          |          |

**Eurofins Sacramento** 

1/31/2024

Page 25 of 49

4

6

8

10

12

13

11,

# **Isotope Dilution Summary**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Matrix: Water

Prep Type: Total/NA

|                      |                                    |          | Perc     | ent Isotope | Dilution Re | ecovery (Ac | ceptance I | _imits)  |          |
|----------------------|------------------------------------|----------|----------|-------------|-------------|-------------|------------|----------|----------|
|                      |                                    | PFDoA    | PFTDA    | C3PFBS      | C3PFHS      | C8PFOS      | PFOSA      |          | d5NEFOS  |
| Lab Sample ID        | Client Sample ID                   | (10-130) | (10-130) | (40-135)    | (40-130)    | (40-130)    | (40-130)   | (40-170) | (25-135) |
| 320-108687-8 - RE    | CTMW-17-0124                       |          |          | 79          | 75          | 78          | 71         | 79       |          |
| 320-108687-9         | RINSATE BLANK #1-0124              | 75       | 81       | 93          | 89          | 92          | 88         | 91       | 82       |
| 320-108687-10        | TRIP SOURCE WATER BLANK<br>#1-0124 | 86       | 94       | 102         | 102         | 101         | 94         | 109      | 99       |
| LCS 320-734182/3-A   | Lab Control Sample                 | 73       | 76       | 80          | 79          | 78          | 76         | 91       | 81       |
| LCS 320-735177/3-A   | Lab Control Sample                 | 59       | 66       | 83          | 80          | 82          | 73         | 73       | 73       |
| LLCS 320-734182/2-A  | Lab Control Sample                 | 67       | 74       | 79          | 78          | 79          | 70         | 78       | 73       |
| LLCS 320-735177/2-A  | Lab Control Sample                 | 67       | 74       | 86          | 81          | 84          | 76         | 72       | 71       |
| MB 320-734182/1-A    | Method Blank                       | 60       | 66       | 83          | 83          | 84          | 74         | 84       | 75       |
| MB 320-735177/1-A    | Method Blank                       | 66       | 71       | 83          | 76          | 80          | 73         | 70       | 70       |
|                      |                                    |          | Perc     | ent Isotope | Dilution Re | ecovery (Ac | ceptance L | _imits)  |          |
|                      |                                    | M242FTS  | M262FTS  | M282FTS     | HFPODA      | NMFM        | NEFM       | d5NPFSA  | d3NMFSA  |
| Lab Sample ID        | Client Sample ID                   | (40-200) | (40-200) | (40-300)    | (40-130)    | (10-130)    | (10-130)   | (10-130) | (10-130) |
| 320-108687-1         | CCW-3A-0124                        |          | 69       | 104         | 40          | 21          | 26         | 38       | 34       |
| 320-108687-1 - RA    | CCW-3A-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-1 - RE    | CCW-3A-0124                        | 111      |          |             |             |             |            |          |          |
| 320-108687-2         | CCW-9-3A-0124                      |          | 79       | 87          | 56          | 17          | 21         | 32       | 31       |
| 320-108687-2 - RA    | CCW-9-3A-0124                      |          |          |             |             |             |            |          |          |
| 320-108687-2 - RE    | CCW-9-3A-0124                      | 99       |          |             |             |             |            |          |          |
| 320-108687-3         | CCW-3B-0124                        | 101      | 123      | 118         | 78          | 44          | 37         | 47       | 49       |
| 320-108687-3 - RA    | CCW-3B-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-3 DU      | CCW-3B-0124                        | 97       | 122      | 120         | 80          | 58          | 54         | 60       | 59       |
| 320-108687-3 DU - RA | CCW-3B-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-4         | FIELD BLANK #1-0124                | 94       | 93       | 92          | 63          | 72          | 68         | 67       | 59       |
| 320-108687-5         | CCW-2C-0124                        | 90       | 83       | 85          | 62          | 47          | 37         | 53       | 54       |
| 320-108687-5 - RA    | CCW-2C-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-6         | CCW-2B-0124                        | 99       | 138      | 134         | 73          | 33          | 24         | 58       | 58       |
| 320-108687-6 - RA    | CCW-2B-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-7         | CCW-2A-0124                        | 76       | 79       | 80          | 42          | 36          | 31         | 35       | 35       |
| 320-108687-7 - RA    | CCW-2A-0124                        |          |          |             |             |             |            |          |          |
| 320-108687-8         | CTMW-17-0124                       | 59       | 68       | 62          |             | 23          | 20         | 22       | 23       |
| 320-108687-8 - RE    | CTMW-17-0124                       |          |          |             | 69          |             |            |          |          |
| 320-108687-9         | RINSATE BLANK #1-0124              | 111      | 106      | 111         | 78          | 85          | 82         | 76       | 70       |
| 320-108687-10        | TRIP SOURCE WATER BLANK            | 121      | 116      | 129         | 99          | 91          | 91         | 93       | 81       |
| LCS 320-734182/3-A   | #1-0124<br>Lab Control Sample      | 89       | 85       | 92          | 66          | 72          | 69         | 66       | 59       |
| LCS 320-735177/3-A   | Lab Control Sample                 | 68       | 70       | 69          | 70          | 65          | 69         | 61       | 61       |
| LLCS 320-734182/2-A  | Lab Control Sample                 | 92       | 92       | 98          | 66          | 68          | 68         | 59       | 54       |
| LLCS 320-735177/2-A  | Lab Control Sample                 | 71       | 73       | 68          | 73          | 71          | 73         | 67       | 68       |
| MB 320-734182/1-A    | Method Blank                       | 102      | 99       | 104         | 73<br>76    | 66          | 62         | 59       | 54       |
| MB 320-735177/1-A    | Method Blank                       | 68       | 99<br>71 | 67          | 76<br>73    | 65          | 68         | 62       | 62       |
| WID 320-13311111-M   | METHOR DIGHT                       | 00       | 7 1      | 01          | 13          | 00          | 00         | UZ       | UZ       |

| Surrogate | Legend |
|-----------|--------|
|-----------|--------|

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

13C5PHA = 13C5 PFHxA

C4PFHA = 13C4 PFHpA

C8PFOA = 13C8 PFOA

C9PFNA = 13C9 PFNA

C6PFDA = 13C6 PFDA

13C7PUA = 13C7 PFUnA

**Eurofins Sacramento** 

1/31/2024

Page 26 of 49

2

Job ID: 320-108687-1

3

4

7

9

11

14

15

# **Isotope Dilution Summary**

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

C3PFHS = 13C3 PFHxS

C8PFOS = 13C8 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M242FTS = M2-4:2 FTS

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

HFPODA = 13C3 HFPO-DA

NMFM = d7-N-MeFOSE-M

NEFM = d9-N-EtFOSE-M d5NPFSA = d5-NEtPFOSA

d3NMFSA = d3-NMePFOSA

Job ID: 320-108687-1

2

3

4

5

A

7

\_

10

11

13

14

15

# **QC Sample Results**

Client: Dalton, Olmsted & Fuglevand, Inc

Lab Sample ID: MB 320-734182/1-A

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

| Client Sample I | D: Met | hod B | lank |
|-----------------|--------|-------|------|
|-----------------|--------|-------|------|

| Matrix: Water                               |           |                 |          |          |   |                | Prep Type: To  |                   |
|---------------------------------------------|-----------|-----------------|----------|----------|---|----------------|----------------|-------------------|
| Analysis Batch: 734653                      | MD        | мо              |          |          |   |                | Prep Batch:    | 734182            |
| Analyte                                     |           | MB<br>Qualifier | RL       | MDL Unit | D | Prepared       | Analyzed       | Dil Fac           |
| Perfluorobutanoic acid (PFBA)               | ND        | - Guuiiiici     | 8.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluoropentanoic acid (PFPeA)             | ND        |                 | 4.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorohexanoic acid (PFHxA)              | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluoroheptanoic acid (PFHpA)             | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | · · · · · · · · 1 |
| Perfluorooctanoic acid (PFOA)               | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorononanoic acid (PFNA)               | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorodecanoic acid (PFDA)               | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 |                   |
| Perfluoroundecanoic acid (PFUnA)            | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorododecanoic acid (PFDoA)            | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorotridecanoic acid (PFTrDA)          | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| ,                                           |           |                 |          | •        |   |                |                |                   |
| Perfluorotetradecanoic acid (PFTeA)         | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorobutanesulfonic acid (PFBS)         | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 |                   |
| Perfluoropentanesulfonic acid (PFPeS)       | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluorohexanesulfonic acid (PFHxS)        | ND        |                 | 2.0      | ng/L     |   |                | 01/18/24 22:49 | 1                 |
| Perfluoroheptanesulfonic acid (PFHpS)       | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 |                   |
| Perfluorooctanesulfonic acid (PFOS)         | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| Perfluorononanesulfonic acid (PFNS)         | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| Perfluorodecanesulfonic acid (PFDS)         | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| Perfluorododecanesulfonic acid (PFDoS)      | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 4:2 FTS                                     | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 6:2 FTS                                     | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 8:2 FTS                                     | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| Perfluorooctanesulfonamide (FOSA)           | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NMeFOSA                                     | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NEtFOSA                                     | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NMeFOSAA                                    | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NEtFOSAA                                    | ND        |                 | 2.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NMeFOSE                                     | ND        |                 | 20       | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NEtFOSE                                     | ND        |                 | 20       | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| HFPO-DA (GenX)                              | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| PFMBA                                       | ND        |                 | 4.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| NFDHA                                       | ND        |                 | 4.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| PFMPA                                       | ND        |                 | 4.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 9CI-PF3ONS                                  | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 11CI-PF3OUdS                                | ND        |                 | 8.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| PFEESA                                      | ND        |                 | 4.0      | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 3:3 FTCA                                    | ND        |                 | 10       | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 5:3 FTCA                                    | ND        |                 | 50       | ng/L     |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |
| 7:3 FTCA                                    | ND        |                 | 50       | ng/L     |   |                | 01/18/24 22:49 | 1                 |
|                                             | MB        | MB              |          | ŭ        |   |                |                |                   |
| Isotope Dilution                            | %Recovery | Qualifier       | Limits   |          |   | Prepared       | Analyzed       | Dil Fac           |
| 13C4 PFBA                                   | 77        |                 | 5 - 130  |          |   |                | 01/18/24 22:49 | 1                 |
| 13C5 PFPeA                                  | 77        |                 | 40 - 130 |          |   |                | 01/18/24 22:49 | 1                 |
| 13C5 PFHxA                                  | 80        |                 | 40 - 130 |          |   | 01/17/24 11:51 | 01/18/24 22:49 | 1                 |

**Eurofins Sacramento** 

Page 28 of 49

1/31/2024

Client: Dalton, Olmsted & Fuglevand, Inc

MB MB

85

75

84

74

68

60

66

83

83

84

74

84

75

102

99

104

76

66

62

59

54

Qualifier

%Recovery

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Limits

40 - 130

40 - 130

40 - 130

40 - 130

30 - 130

10 - 130

10 - 130

40 - 135

40 - 130

40 - 130

40 - 130

40 - 170

25 - 135

40 - 200

40 - 200

40 - 300

40 - 130

10 - 130

10 - 130

10 - 130

10 - 130

Lab Sample ID: MB 320-734182/1-A

**Matrix: Water** 

Isotope Dilution

13C4 PFHpA

13C8 PFOA

13C9 PFNA

13C6 PFDA

13C7 PFUnA

13C2 PFDoA

13C3 PFBS

13C3 PFHxS

13C8 PFOS

13C8 FOSA

d3-NMeFOSAA

d5-NEtFOSAA

M2-4:2 FTS

M2-6:2 FTS

M2-8:2 FTS

13C3 HFPO-DA

d7-N-MeFOSE-M

d9-N-EtFOSE-M

d5-NEtPFOSA

d3-NMePFOSA

13C2 PFTeDA

**Analysis Batch: 734653** 

**Client Sample ID: Method Blank Prep Type: Total/NA** 

**Prep Batch: 734182** Prepared Analyzed Dil Fac 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49 01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

01/17/24 11:51 01/18/24 22:49

Lab Sample ID: LCS 320-734182/3-A

**Matrix: Water** 

**Analysis Batch: 734653** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 734182** 

| •                                     | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|---------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluorobutanoic acid (PFBA)         | 128   | 124    |           | ng/L |   | 97   | 70 - 140 |  |
| Perfluoropentanoic acid (PFPeA)       | 64.0  | 64.1   |           | ng/L |   | 100  | 65 - 135 |  |
| Perfluorohexanoic acid (PFHxA)        | 32.0  | 34.1   |           | ng/L |   | 107  | 70 - 145 |  |
| Perfluoroheptanoic acid (PFHpA)       | 32.0  | 31.8   |           | ng/L |   | 99   | 70 - 150 |  |
| Perfluorooctanoic acid (PFOA)         | 32.0  | 30.7   |           | ng/L |   | 96   | 70 - 150 |  |
| Perfluorononanoic acid (PFNA)         | 32.0  | 28.8   |           | ng/L |   | 90   | 70 - 150 |  |
| Perfluorodecanoic acid (PFDA)         | 32.0  | 30.6   |           | ng/L |   | 96   | 70 - 140 |  |
| Perfluoroundecanoic acid (PFUnA)      | 32.0  | 27.8   |           | ng/L |   | 87   | 70 - 145 |  |
| Perfluorododecanoic acid (PFDoA)      | 32.0  | 30.8   |           | ng/L |   | 96   | 70 - 140 |  |
| Perfluorotridecanoic acid (PFTrDA)    | 32.0  | 28.1   |           | ng/L |   | 88   | 65 - 140 |  |
| Perfluorotetradecanoic acid (PFTeA)   | 32.0  | 26.0   |           | ng/L |   | 81   | 60 - 140 |  |
| Perfluorobutanesulfonic acid (PFBS)   | 28.4  | 25.0   |           | ng/L |   | 88   | 60 - 145 |  |
| Perfluoropentanesulfonic acid (PFPeS) | 30.1  | 28.5   |           | ng/L |   | 95   | 65 - 140 |  |
| Perfluorohexanesulfonic acid (PFHxS)  | 29.2  | 25.1   |           | ng/L |   | 86   | 65 - 145 |  |
| Perfluoroheptanesulfonic acid (PFHpS) | 30.5  | 27.6   |           | ng/L |   | 90   | 70 - 150 |  |

**Eurofins Sacramento** 

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-734182/3-A

**Matrix: Water** 

**Analysis Batch: 734653** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 734182

| Analysis Batch. 104000                      | Spike | LCS  | LCS       |      |   |      | %Rec     |
|---------------------------------------------|-------|------|-----------|------|---|------|----------|
| Analyte                                     | Added |      | Qualifier | Unit | D | %Rec | Limits   |
| Perfluorooctanesulfonic acid                | 29.8  | 27.4 |           | ng/L |   | 92   | 55 - 150 |
| (PFOS)                                      |       |      |           |      |   |      |          |
| Perfluorononanesulfonic acid                | 30.7  | 26.2 |           | ng/L |   | 85   | 65 - 145 |
| (PFNS)                                      |       |      |           |      |   |      |          |
| Perfluorodecanesulfonic acid                | 30.8  | 27.6 |           | ng/L |   | 89   | 60 - 145 |
| (PFDS) Perfluorododecanesulfonic acid       | 31.0  | 24.6 |           | ng/L |   | 79   | 50 - 145 |
| (PFDoS)                                     | 31.0  | 24.0 |           | Hg/L |   | 19   | 30 - 143 |
| 4:2 FTS                                     | 120   | 116  |           | ng/L |   | 97   | 70 - 145 |
| 6:2 FTS                                     | 122   | 126  |           | ng/L |   | 103  | 65 - 155 |
| 8:2 FTS                                     | 123   | 129  |           | ng/L |   | 105  | 60 - 150 |
| Perfluorooctanesulfonamide                  | 32.0  | 30.5 |           | ng/L |   | 95   | 70 - 145 |
| (FOSA)                                      |       |      |           | •    |   |      |          |
| NMeFOSA                                     | 32.0  | 31.3 |           | ng/L |   | 98   | 60 - 150 |
| NEtFOSA                                     | 32.0  | 29.1 |           | ng/L |   | 91   | 65 - 145 |
| NMeFOSAA                                    | 32.0  | 29.5 |           | ng/L |   | 92   | 50 - 140 |
| NEtFOSAA                                    | 32.0  | 30.6 |           | ng/L |   | 96   | 70 - 145 |
| NMeFOSE                                     | 320   | 310  |           | ng/L |   | 97   | 70 - 145 |
| NEtFOSE                                     | 320   | 312  |           | ng/L |   | 98   | 70 - 135 |
| HFPO-DA (GenX)                              | 128   | 120  |           | ng/L |   | 94   | 70 - 140 |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 121   | 127  |           | ng/L |   | 105  | 65 - 145 |
| PFMBA                                       | 64.0  | 64.1 |           | ng/L |   | 100  | 60 - 150 |
| NFDHA                                       | 64.0  | 69.5 |           | ng/L |   | 109  | 50 - 150 |
| PFMPA                                       | 64.0  | 60.2 |           | ng/L |   | 94   | 55 - 140 |
| 9CI-PF3ONS                                  | 120   | 128  |           | ng/L |   | 107  | 70 - 155 |
| 11CI-PF3OUdS                                | 121   | 132  |           | ng/L |   | 109  | 55 - 160 |
| PFEESA                                      | 57.1  | 58.9 |           | ng/L |   | 103  | 70 - 140 |
| 3:3 FTCA                                    | 160   | 140  |           | ng/L |   | 88   | 65 - 130 |
| 5:3 FTCA                                    | 799   | 786  |           | ng/L |   | 98   | 70 - 135 |
| 7:3 FTCA                                    | 799   | 789  |           | ng/L |   | 99   | 50 - 145 |
|                                             |       |      |           |      |   |      |          |

| LCS | LCS |
|-----|-----|
|     |     |

|                  | LCS       | LCS       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 75        |           | 5 - 130  |
| 13C5 PFPeA       | 74        |           | 40 - 130 |
| 13C5 PFHxA       | 70        |           | 40 - 130 |
| 13C4 PFHpA       | 76        |           | 40 - 130 |
| 13C8 PFOA        | 77        |           | 40 - 130 |
| 13C9 PFNA        | 72        |           | 40 - 130 |
| 13C6 PFDA        | 77        |           | 40 - 130 |
| 13C7 PFUnA       | 80        |           | 30 - 130 |
| 13C2 PFDoA       | 73        |           | 10 - 130 |
| 13C2 PFTeDA      | 76        |           | 10 - 130 |
| 13C3 PFBS        | 80        |           | 40 - 135 |
| 13C3 PFHxS       | 79        |           | 40 - 130 |
| 13C8 PFOS        | 78        |           | 40 - 130 |
| 13C8 FOSA        | 76        |           | 40 - 130 |
| d3-NMeFOSAA      | 91        |           | 40 - 170 |
| d5-NEtFOSAA      | 81        |           | 25 - 135 |
| M2-4:2 FTS       | 89        |           | 40 - 200 |
|                  |           |           |          |

**Eurofins Sacramento** 

Page 30 of 49

2

3

5

7

ŏ

10

12

14

4 5

## QC Sample Results

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

## Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-734182/3-A

Lab Sample ID: LLCS 320-734182/2-A

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 734653

**Analysis Batch: 734653** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 734182** 

LCS LCS

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| M2-6:2 FTS       | 85        |           | 40 - 200 |
| M2-8:2 FTS       | 92        |           | 40 - 300 |
| 13C3 HFPO-DA     | 66        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 72        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 69        |           | 10 - 130 |
| d5-NEtPFOSA      | 66        |           | 10 - 130 |
| d3-NMePFOSA      | 59        |           | 10 - 130 |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Prep Batch: 734182** 

|                                 | Spike | LLCS   | LLCS      |      |   |      | %Rec     |  |
|---------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                         | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluorobutanoic acid (PFBA)   | 12.8  | 12.7   |           | ng/L |   | 99   | 70 - 140 |  |
| Perfluoropentanoic acid (PFPeA) | 6.40  | 6.49   |           | ng/L |   | 101  | 65 - 135 |  |
| Perfluorohexanoic acid (PFHxA)  | 3.20  | 3.15   |           | ng/L |   | 98   | 70 - 145 |  |
| Perfluoroheptanoic acid (PFHpA) | 3.20  | 3.28   |           | ng/L |   | 102  | 70 - 150 |  |
| Porfluorecetonois asid (PEOA)   | 2.20  | 2 20   |           | na/l |   | 102  | 70 150   |  |

Perfluorooctanoic acid (PFOA) 3.20 3.29 ng/L 103 70 - 150Perfluorononanoic acid (PFNA) 3.20 2.94 ng/L 92 70 - 150 Perfluorodecanoic acid (PFDA) 3.20 3.15 ng/L 99 70 - 140 3.20 70 - 145 Perfluoroundecanoic acid 3.03 ng/L 95 (PFUnA) Perfluorododecanoic acid 3.20 3.21 ng/L 100 70 - 140

(PFDoA) 3.20 2.62 82 65 - 140 Perfluorotridecanoic acid ng/L (PFTrDA) Perfluorotetradecanoic acid 3.20 2.68 60 - 140 ng/L (PFTeA) Perfluorobutanesulfonic acid 2.84 2.57 90 60 - 145 ng/L (PFBS) Perfluoropentanesulfonic acid 3.01 2.91 ng/L 97 65 - 140(PFPeS) 2.92 2.76 94 65 - 145 Perfluorohexanesulfonic acid ng/L (PFHxS) 3.05 2.70 89 70 - 150 Perfluoroheptanesulfonic acid ng/L

(PFHpS) Perfluorooctanesulfonic acid 2.98 2.91 ng/L 55 - 150 (PFOS) Perfluorononanesulfonic acid 3.07 2.68 ng/L 87 65 - 145(PFNS) 3.08 2.66 60 - 145 Perfluorodecanesulfonic acid ng/L 86 (PFDS)

2.28 73 Perfluorododecanesulfonic acid 3.10 50 - 145 ng/L (PFDoS) 4:2 FTS 12.0 12.3 ng/L 103 70 - 145 65 - 155 6:2 FTS 12.2 12.1 ng/L 99 8:2 FTS 12.3 12.5 ng/L 101 60 - 150 3.20 3.09 97 70 - 145 Perfluorooctanesulfonamide ng/L

(FOSA) **NMeFOSA** 3.20 3.03 ng/L 95 60 - 150 **NEtFOSA** 3.20 3.14 98 65 - 145 ng/L **NMeFOSAA** 3.20 100 50 - 140 3 19 ng/L

**Eurofins Sacramento** 

1/31/2024

Client: Dalton, Olmsted & Fuglevand, Inc Job ID: 320-108687-1

Project/Site: PFAS, Tacoma WA

#### Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LLCS 320-734182/2-A

**Matrix: Water** 

7:3 FTCA

**Analysis Batch: 734653** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

50 - 145

**Prep Batch: 734182** 

|                                             | Spike | LLCS LLCS     |           |        | %Rec     |  |
|---------------------------------------------|-------|---------------|-----------|--------|----------|--|
| Analyte                                     | Added | Result Qualit | fier Unit | D %Rec | Limits   |  |
| NEtFOSAA                                    | 3.20  | 3.37          | ng/L      | 105    | 70 - 145 |  |
| NMeFOSE                                     | 32.0  | 30.7          | ng/L      | 96     | 70 - 145 |  |
| NEtFOSE                                     | 32.0  | 29.1          | ng/L      | 91     | 70 - 135 |  |
| HFPO-DA (GenX)                              | 12.8  | 12.1          | ng/L      | 95     | 70 - 140 |  |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 12.1  | 13.4          | ng/L      | 110    | 65 - 145 |  |
| PFMBA                                       | 6.40  | 6.57          | ng/L      | 103    | 60 - 150 |  |
| NFDHA                                       | 6.40  | 6.60          | ng/L      | 103    | 50 - 150 |  |
| PFMPA                                       | 6.40  | 6.21          | ng/L      | 97     | 55 - 140 |  |
| 9CI-PF3ONS                                  | 12.0  | 13.1          | ng/L      | 110    | 70 - 155 |  |
| 11CI-PF3OUdS                                | 12.1  | 12.4          | ng/L      | 102    | 55 - 160 |  |
| PFEESA                                      | 5.71  | 5.76          | ng/L      | 101    | 70 - 140 |  |
| 3:3 FTCA                                    | 16.0  | 14.0          | ng/L      | 88     | 65 - 130 |  |
| 5:3 FTCA                                    | 79.9  | 77.1          | ng/L      | 97     | 70 - 135 |  |

79.9

75.0

ng/L

|                  | LLCS      | LLCS      |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 73        |           | 5 - 130  |
| 13C5 PFPeA       | 74        |           | 40 - 130 |
| 13C5 PFHxA       | 73        |           | 40 - 130 |
| 13C4 PFHpA       | 76        |           | 40 - 130 |
| 13C8 PFOA        | 73        |           | 40 - 130 |
| 13C9 PFNA        | 72        |           | 40 - 130 |
| 13C6 PFDA        | 78        |           | 40 - 130 |
| 13C7 PFUnA       | 74        |           | 30 - 130 |
| 13C2 PFDoA       | 67        |           | 10 - 130 |
| 13C2 PFTeDA      | 74        |           | 10 - 130 |
| 13C3 PFBS        | 79        |           | 40 - 135 |
| 13C3 PFHxS       | 78        |           | 40 - 130 |
| 13C8 PFOS        | 79        |           | 40 - 130 |
| 13C8 FOSA        | 70        |           | 40 - 130 |
| d3-NMeFOSAA      | 78        |           | 40 - 170 |
| d5-NEtFOSAA      | 73        |           | 25 - 135 |
| M2-4:2 FTS       | 92        |           | 40 - 200 |
| M2-6:2 FTS       | 92        |           | 40 - 200 |
| M2-8:2 FTS       | 98        |           | 40 - 300 |
| 13C3 HFPO-DA     | 66        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 68        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 68        |           | 10 - 130 |
| d5-NEtPFOSA      | 59        |           | 10 - 130 |
| d3-NMePFOSA      | 54        |           | 10 - 130 |

Lab Sample ID: 320-108687-3 DU

**Matrix: Water** 

Client Sample ID: CCW-3B-0124

Prep Type: Total/NA

| Analysis Batch: 734653          |        |           |          |           |      |   | Prep Batch: | 734182  |
|---------------------------------|--------|-----------|----------|-----------|------|---|-------------|---------|
|                                 | Sample | Sample    | DU       | DU        |      |   |             | RPD     |
| Analyte                         | Result | Qualifier | Result   | Qualifier | Unit | D | RPI         | ) Limit |
| Perfluorobutanoic acid (PFBA)   | 70     |           | <br>69.8 |           | ng/L |   | 0.9         | 5 30    |
| Perfluoropentanoic acid (PFPeA) | 44     |           | 44.5     |           | ng/L |   | 0.          | 1 30    |

**Eurofins Sacramento** 

Page 32 of 49

# **QC Sample Results**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: 320-108687-3 DU

**Matrix: Water** 

Analysis Batch: 734653

Client Sample ID: CCW-3B-0124

**Prep Type: Total/NA** 

**Prep Batch: 734182** 

| Analysis Batch: 734653                      |               |           |          |           |      |   | <b>Prep Batch: 734182</b> |       |  |
|---------------------------------------------|---------------|-----------|----------|-----------|------|---|---------------------------|-------|--|
| Analyte                                     | Sample Sample |           | DU       |           |      |   | RPD                       |       |  |
|                                             |               | Qualifier |          | Qualifier | Unit | D |                           | Limit |  |
| Perfluorohexanoic acid (PFHxA)              | 32            |           | 31.6     |           | ng/L |   | 2                         | 30    |  |
| Perfluoroheptanoic acid (PFHpA)             | 15            |           | 14.6     |           | ng/L |   | 1                         | 30    |  |
| Perfluorooctanoic acid (PFOA)               | 61            |           | 59.6     |           | ng/L |   | 2                         | 30    |  |
| Perfluorononanoic acid (PFNA)               | 4.1           |           | 3.90     |           | ng/L |   | 6                         | 30    |  |
| Perfluorodecanoic acid (PFDA)               | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluoroundecanoic acid (PFUnA)            | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorododecanoic acid (PFDoA)            | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorotridecanoic acid (PFTrDA)          | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorotetradecanoic acid (PFTeA)         | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorobutanesulfonic acid (PFBS)         | 6.5           |           | 6.83     |           | ng/L |   | 5                         | 30    |  |
| Perfluorohexanesulfonic acid (PFHxS)        | 23            |           | 24.6     |           | ng/L |   | 5                         | 30    |  |
| Perfluoroheptanesulfonic acid (PFHpS)       | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorooctanesulfonic acid (PFOS)         | 20            |           | 19.8     |           | ng/L |   | 2                         | 30    |  |
| Perfluorononanesulfonic acid (PFNS)         | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorodecanesulfonic acid (PFDS)         | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorododecanesulfonic acid (PFDoS)      | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 4:2 FTS                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 6:2 FTS                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 8:2 FTS                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| Perfluorooctanesulfonamide (FOSA)           | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NMeFOSA                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NEtFOSA                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NMeFOSAA                                    | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NEtFOSAA                                    | 2.4           |           | 2.58     |           | ng/L |   | 8                         | 30    |  |
| NMeFOSE                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NEtFOSE                                     | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| HFPO-DA (GenX)                              | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| PFMBA                                       | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| NFDHA                                       | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| PFMPA                                       | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 9CI-PF3ONS                                  | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 11CI-PF3OUdS                                | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| PFEESA                                      | ND            |           | ND<br>ND |           | ng/L |   | NC<br>NC                  | 30    |  |
|                                             |               |           |          |           |      |   |                           |       |  |
| 3:3 FTCA                                    | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 5:3 FTCA                                    | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |
| 7:3 FTCA                                    | ND            |           | ND       |           | ng/L |   | NC                        | 30    |  |

**Eurofins Sacramento** 

1/31/2024

Page 33 of 49

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

|                  | DU        | DU        |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 29        |           | 5 - 130  |
| 13C5 PFPeA       | 67        |           | 40 - 130 |
| 13C5 PFHxA       | 74        |           | 40 - 130 |
| 13C4 PFHpA       | 92        |           | 40 - 130 |
| 13C8 PFOA        | 75        |           | 40 - 130 |
| 13C9 PFNA        | 89        |           | 40 - 130 |
| 13C6 PFDA        | 79        |           | 40 - 130 |
| 13C7 PFUnA       | 81        |           | 30 - 130 |
| 13C2 PFDoA       | 68        |           | 10 - 130 |
| 13C2 PFTeDA      | 52        |           | 10 - 130 |
| 13C3 PFBS        | 73        |           | 40 - 135 |
| 13C3 PFHxS       | 78        |           | 40 - 130 |
| 13C8 PFOS        | 84        |           | 40 - 130 |
| 13C8 FOSA        | 98        |           | 40 - 130 |
| d3-NMeFOSAA      | 99        |           | 40 - 170 |
| d5-NEtFOSAA      | 108       |           | 25 - 135 |
| M2-4:2 FTS       | 97        |           | 40 - 200 |
| M2-6:2 FTS       | 122       |           | 40 - 200 |
| M2-8:2 FTS       | 120       |           | 40 - 300 |
| 13C3 HFPO-DA     | 80        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 58        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 54        |           | 10 - 130 |
| d5-NEtPFOSA      | 60        |           | 10 - 130 |
| d3-NMePFOSA      | 59        |           | 10 - 130 |

Lab Sample ID: MB 320-735177/1-A

**Matrix: Water** 

**Analysis Batch: 736673** 

| Client Sample ID: Method Blank |
|--------------------------------|
| Prep Type: Total/NA            |
| Prep Batch: 735177             |

| Allalysis Datoll. 100010               |        |           |     |     |      |   |                | i Tep Dateil.  | 100111  |
|----------------------------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
|                                        | MB     | MB        |     |     |      |   |                |                |         |
| Analyte                                | Result | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluorobutanoic acid (PFBA)          | ND     |           | 8.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluoropentanoic acid (PFPeA)        | ND     |           | 4.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorohexanoic acid (PFHxA)         | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluoroheptanoic acid (PFHpA)        | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorooctanoic acid (PFOA)          | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorononanoic acid (PFNA)          | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorodecanoic acid (PFDA)          | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluoroundecanoic acid (PFUnA)       | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorododecanoic acid (PFDoA)       | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorotridecanoic acid (PFTrDA)     | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorotetradecanoic acid (PFTeA)    | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorobutanesulfonic acid (PFBS)    | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluoropentanesulfonic acid (PFPeS)  | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)   | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluoroheptanesulfonic acid (PFHpS)  | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorooctanesulfonic acid (PFOS)    | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorononanesulfonic acid (PFNS)    | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorodecanesulfonic acid (PFDS)    | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| Perfluorododecanesulfonic acid (PFDoS) | ND     |           | 2.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 4:2 FTS                                | ND     |           | 8.0 |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |

**Eurofins Sacramento** 

Page 34 of 49 1/31/2024

2

5

5

g

9

11

12

# **QC Sample Results**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: MB 320-735177/1-A

**Matrix: Water** 

**Analysis Batch: 736673** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA Prep Batch: 735177** 

| 7 mm, 500 = attorn 1 0 0 0 1 0              |        |           |      |     |      |   |                |                |         |  |
|---------------------------------------------|--------|-----------|------|-----|------|---|----------------|----------------|---------|--|
|                                             |        | MB        |      |     |      |   |                |                |         |  |
| Analyte                                     | Result | Qualifier | RL _ | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| 6:2 FTS                                     | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 8:2 FTS                                     | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | •       |  |
| Perfluorooctanesulfonamide (FOSA)           | ND     |           | 2.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | •       |  |
| NMeFOSA                                     | ND     |           | 2.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NEtFOSA                                     | ND     |           | 2.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NMeFOSAA                                    | ND     |           | 2.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NEtFOSAA                                    | ND     |           | 2.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NMeFOSE                                     | ND     |           | 20   |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NEtFOSE                                     | ND     |           | 20   |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| HFPO-DA (GenX)                              | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| PFMBA                                       | ND     |           | 4.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| NFDHA                                       | ND     |           | 4.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| PFMPA                                       | ND     |           | 4.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 9CI-PF3ONS                                  | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 11CI-PF3OUdS                                | ND     |           | 8.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| PFEESA                                      | ND     |           | 4.0  |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 3:3 FTCA                                    | ND     |           | 10   |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 5:3 FTCA                                    | ND     |           | 50   |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
| 7:3 FTCA                                    | ND     |           | 50   |     | ng/L |   | 01/22/24 04:23 | 01/26/24 09:49 | 1       |  |
|                                             |        |           |      |     |      |   |                |                |         |  |

|                  | MB        | MB        |          |                |                |         |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA        | 82        |           | 5 - 130  | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C5 PFPeA       | 75        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C5 PFHxA       | 76        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C4 PFHpA       | 73        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C8 PFOA        | 82        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C9 PFNA        | 78        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C6 PFDA        | 75        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C7 PFUnA       | 79        |           | 30 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C2 PFDoA       | 66        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C2 PFTeDA      | 71        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C3 PFBS        | 83        |           | 40 - 135 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C3 PFHxS       | 76        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C8 PFOS        | 80        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C8 FOSA        | 73        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d3-NMeFOSAA      | 70        |           | 40 - 170 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d5-NEtFOSAA      | 70        |           | 25 - 135 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| M2-4:2 FTS       | 68        |           | 40 - 200 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| M2-6:2 FTS       | 71        |           | 40 - 200 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| M2-8:2 FTS       | 67        |           | 40 - 300 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| 13C3 HFPO-DA     | 73        |           | 40 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d7-N-MeFOSE-M    | 65        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d9-N-EtFOSE-M    | 68        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d5-NEtPFOSA      | 62        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |
| d3-NMePFOSA      | 62        |           | 10 - 130 | 01/22/24 04:23 | 01/26/24 09:49 | 1       |

**Eurofins Sacramento** 

Page 35 of 49

# **QC Sample Results**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-735177/3-A

| <b>Client Sample ID: Lab Control Sample</b> |
|---------------------------------------------|
| Prep Type: Total/NA                         |

| Matrix: Water<br>Analysis Batch: 736673 |       |      |           |       |          |      | Prep Type: Total/NA<br>Prep Batch: 735177 |
|-----------------------------------------|-------|------|-----------|-------|----------|------|-------------------------------------------|
| Analysis                                | Spike |      | LCS       | 1114  | _        | 0/ 🗖 | %Rec                                      |
| Analyte Participation and (PERA)        | Added |      | Qualifier | Unit  | <u>D</u> | %Rec | Limits                                    |
| Perfluorobutanoic acid (PFBA)           | 128   | 130  |           | ng/L  |          | 102  | 70 - 140                                  |
| Perfluoropentanoic acid (PFPeA)         | 64.0  | 72.5 |           | ng/L  |          | 113  | 65 <sub>-</sub> 135                       |
| Perfluorohexanoic acid (PFHxA)          | 32.0  | 35.3 |           | ng/L  |          | 110  | 70 - 145                                  |
| Perfluoroheptanoic acid (PFHpA)         | 32.0  | 32.7 |           | ng/L  |          | 102  | 70 - 150                                  |
| Perfluorooctanoic acid (PFOA)           | 32.0  | 32.0 |           | ng/L  |          | 100  | 70 - 150                                  |
| Perfluorononanoic acid (PFNA)           | 32.0  | 33.9 |           | ng/L  |          | 106  | 70 - 150                                  |
| Perfluorodecanoic acid (PFDA)           | 32.0  | 32.4 |           | ng/L  |          | 101  | 70 - 140                                  |
| Perfluoroundecanoic acid                | 32.0  | 31.6 |           | ng/L  |          | 99   | 70 - 145                                  |
| (PFUnA) Perfluorododecanoic acid        | 32.0  | 39.2 |           | ng/L  |          | 122  | 70 - 140                                  |
| (PFDoA)                                 | 32.0  | 39.2 |           | rig/L |          | 122  | 70 - 140                                  |
| Perfluorotridecanoic acid               | 32.0  | 35.5 |           | ng/L  |          | 111  | 65 - 140                                  |
| (PFTrDA)                                |       |      |           |       |          |      |                                           |
| Perfluorotetradecanoic acid             | 32.0  | 34.4 |           | ng/L  |          | 107  | 60 - 140                                  |
| (PFTeA)                                 |       |      |           |       |          |      |                                           |
| Perfluorobutanesulfonic acid            | 28.4  | 28.2 |           | ng/L  |          | 99   | 60 - 145                                  |
| (PFBS)                                  |       |      |           |       |          |      | 05 440                                    |
| Perfluoropentanesulfonic acid           | 30.1  | 31.8 |           | ng/L  |          | 106  | 65 - 140                                  |
| (PFPeS) Perfluorohexanesulfonic acid    | 29.2  | 28.7 |           | ng/L  |          | 98   | 65 - 145                                  |
| (PFHxS)                                 | 20.2  | 20.7 |           | iig/L |          | 30   | 00-140                                    |
| Perfluoroheptanesulfonic acid           | 30.5  | 30.1 |           | ng/L  |          | 99   | 70 - 150                                  |
| (PFHpS)                                 |       |      |           | J     |          |      |                                           |
| Perfluorooctanesulfonic acid            | 29.8  | 29.4 |           | ng/L  |          | 99   | 55 - 150                                  |
| (PFOS)                                  |       |      |           |       |          |      |                                           |
| Perfluorononanesulfonic acid (PFNS)     | 30.7  | 29.7 |           | ng/L  |          | 97   | 65 - 145                                  |
| Perfluorodecanesulfonic acid            | 30.8  | 28.7 |           | ng/L  |          | 93   | 60 - 145                                  |
| (PFDS)                                  |       |      |           |       |          |      |                                           |
| Perfluorododecanesulfonic acid          | 31.0  | 25.9 |           | ng/L  |          | 83   | 50 - 145                                  |
| (PFDoS)<br>4:2 FTS                      | 120   | 120  |           | ng/L  |          | 100  | 70 - 145                                  |
| 6:2 FTS                                 | 122   | 124  |           | ng/L  |          | 101  | 65 <sub>-</sub> 155                       |
| 8:2 FTS                                 | 123   | 124  |           |       |          | 103  | 60 - 150                                  |
|                                         |       |      |           | ng/L  |          |      |                                           |
| Perfluorooctanesulfonamide (FOSA)       | 32.0  | 34.8 |           | ng/L  |          | 109  | 70 - 145                                  |
| NMeFOSA                                 | 32.0  | 33.4 |           | ng/L  |          | 104  | 60 - 150                                  |
| NEtFOSA                                 | 32.0  | 34.0 |           | ng/L  |          | 106  | 65 - 145                                  |
| NMeFOSAA                                | 32.0  | 32.6 |           | ng/L  |          | 102  | 50 - 140                                  |
| NEtFOSAA                                | 32.0  | 31.7 |           | ng/L  |          | 99   | 70 <sub>-</sub> 145                       |
| NMeFOSE                                 | 320   | 352  |           | ng/L  |          | 110  | 70 - 145                                  |
| NEtFOSE                                 | 320   | 322  |           | ng/L  |          | 101  | 70 - 135                                  |
| HFPO-DA (GenX)                          | 128   | 127  |           | ng/L  |          | 99   | 70 - 133<br>70 - 140                      |
| 4,8-Dioxa-3H-perfluorononanoic          | 121   | 148  |           | ng/L  |          | 122  | 65 - 145                                  |
| acid (ADONA)                            | 121   | 140  |           | rig/L |          | 122  | 03 - 143                                  |
| PFMBA                                   | 64.0  | 69.8 |           | ng/L  |          | 109  | 60 - 150                                  |
| NFDHA                                   | 64.0  | 65.5 |           | ng/L  |          | 102  | 50 - 150                                  |
| PFMPA                                   | 64.0  | 76.4 |           | ng/L  |          | 119  | 55 - 140                                  |
| 9CI-PF3ONS                              | 120   | 137  |           | ng/L  |          | 115  | 70 - 155                                  |
| 11CI-PF3OUdS                            | 121   | 127  |           | ng/L  |          | 105  | 55 - 160                                  |
| PFEESA                                  | 57.1  | 67.0 |           | ng/L  |          | 117  | 70 - 140                                  |
| 3:3 FTCA                                | 160   | 174  |           | ng/L  |          | 109  | 65 - 130                                  |
| 0.01 TOA                                | 100   | 174  |           | ⊓g/∟  |          | 109  | 00 - 100                                  |

**Eurofins Sacramento** 

Page 36 of 49

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-735177/3-A

**Matrix: Water** 

Analyte

5:3 FTCA

**Analysis Batch: 736673** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 735177** 

LCS LCS %Rec Spike D %Rec Added Result Qualifier Unit Limits 799 883 ng/L 111 70 - 135 799 817 ng/L 102 50 - 145

| 7:3 FTCA         |           |           | 799      |
|------------------|-----------|-----------|----------|
|                  | LCS       | LCS       |          |
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 83        |           | 5 - 130  |
| 13C5 PFPeA       | 76        |           | 40 - 130 |
| 13C5 PFHxA       | 76        |           | 40 - 130 |
| 13C4 PFHpA       | 76        |           | 40 - 130 |
| 13C8 PFOA        | 80        |           | 40 - 130 |
| 13C9 PFNA        | 74        |           | 40 - 130 |
| 13C6 PFDA        | 74        |           | 40 - 130 |
| 13C7 PFUnA       | 77        |           | 30 - 130 |
| 13C2 PFDoA       | 59        |           | 10 - 130 |
| 13C2 PFTeDA      | 66        |           | 10 - 130 |
| 13C3 PFBS        | 83        |           | 40 - 135 |
| 13C3 PFHxS       | 80        |           | 40 - 130 |
| 13C8 PFOS        | 82        |           | 40 - 130 |
| 13C8 FOSA        | 73        |           | 40 - 130 |
| d3-NMeFOSAA      | 73        |           | 40 - 170 |
| d5-NEtFOSAA      | 73        |           | 25 - 135 |
| M2-4:2 FTS       | 68        |           | 40 - 200 |
| M2-6:2 FTS       | 70        |           | 40 - 200 |
| M2-8:2 FTS       | 69        |           | 40 - 300 |
| 13C3 HFPO-DA     | 70        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 65        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 69        |           | 10 - 130 |
| d5-NEtPFOSA      | 61        |           | 10 - 130 |
| d3-NMePFOSA      | 61        |           | 10 - 130 |

Lab Sample ID: LLCS 320-735177/2-A

**Matrix: Water** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

| Analysis Batch: 736673          |       |        |           |      |   |      | <b>Prep Batch: 735177</b> |
|---------------------------------|-------|--------|-----------|------|---|------|---------------------------|
|                                 | Spike | LLCS   | LLCS      |      |   |      | %Rec                      |
| Analyte                         | Added | Result | Qualifier | Unit | D | %Rec | Limits                    |
| Perfluorobutanoic acid (PFBA)   | 12.8  | 12.6   |           | ng/L |   | 98   | 70 - 140                  |
| Perfluoropentanoic acid (PFPeA) | 6.40  | 6.89   |           | ng/L |   | 108  | 65 - 135                  |
| Perfluorohexanoic acid (PFHxA)  | 3.20  | 3.26   |           | ng/L |   | 102  | 70 - 145                  |
| Perfluoroheptanoic acid (PFHpA) | 3.20  | 3.05   |           | ng/L |   | 95   | 70 - 150                  |
| Perfluorooctanoic acid (PFOA)   | 3.20  | 3.22   |           | ng/L |   | 101  | 70 - 150                  |
| Perfluorononanoic acid (PFNA)   | 3.20  | 3.63   |           | ng/L |   | 113  | 70 - 150                  |
| Perfluorodecanoic acid (PFDA)   | 3.20  | 2.99   |           | ng/L |   | 93   | 70 - 140                  |
| Perfluoroundecanoic acid        | 3.20  | 3.11   |           | ng/L |   | 97   | 70 - 145                  |
| (PFUnA)                         |       |        |           |      |   |      |                           |
| Perfluorododecanoic acid        | 3.20  | 3.75   |           | ng/L |   | 117  | 70 - 140                  |
| (PFDoA)                         |       |        |           |      |   |      |                           |
| Perfluorotridecanoic acid       | 3.20  | 3.51   |           | ng/L |   | 110  | 65 - 140                  |
| (PFTrDA)                        |       |        |           |      |   |      |                           |
| Perfluorotetradecanoic acid     | 3.20  | 3.41   |           | ng/L |   | 107  | 60 - 140                  |
| (PFTeA)                         |       |        |           |      |   |      |                           |

**Eurofins Sacramento** 

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Spike

LLCS LLCS

Lab Sample ID: LLCS 320-735177/2-A

**Matrix: Water** 

**Analysis Batch: 736673** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Prep Batch: 735177** %Rec

|                                        | <b>эріке</b> | LLCS   | LLCS           |        | %Rec                |  |
|----------------------------------------|--------------|--------|----------------|--------|---------------------|--|
| Analyte                                | Added        | Result | Qualifier Unit | D %Rec | Limits              |  |
| Perfluorobutanesulfonic acid (PFBS)    | 2.84         | 2.69   | ng/L           | 95     | 60 - 145            |  |
| Perfluoropentanesulfonic acid          | 3.01         | 3.06   | ng/L           | 102    | 65 - 140            |  |
| (PFPeS)                                |              |        |                |        |                     |  |
| Perfluorohexanesulfonic acid           | 2.92         | 2.97   | ng/L           | 102    | 65 - 145            |  |
| (PFHxS)                                |              |        |                |        |                     |  |
| Perfluoroheptanesulfonic acid          | 3.05         | 3.26   | ng/L           | 107    | 70 - 150            |  |
| (PFHpS)                                | 0.00         |        |                |        |                     |  |
| Perfluorooctanesulfonic acid (PFOS)    | 2.98         | 2.88   | ng/L           | 97     | 55 - 150            |  |
| Perfluorononanesulfonic acid           | 3.07         | 2.97   | ng/L           | 97     | 65 - 145            |  |
| (PFNS)                                 |              |        |                |        |                     |  |
| Perfluorodecanesulfonic acid           | 3.08         | 2.89   | ng/L           | 94     | 60 - 145            |  |
| (PFDS)                                 |              |        |                |        |                     |  |
| Perfluorododecanesulfonic acid (PFDoS) | 3.10         | 2.68   | ng/L           | 86     | 50 - 145            |  |
| 4:2 FTS                                | 12.0         | 12.5   | ng/L           | 105    | 70 - 145            |  |
| 6:2 FTS                                | 12.2         | 13.4   | ng/L           | 110    | 65 <sub>-</sub> 155 |  |
| 8:2 FTS                                | 12.3         | 12.7   | ng/L           | 103    | 60 - 150            |  |
| Perfluorooctanesulfonamide             | 3.20         | 3.41   | · ·            | 107    | 70 - 145            |  |
| (FOSA)                                 | 3.20         | 3.41   | ng/L           | 107    | 70 - 145            |  |
| NMeFOSA                                | 3.20         | 2.89   | ng/L           | 90     | 60 - 150            |  |
| NEtFOSA                                | 3.20         | 3.07   | ng/L           | 96     | 65 - 145            |  |
| NMeFOSAA                               | 3.20         | 3.27   | ng/L           | 102    | 50 - 140            |  |
| NEtFOSAA                               | 3.20         | 3.13   | ng/L           | 98     | 70 - 145            |  |
| NMeFOSE                                | 32.0         | 33.6   | ng/L           | 105    | 70 - 145            |  |
| NEtFOSE                                | 32.0         | 33.6   | ng/L           | 105    | 70 - 135            |  |
| HFPO-DA (GenX)                         | 12.8         | 12.5   | ng/L           | 98     | 70 - 140            |  |
| 4,8-Dioxa-3H-perfluorononanoic         | 12.1         | 14.5   | ng/L           | 119    | 65 - 145            |  |
| acid (ADONA)                           | 12.1         | 11.0   | rig/L          | 110    | 00-110              |  |
| PFMBA                                  | 6.40         | 6.61   | ng/L           | 103    | 60 - 150            |  |
| NFDHA                                  | 6.40         | 6.35   | ng/L           | 99     | 50 - 150            |  |
| PFMPA                                  | 6.40         | 6.43   | ng/L           | 100    | 55 - 140            |  |
| 9CI-PF3ONS                             | 12.0         | 13.3   | ng/L           | 112    | 70 - 155            |  |
| 11CI-PF3OUdS                           | 12.1         | 13.3   | ng/L           | 110    | 55 - 160            |  |
| PFEESA                                 | 5.71         | 6.18   | ng/L           | 108    | 70 - 140            |  |
| 3:3 FTCA                               | 16.0         | 16.2   | ng/L           | 102    | 65 - 130            |  |
| 5:3 FTCA                               | 79.9         | 81.0   | ng/L           | 101    | 70 - 135            |  |
| 7:3 FTCA                               | 79.9         | 72.0   | ng/L           | 90     | 50 - 145            |  |
|                                        | , 0.0        | 0      |                | 00     | 50 - 110            |  |

| LLCS LLCS | 3 |
|-----------|---|
|-----------|---|

| Isotope Dilution | %Recovery C | Qualifier | Limits   |
|------------------|-------------|-----------|----------|
| 13C4 PFBA        | 84          |           | 5 - 130  |
| 13C5 PFPeA       | 80          |           | 40 - 130 |
| 13C5 PFHxA       | 83          |           | 40 - 130 |
| 13C4 PFHpA       | 81          |           | 40 - 130 |
| 13C8 PFOA        | 86          |           | 40 - 130 |
| 13C9 PFNA        | 78          |           | 40 - 130 |
| 13C6 PFDA        | 75          |           | 40 - 130 |
| 13C7 PFUnA       | 84          |           | 30 - 130 |
| 13C2 PFDoA       | 67          |           | 10 - 130 |
| 13C2 PFTeDA      | 74          |           | 10 - 130 |

**Eurofins Sacramento** 

Page 38 of 49

# **QC Sample Results**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LLCS 320-735177/2-A **Matrix: Water** 

**Analysis Batch: 736673** 

| ilent Sample iD: | Lab Control Sample         |
|------------------|----------------------------|
|                  | <b>Prep Type: Total/NA</b> |
|                  | <b>Prep Batch: 735177</b>  |

| •                | LLCS      | LLCS      |          |  |
|------------------|-----------|-----------|----------|--|
| Isotope Dilution | %Recovery | Qualifier | Limits   |  |
| 13C3 PFBS        | 86        |           | 40 - 135 |  |
| 13C3 PFHxS       | 81        |           | 40 - 130 |  |
| 13C8 PFOS        | 84        |           | 40 - 130 |  |
| 13C8 FOSA        | 76        |           | 40 - 130 |  |
| d3-NMeFOSAA      | 72        |           | 40 - 170 |  |
| d5-NEtFOSAA      | 71        |           | 25 - 135 |  |
| M2-4:2 FTS       | 71        |           | 40 - 200 |  |
| M2-6:2 FTS       | 73        |           | 40 - 200 |  |
| M2-8:2 FTS       | 68        |           | 40 - 300 |  |
| 13C3 HFPO-DA     | 73        |           | 40 - 130 |  |
| d7-N-MeFOSE-M    | 71        |           | 10 - 130 |  |
| d9-N-EtFOSE-M    | 73        |           | 10 - 130 |  |
| d5-NEtPFOSA      | 67        |           | 10 - 130 |  |
| d3-NMePFOSA      | 68        |           | 10 - 130 |  |

# Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 - RA

Lab Sample ID: 320-108687-3 DU Client Sample ID: CCW-3B-0124

**Matrix: Water** 

Analysis Batch: 735099

Prep Type: Total/NA **Prep Batch: 734182** DU DU **RPD** Sample Sample

**Result Qualifier** Result Qualifier Unit RPD Limit 4.2 2.83 F5 38 30 Perfluoropentanesulfonic acid ng/L

(PFPeS) - RA

DU DU Isotope Dilution %Recovery Qualifier 13C3 PFHxS - RA 106 40 - 130

Limits

**Eurofins Sacramento** 

Page 39 of 49

1/31/2024

# **QC Association Summary**

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Job ID: 320-108687-1

## LCMS

#### **Prep Batch: 734182**

| Lab Sample ID        | Client Sample ID                | Prep Type | Matrix | Method | Prep Batch |
|----------------------|---------------------------------|-----------|--------|--------|------------|
| 320-108687-1         | CCW-3A-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-1 - RA    | CCW-3A-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-2         | CCW-9-3A-0124                   | Total/NA  | Water  | 1633   |            |
| 320-108687-2 - RA    | CCW-9-3A-0124                   | Total/NA  | Water  | 1633   |            |
| 320-108687-3         | CCW-3B-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-3 - RA    | CCW-3B-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-4         | FIELD BLANK #1-0124             | Total/NA  | Water  | 1633   |            |
| 320-108687-5         | CCW-2C-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-5 - RA    | CCW-2C-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-6         | CCW-2B-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-6 - RA    | CCW-2B-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-7         | CCW-2A-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-7 - RA    | CCW-2A-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-8         | CTMW-17-0124                    | Total/NA  | Water  | 1633   |            |
| 320-108687-9         | RINSATE BLANK #1-0124           | Total/NA  | Water  | 1633   |            |
| 320-108687-10        | TRIP SOURCE WATER BLANK #1-0124 | Total/NA  | Water  | 1633   |            |
| MB 320-734182/1-A    | Method Blank                    | Total/NA  | Water  | 1633   |            |
| LCS 320-734182/3-A   | Lab Control Sample              | Total/NA  | Water  | 1633   |            |
| LLCS 320-734182/2-A  | Lab Control Sample              | Total/NA  | Water  | 1633   |            |
| 320-108687-3 DU      | CCW-3B-0124                     | Total/NA  | Water  | 1633   |            |
| 320-108687-3 DU - RA | CCW-3B-0124                     | Total/NA  | Water  | 1633   |            |

#### **Analysis Batch: 734653**

| Lab Sample ID       | Client Sample ID                | Prep Type | Matrix | Method | Prep Batch |
|---------------------|---------------------------------|-----------|--------|--------|------------|
| 320-108687-1        | CCW-3A-0124                     | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-2        | CCW-9-3A-0124                   | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-3        | CCW-3B-0124                     | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-4        | FIELD BLANK #1-0124             | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-5        | CCW-2C-0124                     | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-6        | CCW-2B-0124                     | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-7        | CCW-2A-0124                     | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-8        | CTMW-17-0124                    | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-9        | RINSATE BLANK #1-0124           | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-10       | TRIP SOURCE WATER BLANK #1-0124 | Total/NA  | Water  | 1633   | 734182     |
| MB 320-734182/1-A   | Method Blank                    | Total/NA  | Water  | 1633   | 734182     |
| LCS 320-734182/3-A  | Lab Control Sample              | Total/NA  | Water  | 1633   | 734182     |
| LLCS 320-734182/2-A | Lab Control Sample              | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-3 DU     | CCW-3B-0124                     | Total/NA  | Water  | 1633   | 734182     |

#### **Analysis Batch: 735099**

| Lab Sample ID        | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------|-----------|--------|--------|------------|
| 320-108687-1 - RA    | CCW-3A-0124      | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-2 - RA    | CCW-9-3A-0124    | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-3 - RA    | CCW-3B-0124      | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-5 - RA    | CCW-2C-0124      | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-6 - RA    | CCW-2B-0124      | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-7 - RA    | CCW-2A-0124      | Total/NA  | Water  | 1633   | 734182     |
| 320-108687-3 DU - RA | CCW-3B-0124      | Total/NA  | Water  | 1633   | 734182     |

**Eurofins Sacramento** 

Page 40 of 49

# **QC Association Summary**

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA Job ID: 320-108687-1

## LCMS

#### **Prep Batch: 735177**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 320-108687-1 - RE   | CCW-3A-0124        | Total/NA  | Water  | 1633   |            |
| 320-108687-2 - RE   | CCW-9-3A-0124      | Total/NA  | Water  | 1633   |            |
| 320-108687-8 - RE   | CTMW-17-0124       | Total/NA  | Water  | 1633   |            |
| MB 320-735177/1-A   | Method Blank       | Total/NA  | Water  | 1633   |            |
| LCS 320-735177/3-A  | Lab Control Sample | Total/NA  | Water  | 1633   |            |
| LLCS 320-735177/2-A | Lab Control Sample | Total/NA  | Water  | 1633   |            |

#### **Analysis Batch: 736673**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 320-108687-1 - RE   | CCW-3A-0124        | Total/NA  | Water  | 1633   | 735177     |
| 320-108687-2 - RE   | CCW-9-3A-0124      | Total/NA  | Water  | 1633   | 735177     |
| 320-108687-8 - RE   | CTMW-17-0124       | Total/NA  | Water  | 1633   | 735177     |
| MB 320-735177/1-A   | Method Blank       | Total/NA  | Water  | 1633   | 735177     |
| LCS 320-735177/3-A  | Lab Control Sample | Total/NA  | Water  | 1633   | 735177     |
| LLCS 320-735177/2-A | Lab Control Sample | Total/NA  | Water  | 1633   | 735177     |

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-3A-0124

Date Collected: 01/11/24 10:35 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-1

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 534.3 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/18/24 23:42 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RE  |        | 50.0 mL  | 5.0 mL | 735177 | 01/22/24 04:23 | HJA     | EET SAC |
| Total/NA  | Analysis | 1633   | RE  | 1      |          |        | 736673 | 01/26/24 16:51 | S1M     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 534.3 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 17:47 | S1M     | EET SAC |

Client Sample ID: CCW-9-3A-0124

Date Collected: 01/11/24 10:40 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-2

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 548.1 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 00:00 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RE  |        | 50.0 mL  | 5.0 mL | 735177 | 01/22/24 04:23 | HJA     | EET SAC |
| Total/NA  | Analysis | 1633   | RE  | 1      |          |        | 736673 | 01/26/24 17:09 | S1M     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 548.1 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 18:04 | S1M     | EET SAC |

Client Sample ID: CCW-3B-0124

Date Collected: 01/11/24 12:00 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-3

Lab Sample ID: 320-108687-4

Lab Sample ID: 320-108687-5

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 548.5 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 00:17 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 548.5 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 18:20 | S1M     | EET SAC |

Client Sample ID: FIELD BLANK #1-0124

Date Collected: 01/11/24 11:15

Date Received: 01/13/24 08:05

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Prep          | 1633            |     |               | 474.7 mL          | 5.0 mL          | 734182          | 01/17/24 11:51       | JS      | EET SAC |
| Total/NA  | Analysis      | 1633            |     | 1             |                   |                 | 734653          | 01/19/24 00:52       | EMF     | EET SAC |

Client Sample ID: CCW-2C-0124

Date Collected: 01/11/24 13:00

Date Received: 01/13/24 08:05

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 554.1 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 01:10 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 554.1 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 18:53 | S1M     | EET SAC |

**Eurofins Sacramento** 

Page 42 of 49

10

1/31/2024

Job ID: 320-108687-1

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

Client Sample ID: CCW-2B-0124

Date Collected: 01/11/24 13:55 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-6

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 555.3 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 01:28 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 555.3 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 19:10 | S1M     | EET SAC |

Client Sample ID: CCW-2A-0124

Date Collected: 01/11/24 14:40 Date Received: 01/13/24 08:05 Lab Sample ID: 320-108687-7

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 519.6 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 02:21 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 519.6 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| _Total/NA | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 735099 | 01/19/24 19:27 | S1M     | EET SAC |

Client Sample ID: CTMW-17-0124

Date Collected: 01/11/24 16:00

Date Received: 01/13/24 08:05

Lab Sample ID: 320-108687-8 **Matrix: Water** 

Lab Sample ID: 320-108687-9

Lab Sample ID: 320-108687-10

**Matrix: Water** 

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 523.7 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 02:38 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RE  |        | 50.0 mL  | 5.0 mL | 735177 | 01/22/24 04:23 | HJA     | EET SAC |
| Total/NA  | Analysis | 1633   | RE  | 1      |          |        | 736673 | 01/26/24 17:26 | S1M     | EET SAC |

Client Sample ID: RINSATE BLANK #1-0124

Date Collected: 01/11/24 16:30

Date Received: 01/13/24 08:05

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Prep          | 1633            |     |               | 484.9 mL          | 5.0 mL          | 734182          | 01/17/24 11:51       | JS      | EET SAC |
| Total/NA  | Analysis      | 1633            |     | 1             |                   |                 | 734653          | 01/19/24 02:56       | EMF     | EET SAC |

Client Sample ID: TRIP SOURCE WATER BLANK #1-0124

Date Collected: 01/11/24 09:00

Date Received: 01/13/24 08:05

| _         |          |        |     |        |          |        |        |                |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
| Prep Type | Туре     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 576.3 mL | 5.0 mL | 734182 | 01/17/24 11:51 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 734653 | 01/19/24 03:13 | FMF     | FFT SAC |

**Laboratory References:** 

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

# **Accreditation/Certification Summary**

Client: Dalton, Olmsted & Fuglevand, Inc Job ID: 320-108687-1

Project/Site: PFAS, Tacoma WA

## **Laboratory: Eurofins Sacramento**

The accreditations/certifications listed below are applicable to this report.

| Authority  | Program | <b>Identification Number</b> | <b>Expiration Date</b> |
|------------|---------|------------------------------|------------------------|
| Washington | State   | C581                         | 05-05-24               |

1

3

A

4

6

8

4.0

11

13

14

15

# **Method Summary**

Client: Dalton, Olmsted & Fuglevand, Inc

Project/Site: PFAS, Tacoma WA

MethodMethod DescriptionProtocolLaboratory1633Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24EPAEET SAC1633Solid-Phase Extraction (SPE)EPAEET SAC

#### **Protocol References:**

EPA = US Environmental Protection Agency

#### **Laboratory References:**

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-108687-1

Л

\_\_\_\_\_

7

0

10

10

IC

15

# **Sample Summary**

Client: Dalton, Olmsted & Fuglevand, Inc Project/Site: PFAS, Tacoma WA

| Lab Sample ID | Client Sample ID                | Matrix | Collected      | Received       |
|---------------|---------------------------------|--------|----------------|----------------|
| 320-108687-1  | CCW-3A-0124                     | Water  | 01/11/24 10:35 | 01/13/24 08:05 |
| 320-108687-2  | CCW-9-3A-0124                   | Water  | 01/11/24 10:40 | 01/13/24 08:05 |
| 320-108687-3  | CCW-3B-0124                     | Water  | 01/11/24 12:00 | 01/13/24 08:05 |
| 320-108687-4  | FIELD BLANK #1-0124             | Water  | 01/11/24 11:15 | 01/13/24 08:05 |
| 320-108687-5  | CCW-2C-0124                     | Water  | 01/11/24 13:00 | 01/13/24 08:05 |
| 320-108687-6  | CCW-2B-0124                     | Water  | 01/11/24 13:55 | 01/13/24 08:05 |
| 320-108687-7  | CCW-2A-0124                     | Water  | 01/11/24 14:40 | 01/13/24 08:05 |
| 320-108687-8  | CTMW-17-0124                    | Water  | 01/11/24 16:00 | 01/13/24 08:05 |
| 320-108687-9  | RINSATE BLANK #1-0124           | Water  | 01/11/24 16:30 | 01/13/24 08:05 |
| 320-108687-10 | TRIP SOURCE WATER BLANK #1-0124 | Water  | 01/11/24 09:00 | 01/13/24 08:05 |

Job ID: 320-108687-1

| Euronns Sacramento                                                     |                                  |                                                            |                                                | (                                           | 2 601                                                                                                                                  | 7                                                                                           |                                   |
|------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|
| 880 Riverside Parkway<br>West Sacramento, CA 95805                     | Chain                            | Chain of Custody Record                                    | Record                                         | A A                                         | このこれに                                                                                                                                  | 🔨 🕏 eurofins                                                                                | <br>  Env. rooment Testing        |
|                                                                        |                                  | 7                                                          |                                                | 2                                           |                                                                                                                                        |                                                                                             |                                   |
| Client Information                                                     | Sampler A, CECLUT /              | C, D MATERS                                                | Lab PM:<br>Horner Nathaniel A                  |                                             | Carrier Tracking No(s):                                                                                                                | COC No:<br>320-58154-15829.1                                                                | 9.1                               |
| Trevor Louviere / THS 4AGLAY / ANTHONY CELEVATI. Phone: (215) 767      | Phone: (215) 747 749             |                                                            | E-Mail<br>Nathaniel. Homer@et. eurofinsus. com | et.eurofinsus.com                           | State of Origin:                                                                                                                       | <b>6</b> 2 -                                                                                | \$5 lofi                          |
| Company: Daiton, Olmsted & Fuglevand, Inc                              |                                  | PWSID:                                                     |                                                | Analysis Requested                          | nested                                                                                                                                 | Job #;                                                                                      |                                   |
| Address:<br>1001 SW Klickitat Way Suite 200B                           | Due Date Requested:              |                                                            |                                                |                                             |                                                                                                                                        |                                                                                             | SS:<br>M Hexane                   |
| City:<br>Seattle                                                       | TAT Requested (days):            |                                                            |                                                |                                             |                                                                                                                                        | A HCL<br>B NaOH<br>C Zn Acetate                                                             | N None<br>O AsNaOZ                |
| State, Zip:<br>WA, 98134                                               | iance Project: A Yes             | Δ No                                                       |                                                |                                             |                                                                                                                                        |                                                                                             | P Na204S<br>Q Na2SO3<br>R Na2S2O3 |
|                                                                        | Po#.<br>Purchase Order Requested |                                                            | (                                              |                                             |                                                                                                                                        | F MeOH G Amchlor H Assorbit Acid                                                            | S H2SO4<br>T TSP Dodecahydrate    |
| Johnw.com/ Agiry @ DoFN John Com                                       | WO#.                             |                                                            | (0)                                            |                                             |                                                                                                                                        | _ ¬                                                                                         | U Acetone<br>V MCAA<br>W nH 4-5   |
|                                                                        | Project #:<br>32023663           |                                                            | 170 81                                         | Andrew Control and Andrew Control           |                                                                                                                                        | Teiner<br>T D<br>EDA<br>A                                                                   |                                   |
|                                                                        | SSOW#:                           |                                                            | A) ds                                          |                                             |                                                                                                                                        | nco lo                                                                                      |                                   |
|                                                                        | <u> </u>                         | Sample Matrix Type (w-water, s-solid, C=Comp, o-waste/oil. | × Fig                                          |                                             | <u> </u>                                                                                                                               | Sed muly lan                                                                                |                                   |
| Sample Identification                                                  | Sample Date Time                 | G=grab)   BT=T15510. \(\text{VAIr}\)   Preservation Code:  | 14 X                                           |                                             |                                                                                                                                        |                                                                                             | Special Instructions/Note:        |
| CCN-34-0124                                                            | 111174 1637                      | ر Water                                                    |                                                |                                             |                                                                                                                                        |                                                                                             |                                   |
| VCW-9-3A+0124                                                          | +~                               | 6, Water                                                   | '×                                             |                                             |                                                                                                                                        |                                                                                             |                                   |
|                                                                        |                                  | ر Water                                                    | <br> <br>                                      |                                             |                                                                                                                                        |                                                                                             |                                   |
| FIELD BLANK #1-0124                                                    | 1111/24 1115                     | ر Water                                                    | <b>X</b>                                       |                                             |                                                                                                                                        |                                                                                             |                                   |
| Cew-22-0124                                                            | 1/11/24 1300                     | <b>Ĝ</b> Water                                             | تر<br> <br>  \                                 |                                             |                                                                                                                                        |                                                                                             |                                   |
| dew-28-0124                                                            | SSE1 12/11/1                     | ر Water                                                    | X                                              |                                             |                                                                                                                                        |                                                                                             |                                   |
| CCW - 2A - 6124                                                        | My Kaluli                        | Water                                                      | ×                                              |                                             |                                                                                                                                        |                                                                                             |                                   |
| 1217-13-13111日)                                                        | 199 K. 11                        | 4 Water                                                    | ار<br> ک                                       |                                             |                                                                                                                                        |                                                                                             |                                   |
| RINSATE BLANK #1-012%                                                  | 1/11/24 1630                     | م Water                                                    | <u>-</u>                                       | 320-108687 C                                | Chain of Custody                                                                                                                       |                                                                                             |                                   |
| TRIP SOURCE WATER BLANK#1-0124                                         | 1 11 24 Oyou                     | 6 Water                                                    | X                                              |                                             | -                                                                                                                                      |                                                                                             |                                   |
|                                                                        |                                  | ' Mater                                                    |                                                |                                             |                                                                                                                                        |                                                                                             |                                   |
| Possible Hazard Identification  Non-Hazard Flammable Skin Intiant Pois | Poison B                         | Asdiological                                               | Sample Dis                                     | le Disposal ( A fee may be a                | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)  Return To Client Disposal By Lab Archive For Mon | etained longer than 1<br>Archive For                                                        | month)<br>Months                  |
| Deliverable Requested: I, II, III, IV Other (specify)                  |                                  |                                                            | Special Inst                                   | Special Instructions/QC Requirements:       |                                                                                                                                        |                                                                                             |                                   |
| Empty Kit Relinquished by                                              | Date:                            |                                                            | Time:                                          |                                             | Method of Shipment                                                                                                                     |                                                                                             |                                   |
| Relinquished by Throwy (Callet)                                        | Date/Time: //2/24 / 1200         |                                                            | Received by:                                   | FEDER 1                                     | UNDER COC Date/Time:                                                                                                                   | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | Company                           |
| Relinquished by:                                                       | Date/Time:                       | Сотрапу                                                    | Received                                       |                                             |                                                                                                                                        | 27 0805                                                                                     | Company of                        |
|                                                                        | Date/Time:                       | Сотрапу                                                    | Received by                                    | by: ()                                      | Date/Time:                                                                                                                             |                                                                                             | Сопрапу                           |
| Custody Seals Intact Custody Seal No. 2106976                          | -(63917 Jobs                     |                                                            | Cooler Te                                      | Cooler Temperature(s) °C and Other Remarks: | smarks: $\eta$ , $\gamma$                                                                                                              |                                                                                             |                                   |
| ğ                                                                      |                                  |                                                            |                                                |                                             |                                                                                                                                        |                                                                                             | Ver 06/08/2021                    |

Chain of Custody Record A 2 COULEAS & curofins | Environment Testing

**Eurofins Sacramento** 

# **Environment Testing**

# Sacramento Sample Receiving Notes (SSRN)

| Loc 320<br>108687<br>Job                                                                                                                                                     |               |           | S            | cking # 7892 7181 4304<br>D / PO / FO / AT /2-Day / Ground / UPS / CDO / Cour<br>SL / OnTrac / Goldstreak / USPS / Other | rier    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------|---------|
| Use this form to record Sample Custody Seal C<br>File in the job folder with the COC                                                                                         | Cooler C      | ustody    | Seal Ten     | nperature & corrected Temperature & other observations.                                                                  |         |
| Therm ID VIL Corr Factor  Ice Wet Gel  Cooler Custody Seal 2106927  Cooler ID 2 of 2  Temp Observed 4.7 °C Correct  From Temp Blank D Sam                                    | _ Othe        | ·         |              | Notes                                                                                                                    |         |
| Opening/Processing The Shipment Cooler compromised/tampered with? Cooler Temperature is acceptable? Frozen samples show signs of thaw? Initials Date                         | Yes<br>D<br>D | <u>No</u> | NA<br>D<br>D |                                                                                                                          |         |
| Unpacking/Labeling The Samples Containers are not broken or leaking? Samples compromised/tampered with? COC is complete w/o discrepancies Sample custody seal?               | Yes           | No 0 0    | NA<br>OOO    | Trizma Lot #(s)                                                                                                          |         |
| Sample containers have legible labels? Sample date/times are provided? Appropriate containers are used? Sample bottles are completely filled? Sample preservatives verified? | A A A         | 0000      | رمممہ        | Ammonium Acetate Lot #(s)                                                                                                | _       |
| Is the Field Sampler's name on COC? Samples w/o discrepancies? Zero headspace?*                                                                                              |               | 0000      |              |                                                                                                                          | -       |
| Alkalinity has no headspace? Perchlorate has headspace? (Methods 314 331 6850)                                                                                               |               | ם         | pr<br>ev     | Login Completion Yes No                                                                                                  | NA<br>D |
| Multiphasic samples are not present?                                                                                                                                         | Ø             | D         |              | Samples received within hold time?                                                                                       |         |
| *Containers requiring zero headspace have no headspace Initials Date                                                                                                         | e, or bubbl   | e < 6 mr  | n (1/4")     | Initials. M Date. 13 M                                                                                                   |         |

1/31/2024

# **Login Sample Receipt Checklist**

Client: Dalton, Olmsted & Fuglevand, Inc Job Number: 320-108687-1

Login Number: 108687 List Source: Eurofins Sacramento

List Number: 1

Creator: Medeiros, Ryan M

| Creator: Medeiros, Ryan M                                                                                               |        |               |  |
|-------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|
| Question                                                                                                                | Answer | Comment       |  |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>refer to ssrn</td> | True   | refer to ssrn |  |
| The cooler's custody seal, if present, is intact.                                                                       | N/A    |               |  |
| Sample custody seals, if present, are intact.                                                                           | N/A    |               |  |
| The cooler or samples do not appear to have been compromised or tampered with.                                          | N/A    |               |  |
| Samples were received on ice.                                                                                           | N/A    |               |  |
| Cooler Temperature is acceptable.                                                                                       | N/A    |               |  |
| Cooler Temperature is recorded.                                                                                         | N/A    |               |  |
| COC is present.                                                                                                         | N/A    |               |  |
| COC is filled out in ink and legible.                                                                                   | N/A    |               |  |
| COC is filled out with all pertinent information.                                                                       | N/A    |               |  |
| Is the Field Sampler's name present on COC?                                                                             | N/A    |               |  |
| There are no discrepancies between the containers received and the COC.                                                 | N/A    |               |  |
| Samples are received within Holding Time (excluding tests with immediate HTs)                                           | N/A    |               |  |
| Sample containers have legible labels.                                                                                  | N/A    |               |  |
| Containers are not broken or leaking.                                                                                   | N/A    |               |  |
| Sample collection date/times are provided.                                                                              | N/A    |               |  |
| Appropriate sample containers are used.                                                                                 | N/A    |               |  |
| Sample bottles are completely filled.                                                                                   | N/A    |               |  |
| Sample Preservation Verified.                                                                                           | N/A    |               |  |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                                        | N/A    |               |  |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                                         | N/A    |               |  |
| Multiphasic samples are not present.                                                                                    | N/A    |               |  |
| Samples do not require splitting or compositing.                                                                        | N/A    |               |  |
| Residual Chlorine Checked.                                                                                              | N/A    |               |  |

2

4

7

9

11

12

1

## FRIEDMAN & BRUYA, INC.

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 5, 2024

Carolyn Wise, Project Manager Maul Foster Alongi 1329 N State St, Suite 301 Bellingham, WA 98225

Dear Ms Wise:

Included is the amended report from the testing of material submitted on December 13, 2023 from the TWAAFA-Additional GW Sampling M0615.20.012, F&BI 312247 project. Per your request, sample ID TWA-9-1223 has been amended to TWA-9-3-1223.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Fiona Bellows MFA1229R.DOC

## FRIEDMAN & BRUYA, INC.

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 29, 2023

Carolyn Wise, Project Manager Maul Foster Alongi 1329 N State St, Suite 301 Bellingham, WA 98225

Dear Ms Wise:

Included are the results from the testing of material submitted on December 13, 2023 from the TWAAFA-Additional GW Sampling M0615.20.012, F&BI 312247 project. There are 50 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA1229R.DOC

# CASE NARRATIVE

This case narrative encompasses samples received on December 13, 2023 by Friedman & Bruya, Inc. from the Maul Foster Alongi TWAAFA-Additional GW Sampling M0615.20.012, F&BI 312247 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Maul Foster Alongi |
|----------------------|--------------------|
| 312247 -01           | TWA-3-1223         |
| 312247 -02           | TWA-9-3-1223       |
| 312247 -03           | TWA-10D-1223       |
| 312247 -04           | TWA-1-1223         |
| 312247 -05           | TWA-2-1223         |
| 312247 -06           | Field Blank1-1223  |
| 312247 -07           | SB-1A-1223         |
| 312247 -08           | SB-2A-1223         |
| 312247 -09           | Filter Blank1-1223 |
| 312247 -10           | TWA-5D-1223        |
| 312247 -11           | TWA-6D-1223        |
| 312247 -12           | SB-3A-1223         |
| 312247 -13           | CTMW-25D-1223      |
| 312247 -14           | CTMW-20-1223       |
| 312247 -15           | MW-1-1223          |
| 312247 -16           | CTMW-15-1223       |

All quality control requirements were acceptable.

Client ID: TWA-3-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-01 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 01.220$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration ug/L (ppb)

 Analyte:
 ug/L (ppb)

 Arsenic
 2.26

 Copper
 4.21

 Iron
 691

 Manganese
 465

 Nickel
 10.1

Client ID: TWA-9-3-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-02 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 02.221$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration ug/L (ppb)

 Analyte:
 ug/L (ppb)

 Arsenic
 2.26

 Copper
 3.76

 Iron
 681

 Manganese
 452

 Nickel
 9.66

Client ID: TWA-10D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Copper
 <2.4</td>

 Iron
 1,030

 Manganese
 42.2

Client ID: TWA-10D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-03 x5

 Date Analyzed:
 12/22/23
 Data File:
 312247-03 x5.147

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Arsenic 10.2

Client ID: TWA-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-04Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 04.223$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 <1</td>

 Copper
 3.57

 Iron
 568

 Manganese
 3.57

Client ID: TWA-2-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-05Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 05.224$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 28.6

 Copper
 10.2

 Iron
 413

 Manganese
 347

Client ID: SB-1A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-07 Date Extracted: 12/18/23 Date Analyzed: 12/19/23Data File:  $312247 \hbox{-} 07.273$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 2.13 Copper <2.4 Manganese 141

Client ID: SB-1A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 2,220

Client ID: SB-2A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-08 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 08.225$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 2.61

 Copper
 <2.4</td>

 Iron
 1,770

 Manganese
 510

Client ID: Filter Blank1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-09 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 09.226$ ICPMS2Matrix: Water Instrument: Units: SPug/L (ppb) Operator:

Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Chromium
 1.71

 Copper
 <2.4</td>

 Iron
 <50</td>

 Manganese
 1.87

 Nickel
 <1</td>

Analyte:

Client ID: TWA-5D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-10 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 10.227$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Copper
 <2.4</td>

 Iron
 1,780

 Manganese
 181

Client ID: TWA-5D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-10 x5

 Date Analyzed:
 12/22/23
 Data File:
 312247-10 x5.148

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Arsenic 5.26

Client ID: TWA-6D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-11Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 11.231ICPMS2Matrix: Water Instrument: Units: SPug/L (ppb) Operator:

Concentration ug/L (ppb)

 Chromium
 21.0

 Copper
 <2.4</td>

 Iron
 2,950

 Manganese
 753

Analyte:

Client ID: TWA-6D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-11 x5

 Date Analyzed:
 12/22/23
 Data File:
 312247-11 x5.149

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Arsenic 6.68

Client ID: SB-3A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-12Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 12.233ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 1.89

 Copper
 <2.4</td>

 Iron
 2,600

 Manganese
 118

Client ID: CTMW-25D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-13 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 13.234$ ICPMS2Matrix: Water Instrument: Units: SPug/L (ppb) Operator:

Concentration ug/L (ppb)

 Arsenic
 5.71

 Chromium
 12.6

 Copper
 <2.4</td>

 Manganese
 263

Analyte:

Client ID: CTMW-25D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 7,560

Client ID: CTMW-20-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

SP

Operator:

Concentration

Analyte: ug/L (ppb)

ug/L (ppb)

Arsenic 6.00 Copper <2.4

Units:

Client ID: CTMW-20-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 19,100 Manganese 1,280

Client ID: MW-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247 - 15Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 15.236ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 3.88
Copper <2.4
Manganese 69.4

Client ID: MW-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 6,960

Client ID: CTMW-15-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-16 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 16.237$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.82 Copper <2.4 Manganese 246

Client ID: CTMW-15-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 8,230

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: M0615.20.012, F&BI 312247

Date Extracted:12/18/23Lab ID:I3-1003 mbDate Analyzed:12/18/23Data File:I3-1003 mb.143Matrix:WaterInstrument:ICPMS2

Units: water instrument: ICFMS
Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic <1
Chromium <1

 Copper
 <2.4</td>

 Iron
 <50</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

Client ID: TWA-3-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-01 Date Extracted: 12/18/23 Date Analyzed: 12/21/23 Data File:  $312247 \hbox{-} 01.275$ Water ICPMS2Matrix: Instrument: Units: ug/L (ppb) Operator: SP

|          | Concentration |
|----------|---------------|
| Analyte: | ug/L (ppb)    |
| A        | 9.79          |

 Arsenic
 2.72

 Copper
 4.50

 Iron
 786

 Manganese
 445

 Nickel
 10.7

Client ID: TWA-9-3-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Operator:

SP

Concentration

| Analyte:                                         | ug/L (ppb)                         |
|--------------------------------------------------|------------------------------------|
| Arsenic<br>Copper<br>Iron<br>Manganese<br>Nickel | 3.04<br>4.66<br>832<br>467<br>10.2 |
|                                                  |                                    |

ug/L (ppb)

Units:

Client ID: TWA-10D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-03 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 03.277ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Copper
 4.11

 Iron
 1,240

 Manganese
 45.7

Client ID: TWA-10D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-03 x5

 Date Analyzed:
 12/26/23
 Data File:
 312247-03 x5.053

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Arsenic 9.03

Client ID: TWA-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-04Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 04.278$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 1.37

 Copper
 3.88

 Iron
 1,850

 Manganese
 11.2

Client ID: TWA-2-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-05Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 05.279$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 26.3

 Copper
 10.4

 Iron
 530

 Manganese
 338

Client ID: Field Blank1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-06 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 06.280$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Chromium
 1.72

 Copper
 3.07

 Iron
 <50</td>

 Manganese
 1.44

 Nickel
 <1</td>

Analyte:

Client ID: SB-1A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-07

 Date Analyzed:
 12/19/23
 Data File:
 312247-07.276

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

Arsenic 2.41 Copper 2.57 Manganese 147

Client ID: SB-1A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 Date Extracted:
 12/18/23
 Lab ID:
 312247-07 x25

 Date Analyzed:
 12/20/23
 Data File:
 312247-07 x25.166

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 2,720

Client ID: SB-2A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-08 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 08.281$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 2.47

 Copper
 <2.4</td>

 Iron
 2,060

 Manganese
 528

Client ID: TWA-5D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-10 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 10.282ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$ 

 Arsenic
 5.16

 Copper
 <2.4</td>

 Iron
 2,010

 Manganese
 182

Client ID: TWA-6D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-11 Date Extracted: 12/18/23 Date Analyzed: 12/21/23 Data File: 312247 - 11.287Water ICPMS2Matrix: Instrument: Units: ug/L (ppb) Operator: SP

|          | Concentration |
|----------|---------------|
| Analyte: | ug/L (ppb)    |

| Arsenic   | 7.26  |
|-----------|-------|
| Chromium  | 24.4  |
| Copper    | 2.97  |
| Iron      | 3,030 |
| Manganese | 749   |

Client ID: SB-3A-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-12Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 12.289$ ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration ug/L (ppb)

 Arsenic
 1.80

 Copper
 <2.4</td>

 Iron
 2,940

 Manganese
 121

Analyte:

Client ID: CTMW-25D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-13 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 13.290ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$ 

 Arsenic
 6.33

 Chromium
 15.9

 Copper
 2.74

 Manganese
 299

Client ID: CTMW-25D-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 8,210

Client ID: CTMW-20-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247 - 14Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File:  $312247 \hbox{-} 14.291$ ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 5.86 Copper <2.4

Client ID: CTMW-20-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

 Iron
 17,700

 Manganese
 1,130

Client ID: MW-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247 - 15Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 15.292ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 4.22 Copper 6.59 Manganese 70.1

Client ID: MW-1-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 6,840

Client ID: CTMW-15-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

Lab ID: 312247-16 Date Extracted: 12/18/23 Date Analyzed: 12/21/23Data File: 312247 - 16.293ICPMS2Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 1.79 Copper <2.4 Manganese 272

# Analysis For Total Metals By EPA Method 6020B

Client ID: CTMW-15-1223 Client: Maul Foster Alongi

Date Received: 12/13/23 Project: M0615.20.012, F&BI 312247

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$ 

Concentration

Analyte: ug/L (ppb)

Iron 7,710

# Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: M0615.20.012, F&BI 312247

Date Extracted: 12/18/23 Lab ID: I3-1004 mb
Date Analyzed: 12/18/23 Data File: I3-1004 mb.145
Matrix: Water Instrument: ICPMS2

Matrix: Water Instrument: ICPMS: Units: ug/L (ppb) Operator: SP

Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Chromium
 <1</td>

 Copper
 <2.4</td>

 Iron
 <50</td>

 Manganese
 <1</td>

 Nickel
 <1</td>

Analyte:

Date of Report: 12/29/23 Date Received: 12/13/23

Project: TWAAFA-Additional GW Sampling M0615.20.012, F&BI 312247

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 312247-07 (Matrix Spike)

| Laboratory Cot | 16. 312241-01      | (manix of      | ike)             |                           |                            |                        |                   |
|----------------|--------------------|----------------|------------------|---------------------------|----------------------------|------------------------|-------------------|
| Analyte        | Reporting<br>Units | Spike<br>Level | Sample<br>Result | Percent<br>Recovery<br>MS | Percent<br>Recovery<br>MSD | Acceptance<br>Criteria | RPD<br>(Limit 20) |
| Arsenic        | ug/L (ppb)         | 10             | 2.13             | 105 b                     | 104 b                      | 75-125                 | 1 b               |
| Chromium       | ug/L (ppb)         | 20             | <1               | 87                        | 86                         | 75 - 125               | 1                 |
| Copper         | ug/L (ppb)         | 20             | <5               | 85                        | 85                         | 75 - 125               | 0                 |
| Iron           | ug/L (ppb)         | 100            | 2,320            | 84 b                      | 125 b                      | 75 - 125               | 39 b              |
| Manganese      | ug/L (ppb)         | 20             | 141              | 84 b                      | 99 b                       | 75 - 125               | 16 b              |
| Nickel         | ug/L (ppb)         | 20             | 3.29             | 89                        | 88                         | 75 - 125               | 1                 |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 94       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 85       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 94       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 100      | 80-120     |
| Manganese | ug/L (ppb) | 20    | 87       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 94       | 80-120     |

Date of Report: 12/29/23 Date Received: 12/13/23

Project: TWAAFA-Additional GW Sampling M0615.20.012, F&BI 312247

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312247-07 (Matrix Spike)

|           |            |       |        | Percent  | Percent  |            |            |
|-----------|------------|-------|--------|----------|----------|------------|------------|
|           | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte   | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic   | ug/L (ppb) | 10    | 2.41   | 105 b    | 103 b    | 75-125     | 2 b        |
| Chromium  | ug/L (ppb) | 20    | <1     | 86       | 83       | 75 - 125   | 4          |
| Copper    | ug/L (ppb) | 20    | <5     | 83       | 81       | 75 - 125   | 2          |
| Iron      | ug/L (ppb) | 100   | 2,950  | 88 b     | 0 b      | 75 - 125   | 200 b      |
| Manganese | ug/L (ppb) | 20    | 147    | 89 b     | 78 b     | 75 - 125   | 13 b       |
| Nickel    | ug/L (ppb) | 20    | 3.28   | 88       | 84       | 75 - 125   | 5          |

Laboratory Code: Laboratory Control Sample

|           |            |       | Percent  |            |
|-----------|------------|-------|----------|------------|
|           | Reporting  | Spike | Recovery | Acceptance |
| Analyte   | Units      | Level | LCS      | Criteria   |
| Arsenic   | ug/L (ppb) | 10    | 95       | 80-120     |
| Chromium  | ug/L (ppb) | 20    | 89       | 80-120     |
| Copper    | ug/L (ppb) | 20    | 95       | 80-120     |
| Iron      | ug/L (ppb) | 100   | 96       | 80-120     |
| Manganese | ug/L (ppb) | 20    | 89       | 80-120     |
| Nickel    | ug/L (ppb) | 20    | 97       | 80-120     |

# **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

512247

Report To:\_Carolyn Wise.

Company:\_Maul Foster Alongi, Inc

Address:\_1329 North State Street, Suite 301

REMARKS

Project Specific RLs - (Yes) / No

All samples field filtered

City, State, ZIP:\_Bellingham, WA 98225

Phone: 360-594-6225 Email: cwise@maulfoster.com

SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)

PROJECT NAME

TWAAFA - Additional GW Sampling

M0615.20.012

PO#

Page #\_\_

of

TURNAROUND TIME

Rush charges authorized by: X:Standard Turnaround :RUSH

Dispose after 30 days SAMPLE DISPOSAL

X Archive Samples

C. Wise, MFA

INVOICE TO

ID updated per FB 02/02/24 ME S TWA-9-3-1223 TWA-3 SB-1A-1223 TWA - 1 -TWA - 100 - 1223 TWA-5D- 1223 - XX Filter Blank 1-1223 Field Blank 1-1223 N -2A-1223 Sample ID 12 -1223 - 1223 1223 20 08 06 7- A to 204 2 0 202 0 Lab ID A.B AB A B 12/12/23 16:00 12/12/23 12/12/23 12/12/23 12/12/13 12/12/23 16:15 12/12/23 14:15 12/12/23 15:50 12/13/23 12/13/23 Sampled Date 12:40 9:35 SH:8 12:40 14:25 12:53 Sampled Time Nates Sample # of Jars 2 6 مر 2 7 N N Total As, Cu, EPA 6020 Mn, Al, Fe D/Diss Cu, As, EPA 6020 Mn, Al, Fe Total/Diss Mn × × ×  $\times$  $\times$ × × × X × ×  $\times$ EPA 6020 Total/Diss Al EPA 6020 ANALYSES REQUESTED Total/Diss Fe EPA 6020 Total Cr EPA 6020 Total Ni EPA 6020 × × × Dissolved Cr EPA 6020 Dissolved Ni EPA 6020 × × × Samples received MS/M50 Notes 53

Ph. (206) 285-8282 Seattle, WA 98108 5500 4th Avenue S Friedman & Bruya,

FORMS\COC\COC.DOC

|              |                  |                | a, Inc.                 |            |
|--------------|------------------|----------------|-------------------------|------------|
| Received by: | Relinquished by: | Received by:   | Relinquished by: Ruh Mh | SIGNATURE  |
|              | J. II. San       | What Truma     | Brenden Murphy          | PRINT NAME |
|              | -                | F & B ±        | MFÀ                     | COMPANY    |
|              |                  | 12/17/27 (5:45 | 12/13/23 15:45          | DATE       |
|              |                  | (5:45          | 15:45                   | TIME       |

3122 47

Report To:\_Carolyn Wise\_

Company:\_Maul Foster Alongi, Inc.\_\_\_\_

Address:\_1329 North State Street, Suite 301\_\_\_\_

City, State, ZIP:\_Bellingham, WA 98225\_\_\_\_

Phone: 360-594-6225 Email: cwise@maulfoster.com

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature)

PROJECT NAME

PO#

TWAAFA - Additional GW Sampling M0615.20.012

INVOICE TO

REMARKS

Project Specific RLs - (Yes) / No

All samples field filtered

Page # 2

TURNAROUND TIME
X:Standard Turnaround:RUSH\_

Rush charges authorized by:

SAMPLE DISPOSAL
Dispose after 30 days
X Archive Samples
Other

C. Wise, MFA X Archive Samples
Other\_\_\_\_\_

CTMW-15-1223 CTMW-20-1223 SB-3A-1223 TWA-60-1223 CTMW-25D-1223 MW-1-1223 Sample ID 2  $\overline{\omega}$ 6 21 12 11 A-B Lab ID 1413/23 12/13/23 12/13/23 12/13/23 12/13/23 2/13/23 Sampled 12:10 12:05 13:20 13:15 Sh:b 10:30 Sampled Time WATER Sample Type # of Jars 12 ۲ 2 2 2 2 Total/ As, Cv, EPA 6020 Mn, Al, Fe
Total/Diss Cu. As, EPA 6020 Mn Al, Fe
Total/Diss Mn
EPA 6020
Total/Diss Al
EPA 6020
Total/Diss Fe
EPA 6020
Total/Diss Fe
Total/Diss Fe
Total/Diss Fe X × X (J2 99 3 03 ANALYSES REQUESTED 38 Total/Cr EPA 6020 Ivod  $\times$ Total/ Ni EPA 6020 30 Dissolved Cr  $\times$ × EPA 6020 Dissolved Ni EPA 6020 Notes

Friedman & Bruya, In 5500 4th Avenue S
Seattle, WA 98108
Ph. (206) 285-8282

FORMS\COC\COC.DOC

| [ H          | <b>55</b>        | <b>H</b>      | a, Inc.                  |            |
|--------------|------------------|---------------|--------------------------|------------|
| Received by: | Relinquished by: | Received by:  | Relinquished by: Buly Mh | SIGNATURE  |
|              |                  | NHUT TRUDAICE | Brenden Murphy           | PRINT NAME |
|              |                  | F&BI          | MFA                      | COMPANY    |
|              |                  | [2/13/23      | 12/13/23 15:45           | DATE       |
|              |                  | 15:5          | 15:45                    | TIME       |



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312247

Work Order Number: 2312341

December 21, 2023

### **Attention Michael Erdahl:**

Fremont Analytical, Inc. received 16 sample(s) on 12/14/2023 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



Date: 02/05/2024

CLIENT: Friedman & Bruya Work Order Sample Summary

**Project:** 312247 **Work Order:** 2312341

| Lab Sample ID | Client Sample ID   | Date/Time Collected | Date/Time Received  |
|---------------|--------------------|---------------------|---------------------|
| 2312341-001   | TWA-3-1223         | 12/12/2023 12:40 PM | 12/14/2023 10:20 AM |
| 2312341-002   | TWA-9-3-1223       | 12/12/2023 12:40 PM | 12/14/2023 10:20 AM |
| 2312341-003   | TWA-10D-1223       | 12/12/2023 12:53 PM | 12/14/2023 10:20 AM |
| 2312341-004   | TWA-1-1223         | 12/12/2023 2:15 PM  | 12/14/2023 10:20 AM |
| 2312341-005   | TWA-2-1223         | 12/12/2023 2:25 PM  | 12/14/2023 10:20 AM |
| 2312341-006   | Field Blank1-1223  | 12/12/2023 3:50 PM  | 12/14/2023 10:20 AM |
| 2312341-007   | SB-1A-1223         | 12/12/2023 4:00 PM  | 12/14/2023 10:20 AM |
| 2312341-008   | SB-2A-1223         | 12/12/2023 4:15 PM  | 12/14/2023 10:20 AM |
| 2312341-009   | Filter Blank1-1223 | 12/13/2023 8:45 AM  | 12/14/2023 10:20 AM |
| 2312341-010   | TWA-5D-1223        | 12/13/2023 9:35 AM  | 12/14/2023 10:20 AM |
| 2312341-011   | TWA-6D-1223        | 12/13/2023 9:45 AM  | 12/14/2023 10:20 AM |
| 2312341-012   | SB-3A-1223         | 12/13/2023 10:30 AM | 12/14/2023 10:20 AM |
| 2312341-013   | CTMW-25D-1223      | 12/13/2023 12:05 PM | 12/14/2023 10:20 AM |
| 2312341-014   | CTMW-20-1223       | 12/13/2023 12:10 PM | 12/14/2023 10:20 AM |
| 2312341-015   | MW-1-1223          | 12/13/2023 1:15 PM  | 12/14/2023 10:20 AM |
| 2312341-016   | CTMW-15-1223       | 12/13/2023 1:20 PM  | 12/14/2023 10:20 AM |



### **Case Narrative**

WO#: **2312341**Date: **12/21/2023** 

CLIENT: Friedman & Bruya

**Project:** 312247

### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

2/5/24- Revised report includes an updated Sample ID for 2312341-002 per client request.

Revision v1 Page 3 of 18



# **Qualifiers & Acronyms**

WO#: **231234** 

Date Reported: 12/21/2023

### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**DUP - Sample Duplicate** 

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



Work Order: **2312341**Date Reported: **12/21/2023** 

CLIENT: Friedman & Bruya

**Project**: 312247

**Lab ID:** 2312341-001 **Collection Date:** 12/12/2023 12:40:00 PM

Client Sample ID: TWA-3-1223 Matrix: Water

Result **RL Qual** Units DF **Analyses Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** 10.0 Aluminum ND μg/L 12/21/2023 11:07:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum ND 10.0 µg/L 12/21/2023 1:09:00 PM

**Lab ID:** 2312341-002 **Collection Date:** 12/12/2023 12:40:00 PM

Client Sample ID: TWA-9-3-1223 Matrix: Water

**RL Qual Units** DF **Analyses** Result **Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum ND 10.0 μq/L 12/21/2023 11:09:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 12/21/2023 1:11:00 PM ND 10.0 Aluminum μg/L

**Lab ID:** 2312341-003 **Collection Date:** 12/12/2023 12:53:00 PM

Client Sample ID: TWA-10D-1223 Matrix: Water

Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: 42413 Analyst: SLL Dissolved Metals by EPA Method 200.8 Aluminum 14.3 10.0 μg/L 12/21/2023 11:11:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum 46.4 10.0 µg/L 12/21/2023 1:14:00 PM

Revision v1 Page 5 of 18



Work Order: 2312341

Date Reported: 12/21/2023

CLIENT: Friedman & Bruya

**Project:** 312247

**Lab ID:** 2312341-004 **Collection Date:** 12/12/2023 2:15:00 PM

Client Sample ID: TWA-1-1223 Matrix: Water

Result **RL Qual** Units DF **Analyses Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** 10.0 Aluminum ND μg/L 12/21/2023 11:14:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum 14.8 10.0 μg/L 12/21/2023 1:16:00 PM

**Lab ID:** 2312341-005 **Collection Date:** 12/12/2023 2:25:00 PM

Client Sample ID: TWA-2-1223 Matrix: Water

**RL Qual Units** DF **Date Analyzed Analyses** Result Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum ND 10.0 μq/L 12/21/2023 11:16:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 10.0 12/21/2023 1:19:00 PM Aluminum 34.1 μg/L

Lab ID: 2312341-006 Collection Date: 12/12/2023 3:50:00 PM

Client Sample ID: Field Blank1-1223 Matrix: Water

 Analyses
 Result
 RL Qual
 Units
 DF
 Date Analyzed

 Total Metals by EPA Method 200.8
 Batch ID: 42396
 Analyst: SLL

 Aluminum
 19.4
 10.0
 μg/L
 1
 12/21/2023 1:26:00 PM

Revision v1 Page 6 of 18



Work Order: 2312341

Date Reported: 12/21/2023

CLIENT: Friedman & Bruya

**Project**: 312247

**Lab ID:** 2312341-007 **Collection Date:** 12/12/2023 4:00:00 PM

Client Sample ID: SB-1A-1223 Matrix: Water

Result **RL Qual** Units DF **Analyses Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** 10.0 Aluminum ND μg/L 12/21/2023 10:50:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum ND 10.0 μg/L 12/21/2023 1:02:00 PM

Client Sample ID: SB-2A-1223 Matrix: Water

**RL Qual Units** DF **Date Analyzed Analyses** Result Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum 11.1 10.0 μq/L 12/21/2023 11:19:00 AM Batch ID: 42396 Analyst: SLL **Total Metals by EPA Method 200.8** 49.9 10.0 12/21/2023 1:28:00 PM Aluminum μg/L

**Lab ID:** 2312341-009 **Collection Date:** 12/13/2023 8:45:00 AM

Client Sample ID: Filter Blank1-1223 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Dissolved Metals by EPA Method 200.8

Batch ID: 42413 Analyst: SLL

Aluminum 17.5 10.0 µg/L 1 12/21/2023 11:21:00 AM

Revision v1 Page 7 of 18



Work Order: 2312341

Date Reported: 12/21/2023

CLIENT: Friedman & Bruya

**Project**: 312247

**Lab ID:** 2312341-010 **Collection Date:** 12/13/2023 9:35:00 AM

Client Sample ID: TWA-5D-1223 Matrix: Water

Result **RL Qual** Units DF **Analyses Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** 10.0 Aluminum 11.4 μg/L 12/21/2023 11:24:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum 19.7 10.0 µg/L 12/21/2023 1:31:00 PM

**Lab ID:** 2312341-011 **Collection Date:** 12/13/2023 9:45:00 AM

Client Sample ID: TWA-6D-1223 Matrix: Water

**RL Qual Units Analyses** Result DF **Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum 49.9 10.0 μq/L 12/21/2023 11:26:00 AM Batch ID: 42396 Analyst: SLL **Total Metals by EPA Method 200.8** 12/21/2023 1:34:00 PM 75.6 10.0 Aluminum μg/L

Lab ID: 2312341-012 Collection Date: 12/13/2023 10:30:00 AM

Client Sample ID: SB-3A-1223 Matrix: Water

Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: 42413 Analyst: SLL Dissolved Metals by EPA Method 200.8 Aluminum ND 10.0 μg/L 12/21/2023 11:29:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum ND 10.0 µg/L 12/21/2023 1:36:00 PM

Revision v1 Page 8 of 18



Work Order: **2312341**Date Reported: **12/21/2023** 

CLIENT: Friedman & Bruya

**Project**: 312247

**Lab ID:** 2312341-013 **Collection Date:** 12/13/2023 12:05:00 PM

Client Sample ID: CTMW-25D-1223 Matrix: Water

Result Units DF **Analyses RL Qual Date Analyzed** Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** 10.0 Aluminum 59.2 μg/L 12/21/2023 11:36:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum 88.0 10.0 µg/L 12/21/2023 1:38:00 PM

**Lab ID:** 2312341-014 **Collection Date:** 12/13/2023 12:10:00 PM

Client Sample ID: CTMW-20-1223 Matrix: Water

**RL Qual Units Date Analyzed Analyses** Result DF Batch ID: 42413 Analyst: SLL **Dissolved Metals by EPA Method 200.8** Aluminum ND 10.0 μq/L 12/21/2023 11:38:00 AM Batch ID: 42396 Analyst: SLL **Total Metals by EPA Method 200.8** 12/21/2023 1:41:00 PM ND 10.0 Aluminum μg/L

Lab ID: 2312341-015 Collection Date: 12/13/2023 1:15:00 PM

Client Sample ID: MW-1-1223 Matrix: Water

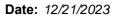
Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: 42413 Analyst: SLL Dissolved Metals by EPA Method 200.8 Aluminum 16.6 10.0 μg/L 12/21/2023 11:41:00 AM Batch ID: 42396 Analyst: SLL Total Metals by EPA Method 200.8 Aluminum 71.1 10.0 µg/L 12/21/2023 1:43:00 PM

Revision v1 Page 9 of 18



Work Order: **2312341**Date Reported: **12/21/2023** 

**CLIENT:** Friedman & Bruya


**Project:** 312247

**Lab ID:** 2312341-016 **Collection Date:** 12/13/2023 1:20:00 PM

Client Sample ID: CTMW-15-1223 Matrix: Water

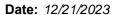
| Cheff Sample ID. CTWW-15-                                                        | 1223     |         | Maurix. V | valei    |                        |
|----------------------------------------------------------------------------------|----------|---------|-----------|----------|------------------------|
| Analyses  Dissolved Metals by EPA Metho  Aluminum  Total Metals by EPA Method 20 | Result   | RL Qual | Units     | DF       | Date Analyzed          |
| Dissolved Metals by EPA Meth                                                     | od 200.8 |         | Batcl     | h ID: 42 | 413 Analyst: SLL       |
| Aluminum                                                                         | ND       | 10.0    | μg/L      | 1        | 12/21/2023 11:43:00 AM |
| Total Metals by EPA Method 2                                                     | 00.8     |         | Batcl     | h ID: 42 | 396 Analyst: SLL       |
| Aluminum                                                                         | ND       | 10.0    | μg/L      | 1        | 12/21/2023 1:46:00 PM  |

Revision v1 Page 10 of 18





**CLIENT:** Friedman & Bruya


**Project:** 312247

### **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

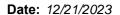
| <b>Project:</b> 312247            |                      |      |           |             |      |                                | •                     |
|-----------------------------------|----------------------|------|-----------|-------------|------|--------------------------------|-----------------------|
| Sample ID: ICB                    | SampType: <b>ICB</b> |      |           | Units: µg/L |      | Prep Date: 12/21/2023          | RunNo: <b>88496</b>   |
| Client ID: ICB                    | Batch ID: R88496     |      |           |             |      | Analysis Date: 12/21/2023      | SeqNo: <b>1848083</b> |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                          | ND                   | 10.0 |           |             |      |                                |                       |
| Sample ID: ICV                    | SampType: <b>ICV</b> |      |           | Units: µg/L |      | Prep Date: 12/21/2023          | RunNo: <b>88496</b>   |
| Client ID: ICV                    | Batch ID: R88496     |      |           |             |      | Analysis Date: 12/21/2023      | SeqNo: <b>1848084</b> |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                          | 1,450                | 10.0 | 1,500     | 0           | 96.8 | 90 110                         |                       |
| Sample ID: <b>MB-42413</b>        | SampType: MBLK       |      |           | Units: µg/L |      | Prep Date: 12/21/2023          | RunNo: <b>88496</b>   |
| Client ID: MBLKW                  | Batch ID: 42413      |      |           |             |      | Analysis Date: 12/21/2023      | SeqNo: <b>1848085</b> |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                          | ND                   | 10.0 |           |             |      |                                |                       |
| Sample ID: LCS-42413              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date: 12/21/2023          | RunNo: <b>88496</b>   |
| Client ID: LCSW                   | Batch ID: 42413      |      |           |             |      | Analysis Date: 12/21/2023      | SeqNo: <b>1848086</b> |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                          | 906                  | 10.0 | 1,000     | 0           | 90.6 | 85 115                         |                       |
| Sample ID: <b>2312341-007BDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Date: 12/21/2023          | RunNo: <b>88496</b>   |
| Client ID: SB-1A-1223             | Batch ID: 42413      |      |           |             |      | Analysis Date: 12/21/2023      | SeqNo: <b>1848088</b> |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Aluminum                          | ND                   | 10.0 |           |             |      | 0                              | 30                    |
|                                   |                      |      |           |             |      |                                |                       |

Revision v1 Page 11 of 18





**CLIENT:** Friedman & Bruya


**Project:** 312247

### **QC SUMMARY REPORT**

### **Dissolved Metals by EPA Method 200.8**

| Sample ID: <b>2312341-007BMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|----------------|-----------------------|-----------------------|------|
| Client ID: SB-1A-1223             | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848089</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 50             | 150                   |                       |      |
| Sample ID: <b>2312341-007BMSD</b> | SampType: MSD        |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: SB-1A-1223             | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848090</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,170                | 10.0 | 1,000     | 0           | 117  | 50             | 150 1,022             | 13.2 30               |      |
| Sample ID: CCV-42413A             | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848092</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 993                  | 10.0 | 1,000     | 0           | 99.3 | 90             | 110                   |                       |      |
| Sample ID: CCB-42413A             | SampType: CCB        |      |           | Units: µg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCB                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848093</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | ND                   | 10.0 |           |             |      |                |                       |                       |      |
| Sample ID: CCV-42413B             | SampType: <b>CCV</b> |      |           | Units: μg/L |      | Prep Date:     | 12/21/2023            | RunNo: <b>88496</b>   |      |
| Client ID: CCV                    | Batch ID: 42413      |      |           |             |      | Analysis Date: | 12/21/2023            | SeqNo: <b>1848104</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 90             | 110                   |                       |      |

Revision v1 Page 12 of 18



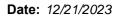


Friedman & Bruya CLIENT:

242247

Aluminum

### **QC SUMMARY REPORT**


### Dissolved Metals by EPA Method 200.8

| <b>Project</b> : 312247   |                      |      |           |             | Dissolved Metals by El A Method 200.                   |
|---------------------------|----------------------|------|-----------|-------------|--------------------------------------------------------|
| Sample ID: CCB-42413B     | SampType: CCB        |      |           | Units: μg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: CCB            | Batch ID: 42413      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848105               |
| Analyte                   | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                  | ND                   | 10.0 |           |             |                                                        |
| Sample ID: 2312350-004BMS | SampType: <b>MS</b>  |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: BATCH          | Batch ID: 42413      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848114               |
| Analyte                   | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                  | 1,050                | 10.0 | 1,000     | 8.025       | 105 50 150                                             |
| Sample ID: CCV-42413C     | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: CCV            | Batch ID: 42413      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848115               |
| Analyte                   | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                  | 1,010                | 10.0 | 1,000     | 0           | 101 90 110                                             |
| Sample ID: CCB-42413C     | SampType: CCB        |      |           | Units: μg/L | Prep Date: 12/21/2023 RunNo: 88496                     |
| Client ID: CCB            | Batch ID: 42413      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848116               |
| Analyte                   | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |

Page 13 of 18 Revision v1

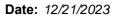
ND

10.0





**CLIENT:** Friedman & Bruya


**Project:** 312247

# **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

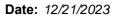
| 512241                     |                      |      |           |             |                       |                |                       | _          |          |      |
|----------------------------|----------------------|------|-----------|-------------|-----------------------|----------------|-----------------------|------------|----------|------|
| Sample ID: <b>ICB</b>      | SampType: ICB        |      |           | Units: μg/L |                       | Prep Date:     | 12/21/2023            | RunNo: 885 | 507      |      |
| Client ID: ICB             | Batch ID: 42396      |      |           |             |                       | Analysis Date: | 12/21/2023            | SeqNo: 184 | 48307    |      |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC                  | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum                   | ND                   | 10.0 |           |             |                       |                |                       |            |          |      |
| Sample ID: <b>ICV</b>      | SampType: <b>ICV</b> |      |           | Units: µg/L |                       | Prep Date:     | 12/21/2023            | RunNo: 885 | 507      |      |
| Client ID: ICV             | Batch ID: 42396      |      |           |             |                       | Analysis Date: | 12/21/2023            | SeqNo: 184 | 48308    |      |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC                  | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum                   | 1,450                | 10.0 | 1,500     | 0           | 96.8                  | 90             | 110                   |            |          |      |
| Sample ID: CCV-42396A      | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 |                | RunNo: <b>88507</b>   |            |          |      |
| Client ID: CCV             | Batch ID: 42396      |      |           |             |                       | Analysis Date: | 12/21/2023            | SeqNo: 184 | 48309    |      |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC                  | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua  |
| Aluminum                   | 1,010                | 10.0 | 1,000     | 0           | 101                   | 90             | 110                   |            |          |      |
| Sample ID: CCB-42396A      | SampType: <b>CCB</b> |      |           | Units: µg/L |                       | Prep Date:     | 12/21/2023            | RunNo: 885 | 507      |      |
| Client ID: CCB             | Batch ID: 42396      |      |           |             |                       | Analysis Date: | 12/21/2023            | SeqNo: 184 | 48310    |      |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC                  | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua  |
| Aluminum                   | ND                   | 10.0 |           |             |                       |                |                       |            |          |      |
| Sample ID: <b>MB-42396</b> | SampType: MBLK       |      |           | Units: µg/L |                       | Prep Date:     | 12/19/2023            | RunNo: 885 | 507      |      |
| Client ID: MBLKW           | Batch ID: 42396      |      |           |             |                       | Analysis Date: | 12/21/2023            | SeqNo: 184 | 48311    |      |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC                  | LowLimit H     | lighLimit RPD Ref Val | %RPD       | RPDLimit | Qua  |
| Aluminum                   | ND                   | 10.0 |           |             |                       |                |                       |            |          |      |
|                            |                      |      |           |             |                       |                |                       |            |          |      |

Revision v1 Page 14 of 18





**CLIENT:** Friedman & Bruya


**Project:** 312247

### **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

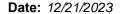
| 110ject. 012247                   |                      |      |           |             |      |               |                       |                       |      |
|-----------------------------------|----------------------|------|-----------|-------------|------|---------------|-----------------------|-----------------------|------|
| Sample ID: LCS-42396              | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Date     | 12/19/2023            | RunNo: <b>88507</b>   |      |
| Client ID: LCSW                   | Batch ID: 42396      |      |           |             |      | Analysis Date | 12/21/2023            | SeqNo: <b>1848274</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 85            | 115                   |                       |      |
| Sample ID: <b>2312341-007AMS</b>  | SampType: <b>MS</b>  |      |           | Units: µg/L |      | Prep Date     | 12/19/2023            | RunNo: <b>88507</b>   |      |
| Client ID: SB-1A-1223             | Batch ID: 42396      |      |           |             |      | Analysis Date | 12/21/2023            | SeqNo: <b>1848276</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 993                  | 10.0 | 1,000     | 7.668       | 98.6 | 70            | 130                   |                       |      |
| Sample ID: <b>2312341-007AMSD</b> | SampType: <b>MSD</b> |      |           | Units: µg/L |      | Prep Date     | 12/19/2023            | RunNo: <b>88507</b>   |      |
| Client ID: SB-1A-1223             | Batch ID: 42396      |      |           |             |      | Analysis Date | 12/21/2023            | SeqNo: <b>1848277</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Aluminum                          | 1,010                | 10.0 | 1,000     | 7.668       | 101  | 70            | 130 993.2             | 2.04 30               |      |
| Sample ID: CCV-42396B             | SampType: <b>CCV</b> |      |           | Units: µg/L |      | Prep Date     | 12/21/2023            | RunNo: <b>88507</b>   |      |
| Client ID: CCV                    | Batch ID: 42396      |      |           |             |      | Analysis Date | 12/21/2023            | SeqNo: <b>1848283</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qua  |
| Aluminum                          | 1,020                | 10.0 | 1,000     | 0           | 102  | 90            | 110                   |                       |      |
| Sample ID: CCB-42396B             | SampType: <b>CCB</b> |      |           | Units: µg/L |      | Prep Date     | 12/21/2023            | RunNo: <b>88507</b>   |      |
| Client ID: CCB                    | Batch ID: 42396      |      |           |             |      | Analysis Date | 12/21/2023            | SeqNo: <b>1848284</b> |      |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit RPD Ref Val | %RPD RPDLimit         | Qua  |
| Aluminum                          | ND                   | 10.0 |           |             |      |               |                       |                       |      |
|                                   |                      |      |           |             |      |               |                       |                       |      |

Revision v1 Page 15 of 18





**CLIENT:** Friedman & Bruya


**Project:** 312247

### **QC SUMMARY REPORT**

### **Total Metals by EPA Method 200.8**

| Sample ID: CCV-42396C      | SampType: CCV        |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88507                     |
|----------------------------|----------------------|------|-----------|-------------|--------------------------------------------------------|
| Client ID: CCV             | Batch ID: 42396      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848295               |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | 990                  | 10.0 | 1,000     | 0           | 99.0 90 110                                            |
| Sample ID: CCB-42396C      | SampType: <b>CCB</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88507                     |
| Client ID: CCB             | Batch ID: 42396      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848296               |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | ND                   | 10.0 |           |             |                                                        |
| Sample ID: 2312338-007CMS  | SampType: <b>MS</b>  |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88507                     |
| Client ID: BATCH           | Batch ID: 42396      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848297               |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | 1,820                | 10.0 | 1,000     | 553.3       | 126 70 130                                             |
| Sample ID: 2312338-007CDUP | SampType: <b>DUP</b> |      |           | Units: µg/L | Prep Date: 12/19/2023 RunNo: 88507                     |
| Client ID: BATCH           | Batch ID: 42396      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848315               |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
| Aluminum                   | 2,090                | 10.0 |           |             | 553.3 116 30                                           |
| Sample ID: CCV-42396D      | SampType: <b>CCV</b> |      |           | Units: µg/L | Prep Date: 12/21/2023 RunNo: 88507                     |
| Client ID: CCV             | Batch ID: 42396      |      |           |             | Analysis Date: 12/21/2023 SeqNo: 1848316               |
| Analyte                    | Result               | RL   | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual |
|                            |                      |      |           |             |                                                        |

Revision v1 Page 16 of 18





**QC SUMMARY REPORT** 

**CLIENT:** Friedman & Bruya

**Total Metals by EPA Method 200.8** 

**Project:** 312247

Sample ID: CCB-42396D SampType: CCB Units: μg/L Prep Date: 12/21/2023 RunNo: 88507

Client ID: CCB Batch ID: 42396 Analysis Date: 12/21/2023 SeqNo: 1848317

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum ND 10.0

Revision v1 Page 17 of 18



# Sample Log-In Check List

| Clie        | ent Name:          | FB                                                               |               |       | Work Order Num | ber: 2312341 |                      |   |
|-------------|--------------------|------------------------------------------------------------------|---------------|-------|----------------|--------------|----------------------|---|
| Log         | gged by:           | Morgan Wilson                                                    |               |       | Date Received: | 12/14/2023   | 3 10:20:00 AM        |   |
| Chai        | n of Custo         | ody                                                              |               |       |                |              |                      |   |
|             |                    | ustody complete?                                                 |               |       | Yes 🗸          | No 🗌         | Not Present          |   |
| 2. l        | How was the        | sample delivered?                                                |               |       | Client         |              |                      |   |
| Log .       | <u>In</u>          |                                                                  |               |       |                |              |                      |   |
|             |                    | s present on shipping containe<br>ments for Custody Seals not in |               |       | Yes            | No 🗌         | Not Present <b>✓</b> |   |
| 4. V        | Vas an attem       | pt made to cool the samples?                                     |               |       | Yes 🗸          | No $\square$ | NA $\square$         |   |
| 5. V        | Vere all items     | s received at a temperature of                                   | >2°C to 6°C   | *     | Yes 🗸          | No 🗌         | NA 🗌                 |   |
| 6. S        | Sample(s) in բ     | proper container(s)?                                             |               |       | Yes 🗸          | No 🗌         |                      |   |
| 7. S        | Sufficient sam     | ple volume for indicated test(s                                  | )?            |       | Yes 🗸          | No $\square$ |                      |   |
| 8. A        | Are samples p      | properly preserved?                                              |               |       | Yes 🗸          | No $\square$ |                      |   |
| 9. V        | Vas preserva       | tive added to bottles?                                           |               |       | Yes            | No 🗹         | NA 🗆                 |   |
| 10 ls       | s there heads      | space in the VOA vials?                                          |               |       | Yes            | No 🗌         | NA 🗹                 |   |
| -           |                    | ·<br>es containers arrive in good cor                            | ndition(unbro | ken)? | Yes 🗸          | No 🗌         |                      |   |
|             |                    | ork match bottle labels?                                         |               |       | Yes 🗸          | No $\square$ |                      |   |
| 13 A        | Are matrices o     | correctly identified on Chain of                                 | Custody?      |       | Yes 🗹          | No 🗌         |                      |   |
| -           |                    | t analyses were requested?                                       | ,             |       | Yes 🗸          | No $\square$ |                      |   |
| 15. V       |                    | times (except field parameters                                   | , pH e.g.) ab | le to | Yes 🗸          | No 🗌         |                      |   |
|             |                    | ing (if applicable)                                              |               |       |                |              |                      |   |
| =           |                    | otified of all discrepancies with                                | this order?   |       | Yes            | No $\square$ | NA 🗹                 |   |
|             | Person             | Notified:                                                        |               | Date  |                |              |                      |   |
|             | By Who             | om:                                                              |               | Via:  | eMail Pl       | hone  Fax [  | In Person            |   |
|             | Regard             | ing:                                                             |               |       |                |              |                      |   |
|             | Client In          | nstructions:                                                     |               |       |                |              |                      |   |
| 17.         | Additional re      | marks:                                                           |               |       |                |              |                      | • |
| <u>Item</u> | <u>Information</u> |                                                                  |               |       |                |              |                      |   |
|             |                    | Item #                                                           | Temp °C       |       |                |              |                      |   |
|             | Sample             |                                                                  | 5.2           |       |                |              |                      |   |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Revision v1 Page 18 of 18

Send Report To Michael Erdahl

Company Friedman and Bruya, Inc.

Address 5500 4th Ave S

City, State, ZIP Seattle, WA 98108

Phone #\_ (206) 285-8282 merdahl@friedmanandbruya.com

| W 0.1    | 40 w     |                       | 1                  | /a.com                                                                                    |                                                   |                                | TAT                             |
|----------|----------|-----------------------|--------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|---------------------------------|
| 40 water | 40 water | Matrix                |                    | REMARKS<br>TIE                                                                            | PROJ                                              | SUBC                           | MINACI SAMI LE CHAIN OF COSTODI |
| 2        | 2        | # of<br>jars          |                    | TIER                                                                                      | PROJECT NAME/NO<br>312247                         | SUBCONTRACTER<br>Fremont       | TATATO                          |
| x        | ×        | total aluminum        |                    | IV, E                                                                                     | 312247                                            | RACTEI<br>Fremont              | TE                              |
| X        | ×        | dissolved<br>aluminum |                    | RKS<br>TIER IV, EQuIS 4                                                                   | NO.                                               | TR                             | CHAI                            |
|          |          | ferrous iron          |                    |                                                                                           |                                                   |                                | 3                               |
|          |          | ferrous iron          | ANAL               |                                                                                           |                                                   |                                | 0                               |
|          |          | dissolved gases       | YSES               |                                                                                           | D                                                 |                                | OIC                             |
|          |          | TOC                   | ANALYSES REQUESTED |                                                                                           | PO#<br>D-594                                      |                                | 1                               |
|          |          |                       | JESTI              |                                                                                           |                                                   |                                |                                 |
|          |          |                       | GD.                | Disp<br>Retu<br>Will                                                                      | RUSH_<br>Rush charges aut                         |                                |                                 |
|          |          |                       |                    | SAMPLE I<br>Dispose after 30<br>Return samples<br>Will call with in                       | harges                                            | Page #                         | 2                               |
|          |          | Notes                 |                    | SAMPLE DISPOSAL<br>Dispose after 30 days<br>Return samples<br>Will call with instructions | X Standard TAT  RUSH  Rush charges authorized by: | Page # 1 of 2. TURNAROUND TIME | 2312341                         |

|      |          | V. V. 15.10.53    |                              |              |                       |                | 1              |            |                 | Received by:     |           | Fax (206) 283-5044     |
|------|----------|-------------------|------------------------------|--------------|-----------------------|----------------|----------------|------------|-----------------|------------------|-----------|------------------------|
|      |          | FA 17             |                              |              | Willer                |                | 1              |            | 1 miller        | Relinquished by: |           | Ph. (206) 285-8282     |
| 1020 | 12/14/20 | PAI               |                              | The second   | 2                     | 2              | Vi.            |            | •               | Received by      |           | Seattle, WA 98119-2029 |
| 0000 | 12/14/28 | Friedman & Bruya  |                              |              | lahl                  | el Erc         | Michael Erdahl | 0          | Out             | Relinguisted by: |           | 3012 16th Avenue West  |
| TIME | DATE     | COMPANY           |                              | AME          | PRINT NAME            | P              |                |            | SIGNATURE       | SI               |           | Friedman & Bruya, Inc. |
|      |          |                   |                              |              | ×                     | ×              | 2              | water      | 1205            | 12/13/2023       |           | CTMW-25D-1223          |
|      |          |                   |                              |              | ×                     | ×              | 12             | 1030 water | 1030            | 12/13/2023       |           | SB-3A-1223             |
|      |          |                   |                              |              | ×                     | ×              | 2              | water      | 945             | 12/13/2023       |           | TWA-6D-1223            |
|      |          |                   |                              |              | ×                     | ×              | 2              | 935 water  | 935             | 12/13/2023       |           | TWA-5D-1223            |
|      |          |                   |                              |              | ×                     |                | 1              | water      | 845             | 12/13/2023       |           | Filter Blank1-1223     |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1615 water | 1615            | 12/12/2023       |           | SB-2A-1223             |
|      | MS/MD    |                   |                              |              | ×                     | ×              | (4) P          | 1600 water | 1600            | 12/12/2023       |           | SB-1A-1223             |
|      |          |                   |                              |              |                       | ×              | 1              | 1550 water | 1550            | 12/12/2023       |           | Field Blank1-1223      |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1425 water | 1425            | 12/12/2023       |           | TWA-2-1223             |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1415 water | 1415            | 12/12/2023       |           | TWA-1-1223             |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1253 water | 1253            | 12/12/2023       |           | TWA-10D-1223           |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1240 water | 1240            | 12/12/2023       |           | TWA-9-1223             |
|      |          |                   |                              |              | ×                     | ×              | 2              | 1240 water | 1240            | 12/12/2023       |           | TWA-3-1223             |
| es   | Notes    | TOC               | ferrous iron dissolved gases | ferrous iron | dissolved<br>aluminum | total aluminum | # of jars      | Matrix     | Time<br>Sampled | Date<br>Sampled  | Lab<br>ID | Sample ID              |
|      |          | NALYSES REQUESTED | NALYSES                      | A            |                       |                |                |            |                 |                  |           |                        |

| Send Report To    | Send Report To Michael Erdahl      |
|-------------------|------------------------------------|
| Company           | Friedman and Bruya, Inc.           |
| Address           | 5500 4th Ave S                     |
| City, State, ZIP_ | City, State, ZIP Seattle, WA 98108 |

| Phone # (206) 285-8282 merdahl@friedmanandbruya.com | City, State, ZIP Seattle, WA 98108 | Address 5500 4th Ave S | Company Friedman and Bruya, Inc. | Send Report To Michael Erdahl |
|-----------------------------------------------------|------------------------------------|------------------------|----------------------------------|-------------------------------|
| TIER IV, EQuIS 4                                    | REMARKS                            | 312247                 | PROJECT NAME/NO.                 | SUBCONTRACTER<br>Fremont      |
|                                                     |                                    | D-594                  | PO#                              |                               |

| SAMPLE DISPOSAL  /Dispose after 30 days  Return samples  Will call with instructions | Rush charges authorized by: | ⊠ Standard TAT<br>RUSH | TURNAROUND TIME | Page # 2 of 2 |
|--------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------|---------------|
|--------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------|---------------|

| Fax (206) 283-5044 | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruya, Inc. |   |  |  |  | CTMW-15-1223 | MW-1-1223  | CTMW-20-1223 | Sample ID             |                    |
|--------------------|--------------------|------------------------|-----------------------|------------------------|---|--|--|--|--------------|------------|--------------|-----------------------|--------------------|
|                    | _                  |                        | -                     |                        |   |  |  |  |              |            |              | Lab<br>ID             |                    |
| Received by:       | Relinquished by:   | Received by:           | Returduished by:      | SI                     |   |  |  |  | 12/13/2023   | 12/13/2023 | 12/13/2023   | Date<br>Sampled       |                    |
|                    |                    | man                    | 2                     | SIGNATURE              |   |  |  |  | 1320         | 1315       | 1210         | Time<br>Sampled       |                    |
|                    |                    |                        | 0                     | 7                      |   |  |  |  | 1320 water   | 1315 water | 1210 water   | Matrix                |                    |
|                    |                    | A                      | Michael Erdahl        |                        |   |  |  |  | 2            | 2          | 2            | # of<br>jars          |                    |
|                    |                    | Alli Milla             | el Erd                | P                      | П |  |  |  | х            | х          | х            | total aluminum        |                    |
|                    |                    | 1, (10                 | ahl                   | PRINT NAME             |   |  |  |  | x            | х          | x            | dissolved<br>aluminum |                    |
|                    |                    |                        |                       | NAMI                   |   |  |  |  |              |            |              | ferrous iron          |                    |
|                    |                    |                        |                       | 3                      |   |  |  |  |              |            |              | ferrous iron          | ANALYSES REQUESTED |
|                    |                    |                        |                       |                        |   |  |  |  |              |            |              | dissolved gases       | YSES               |
|                    |                    | 7                      | Frie                  |                        |   |  |  |  |              |            |              | TOC                   | REQ                |
|                    |                    | 7                      | Friedman & Bruya      | COI                    |   |  |  |  |              |            |              |                       | UEST               |
|                    |                    |                        | & Br                  | COMPANY                |   |  |  |  |              |            |              |                       | ED                 |
|                    |                    |                        | uya                   | Y                      |   |  |  |  |              |            |              |                       |                    |
|                    |                    | 1                      |                       |                        |   |  |  |  |              |            |              |                       |                    |
|                    |                    | 12.14.23               | 12/14/25              | DATE                   |   |  |  |  |              |            |              | Notes                 |                    |
|                    |                    | 1027                   | 0600                  | TIME                   |   |  |  |  |              |            |              | tes                   |                    |

Send Report To Michael Erdahl

Company Friedman and Bruya, Inc.

Address 5500 4th Ave S

Phone #\_ (206) 285-8282\_merdahl@friedmanandbruya.com

City, State, ZIP Seattle, WA 98108

| er ME. 2/5/24 KL | REMARKS Updated Client Sample ID per ME. 2/5/24 KL |
|------------------|----------------------------------------------------|
| D-594            | 312247                                             |
| PO#              | PROJECT NAME/NO.                                   |
|                  | SUBCONTRACTER<br>Fremont                           |

TURNAROUND TIME

TURNAROUND TIME

Standard TAT

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days

Return samples

Will call with instructions

|                                                 |           |                        |                 |            |                        |                |                       |              | ANAL         | YSES            | NALYSES REQUESTED | JEST                        | ED                    |         |                  |       |
|-------------------------------------------------|-----------|------------------------|-----------------|------------|------------------------|----------------|-----------------------|--------------|--------------|-----------------|-------------------|-----------------------------|-----------------------|---------|------------------|-------|
| Sample ID                                       | Lab<br>ID | Date<br>Sampled        | Time<br>Sampled | Matrix     | # of<br>jars           | total aluminum | dissolved<br>aluminum | ferrous iron | ferrous iron | dissolved gases | TOC               |                             |                       |         | No               | Notes |
| TWA-3-1223                                      |           | 12/12/2023             | 1240            | water      | 2                      | ×              | ×                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-9-3-1223<br>KL 2/5/24                       |           | 12/12/2023             | 1240            | 1240 water | 2                      | x              | Х                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-10D-1223                                    |           | 12/12/2023             | 1253            | water      | 2                      | x              | ×                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-1-1223                                      |           | 12/12/2023             | 1415            | 1415 water | 2                      | ×              | х                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-2-1223                                      |           | 12/12/2023             | 1425            | 1425 water | 2                      | ×              | x                     |              |              |                 |                   |                             |                       |         |                  |       |
| Field Blank1-1223                               |           | 12/12/2023             | 1550            | 1550 water | 1                      | ×              |                       |              |              |                 |                   |                             |                       |         |                  |       |
| SB-1A-1223                                      |           | 12/12/2023             | 1600            | 1600 water | 4) p                   | x              | ×                     |              |              |                 |                   |                             |                       |         | MS/MD            |       |
| SB-2A-1223                                      |           | 12/12/2023             | 1615            | water      | 2                      | ×              | ×                     |              |              |                 |                   |                             |                       |         |                  |       |
| Filter Blank1-1223                              |           | 12/13/2023             | 845             | water      | 1                      |                | х                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-5D-1223                                     |           | 12/13/2023             | 935             | water      | 2                      | x              | x                     |              |              |                 |                   |                             |                       |         |                  |       |
| TWA-6D-1223                                     |           | 12/13/2023             | 945             | water      | 2                      | x              | x                     |              |              |                 |                   |                             |                       |         |                  |       |
| SB-3A-1223                                      |           | 12/13/2023             | 1030            | water      | 2                      | х              | х                     |              |              |                 |                   |                             |                       |         |                  |       |
| CTMW-25D-1223                                   |           | 12/13/2023             | 1205            | 1205 water | 2                      | ×              | ×                     |              |              |                 |                   |                             |                       |         |                  |       |
| Friedman & Bruya, Inc.<br>3012 16th Avenue West |           | SI<br>Retinguished by: | SIGNATURE       |            | PRIN<br>Michael Erdahl | P)<br>el Erd   | PRINT NAME            | VAME         |              |                 | Fried             | COMPANY<br>Friedman & Bruya | COMPANY<br>nan & Bruy | Y<br>ya | DATE<br>12/14/21 | TIME  |
| Seattle, WA 98119-2029                          | -         | Received by:           |                 |            | 1                      | 12             | 2                     | P            |              |                 |                   | 7                           |                       |         | 2/2/2            | (070) |
| Ph. (206) 285-8282                              |           | Relinquished by:       | Wille.          |            | A                      | 11             | Willer                | 7            |              |                 | -                 | A A                         | 22 111.21 20          | 4.23    |                  |       |
| Fax (206) 283-5044                              |           | Received by:           |                 |            |                        |                |                       |              |              |                 |                   |                             |                       |         |                  |       |

| Send Report To    | Send Report To Michael Erdahl      |
|-------------------|------------------------------------|
| Company           | Friedman and Bruya, Inc.           |
| Address           | 5500 4th Ave S                     |
| City, State, ZIP_ | City, State, ZIP Seattle, WA 98108 |

| Phone # (206) 285-8282 merdahl@friedmanandbruya.com | City, State, ZIP Seattle, WA 98108 | Address 5500 4th Ave S | Company Friedman and Bruya, Inc. | Send Report To Michael Erdahl |
|-----------------------------------------------------|------------------------------------|------------------------|----------------------------------|-------------------------------|
| TIER IV, EQuIS 4                                    | REMARKS                            | 312247                 | PROJECT NAME/NO.                 | SUBCONTRACTER<br>Fremont      |
|                                                     |                                    | D-594                  | PO#                              |                               |

| SAMPLE DISPOSAL  /Dispose after 30 days  Return samples  Will call with instructions | Rush charges authorized by: | ⊠ Standard TAT<br>RUSH | TURNAROUND TIME | Page # 2 of 2 |
|--------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------|---------------|
|--------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------|---------------|

| Fax (206) 283-5044 | Ph. (206) 285-8282 | Seattle, WA 98119-2029 | 3012 16th Avenue West | Friedman & Bruya, Inc. |   |         |  |  | CTMW-15-1223 | MW-1-1223  | CTMW-20-1223 | Sample ID             |                    |
|--------------------|--------------------|------------------------|-----------------------|------------------------|---|---------|--|--|--------------|------------|--------------|-----------------------|--------------------|
|                    | -                  |                        | -                     |                        |   |         |  |  |              |            |              | Lab<br>ID             |                    |
| Received by:       | Relinquished by:   | Received by:           | Petinguisted by:      | SI                     |   |         |  |  | 12/13/2023   | 12/13/2023 | 12/13/2023   | Date<br>Sampled       |                    |
|                    |                    | my m                   | 3                     | SIGNATURE              |   |         |  |  | 1320         | 1315       | 1210         | Time<br>Sampled       |                    |
|                    |                    |                        | 0                     | ,                      |   |         |  |  | 1320 water   | 1315 water | 1210 water   | Matrix                |                    |
|                    |                    | A                      | Michael Erdahl        |                        |   |         |  |  | 2            | 2          | 2            | # of<br>jars          |                    |
|                    |                    | All: Mille.            | el Erd                | P                      | П |         |  |  | х            | х          | х            | total aluminum        |                    |
|                    |                    | 1,(10                  | ahl                   | PRINT NAME             |   |         |  |  | х            | х          | x            | dissolved<br>aluminum |                    |
|                    |                    |                        |                       | NAMI                   |   |         |  |  |              |            |              | ferrous iron          |                    |
|                    |                    |                        |                       | 3                      |   |         |  |  |              |            |              | ferrous iron          | ANAL               |
|                    |                    |                        |                       |                        |   |         |  |  |              |            |              | dissolved gases       | ANALYSES REQUESTED |
|                    |                    | 7                      | Frie                  |                        |   |         |  |  |              |            |              | TOC                   | REQ                |
|                    |                    | 7                      | Friedman & Bruya      | CON                    |   | $\perp$ |  |  |              |            |              |                       | UEST               |
|                    |                    |                        | & Bru                 | COMPANY                |   |         |  |  |              |            |              |                       | ED                 |
|                    |                    |                        | ıya                   | Y                      |   | $\perp$ |  |  |              |            |              |                       |                    |
| -                  |                    | .1                     | 7.7                   | Н                      | Ш | $\perp$ |  |  |              |            |              |                       | Ц                  |
|                    |                    | 12-14-23               | 12/14/25              | DATE                   |   |         |  |  |              |            |              | Notes                 |                    |
|                    |                    | 1027                   | 0600                  | TIME                   |   |         |  |  |              |            |              | tes                   |                    |

# PREPARED FOR

Attn: Christian Sifford Maul Foster & Alongi Inc 1329 North State Street Suite 301 Bellingham, Washington 98225

Generated 1/23/2024 4:17:50 PM

**JOB DESCRIPTION** 

TWAAFA, M0615.20.012

**JOB NUMBER** 

320-108065-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605

# **Eurofins Sacramento**

### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

### **Authorization**

Generated 1/23/2024 4:17:50 PM

Authorized for release by Micah Smith, Project Manager II Micah.Smith@et.eurofinsus.com Designee for Justinn Gonzales, Project Manager I Justinn.Gonzales@et.eurofinsus.com

Minit

(916)374-4344

RJ Smi

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Laboratory Job ID: 320-108065-1

# **Table of Contents**

| Cover Page               | 1  |
|--------------------------|----|
| Table of Contents        | 3  |
| Definitions/Glossary     | 4  |
| Case Narrative           | 5  |
| Detection Summary        | 6  |
| Client Sample Results    | 7  |
| Isotope Dilution Summary | 18 |
| QC Sample Results        | 20 |
| QC Association Summary   | 29 |
| Lab Chronicle            | 30 |
| Certification Summary    | 32 |
| Method Summary           | 33 |
| Sample Summary           | 34 |
| Chain of Custody         | 35 |
| Receipt Checklists       | 37 |

2

4

5

a

10

12

4

11

### **Definitions/Glossary**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1
Project/Site: TWAAFA, M0615.20.012

Qualifiers

**LCMS** 

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

I Value is EMPC (estimated maximum possible concentration).

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

,

5

O

o

9

11

12

13

Н

15

### **Case Narrative**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1
Project: TWAAFA, M0615.20.012

Job ID: 320-108065-1 Eurofins Sacramento

Job Narrative 320-108065-1

### Receipt

The samples were received on 12/14/2023 9:15 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.5° C.

### **LCMS**

Method 1633: The matrix spike duplicate (MSD) recoveries for preparation batch 320-732202 and analytical batch 320-733325 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 1633: The "I" qualifier means the transition mass ratio for Perfluorooctanesulfonic acid (PFOS) was outside the established ratio limits. However, the samples were re-analyzed with concurring result, therefore, the best set of data was reported: TWA-3-1223 and TWA-9-3-1223.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **Organic Prep**

Method 1633: The following samples in preparation batch 320-732202 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. SB-2A-1223.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: TWA-3-1223

Lab Sample ID: 320-108065-1

| Analyte                              | Result Qualifier | RL  | Unit | Dil Fac D | Method | Prep Type |
|--------------------------------------|------------------|-----|------|-----------|--------|-----------|
| Perfluorobutanoic acid (PFBA)        | 20               | 8.2 | ng/L |           | 1633   | Total/NA  |
| Perfluoropentanoic acid (PFPeA)      | 43               | 4.1 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorohexanoic acid (PFHxA)       | 32               | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)      | 10               | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 25               | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 75               | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 6.3              | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 16 I             | 2.0 | ng/L | 1         | 1633   | Total/NA  |
| Perfluorononanoic acid (PFNA) - RA   | 2.1              | 2.0 | ng/L | 1         | 1633   | Total/NA  |

Client Sample ID: TWA-9-3-1223

Lab Sample ID: 320-108065-2

| Analyte                              | Result | Qualifier | RL  | Unit | Dil Fac | D | Method | Prep Type |
|--------------------------------------|--------|-----------|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA)        | 19     |           | 8.2 | ng/L | 1       | _ | 1633   | Total/NA  |
| Perfluoropentanoic acid (PFPeA)      | 43     |           | 4.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanoic acid (PFHxA)       | 29     |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluoroheptanoic acid (PFHpA)      | 9.7    |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 25     |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorononanoic acid (PFNA)        | 2.6    |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 81     |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 6.3    |           | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 18     | I         | 2.1 | ng/L | 1       |   | 1633   | Total/NA  |

Client Sample ID: Rinsate Blank1-1223

Lab Sample ID: 320-108065-3

No Detections.

Client Sample ID: Field Blank1-1223

Lab Sample ID: 320-108065-4

No Detections.

Client Sample ID: SB-2A-1223

Lab Sample ID: 320-108065-5

| Analyte                       | Result | Qualifier | RL  | Unit | Dil Fac | D | Method | Prep Type |
|-------------------------------|--------|-----------|-----|------|---------|---|--------|-----------|
| Perfluorobutanoic acid (PFBA) | 23     |           | 8.1 | ng/L | 1       | _ | 1633   | Total/NA  |
| Perfluorooctanoic acid (PFOA) | 4.1    |           | 2.0 | ng/L | 1       |   | 1633   | Total/NA  |

Client Sample ID: Rinsate Blank2-1223

Lab Sample ID: 320-108065-6

No Detections.

Client Sample ID: Trip Blank1-1223

Lab Sample ID: 320-108065-7

No Detections.

This Detection Summary does not include radiochemical test results.

**Eurofins Sacramento** 

Page 6 of 37

3

6

8

10

12

14

15

1/23/2024

# **Client Sample Results**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: TWA-3-1223

Lab Sample ID: 320-108065-1 Date Collected: 12/12/23 12:40

**Matrix: Water** 

Date Received: 12/14/23 09:15

| Method: EPA 1633 - Per- and I               | Result Qualifier    | RL       | Unit |                | Analyzod                | Dil Fac |
|---------------------------------------------|---------------------|----------|------|----------------|-------------------------|---------|
| Analyte  Perfluerobutancia soid (PERA)      |                     | 8.2 ———  |      |                | Analyzed 01/13/24 23:50 | DII Fac |
| Perfluorobutanoic acid (PFBA)               | 20                  |          | ng/L |                |                         | -       |
| Perfluoropentanoic acid (PFPeA)             | 43                  | 4.1      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorohexanoic acid (PFHxA)              | 32                  | 2.0      | ng/L |                | 01/13/24 23:50          |         |
| Perfluoroheptanoic acid (PFHpA)             | 10                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorooctanoic acid (PFOA)               | 25                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorodecanoic acid (PFDA)               | ND                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluoroundecanoic acid (PFUnA)            | ND                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorododecanoic acid (PFDoA)            | ND                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorotridecanoic acid (PFTrDA)          | ND                  | 2.0      | ng/L |                | 01/13/24 23:50          | 1       |
| Perfluorotetradecanoic acid (PFTeA)         | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorobutanesulfonic acid (PFBS)         | 75                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluoropentanesulfonic acid (PFPeS)       | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorohexanesulfonic acid (PFHxS)        | 6.3                 | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)    | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorooctanesulfonic acid (PFOS)         | 16 I                | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorononanesulfonic acid (PFNS)         | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorodecanesulfonic acid (PFDS)         | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorododecanesulfonic acid<br>(PFDoS)   | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 4:2 FTS                                     | ND                  | 8.2      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 6:2 FTS                                     | ND                  | 8.2      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 8:2 FTS                                     | ND                  | 8.2      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| Perfluorooctanesulfonamide (FOSA)           | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NMeFOSA                                     | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NEtFOSA                                     | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NMeFOSAA                                    | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NEtFOSAA                                    | ND                  | 2.0      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NMeFOSE                                     | ND                  | 20       | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NEtFOSE                                     | ND                  | 20       | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| HFPO-DA (GenX)                              | ND                  | 8.2      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND                  | 8.2      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| PFMBA                                       | ND                  | 4.1      | ng/L | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| NFDHA                                       | ND                  | 4.1      | ng/L |                | 01/13/24 23:50          | 1       |
| PFMPA                                       | ND                  | 4.1      | ng/L |                | 01/13/24 23:50          | 1       |
| 9CI-PF3ONS                                  | ND                  | 8.2      | ng/L |                | 01/13/24 23:50          | 1       |
| 11CI-PF3OUdS                                | ND                  | 8.2      | ng/L |                | 01/13/24 23:50          | 1       |
| PFEESA                                      | ND                  | 4.1      | ng/L |                | 01/13/24 23:50          | 1       |
| 3:3 FTCA                                    | ND                  | 10       | ng/L |                | 01/13/24 23:50          | ·       |
| 5:3 FTCA                                    | ND                  | 51       | ng/L |                | 01/13/24 23:50          | 1       |
| 7:3 FTCA                                    | ND                  | 51       | ng/L |                | 01/13/24 23:50          | 1       |
| Isotope Dilution                            | %Recovery Qualifier | Limits   | -    | Prepared       | Analyzed                | Dil Fac |
| 13C4 PFBA                                   | 85                  | 5 - 130  |      | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 13C5 PFPeA                                  | 84                  | 40 - 130 |      | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 13C5 PFHxA                                  | 86                  | 40 - 130 |      | 01/09/24 11:44 | 01/13/24 23:50          | 1       |
| 13C4 PFHpA                                  | 89                  | 40 - 130 |      | 01/09/24 11:44 | 01/13/24 23:50          | 1       |

**Eurofins Sacramento** 

Page 7 of 37 1/23/2024 Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

Client Sample ID: TWA-3-1223 Lab Sample ID: 320-108065-1

Date Collected: 12/12/23 12:40 Matrix: Water Date Received: 12/14/23 09:15

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C8 PFOA        | 85        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C9 PFNA        | 93        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C6 PFDA        | 82        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C7 PFUnA       | 73        |           | 30 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C2 PFDoA       | 60        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C2 PFTeDA      | 43        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C3 PFBS        | 98        |           | 40 - 135 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C3 PFHxS       | 86        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C8 PFOS        | 83        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C8 FOSA        | 85        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d3-NMeFOSAA      | 82        |           | 40 - 170 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d5-NEtFOSAA      | 71        |           | 25 - 135 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| M2-4:2 FTS       | 107       |           | 40 - 200 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| M2-6:2 FTS       | 92        |           | 40 - 200 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| M2-8:2 FTS       | 80        |           | 40 - 300 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| 13C3 HFPO-DA     | 78        |           | 40 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d7-N-MeFOSE-M    | 43        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d9-N-EtFOSE-M    | 32        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d5-NEtPFOSA      | 54        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |
| d3-NMePFOSA      | 57        |           | 10 - 130 | 01/09/24 11:44 | 01/13/24 23:50 | 1       |

| Method: EPA 1633 - Per- and   | <b>Polyfluoroal</b> | kyl Subst | ances by LC/M | S/MS, QSM Tal | ble B- | 24 - RA        |                |         |
|-------------------------------|---------------------|-----------|---------------|---------------|--------|----------------|----------------|---------|
| Analyte                       | Result              | Qualifier | RL            | Unit          | D      | Prepared       | Analyzed       | Dil Fac |
| Perfluorononanoic acid (PFNA) | 2.1                 |           | 2.0           | ng/L          |        | 01/09/24 11:44 | 01/15/24 16:42 | 1       |
|                               | A / =               |           |               |               |        |                |                |         |

 Isotope Dilution
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 13C9 PFNA
 92
 40 - 130
 01/09/24 11:44
 01/15/24 16:42
 1

Client Sample ID: TWA-9-3-1223

Date Collected: 12/12/23 12:40

Date Received: 12/14/23 09:15

Lab Sample ID: 320-108065-2

Matrix: Water

| Method: FPA 1633 | - Per- and Polyfluoroalky | Substances by | / LC/MS/MS | OSM Table B-24 |
|------------------|---------------------------|---------------|------------|----------------|
|                  |                           |               |            |                |

| Analyte                               | Result | Qualifier | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)         | 19     |           | 8.2 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluoropentanoic acid (PFPeA)       | 43     |           | 4.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorohexanoic acid (PFHxA)        | 29     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluoroheptanoic acid (PFHpA)       | 9.7    |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorooctanoic acid (PFOA)         | 25     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorononanoic acid (PFNA)         | 2.6    |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorodecanoic acid (PFDA)         | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluoroundecanoic acid (PFUnA)      | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorododecanoic acid (PFDoA)      | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorotridecanoic acid (PFTrDA)    | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorotetradecanoic acid (PFTeA)   | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorobutanesulfonic acid (PFBS)   | 81     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluoropentanesulfonic acid (PFPeS) | ND     |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)  | 6.3    |           | 2.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:08 | 1       |

**Eurofins Sacramento** 

Page 8 of 37 1/23/2024

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: TWA-9-3-1223

Lab Sample ID: 320-108065-2

**Matrix: Water** 

Date Collected: 12/12/23 12:40 Date Received: 12/14/23 09:15

| Analyte                                     | Result Qualifier    | RL                  | Unit | D Prepared     | Analyzed       | Dil Fa |
|---------------------------------------------|---------------------|---------------------|------|----------------|----------------|--------|
| Perfluoroheptanesulfonic acid (PFHpS)       | ND                  | 2.1                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| Perfluorooctanesulfonic acid (PFOS)         | 18 I                | 2.1                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| Perfluorononanesulfonic acid (PFNS)         | ND                  | 2.1                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| Perfluorodecanesulfonic acid (PFDS)         | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| Perfluorododecanesulfonic acid (PFDoS)      | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| 4:2 FTS                                     | ND                  | 8.2                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 6:2 FTS                                     | ND                  | 8.2                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 8:2 FTS                                     | ND                  | 8.2                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| Perfluorooctanesulfonamide (FOSA)           | ND                  | 2.1                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| NMeFOSA                                     | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| NEtFOSA                                     | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| NMeFOSAA                                    | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| NEtFOSAA                                    | ND                  | 2.1                 | ng/L |                | 01/14/24 00:08 |        |
| NMeFOSE                                     | ND                  | 21                  | ng/L |                | 01/14/24 00:08 |        |
| NEtFOSE                                     | ND                  | 21                  | ng/L |                | 01/14/24 00:08 |        |
| HFPO-DA (GenX)                              | ND<br>ND            | 8.2                 | ng/L |                | 01/14/24 00:08 |        |
|                                             |                     |                     |      |                |                |        |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND                  | 8.2                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| PFMBA                                       | ND                  | 4.1                 | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| NFDHA                                       | ND                  | 4.1                 | ng/L |                | 01/14/24 00:08 |        |
| PFMPA                                       | ND                  | 4.1                 | ng/L |                | 01/14/24 00:08 |        |
| 9CI-PF3ONS                                  | ND                  | 8.2                 | ng/L |                | 01/14/24 00:08 |        |
| 11CI-PF3OUdS                                | ND                  | 8.2                 | ng/L |                | 01/14/24 00:08 |        |
| PFEESA                                      | ND                  | 4.1                 |      |                | 01/14/24 00:08 |        |
| 3:3 FTCA                                    | ND<br>ND            | 10                  | ng/L |                | 01/14/24 00:08 |        |
|                                             |                     | 51                  | ng/L |                |                |        |
| 5:3 FTCA                                    | ND<br>ND            |                     | ng/L |                | 01/14/24 00:08 |        |
| 7:3 FTCA                                    |                     | 51                  | ng/L | 01/09/24 11:44 | 01/14/24 00:08 |        |
| Isotope Dilution                            | %Recovery Qualifier | Limits              |      | Prepared       | Analyzed       | Dil Fa |
| 13C4 PFBA                                   | 85                  | 5 - 130             |      | • • •          | 01/14/24 00:08 |        |
| 13C5 PFPeA                                  | 81                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C5 PFHxA                                  | 84                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C4 PFHpA                                  | 86                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C8 PFOA                                   | 83                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C9 PFNA                                   | 89                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C6 PFDA                                   | 78                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C7 PFUnA                                  | 67                  | 30 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C2 PFDoA                                  | 52                  | 10 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C2 PFTeDA                                 | 32                  | 10 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C3 PFBS                                   | 91                  | 40 - 135            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C3 PFHxS                                  | 78                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C8 PFOS                                   | 73                  | 40 - 130            |      | 01/09/24 11:44 | 01/14/24 00:08 |        |
| 13C8 FOSA                                   | 84                  | 40 - 130            |      |                | 01/14/24 00:08 |        |
| d3-NMeFOSAA                                 | 79                  | 40 - 170            |      |                | 01/14/24 00:08 |        |
| d5-NEtFOSAA                                 | 66                  | 25 <sub>-</sub> 135 |      |                | 01/14/24 00:08 |        |
| M2-4:2 FTS                                  | 109                 | 40 - 200            |      |                | 01/14/24 00:08 |        |
|                                             | 709<br>91           |                     |      |                | 01/14/24 00:08 |        |
| M2-6:2 FTS                                  | 91                  | 40 - 200            |      | 01/09/24 11.44 | 01/14/24 00.08 |        |

**Eurofins Sacramento** 

Page 9 of 37 1/23/2024

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Lab Sample ID: 320-108065-2 **Client Sample ID: TWA-9-3-1223** 

**Matrix: Water** 

Date Collected: 12/12/23 12:40 Date Received: 12/14/23 09:15

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C3 HFPO-DA     | 75        |           | 40 - 130 | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| d7-N-MeFOSE-M    | 30        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| d9-N-EtFOSE-M    | 18        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| d5-NEtPFOSA      | 50        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:08 | 1       |
| d3-NMePFOSA      | 52        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:08 | 1       |

Client Sample ID: Rinsate Blank1-1223

Lab Sample ID: 320-108065-3 Date Collected: 12/12/23 13:15 **Matrix: Water** 

Date Received: 12/14/23 09:15

| Analyte                                        | Result Qualifier | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------------|------------------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)                  | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluoropentanoic acid (PFPeA)                | ND               | 3.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorohexanoic acid (PFHxA)                 | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluoroheptanoic acid (PFHpA)                | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorooctanoic acid (PFOA)                  | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorononanoic acid (PFNA)                  | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorodecanoic acid (PFDA)                  | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluoroundecanoic acid (PFUnA)               | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorododecanoic acid (PFDoA)               | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorotridecanoic acid (PFTrDA)             | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorotetradecanoic acid (PFTeA)            | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorobutanesulfonic acid (PFBS)            | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluoropentanesulfonic acid<br>(PFPeS)       | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)           | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorooctanesulfonic acid (PFOS)            | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorononanesulfonic acid (PFNS)            | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorodecanesulfonic acid (PFDS)            | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorododecanesulfonic acid (PFDoS)         | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 4:2 FTS                                        | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 6:2 FTS                                        | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 8:2 FTS                                        | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Perfluorooctanesulfonamide (FOSA)              | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NMeFOSA                                        | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NEtFOSA                                        | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NMeFOSAA                                       | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NEtFOSAA                                       | ND               | 1.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NMeFOSE                                        | ND               | 19  | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NEtFOSE                                        | ND               | 19  | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| HFPO-DA (GenX)                                 | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| PFMBA                                          | ND               | 3.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| NFDHA                                          | ND               | 3.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| PFMPA                                          | ND               | 3.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 9CI-PF3ONS                                     | ND               | 7.5 | ng/L |   | 01/09/24 11:44 | 01/14/24 00:26 | 1       |

**Eurofins Sacramento** 

Page 10 of 37

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Rinsate Blank1-1223

Lab Sample ID: 320-108065-3

Date Collected: 12/12/23 13:15 **Matrix: Water** Date Received: 12/14/23 09:15

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Method: EPA 1633 - Po | er- and Polyfluoroa | ikyi Substa | ances by LC/M | S/MS, QSM Ta | ble B- | 24 (Continue   | ed)            |         |
|-----------------------|---------------------|-------------|---------------|--------------|--------|----------------|----------------|---------|
| Analyte               | Result              | Qualifier   | RL            | Unit         | D      | Prepared       | Analyzed       | Dil Fac |
| 11CI-PF3OUdS          | ND                  |             | 7.5           | ng/L         |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| PFEESA                | ND                  |             | 3.7           | ng/L         |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 3:3 FTCA              | ND                  |             | 9.4           | ng/L         |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 5:3 FTCA              | ND                  |             | 47            | ng/L         |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 7:3 FTCA              | ND                  |             | 47            | ng/L         |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| Isotope Dilution      | %Recovery           | Qualifier   | Limits        |              |        | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA             | 84                  |             | 5 - 130       |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C5 PFPeA            | 86                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C5 PFHxA            | 80                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C4 PFHpA            | 85                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C8 PFOA             | 86                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C9 PFNA             | 85                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C6 PFDA             | 83                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C7 PFUnA            | 89                  |             | 30 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C2 PFDoA            | 77                  |             | 10 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C2 PFTeDA           | 78                  |             | 10 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C3 PFBS             | 87                  |             | 40 - 135      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C3 PFHxS            | 87                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C8 PFOS             | 85                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C8 FOSA             | 85                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| d3-NMeFOSAA           | 93                  |             | 40 - 170      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| d5-NEtFOSAA           | 81                  |             | 25 - 135      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| M2-4:2 FTS            | 78                  |             | 40 - 200      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| M2-6:2 FTS            | 81                  |             | 40 - 200      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| M2-8:2 FTS            | 80                  |             | 40 - 300      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| 13C3 HFPO-DA          | 77                  |             | 40 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| d7-N-MeFOSE-M         | 75                  |             | 10 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| d9-N-EtFOSE-M         | 73                  |             | 10 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
| d5-NEtPFOSA           | 74                  |             | 10 - 130      |              |        | 01/09/24 11:44 | 01/14/24 00:26 | 1       |
|                       |                     |             |               |              |        |                |                |         |

Client Sample ID: Field Blank1-1223 Lab Sample ID: 320-108065-4 Date Collected: 12/12/23 15:50 **Matrix: Water** 

10 - 130

Date Received: 12/14/23 09:15

d3-NMePFOSA

Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

66

| Analyte                             | Result Qualifi | er RL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|----------------|-------|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)       | ND             | 8.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluoropentanoic acid (PFPeA)     | ND             | 4.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorohexanoic acid (PFHxA)      | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluoroheptanoic acid (PFHpA)     | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorooctanoic acid (PFOA)       | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorononanoic acid (PFNA)       | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorodecanoic acid (PFDA)       | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluoroundecanoic acid (PFUnA)    | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorododecanoic acid (PFDoA)    | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorotridecanoic acid (PFTrDA)  | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorotetradecanoic acid (PFTeA) | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | ND             | 2.0   | ng/L |   | 01/09/24 11:44 | 01/14/24 00:43 | 1       |

Page 11 of 37

01/09/24 11:44 01/14/24 00:26

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Field Blank1-1223

Lab Sample ID: 320-108065-4 Date Collected: 12/12/23 15:50

**Matrix: Water** 

Date Received: 12/14/23 09:15

| Analyte                                   | Result Qualifier    | RL                   | Unit | D Prepared     | Analyzed       | Dil Fac       |
|-------------------------------------------|---------------------|----------------------|------|----------------|----------------|---------------|
| Perfluoropentanesulfonic acid (PFPeS)     | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| Perfluorohexanesulfonic acid (PFHxS)      | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| Perfluoroheptanesulfonic acid<br>(PFHpS)  | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| Perfluorooctanesulfonic acid (PFOS)       | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| Perfluorononanesulfonic acid (PFNS)       | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| Perfluorodecanesulfonic acid (PFDS)       | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| Perfluorododecanesulfonic acid<br>(PFDoS) | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| 4:2 FTS                                   | ND                  | 8.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| 6:2 FTS                                   | ND                  | 8.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| 8:2 FTS                                   | ND                  | 8.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| Perfluorooctanesulfonamide (FOSA)         | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| NMeFOSA                                   | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 | 1             |
| NEtFOSA                                   | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| NMeFOSAA                                  | ND                  | 2.0                  | ng/L |                | 01/14/24 00:43 |               |
| NEtFOSAA                                  | ND                  | 2.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| NMeFOSE                                   | ND                  | 20                   | ng/L |                | 01/14/24 00:43 | · · · · · · . |
| NEtFOSE                                   | ND                  | 20                   | ng/L |                | 01/14/24 00:43 |               |
| HFPO-DA (GenX)                            | ND                  | 8.0                  | ng/L |                | 01/14/24 00:43 |               |
| 4,8-Dioxa-3H-perfluorononanoic acid       | ND                  | 8.0                  | ng/L |                | 01/14/24 00:43 |               |
| PFMBA                                     | ND                  | 4.0                  | ng/L | 01/09/24 11:44 | 01/14/24 00:43 |               |
| NFDHA                                     | ND                  | 4.0                  | ng/L |                | 01/14/24 00:43 |               |
| PFMPA                                     | ND                  | 4.0                  | ng/L |                | 01/14/24 00:43 |               |
| 9CI-PF3ONS                                | ND                  | 8.0                  | ng/L |                | 01/14/24 00:43 |               |
| 11CI-PF3OUdS                              | ND                  | 8.0                  | ng/L |                | 01/14/24 00:43 |               |
| PFEESA                                    | ND                  | 4.0                  | ng/L |                | 01/14/24 00:43 |               |
| 3:3 FTCA                                  | ND                  | 9.9                  | ng/L |                | 01/14/24 00:43 |               |
| 5:3 FTCA                                  | ND                  | 50                   | ng/L |                | 01/14/24 00:43 |               |
| 7:3 FTCA                                  | ND                  | 50                   | ng/L |                | 01/14/24 00:43 |               |
| Isotope Dilution                          | %Recovery Qualifier | Limits               | Hg/L | Prepared       | Analyzed       | Dil Fa        |
| 13C4 PFBA                                 | 92 Qualifier        | 5 - 130              |      |                | 01/14/24 00:43 | DII Fa        |
| 13C5 PFPeA                                | 91                  | 40 - 130             |      |                | 01/14/24 00:43 |               |
| 13C5 PFHxA                                | 90                  | 40 - 130<br>40 - 130 |      | * • • . =      | 01/14/24 00:43 |               |
|                                           |                     | 40 - 130<br>40 - 130 |      |                | 01/14/24 00:43 |               |
| 13C4 PFHpA                                | 98                  |                      |      |                |                |               |
| 13C8 PFOA                                 | 92                  | 40 - 130             |      |                | 01/14/24 00:43 |               |
| 13C9 PFNA                                 | 90                  | 40 - 130             |      |                | 01/14/24 00:43 |               |
| 13C6 PFDA                                 | 94                  | 40 - 130             |      |                | 01/14/24 00:43 |               |
| 13C7 PFUnA                                | 86                  | 30 - 130             |      |                | 01/14/24 00:43 |               |
| 13C2 PFDoA                                | 66                  | 10 - 130             |      |                | 01/14/24 00:43 |               |
| 13C2 PFTeDA                               | 67                  | 10 - 130             |      |                | 01/14/24 00:43 |               |
| 13C3 PFBS                                 | 95                  | 40 - 135             |      |                | 01/14/24 00:43 |               |
| 13C3 PFHxS                                | 92                  | 40 - 130             |      |                | 01/14/24 00:43 |               |
| 13C8 PFOS                                 | 94                  | 40 - 130             |      | 01/09/24 11:44 | 01/14/24 00:43 |               |
| 13C8 FOSA                                 | 90                  | 40 - 130             |      | 01/09/24 11:44 | 01/14/24 00:43 |               |
| d3-NMeFOSAA                               | 95                  | 40 - 170             |      | 01/09/24 11:44 | 01/14/24 00:43 |               |
| d5-NEtFOSAA                               | 85                  | 25 - 135             |      | 01/09/24 11:44 | 01/14/24 00:43 |               |
| M2-4:2 FTS                                | 92                  | 40 - 200             |      | 01/09/24 11:44 | 01/14/24 00:43 |               |

**Eurofins Sacramento** 

1/23/2024

Page 12 of 37

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Field Blank1-1223

Lab Sample ID: 320-108065-4 Date Collected: 12/12/23 15:50

**Matrix: Water** 

Date Received: 12/14/23 09:15

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| M2-6:2 FTS       | 91        |           | 40 - 200 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| M2-8:2 FTS       | 84        |           | 40 - 300 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| 13C3 HFPO-DA     | 82        |           | 40 - 130 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| d7-N-MeFOSE-M    | 76        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| d9-N-EtFOSE-M    | 70        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| d5-NEtPFOSA      | 74        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |
| d3-NMePFOSA      | 69        |           | 10 - 130 | 01/09/24 11:44 | 01/14/24 00:43 | 1       |

Lab Sample ID: 320-108065-5 Client Sample ID: SB-2A-1223

Date Collected: 12/12/23 16:15 **Matrix: Water** 

Date Received: 12/14/23 09:15

| Analyte                                        | Result Qualifier | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------------|------------------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)                  | 23               | 8.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | •       |
| Perfluoropentanoic acid (PFPeA)                | ND               | 4.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorohexanoic acid (PFHxA)                 | ND F1            | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluoroheptanoic acid (PFHpA)                | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorooctanoic acid (PFOA)                  | 4.1              | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorononanoic acid (PFNA)                  | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorodecanoic acid (PFDA)                  | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluoroundecanoic acid (PFUnA)               | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorododecanoic acid (PFDoA)               | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorotridecanoic acid (PFTrDA)             | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorotetradecanoic acid (PFTeA)            | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorobutanesulfonic acid (PFBS)            | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluoropentanesulfonic acid<br>(PFPeS)       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)           | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorooctanesulfonic acid (PFOS)            | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorononanesulfonic acid (PFNS)            | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorodecanesulfonic acid (PFDS)            | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Perfluorododecanesulfonic acid (PFDoS)         | ND F1            | 2.0 | ng/L |   |                | 01/14/24 01:01 | 1       |
| 4:2 FTS                                        | ND               | 8.1 | ng/L |   |                | 01/14/24 01:01 | 1       |
| 6:2 FTS                                        | ND               | 8.1 | ng/L |   |                | 01/14/24 01:01 | 1       |
| 8:2 FTS                                        | ND               | 8.1 | ng/L |   |                | 01/14/24 01:01 | 1       |
| Perfluorooctanesulfonamide (FOSA)              | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NMeFOSA                                        | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NEtFOSA                                        | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NMeFOSAA                                       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NEtFOSAA                                       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NMeFOSE                                        | ND               | 20  | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NEtFOSE                                        | ND               | 20  | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| HFPO-DA (GenX)                                 | ND               | 8.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND               | 8.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| PFMBA                                          | ND               | 4.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| NFDHA                                          | ND               | 4.1 | ng/L |   | 01/09/24 11:44 | 01/14/24 01:01 | 1       |

**Eurofins Sacramento** 

Page 13 of 37 1/23/2024

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: SB-2A-1223

Lab Sample ID: 320-108065-5

Date Collected: 12/12/23 16:15 **Matrix: Water** Date Received: 12/14/23 09:15

| Analyte          | Result Qualifier     | RL     | Unit | D Prepared     | Analyzed       | Dil Fac |
|------------------|----------------------|--------|------|----------------|----------------|---------|
| PFMPA            | ND ND                | 4.1    | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 9CI-PF3ONS       | ND                   | 8.1    | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 11CI-PF3OUdS     | ND                   | 8.1    | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| PFEESA           | ND                   | 4.1    | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 3:3 FTCA         | ND                   | 10     | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 5:3 FTCA         | ND                   | 51     | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 7:3 FTCA         | ND                   | 51     | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Isotono Dilution | % Pocovery Qualifier | Limite |      | Propared       | Analyzod       | Dil Esc |

| 5:3 FTCA         | ND          | 51               | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
|------------------|-------------|------------------|------|----------------|----------------|---------|
| 7:3 FTCA         | ND          | 51               | ng/L | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| Isotope Dilution | %Recovery Q | Qualifier Limits |      | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA        | 87          | 5 - 130          |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C5 PFPeA       | 85          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C5 PFHxA       | 87          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C4 PFHpA       | 88          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C8 PFOA        | 88          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C9 PFNA        | 89          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C6 PFDA        | 78          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C7 PFUnA       | 74          | 30 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C2 PFDoA       | 60          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C2 PFTeDA      | 43          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C3 PFBS        | 101         | 40 - 135         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C3 PFHxS       | 83          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C8 PFOS        | 79          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C8 FOSA        | 80          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d3-NMeFOSAA      | 85          | 40 - 170         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d5-NEtFOSAA      | 70          | 25 - 135         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| M2-4:2 FTS       | 89          | 40 - 200         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| M2-6:2 FTS       | 84          | 40 - 200         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| M2-8:2 FTS       | 80          | 40 - 300         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| 13C3 HFPO-DA     | 77          | 40 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d7-N-MeFOSE-M    | 49          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d9-N-EtFOSE-M    | 39          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d5-NEtPFOSA      | 57          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |
| d3-NMePFOSA      | 55          | 10 - 130         |      | 01/09/24 11:44 | 01/14/24 01:01 | 1       |

Client Sample ID: Rinsate Blank2-1223 Lab Sample ID: 320-108065-6

Date Collected: 12/12/23 16:40 **Matrix: Water** Date Received: 12/14/23 09:15

| Method: EPA 1633 | <ul> <li>Per- and Pol</li> </ul> | vfluoroalk | vl Substances by | LC/MS/MS | . QSM Table B-24 |
|------------------|----------------------------------|------------|------------------|----------|------------------|
|                  |                                  |            |                  |          |                  |

| Analyte                             | Result Qualifier | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|------------------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)       | ND               | 7.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluoropentanoic acid (PFPeA)     | ND               | 3.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorohexanoic acid (PFHxA)      | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluoroheptanoic acid (PFHpA)     | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorooctanoic acid (PFOA)       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorononanoic acid (PFNA)       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorodecanoic acid (PFDA)       | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluoroundecanoic acid (PFUnA)    | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorododecanoic acid (PFDoA)    | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorotridecanoic acid (PFTrDA)  | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| Perfluorotetradecanoic acid (PFTeA) | ND               | 2.0 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:29 | 1       |

**Eurofins Sacramento** 

1/23/2024

Page 14 of 37

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Rinsate Blank2-1223

d5-NEtFOSAA

Lab Sample ID: 320-108065-6

Date Collected: 12/12/23 16:40 **Matrix: Water** Date Received: 12/14/23 09:15

| Method: EPA 1633 - Per- and                 | Polyfluoroalkyl Subst | ances by LC/MS | S/MS, QSM Tab | ole B-24 (Continued)          |
|---------------------------------------------|-----------------------|----------------|---------------|-------------------------------|
| Analyte                                     | Result Qualifier      | RL             | Unit          | D Prepared Analyzed Dil Fa    |
| Perfluorobutanesulfonic acid (PFBS)         | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluoropentanesulfonic acid (PFPeS)       | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluorohexanesulfonic acid (PFHxS)        | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluoroheptanesulfonic acid (PFHpS)       | ND                    | 2.0            | ng/L          | 01/09/24 11:44                |
| Perfluorooctanesulfonic acid (PFOS)         | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluorononanesulfonic acid (PFNS)         | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluorodecanesulfonic acid (PFDS)         | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluorododecanesulfonic acid (PFDoS)      | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 4:2 FTS                                     | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 6:2 FTS                                     | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 8:2 FTS                                     | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Perfluorooctanesulfonamide (FOSA)           | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NMeFOSA                                     | ND                    | 2.0            | ng/L          | 01/09/24 11:44                |
| NEtFOSA                                     | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NMeFOSAA                                    | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NEtFOSAA                                    | ND                    | 2.0            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NMeFOSE                                     | ND                    | 20             | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NEtFOSE                                     | ND                    | 20             | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| HFPO-DA (GenX)                              | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| PFMBA                                       | ND                    | 3.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| NFDHA                                       | ND                    | 3.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| PFMPA                                       | ND                    | 3.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 9CI-PF3ONS                                  | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 11CI-PF3OUdS                                | ND                    | 7.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| PFEESA                                      | ND                    | 3.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 3:3 FTCA                                    | ND                    | 9.9            | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 5:3 FTCA                                    | ND                    | 49             | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| 7:3 FTCA                                    | ND                    | 49             | ng/L          | 01/09/24 11:44 01/14/24 02:29 |
| Isotope Dilution                            | %Recovery Qualifier   | Limits         |               | Prepared Analyzed Dil Fa      |
| 13C4 PFBA                                   | 86                    | 5 - 130        |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C5 PFPeA                                  | 88                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C5 PFHxA                                  | 84                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C4 PFHpA                                  | 88                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C8 PFOA                                   | 89                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C9 PFNA                                   |                       | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C6 PFDA                                   | 85                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C7 PFUnA                                  | 88                    | 30 - 130       |               | 01/09/24 11:44                |
| 13C2 PFDoA                                  | 78                    | 10 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C2 PFTeDA                                 | 78                    | 10 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C3 PFBS                                   | 87                    | 40 - 135       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C3 PFHxS                                  | 86                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C8 PFOS                                   | 90                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| 13C8 FOSA                                   | 85                    | 40 - 130       |               | 01/09/24 11:44 01/14/24 02:29 |
| d3-NMeFOSAA                                 | 91                    | 40 - 170       |               | 01/09/24 11:44 01/14/24 02:29 |

**Eurofins Sacramento** 

01/09/24 11:44 01/14/24 02:29

Page 15 of 37

25 - 135

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Rinsate Blank2-1223

Lab Sample ID: 320-108065-6 Date Collected: 12/12/23 16:40

**Matrix: Water** 

Date Received: 12/14/23 09:15

#### Method: EPA 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

| Isotope Dilution | %Recovery Qualific | er Limits | Prepared       | Analyzed       | Dil Fac |
|------------------|--------------------|-----------|----------------|----------------|---------|
| M2-4:2 FTS       | 87                 | 40 - 200  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| M2-6:2 FTS       | 86                 | 40 - 200  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| M2-8:2 FTS       | 83                 | 40 - 300  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| 13C3 HFPO-DA     | 75                 | 40 - 130  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| d7-N-MeFOSE-M    | 76                 | 10 - 130  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| d9-N-EtFOSE-M    | 71                 | 10 - 130  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| d5-NEtPFOSA      | 78                 | 10 - 130  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |
| d3-NMePFOSA      | 73                 | 10 - 130  | 01/09/24 11:44 | 01/14/24 02:29 | 1       |

Client Sample ID: Trip Blank1-1223

Lab Sample ID: 320-108065-7 Date Collected: 12/12/23 12:00 **Matrix: Water** 

Date Received: 12/14/23 09:15

| Analyte                                        | Result Qualifier | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------------|------------------|-----|------|---|----------------|----------------|---------|
| Perfluorobutanoic acid (PFBA)                  | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluoropentanoic acid (PFPeA)                | ND               | 3.4 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorohexanoic acid (PFHxA)                 | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluoroheptanoic acid (PFHpA)                | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorooctanoic acid (PFOA)                  | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorononanoic acid (PFNA)                  | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorodecanoic acid (PFDA)                  | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluoroundecanoic acid (PFUnA)               | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorododecanoic acid (PFDoA)               | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorotridecanoic acid (PFTrDA)             | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorotetradecanoic acid (PFTeA)            | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorobutanesulfonic acid (PFBS)            | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluoropentanesulfonic acid<br>(PFPeS)       | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)           | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluoroheptanesulfonic acid<br>(PFHpS)       | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorooctanesulfonic acid (PFOS)            | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorononanesulfonic acid (PFNS)            | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorodecanesulfonic acid (PFDS)            | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorododecanesulfonic acid (PFDoS)         | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 4:2 FTS                                        | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 6:2 FTS                                        | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 8:2 FTS                                        | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| Perfluorooctanesulfonamide (FOSA)              | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NMeFOSA                                        | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NEtFOSA                                        | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NMeFOSAA                                       | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NEtFOSAA                                       | ND               | 1.7 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NMeFOSE                                        | ND               | 17  | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| NEtFOSE                                        | ND               | 17  | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| HFPO-DA (GenX)                                 | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid<br>(ADONA) | ND               | 6.9 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| PFMBA                                          | ND               | 3.4 | ng/L |   | 01/09/24 11:44 | 01/14/24 02:47 | 1       |

**Eurofins Sacramento** 

Page 16 of 37

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Trip Blank1-1223

Date Collected: 12/12/23 12:00 Date Received: 12/14/23 09:15 Lab Sample ID: 320-108065-7 **Matrix: Water** 

| Method: EPA 1633 - Per- and Po | olyfluoroalkyl Substances | by LC/MS/MS, | , QSM Table | B-24 | 4 (Continued)   |  |
|--------------------------------|---------------------------|--------------|-------------|------|-----------------|--|
| A I t                          | D 16 O 116                | D.           | 1114        | _    | Barrier and all |  |

| Analyte      | Result Qualifier | RL  | Unit | D Prepared     | Analyzed       | Dil Fac |
|--------------|------------------|-----|------|----------------|----------------|---------|
| NFDHA        | ND ND            | 3.4 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| PFMPA        | ND               | 3.4 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 9CI-PF3ONS   | ND               | 6.9 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 11CI-PF3OUdS | ND               | 6.9 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| PFEESA       | ND               | 3.4 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 3:3 FTCA     | ND               | 8.6 | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 5:3 FTCA     | ND               | 43  | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |
| 7:3 FTCA     | ND               | 43  | ng/L | 01/09/24 11:44 | 01/14/24 02:47 | 1       |

| 7:3 FTCA         | ND        |           | 43       | ng/L | 01/09/24 11:44 | 01/14/24 02:47 |        |
|------------------|-----------|-----------|----------|------|----------------|----------------|--------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |      | Prepared       | Analyzed       | Dil Fa |
| 13C4 PFBA        | 86        |           | 5 - 130  |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C5 PFPeA       | 87        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C5 PFHxA       | 80        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C4 PFHpA       | 83        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C8 PFOA        | 87        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C9 PFNA        | 87        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C6 PFDA        | 84        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C7 PFUnA       | 79        |           | 30 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C2 PFDoA       | 68        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C2 PFTeDA      | 73        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C3 PFBS        | 87        |           | 40 - 135 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C3 PFHxS       | 85        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C8 PFOS        | 85        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C8 FOSA        | 82        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| d3-NMeFOSAA      | 82        |           | 40 - 170 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| d5-NEtFOSAA      | 75        |           | 25 - 135 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| M2-4:2 FTS       | 85        |           | 40 - 200 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| M2-6:2 FTS       | 86        |           | 40 - 200 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| M2-8:2 FTS       | 80        |           | 40 - 300 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| 13C3 HFPO-DA     | 77        |           | 40 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| d7-N-MeFOSE-M    | 77        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| d9-N-EtFOSE-M    | 75        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 | :      |
| d5-NEtPFOSA      | 74        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |
| d3-NMePFOSA      | 66        |           | 10 - 130 |      | 01/09/24 11:44 | 01/14/24 02:47 |        |

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Job ID: 320-108065-1

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

Matrix: Water Prep Type: Total/NA

|                     |                     | PFBA     | Perce<br>PFPeA | ent Isotope<br>13C5PHA |             | covery (Ac | ceptance L<br>C9PFNA | imits)<br>C6PFDA | 13C7PU   |
|---------------------|---------------------|----------|----------------|------------------------|-------------|------------|----------------------|------------------|----------|
| Lab Sample ID       | Client Sample ID    | (5-130)  | (40-130)       | (40-130)               | (40-130)    | (40-130)   | (40-130)             | (40-130)         | (30-130) |
| 320-108065-1        | TWA-3-1223          | 85       | 84             | 86                     | 89          | 85         | 93                   | 82               | 73       |
| 320-108065-1 - RA   | TWA-3-1223          |          |                |                        |             |            | 92                   |                  |          |
| 320-108065-2        | TWA-9-3-1223        | 85       | 81             | 84                     | 86          | 83         | 89                   | 78               | 67       |
| 320-108065-3        | Rinsate Blank1-1223 | 84       | 86             | 80                     | 85          | 86         | 85                   | 83               | 89       |
| 320-108065-4        | Field Blank1-1223   | 92       | 91             | 90                     | 98          | 92         | 90                   | 94               | 86       |
| 320-108065-5        | SB-2A-1223          | 87       | 85             | 87                     | 88          | 88         | 89                   | 78               | 74       |
| 320-108065-5 MS     | SB-2A-1223          | 86       | 87             | 84                     | 88          | 85         | 88                   | 82               | 80       |
| 320-108065-5 MSD    | SB-2A-1223          | 86       | 84             | 82                     | 86          | 84         | 85                   | 87               | 76       |
| 320-108065-6        | Rinsate Blank2-1223 | 86       | 88             | 84                     | 88          | 89         | 88                   | 85               | 88       |
| 320-108065-7        | Trip Blank1-1223    | 86       | 87             | 80                     | 83          | 87         | 87                   | 84               | 79       |
| LCS 320-732202/3-A  | Lab Control Sample  | 83       | 82             | 80                     | 81          | 84         | 86                   | 81               | 72       |
| LLCS 320-732202/2-A | Lab Control Sample  | 84       | 88             | 85                     | 85          | 85         | 88                   | 87               | 89       |
| MB 320-732202/1-A   | Method Blank        | 86       | 88             | 82                     | 88          | 88         | 86                   | 88               | 86       |
|                     |                     |          | Perc           | ent Isotope            | Dilution Re | covery (Ac | ceptance L           | imits)           |          |
|                     |                     | PFDoA    | PFTDA          | C3PFBS                 | C3PFHS      | C8PFOS     | PFOSA                | d3NMFOS          | d5NEFO   |
| Lab Sample ID       | Client Sample ID    | (10-130) | (10-130)       | (40-135)               | (40-130)    | (40-130)   | (40-130)             | (40-170)         | (25-135) |
| 320-108065-1        | TWA-3-1223          | 60       | 43             | 98                     | 86          | 83         | 85                   | 82               | 71       |
| 320-108065-1 - RA   | TWA-3-1223          |          |                |                        |             |            |                      |                  |          |
| 320-108065-2        | TWA-9-3-1223        | 52       | 32             | 91                     | 78          | 73         | 84                   | 79               | 66       |
| 320-108065-3        | Rinsate Blank1-1223 | 77       | 78             | 87                     | 87          | 85         | 85                   | 93               | 81       |
| 320-108065-4        | Field Blank1-1223   | 66       | 67             | 95                     | 92          | 94         | 90                   | 95               | 85       |
| 320-108065-5        | SB-2A-1223          | 60       | 43             | 101                    | 83          | 79         | 80                   | 85               | 70       |
| 320-108065-5 MS     | SB-2A-1223          | 68       | 58             | 100                    | 86          | 89         | 84                   | 90               | 80       |
| 320-108065-5 MSD    | SB-2A-1223          | 59       | 45             | 99                     | 89          | 83         | 83                   | 84               | 74       |
| 320-108065-6        | Rinsate Blank2-1223 | 78       | 78             | 87                     | 86          | 90         | 85                   | 91               | 84       |
| 320-108065-7        | Trip Blank1-1223    | 68       | 73             | 87                     | 85          | 85         | 82                   | 82               | 75       |
| LCS 320-732202/3-A  | Lab Control Sample  | 65       | 64             | 84                     | 82          | 85         | 79                   | 85               | 74       |
| LLCS 320-732202/2-A | Lab Control Sample  | 81       | 83             | 91                     | 91          | 88         | 85                   | 88               | 80       |
| MB 320-732202/1-A   | Method Blank        | 78       | 80             | 87                     | 90          | 84         | 82                   | 86               | 76       |
|                     |                     |          | Perc           | ent Isotope            | Dilution Re | covery (Ac | ceptance L           | imits)           |          |
|                     |                     | M242FTS  |                | M282FTS                |             | NMFM       | NEFM                 | d5NPFSA          | d3NMFS   |
| Lab Sample ID       | Client Sample ID    | (40-200) | (40-200)       | (40-300)               | (40-130)    | (10-130)   | (10-130)             | (10-130)         | (10-130) |
| 320-108065-1        | TWA-3-1223          | 107      | 92             | 80                     | 78          | 43         | 32                   | 54               | 57       |
| 320-108065-1 - RA   | TWA-3-1223          |          |                |                        |             |            |                      |                  |          |
| 320-108065-2        | TWA-9-3-1223        | 109      | 91             | 75                     | 75          | 30         | 18                   | 50               | 52       |
| 320-108065-3        | Rinsate Blank1-1223 | 78       | 81             | 80                     | 77          | 75         | 73                   | 74               | 66       |
| 320-108065-4        | Field Blank1-1223   | 92       | 91             | 84                     | 82          | 76         | 70                   | 74               | 69       |
| 320-108065-5        | SB-2A-1223          | 89       | 84             | 80                     | 77          | 49         | 39                   | 57               | 55       |
| 320-108065-5 MS     | SB-2A-1223          | 100      | 78             | 78                     | 76          | 60         | 51                   | 68               | 66       |
| 320-108065-5 MSD    | SB-2A-1223          | 104      | 83             | 79                     | 72          | 55         | 46                   | 63               | 64       |
| 320-108065-6        | Rinsate Blank2-1223 | 87       | 86             | 83                     | 75          | 76         | 71                   | 78               | 73       |
| 320-108065-7        | Trip Blank1-1223    | 85       | 86             | 80                     | 77          | 77         | 75                   | 74               | 66       |
| _CS 320-732202/3-A  | Lab Control Sample  | 71       | 73             | 74                     | 71          | 64         | 59                   | 69               | 65       |
| LLCS 320-732202/2-A | Lab Control Sample  | 79       | 80             | 83                     | 77          | 75         | 75                   | 73               | 69       |
| MB 320-732202/1-A   | Method Blank        | 77       | 78             | 81                     | 78          | 71         | 69                   | 67               | 62       |
|                     |                     |          |                |                        |             |            |                      |                  |          |
| Surrogate Legend    |                     |          |                |                        |             |            |                      |                  |          |

**Eurofins Sacramento** 

Page 18 of 37

2

3

7

9

11

13

14

L

#### **Isotope Dilution Summary**

Client: Maul Foster & Alongi Inc

Project/Site: TWAAFA, M0615.20.012

13C5PHA = 13C5 PFHxA C4PFHA = 13C4 PFHpA

C8PFOA = 13C8 PFOA

C9PFNA = 13C9 PFNA

C6PFDA = 13C6 PFDA

13C7PUA = 13C7 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

C3PFHS = 13C3 PFHxS

C8PFOS = 13C8 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M242FTS = M2-4:2 FTS

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

HFPODA = 13C3 HFPO-DA

NMFM = d7-N-MeFOSE-M

NEFM = d9-N-EtFOSE-M

d5NPFSA = d5-NEtPFOSA

d3NMFSA = d3-NMePFOSA

Job ID: 320-108065-1

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24

Lab Sample ID: MB 320-732202/1-A

13C5 PFPeA

13C5 PFHxA

| Matrix: Water                         |           |                 |         |      |   |                | Prep Type: To  |         |
|---------------------------------------|-----------|-----------------|---------|------|---|----------------|----------------|---------|
| Analysis Batch: 733325                |           |                 |         |      |   |                | Prep Batch:    | 732202  |
| Analyte                               |           | MB<br>Qualifier | RL      | Unit | D | Dropared       | Analyzed       | Dil Fac |
| Perfluorobutanoic acid (PFBA)         | ND        | Qualifier       | 8.0     | ng/L |   | Prepared       | 01/13/24 22:58 | 1 Tac   |
| Perfluoropentanoic acid (PFPeA)       | ND        |                 | 4.0     | ng/L |   |                | 01/13/24 22:58 | 4       |
| Perfluorohexanoic acid (PFHxA)        | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| Perfluoroheptanoic acid (PFHpA)       | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 |         |
| Perfluorooctanoic acid (PFOA)         | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | ,       |
| Perfluorononanoic acid (PFNA)         | ND<br>ND  |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| Perfluorodecanoic acid (PFDA)         | ND        |                 | 2.0     |      |   |                | 01/13/24 22:58 |         |
| Perfluoroundecanoic acid (PFUnA)      | ND<br>ND  |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| ,                                     |           |                 |         | ng/L |   |                |                | 1       |
| Perfluorododecanoic acid (PFDoA)      | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 |         |
| Perfluorotridecanoic acid (PFTrDA)    | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| Perfluorotetradecanoic acid (PFTeA)   | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| Perfluorobutanesulfonic acid (PFBS)   | ND        |                 | 2.0     | ng/L |   |                | 01/13/24 22:58 | 1       |
| Perfluoropentanesulfonic acid (PFPeS) | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)  | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluoroheptanesulfonic acid (PFHpS) | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorooctanesulfonic acid (PFOS)   | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorononanesulfonic acid (PFNS)   | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorodecanesulfonic acid (PFDS)   | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorododecanesulfonic acid        | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| (PFDoS)                               |           |                 |         | -    |   |                |                |         |
| 4:2 FTS                               | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 6:2 FTS                               | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 8:2 FTS                               | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| Perfluorooctanesulfonamide (FOSA)     | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NMeFOSA                               | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NEtFOSA                               | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NMeFOSAA                              | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NEtFOSAA                              | ND        |                 | 2.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NMeFOSE                               | ND        |                 | 20      | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NEtFOSE                               | ND        |                 | 20      | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| HFPO-DA (GenX)                        | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 4,8-Dioxa-3H-perfluorononanoic acid   | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| (ADONA)                               |           |                 |         | · ·  |   |                |                |         |
| PFMBA                                 | ND        |                 | 4.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| NFDHA                                 | ND        |                 | 4.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| PFMPA                                 | ND        |                 | 4.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 9CI-PF3ONS                            | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 11CI-PF3OUdS                          | ND        |                 | 8.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| PFEESA                                | ND        |                 | 4.0     | ng/L |   | 01/09/24 11:44 | 01/13/24 22:58 | 1       |
| 3:3 FTCA                              | ND        |                 | 10      | ng/L |   |                | 01/13/24 22:58 | 1       |
| 5:3 FTCA                              | ND        |                 | 50      | ng/L |   |                | 01/13/24 22:58 | 1       |
| 7:3 FTCA                              | ND        |                 | 50      | ng/L |   |                | 01/13/24 22:58 | 1       |
|                                       |           | МВ              |         |      |   |                | 2.1.2.2.2.2.30 |         |
| Isotope Dilution                      | %Recovery |                 | Limits  |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFBA                             | 86        |                 | 5 - 130 |      |   |                | 01/13/24 22:58 |         |

40 - 130

40 - 130

88

82

**Eurofins Sacramento** 

01/09/24 11:44 01/13/24 22:58

Client Sample ID: Method Blank

Page 20 of 37 1/23/2024

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

#### Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: MB 320-732202/1-A

**Matrix: Water** 

**Analysis Batch: 733325** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

Prep Batch: 732202

MB MB Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFHpA 88 40 - 130 13C8 PFOA 88 40 - 130 01/09/24 11:44 01/13/24 22:58 13C9 PFNA 86 40 - 130 01/09/24 11:44 01/13/24 22:58 13C6 PFDA 88 40 - 130 01/09/24 11:44 01/13/24 22:58 13C7 PFUnA 86 30 - 130 01/09/24 11:44 01/13/24 22:58 13C2 PFDoA 78 10 - 130 01/09/24 11:44 01/13/24 22:58 13C2 PFTeDA 01/09/24 11:44 01/13/24 22:58 80 10 - 130 13C3 PFBS 87 40 - 135 01/09/24 11:44 01/13/24 22:58 13C3 PFHxS 90 40 - 130 01/09/24 11:44 01/13/24 22:58 01/09/24 11:44 01/13/24 22:58 13C8 PFOS 84 40 - 130 82 01/09/24 11:44 01/13/24 22:58 13C8 FOSA 40 - 130 d3-NMeFOSAA 86 40 - 170 01/09/24 11:44 01/13/24 22:58 d5-NEtFOSAA 76 25 - 135 01/09/24 11:44 01/13/24 22:58 77 M2-4:2 FTS 40 - 200 01/09/24 11:44 01/13/24 22:58 M2-6:2 FTS 78 40 - 200 01/09/24 11:44 01/13/24 22:58 81 40 - 300 M2-8:2 FTS 01/09/24 11:44 01/13/24 22:58 13C3 HFPO-DA 78 40 - 130 01/09/24 11:44 01/13/24 22:58 d7-N-MeFOSE-M 71 01/09/24 11:44 01/13/24 22:58 10 - 130 d9-N-EtFOSE-M 69 10 - 130 01/09/24 11:44 01/13/24 22:58 d5-NEtPFOSA 67 10 - 130 01/09/24 11:44 01/13/24 22:58 d3-NMePFOSA 62 10 - 130 01/09/24 11:44 01/13/24 22:58

Lab Sample ID: LCS 320-732202/3-A

**Matrix: Water** 

**Analysis Batch: 733325** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 732202

| •                                     | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|---------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluorobutanoic acid (PFBA)         | 128   | 128    |           | ng/L |   | 100  | 70 - 140 |  |
| Perfluoropentanoic acid (PFPeA)       | 64.0  | 64.8   |           | ng/L |   | 101  | 65 - 135 |  |
| Perfluorohexanoic acid (PFHxA)        | 32.0  | 32.9   |           | ng/L |   | 103  | 70 - 145 |  |
| Perfluoroheptanoic acid (PFHpA)       | 32.0  | 32.2   |           | ng/L |   | 101  | 70 - 150 |  |
| Perfluorooctanoic acid (PFOA)         | 32.0  | 31.9   |           | ng/L |   | 100  | 70 - 150 |  |
| Perfluorononanoic acid (PFNA)         | 32.0  | 31.6   |           | ng/L |   | 99   | 70 - 150 |  |
| Perfluorodecanoic acid (PFDA)         | 32.0  | 29.1   |           | ng/L |   | 91   | 70 - 140 |  |
| Perfluoroundecanoic acid<br>(PFUnA)   | 32.0  | 34.1   |           | ng/L |   | 107  | 70 - 145 |  |
| Perfluorododecanoic acid (PFDoA)      | 32.0  | 32.6   |           | ng/L |   | 102  | 70 - 140 |  |
| Perfluorotridecanoic acid (PFTrDA)    | 32.0  | 28.5   |           | ng/L |   | 89   | 65 - 140 |  |
| Perfluorotetradecanoic acid (PFTeA)   | 32.0  | 27.8   |           | ng/L |   | 87   | 60 - 140 |  |
| Perfluorobutanesulfonic acid (PFBS)   | 28.4  | 27.3   |           | ng/L |   | 96   | 60 - 145 |  |
| Perfluoropentanesulfonic acid (PFPeS) | 30.1  | 30.2   |           | ng/L |   | 100  | 65 - 140 |  |
| Perfluorohexanesulfonic acid (PFHxS)  | 29.2  | 27.4   |           | ng/L |   | 94   | 65 - 145 |  |
| Perfluoroheptanesulfonic acid (PFHpS) | 30.5  | 29.3   |           | ng/L |   | 96   | 70 - 150 |  |

**Eurofins Sacramento** 

Page 21 of 37

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Job ID: 320-108065-1

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-732202/3-A

**Matrix: Water** 

**Analysis Batch: 733325** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 732202

|                                     | Spike | LCS    | LCS            |        | %Rec      |  |
|-------------------------------------|-------|--------|----------------|--------|-----------|--|
| Analyte                             | Added | Result | Qualifier Unit | D %Rec | Limits    |  |
| Perfluorooctanesulfonic acid        | 29.8  | 30.4   | ng/L           | 102    | 55 - 150  |  |
| (PFOS)                              |       |        |                |        |           |  |
| Perfluorononanesulfonic acid        | 30.7  | 28.4   | ng/L           | 92     | 65 - 145  |  |
| (PFNS)                              | 20.0  | 00.5   | /I             | 00     | 00 445    |  |
| Perfluorodecanesulfonic acid (PFDS) | 30.8  | 28.5   | ng/L           | 92     | 60 - 145  |  |
| Perfluorododecanesulfonic acid      | 31.0  | 23.1   | ng/L           | 74     | 50 - 145  |  |
| (PFDoS)                             | 00    |        | 9/=            |        | 00 - 1.10 |  |
| 4:2 FTS                             | 120   | 121    | ng/L           | 101    | 70 - 145  |  |
| 6:2 FTS                             | 122   | 120    | ng/L           | 98     | 65 - 155  |  |
| 8:2 FTS                             | 123   | 129    | ng/L           | 105    | 60 - 150  |  |
| Perfluorooctanesulfonamide          | 32.0  | 32.2   | ng/L           | 101    | 70 - 145  |  |
| (FOSA)                              |       |        |                |        |           |  |
| NMeFOSA                             | 32.0  | 31.8   | ng/L           | 99     | 60 - 150  |  |
| NEtFOSA                             | 32.0  | 30.8   | ng/L           | 96     | 65 - 145  |  |
| NMeFOSAA                            | 32.0  | 31.8   | ng/L           | 100    | 50 - 140  |  |
| NEtFOSAA                            | 32.0  | 33.3   | ng/L           | 104    | 70 - 145  |  |
| NMeFOSE                             | 320   | 323    | ng/L           | 101    | 70 - 145  |  |
| NEtFOSE                             | 320   | 335    | ng/L           | 105    | 70 - 135  |  |
| HFPO-DA (GenX)                      | 128   | 123    | ng/L           | 96     | 70 - 140  |  |
| 4,8-Dioxa-3H-perfluorononanoic      | 121   | 134    | ng/L           | 111    | 65 - 145  |  |
| acid (ADONA)                        |       |        |                |        |           |  |
| PFMBA                               | 64.0  | 63.6   | ng/L           | 99     | 60 - 150  |  |
| NFDHA                               | 64.0  | 66.8   | ng/L           | 104    | 50 - 150  |  |
| PFMPA                               | 64.0  | 61.8   | ng/L           | 96     | 55 - 140  |  |
| 9CI-PF3ONS                          | 120   | 136    | ng/L           | 114    | 70 - 155  |  |
| 11CI-PF3OUdS                        | 121   | 127    | ng/L           | 105    | 55 - 160  |  |
| PFEESA                              | 57.1  | 59.9   | ng/L           | 105    | 70 - 140  |  |
| 3:3 FTCA                            | 160   | 145    | ng/L           | 91     | 65 - 130  |  |
| 5:3 FTCA                            | 799   | 779    | ng/L           | 98     | 70 - 135  |  |
| 7:3 FTCA                            | 799   | 771    | ng/L           | 97     | 50 - 145  |  |

| 1 | 22 | 100 |  |
|---|----|-----|--|

|                  |           | -00              |
|------------------|-----------|------------------|
| Isotope Dilution | %Recovery | Qualifier Limits |
| 13C4 PFBA        | 83        | 5 - 130          |
| 13C5 PFPeA       | 82        | 40 - 130         |
| 13C5 PFHxA       | 80        | 40 - 130         |
| 13C4 PFHpA       | 81        | 40 - 130         |
| 13C8 PFOA        | 84        | 40 - 130         |
| 13C9 PFNA        | 86        | 40 - 130         |
| 13C6 PFDA        | 81        | 40 - 130         |
| 13C7 PFUnA       | 72        | 30 - 130         |
| 13C2 PFDoA       | 65        | 10 - 130         |
| 13C2 PFTeDA      | 64        | 10 - 130         |
| 13C3 PFBS        | 84        | 40 - 135         |
| 13C3 PFHxS       | 82        | 40 - 130         |
| 13C8 PFOS        | 85        | 40 - 130         |
| 13C8 FOSA        | 79        | 40 - 130         |
| d3-NMeFOSAA      | 85        | 40 - 170         |
| d5-NEtFOSAA      | 74        | 25 - 135         |
| M2-4:2 FTS       | 71        | 40 - 200         |
|                  |           |                  |

**Eurofins Sacramento** 

1/23/2024

Page 22 of 37

9

3

5

7

9

10

12

14

1

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

#### Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LCS 320-732202/3-A

**Matrix: Water** 

**Analysis Batch: 733325** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 732202

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| M2-6:2 FTS       | 73        |           | 40 - 200 |
| M2-8:2 FTS       | 74        |           | 40 - 300 |
| 13C3 HFPO-DA     | 71        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 64        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 59        |           | 10 - 130 |
| d5-NEtPFOSA      | 69        |           | 10 - 130 |
| d3-NMePFOSA      | 65        |           | 10 - 130 |

LCS LCS

Lab Sample ID: LLCS 320-732202/2-A **Client Sample ID: Lab Control Sample** 

**Matrix: Water** 

6:2 FTS

8:2 FTS

(FOSA) **NMeFOSA** 

**NEtFOSA** 

**NMeFOSAA** 

Perfluorooctanesulfonamide

**Analysis Batch: 733325** 

**Prep Type: Total/NA** 

Prep Batch: 732202

|                                        | Spike | LLCS LLCS      |         |        | %Rec     |  |
|----------------------------------------|-------|----------------|---------|--------|----------|--|
| Analyte                                | Added | Result Qualifi | er Unit | D %Rec | Limits   |  |
| Perfluorobutanoic acid (PFBA)          | 12.8  | 12.4           | ng/L    | 97     | 70 - 140 |  |
| Perfluoropentanoic acid (PFPeA)        | 6.40  | 6.08           | ng/L    | 95     | 65 - 135 |  |
| Perfluorohexanoic acid (PFHxA)         | 3.20  | 3.21           | ng/L    | 100    | 70 - 145 |  |
| Perfluoroheptanoic acid (PFHpA)        | 3.20  | 3.14           | ng/L    | 98     | 70 - 150 |  |
| Perfluorooctanoic acid (PFOA)          | 3.20  | 3.19           | ng/L    | 100    | 70 - 150 |  |
| Perfluorononanoic acid (PFNA)          | 3.20  | 2.92           | ng/L    | 91     | 70 - 150 |  |
| Perfluorodecanoic acid (PFDA)          | 3.20  | 2.79           | ng/L    | 87     | 70 - 140 |  |
| Perfluoroundecanoic acid (PFUnA)       | 3.20  | 3.32           | ng/L    | 104    | 70 - 145 |  |
| Perfluorododecanoic acid (PFDoA)       | 3.20  | 3.09           | ng/L    | 96     | 70 - 140 |  |
| Perfluorotridecanoic acid (PFTrDA)     | 3.20  | 2.95           | ng/L    | 92     | 65 - 140 |  |
| Perfluorotetradecanoic acid (PFTeA)    | 3.20  | 2.75           | ng/L    | 86     | 60 - 140 |  |
| Perfluorobutanesulfonic acid (PFBS)    | 2.84  | 2.88           | ng/L    | 101    | 60 - 145 |  |
| Perfluoropentanesulfonic acid (PFPeS)  | 3.01  | 2.70           | ng/L    | 90     | 65 - 140 |  |
| Perfluorohexanesulfonic acid (PFHxS)   | 2.92  | 2.85           | ng/L    | 98     | 65 - 145 |  |
| Perfluoroheptanesulfonic acid (PFHpS)  | 3.05  | 2.57           | ng/L    | 84     | 70 - 150 |  |
| Perfluorooctanesulfonic acid (PFOS)    | 2.98  | 2.73           | ng/L    | 92     | 55 - 150 |  |
| Perfluorononanesulfonic acid (PFNS)    | 3.07  | 2.78           | ng/L    | 91     | 65 - 145 |  |
| Perfluorodecanesulfonic acid (PFDS)    | 3.08  | 2.88           | ng/L    | 93     | 60 - 145 |  |
| Perfluorododecanesulfonic acid (PFDoS) | 3.10  | 2.57           | ng/L    | 83     | 50 - 145 |  |
| 4:2 FTS                                | 12.0  | 12.1           | ng/L    | 101    | 70 - 145 |  |

**Eurofins Sacramento** 

Page 23 of 37

12.2

12.3

3.20

3.20

3.20

3.20

12.3

12.9

3.01

2.91

2.80

2.95

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

101

105

94

91

88

92

65 - 155

60 - 150

70 - 145

60 - 150

65 - 145

50 - 140

Job ID: 320-108065-1

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012

#### Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: LLCS 320-732202/2-A

**Matrix: Water** 

5:3 FTCA

7:3 FTCA

**Analysis Batch: 733325** 

**Client Sample ID: Lab Control Sample** 

94

70 - 135

50 - 145

Prep Type: Total/NA Prep Batch: 732202

|                                             | Spike | LLCS   | LLCS      |      |   |      | %Rec     |  |
|---------------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                                     | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| NEtFOSAA                                    | 3.20  | 3.04   |           | ng/L |   | 95   | 70 - 145 |  |
| NMeFOSE                                     | 32.0  | 31.7   |           | ng/L |   | 99   | 70 - 145 |  |
| NEtFOSE                                     | 32.0  | 30.9   |           | ng/L |   | 96   | 70 - 135 |  |
| HFPO-DA (GenX)                              | 12.8  | 12.3   |           | ng/L |   | 96   | 70 - 140 |  |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 12.1  | 13.1   |           | ng/L |   | 108  | 65 - 145 |  |
| PFMBA                                       | 6.40  | 6.05   |           | ng/L |   | 94   | 60 - 150 |  |
| NFDHA                                       | 6.40  | 6.28   |           | ng/L |   | 98   | 50 - 150 |  |
| PFMPA                                       | 6.40  | 5.83   |           | ng/L |   | 91   | 55 - 140 |  |
| 9CI-PF3ONS                                  | 12.0  | 13.0   |           | ng/L |   | 109  | 70 - 155 |  |
| 11CI-PF3OUdS                                | 12.1  | 12.9   |           | ng/L |   | 107  | 55 - 160 |  |
| PFEESA                                      | 5.71  | 5.71   |           | ng/L |   | 100  | 70 - 140 |  |
| 3:3 FTCA                                    | 16.0  | 13.4   |           | na/L |   | 84   | 65 - 130 |  |

79.9

79.9

75.4

74.8

ng/L

ng/L

| LLCS      | LLCS                                                                                              |                                                                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| %Recovery | Qualifier                                                                                         | Limits                                                                                                                           |
| 84        |                                                                                                   | 5 - 130                                                                                                                          |
| 88        |                                                                                                   | 40 - 130                                                                                                                         |
| 85        |                                                                                                   | 40 - 130                                                                                                                         |
| 85        |                                                                                                   | 40 - 130                                                                                                                         |
| 85        |                                                                                                   | 40 - 130                                                                                                                         |
| 88        |                                                                                                   | 40 - 130                                                                                                                         |
| 87        |                                                                                                   | 40 - 130                                                                                                                         |
| 89        |                                                                                                   | 30 - 130                                                                                                                         |
| 81        |                                                                                                   | 10 - 130                                                                                                                         |
| 83        |                                                                                                   | 10 - 130                                                                                                                         |
| 91        |                                                                                                   | 40 - 135                                                                                                                         |
| 91        |                                                                                                   | 40 - 130                                                                                                                         |
| 88        |                                                                                                   | 40 - 130                                                                                                                         |
| 85        |                                                                                                   | 40 - 130                                                                                                                         |
| 88        |                                                                                                   | 40 - 170                                                                                                                         |
| 80        |                                                                                                   | 25 - 135                                                                                                                         |
| 79        |                                                                                                   | 40 - 200                                                                                                                         |
| 80        |                                                                                                   | 40 - 200                                                                                                                         |
| 83        |                                                                                                   | 40 - 300                                                                                                                         |
| 77        |                                                                                                   | 40 - 130                                                                                                                         |
| 75        |                                                                                                   | 10 - 130                                                                                                                         |
| 75        |                                                                                                   | 10 - 130                                                                                                                         |
| 73        |                                                                                                   | 10 - 130                                                                                                                         |
| 69        |                                                                                                   | 10 - 130                                                                                                                         |
|           | %Recovery  84  88  85  85  85  88  87  89  81  83  91  91  88  85  88  80  79  80  83  77  75  75 | 88<br>85<br>85<br>88<br>88<br>87<br>89<br>81<br>83<br>91<br>91<br>91<br>88<br>85<br>88<br>80<br>79<br>80<br>83<br>77<br>75<br>75 |

Lab Sample ID: 320-108065-5 MS

**Matrix: Water** 

Client Sample ID: SB-2A-1223

Prep Type: Total/NA

**Prep Batch: 732202** 

| Analysis Batch: 733325          |        |           |       |        |           |      |   |      | Prep Bato | ch: 7 |
|---------------------------------|--------|-----------|-------|--------|-----------|------|---|------|-----------|-------|
|                                 | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec      |       |
| Analyte                         | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits    |       |
| Perfluorobutanoic acid (PFBA)   | 23     |           | 128   | 151    |           | ng/L |   | 101  | 70 - 140  |       |
| Perfluoropentanoic acid (PFPeA) | ND     |           | 63.9  | 68.2   |           | na/L |   | 107  | 65 - 135  |       |

**Eurofins Sacramento** 

Page 24 of 37

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Job ID: 320-108065-1

## Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: 320-108065-5 MS

Matrix: Water

Client Sample ID: SB-2A-1223

Prep Type: Total/NA

| Analysis Batch: 733325                      | Sample | Sample    | Spike | MS     | MS        |      |   |      | Prep Batch: 73220<br>%Rec |
|---------------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------------|
| Analyte                                     | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits                    |
| Perfluorohexanoic acid (PFHxA)              | ND     | F1        | 31.9  | 46.4   |           | ng/L |   | 140  | 70 - 145                  |
| Perfluoroheptanoic acid (PFHpA)             | ND     |           | 31.9  | 34.0   |           | ng/L |   | 102  | 70 - 150                  |
| Perfluorooctanoic acid (PFOA)               | 4.1    |           | 31.9  | 37.4   |           | ng/L |   | 104  | 70 - 150                  |
| Perfluorononanoic acid (PFNA)               | ND     |           | 31.9  | 29.9   |           | ng/L |   | 94   | 70 - 150                  |
| Perfluorodecanoic acid (PFDA)               | ND     |           | 31.9  | 31.3   |           | ng/L |   | 98   | 70 - 140                  |
| Perfluoroundecanoic acid (PFUnA)            | ND     |           | 31.9  | 31.7   |           | ng/L |   | 99   | 70 - 145                  |
| Perfluorododecanoic acid (PFDoA)            | ND     |           | 31.9  | 32.1   |           | ng/L |   | 101  | 70 - 140                  |
| Perfluorotridecanoic acid (PFTrDA)          | ND     |           | 31.9  | 29.5   |           | ng/L |   | 92   | 65 - 140                  |
| Perfluorotetradecanoic acid (PFTeA)         | ND     |           | 31.9  | 28.0   |           | ng/L |   | 88   | 60 - 140                  |
| Perfluorobutanesulfonic acid (PFBS)         | ND     |           | 28.4  | 32.8   |           | ng/L |   | 112  | 60 - 145                  |
| Perfluoropentanesulfonic acid (PFPeS)       | ND     |           | 30.0  | 32.0   |           | ng/L |   | 107  | 65 - 140                  |
| Perfluorohexanesulfonic acid (PFHxS)        | ND     |           | 29.1  | 29.1   |           | ng/L |   | 95   | 65 - 145                  |
| Perfluoroheptanesulfonic acid (PFHpS)       | ND     |           | 30.5  | 27.9   |           | ng/L |   | 92   | 70 - 150                  |
| Perfluorooctanesulfonic acid (PFOS)         | ND     |           | 29.7  | 28.3   |           | ng/L |   | 90   | 55 - 150                  |
| Perfluorononanesulfonic acid (PFNS)         | ND     |           | 30.7  | 25.4   |           | ng/L |   | 83   | 65 - 145                  |
| Perfluorodecanesulfonic acid (PFDS)         | ND     |           | 30.8  | 23.5   |           | ng/L |   | 76   | 60 - 145                  |
| Perfluorododecanesulfonic acid (PFDoS)      | ND     | F1        | 31.0  | 16.2   |           | ng/L |   | 52   | 50 - 145                  |
| 4:2 FTS                                     | ND     |           | 119   | 97.2   |           | ng/L |   | 81   | 70 - 145                  |
| 6:2 FTS                                     | ND     |           | 122   | 133    |           | ng/L |   | 109  | 65 - 155                  |
| 8:2 FTS                                     | ND     |           | 123   | 136    |           | ng/L |   | 111  | 60 - 150                  |
| Perfluorooctanesulfonamide (FOSA)           | ND     |           | 31.9  | 31.2   |           | ng/L |   | 98   | 70 - 145                  |
| NMeFOSA                                     | ND     |           | 31.9  | 32.1   |           | ng/L |   | 100  | 60 - 150                  |
| NEtFOSA                                     | ND     |           | 31.9  | 32.1   |           | ng/L |   | 100  | 65 - 145                  |
| NMeFOSAA                                    | ND     |           | 31.9  | 31.1   |           | ng/L |   | 97   | 50 - 140                  |
| NEtFOSAA                                    | ND     |           | 31.9  | 33.7   |           | ng/L |   | 105  | 70 - 145                  |
| NMeFOSE                                     | ND     |           | 319   | 335    |           | ng/L |   | 105  | 70 - 145                  |
| NEtFOSE                                     | ND     |           | 319   | 341    |           | ng/L |   | 107  | 70 - 135                  |
| HFPO-DA (GenX)                              | ND     |           | 128   | 138    |           | ng/L |   | 108  | 70 - 140                  |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND     |           | 121   | 131    |           | ng/L |   | 109  | 65 - 145                  |
| PFMBA                                       | ND     |           | 63.9  | 68.4   |           | ng/L |   | 107  | 60 - 150                  |
| NFDHA                                       | ND     |           | 63.9  | 77.1   |           | ng/L |   | 121  | 50 - 150                  |
| PFMPA                                       | ND     |           | 63.9  | 59.6   |           | ng/L |   | 93   | 55 - 140                  |
| 9CI-PF3ONS                                  | ND     |           | 119   | 123    |           | ng/L |   | 103  | 70 - 155                  |
| 11CI-PF3OUdS                                | ND     |           | 121   | 98.3   |           | ng/L |   | 82   | 55 - 160                  |
| PFEESA                                      | ND     |           | 57.0  | 58.1   |           | ng/L |   | 102  | 70 - 140                  |
| 3:3 FTCA                                    | ND     |           | 159   | 140    |           | ng/L |   | 88   | 65 - 130                  |
| 5:3 FTCA                                    | ND     |           | 797   | 781    |           | ng/L |   | 98   | 70 - 135                  |
| 7:3 FTCA                                    | ND     |           | 797   | 786    |           | ng/L |   | 99   | 50 - 145                  |

**Eurofins Sacramento** 

Page 25 of 37

Job ID: 320-108065-1

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

|                  | MS        | MS        |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 86        |           | 5 - 130  |
| 13C5 PFPeA       | 87        |           | 40 - 130 |
| 13C5 PFHxA       | 84        |           | 40 - 130 |
| 13C4 PFHpA       | 88        |           | 40 - 130 |
| 13C8 PFOA        | 85        |           | 40 - 130 |
| 13C9 PFNA        | 88        |           | 40 - 130 |
| 13C6 PFDA        | 82        |           | 40 - 130 |
| 13C7 PFUnA       | 80        |           | 30 - 130 |
| 13C2 PFDoA       | 68        |           | 10 - 130 |
| 13C2 PFTeDA      | 58        |           | 10 - 130 |
| 13C3 PFBS        | 100       |           | 40 - 135 |
| 13C3 PFHxS       | 86        |           | 40 - 130 |
| 13C8 PFOS        | 89        |           | 40 - 130 |
| 13C8 FOSA        | 84        |           | 40 - 130 |
| d3-NMeFOSAA      | 90        |           | 40 - 170 |
| d5-NEtFOSAA      | 80        |           | 25 - 135 |
| M2-4:2 FTS       | 100       |           | 40 - 200 |
| M2-6:2 FTS       | 78        |           | 40 - 200 |
| M2-8:2 FTS       | 78        |           | 40 - 300 |
| 13C3 HFPO-DA     | 76        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 60        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 51        |           | 10 - 130 |
| d5-NEtPFOSA      | 68        |           | 10 - 130 |
| d3-NMePFOSA      | 66        |           | 10 - 130 |

Lab Sample ID: 320-108065-5 MSD

**Matrix: Water** 

Analysis Batch: 733325

| Client Sample ID: SB-2A-1223 |  |
|------------------------------|--|
| Prep Type: Total/NA          |  |

**Prep Batch: 732202** 

| Analysis Batom 700020                    |        |           |       |        |           |      |   |      | op De    |     |       |
|------------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
|                                          | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec     |     | RPD   |
| Analyte                                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Perfluorobutanoic acid (PFBA)            | 23     |           | 132   | 158    |           | ng/L |   | 102  | 70 - 140 | 4   | 30    |
| Perfluoropentanoic acid (PFPeA)          | ND     |           | 66.0  | 71.2   |           | ng/L |   | 108  | 65 - 135 | 4   | 30    |
| Perfluorohexanoic acid (PFHxA)           | ND     | F1        | 33.0  | 51.1   | F1        | ng/L |   | 150  | 70 - 145 | 10  | 30    |
| Perfluoroheptanoic acid (PFHpA)          | ND     |           | 33.0  | 34.1   |           | ng/L |   | 99   | 70 - 150 | 0   | 30    |
| Perfluorooctanoic acid (PFOA)            | 4.1    |           | 33.0  | 36.8   |           | ng/L |   | 99   | 70 - 150 | 2   | 30    |
| Perfluorononanoic acid (PFNA)            | ND     |           | 33.0  | 32.1   |           | ng/L |   | 97   | 70 - 150 | 7   | 30    |
| Perfluorodecanoic acid (PFDA)            | ND     |           | 33.0  | 30.7   |           | ng/L |   | 93   | 70 - 140 | 2   | 30    |
| Perfluoroundecanoic acid<br>(PFUnA)      | ND     |           | 33.0  | 32.0   |           | ng/L |   | 97   | 70 - 145 | 1   | 30    |
| Perfluorododecanoic acid<br>(PFDoA)      | ND     |           | 33.0  | 36.3   |           | ng/L |   | 110  | 70 - 140 | 12  | 30    |
| Perfluorotridecanoic acid (PFTrDA)       | ND     |           | 33.0  | 32.1   |           | ng/L |   | 97   | 65 - 140 | 8   | 30    |
| Perfluorotetradecanoic acid<br>(PFTeA)   | ND     |           | 33.0  | 31.4   |           | ng/L |   | 95   | 60 - 140 | 11  | 30    |
| Perfluorobutanesulfonic acid<br>(PFBS)   | ND     |           | 29.3  | 34.5   |           | ng/L |   | 114  | 60 - 145 | 5   | 30    |
| Perfluoropentanesulfonic acid<br>(PFPeS) | ND     |           | 31.0  | 31.9   |           | ng/L |   | 103  | 65 - 140 | 0   | 30    |
| Perfluorohexanesulfonic acid (PFHxS)     | ND     |           | 30.1  | 29.5   |           | ng/L |   | 93   | 65 - 145 | 1   | 30    |
| Perfluoroheptanesulfonic acid (PFHpS)    | ND     |           | 31.5  | 29.1   |           | ng/L |   | 92   | 70 - 150 | 4   | 30    |

Page 26 of 37

**Eurofins Sacramento** 

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Job ID: 320-108065-1

Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: 320-108065-5 MSD Client Sample ID: SB-2A-1223

**Matrix: Water** 

**Analysis Batch: 733325** 

Dilent Sample ID: SB-2A-1223
Prep Type: Total/NA

Prep Batch: 732202

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %Rec      |      |   |      | MSD       | MSD    | Spike | Sample    | Sample | -              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|---|------|-----------|--------|-------|-----------|--------|----------------|
| Perfluoronanesulfonic acid   ND   31.7   27.4   ng/L   86   65.145   Perfluoronanesulfonic acid   ND   31.8   24.0   ng/L   75   60.145   Perfluorodecanesulfonic acid   ND   F1   32.0   13.9   F1   ng/L   43   50.145   Perfluorodecanesulfonic acid   ND   F1   32.0   13.9   F1   ng/L   43   50.145   10.0   Perfluorodecanesulfonic acid   ND   F1   32.0   13.9   F1   ng/L   43   50.145   10.0   Perfluorodecanesulfonic acid   ND   T2   T2   T2   T2   T2   T2   T2   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limits RF | %Rec | D | Unit | Qualifier | Result | Added | Qualifier | Result | Analyte        |
| Perfluorodecanesulfonic acid   ND   31.8   24.0   ng/L   75   60 . 145   FPDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55 - 150  | 96   |   | ng/L |           | 31.1   | 30.7  |           | ND     |                |
| Perfluorododecanesulfonic acid   ND   F1   32.0   13.9   F1   ng/L   43   50.145   14   17   14   17   14   14   14   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65 - 145  | 86   |   | ng/L |           | 27.4   | 31.7  |           | ND     |                |
| (PFDoS) 4:2 FTS ND 123 99.4 ng/L 81 70 - 145 6:2 FTS ND 126 126 ng/L 100 65 - 155 8:2 FTS ND 127 129 ng/L 102 60 - 150 Perfluorooctanesulfonamide ND 33.0 33.0 ng/L 100 70 - 145 (FOSA) NMEFOSA ND 33.0 35.3 ng/L 107 60 - 150 1 NEIFOSA ND 33.0 32.1 ng/L 104 65 - 145 NMEFOSA ND 33.0 35.8 ng/L 104 65 - 145 NMEFOSE ND 33.0 35.8 ng/L 102 70 - 145 NEIFOSE ND 33.0 35.8 ng/L 102 70 - 145 NEIFOSE ND 33.0 35.8 ng/L 102 70 - 145 NEIFOSE ND 33.0 35.8 ng/L 102 70 - 145 NEIFOSE ND 33.0 34.2 ng/L 104 70 - 135 NEIFOSE ND 132 140 ng/L 104 70 - 135 NEIFOSE ND 132 140 ng/L 106 70 - 140 4.8-Dioxa-3H-perfluorononanoic ND 125 143 ng/L 114 65 - 145 acid (ADONA) PFMBA ND 66.0 69.2 ng/L 114 65 - 145 NEDHA ND 66.0 69.2 ng/L 114 50 - 150 NFDHA ND 66.0 61.1 ng/L 93 55 - 140 PFMPA ND 66.0 61.1 ng/L 93 55 - 140 PFLESA ND 58.9 60.1 ng/L 107 70 - 155 PFEESA ND 58.9 60.1 ng/L 107 70 - 140 3:3 FTCA ND 65 - 144 ng/L 87 65 - 130 5:3 FTCA                                                                                                                                                                                                                                                                                                                                                  | 60 - 145  | 75   |   | ng/L |           | 24.0   | 31.8  |           | ND     |                |
| 6:2 FTS ND 126 126 ng/L 100 65 155 8:2 FTS ND 127 129 ng/L 102 60 - 150 Perfluoroctanesulfonamide ND 33.0 33.0 ng/L 100 70 - 145 (FOSA) NMeFOSA ND 33.0 35.3 ng/L 107 60 - 150 1 NEtFOSA ND 33.0 34.5 ng/L 104 65 - 145 NMeFOSAA ND 33.0 32.1 ng/L 97 50 - 140 NEtFOSA ND 33.0 35.8 ng/L 108 70 - 145 NMeFOSAA ND 33.0 35.8 ng/L 108 70 - 145 NMeFOSE ND 33.0 35.8 ng/L 102 70 - 145 NMeFOSE ND 33.0 35.8 ng/L 102 70 - 145 NEtFOSE ND 33.0 342 ng/L 104 70 - 135 HFPO-DA (GenX) ND 132 140 ng/L 106 70 - 140 4,8-Dioxa-3H-perfluoronanoic ND 125 143 ng/L 106 70 - 140 4,8-Dioxa-3H-perfluoronanoic ND 66.0 69.2 ng/L 114 65 - 145 acid (ADONA) PFMBA ND 66.0 75.5 ng/L 114 50 - 150 NFDHA ND 66.0 61.1 ng/L 93 55 - 140 PFMPA ND 66.0 61.1 ng/L 93 55 - 140 PFMPAN ND 123 132 ng/L 107 70 - 155 11CI-PF3OUIS ND 125 96.2 ng/L 77 55 - 160 PFEESA ND 58.9 60.1 ng/L 102 70 - 140 3:3 FTCA ND 824 791 ng/L 87 65 - 130 5:3 FTCA                                                                                                                                                                                                                                                                                                                                                                    | 50 - 145  | 43   |   | ng/L | F1        | 13.9   | 32.0  | F1        | ND     |                |
| 8:2 FTS       ND       127       129       ng/L       102       60 - 150         Perfluorooctanesulfonamide (FOSA)       ND       33.0       33.0       ng/L       100       70 - 145         NMeFOSA       ND       33.0       35.3       ng/L       107       60 - 150       1         NEtFOSA       ND       33.0       34.5       ng/L       104       65 - 145         NMeFOSAA       ND       33.0       35.8       ng/L       197       50 - 140         NEtFOSAA       ND       33.0       35.8       ng/L       102       70 - 145         NMeFOSE       ND       330       338       ng/L       102       70 - 145         NEtFOSE       ND       330       342       ng/L       104       70 - 145         NETFOSE       ND       330       342       ng/L       104       70 - 135         HFPO-DA (GenX)       ND       132       140       ng/L       106       70 - 140         4,8-Dioxa-3H-perfluorononanoic       ND       125       143       ng/L       105       60 - 150         NFDHA       ND       66.0       69.2       ng/L       105       60 - 150 <t< td=""><td>70 - 145</td><td>81</td><td></td><td>ng/L</td><td></td><td>99.4</td><td>123</td><td></td><td>ND</td><td>4:2 FTS</td></t<>                                                                            | 70 - 145  | 81   |   | ng/L |           | 99.4   | 123   |           | ND     | 4:2 FTS        |
| Perfluorooctanesulfonamide   ND   33.0   33.0   ng/L   100   70 - 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65 - 155  | 100  |   | ng/L |           | 126    | 126   |           | ND     | 6:2 FTS        |
| (FOSA)  NMeFOSA  ND  33.0  35.3  ng/L  107  60-150  1  NEtFOSA  ND  33.0  34.5  ng/L  104  65-145  NMeFOSAA  ND  33.0  32.1  ng/L  97  50-140  NEtFOSAA  ND  NETFOSA  ND  33.0  35.8  ng/L  108  70-145  NMeFOSE  ND  330  338  ng/L  102  70-145  NETFOSE  ND  330  338  ng/L  102  70-145  NETFOSE  ND  330  342  ng/L  104  70-135  HFPO-DA (GenX)  ND  132  140  ng/L  106  70-140  4,8-Dioxa-3H-perfluorononanoic  ND  125  143  ng/L  114  65-145  126  NFDHA  ND  66.0  69.2  ng/L  114  50-150  NFDHA  ND  66.0  75.5  ng/L  114  50-150  PFMPA  ND  66.0  61.1  ng/L  93  55-140  9CI-PF3ONS  ND  123  132  ng/L  107  70-155  11CI-PF3OUdS  ND  125  96.2  ng/L  77  55-160  PFEESA  ND  53 FTCA  ND  824  791  ng/L  87  65-130  53 FTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 - 150  | 102  |   | ng/L |           | 129    | 127   |           | ND     | 8:2 FTS        |
| NEIFOSA         ND         33.0         34.5         ng/L         104         65 - 145           NMeFOSAA         ND         33.0         32.1         ng/L         97         50 - 140           NEIFOSAA         ND         33.0         35.8         ng/L         108         70 - 145           NMeFOSE         ND         330         338         ng/L         102         70 - 145           NEIFOSE         ND         330         342         ng/L         104         70 - 135           HFPO-DA (GenX)         ND         132         140         ng/L         106         70 - 140           4,8-Dioxa-3H-perfluorononanoic         ND         125         143         ng/L         114         65 - 145           acid (ADONA)         PFMBA         ND         66.0         69.2         ng/L         105         60 - 150           NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS <td< td=""><td>70 - 145</td><td>100</td><td></td><td>ng/L</td><td></td><td>33.0</td><td>33.0</td><td></td><td>ND</td><td></td></td<> | 70 - 145  | 100  |   | ng/L |           | 33.0   | 33.0  |           | ND     |                |
| NMeFOSAA         ND         33.0         32.1         ng/L         97         50 - 140           NEtFOSAA         ND         33.0         35.8         ng/L         108         70 - 145           NMeFOSE         ND         330         338         ng/L         102         70 - 145           NEtFOSE         ND         330         342         ng/L         104         70 - 135           HFPO-DA (GenX)         ND         132         140         ng/L         106         70 - 140           4,8-Dioxa-3H-perfluorononanoic         ND         125         143         ng/L         114         65 - 145           acid (ADONA)         PFMBA         ND         66.0         69.2         ng/L         105         60 - 150           NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND                                                                                                                              | 60 - 150  | 107  |   | ng/L |           | 35.3   | 33.0  |           | ND     | NMeFOSA        |
| NEtFOSAA         ND         33.0         35.8         ng/L         108         70 - 145           NMeFOSE         ND         330         338         ng/L         102         70 - 145           NEtFOSE         ND         330         342         ng/L         104         70 - 135           HFPO-DA (GenX)         ND         132         140         ng/L         106         70 - 140           4,8-Dioxa-3H-perfluorononanoic         ND         125         143         ng/L         114         65 - 145           acid (ADONA)         ND         66.0         69.2         ng/L         105         60 - 150           NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           NFDHA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         824<                                                                                                                              | 65 - 145  | 104  |   | ng/L |           | 34.5   | 33.0  |           | ND     | NEtFOSA        |
| NMeFOSE ND 330 338 ng/L 102 70 - 145 NEtFOSE ND 330 342 ng/L 104 70 - 135 HFPO-DA (GenX) ND 132 140 ng/L 106 70 - 140 4,8-Dioxa-3H-perfluorononanoic ND 125 143 ng/L 114 65 - 145 acid (ADONA) PFMBA ND 66.0 69.2 ng/L 105 60 - 150 NFDHA ND 66.0 75.5 ng/L 114 50 - 150 PFMPA ND 66.0 61.1 ng/L 93 55 - 140 9CI-PF3ONS ND 123 132 ng/L 107 70 - 155 11CI-PF3OUdS ND 125 96.2 ng/L 77 55 - 160 PFEESA ND 58.9 60.1 ng/L 102 70 - 140 3:3 FTCA ND 824 791 ng/L 96 70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 - 140  | 97   |   | ng/L |           | 32.1   | 33.0  |           | ND     | NMeFOSAA       |
| NEtFOSE         ND         330         342         ng/L         104         70 - 135           HFPO-DA (GenX)         ND         132         140         ng/L         106         70 - 140           4,8-Dioxa-3H-perfluorononanoic         ND         125         143         ng/L         114         65 - 145           acid (ADONA)         ND         66.0         69.2         ng/L         105         60 - 150           NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                           | 70 - 145  | 108  |   | ng/L |           | 35.8   | 33.0  |           | ND     | NEtFOSAA       |
| HFPO-DA (GenX)         ND         132         140         ng/L         106         70 - 140           4,8-Dioxa-3H-perfluorononanoic acid (ADONA)         ND         125         143         ng/L         114         65 - 145           PFMBA         ND         66.0         69.2         ng/L         105         60 - 150           NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                    | 70 - 145  | 102  |   | ng/L |           | 338    | 330   |           | ND     | NMeFOSE        |
| 4,8-Dioxa-3H-perfluorononanoic acid (ADONA)       ND       125       143       ng/L       114       65 - 145         PFMBA       ND       66.0       69.2       ng/L       105       60 - 150         NFDHA       ND       66.0       75.5       ng/L       114       50 - 150         PFMPA       ND       66.0       61.1       ng/L       93       55 - 140         9CI-PF3ONS       ND       123       132       ng/L       107       70 - 155         11CI-PF3OUdS       ND       125       96.2       ng/L       77       55 - 160         PFEESA       ND       58.9       60.1       ng/L       102       70 - 140         3:3 FTCA       ND       165       144       ng/L       87       65 - 130         5:3 FTCA       ND       824       791       ng/L       96       70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 135  | 104  |   | ng/L |           | 342    | 330   |           | ND     | NEtFOSE        |
| acid (ADONA)         PFMBA       ND       66.0       69.2       ng/L       105       60 - 150         NFDHA       ND       66.0       75.5       ng/L       114       50 - 150         PFMPA       ND       66.0       61.1       ng/L       93       55 - 140         9CI-PF3ONS       ND       123       132       ng/L       107       70 - 155         11CI-PF3OUdS       ND       125       96.2       ng/L       77       55 - 160         PFEESA       ND       58.9       60.1       ng/L       102       70 - 140         3:3 FTCA       ND       165       144       ng/L       87       65 - 130         5:3 FTCA       ND       824       791       ng/L       96       70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 140  | 106  |   | ng/L |           | 140    | 132   |           | ND     | HFPO-DA (GenX) |
| NFDHA         ND         66.0         75.5         ng/L         114         50 - 150           PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         165         144         ng/L         87         65 - 130           5:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65 - 145  | 114  |   | ng/L |           | 143    | 125   |           | ND     | •              |
| PFMPA         ND         66.0         61.1         ng/L         93         55 - 140           9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         165         144         ng/L         87         65 - 130           5:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 - 150  | 105  |   | ng/L |           | 69.2   | 66.0  |           | ND     | PFMBA          |
| 9CI-PF3ONS         ND         123         132         ng/L         107         70 - 155           11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         165         144         ng/L         87         65 - 130           5:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 - 150  | 114  |   | ng/L |           | 75.5   | 66.0  |           | ND     | NFDHA          |
| 11CI-PF3OUdS         ND         125         96.2         ng/L         77         55 - 160           PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         165         144         ng/L         87         65 - 130           5:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55 - 140  | 93   |   | ng/L |           | 61.1   | 66.0  |           | ND     | PFMPA          |
| PFEESA         ND         58.9         60.1         ng/L         102         70 - 140           3:3 FTCA         ND         165         144         ng/L         87         65 - 130           5:3 FTCA         ND         824         791         ng/L         96         70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 155  | 107  |   | ng/L |           | 132    | 123   |           | ND     | 9CI-PF3ONS     |
| 3:3 FTCA ND 165 144 ng/L 87 65 - 130<br>5:3 FTCA ND 824 791 ng/L 96 70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55 - 160  | 77   |   | ng/L |           | 96.2   | 125   |           | ND     | 11CI-PF3OUdS   |
| 5:3 FTCA ND 824 791 ng/L 96 70 - 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 - 140  | 102  |   | ng/L |           | 60.1   | 58.9  |           | ND     | PFEESA         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65 - 130  | 87   |   | ng/L |           | 144    | 165   |           | ND     | 3:3 FTCA       |
| 7:3 ETCA ND 824 903 pg/l 07 50 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 - 135  | 96   |   | ng/L |           | 791    | 824   |           | ND     | 5:3 FTCA       |
| 7.3 FTCA ND 024 003 Hg/L 97 30 - 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 - 145  | 97   |   | ng/L |           | 803    | 824   |           | ND     | 7:3 FTCA       |

| MSD MSD |
|---------|
|         |

|                  | IIIOD     | MOD       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C4 PFBA        | 86        |           | 5 - 130  |
| 13C5 PFPeA       | 84        |           | 40 - 130 |
| 13C5 PFHxA       | 82        |           | 40 - 130 |
| 13C4 PFHpA       | 86        |           | 40 - 130 |
| 13C8 PFOA        | 84        |           | 40 - 130 |
| 13C9 PFNA        | 85        |           | 40 - 130 |
| 13C6 PFDA        | 87        |           | 40 - 130 |
| 13C7 PFUnA       | 76        |           | 30 - 130 |
| 13C2 PFDoA       | 59        |           | 10 - 130 |
| 13C2 PFTeDA      | 45        |           | 10 - 130 |
| 13C3 PFBS        | 99        |           | 40 - 135 |
| 13C3 PFHxS       | 89        |           | 40 - 130 |
| 13C8 PFOS        | 83        |           | 40 - 130 |
| 13C8 FOSA        | 83        |           | 40 - 130 |
| d3-NMeFOSAA      | 84        |           | 40 - 170 |
| d5-NEtFOSAA      | 74        |           | 25 - 135 |
| M2-4:2 FTS       | 104       |           | 40 - 200 |
|                  |           |           |          |

**Eurofins Sacramento** 

Page 27 of 37

9

3

5

7

8

10

12

13

14

1

1/23/2024

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

#### Method: 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 (Continued)

Lab Sample ID: 320-108065-5 MSD Client Sample ID: SB-2A-1223 **Matrix: Water** 

**Analysis Batch: 733325** 

|                  | MSD       | MSD       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| M2-6:2 FTS       | 83        |           | 40 - 200 |
| M2-8:2 FTS       | 79        |           | 40 - 300 |
| 13C3 HFPO-DA     | 72        |           | 40 - 130 |
| d7-N-MeFOSE-M    | 55        |           | 10 - 130 |
| d9-N-EtFOSE-M    | 46        |           | 10 - 130 |
| d5-NEtPFOSA      | 63        |           | 10 - 130 |
| d3-NMePFOSA      | 64        |           | 10 - 130 |

Prep Type: Total/NA

**Prep Batch: 732202** 

# **QC Association Summary**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1 Project/Site: TWAAFA, M0615.20.012

#### LCMS

#### **Prep Batch: 732202**

| Lab Sample ID       | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|---------------------|---------------------|-----------|--------|--------|------------|
| 320-108065-1        | TWA-3-1223          | Total/NA  | Water  | 1633   |            |
| 320-108065-1 - RA   | TWA-3-1223          | Total/NA  | Water  | 1633   |            |
| 320-108065-2        | TWA-9-3-1223        | Total/NA  | Water  | 1633   |            |
| 320-108065-3        | Rinsate Blank1-1223 | Total/NA  | Water  | 1633   |            |
| 320-108065-4        | Field Blank1-1223   | Total/NA  | Water  | 1633   |            |
| 320-108065-5        | SB-2A-1223          | Total/NA  | Water  | 1633   |            |
| 320-108065-6        | Rinsate Blank2-1223 | Total/NA  | Water  | 1633   |            |
| 320-108065-7        | Trip Blank1-1223    | Total/NA  | Water  | 1633   |            |
| MB 320-732202/1-A   | Method Blank        | Total/NA  | Water  | 1633   |            |
| LCS 320-732202/3-A  | Lab Control Sample  | Total/NA  | Water  | 1633   |            |
| LLCS 320-732202/2-A | Lab Control Sample  | Total/NA  | Water  | 1633   |            |
| 320-108065-5 MS     | SB-2A-1223          | Total/NA  | Water  | 1633   |            |
| 320-108065-5 MSD    | SB-2A-1223          | Total/NA  | Water  | 1633   |            |

#### **Analysis Batch: 733325**

| Lab Sample ID       | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|---------------------|---------------------|-----------|--------|--------|------------|
| 320-108065-1        | TWA-3-1223          | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-2        | TWA-9-3-1223        | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-3        | Rinsate Blank1-1223 | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-4        | Field Blank1-1223   | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-5        | SB-2A-1223          | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-6        | Rinsate Blank2-1223 | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-7        | Trip Blank1-1223    | Total/NA  | Water  | 1633   | 732202     |
| MB 320-732202/1-A   | Method Blank        | Total/NA  | Water  | 1633   | 732202     |
| LCS 320-732202/3-A  | Lab Control Sample  | Total/NA  | Water  | 1633   | 732202     |
| LLCS 320-732202/2-A | Lab Control Sample  | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-5 MS     | SB-2A-1223          | Total/NA  | Water  | 1633   | 732202     |
| 320-108065-5 MSD    | SB-2A-1223          | Total/NA  | Water  | 1633   | 732202     |

#### **Analysis Batch: 733755**

| Lab Sample ID     | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| 320-108065-1 - RA | TWA-3-1223       | Total/NA  | Water  | 1633   | 732202     |

**Eurofins Sacramento** 

Page 29 of 37

2

3

6

ŏ

3

11

12

14

15

Job ID: 320-108065-1

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012

Client Sample ID: TWA-3-1223

Date Collected: 12/12/23 12:40 Date Received: 12/14/23 09:15 Lab Sample ID: 320-108065-1

**Matrix: Water** 

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 489.5 mL | 5.0 mL | 732202 | 01/09/24 11:44 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 733325 | 01/13/24 23:50 | EMF     | EET SAC |
| Total/NA  | Prep     | 1633   | RA  |        | 489.5 mL | 5.0 mL | 732202 | 01/09/24 11:44 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   | RA  | 1      | 1 mL     | 1 mL   | 733755 | 01/15/24 16:42 | S1M     | EET SAC |

Client Sample ID: TWA-9-3-1223

Date Collected: 12/12/23 12:40 Date Received: 12/14/23 09:15

Lab Sample ID: 320-108065-2 **Matrix: Water** 

Batch Batch Dil Initial Batch Final Prepared Method Number or Analyzed **Prep Type Factor Amount** Amount Analyst Type Run Lab 732202 Total/NA Prep 1633 486.9 mL 5.0 mL 01/09/24 11:44 JS **EET SAC** 733325 Total/NA 1633 01/14/24 00:08 EMF Analysis **EET SAC** 1

Client Sample ID: Rinsate Blank1-1223

Date Collected: 12/12/23 13:15 Date Received: 12/14/23 09:15

Lab Sample ID: 320-108065-3

Lab Sample ID: 320-108065-4

**Matrix: Water** 

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Prep 1633 533.5 mL 5.0 mL 732202 01/09/24 11:44 JS **EET SAC** Total/NA Analysis 1633 733325 01/14/24 00:26 EMF **EET SAC** 1

Client Sample ID: Field Blank1-1223

Date Collected: 12/12/23 15:50

Date Received: 12/14/23 09:15

| Pre  | р Туре | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|------|--------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Tota | al/NA  | Prep          | 1633            |     |               | 503.1 mL          | 5.0 mL          | 732202          | 01/09/24 11:44       | JS      | EET SAC |
| Tota | al/NA  | Analysis      | 1633            |     | 1             |                   |                 | 733325          | 01/14/24 00:43       | EMF     | EET SAC |

Client Sample ID: SB-2A-1223

Date Collected: 12/12/23 16:15

Lab Sample ID: 320-108065-5 **Matrix: Water** Date Received: 12/14/23 09:15

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 492.7 mL | 5.0 mL | 732202 | 01/09/24 11:44 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 733325 | 01/14/24 01:01 | EMF     | EET SAC |

Client Sample ID: Rinsate Blank2-1223

Date Collected: 12/12/23 16:40

Date Received: 12/14/23 09:15

|           | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 507.1 mL | 5.0 mL | 732202 | 01/09/24 11:44 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 733325 | 01/14/24 02:29 | EMF     | EET SAC |

**Eurofins Sacramento** 

1/23/2024

Page 30 of 37

10

**Matrix: Water** 

#### **Lab Chronicle**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

Client Sample ID: Trip Blank1-1223 Lab Sample ID: 320-108065-7

Date Collected: 12/12/23 12:00 **Matrix: Water** Date Received: 12/14/23 09:15

| _         | Batch    | Batch  |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 1633   |     |        | 582.2 mL | 5.0 mL | 732202 | 01/09/24 11:44 | JS      | EET SAC |
| Total/NA  | Analysis | 1633   |     | 1      |          |        | 733325 | 01/14/24 02:47 | EMF     | EET SAC |

#### **Laboratory References:**

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

# **Accreditation/Certification Summary**

Client: Maul Foster & Alongi Inc Job ID: 320-108065-1

Project/Site: TWAAFA, M0615.20.012

#### **Laboratory: Eurofins Sacramento**

The accreditations/certifications listed below are applicable to this report.

| Authority  | Program | <b>Identification Number</b> | <b>Expiration Date</b> |
|------------|---------|------------------------------|------------------------|
| Washington | State   | C581                         | 05-05-24               |

3

6

8

10

11

12

14

15

# **Method Summary**

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012 Job ID: 320-108065-1

| Method | Method Description                                              | Protocol | Laboratory |
|--------|-----------------------------------------------------------------|----------|------------|
| 1633   | Per- and Polyfluoroalkyl Substances by LC/MS/MS, QSM Table B-24 | EPA      | EET SAC    |
| 1633   | Solid-Phase Extraction (SPE)                                    | EPA      | EET SAC    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

#### **Laboratory References:**

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

# **Sample Summary**

Client: Maul Foster & Alongi Inc Project/Site: TWAAFA, M0615.20.012

Job ID: 320-108065-1

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 320-108065-1  | TWA-3-1223          | Water  | 12/12/23 12:40 | 12/14/23 09:15 |
| 320-108065-2  | TWA-9-3-1223        | Water  | 12/12/23 12:40 | 12/14/23 09:15 |
| 320-108065-3  | Rinsate Blank1-1223 | Water  | 12/12/23 13:15 | 12/14/23 09:15 |
| 320-108065-4  | Field Blank1-1223   | Water  | 12/12/23 15:50 | 12/14/23 09:15 |
| 320-108065-5  | SB-2A-1223          | Water  | 12/12/23 16:15 | 12/14/23 09:15 |
| 320-108065-6  | Rinsate Blank2-1223 | Water  | 12/12/23 16:40 | 12/14/23 09:15 |
| 320-108065-7  | Trip Blank1-1223    | Water  | 12/12/23 12:00 | 12/14/23 09:15 |

-

4

5

7

Ö

10

11

12

14

15

|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab                                    | İ                                           | Carrier Tracking No(s);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COC No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Information                                                           | Chrstan > 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                     | Justing Gronzales                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Audion Hackett                                                               | 541-391-3652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 型<br>で<br>いっ                           | Just an Gorcal SCET GUE Fas                 | State of Origin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| May Foster & Hong Inc                                                        | :OIS/Mal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job #.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ty of puc                                                                    | Due Date Requested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                             | The second secon | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 AVK 31K                                                                    | TAT Requested (days):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCL<br>N. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zn Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WA 48121                                                                     | Compliance Project: A Yes A No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitric Acid<br>NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Phone: 206 331-1835                                                          | PO #.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 320-108065                                  | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : w ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              | WO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | (0)                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I ce   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Name: TWAMEN Actof town (PW Sermpl, nu                               | Project#.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ㅈㄱ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Y) as                                       | noo 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              | Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ole Matrix<br>e (Wewater,<br>Sessitie, | i bərəliri<br>Məm moʻ<br>니니 (               | TegmuN <sup>'</sup> lı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Identification.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 의 훈                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Instructions/Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TWA-3-1223                                                                   | 2 24 21 E2/21/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | × 2 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TWA-9-3-1223                                                                 | 12 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                      | X                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE PROPERTY OF THE PROPERTY O |
| Rinsute Blankl-1223                                                          | 12/12/23 1315 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                      | × 35 ×                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The state of the s |
| Field Blank! -1223                                                           | 12/12/23 15 50 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | N N                                         | <b>M</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-24-1223                                                                   | 12/12/23 16 15 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | XXX                                         | <i>b</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rusate Blank2-1223                                                           | 9 on 11 52/21/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | XAX                                         | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tr. Blank1-1223                                                              | 12/12/23 12 00 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | XXV                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              | AND THE PROPERTY OF THE PROPER |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Possible Hazard Identification  Non-Hazard — Flammable Skin Inflant Poison B | son B Unknown Radiological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oical                                  | Sample Disposal ( A fee m                   | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)  Return To Client Disposal By Lab Mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tained longer than 1 month) Archive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other (specify)                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Special Instructions/QC Requirements:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nquished by:                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Тіте:                                       | Method of Shipment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Neinguarrecty.                                                               | 3/23 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO LECT                                | Real Part Control                           | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMPany Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reinquished by:                                                              | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company                                | Received by:                                | Date/Tinfe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Сотрапу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                              | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Сотрапу                                | Received by:                                | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Сотралу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Custody Seals Intact Custody Seal No. 12-4467                                | 2204427 1104422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Cooler Temperature(s) °C and Other Remarks: | Other Remarks: 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The state of the s |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ver 01/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

🔅 eurofins | Environment Testing

Chain of Custody Record

Eurofins Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Phone (916) 373-5600

# **Environment Testing**

# Sacramento Sample Receiving Notes (SSRN)

| Loc 320<br><b>108065</b>                                               |              |           | Tra                                    | cking# 7879 8695 5416                                   | -   |
|------------------------------------------------------------------------|--------------|-----------|----------------------------------------|---------------------------------------------------------|-----|
| Job                                                                    |              |           | s                                      | O (PO) FO / SAT / 2-Day / Ground / UPS / CDO / Couri    | er  |
|                                                                        |              |           |                                        | SSL / OnTrac / Goldstreak / USPS / Other                |     |
| Han this form to record Savenia Contrato Cont                          | Saalar C     | untadu    |                                        |                                                         | -   |
| File in the job folder with the COC                                    | ooier C      | ustoay    | Seal ler                               | nperature & corrected Temperature & other observations. |     |
|                                                                        |              |           |                                        |                                                         |     |
| Therm ID <u>LUL</u> Corr Factor                                        | (+/-)        |           | _°C                                    | Notes                                                   |     |
| lce Wet Gel                                                            | Othe         | r         |                                        |                                                         |     |
| Cooler Custody Seal 224071                                             | 2000         | ·         | ······································ |                                                         |     |
| Cooler Custody Seal VL9971                                             | 007          | 100       | <del></del>                            |                                                         |     |
| Cooler ID                                                              |              |           | ······                                 |                                                         |     |
| Temp Observed 6 5 °C Correct                                           | ted <i>(</i> | 5.5       | °C                                     |                                                         |     |
|                                                                        | ple 🗅        | •         | _ ~                                    |                                                         | —   |
| •                                                                      |              |           |                                        |                                                         | —   |
| Opening/Processing The Shipment Cooler compromised/tampered with?      | Yes          | No.       | NA<br>D                                |                                                         | —   |
| Cooler Temperature is acceptable?                                      | ₽\<br>P\     |           | ם                                      |                                                         |     |
| Frozen samples show signs of thaw?                                     |              |           | <b>5</b> 2″                            |                                                         |     |
| Initials M Date 12/14/03                                               | _<br>        | _         | 7                                      |                                                         |     |
| Initials 7000 Date. Vol. 1000                                          |              |           |                                        |                                                         |     |
| Unpacking/Labeling The Samples                                         | <u>Yes</u>   | <u>No</u> | <u>NA</u>                              |                                                         |     |
| Containers are not broken or leaking?                                  | <u> </u>     |           | _                                      |                                                         |     |
| Samples compromised/tampered with?                                     | _<br>        | <b>5</b>  | ם                                      | Trizma Lot #(s)                                         |     |
| COC is complete w/o discrepancies                                      | <b>2</b>     |           | _                                      |                                                         | •   |
| Sample custody seal?                                                   | n<br>n       | Ø<br>–    | ם                                      |                                                         | -   |
| Sample containers have legible labels? Sample date/times are provided? | <u>മ</u>     | <u> </u>  | ם                                      |                                                         | -   |
| Appropriate containers are used?                                       | o<br>o       | ם         | ם                                      | Ammonium                                                |     |
| Sample bottles are completely filled?                                  | D/           | ם         | ם                                      | Acetate Lot #(s)                                        | _   |
| Sample preservatives verified?                                         | ם            | ם         | മ്                                     |                                                         |     |
| Is the Field Sampler's name on COC?                                    |              | ם         | ם                                      |                                                         | •   |
| Samples w/o discrepancies?                                             | <b>□</b> ′   | ם         | ם                                      |                                                         | •   |
| Zero headspace?*                                                       | ם            | ם         | □⁄                                     |                                                         |     |
| Alkalinity has no headspace?                                           | ם            | _         | ם ׄ<br>ם′                              | Login Completion <u>Yes</u> <u>No</u>                   | NA  |
| Perchlorate has headspace?                                             |              |           | rd                                     | Receipt Temperature on COC?                             | ر ۵ |
| (Methods 314 331 6850)                                                 | ם            | □         | L                                      | NCM Filed?                                              | Ø   |
| Multiphasic samples are not present?                                   | ď            | D         |                                        | Samples received within hold time?                      | _   |
|                                                                        |              |           |                                        | Log Release checked in TALS?                            | ם   |
| *Containers requiring zero headspace have no headspac                  | e, or bubb   | le < 6 mn | (1/4")                                 |                                                         |     |
| Initials MV Date. 12 141 23                                            |              |           |                                        | Initials MAN Data 12/14/23                              |     |

1/23/2024

Client: Maul Foster & Alongi Inc Job Number: 320-108065-1

Login Number: 108065 List Source: Eurofins Sacramento

List Number: 1

Creator: Oropeza, Salvador

| Creator: Oropeza, Salvador                                                                                              |        |               |
|-------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| Question                                                                                                                | Answer | Comment       |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Refer to SSRN</td> | True   | Refer to SSRN |
| The cooler's custody seal, if present, is intact.                                                                       | N/A    |               |
| Sample custody seals, if present, are intact.                                                                           | N/A    |               |
| The cooler or samples do not appear to have been compromised or tampered with.                                          | N/A    |               |
| Samples were received on ice.                                                                                           | N/A    |               |
| Cooler Temperature is acceptable.                                                                                       | N/A    |               |
| Cooler Temperature is recorded.                                                                                         | N/A    |               |
| COC is present.                                                                                                         | N/A    |               |
| COC is filled out in ink and legible.                                                                                   | N/A    |               |
| COC is filled out with all pertinent information.                                                                       | N/A    |               |
| Is the Field Sampler's name present on COC?                                                                             | N/A    |               |
| There are no discrepancies between the containers received and the COC.                                                 | N/A    |               |
| Samples are received within Holding Time (excluding tests with immediate HTs)                                           | N/A    |               |
| Sample containers have legible labels.                                                                                  | N/A    |               |
| Containers are not broken or leaking.                                                                                   | N/A    |               |
| Sample collection date/times are provided.                                                                              | N/A    |               |
| Appropriate sample containers are used.                                                                                 | N/A    |               |
| Sample bottles are completely filled.                                                                                   | N/A    |               |
| Sample Preservation Verified.                                                                                           | N/A    |               |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                                        | N/A    |               |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                                         | N/A    |               |
| Multiphasic samples are not present.                                                                                    | N/A    |               |
| Samples do not require splitting or compositing.                                                                        | N/A    |               |
| Residual Chlorine Checked.                                                                                              | N/A    |               |
|                                                                                                                         |        |               |