

Memorandum

523 East Second A	Venue, Spokane, Washington 99202	Telephone: 509.363.3125, Fax: 509.363.3126	www.geoengineers.com
То:	Elizabeth Kercher, LU	ST Site Manager, Washington Department of	Ecology
From:	Justin Orr, LG, Projec	t Manager and Scott Lathen, PE, Associate En	vironmental Engineer
Date:	March 18, 2024	410,22011022 50 Censed Geology 2/10/2024	
File:	0504-199-00	JUSTIN ORR	
Subject:	Environmental Site A	ssessment – City of Clarkston Street Shop	

1.0 INTRODUCTION

This memorandum (memo) describes soil and groundwater assessment activities conducted at the City of Clarkston Street Shop facility located at 1455 Bridge Street in Clarkston, Washington (herein referred to as "site"), as shown on the attached Figure 1, Vicinity Map.

This memo has been prepared by GeoEngineers, Inc. (GeoEngineers) for the Washington State Department of Ecology (Ecology) under Ecology Master Contract No. C1900044, task work assignment number GEI056.

This memo describes site history, field activities, observations, and chemical analytical results associated with soil and groundwater samples collected at the site. The purpose of this assessment was to determine if groundwater contamination associated with the historic release of petroleum products from the former Underground Storage Tanks (UST) system is present at the site.

2.0 SITE DESCRIPTION AND BACKGROUND

The City of Clarkston Street Shop facility is an equipment storage facility operated by the City of Clarkston (City) located on an approximately 1.02-acre parcel. Site features are shown in the attached Figure 2, Site Plan.

2.1. Previous Investigations

In 1992, the Washington State Department of Ecology (Ecology) was notified of a suspected release of petroleum products from a UST system located at the site. Three USTs including one 500-gallon gasoline, one 1,000-gallon gasoline, and one 1,000-gallon diesel tanks, product transfer lines and dispensers were removed from the site (Wyatt-Jaykim Engineers [WJE] 1993).

Following UST removal, petroleum-contaminated soil (PCS) was identified and believed to be from a failed weld at the base of the fill pipe on one of the gasoline tanks. Approximately 60 cubic yards (cy) of PCS were

excavated to the extent possible without affecting the integrity of the adjacent building. Confirmation samples collected within the excavation indicated that gasoline- and diesel-range petroleum hydrocarbons (GRPH and DRPH, respectively) were greater than the Model Toxics Control Act (MTCA) Method A cleanup levels in soil left in place on the east and south sides of the excavation, and at the bottom of the excavation at approximately 13 feet below ground surface (bgs) (WJE 1993).

Following excavation activities, one groundwater monitoring well (MW-1) was installed approximately 20 feet north of the excavation. Contaminants of concern were not detected in the soil sample from MW- 1. GRPH was detected at 1,050 micrograms per liter (μ g/L), greater than the MTCA Method A cleanup level of 1,000 μ g/L in the groundwater sample from MW-1 (WJE 1993). MW-1 appears to have been abandoned sometime between the last sampling event and August 2023.

The site is bounded by Bridge Street to the north and by commercial and industrial properties to the south, east and west. The Snake River is approximately 1,000 to 1,500 feet northwest and north of the site and local topography has a gradient to the north.

3.0 FIELD INVESTIGATION ACTIVITIES

GeoEngineers advanced soil borings, installed temporary well points, collected grab groundwater samples from the temporary well points, and submitted the samples for chemical analysis to assess soil and groundwater conditions for potential contamination associated with the historic release of petroleum products from the former USTs described in the Work Plan (GeoEngineers 2023).

The following sections describe field activities and a discussion of observed subsurface conditions. Based on site conditions, some modifications to the Work Plan were implemented as explained in the sections below.

3.1. Soil Assessment

Initial site reconnaissance occurred on November 27, 2023. During this site visit, site access was assessed and potential boring locations were marked. Site utilities near the boring locations were identified and marked by Utilities Plus, LLC on December 4, 2023. Boring locations are shown on Figure 2, Site Plan.

On December 5 and 6, 2023, GeoEngineers observed Walston Drilling Services Northwest (WDS) advance five borings (GEI056-B1 through GEI056-B5), using a truck mounted 15K Speedstar sonic drill rig. Borings GEI056-B1 through GEI056-B4 were advanced at the proposed locations described in the Work Plan (GeoEngineers 2023). In general, the borings were advanced around the former UST basin and in areas where contaminated soil was detected in the previous excavation. One additional boring (GEI056-B5) was advanced at the request of Ecology to attempt to delineate potential contamination observed in borings GEI056-B3 and GEI056-B4. The borings were advanced to approximately 30 feet bgs. Boring logs are included in Attachment A, Boring Logs.

Soil samples obtained from the borings were field screened for petroleum contamination. Field screening results are included in the boring logs in Appendix A. Volatile organic vapors, measured using a photoionization detector (PID), ranged between less than 1 part per million (ppm) and 1,935 ppm.

Petroleum sheens and odors were observed at depths greater than 20 feet bgs and generally corresponded with elevated PID readings. Volatile organic vapor concentrations are summarized in Table I below.

Screened Interval	Volatile Organic Vapor Concentrations (ppm)											
(feet bgs)	GEI056-B1	GEI056-B2	GEI056-B3	GEI056-B4	GEI056-B5							
0-5	<1	<1	15.6	<1	<1							
5-10	3.6		7.2	<1	<1							
10-15		7.4	-	<1	1.1							
15-20	2.6	<1	27.7	11.5	3.1							
20-25	1.3	<1	3,359	1,935	344.9							
25-30	<1	<1	16.9	5.0	<1							

TABLE I. SUMMARY OF FIELD SCREENING RESULTS

Notes:

bgs = below ground surface; ppm = parts per million; <1 = less than 1 ppm; '--' = depth interval not screened.

WDS backfilled the borings with bentonite chips. Each boring was completed with cold patch asphalt to match the existing ground surface.

3.2. Groundwater Assessment

Grab groundwater samples were collected from temporary well points installed in the borings. The temporary well points were purged using low-flow groundwater sampling techniques and groundwater quality parameters were monitored for approximately 30 minutes prior to sampling. Groundwater quality parameters at the time of collecting the grab groundwater samples are summarized in Table II below.

Temporary	Field Measured Water Quality Parameters												
Monitoring Well Location	Depth to Groundwater (feet bgs)	pH (pH units)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (degrees C)						
GEI056-B1	23.99	7.89	712	-197.6	1.59	118.29	17.9						
GEI056-B2	23.01	7.92	762	-76.8	3.96	261.22	18.4						
GEI056-B3	22.72	8.16	557	-367.4	0.27	456.16	20.3						
GEI056-B4	23.50	8.20	697	-559.4	0.13	2264.33	18.7						
GEI056-B5	22.40	8.07	704	-437.3	0.33	58.61	20.3						

TABLE II. GROUNDWATER FIELD PARAMETERS

Notes:

bgs = below ground surface; ORP = oxygen reduction potential; μ S/cm = micro-Siemens per centimeter; mV = millivolts; mg/L = milligrams per liter; NTU = nephelometric turbidity unit; C = Celsius

3.1. Subsurface Conditions

Soil samples obtained from the borings consisted of a mix of silty sand and poorly graded sand from the ground surface to approximately 7 feet bgs, a mix of poorly graded gravel and silty gravel from about 7 feet bgs to 20 feet bgs and a mix of silty sand and poorly graded sand from 21 feet bgs to 30 feet bgs.

Based on the topographic gradient, the proximity to the Snake River, and measured depths to groundwater, the groundwater gradient was assumed to be to the north-northwest. Groundwater was encountered between about 22 to 24 feet bgs.

3.2. Investigation-Derived Waste

Investigation-derived waste (IDW) including soil cuttings from the borings and purge water from the temporary wells were placed in 55-gallon drums, labeled, and stored inside the street shop perimeter fence west of the facility, pending analysis and disposal. Nwestco, LLC (Nwestco) collected the IDW on February 14, 2024, and disposed the IDW at Waste Management's Graham Road landfill in Spokane, Washington on February 20, 2024. The waste disposal manifest is included in Attachment B, IDW Disposal Documentation.

3.3. Underground Utility Repair

During the initial advancement of exploration GEI056-B5, WDS struck and damaged an unlocatable polyvinyl chloride (PVC) sewer discharge line adjacent to the northeast street shop facility. The sewer line was approximately 4-inches in diameter and approximately 4 feet bgs. Representatives of Ecology and the City were immediately notified. The City temporarily shut off the water supply to the facility to prevent unnecessary effluent discharge to the borehole. McCall's Classic Construction (McCall's) was retained to complete necessary sewer line repairs at the recommendation of the City. McCall's completed sewer line repairs on December 7, 2023, to restore proper function to the damaged sewer line.

3.4. Cultural Resources Monitoring

Plateau Cultural Resources Management (PCRM) performed archeological monitoring during ground disturbing activities at the request of Ecology and the Colville Tribe (Tribe). No inadvertent discoveries were encountered during ground disturbing activities. PCRM's report is included in Attachment C.

4.0 CHEMICAL ANALYTICAL RESULTS

Five soil samples, one duplicate soil sample, five grab groundwater samples and one duplicate groundwater sample were submitted to Eurofins Environment Testing Northwest (Eurofins) for chemical analysis. The laboratory analytical report and a data validation report are included in Attachment D, Chemical Analytical Laboratory Report and Data Validation Report. The samples were analyzed for the following contaminants of concern (COCs):

- GRPH using Northwest Method Northwest Total Petroleum Hydrocarbon (NWTPH)-Gx;
- Benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN), ethylene dichloride (EDC) and methyl tert-butyl ether (MTBE) using United States Environmental Protection Agency (EPA) Method 8260D;

- Ethylene dibromide (EDB) using EPA Method 8011;
- Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) using Northwest Method NWTPH-Dx; and
- Total (soil and groundwater) and dissolved lead (groundwater only) using EPA Method 6010D.

4.1. Soil Chemical Analytical Results

Soil chemical analytical results are presented and compared to the MTCA Method A cleanup levels for unrestricted land use in Table 1, Chemical Analytical Results – Soil and are summarized below.

- GRPH was detected at concentrations of 200 mg/kg, 1400 mg/kg and 250 mg/kg in samples GEI056-B3 (23 24), GEI056-B4 (23 24) and GEI056-B5 (24 25), respectively, greater than the MTCA Method A cleanup level of 100 milligrams per kilogram (mg/kg) when benzene is not present. GRPH was not detected in the samples from GEI056-B1 and GEI056-B2.
- Benzene was not detected in the samples analyzed.
- Ethylbenzene, toluene, xylenes, naphthalene, EDB and methyl tert-butyl ether (MTBE¹) were either not detected or were detected at concentrations less than their respective MTCA Method A cleanup levels in the samples analyzed.
- EDC was not detected in the samples analyzed.
- DRPH and ORPH were either not detected or were detected at combined concentrations less than the combined MTCA Method A clean up level of 2,000 mg/kg.
- Lead was detected at concentrations less than the MTCA Method A cleanup level of 250 mg/kg in all samples analyzed.

4.2. Groundwater Chemical Analytical Results

Groundwater chemical analytical results are presented and compared to the MTCA Method A cleanup levels in Table 2, Chemical Analytical Results–Groundwater, and are summarized below.

- GRPH was detected in the grab groundwater samples collected from borings GEI056-B3 and GEI056-B4 at concentrations of 5,000 micrograms per liter (µg/L) and 2,000 µg/L, greater than the MTCA Method A clean up level of 1,000 µg/L when benzene is not present. GRPH was either not detected or detected less than the MTCA Method A clean up levels in the samples from GEI056-B1, GEI056-B2 and GEI056-B5.
- Benzene was not detected in the samples analyzed.
- Ethylbenzene, toluene, xylenes, naphthalene, EDB and MTBE were either not detected or were detected at concentrations less than their respective MTCA Method A cleanup levels.

¹ The laboratory method detection limit (MDL) for MTBE (0.38 mg/kg) was greater than the MTCA Method A cleanup level (0.1 mg/kg) in one sample, GEI056-B4 (23 – 24). Because MTBE was not detected in the other soil or grab groundwater samples analyzed, MTBE is likely also not present in the soil sample from GEI056-B4.

- DRPH was detected in each groundwater sample at concentrations ranging from 1,200 µg/L in GEI056-B5 to 11,000 µg/L in GEI056-B4, greater than the MTCA Method A cleanup level of 500 µg/L.
- ORPH was either not detected or was detected at concentrations less than the MTCA Method A cleanup level.
- Total lead was detected at 60 µg/L in the grab groundwater sample from GEI056-B4, greater than the MTCA Method A cleanup level of 15 µg/L. However, dissolved lead was not detected in GEI056-B4. Total and dissolved lead were either not detected or were detected at concentrations less than the MTCA Method A cleanup level in the other samples analyzed.

5.0 SUMMARY AND CONCLUSIONS

Five soil borings were advanced on December 5 and 6, 2023, at the City of Clarkston Street Shop facility located at 1455 Bridge Street in Clarkston, Washington. Soil and grab groundwater samples were collected from the borings and the samples were submitted for chemical analysis.

Chemical analytical results indicate that GRPH is present in soil at concentrations greater than the MTCA Method A cleanup level for unrestricted land use at boring locations GEI056-B3, GEI056-B4 and GEI056-B5.

GRPH is present in groundwater at concentrations greater than the MTCA Method A cleanup level at boring locations GEI056-B3 and GEI056-B4. DRPH is present at concentrations greater than the MTCA Method A cleanup levels in groundwater at each location sampled.

The soil samples where GRPH was detected were collected at the soil/groundwater interface; this could indicate that GRPH contamination in soil samples near groundwater are part of a smear zone associated with the groundwater contamination. Field screening results from the soil samples collected above the smear zone do not indicate the likely presence of petroleum contamination at concentrations greater than the applicable cleanup levels.

The results of this soil and groundwater assessment indicate that soil and groundwater contamination likely related to the former USTs is still present at the site. Further investigation will be necessary to delineate the extent of contamination and develop potential remedial actions to address ecological and human health risks associated with the historical contamination. We recommend installing permanent monitoring wells and conducting quarterly groundwater monitoring for at least one year to establish variations in contaminant concentrations during seasonal fluctuations groundwater elevations. We further recommend surveying the top of casing elevations for any new monitoring wells installed at the site to accurately confirm the groundwater flow direction and gradient.

6.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions

and opinions presented in this report are based on our professional knowledge, judgement, and experience. No warranty or other conditions, express or implied, should be understood.

Please refer to Attachment E, Report Limitations and Guidelines for Use, for additional information pertaining to this memorandum.

7.0 REFERENCES

- GeoEngineers, Inc. 2023. "Work Plan, Clarkston City Street Shop, 1455 Bridge Street, Clarkston, Washington." December 1, 2023. File No. 0504-199-00.
- Washington Department of Ecology. 2013. "Model Toxics Control Act Regulation and Statute, Chapter 173-340 WAC and 70.105D RCW." Revised 2013, Publication 94-06.

Wyatt-Jaykim Engineers (WJE). 1993. "Site Characterization Report for City of Clarkston, Bridge Street Shop Site, 1455 Bridge Street, Clarkston, Washington." February 1993.

JD0:SHL:nl

Attachments:

Figure 1. Vicinity Map

Figure 2. Site Plan

Table 1. Chemical Analytical Results – Soil

Table 2. Chemical Analytical Results - Groundwater

Attachment A. Boring Logs

Attachment B. IDW Disposal Documentation

Attachment C. Cultural Resources Monitoring Report

Attachment D. Chemical Analytical Laboratory Reports and Data Validation Report

Attachment E. Report Limitations and Guidelines for Use

Project\0504199_Project.aprx\050419900_F01_VicinityMap Date Exported: 03/14/24 by ccabrere GIS\0504199 0\0504199

Table 1

Chemical Analytical Results - Soil¹ City of Clarkston Street Shop Clarkston, Washington

	Loc	ation ID	GEI056-B	1	GEI056-B	2	GEI056-B	3	GEI056-E	4	GEI056-B5		
	Sampl	e Depth	10-11		16-17		23-24		23-24		24-25		
	Samj	ple Date	12/5/2023 12/5/2023			23	12/6/20	23	12/5/20	23	3 12/6/202		
Analyte	MTCA CUL ⁷	Units											
		Pet	roleum Hyd	dro	carbons								
GRPH ²	30/100 ⁸	mg/kg	2.1	\cup	1.9	U	200	J	1,400		250	J	
DRPH ³	2,000	mg/kg	4.5	\bigcup	5.9	\bigcup	930		1,300		100		
ORPH ³	2,000	mg/kg	5.4	\bigcup	10.0	\bigcup	17	\bigcup	24	\bigcup	5.3	\cup	
			VOCs	⁴									
Benzene	0.03	mg/kg	0.012	\bigcup	0.011	\cup	0.010	\cup	0.13	\cup	0.098	U	
Toluene	7	mg/kg	0.053	\bigcup	0.025 l		0.047	\cup	0.58	\cup	0.044	U	
Ethylbenzene	6	mg/kg	0.019	\bigcup	0.017	\cup	0.058	J	0.21	\cup	0.016	\bigcup	
m, p-Xylene	NE	mg/kg	0.034	\bigcup	0.031	\Box	0.76		0.37	\cup	0.028	\cup	
o-Xylene	NE	mg/kg	0.027 U		0.025 U		0.52		0.29	\cup	0.023	\bigcup	
Xylenes (total)	9	mg/kg	0.061	\bigcup	0.056	\cup	1.3		0.66	\cup	0.051	\bigcup	
Naphthalene	160	mg/kg	0.033	U	0.030	\bigcup	1.4		0.36	U	0.076	J	
Ethylene dichloride (EDC)	NE	mg/kg	0.026	\bigcup	0.020	U	0.023	U	0.28	\cup	0.021	\bigcup	
Methyl tert-butyl Ether (MTBE)	0.1	mg/kg	0.035	U	0.032	U	0.031	U	0.38	U	0.029	\bigcup	
Ethylene dibromide (EDB) ⁵	0.005	mg/kg	0.000036	\bigcup	0.000038	U	0.000037	U	0.000037	U	0.000037	U	
			Metal	s ⁶									
Lead	250	mg/kg	4.8		3.4		1.7	J	1.6	J	1.7	J	

Notes

¹Samples analyzed by Eurofins Environment Testing Northwest (Eurofins) located in Spokane Valley, Washington.

²Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx.

³Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) analyzed using Northwest Method NWTPH-Dx.

⁴Volatile organic compounds (VOCs) analyzed using Environemntal Protection Agency (EPA) Method 8260D.

⁵Ethylene dibromide (EDB) analyzed using EPA Method 8011.

⁶Metals analyzed using EPA Method 6010D.

⁷Washington State Model Toxics Control Act (MTCA) Method A cleanup levels (CUL) for unrestricted land use.

⁸MTCA Method A clenaup level for GRPH when benzene is present / no detectable benzene.

bgs = below ground surface.

mg/kg = milligrams per kilogram.

NE = not established.

U = analyte was not detected above the laboratory method detection limit (MDL).

J = estimated concentration.

Bold indicates analyte was detected.

Bold with grey shading indicates the analyte was detected at concentrations greater than the MTCA Method A cleanup level. Blue shading indicates the analyte was not detected but the MDL was greater than the MTCA Method A cleanup level.

Table 2

Chemical Analytical Results - Groundwater¹

City of Clarkston Street Shop Clarkston, Washington

		Location ID GEI056-B1 G				2	GEI056-B	3	GEI056-B	4	GEI056-B5		
		Sample Date	12/5/20	23	12/5/20	23	12/6/20	23	12/5/20	23	12/6/20	23	
Analyte	Analyte MTCA CUL ⁷ Units												
		Petroleum	Hydrocarb	ons	;								
GRPH ²	800/1,000 ⁸	µg/L	54	U	150	U	5,000		2,000		290	Π	
DRPH ³	E00	µg/L	2,600	J	1,800	J	2,800	J	11,000	J	1,200	J	
ORPH ³	500	µg/L	270	J	150	J	200	J	390		120	\cup	
		v	0Cs⁴										
Benzene	5	µg/L	0.093	U	0.093	U	0.093	\cup	0.093	\bigcup	0.093	\cup	
Toluene	1,000	µg/L	0.31	\bigcup	0.31	\cup	0.59	J	0.31	\bigcup	0.31	\cup	
Ethylbenzene	700	µg/L	0.20	U	0.20	U	11		0.20	\bigcup	0.20	\cup	
m, p-Xylene	NE	μg/L	0.28	U	0.28	U	190		2.4	J	0.29	J	
o-Xylene	NE	μg/L	0.16	\cup	0.16	\cup	140		0.16	U	0.16	U	
Xylenes (total)	1,000	μg/L	0.44	\bigcup	0.44	U	330		2.4	J	0.44	U	
Ethylene dichloride (EDC)	5	μg/L	0.31	\bigcup	0.31	\cup	0.31	\cup	0.31	\bigcup	0.31	\cup	
Methyl tert-butyl Ether (MTBE)	20	μg/L	0.16	\bigcup	0.16	\cup	0.16	\cup	0.16	\bigcup	0.16	\cup	
Ethylene dibromide (EDB) ⁵	0.02	µg/L	0.0095	J	0.0025	U	0.0025	U	0.0025	U	0.0025	U	
		M	etals ⁶										
Total Lead	15	µg/L	5.1	\bigcup	5.1	U	5.1	\bigcup	60		5.1	\bigcup	
Dissolved Lead	15	µg/L	5.1	\bigcup	5.1	\bigcup	5.1	\bigcup	5.1	U	5.1	\bigcup	

Notes

¹Samples analyzed by Eurofins Environment Testing Northwest (Eurofins) located in Spokane, Washington.

²Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx.

³Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) analyzed using Northwest Method NWTPH-Dx.

⁴Volatile organic compounds (VOCs) analyzed using Environemntal Protection Agency (EPA) Method 8260D.

⁵Ethylene dibromide (EDB) analyzed using EPA Method 8011.

⁶Metals analyzed using EPA Method 6010D.

⁷Washington State Model Toxics Control Act (MTCA) Method A cleanup levels (CUL).

 8 MTCA Method A clenaup level for GRPH when benzene is present / no detectable benzene.

 μ g/L = microgram per liter.

NE = not established.

U = analyte was not detected above the laboratory method detection limit (MDL).

J = estimated concentration.

Bold indicates analyte was detected.

Bold with grey shading indicates the analyte was detected at concentrations greater than the MTCA Method A cleanup level.

ATTACHMENT A Boring Logs

1	MAJOR DIVIS	IONS	SYMBO	LS	TYPICAL	
				TTER	DESCRIPTIONS	(
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	•
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	2
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	_
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	_
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	/
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS	m	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	Sa []] 2.4-	mpler Symb	ool Descri	ptior ies &	IS Moore (D&M)	AL CA CP CS DD DS
B b S ""	Star She Pist Dire Bull Con Iowcount is re Iows required ee exploration P" indicates s	ndard Penetral Iby tube on Act-Push A or grab tinuous Coring Acorded for driv to advance sa n log for hamm ampler pusheo	ven sampler impler 12 in her weight a d using the v	rs as t ches (nd dro veight	he number of or distance noted). op. of the drill rig.	HA MC MD OC PM PI PP SA TX UC UU VS

FIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

inderstanding of subsurface conditions. ere made; they are not warranted to be

Dril	lled	<u>S</u> 12/5	<u>tart</u> /2023	3 _	<u>E</u> 12/5,	<u>nd</u> ⁄2023	Total Depth	(ft)	30		Logged By BKH Checked By JDO	Driller WDS				Drilling Method Sonic
Sur Ver	face tical	Elevat Datun	tion (fl	:)		N	761 IAVD88			H D	lammer Iata	NA	E)rilling quipn	hent	15K Speedstar truck-mount
Lat Lor	itude ngitua	e de				40 -11	6.4198 17.0668			S	ystem Datum	Decimal Degrees WGS84	S	iee "R	emark	s" section for groundwater observed
No	otes:															
\bigcap				ŀ	FIEL	D DA	ATA									
Elevation (feet)		o Depth (feet)	Interval Recovered (in)		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		M/ DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
%	5	5	6			T °	GEI056-B1 (4-5)		AC CSBC SM NR		Approximately 3 inches Gary fine gravel with silt moist) (5/8-inch mir course) Brown silty fine sand (m No recovery	of asphalt concrete pavement and sand (medium dense, nus crushed surfacing base edium dense, moist)		NS	<1	
-		- - 10 —	24 10	4		T (GEI056-B1	···· 0 0 0	SM GP-GM	-	Brown silty fine sand (m Gray-brown fine to coars occasional cobbles	edium dense, moist) se gravel with silt, sand and (very dense, moist)		NS	<1	Denser from approximately 8 to 9 feet
	5	- - 15 — -				↓	(10-11) CA		GP	-	Light brown-grav fine to	coarse gravel with sand, trace		NS	3.2	
	>	- - 20 — - -	10	18		<u>+</u>	(16-17)	0 0 9 0 0 9	SPSM	-	Gray-brown fine to coars (medium dense, mo	obbles (dense, moist)		NS	<1	
	þ	- 25 — -					GEI056-B1 (23-24)		SP	-	Becomes wet at approxi Gray fine to coarse sand (medium dense, wet	mately 24 feet d with gravel and trace silt		NS	<1	Groundwater observed at approximately 23.99 feet below ground surface during drilling Grab groundwater sample GEI056-B1-120523
		- - 30					GEI056-B1 (28-29)			_			-	NS	<1	
	Note: See Figure A-1 for explanation of symbols.															
											Log of Bori	ng GEl056-B1				
		,	_								Project: Clarkst	on Street Shop				
Date:2/20	G	EC	E	N	GI	N	EER	5 /			Project Location	: Clarkston, Washingto	on			Figure A-2

Project Location: Clarkston, Washington Project Number: 0504-199-00

Date:2

Start Drilled 12/5/2023	<u>End</u> 12/5/2023	Total Depth (ft)	30	Logged By Checked By	BKH JDO	Driller WDS		Drilling Method Sonic
Surface Elevation (ft) Vertical Datum	7 NAV	'61 VD88		Hammer Data		NA	Drilling Equipment	15K Speedstar truck-mount
Latitude Longitude	46.4 -117	4197 .0669		System Datum	I	Decimal Degrees WGS84	See "Remar	ks" section for groundwater observed

Notes:

Project Location: Clarkston, Washington Project Number: 0504-199-00

D	rilled	<u>5</u> 12/6	<u>Start</u> S/2023	3	<u>E</u> 12/6,	<u>ind</u> /2023	Total Depth	(ft)	30	Logged By Checked By	BKH / JDO	Driller WDS				Drilling Method Sonic
Si Vi	urface ertical	Eleva Datur	tion (fi n	t)		NA	761 VD88			Hammer Data		NA		Drilling Equipn	; nent	15K Speedstar truck-mount
La Lo	atitude ongituo	e de				46 -117	.4197 7.0669			System Datum		Decimal Degrees WGS84		See "R	emark	s" section for groundwater observed
Γ	lotes:												·			
	Elevation (feet)	Depth (feet)	Interval Recovered (in)		Blows/foot HI	Collected Sample	Sample Name A	Graphic Log	Group Classification		M, DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	ф		12	20	B		5056-B3 (14-15)		AC CSBC SM	Approximate Gray fine gra moist) (E course) Brown silty f No recovery Gray-brown f occasior	ine sand (m	of asphalt concrete paveme and sand (medium dense, nus crushed surfacing base redium dense, moist) se gravel with silt sand and (very dense, moist)	nt		<1 15.6 7.2	
US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_NO_GW	\$ \$	- - 20 - - - 25 -	12	20			E1056-B3 (19-20) E1056-B3 (23-24) CA		SPSM	- - - - - - - - - - - - - - - - - - -	to gray fine nal gravel ar et at approx	to coarse sand with silt, Id cobbles (medium dense, imately 24 feet	- - - - - - - - - - - - - - - 	- NS - MS	27.7 3,359	Groundwater observed at approximately 22.72 feet below ground surface during drilling Grab groundwater sample GEI056-B3-120523 Slight petroleum odor
050419900.GPJ DBLibrary/Library/GEOENGINEERS_DF_STD_US	37		3	6		GE (E1056-B3 (28-29)		SP	- Gray fine to gravel (lo	coarse sand bose, wet) vell set at 3 et bgs	d with trace silt and occasion D feet bgs; screened from 24	- 	NS	16.9	
1199\GINT\	Note Coor	e: See rdinate	Figure es Dat	e A-1 a Sc	for ex ource:	kplanati Horizor	ion of sy ntal appr	mbols oxima	Ited base	d on . Vertical ap	proximated	based on .				
:P:\0\0504										Log	of Bori	ng GEl056-B3				
Date:2/28/24 Path	G	EC	οE	N	G	NE	ER	S/	D	Project Project	: Clarks Location	on Street Shop n: Clarkston, Washir	ngton	l		Figure A-4

Project Number: 0504-199-00

Figure A-4 Sheet 1 of 1

Drill	ed 12	<u>Sta</u> 2/5/2	<u>irt</u> 2023	12/	<u>End</u> 5/2023	Total Depth	(ft)	30	Logged By BKH Checked By JDO	1	Driller WDS			Drilling Method Sonic
Surf Vert	Surface Elevation (ft)761HammerVertical DatumNAVD88Data					NA	Drilling Equipn	hent	15K Speedstar truck-mount					
Lati Lon	tude gitude				46 -11	6.4197 .7.0668			System Datum	D	Decimal Degrees WGS84	See "R	emark	s" section for groundwater observed
Not	es:													
				FIE	LD DA	TA								
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	DE	MA [®] ESC	TERIAL XRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
(6 ⁰ - - -	5-	-	60		G G	EI056-B4 (4-5)		AC CSBC SM	Approximately 3 inch Gray fine gravel with moist) (fill) (5/8-ii course) Brown silty fine sand	nes of i silt a inch i d (me	f asphalt concrete pavement and sand (medium dense, minus crushed surfacing base dium dense, moist)	NS	<1	
_168 - - - - 168	10 -	-	120		Ţ G	EI056-B4 (9-10)		GM	Brown silty fine to co - occasional cobble -	oarse les (d	gravel with sand and lense, moist) – –	NS	<1	
	15 -	- - -	120		Ţ G	EI056-B4 (15-16)	$\circ \circ $	GP-GM	Gray-brown fine to cc - occasional cobble	oarse les (d	gravel with sand and lense, moist)	NS	<1	
	20 -	-			Ţ G	EI056-B4 (19-20)	0 0 0 0	SP-SM	Gray-brown fine to co (dense, moist)	e oarse	e sand with silt and gravel – –	SS	11.5	
	25 -	-			<u> </u>	EI056-B4 (23-24) CA		SP	Becomes wet at appr Gray-brown fine to co occasional gravel	oroxin oarse el (me	nately 24 feet e sand with trace silt and edium dense, wet)	HS	1,935	Slight petroleum odor Groundwater observed at approximately 23.50 feet below ground surface during drilling Grab groundwater sample GEI056-B4-120623
I I I I	30 -	-	_		G	EI056-B4 (28-29)					-	NS	5.0	
1199/GINT/050419900.6PJ UBLIDRA/LIDR	Note: Se Coordina	æ Fij	gure A Data S	-1 for 6	explanat e: Horizo	ion of syn	mbols oxima	ted base	Temporary well set a to 30 feet bgs d on . Vertical approximat	ted b	teet bgs; screened from 20			
:F:\0\0504									Log of Bo	orin	g GEl056-B4			
0ate:2/28/24 Patr	Ge	0	Er	١G	INE	ER	S/	D	Project: Clark Project Locati	ksto ion:	on Street Shop Clarkston, Washington			Figure A-5

Project Number: 0504-199-00

Figure A-5 Sheet 1 of 1

ſ	Drilled	<u>9</u> 12/6	Start 5/20)23	12/0	<u>End</u> 5/2023	Total Depth	(ft)	30	Logged By Checked E	BKH By JDO	Driller WDS				Drilling Method Sonic
	Surface Vertica	e Eleva I Datur	tion n	(ft)		NA	761 AVD88			Hammer Data		NA	Dri Eqi	illing uipm	hent	15K Speedstar truck-mount
	Latitud Longitu	e ide				46 -11	.4198 7.0668			System Datum		Decimal Degrees WGS84	Se	e "Re	emark	s" section for groundwater observed
	Notes:								I							
ĺ					FIE	LD DA	TA									
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		MA DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	<u>1</u> 60			120		GI	E1056-B5 (3-4)	0	AC CSBC SM GP-GM	Approximat Gray fine g crushed Brown silty	ely 3 inches ravel with silt 3 surfacing ba fine sand (m	of asphalt concrete pavement and sand (5/&inch minus ase course) edium dense, moist) edium dense, moist)		NS	<1	
	-150					GI	E1056-B5 (10-11)	0 0 0 0 0 0 0 0			nal cobbles (very dense, moist)	-	NS	<1	
IENTAL_STANDARD_NO_GW	-7 ⁴⁵	15 — - - - 20 —		120		GI	EI056-B5 (15-16)	0 0 0 0 0 0 0 0		- - -			-	NS	1.1	
2017.GLB/GEI8_ENVIRONN	-74 ⁰	-					(20-21)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SM	- Brown silty dense, -	fine to coars moist)	e sand with gravel (medium	- - - -	NS	3.1 344.9	Groundwater observed at approximately 22.40 feet below ground surface during drilling Grab groundwater sample GEI056-B5-120623
GEOENGINEERS_DF_STD_US_JUNE_	<u>~</u> 35	25 —		36			(24-25) CA EI056-B5 (28-29)		SP	Brown fine	to coarse sai nal gravel (lo	nd with trace silt and ose, wet)		NS	<1	
04199\GINT\050419900.GPJ DBLibrary/Library	Not Coc	30 – e: See ordinati	Figues D	ure A- Data S	1 for e Source	explanat : Horizor	ion of syn	nbols	ted base	Temporary to 30 fe d on . Vertical a	well set at 30 vet bgs oproximated) feet bgs; screened from 20 based on .				
th:P:\0\05(Log	of Borii	ng GE1056-B5				
:2/28/24 Pa	(iF(5		IG	INF	FR	5 /		Projec Projec	t: Clarkst t Location	on Street Shop : Clarkston, Washing	ton			

Project Number: 0504-199-00

Figure A-6 Sheet 1 of 1

ATTACHMENT B IDW Disposal Documentation

Original Ticket# 715862 Ph: (509)244-0151

Customer Name ABLECLEAN ABLE CLEAN-UP Ticket Date 02/20/2024 Payment Type Credit Account Manual Ticket#	Carrier ABLECLEANU Vehicle# laramie Container Driver	JP ABLE CLEANUI Catego J 22.4	P TECHNOLOGIE ory: 018 GeoEngencers
Route Hauling Ticket# Destination Manifest 116999wa	Check# Billing# 0000726 Grid	Appro Cheek 1455	Paid [] Bridge Clarkston
Profile 116999WA (IDW) Generator WA-ABLE CLEANUP TECH 18838 AM PO# 24018	BLE CLEANUP TECHNOLOC	GIES INC_5308 N	N MYRTLE ST,
Time Scale Ope: In 02/20/2024 11:57:11 Scale1 zrid Out 02/20/2024 12:27:17 Scale1 zrid	rator Inbound chard chard	Gross Tare Net	19360 lb 16380 lb 2980 lb

Comments

Produ	ıct		LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Cont Soil Pet-RG ENERGY-Energy Su SRHD1-Spokane Re	GC-Tons- urcharge egional	100 100 100	1.49 1.49	Tons % Tons				SPOKANE SPOKANE SPOKANE

24018 4Drams 83.09

1.49

Total Tax/Fees Total Ticket

Net Tons

Driver`s Signature

The total amount includes fees and taxes that may not all be listed on this ticket due to technic limitation.

ZR

ATTACHMENT C Cultural Resources Monitoring Report

CULTURAL RESOURCES REPORT COVER SHEET

DAHP Project:

Author: Josh L	. Espen, Margaret Corcoran, Emily Whistler, and David A. Harder	
Title of Report:	Archaeological Monitoring for the Clarkston DOE Project, Asotin County,	
	Washington	
Date of Report:	February 19, 2024	
County: <u>Asotin</u>	Section: <u>20_</u> Township: <u>11 N_</u> Range: <u>46 E</u>	
	Quad: Clarkston 1971 Acres: 0.04	
PDF of report submitt	ed (REQUIRED) Xes	
Historic Property Inventory Forms to be Approved Online? Yes No		
Archaeological Site(s)/Isolate(s) Found or Amended?		
TCP(s) found? Yes No		
Replace a draft? Yes No		
Satisfy a DAHP Archaeological Excavation Permit requirement? Yes # No		
Were Human Remains Found? Yes DAHP Case # No		

DAHP Archaeological Site #:

Archaeological Monitoring for the Clarkston DOE Project, Asotin County, Washington

By: Josh L. Espen, Margaret Corcoran, Emily Whistler, and David A. Harder

February 2024

ABSTRACT

Archaeological Monitoring for the Clarkston DOE Project, Asotin County, Washington

GeoEngineers performed a subsurface investigation using a sonic drill rig in Clarkston, Washinton. Five soil borings were excavated to 32 feet (ft) (9.7 meters [m]) deep. Due to the hardscaped environment, a cultural resource survey was not performed previously, therefore monitoring was required. As such, GeoEngineers retained Plateau Archaeological Investigations, LLC (dba Plateau CRM) to monitor all ground disturbing activities. The area of potential impact covers approximately 0.04 acres and lies in Section 20 of Township 11 North, Range 46 East, Willamette Meridian.

The area of potential impact falls within the traditional territories of the Nez Perce Tribe. The Tribe requested archaeological monitoring of the ground-disturing work.

Pre-field research included the review of known archaeological resources within a 1.0-mile radius of the area of potential impact as inventoried at the Washington State Department of Archaeology and Historic Preservation (DAHP). This review was completed using DAHP's secure electronic database known as the Washington Information System for Architectural and Archaeological Data (WISAARD). This database includes recorded archaeological resources, historic property inventories (HPIs), National Register of Historic Properties (NRHP) and Washington Heritage Register (WHR) properties, identified cemeteries, and previously conducted cultural resource surveys found throughout the state. The DAHP's predictive model places the area of potential impact in an area of "High Risk" for encountering cultural resources, stating that "survey is highly advised" for this location.

Fieldwork was completed in accordance with the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation (48 FR 44716, September 29, 1983) and under the supervision of Principal Investigator, David Harder. Over the course of three days from December 5, 2023, to December 7, 2023, all ground disturbing activities were monitored by a Plateau CRM archaeologist.

KEY INFORMATION

PROJECT

Archaeological Monitoring for the Clarkston DOE Project, Asotin County, Washington

REPORT AUTHORS

Josh L. Espen, Margaret Corcoran, Emily Whistler, and David A. Harder

COUNTY

Asotin

LEGAL LOCATION OF PROJECT

Section 20 of Township 11 North, Range 46 East, Willamette Meridian

USGS QUADS

Clarkston 1971, 7.5 minute, Washington

ACREAGE

 $0.04 \ acres$

PROJECT DATA

Five previously recorded historic properties No new cultural resources located and/or recorded

DAHP PROJECT NUMBER

MANAGING AGENCY

Department of Ecology

REPORT PREPARED FOR

GeoEngineers

FIELD NOTE DISPOSITION

Archived at the office of Plateau CRM, Pullman.

PRINCIPAL INVESTIGATOR

David A. Harder, M.A.

CERTIFICATION OF RESULTS

I certify that this investigation was conducted and documented according to Secretary of Interior's Standards and Guidelines and that the report is complete and accurate to the best of my knowledge.

Signature

February 19, 2024 Date

TABLE OF CONTENTS

	page
ABSTRACT	ii
KEY INFORMATION	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	iv
LIST OF TABLES	iv
PROJECT DESCRIPTION	1
PRE-FIELD RESEARCH	1
ENVIRONMENTAL SETTING	1
REGIONAL PRECONTACT BACKGROUND	5
Ethnography	6
Places of Cultural Significance	8
REGIONAL HISTORIC BACKGROUND	11
Asotin County	14
Cartographic Analysis of the Project Area	14
PREVIOUS ARCHAEOLOGY.	16
FIELD METHODS	17
PROJECT RESULTS	
SUMMARY AND CONCLUSIONS	22
WORKS CITED	23

LIST OF FIGURES

Figure 1.	The location of the Project Area within Asotin County	2
Figure 2.	The Project Area shown on a portion of the Clarkston USGS map	3
Figure 3.	The Project Area shown in relation to ethnographic locations	10
Figure 4.	The Project Area shown on selected historic maps	15
Figure 5.	The Project Area shown on an aerial photograph	19
Figure 6.	Overview of the Project Area	20
Figure 7.	Overview of drilling activities	20
Figure 8.	Oblique view of soil recovered from a borehole	21
Figure 9.	Overview of the excavated pit	22

LIST OF TABLES

Table 1.	NRCS Soil Descriptions within Project Area	4
Table 2.	Nez Perce Year and Round by Month Translations	7
Table 3.	Ethnographic Locations near the Project Area	9
Table 4.	Previously Recorded Cultural Resource Surveys	.16
Table 5.	Previously Recorded Cultural Resources	.16
Table 6.	NRHP Eligible Historic Properties Inventoried	.17

PROJECT DESCRIPTION

GeoEngineers performed a subsurface investigation using a sonic drill rig in Clarkston, Washinton (Figure 1). The boreholes measured 30 feet (ft) (9.1 meter [m]) in depth, 4 inches (in) (76.2 centimeters [cm]) in diameter. The project included excavation of four boreholes. Anticipated impacts include excavations, compaction of sediments, and other ground-disturbing construction activities. Due to the hardscaped environment, a cultural resource survey was not performed previously, therefore monitoring was required. As such, GeoEngineers retained Plateau Archaeological Investigations, LLC (dba Plateau CRM) to monitor all ground disturbing activities.

The area of potential impact covers approximately 0.04 acres, and lies within Section 20 of Township 11 North, Range 46 East, Willamette Meridian (Figure 2). The area of potential impact hereafter will be referred to as the "Project Area."

The Project Area falls within the traditional territories of the Nez Perce Tribe. The Tribe requested archaeological monitoring of the ground-disturing work.

PRE-FIELD RESEARCH

Pre-field research included the review of known archaeological resources within a 1.0-mile (mi) (1.6 kilometer [km]) radius of the Project Area as inventoried at the Washington State Department of Archaeology and Historic Preservation (DAHP) in Olympia, Washington. This review was completed using DAHP's secure electronic database known as the Washington Information System for Architectural and Archaeological Data (WISAARD). This database includes recorded archaeological resources, historic property inventories (HPIs), properties and districts on the National Register of Historic Places (NRHP) and the Washington Heritage Register (WHR), identified cemeteries, and previously conducted cultural resource surveys found throughout the state.

Plateau CRM also conducted cartographic analysis of landform, topography, proximity to water using topographic maps, and the United States Department of Agriculture (USDA) online soil survey. Secondary historic resources, on file at the DAHP and the Plateau CRM office in Pullman, were consulted to identify other potential historic resources. In addition, available survey and overview reports and ethnographic accounts of the region were consulted. This background review allows for the identification of previously recorded historic and archaeological resources within or near the Project Area.

ENVIRONMENTAL SETTING

The Project Area is within the Columbia Basin, situated between the Rocky Mountain and Cascade Mountain ranges. The region consists of gently rolling hills amidst the Channeled Scablands, features that were scoured by Pleistocene-era mega-floods. The resultant landforms

Figure 1. The location of the Project Area within Asotin County.

Figure 2. The Project Area shown on a portion of the Clarkston USGS map.

range in size from small stream-like trenches to large coulees measuring miles wide and hundreds of feet deep. Elevations in this region range between 200 feet (ft) (61 meters [m]) above mean sea level (AMSL) near the Columbia River to over 4,500 ft (1,372 m) AMSL in outlying ridges and low mountains (Fenneman 1946; Hunt 1967).

According to the Natural Resources Conservation Service (2023), the Project Area contains one soil type: Chard loam (Table 1).

fuble f. fiftee con Descriptions within forect field.			
Soil Name	Parent Material	Horizons	% P/A
Chard loam	Loess and glaciofluvial deposits	Horizon I (0–18 inches [in]): loam	100%
		Horizon II (18–60 in): sandy loam	

The predominant draw for Native American and Euroamerican populations in this region was, and still is, the extensive river systems. The most significant environmental feature is the Columbia River, which flows for more than 1,200 mi (2,000 km) from the base of the Canadian Rockies in southeastern British Columbia to the Pacific Ocean at Astoria, Oregon. Ten major tributaries—the Cowlitz, Deschutes, Kootenay, Lewis, Okanogan, Spokane, Snake, Wenatchee, Willamette, and Yakima Rivers—complete the drainage system. The Project Area is less than 0.5 mi (0.8 km) north of the Snake River.

The vegetation around the Project Area falls within the *Agropyron spicatum-Festuca idahoensis* habitat type, characterized by a dry wheatgrass steppe (Daubenmire 1970; Taylor 1992). Bluebunch wheatgrass (*Agropyron spicatum*) and Idaho fescue (*Festuca-idahoensis*) are dominant in this environment. The plant community also includes alkali bluegrass (*Poa secunda*) and gray rabbitbrush (*Chrysothamnus nauseosus*). Sagebrush (*Artemisia*) and snowberry (*Symphoricarpos*) are absent in this zone. Many of these plants have been incorporated by Native American peoples as medicine, food, and other applications.

It is likely, though, that in the past Native Americans had access to a larger variety of species that were integrated into indigenous lifeways, settlement, and travel patterns in relation to the Project Area. Mammals include sagebrush voles (*Lemmiscus curtatus*), Great Basin pocket mice (*Perognathus parvus*), deer mice (*Peromyscus maniculatus*), bushy-tailed wood rat (*Neotoma cinerea*), Washington ground squirrel (*Spermophilus washingtoni*), northern pocket gopher (*Thomomys talpoides*), yellow bellied marmot (*Marmota flaviventris*), white-tailed hare (*Lepus townsendii*), Nuttal cottontail (*Sylvilagus nuttallii*), porcupine (*Erethizon dorsatum*), beaver (*Castor canadensis*), muskrat (*Ondatra zibethica*), Bighorn sheep (*Ovis canadensis*), coyote (*Canis latrans*), bobcat (*Lynx rufus*), badger (*Taxidea taxus*), and long-tailed weasel (*Mustela frenata*). Bison (*bison bison*) were also thought to be occasionally available in the precontact period (Burt and Grossenheider 1961; Ingles 1965; Schroedl 1973).

Many types of fowl were also prevalent including dusky grouse (*Dendragapus obscurus pallidus*), Columbian ruffed grouse (*Bonasa umbellus affinis*), Columbian sharp-tailed grouse (*Pedioecetes phasianellus*), greater sage grouse (*Centrocercus urophasianus phaios*), mallard duck (*Anas platyrhynchos platyrhynchos*), western harlequin duck (*Histrionicus histrionicus pacificus*), American common merganser (*Mergus merganser americanus*), the lesser snow goose (*Chen hyperborea hyperborea*), and the Great Basin Canada goose (*Branta canadensis moffitti*). Seasonal birds such as Gadwall (*Mareca strepera*), wood duck (*Aix sponsa*), redhead (*Aythya americana*), and the northern ruddy duck (*Oxjura jamaicensis rubida*) resided in the region in the summer. Winter game birds of the region included canvasback (*Aythya valisineria*) and American greater scaup (*Aythya marila nearctica*) (Lothson 1977).

The climate in the Columbia Basin was cool and moist at the end of the last glacial period. Climatic conditions gradually became warmer and dryer by approximately 9,000 years before present (B.P.). The warm and dry climatic trend reached its peak around 6,500 B.P. Conditions subsequently reverted to a cooler and moister regime (Fryxell and Daugherty 1962). The present climate is comparably arid with mild moist winters and hot dry summers (Meinig 1968). The mean seasonal temperature recorded at the Lewiston WSO AP, ID (#105241) between 1948 and 2005 were 52.5° Fahrenheit (F) in the winter and 63.2°F in the summer. The highest seasonal temperature in the summer was 115°F, and the lowest temperature in the winter was -22°F. Yearly precipitation averages 12.69 in (Western Regional Climate Center 2023).

REGIONAL PRECONTACT BACKGROUND

The Project Area is included in the Plateau culture area, which corresponds roughly to the geographic region drained by the Fraser, Columbia, and Snake rivers. The Plateau culture area is bordered on the west by the Cascade Mountains and on the east by the Rocky Mountains. The northern border of the culture area is in Canada where it gives way to Arctic culture patterns. The southern border of the Plateau culture area mixes gradually with the Great Basin culture area (Walker 1998a:1–3).

A cultural chronology provides a timeline describing the adaptations, material culture, subsistence, and sometimes settlement patterns of the people who inhabited a specific area. A cultural chronology for the Lower Snake River was compiled and developed by Frank Leonhardy and David Rice (1970). Leonhardy and Rice described five distinct phases within the region: the Paleoindian (11,500 to 10,000 B.P.) (Meltzer 1993), the Windust Phase (10,000 to 8,000 B.P.) (Leonhardy and Rice 1970), the Cascade Phase (8,000 to 5,000 B.P.), Tucanon Phase (5,000 to 2,500 B.P.) (Lucas 1994), and the Harder Phase (2,500 to 150 BP) (Harder 1998). The cultural chronology of the Lower Snake River has been discussed at length in Leonhardy and Rice (1970), Meltzer (1993), Lucas (1994), and Harder (1998), and, if pertinent, will be discussed further within the results of this report.

Ethnography

Ethnographic sources that depict the geographic distribution of Native American traditional territories provide a general guide for identifying the range of occupation for Indigenous groups in the precontact and historic eras. However, these boundaries are oversimplified and should not be viewed as rigid considering that they are arbitrarily defined, with sharp lines that neither depict joint or disputed occupations nor historical changes in range distributions prior to and after the early- to mid-19th century (Walker, ed. 1998b:viii). While these ethnographic sources provide a baseline for recognizing the ancestral homes of the groups that originally occupied the Project Area, it is important to recognize the variability in the geographic distribution of groups on the Plateau and the broader relationships between people and place that make these boundaries permeable (see Thom 2009:179). According to the DAHP, the Project Area is in an "area of interest" for the the Nez Perce Tribe, the Spokane Tribe of Indians, the Confederated Tribes of the Colville Reservation, and the Confederated Tribes and Bands of the Yakama Nation (DAHP 2023).

The Project Area falls within the traditional territories of the Nez Perce Tribe.

Nez Perce Tribe The Project Area is within the traditional territory of the Nez Perce, which centered on the middle Snake and Clearwater rivers and the northern Salmon River basin in central Idaho, southeast Washington, and northeast Oregon (Walker 1998c:420–421). Roughly bound by the Palouse River to the north, the Bitterroot Mountains to the east, Weiser in the south, and the Blue Mountains to the west, this area represents the most intensively occupied territory of the Nez Perce (Aoki 1994:ix). However, with their large population, frequent interactions with other groups, and extensive use of the horse, Nez Perce activities swept well beyond these territories, extending throughout Washington, Oregon, Idaho, and western Montana (Walker 1998c:425).

Depending on the season and social grouping, Nez Perce settlement layouts could vary. Permanent and semi-permanent villages were occupied during winter and summer, as well as periodic and temporary camps during the late spring, summer, and early fall. Multifamily winter villages were typically comprised of several longhouses. These lodges, some of which were temporary or seasonally moveable, were rectangular, double lean-to mat structures measuring as long as 100 ft (30.5 m) with entrances at each rounded end. Each nuclear family typically had its own fire along the centerline below the open ridge that allowed smoke to escape. Such longhouses were not only primary village living spaces of the Nez Perce, but also the centers of ceremonial and religious life (see Slickpoo and Walker 1973:39). Bison skin-covered structures became increasingly common in the late eighteenth and early nineteenth centuries as the Nez Perce became more involved with Plains cultures, as did canvas-covered structures after the material was introduced through trade. A few plank and log homes were also used during the early historic era. Temporary mat-covered, conical tents were used when hunting, fishing, or root digging on the trail (Walker 1998c:427–428).

When encountered by the Corps of Discovery in 1805, the Nez Perce were the largest Plateau culture group, with a population of approximately 6,000 (Walker 1998c:429). More than 70 permanent villages with 30–200 individuals each, depending on the season and type of social group, existed in 1800 (Slickpoo and Walker 1973:29; Walker 1998c:420). By 1970, approximately 300 historic and ethnographic settlements including villages and camps had been recorded (Slickpoo and Walker 1998c:420). These varied sites are illustrative of the intricate use and knowledge of the landscape that the Nez Perce maintained as they made their living on the Plateau as families, villages, and bands during their annual round (Table 2).

Nez Perce Term	Month	Translation
We-lu-poop	January	Season of cold weather.
Ah-la-tah-mahl	February	Season of hard time to build fire (Ah-lah).
Lah-te-tahl	March	Beginning of blossoming of flowers season.
Keh-khee-tahl	April	First blossom of roots known as <i>keh-kheet</i> (wild onion).
Ah-pah-ahl	May	Season of making of Up-pa (baked loaf) made from ground Khouse
Toose-te-ma-sah-tahl	June	Season of migrating to higher elevation to dig the roots.
Heel-Iul		Season of melting snow in the mountains.
Khoy-tsahl	July	Season of the run of the "Blue Back" salmon.
Tah-ya-ahl	August	Season of midsummer (<i>Ta-Yum</i>) hot weather. Also known as <i>Wa-wa-mai-kahl</i> ("When the salmon reach the canyon streams or upper tributaries to spawn")
Pe-khoon-mai-kahl	September	Season of the fall (<i>Sekh-nihm</i>) salmon run going up stream or when fingerlings journey down the river to the ocean.
Hope-Iul	October	Season when the Tamarack needles are shedding, and the trees turn color.
Sekh-le-wahl	November	Season of shedding leaves.
Ha-oo-khoy	December	Season of the fetus in the womb of the deer.

Table 2. Nez Perce Year and Round by Month Translations (Slickpoo and Walker 1973:30).

Plateau winter villages were arranged in river valleys, which offered not only water transportation and access to salmon and other riverine resources, but also shelter from harsh elements and late-fall and winter pastures for grazing horses (Ray 1939:135). The Nez Perce began their annual round in the early spring when winter stores had been depleted. Early activities included primarily hunting by snowshoe and canoe trips to the Snake and Columbia rivers for early salmon runs (Walker 1973:56). Shortly after, early root crops were harvested at lower elevations, as the salmon began to arrive in Nez Perce territory (Walker 1998c:420).

While hunting was a continuous and essential undertaking, salmon were the most important resource on the Plateau, and certainly for the Nez Perce. Using hook and line, spears, harpoons, dip nets, traps, or communal fish weirs, which were regulated by a fish specialist who would divide the catch, Nez Perce fisheries produced thousands of pounds of fish in a day; enough to provide an estimated 500 pounds of fish per capita annually (Walker 1998c:420).

Nez Perce usually left their lower river valley villages for the highlands by midsummer, and focus shifted to gathering staple fruits and vegetables, fishing highland streams, and hunting intensified (Walker 1998c:421). Root staples included camas (*kehm-mes*), bitterroot (*thlee-than*), couse, wild carrot (*tsa-weetkh*), and wild onion (*keh-kheet*). Fruits included serviceberries, gooseberries, hawthorn berries, thornberries, huckleberries, currants, and chokeberries. Pine nuts, sunflower seeds, and black moss were also collected. All of these resources provided an abundance of vegetables and fruits (Slickpoo and Walker 1973:30; Walker 1998c:421). Some such staples ripened as early as spring in lower areas near present-day Lewiston, while others in areas such as a Weippe may not have ripened until mid-August (Slickpoo and Walker 1973:30).

Autumn brought with it the last salmon runs, late root and berry harvesting, and the final processing of food stores for the winter. Cooperative bison hunting trips into Montana over Lolo and other passes, often with Cayuse and Yakama warriors, rounded out the surplus for the winter. By the time leaves were falling in November, most travel ceased, and the Nez Perce settled into their stocked winter villages (Walker 1998c:420–421).

The ethnographic background of the Nez Perce and the Plateau region in general has been discussed at length by Aoki (1994), Anastasio (1972), Boas and Teit (1996), Ray (1939, 1942), Smith (1988), Spier (1936), Swanton (1968), Walker (1973, 1978, 1998c), and Slickpoo and Walker Jr. (1973), and, if pertinent, will be discussed further within the results of this report.

While ethnographies such as those referenced above provide a useful means of understanding the traditional lifeways of Indigenous peoples, it is important to remember that Indigenous groups were, and continue to be, markedly complex, dynamic, and diverse. Uncritical applications of the ethnographic record to representations of past lifeways have the potential to produce reductionist views of tribes and bands that portray them as homogenous or static. The above depictions of the Nez Perce people serve as generalized portrayals of the traditional lives of these groups and should be viewed in light of these complexities.

Places of Cultural Significance

Traditional Cultural Places (TCPs) are important for the "role the property plays in a community's historically rooted beliefs, customs and practices" as stated in the *National Register Bulletin 38* (U.S. Department of the Interior 1990). Although these places can be difficult to identify and evaluate from an etic perspective, an initial search of pertinent publications can be helpful toward identifying the types of properties that may be expected. The *National Register Bulletin 38* goes on to state that "examples of properties possessing such significance include:

- a location associated with the traditional beliefs of a Native American group about its origins, its cultural history, or the nature of the world;
- a rural community whose organization, buildings and structures, or patterns of land use reflect the cultural traditions valued by its long-term residents;
- an urban neighborhood that is the traditional home of a particular cultural group, and that reflects its beliefs and practices;
- a location where Native American religious practitioners have historically gone, and are known or thought to go today, to perform ceremonial activities in accordance with traditional cultural rules of practice; and
- a location where a community has traditionally carried out economic, artistic, or other cultural practices important in maintaining its historic identity."

A review of ethnographies was undertaken to help identify any known TCPs within or near the Project Area. The works of Angelo Anastasio (1972), L.V. McWhorter (1983), Verne F. Ray (1939, 1942), Robert Ruby and John Brown (1986), Stephen D. Shawley (1977), Allen Slickpoo and Deward Walker, Jr. (1973), Allan Smith (1988), Leslie Spier (1936), and Deward Walker, Jr. (1973, 1978, 1980, 1998) were consulted. Shawley (1977) identified two ethnographic locations within 2.0 mi (3.2 km) of the Project Area (Table 3, Figure 3).

Tuble 5. Zuntogrupfile Zocatorio ficur die Project filea.		
Traditional Name	Translation	Details
not available	not available	Two suspected campsites are shown 2.0 mi (3.2 km) southeast of the Project Area (Shawley 1977:19).

Table 3. Ethnographic Locations near the Project Area.

Several collections of published legends were consulted to identify points of legendary significance within the Project Area. These are publications by Ella Clark (1966, 1969), Donald Hines (1984), and Deward Walker, Jr. (1980). Although many tales were found involving the general region, no folk tales were found to have direct connections to the Project Area.

It should be noted that TCPs, place names, and landscape narratives are highly sensitive and often sacred. Native American traditional knowledge and landscape narratives are extensive within their traditional territories, which extend well-beyond current reservation boundaries and include the Project Area. Due to the significance of TCPs, as well as their esoteric and sacred importance, and out of genuine and reasonable concern for their safety, tribes often do not share information regarding TCPs, and published materials often do not reveal locations of sensitive properties or narratives. If further review of TCPs is required, it is recommended that one consult with the tribes directly.

Figure 3. The Project Area shown in relation to ethnographic locations.
REGIONAL HISTORIC BACKGROUND

Contact with peoples on the west coast of the continent was well established by the end of the eighteenth century by British, Spanish, and Russian trading vessels that made regular visits to the coastline. These trading expeditions began the first contact between indiginous groups and outside cultures. Written historic accounts of the area, though, really begin when Lewis and Clark journeyed through the region in 1805.

On August 12, 1805, the Corps of Discovery (Corps) expedition led by Meriwether Lewis and William Clark traversed Lemhi Pass, crossing the Continental Divide into north Idaho and becoming the first European Americans to explore the region. The group camped near Lolo, Montana, then followed the Lolo Trail, an Indian trail used in trade and hunting across the Bitterroot Mountains, to the Clearwater River (Plamondon 2001: 308). The Nez Perce took in the starving and exhausted Corps, which at this point had total provisions of bear oil and 20 pounds of beeswax candles and offered assistance to the weakened Corps (Gunther 2010:26). Perhaps most significantly, they provided a map on antelope skin that would not only guide Lewis and Clark to the Columbia River, but all the way to the Pacific Ocean (Gunther 2010:27–28). Many, including Lewis and Clark, consider these moments of contact with the Nez Perce to have been among the most pivotal moments of the entire expedition, and an episode that depicted the Nez Perce as peaceful and accommodating hosts (Plamondon 2001: 311–312).

In 1809, the region saw an influx of trappers and fur traders beginning with the Canadian-owned North West Company as they made their way into the region and built Spokane House in 1810, located near the confluence of the Spokane River and Hangman Creek. Spokane House became the first permanent European settlement in the State of Washington (McCart and McCart 2000:213). For a time, Spokane House thrived as both a trading center and a gathering place for fur traders. Despite its successes, Spokane House was abandoned in 1816. By that time, trading routes had shifted largely to the Columbia River, leaving the Spokane House no longer logistically or economically important (Meinig 1968). In 1825, the Hudson's Bay Company closed Spokane House and moved its local operations north to Fort Colville at Kettle Falls.

Subsequent to the opening of the Oregon Trail in 1840, Euroamerican settlers flooded the area, bringing trade, religion, and disease into Native-occupied areas. In 1846, the United States took control of the Oregon territory in the Oregon Treaty. With increasing population and economic and political pressures of immigrants and the Whitman massacre, the Territory of Oregon (Oregon Territory) was officially established in 1848. By 1850, nearly 12,000 immigrants had passed through the Plateau region along the Oregon Trail (Beckham 1998; Walker and Sprague 1998). With the establishment of the Oregon Territory in 1848 and Washington Territory in 1853, federal involvement proliferated. Treaties between Native tribes and the new state and federal governments were soon underway.

Washington Governor Isaac Stevens, also appointed as Superintendent of Indian Affairs by President Pierce, worked jointly with Joel Palmer, Superintendent of Indian Affairs in Oregon, to negotiate a series of treaties between 1854 and 1855. On May 21, 1855, Isaac Stevens and Joel

Palmer arrived at Mill Creek in Walla Walla near the old Whitman Mission with 47 soldiers in anticipation of the Treaty Council. Stevens, appointed by President Pierce as the leader of a Pacific Railroad survey group, was responsible for acquiring as much land as possible for as little as possible, as well as discovering the least expensive railroad routes possible through the northwest (Nez Perce Tribe 2003:38).

Negotiations proceeded into June 1855, finally being completed on June 11. As landowners, the Nez Perce ceded approximately 5.5 million acres of land to the government for Euroamerican settlement and retained a 7.5-million-acre reservation that would be protected from European American trespassers (Nez Perce Tribe 2003:41; Slickpoo and Walker 1973). The Nez Perce, of course, reserved sovereign rights over their land, but also reserved rights to hunt, gather, and pasture livestock on open and unclaimed land, as well as to harvest fish at all "usual and accustomed places" throughout the ceded lands (Nez Perce Tribe 2003:40; Nez Perce Treaty, Article III; Beckham 1998; Walker 1998). In addition to such agreements, Stevens agreed to provide annuities, schools, mills, medical facilities and other goods, and infrastructure.

The guarantees of the Nez Perces' and others' rights afforded by the treaties were short lived. Just days after the Walla Walla Treaty Council concluded, gold was discovered east of the Cascades, and the rush was on. Governor Stevens illegally opened the reserved lands to afford miners passage and access to the newfound resources. Believing the reserved areas open to settlement, Euroamericans rushed onto the sovereign Native American lands. Euroamerican settlers and gold miners increasingly trespassed on the Nez Perce, Umatilla, and Yakama reserved lands, and Congress neglected to authorize funds and appropriations that were sorely needed by the tribes and had been guaranteed under law for four years. In the meantime, the gross violations of the treaties, trespassing, disease and the stresses introduced by the new settlers stealing reserved lands led to an era of conflict, with several battles taking place in the Palouse between 1855 and 1858. However, the militarily powerful Nez Perce maintained a pacifist policy and abstained from the violence.

Rather than stopping the illegal trespass and mining activities on the Nez Perce Reservation, the U.S. Government prompted another treaty council in 1863. Superintendent Calvin Hale and agents Charles Hutchins and S.D. Howe negotiated a supplemental treaty to the 1855 Nez Perce Treaty that reduced the 1855-established reservation by 90%, from 7.5 million acres to 750,000 acres (Beckham 1998; Nez Perce Tribe 2003; Walker 1998).

In 1875, President Ulysses S. Grant sent a commission to meet with the Joseph Band in Oregon, which expressed their grievances. Upon reviewing the case, President Grant restored Nez Perce land. However, a mapping error transposed the adjusted reservation boundary illustrated in the Executive Order, and mistakenly assigned Josephs' Band an area across the river that was inhabited by European Americans and vice-versa (Nez Perce Tribe 2003:43). This error led Grant to revoke the 1855 agreement, and instead commit troops to enforce the Treaty of 1863—a move that would spark one of the most famous and tragic conflicts in American history.

Non-treaty Nez Perce continued to refuse to move onto the reservation and by 1877 the rumblings of what would be known as the Nez Perce War (or Chief Joseph's War) were being heard. In May of 1877, General Oliver O. Howard held a meeting with non-treaty Indians at Fort Lapwai and gave them 30 days to comply or be taken onto the reservation by force (Walker 1998:434). The ultimatum may have had its intended effect, as Young Chief Joseph, White Bird, and other non-signatory headmen and bands met near present-day Tolo Lake and began making preparations to comply (Nez Perce Tribe 2003:48; Walker 1998:435). However, as they did so, three young warriors, avenging the deaths of their father and uncle, took revenge on 17 immigrants living along the Salmon River (Nez Perce Tribe 2002; Nez Perce Tribe 2003:48).

General Howard, fearing a contagious spread of Native American resistance, hastily deployed 99 cavalrymen and 11 volunteers under Colonel Perry from Fort Lapwai to quickly settle the violence (Nez Perce 2002). The headmen anticipated a response from Howard for the revenge killings and held council at White Bird's village to determine a next step. However, when Perry arrived at White Bird's village, he ignored the Nez Perce's white flag and ordered a full attack (Nez Perce Tribe 2003:48). Perry's forces were overwhelmed in the battle at White Bird Canyon on June 17, 1877, in which Nez Perce warriors killed 67 soldiers with only two wounded casualties of their own (Nez Perce 2002; Nez Perce 2003:48). In response to the alarming defeat in the first battle of the war, the U.S. Army raised a force that would consist of more than 2,000 soldiers, volunteers, and Indians, including hundreds of Civil War combat veterans. They countered an estimated force of 250 Nez Perce warriors traveling with 500 noncombatants (Nez Perce Tribe 2002; Kennaly 2011). So began the three-month, 1,300-mile flight of the Nez Perce.

In Idaho, battles were fought at White Bird Canyon; on the Middle Fork of the Clearwater River, where Young Looking Glass joined the fight after his peaceful village was massacred with Gatling guns; and near the mouth of Cottonwood Creek on the South Fork of the Clearwater River. As the Nez Perce fled and fought, they made their way to Yellowstone in Wyoming, and into Montana along Clark's Fork (Walker 1998:435). Without their former Crow allies' help (even being pursued by some Crow scouts) the Nez Perce determined that their only chance was to make it to Canada and rally with Chief Sitting Bull. Hungry, tired, and accompanied by hundreds of noncombatants, Looking Glass, White Bird, and Joseph found themselves only 40 mi (66.7 km) from the border on September 30, 1877, when they were intercepted by Colonel Nelson Miles (Walker 1998:435). Weary of his people's suffering and unwilling to leave behind any Nez Perce, Chief Joseph formally surrendered on October 5, 1877, to Colonel Nelson Miles at Bear Paw Mountain, only 40 mi (66.7 km) from the Canadian border. Of the 800 Nez Perce who had fled the Idaho Territory, only 431 had survived to that point, approximately half of whom escaped with White Bird (Nez Perce Tribe 2003:48).

After eight years in exile and captivity in Oklahoma, after all of the young had died, the Nez Perce were freed. Approximately half of the prisoners returned to the reservation in Idaho, while Joseph and others accepted Chief Moses' invitation to live on the Colville Reservation in Washington. Others lived on the Umatilla Reservation. Many of the survivors had to change their names due to threats of violence towards them and their families by the U.S. military (Nez Perce Tribe 2003:48).

Asotin County

Asotin County, located in extreme southeastern Washington, is named after the Nez Perce word *Has-shu-tin*, meaning "eel creek," as numerous eel were caught at the mouth of Asotin Creek (Phillips 1971:9). The county was formed from the eastern portion of Garfield County in 1883. It covers 636 square miles and is the sixth smallest county in the state. Its history centers on agriculture (e.g., farming and fruit orchards).

Non-Native Americans made a few tentative settlements in Asotin County during the 1860s. The first was Sam Smith, who in 1861 opened a small store and hotel for travelers near the mouth of Alpowa Creek on their way to and from the gold mines of Orofino, Idaho. By the late 1860s, only a handful of permanent homes dotted the area. These were located along Asotin Creek, in or near present-day City of Asotin, which was platted in 1881.

Cartographic Analysis of the Project Area

The Project Area is located in the SW¹/₄ NE¹/₄ of Section 20 of Township 11 North, Range 46 East. The 1877 cadastral map (McMicken 1877) shows no development that intersects with or is adjacent to the Project Area. The Snake River is depicted north of the Project Area and there is a road to the south (Figure 4A).

The 1945 Clarkston USGS topographic map shows more development intersecting with and adjacent to the Project Area. Multiple roads are depicted on the map, one intersects the Project Area and others are adjacent. There are multiple structures depicted on the map that are adjacent to the Project Area. The Snake River is north of the Project Area (Figure 4B).

The 1971 Clarkston USGS topographic map shows similar features to the previous map. There is still a road shown intersecting the Project Area and multiple that are adjacent to the Project Area. There are still multiple structures depicted adjacent to the Project Area. The Snake River is still shown north of the Project Area (Figure 4C).

Figure 4. The Project Area shown on selected historic maps.

PREVIOUS ARCHAEOLOGY

A review of previously recorded cultural resources and archaeological surveys was completed through the WISAARD on December 6, 2023. The review covered areas within Sections 16, 17, 18, 19, 20, 21, 28, 29, and 30 of Township 11 North, Range 46 East.

There have been 17 previously conducted cultural resource surveys within 1.0 mi (1.6 km) of the Project Area (Table 4). None of these surveys intersect with the Project Area. Four of these surveys yielded newly recorded cultural resources (Bonstead 2016, Cannell 2002, Tarman et al. 2013, Willis 2006).

Author	Project	Distance from P/A	Results
Baldwin 2008	Federal Transit Authority Grant Assistance	0–0.25 mi SW	Negative
Bonstead 2016	Walla Walla District Inventory	0.25–0.5 mi NE	45AS00469 + 6 sites beyond 1.0 mile
Cannell 2002	Lower Granite Reservoir	0.5–0.75	7 sites beyond 1.0 mile
Hall 2012	Clarkston Honor Wall	0.75–1.0 mi NE	Negative
Hannum et al. 2016	Workforce Center	0–0.25 mi N	Negative
Norman et al. 2010	Wastewater Facility Improvement	0.5–0.75 mi NE	Negative
Sappington and	Boys & Girls Clubs of the Lewis Clark	0.75–1.0 mi S	Negative
Thompson 2021	Valley		
Sappington 2022	Poplar Street Stormwater Improvements	0.75–1.0 mi E	Negative
Sappington et al. 2009	Port of Clarkston Boat Dock and ADA Accessible Pathway	0.75–1.0 mi NE	Negative
Sappington et al. 2015	Renaissance Marine Group Manufacturing Facility	0.75–1.0 mi NE	Negative
Sappington et al. 2017	Pole Barn at the Port of Clarkston	0.75–1.0 mi NE	Negative
Tarman et al. 2013	Monitoring of Route SE-2	0–0.25 mi W	1 site beyond 1.0 mile
Tracy 1996a	Red Wolf Marina Expansion	0–0.25 mi NW	Negative
Tracy 1996b	Port of Clarkston Backfill and Dolphins	0.25–0.5 mi N	Negative
Tracy 1996c	Confluence Dredging, Modifications	0.25–0.5 mi NE	Negative
Tracy 1998	Additional Dredge and Disposal	0.25–0.5 mi NW	Negative
Willis 2006	Transmission Line Pole Replacement	0.75–1.0 mi N	2 sites beyond 1.0 mile

Table 4. Previously Conducted Cultural Resource Surveys within 1.0 mi of the Project Area.

The review revealed two cultural resources within 1.0 mi (1.6 km) of the Project Area (Table 5).

iucie	o. The mousing meetor ded	editariar resources wram	i no nu or ute rroje	et i ficu.
Site Number	Site Type	Recorder(s)	Distance from P/A	Eligibility
45WT00082	Precontact Camp	Sprague 1966	0.5–0.75 mi NW	Undetermined
45WT00099	Precontact Burial	Sprague 1974, Farrow 2000	0.5–0.75 mi NW	Undetermined

Table 5. Previously Recorded Cultural Resources within 1.0 mi of the Project Area

Site 45WT00099, known as the Wilma Bar Silo Burial Site, was originally recorded in 1974 (Sprague, 1974). It is located on the north side of the Snake River, around pit solo across country road from Tom Ellis home. The site lies roughly 0.5–0.75 mi (0.8–1.2 km) northwest of the Project Area. The site is undetermined for inclusion on the NRHP (Sprague 1974, Farrow 2000).

A total of five HPIs have been inventoried or derived from the Asotin County Assessor's records within 1.0 mi (1.6 km) of the Project Area (Table 6). No HPIs are located within the Project Area. All five HPIs are Eligible for inclusion on the NRHP. The Eligible HPIs are all located over a half mile away from the Project Area.

	0 1		J
Property	Resource Name	Recorder(s)	Distance from P/A
98315	415 10th Street	DAHP 2008	0.75–1.0 mi E
98475	1200 McCarrol Street	DAHP 2001	0.75–1.0 mi S
700088	Van Arsdol, C.C., House	DAHP 1975	0.5–0.75 mi S
710481	1226 Elm Street	Holter 2017	0.5–0.75 mi SE
725998	Clarkston Smokestack	Whisenant 2021	0.5–0.75 mi SE

Table 6. NRHP Eligible Historic Properties Inventoried within 1.0 mi of the Project Area.

FIELD METHODS

Fieldwork was completed in accordance with the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation (48 FR 44716, September 29, 1983) and under the supervision of Principal Investigator, David Harder. Over the course of three days from December 5, 2023, to December 7, 2023 a Plateau CRM archaeologist monitored installation of five boreholes and excavation necessitated to repair a sewer line that was struck in Borehole 4.

GeoEngineers Inc. of Spokane, Washington performed all ground disturbing work for the project using a geotechnical drill rig with a 4-in diameter auger. A CAT mini excavator with a 30-in bucket was used to excavate a pit for sewer pipe repair. Generally, the crew was busy on site from 7:00 a.m. to 4:00 p.m., and all ground disturbing activities were monitored by a Plateau CRM archaeologist during that time. During mechanical excavations, the archaeologist, outfitted with a high-visibility safety vest, a hard hat, eye protection, and gloves observed from a safe position that allowed for the best possible view of the excavated area.

Archaeologists trowel-scraped all geotechnical samples and screened six soil samples during pit excavation. Spoils were screened through ¼ inch wire mesh. Sediment characteristics (color, composition, and degree of compaction noted) were described by visual inspection of soil profiles in the trench walls.

All location data (control points, daily start and end points, cultural materials) were recorded with a handheld GPS unit, and the archaeologists took representative photographs of the Project Area, excavation trench, excavation equipment, and cultural materials. Monitoring log forms were filled out daily, and included such information as weather, time on site, construction equipment used, trench size, sediment characteristic, observed cultural materials, GPS points and photographs taken.

PROJECT RESULTS

Plateau CRM archaeologist James MacNaughton monitored ground-disturbing activities from December 5, 2023, to December 7, 2023. (Figure 5 and Figure 6).

December 5, 2023 MacNaughton monitored drilling of GEI056-B1, GEI056-B2, and GEI056-B3 (Figure 7). All boreholes measured 32 ft in depth and a diameter of 4 in. Soil from 0–7 ft (0–2.1 m) within GEI056-B1 was dark yellowish brown (10YR 4/4) loamy sand with rounded cobbles. A cobble layer was encountered from 7–9 ft (2.1–2.7 m). Soil from 9–32 ft (2.7–9.8 m) within GEI056-B1 was brown (10YR 3/2) sand with rounded cobbles. Soil from 0–4 ft (0–1.2 m) within GEI056-B2 was homogenous dark yellowish brown (10YR 3/6) loamy sand. Soil from 4–6 ft (1.2–1.8 m) within GEI056-B2 was grayish brown (10YR 5/2) sand with subangular gravels. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was homogenous dark yellowish brown (10YR 5/2) solution (10YR 3/6) loamy sand. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was homogenous dark yellowish brown (10YR 5/2) solution (10YR 3/6) loamy sand. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was homogenous dark yellowish brown (10YR 5/2) solution (10YR 3/6) loamy sand. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was homogenous dark yellowish brown (10YR 3/6) loamy sand. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was homogenous dark yellowish brown (10YR 5/2) sand with 75% rounded cobbles. Soil from 0–4 ft (0–1.2 m) within GEI056-B3 was grayish brown (10YR 5/2) sand with subangular gravels. Soil from 6–32 ft (1.8–9.7 m) was grayish brown (10YR 5/2) sand with 75% rounded cobbles. A total of 0.31 yd³ (0.24 cubic meters m³) of excavated soil was monitored and all geotechnical samples were trowel-sorted. No cultural materials were observed.

December 6, 2023 MacNaughton monitored auguring of GEI056-B4 and Boring 5. Both boreholes measured 32 ft in depth and a diameter of 4 in. Soil from 0–7 ft (0–2.1 m) within GEI056-B4 and Boring 5 was homogeneous dark yellowish brown (10YR 3/6) loamy sand. Soil from 7–12 ft (2.1–3.7 m) within GEI056-B4 and Boring 5 was grayish brown (10YR 5/2) sand with subangular gravel. Soil from 12–22 ft (3.7–6.7 m) was dark brown (10YR 3/3) sandy loam. Soil from 22–32 ft (6.7–9.6 m) was brown (7.5YR 5/4) sand (Figure 8). A total of A total of 0.21 yd³ (0.16 cubic meters m³) of excavated soil was monitored and all geotechnical samples were trowel-sorted. No cultural materials were observed.

Figure 5. The Project Area shown on an aerial photograph.

Figure 6. Overview of the Project Area. View to the south.

Figure 7. Overview of drilling activities. View to the south.

Figure 8. Oblique view of soil recovered from a borehole.

December 7, 2023 MacNaughton monitored 100% of the excavations for a pit to repair a pipe (Figure 9). The pit measured approximately 6.0 ft x 6.0 ft x 4.0 ft (1.8 m x 1.8 m x 1.2 m). Soil from 0–4 ft (0–1.2 m) within the pit was brown (10YR4/4) sandy loam with cobbles and subangular gravel. A total of 5.33 yd³ (4.08 cubic meters m³) of excavated soil was monitored and six soil samples were screened. No cultural materials were observed.

Soils observed throughout the Project Area were sandy loam, similar to those predicted by the NRCS soil survey.

During monitoring, archaeologists identified no isolated artifacts, observed and recorded no new archaeological sites, and added no new cultural materials to the inventory of one previously recorded site.

Figure 9. Overview of the excavated pit.

SUMMARY AND CONCLUSIONS

Over the course of three days from December 5, 2023, to December 7, 2023, all ground disturbing activities were monitored by one Plateau CRM archaeologist. This monitoring covered roughly 0.04 acres of excavations, consisting of 5.85 yd³ (4.47 m³) of sediment.

Archaeological monitoring resulted in the identification of no isolated artifacts, no newly recorded archaeological sites, and changes to no previously recorded archaeological sites.

WORKS CITED

Anastasio, Angelo

1972 The Southern Plateau: An Ecological Analysis of Intergroup Relations. *Northwest Anthropological Research Notes* 6:109–229.

Aoki, Haruo

1994 *Nez Perce Dictionary.* University of California Press, Berkley.

Baldwin, Garth L.

2008 *Federal Transit Authority Grant Assistance to Asotin County Public Transportation Benefit Area.* Drayton Archaeological Research, Blain, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Beckham, Stephen D.

1998 History Since 1846. In *Plateau*, edited by Deward E. Walker, Jr., pp.149–173. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution, Washington D.C.

Boas, Franz, and James Teit

1996 *Coeur D'Alene, Flathead, and Okanogan Indians.* Reprinted by Ye Galleon Press, Fairfield, Washington. Originally published 1930, Forty-fifth Annual Report of the Bureau of American Ethnology, Smithsonian Institution, 1927–1928. United States Government Printing Office, Washington, D.C.

Bonstead, Leah

2016 *FCRPS Walla Walla District Inventory Survey Report for FY2014*. U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Burt, William H., and Richard P. Grossenheider

1961 *A Field Guide to the Mammals*. The Peterson Field Guide Series, Houghton Mifflin Company, Boston, Massachusetts.

Cannell, Kevin G.

2002 *Results of the Lower Granite Reservoir Cultural Resource Inventory 2000-2001.* U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Clark, Ella E.

- 1966 Indian Legends from the Northern Rockies. University of Oklahoma Press, Norman.
- 1969 Indian Legends of the Pacific Northwest. University of California Press, Berkeley, California.

Daubenmire, Rexford

1970 *Steppe Vegetation of Washington.* Washington Agricultural Experiment Station Technical Bulletin 62. Washington State University, Pullman.

Department of Archaeology and Historic Preservation

- 1975 State of Washington Archaeological Site Inventory Form: 700088. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 2001 State of Washington Historic Property Inventory Form 98475. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 2008 State of Washington Historic Property Inventory Form: 98315. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 2023 WISAARD. Electronic document, dahp.wa.gov, accessed December 6, 2023.

Farrow, G.

2000 State of Washington Archaeological Site Inventory Form: 45WT00099. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Fenneman, N.M.

1946 *Physical Descriptions of the United States*. U.S. Geological Survey, Washington, D.C.

Fryxell, Roald, and Richard D. Daugherty

1962 *Schematic Geoarchaeological Chronology for Eastern Washington and Related Areas.* Department of Anthropology, Washington State University, Pullman, Washington.

Gunther, Vanessa Ann

2010 *Chief Joseph: A Biography.* Greenwood, Santa Barbara, California.

Hall, Scott M.

2012 *City of Clarkston Honor Wall.* U.S. Army Corp of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Hannum, Michelle M., Louis Fortin, and David A. Harder

2016 Walla Walla Community College Clarkston Workforce Center Project, Asotin County, Washington. Plateau CRM, Pullman, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Harder, David A.

1998 A Synthetic Overview of the Tucannon Phase in the Lower Snake River Region of Washington and Idaho. Unpublished Master's thesis, Department of Anthropology, Washington State University, Pullman.

Hines, Donald M.

1984 Tales of the Nez Perce. Ye Gallon Press, Fairfield, Washington.

Holter, Russell

2017 State of Washington Historic Property Inventory Form: 710481. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Hunt, C.B.

1967 *Physiography of the United States.* W.H. Freeman and Company, San Francisco, California.

Ingles, Lloyd G.

1965 Mammals of the Pacific States. Stanford University Press, Stanford, California.

Kennaly, David

2011 The Nez Perce War of 1877. US Army, Military History Institute. Electronic resource, www.army.mil/article/28124/The_Nez_Perce_War_of_1877/, accessed on September 16, 2011.

Leonhardy, Frank C., and David G. Rice

1970 A Proposed Cultural Typology for the Lower Snake River Region, Southeastern Washington. *Northwest Anthropological Research Notes* 4:1–29.

Lothson, Gordon A.

1977 Archaeological Reconnaissance and Phase II Testing of Oroville Urban Levees. Washington Archaeological Research Center, Progress Report No. 52, Washington State University, Pullman, Washington.

Lucas, Steven W.

1994 Origin of the Tucannon Phase in Lower Snake River Prehistory. Unpublished Master's thesis, Departments of Anthropology and Geography, Oregon State University, Corvallis, Oregon.

McCart, Joyce, and Peter McCart

2000 On the Road with David Thompson. Fifth House Publishers, Calgary, Alberta.

McWhorter, L.V.

1983 *Hear Me, My Chiefs! Nez Perce History and Legend,* edited by Ruth Bordin. Caxton Printers, LTD, Caldwell, Idaho.

Meinig, Donald W.

1968 *The Great Columbia Plain; A Historical Geography, 1805–1910.* University of Washington Press, Seattle, Washington.

Meltzer, David J.

1993 Pleistocene Peopling of the Americas. *Evolutionary Anthropology* 1:157–169.

Natural Resources Conservation Service

2023 Web Soil Survey. Electronic document www.nrcs.usda.gov accessed December 6, 2023.

Nez Perce Tribe

- 2002 Conflict of 1877. The Lewis and Clark Rediscovery Project, University of Idaho. Electronic resource, www.trailtribes.org, accessed on November 7, 2016.
- 2003 *Treaties: Nez Perce Perspectives.* United States Department of Energy and Confluence Press and Environmental Restoration and Waste Management Program. Lapwai, Idaho.

Norman, Jared, Jessica Glindeman, and Gretchen Borkowski-Chupp

2010 *City of Clarkston Wastewater Facility Improvement Project Cultural Resource Survey.* Nez Perce Tribe, Lapwai, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Phillips, James W.

1971 *Washington State Place Names*. University of Washington Press, Seattle, Washington.

Plamondon, Martin

2001 Lewis and Clark Trail Maps: A Cartographic Reconstruction, Volume II, Beyond Fort Mandan (North Dakota/Montana) to Continental Divide and Snake River (Idaho/Washington) Outbound 1805; Return 1806. Washington State University Press, Pullman.

Ray, Verne F.

- 1939 Cultural Relations in the Plateau of Northwestern America. Publications of the Frederick Webb Hodge Anniversary Publication Fund Vol. 3. Southwestern Museum Publications, Los Angeles.
- 1942 *Cultural Element Distributions: XXII Plateau*. Anthropological Papers 8:2. University of California Press, Berkeley.

Ruby, Robert H., and John A. Brown

1986 *A Guide to the Indian Tribes of the Pacific Northwest*. University of Oklahoma Press, Norman.

Sappington, Robert Lee

2022 Cultural Resource Monitoring for the City of Clarkston Poplar Street Stormwater Improvements Project. University of Idaho, Moscow, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington. Sappington, Robert Lee, Cynthia R. Hannold, and Idah Whisenant

2017 Results of Cultural Resource Investigations for the Washington Department of Fish and Wildlife Pole Barn at the Port of Clarkston, Asotin County, Washington. University of Idaho, Moscow, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Sappington, Robert Lee, Jared Norman, and Ryan Harrod

2009 Results of Archaeological Testing for the Proposed Port of Clarkston Boat Dock and ADA Accessible Pathway Project, Asotin County, Washington. University of Idaho, Moscow, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Sappington, Robert Lee, and Jordan J. Thompson

2021 Results of An Archaeological Survey for the Boys & Girls Clubs of the Lewis Clark Valley, Clarkston, Washington. University of Idaho, Moscow, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Sappington, Robert Lee, Dakota Wallen, and Daniel J. Polito

2015 Results of Cultural Resource Investigations for the Renaissance Marine Group Manufacturing Facility at the Port of Clarkston, Asotin County, Washington. University of Idaho, Moscow, Idaho. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Schroedl, Gerald F.

1973 *The Archaeological Occurrence of Bison in the Southern Plateau.* Reports of Investigations No. 51. Laboratory of Anthropology. Washington State University, Pullman, Washington.

Shawley, Stephen D.

1977 Nez Perce Trails. University of Idaho Anthropological Research Manuscript Series, No. 44, revised 1984. Moscow, Idaho.

Slickpoo, Allen, and Deward E. Walker

1973 Noon Nee-Me-Poo (We, the Nez Perces): Culture and History of the Nez Perces, Volume 1. Nez Perce Tribe of Idaho, Lapwai, Idaho.

Smith, Allan H.

1988 *Ethnography of the North Cascades.* Project Report No. 7, Center for Northwest Anthropology, Washington State University, Pullman.

Spier, Leslie

1936 *Tribal Distribution in Washington*. General Series in Anthropology No. 3. George Banta Publishing Co., Menasha, Wisconsin.

Sprague, R.

- 1996 State of Washington Archaeological Site Inventory Form: 45WT00082. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 1974 State of Washington Archaeological Site Inventory Form: 45WT00099. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Swanton, John R.

1968 Indian Tribes of Washington, Oregon, and Idaho. Ye Gallon Press, Fairfield, Washington.

Tarman, Sylvia, Emily K. Ragsdale, Jennifer Hushour, and Barbara Montgomery

2013 *Archaeological Monitoring of Route SE-2 of the Washington Rural Access Project.* Tierra Right of Way, Spokane, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Taylor, Ronald J.

1992 Sagebrush Country: A Wildflower Sanctuary. Mountain Press Publishing Company. Missoula, Montana.

Tray, Ray L

- 1996a *Cultural Resource Inventory Report Red Wolf Marina Expansion*. U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 1996b *Cultural Resource Inventory Report Port of Clarkston Backfill and Dolphins*. U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 1996c Cultural Resource Inventory Report Port of Clarkston Confluence Dredging, Modifications. U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- 1998 Cultural Resource Inventory Report Additional Dredge and Disposal Project, 1998. U.S. Army Corps of Engineers, Walla Walla, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.
- U.S. Department of the Interior
 - 1990 *Guidelines for Evaluating and Documenting Traditional Cultural Properties in National Bulletin #38.* U.S. Department of the Interior, National Park Service, Interagency Resources Division.

U.S. Geological Survey

- 1945 Topographic Map: Clarkston Washington 7.5' Series.
- 1971 Topographic Map: Clarkston, Washington 7.5' Series.

Walker, Deward E., Jr.

- 1973 *American Indians of Idaho.* Volume 1, Aboriginal Cultures. Anthropological Monographs of the University of Idaho, No. 2, edited by Roderick Sprague. University of Idaho Press, Moscow.
- 1978 *Indians of Idaho.* Anthropological Monographs of the University of Idaho, edited by Roderick Sprague. University of Idaho Press, Moscow.
- 1980 *Myths of Idaho Indians.* Anthropological Monographs of the University of Idaho, edited by Roderick Sprague. University Press of Idaho, Moscow.
- 1998a Introduction. In *Plateau*, edited by Deward E. Walker, Jr., pp. 1-7. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution, Washington D.C.
- 1998b *Plateau*, edited by Deward E. Walker Jr. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution, Washington D.C.
- 1998c Nez Perce. In *Plateau*, edited by Deward E. Walker, Jr., pp. 420–445. Handbook of North American Indians, Vol.12, William C. Sturtevant, general editor, Smithsonian Institution, Washington D.C.

Walker, Deward E., Jr., and Roderick Sprague

1998 History Until 1846. In *Plateau*, edited by Deward E. Walker, Jr., pp. 138–148. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution, Washington D.C.

Washington State Department of Natural Resources

2019 Columbia Basin. Electronic document, https://www.dnr.wa.gov/programs-andservices/geology/explore-popular-geology/geologic-provinceswashington/columbia-basin, accessed December 01, 2019.

Western Regional Climate Center

2022 Lewiston WSP AP, Idaho (105241) weather station. Electronic document, www.wrcc.sage.dri.edu, accessed December 7, 2023.

Whisenant, Idah

2021 State of Washington Historic Property Inventory Form: 725998. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

Willis, Samuel C.

2006 Cultural Resource Survey for Bonneville Power Administration Walla Walla-North Lewiston 115-kV Transmission Line Pole Replacement Project and Access Road Improvements in Columbia, Garfield, Asotin, and Whitman Counties, Washington, and Nez Perce County, Idaho. Archaeological and Historical Services, Eastern Washington University, Cheney, Washington. On file at the Department of Archaeology and Historic Preservation in Olympia, Washington.

ATTACHMENT D

Chemical Analytical Laboratory Reports and Data Validation Report

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

Project:	City of Clarkston Street Shop — Environmental Services December 2023 Soil and Groundwater Samples
File:	0504-199-00
Date:	January 28, 2024

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the December 2023 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the City of Clarkston Street Shop facility located at 1455 Bridge Street in Clarkston, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional for Organic Superfund Methods Data Review (USEPA, 2020a) and Inorganic Superfund Methods Data Review (USEPA, 2020b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (QAPP), Appendix B of the Work Plan (GeoEngineers, 2023), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

Laboratory SDG	Samples Validated
590-22420-1	GEI056-B1(10-11), DUP:120523, GEI056-B1-120523, DUP-120523-2, GEI056-B2(16-17), GEI056-B2-120523, GEI056-B3(23-24), GEI056-B3-120623, GEI056-B4(23-24), GEI056-B4-120523, GEI056-B5(24-25), GEI056-B5-120623, GEI056-Comp-120623, Trip Blank (soil), Trip Blank (water)

CHEMICAL ANALYSIS PERFORMED

Eurofins Spokane, Environment Testing Northwest, LLC (Eurofins), located in Spokane, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Gasoline-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method EPA8260D;
- 1,2-Dibromoethane (EDB) by Method EPA8011; and
- Total and Dissolved Metals by Methods EPA6010D and EPA7471B

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

Eurofins provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample cooler arrived at the laboratory within the appropriate temperatures of between two and six degrees Celsius.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates

Data Validation Report January 28, 2024 Page 3

are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 590-22420-1: (NWTPH-Dx) There was a positive result for diesel- and lube oil-range hydrocarbons in the method blank extracted on 12/8/2023. The positive result for diesel-range hydrocarbons was qualified as non-detected (U) in Sample GEI056-B2(16-17). The positive results for lube oil-range hydrocarbons were qualified as non-detected (U) in Samples GEI056-B2(16-17), GEI056-B3(23-24), GEI056-B4(23-24), and DUP:120523.

<u>Trip Blanks</u>

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected in the trip blanks, with the following exception:

SDG 590-22420-1: (NWTPH-Gx) There was a positive result for gasoline-range hydrocarbons in Sample Trip Blank (soil). There were no positive results for this target analyte or the positive result for this target analyte was greater than 2X the concentration in the trip blank in the associated field samples; therefore, no qualifications were required.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG 590-22420-1: (VOCs) The laboratory performed an MS/MSD sample set on Sample DUP:120523. The percent recovery for 1,2-Dichloroethane was greater than the control limits in the MS extracted on 12/8/2023;

Data Validation Report January 28, 2024 Page 4

however, the percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS/LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG 590-22420-1: (VOCs) The percent recovery for 1,2-Dichloroethane was greater than the control limits in the LCS extracted on 12/8/2023. There were no positive results for this target analyte in the associated field samples; therefore, no qualifications were required.

Field Duplicates

In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for water is 30 percent. The RPD control limit for soil is 40 percent.

SDG 590-22420-1: Two field duplicate sample pairs, GEI056-B1(10-11)/DUP:120523 and GEI056-B1-120523/DUP-120523-2, were submitted with this SDG. The precision criteria for the target analytes were met for these sample pairs.

Miscellaneous

SDG 590-22420-1: (NWTPH-Dx) The positive results for diesel-range hydrocarbons in Samples GEI056-B1-120523, DUP-120523-2, GEI056-B2-120523, GEI056-B3-120623, GEI056-B4-120523, and GEI056-B5-120623 appear to be due to gasoline-range hydrocarbons overlap, as well as heavily weathered diesel, in the sample concentrations. For this reason, the positive results for this target analyte were qualified as estimated (J) in these samples.

The positive results for lube oil-range hydrocarbons in Samples GEI056-B3(23-24) and GEI056-B4(23-24) appear to be due to diesel-range hydrocarbons overlap in the sample concentrations. For this reason, the positive results for this target analyte were qualified as estimated (J) in these samples.

Data Validation Report January 28, 2024 Page 5

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
DUP:120523	Lube oil-range hydrocarbons	U	Method Blank Contamination
GEI056-B1-120523	Diesel-range hydrocarbons	J	See Miscellaneous
DUP-120523-2	Diesel-range hydrocarbons	J	See Miscellaneous
GEI056-B2(16-17)	Diesel-range hydrocarbons	U	Method Blank Contamination
	Lube oil-range hydrocarbons	U	Method Blank Contamination
GEI056-B2-120523	Diesel-range hydrocarbons	J	See Miscellaneous
GEI056-B3(23-24)	Lube oil-range hydrocarbons	UJ	Method Blank Contamination/See Miscellaneous
GEI056-B3-120623	Diesel-range hydrocarbons	J	See Miscellaneous
GEI056-B4(23-24)	Lube oil-range hydrocarbons	UJ	Method Blank Contamination/See Miscellaneous
GEI056-B4-120523	Diesel-range hydrocarbons	J	See Miscellaneous
GEI056-B5-120623	Diesel-range hydrocarbons	J	See Miscellaneous

TABLE 2. SUMMARY OF QUALIFIED SAMPLES

REFERENCES

U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA) 2020a. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.

U.S. Environmental Protection Agency (USEPA) 2020b. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-542-R-20-006. November 2020.

GeoEngineers, Inc. (GeoEngineers). "Work Plan, City of Clarkston Street Shop," prepared for Washington State Department of Ecology. December 1, 2023.

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Bryce Hanson GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202 Generated 12/19/2023 8:13:32 PM

JOB DESCRIPTION

Clarkston Street Shop/0504-199-00

JOB NUMBER

590-22420-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Cardue Aming

Generated 12/19/2023 8:13:32 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

5 6 7

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	6
Definitions	7
Client Sample Results	8
QC Sample Results	21
Chronicle	33
Certification Summary	39
Method Summary	40
Chain of Custody	41
Receipt Checklists	44

1 2 3 4 5 6 7 8 9 10 11

Job ID: 590-22420-1

Eurofins Spokane

Job Narrative 590-22420-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/7/2023 10:19 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

GC/MS VOA

Method 8260D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 590-45078.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-45004 recovered above the upper control limit for 1,2-Dichloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D: The following sample was diluted due to the nature of the sample matrix: GEI056-B4(23-24) (590-22420-24). Elevated reporting limits (RLs) are provided.

Method 8260D: The laboratory control sample (LCS) for preparation batch 590-45010 and analytical batch 590-45036 recovered outside control limits for the following analytes: 1,2-Dichloroethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method NWTPH_Gx_MS: The following samples were diluted due to the nature of the sample matrix: GEI056-B3(23-24) (590-22420-17) and GEI056-B5(24-25) (590-22420-31). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method NWTPH_Dx: Detected hydrocarbons in the diesel range appear to be due to gasoline overlap as well as heavily weathered diesel.

GEI056-B1-120523 (590-22420-7), GEI056-B2-120523 (590-22420-14), GEI056-B3-120623 (590-22420-19), GEI056-B4-120523 (590-22420-26), GEI056-B5-120623 (590-22420-33) and DUP-120523 (590-22420-35)

Method NWTPH_Dx: The continuing calibration verification (CCV) associated with batch 590-44998 recovered above the upper control limit for Diesel Range Organics (DRO) (C10-C25). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: (CCVRT 590-44998/3), (590-22421-A-1-A) and (590-22421-A-1-B DU).

Method NWTPH_Dx: The method blank for preparation batch 590-44992 and analytical batch 590-44998 contained Diesel Range Organics (DRO) (C10-C25) and Residual Range Organics (RRO) (C25-C36) above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method NWTPH_Dx: Detected hydrocarbons in the oil range appear to be due to diesel overlap.

GEI056-B3(23-24) (590-22420-17) and GEI056-B4(23-24) (590-22420-24)

Case Narrative

Client: GeoEngineers Inc Project: Clarkston Street Shop/0504-199-00

Eurofins Spokane

Job ID: 590-22420-1 (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Sample Summary

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID

GEI056-B1(10-11) DUP:120523

GEI056-B1-120523

GEI056-B2(16-17)

GEI056-B2-120523

GEI056-B3(23-24)

GEI056-B3-120623

GEI056-B4(23-24)

GEI056-B4-120523

GEI056-B5(24-25)

GEI056-B5-120623

DUP-120523

Trip Blank Trip Blank

GEI056-Comp-120623

Lab Sample ID

590-22420-2

590-22420-6 590-22420-7

590-22420-10

590-22420-14

590-22420-17

590-22420-19

590-22420-24

590-22420-26

590-22420-31

590-22420-33

590-22420-34

590-22420-35

590-22420-36

590-22420-37

Job	ID:	590-22420-1

¢

			3
Matrix	Collected	Received	_
Solid	12/05/23 08:15	12/07/23 10:19	Λ
Solid	12/05/23 10:00	12/07/23 10:19	
Water	12/05/23 11:48	12/07/23 10:19	5
Solid	12/05/23 12:05	12/07/23 10:19	
Water	12/05/23 15:00	12/07/23 10:19	
Solid	12/06/23 08:20	12/07/23 10:19	
Water	12/06/23 11:21	12/07/23 10:19	
Solid	12/05/23 15:20	12/07/23 10:19	
Water	12/05/23 17:06	12/07/23 10:19	
Solid	12/06/23 14:50	12/07/23 10:19	8
Water	12/06/23 17:30	12/07/23 10:19	
Solid	12/06/23 12:10	12/07/23 10:19	9
Water	12/05/23 12:00	12/07/23 10:19	
Water	12/05/23 00:00	12/07/23 10:19	
Solid	12/05/23 00:00	12/07/23 10:19	

Definitions/Glossary

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

Qualifiers

GC/MS VOA Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
F1	MS and/or MSD recovery exceeds control limits.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	•
GC Semi VO	Α	
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	7
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		8
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	9
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4.4
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

- MCL EPA recommended "Maximum Contaminant Level"
- MDA Minimum Detectable Activity (Radiochemistry)
- MDC Minimum Detectable Concentration (Radiochemistry)
- MDL Method Detection Limit
- ML Minimum Level (Dioxin) MPN Most Probable Number
- MQL Method Quantitation Limit
- NC Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent
- POS Positive / Present
- PQL Practical Quantitation Limit
- PRES Presumptive
- QC Quality Control
- RER
 Relative Error Ratio (Radiochemistry)

 RL
 Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B1(10-11) Date Collected: 12/05/23 08:15 Date Received: 12/07/23 10:19

Job ID: 590-22420-1

Lab Sample ID: 590-22420-2 Matrix: Solid

Percent Solids: 92.3

Method: SW846 8260D - Vola	atile Organic	Compour	nds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	*+	0.12	0.026	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Benzene	ND		0.024	0.012	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Ethylbenzene	ND		0.12	0.019	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
m,p-Xylene	ND		0.47	0.034	mg/Kg	₽	12/08/23 12:15	12/08/23 19:08	1
Methyl tert-butyl ether	ND		0.059	0.035	mg/Kg	☆	12/08/23 12:15	12/08/23 19:08	1
Naphthalene	ND		0.24	0.033	mg/Kg	₽	12/08/23 12:15	12/08/23 19:08	1
o-Xylene	ND		0.24	0.027	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Toluene	ND		0.12	0.053	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Xylenes, Total	ND		0.71	0.061	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		79 - 124				12/08/23 12:15	12/08/23 19:08	1
4-Bromofluorobenzene (Surr)	104		66 - 129				12/08/23 12:15	12/08/23 19:08	1
Dibromofluoromethane (Surr)	116		80 - 120				12/08/23 12:15	12/08/23 19:08	1
Toluene-d8 (Surr)	98		80 - 120				12/08/23 12:15	12/08/23 19:08	1
Method: NWTPH-Gx - North	west - Volatile	e Petroleu	m Products (G	C/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.9	2.1	mg/Kg	¢	12/08/23 12:15	12/08/23 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162				12/08/23 12:15	12/08/23 19:08	1
Method: SW846 8011 - EDB, Analyte	DBCP, and 1 Result	,2,3-TCP Qualifier	(<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.083	0.036	ug/Kg	¢	12/11/23 10:40	12/11/23 21:11	1
- - - No stie o de NIM/TRUE Des - No stie			ter la com Decida		•				
Wethod: NWIPH-DX - North	west - Semi-v		troleum Produ		~)		Drenered	Anolymod	
Analyte		Quaimer	- <u> </u>			<u> </u>		Analyzeu	
(C10-C25)	UN		11	4.5	mg/Kg	÷.	12/06/23 06:36	12/06/23 15:09	I
Residual Range Organics (RRO) (C25-C36)	ND		27	5.4	mg/Kg	¢	12/08/23 08:38	12/08/23 15:09	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				12/08/23 08:38	12/08/23 15:09	1
n-Triacontane-d62	88		50 - 150				12/08/23 08:38	12/08/23 15:09	1
_ Method: SW846 6010D - Met	tals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.8		2.3	1.1	mg/Kg	¢	12/11/23 09:42	12/11/23 15:05	1
Client Sample ID: DUP:1	20523					L	ab Sample	D: 590-22	2420-6
Date Collected: 12/05/23 10:0	0							Matrix	c: Solid
Date Received: 12/07/23 10:1	9							Percent Solid	ls: 91.3
_ Method: SW846 8260D - Vola	atile Organic	Compour	nds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	F1 *+	0.15	0.032	mg/Kg	— <u> </u>	12/08/23 12:15	12/08/23 19:51	1
Benzene	ND		0.030	0.015	ma/Ka	Å	12/08/23 12:15	12/08/23 19:51	1

Analyte Result Result

Eurofins Spokane

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: DUP:120523 Date Collected: 12/05/23 10:00 Date Received: 12/07/23 10:19

Lab Sample ID: 590-22420-6 Matrix: Solid

Percent Solids: 91.3

5

6

	B	Owella			11	-	Due to a start	A	D2 5
B R - Alex of A - und la code in the second se	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.074	0.044	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
Naphthalene	ND		0.30	0.041	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
o-Xylene	ND		0.30	0.034	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
Toluene	ND		0.15	0.067	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
Xylenes, Total	ND		0.89	0.076	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		79 - 124				12/08/23 12:15	12/08/23 19:51	1
4-Bromofluorobenzene (Surr)	103		66 - 129				12/08/23 12:15	12/08/23 19:51	1
Dibromofluoromethane (Surr)	112		80 - 120				12/08/23 12:15	12/08/23 19:51	î
Toluene-d8 (Surr)	96		80 - 120				12/08/23 12:15	12/08/23 19:51	1
Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		7.4	2.7	mg/Kg	¢	12/08/23 12:15	12/08/23 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		41.5 - 162				12/08/23 12:15	12/08/23 19:51	1
Mathed OMOAD DOAL FDD D									
wietnoa: Svv846 8011 - EDB, D Analvte	BCP, and 1 Result	,2,3-1 CP (Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
1 2-Dibromoethane (EDB)			0.087	0.038			12/11/23 10:40	12/11/23 21.27	1
Diesel Range Organics (DRO)	ND	Quaimer	RL	4.6	Unit mg/Kg	— <u>D</u>	Prepared 12/08/23 08:38	Analyzed 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO)	ND 6.8	J B	RL	<u>MDL</u> 4.6 5.5	Unit mg/Kg mg/Kg		Prepared 12/08/23 08:38 12/08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36)	6.8	J B	- <u>RL</u> 11 - 27	4.6 5.5	Unit mg/Kg mg/Kg		Prepared 12/08/23 08:38 12/08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate	6.8 %Recovery	J B Qualifier	- <u>RL</u> 11 - 27 - <u>Limits</u>	<u>MDL</u> 4.6 5.5	Unit mg/Kg mg/Kg	D	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl p. Triacontane_d62	6.8 %Recovery 103	J B Qualifier		<u>MDL</u> 4.6 5.5	Unit mg/Kg mg/Kg	D	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 12/08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62	ND 6.8 %Recovery 103 91	J B Qualifier	RL 11 27 Limits 50 - 150 50 - 150	<u>MDL</u> 4.6 5.5	Unit mg/Kg mg/Kg	D ☆	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 12/08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte	Kesult ND 6.8 %Recovery 103 91 s (ICP) Result	J B Qualifier	- <u>RL</u> 11 27 - <u>Limits</u> 50 - 150 50 - 150 RL	MDL 4.6 5.5	Unit mg/Kg mg/Kg Unit	<u>D</u> ☆	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 12/08/23 08:38 Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte	Result ND 6.8 %Recovery 103 91 S (ICP) Result 3.8	J B Qualifier	RL 11 27 Limits 50 - 150 50 - 150 80 - 150 90 - 150 80 - 120 11	<u>MDL</u> 4.6 5.5 <u>MDL</u>	Unit mg/Kg mg/Kg Unit mg/Kg	D *	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead	Kesult ND 6.8 %Recovery 103 91 S (ICP) Result 3.8 P1 4 22052	J B Qualifier Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 200 RL 2.1	MDL 4.6 5.5 MDL 1.0	Unit mg/Kg mg/Kg Unit mg/Kg	<u>D</u> ~ ~ <u>D</u> ~ <u>D</u> ~ <u>D</u> ~ <u>D</u>	Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 08/23 08:38 12/08/23 08:38 08/23 08:38 08/23 08:38 08/23 08:38	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056-	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523	J B Qualifier Qualifier	RL 11 27 Limits 50 - 150 50 - 150 27	<u>MDL</u> 4.6 5.5 <u>MDL</u> 1.0	Unit mg/Kg mg/Kg Unit mg/Kg		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 PID: 590-22	Dil Fac 1 1 1 1 1 1 1 1 1 2420-7
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- pate Collected: 12/05/23 11:48 pate Received: 12/07/23 10:19	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523	J B <i>Qualifier</i> Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 200 RL 2.1	MDL 4.6 5.5 MDL 1.0	Unit mg/Kg mg/Kg Unit mg/Kg	D ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Prepared 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Prepared 12/08/23 08:38 Aprepared 12/08/23 08:38 Aprepared 12/1/23 09:42 .ab Sample	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 2 ID: 590-22 Matrix	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523	J B Qualifier Qualifier 3	RL 11 27 Limits 50 - 150 50 - 150 2.1	MDL 4.6 5.5 MDL 1.0	Unit mg/Kg mg/Kg Unit mg/Kg		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 2 ID: 590-22 Matrix	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-12052 ile Organic Result	J B Qualifier Qualifier 3 Compoun Qualifier	RL 11 27 - 50 - 150 50 - 150 50 - 150 27 - RL 2.1	MDL 4.6 5.5 MDL 1.0	Unit mg/Kg mg/Kg Unit mg/Kg		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 D: 590-22 Matrix Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-12052 Ile Organic Result ND	J B Qualifier Qualifier 3 Compoun Qualifier	RL 11 27 - - 50 - 150 50 - 150 50 - 150 2.1 - 2.1 - - 2.1	MDL 4.6 5.5 MDL 1.0 MDL 0.31	Unit mg/Kg mg/Kg Unit mg/Kg	D D L	Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 D: 590-22 Matrix Analyzed 12/11/23 20:16	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/05/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523 ile Organic Result ND ND	J B <u>Qualifier</u> Qualifier 3 Compoun Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 150 Solution RL 2.1 Inds by GC/MS RL 1.0 0.40	MDL 4.6 5.5 MDL 1.0 MDL 0.31 0.093	Unit mg/Kg mg/Kg Unit mg/Kg	<u>D</u> <u>D</u> <u>D</u>	Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 PID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 20:16	Dil Fac Dil Fac 2420-7 : Water Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/05/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene Ethylbenzene	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523 Ile Organic Result ND ND ND	J B <u>Qualifier</u> Qualifier 3 Compoun Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 150 RL 2.1 ads by GC/MS 1.0 0.40 1.0	MDL 4.6 5.5 MDL 1.0 MDL 0.31 0.093 0.20	Unit mg/Kg mg/Kg Unit mg/Kg Unit ug/L ug/L ug/L	D D D	Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 PID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 20:16 12/11/23 20:16	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene Ethylbenzene m,p-Xylene	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-12052: ile Organic Result ND ND ND	J B <u>Qualifier</u> Qualifier 3 Compour Qualifier	RL 11 27 Limits 50 - 150 50 - 150 S0 - 150 RL 2.1 ads by GC/MS RL 1.0 0.40 1.0 2.0	MDL 4.6 5.5 MDL 1.0 0.31 0.093 0.20 0.28	Unit mg/Kg mg/Kg Unit mg/Kg Unit ug/L ug/L ug/L ug/L		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Prepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 PID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 20:16 12/11/23 20:16 12/11/23 20:16	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene Ethylbenzene m,p-Xylene Methyl tert-butyl ether	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-12052: ile Organic Result ND	J B Qualifier Qualifier 3 Compoun Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 150 RL 2.1 ads by GC/MS RL 1.0 0.40 1.0 2.0 1.0	MDL 4.6 5.5 MDL 1.0 0.31 0.093 0.20 0.28 0.16	Unit mg/Kg mg/Kg Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Aprepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 2 ID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 20:16	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene Ethylbenzene m,p-Xylene Methyl tert-butyl ether o-Xylene	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-120523 Ile Organic Result ND ND	J B Qualifier Qualifier 3 Compoun Qualifier	RL 11 27 Limits 50 - 150 50 - 150 S0 - 150 2.1 ads by GC/MS RL 1.0 0.40 1.0 2.0 1.0 1.0	MDL 4.6 5.5 MDL 1.0 0.31 0.093 0.20 0.28 0.16 0.16	Unit mg/Kg mg/Kg Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 Prepared 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 2 ID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 20:16	Dil Fac
Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: SW846 6010D - Metal Analyte Lead Client Sample ID: GEI056- ate Collected: 12/05/23 11:48 ate Received: 12/07/23 10:19 Method: SW846 8260D - Volati Analyte 1,2-Dichloroethane Benzene Ethylbenzene m,p-Xylene Methyl tert-butyl ether o-Xylene Toluene	Result ND 6.8 %Recovery 103 91 s (ICP) Result 3.8 B1-12052 Ile Organic Result ND	J B Qualifier Qualifier 3 Compoun Qualifier	RL 11 27 Limits 50 - 150 50 - 150 50 - 150 2.1 Ids by GC/MS RL 1.0 0.40 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MDL 4.6 5.5 MDL 1.0 MDL 0.31 0.093 0.20 0.28 0.16 0.16 0.31	Unit mg/Kg mg/Kg Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D D D	Prepared 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/08/23 08:38 12/11/23 09:42 .ab Sample Prepared	Analyzed 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 12/08/23 15:30 Analyzed 12/11/23 15:10 2 ID: 590-22 Matrix Analyzed 12/11/23 20:16 12/11/23 2	Dil Fac Dil Fac Dil Fac 2420-7 : Water

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

6

Client Sample ID: GEI056-B1-120523 Lab Sample ID: 590-22420-7 Date Collected: 12/05/23 11:48 Matrix: Water Date Received: 12/07/23 10:19 Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 101 80 - 120 12/11/23 20:16 4-Bromofluorobenzene (Surr) 97 76 - 120 12/11/23 20:16 1 107 80 - 123 Dibromofluoromethane (Surr) 12/11/23 20:16 1 Toluene-d8 (Surr) 99 80 - 120 12/11/23 20:16 1 Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Gasoline ND 150 54 ug/L 12/11/23 20:16 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 97 68.7 - 141 12/11/23 20:16 Method: SW846 8011 - EDB, DBCP, and 1,2,3-TCP (GC) D Analyte **Result Qualifier** RL MDL Unit Dil Fac Prepared Analyzed 1,2-Dibromoethane (EDB) 0.0095 J 0.010 0.0025 ug/L 12/11/23 12:35 12/11/23 15:45 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) **Result Qualifier** RL MDL Unit D Analyte Prepared Analyzed Dil Fac **Diesel Range Organics (DRO)** 2.6 0.23 0.11 mg/L 12/11/23 08:29 12/11/23 17:06 (C10-C25) **Residual Range Organics (RRO)** 0.39 0.12 mg/L 12/11/23 08:29 12/11/23 17:06 0.27 J 1 (C25-C36) Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 98 50 - 150 12/11/23 08:29 12/11/23 17:06 n-Triacontane-d62 12/11/23 17:06 88 50 - 150 12/11/23 08:29 1 Method: SW846 6010D - Metals (ICP) - Total Recoverable Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.060 Lead ND 0.0051 ma/L 12/08/23 10:55 12/18/23 15:48 Method: SW846 6010D - Metals (ICP) - Dissolved **Result Qualifier** Dil Fac Analyte RL MDL Unit D Prepared Analyzed Lead ND 0.060 0.0051 mg/L 12/18/23 17:27 12/19/23 11:06 Client Sample ID: GEI056-B2(16-17) Lab Sample ID: 590-22420-10 Date Collected: 12/05/23 12:05 Matrix: Solid Date Received: 12/07/23 10:19 Percent Solids: 91.9 Method: SW846 8260D - Volatile Organic Compounds by GC/MS **Result Qualifier** Analyte RL MDL Unit D Prepared Analyzed Dil Fac 1.2-Dichloroethane ND *+ 0 11 0.023 mg/Kg 12/08/23 12:15 12/08/23 21:16 1 Benzene ND 0.022 0.011 mg/Kg ¢ 12/08/23 12:15 12/08/23 21:16 1 Ethylbenzene ND 0.11 0.017 mg/Kg ₽ 12/08/23 12:15 12/08/23 21:16 1 m,p-Xylene ND 0.43 0.031 mg/Kg Ċ 12/08/23 12:15 12/08/23 21:16 Methyl tert-butyl ether ND 0.054 0.032 mg/Kg 12/08/23 12:15 12/08/23 21:16 ÷Ċŕ 1 Naphthalene ND 0.22 0.030 mg/Kg ÷Ċŕ 12/08/23 12:15 12/08/23 21:16 o-Xylene ND 0.22 0.025 ma/Ka 12/08/23 12:15 12/08/23 21:16 Ċ 0.049 12/08/23 12:15 12/08/23 21:16 Toluene ND 0.11 mg/Kg ÷Ċŕ Xylenes, Total ND 0.65 0.056 mg/Kg ÷Ċŕ 12/08/23 12:15 12/08/23 21:16 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

1,2-Dichloroethane-d4 (Surr)

Eurofins Spokane

12/08/23 12:15 12/08/23 21:16

79 - 124

115

1

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

		Client	Sample I	Resul	ts					
Client: GeoEngineers Inc			•					Job ID: 590-2	22420-1	
Project/Site: Clarkston Street Sh	10p/0504-199	-00								
Client Sample ID: GEI056	-B2(16-17)					La	ab Sample	ID: 590-224	120-10	
Date Collected: 12/05/23 12:05					Matrix: Solid Percent Solids: 91.9					
Date Received: 12/07/23 10:19										
Method: SW846 8260D - Vola	tile Organic	Compound	s by GC/MS	(Contir	uued)					
		oompound			lucu)					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	107		00 - 129 80 120				12/08/23 12:15	12/08/23 21:10	1	
Toluene-d8 (Surr)	07		80 120				12/08/23 12.15	12/08/23 21.10		
	57		00-120				12/00/23 12:13	12/00/23 21.10	1	
Method: NWTPH-Gx - Northw	vest - Volatile	e Petroleum	n Products (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		5.4	1.9	mg/Kg	¢	12/08/23 12:15	12/08/23 21:16	1	
Surrogate	%Recovery	Qualifier	l imite				Prepared	Analyzod	Dil Fac	
4-Bromofluorobenzene (Surr)		auunner	41.5 - 162				12/08/23 12:15	12/08/23 21:16	1	
Method: SW846 8011 - EDB,	DBCP, and 1	,2,3-TCP (0	SC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2-Dibromoethane (EDB)	ND		0.087	0.038	ug/Kg	¢	12/11/23 10:40	12/11/23 21:43	1	
- Method: NWTPH-Dx - Northw	/est - Semi-V	olatile Petr	oleum Prod	ucts (G	2)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Organics (DRO)	5.9	JB	11	4.4	mg/Kg	— <u></u>	12/08/23 08:38	12/08/23 15:51	1	
(C10-C25)										
Residual Range Organics (RRO) (C25-C36)	10	JB	26	5.3	mg/Kg	₽	12/08/23 08:38	12/08/23 15:51	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	98		50 - 150				12/08/23 08:38	12/08/23 15:51	1	
n-Triacontane-d62	87		50 - 150				12/08/23 08:38	12/08/23 15:51	1	
Mothodi SM046 6040D										
INIELITIOU: 37V846 6010D - META Analyte		Qualifier	PI	МП	Unit	п	Pronared	Analyzod	Dil Fac	
Lead	3.4	Quaimer	2.1	1.0	ma/Ka	— <u>–</u>	12/11/23 09:42	12/11/23 15:14	1	
					5 5					
Client Sample ID: GEI056	-B2-12052	3				La	ab Sample	ID: 590-224	120-14	
Date Collected: 12/05/23 15:00								Matrix	: Water	
Date Received: 12/07/23 10:19										
 Method: SW846 8260D - Vola	tile Organic	Compound	ls by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane	ND		1.0	0.31	ug/L			12/11/23 20:37	1	
Benzene	ND		0.40	0.093	ug/L			12/11/23 20:37	1	
Ethylbenzene	ND		1.0	0.20	ug/L			12/11/23 20:37	1	
m,p-Xylene	ND		2.0	0.28	ug/L			12/11/23 20:37	1	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/11/23 20:37	1	
o-xylene	ND		1.0	0.16	ug/L			12/11/23 20:37	1	
Vilenes Total			1.U 3.0	0.31	ug/L ug/l			12/11/23 20:37	1	
	ND		3.0	0.44	ayıL			12/11/25 20.37	I	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					12/11/23 20:37	1	
4-Bromofluorobenzene (Surr)	100		76 - 120					12/11/23 20:37	1	
Dibromofluoromethane (Surr)	107		80 - 123					12/11/23 20:37	1	
Toluene-d8 (Surr)	100		80 - 120					12/11/23 20:37	1	
Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B2-120523

Date Collected: 12/05/23 15:00 Date Received: 12/07/23 10:19

Г

Job ID: 590-22420-1

Lab Sample ID:	590-22420-14
	Matrix: Water

Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products ((GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	54	ug/L			12/11/23 20:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		68.7 - 141					12/11/23 20:37	1
	BCP, and 1	,2,3-TCP ((GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010	0.0025	ug/L		12/11/23 12:35	12/11/23 16:01	1
- Method: NWTPH-Dx - Northwe	est - Semi-V	olatile Pe	troleum Prod	ucts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	1.8		0.23	0.11	mg/L		12/11/23 08:29	12/11/23 17:27	1
(C10-C25)									
Residual Range Organics (RRO)	0.15	J	0.39	0.12	mg/L		12/11/23 08:29	12/11/23 17:27	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				12/11/23 08:29	12/11/23 17:27	1
n-Triacontane-d62	93		50 - 150				12/11/23 08:29	12/11/23 17:27	1
_ Method: SW846 6010D - Metal	ls (ICP) - Tot	tal Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/08/23 10:55	12/18/23 15:52	1
_ Method: SW846 6010D - Metal	ls (ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/18/23 17:27	12/19/23 11:30	1
Client Sample ID: GEI056-	B3(23-24)					La	b Sample	ID: 590-224	20-17
Data Callestad: 12/00/22 00:20									

Date Received: 12/07/23 10:19

Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS	;					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	*+	0.10	0.023	mg/Kg	¢	12/08/23 12:15	12/08/23 21:37	1
Benzene	ND		0.021	0.010	mg/Kg	₽	12/08/23 12:15	12/08/23 21:37	1
Ethylbenzene	0.058	J	0.10	0.017	mg/Kg	¢	12/08/23 12:15	12/08/23 21:37	1
m,p-Xylene	0.76		0.42	0.030	mg/Kg	₽	12/08/23 12:15	12/08/23 21:37	1
Methyl tert-butyl ether	ND		0.052	0.031	mg/Kg	₽	12/08/23 12:15	12/08/23 21:37	1
Naphthalene	1.4		0.21	0.029	mg/Kg	¢	12/08/23 12:15	12/08/23 21:37	1
o-Xylene	0.52		0.21	0.024	mg/Kg	₽	12/08/23 12:15	12/08/23 21:37	1
Toluene	ND		0.10	0.047	mg/Kg	₽	12/08/23 12:15	12/08/23 21:37	1
Xylenes, Total	1.3		0.63	0.054	mg/Kg	☆	12/08/23 12:15	12/08/23 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		79 - 124				12/08/23 12:15	12/08/23 21:37	1
4-Bromofluorobenzene (Surr)	93		66 - 129				12/08/23 12:15	12/08/23 21:37	1
Dibromofluoromethane (Surr)	89		80 - 120				12/08/23 12:15	12/08/23 21:37	1
Toluene-d8 (Surr)	91		80 - 120				12/08/23 12:15	12/08/23 21:37	1

Eurofins Spokane

Percent Solids: 91.7

RL

520

RL

RL

11

27

Limits

50 - 150

50 - 150

0.084

Limits

41.5 - 162

MDL Unit

MDL Unit

0.037 ug/Kg

MDL Unit

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Method: SW846 8011 - EDB, DBCP, and 1,2,3-TCP (GC)

Result Qualifier

Result Qualifier

Result Qualifier

17 J B

930 B

%Recovery Qualifier

129

93

97

200 J

%Recovery Qualifier

101

ND

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Client Sample ID: GEI056-B3(23-24)

Date Collected: 12/06/23 08:20 Date Received: 12/07/23 10:19

4-Bromofluorobenzene (Surr)

1,2-Dibromoethane (EDB)

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Analyte

Gasoline

Surrogate

Analyte

Analyte

(C10-C25)

(C25-C36) Surrogate

o-Terphenyl n-Triacontane-d62

Toluene-d8 (Surr)

Job ID: 590-22420-1

	20-17 : Solid	ID: 590-224 Matrix	b Sample	La		
	s: 91.7	Percent Solid	I			
						NS)
5	Dil Fac	Analyzed	Prepared	D	Unit	NDL
	100	12/11/23 15:34	12/08/23 12:15	<u></u>	mg/Kg	190
6						
	Dil Fac	Analyzed	Prepared			
	100	12/11/23 15:34	12/08/23 12:15			
Ŏ	Dil Fac	Analyzed	Prepared	D	Unit	NDL
	1	12/11/23 22:32	12/11/23 10:40	⇒ ¢	ug/Kg	.037
9					2)	(GC
	Dil Fac	Analyzed	Prepared	D	Unit	NDL
	1	12/08/23 16:12	12/08/23 08:38	<u></u>	mg/Kg	4.5
	1	12/08/23 16:12	12/08/23 08:38	¢	mg/Kg	5.4
	Dil Fac	Analyzed	Prepared			
	1	12/08/23 16:12	12/08/23 08:38			
	1	12/08/23 16:12	12/08/23 08:38			

Lab Sample ID: 590-22420-19

Matrix: Water

Mathad CM04C C040D Matala (ICD)

welliou: Swo46 6010D - welas							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	1.7 J	2.5	1.2 mg/Kg	¢	12/11/23 09:42	12/11/23 15:18	1

Client Sample ID: GEI056-B3-120623

Date Collected: 12/06/23 11:21 Date Received: 12/07/23 10:19

Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.31	ug/L			12/11/23 20:59	1
Benzene	ND		0.40	0.093	ug/L			12/11/23 20:59	1
Ethylbenzene	11		1.0	0.20	ug/L			12/11/23 20:59	1
m,p-Xylene	190		20	2.8	ug/L			12/14/23 14:48	10
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/11/23 20:59	1
o-Xylene	140		10	1.6	ug/L			12/14/23 14:48	10
Toluene	0.59	J	1.0	0.31	ug/L			12/11/23 20:59	1
Xylenes, Total	330		30	4.4	ug/L			12/14/23 14:48	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			80 - 120					12/11/23 20:59	1
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					12/14/23 14:48	10
4-Bromofluorobenzene (Surr)	87		76 - 120					12/11/23 20:59	1
4-Bromofluorobenzene (Surr)	101		76 - 120					12/14/23 14:48	10
Dibromofluoromethane (Surr)	105		80 - 123					12/11/23 20:59	1
Dibromofluoromethane (Surr)	106		80 - 123					12/14/23 14:48	10
Toluene-d8 (Surr)	102		80 - 120					12/11/23 20:59	1

Method: NWTPH-Gx - Northwe	est - Volatile	Petroleu	m Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	5000		150	54	ug/L		-	12/11/23 20:59	1

80 - 120

Eurofins Spokane

12/14/23 14:48

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Gasoline

Job ID: 590-22420-1

lient Sample ID: GEI056	-B3-12062	3				La	ab Sample	ID: 590-224	20-19
ate Collected: 12/06/23 11:21		•				_		Matrix	Water
ate Received: 12/07/23 10:19									
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		68.7 - 141					12/11/23 20:59	1
4-Bromofluorobenzene (Surr)	101		68.7 - 141					12/14/23 14:48	10
Method: SW846 8011 - EDB.	DBCP. and 1	.2.3-TCP ((GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010	0.0025	ug/L		12/11/23 12:35	12/11/23 16:17	1
Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pet	troleum Prod	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	2.8		0.23	0.11	ma/L		12/11/23 08:29	12/11/23 17:48	1
C10-C25)			0.00	0.40	"				
(esidual Range Organics (RRO)	0.20	J	0.39	0.12	mg/L		12/11/23 08:29	12/11/23 17:48	1
, Surrogato	% Pocovorv	Qualifier	Limite				Proparad	Applyzod	Dil Eso
Ternhenvl	- 70 Nec Overy	Quainter	50 150				12/11/23 08.20	12/11/22 17·10	1
- Triacontane_d6?	100		50 - 150				12/11/22 00.29	12/11/22 17.40	1
- macomane-uoz	94		50 - 150				12/11/23 00.29	12/11/23 11.40	1
Method: SW846 6010D - Meta	als (ICP) - To	tal Recove	erable	MD	11	_	Deserved	A	D'I
Analyte	- Result	Qualifier	RL		Unit	D	Prepared	Analyzed	DIIFac
lead	ND		0.060	0.0051	mg/L		12/08/23 10:55	12/18/23 16:09	1
Method: SW846 6010D - Meta	als (ICP) - Die	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_ead	ND		0.060	0.0051	mg/L		12/18/23 17:27	12/19/23 11:35	1
							h Osmula	ID. 500.004	00.04
lient Sample ID: GE1056	-B4(23-24)					La	ab Sample	ID: 590-224	20-24
ate Collected: 12/05/23 15:20								Matrix	: Solid
ate Received: 12/07/23 10:19								Percent Solid	ls: 90.2
Method: SW846 8260D - Vola	tile Organic	Compoun	ds by GC/MS	5					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2-Dichloroethane	ND	*+	1.3	0.28	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
Benzene	ND		0.26	0.13	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
thylbenzene	ND		1.3	0.21	mg/Kg		12/08/23 12:15	12/11/23 15:56	10
n,p-Xylene	ND		5.1	0.37	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
Aethyl tert-butyl ether	ND		0.64	0.38	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
laphthalene	ND		2.6	0.36	mg/Kg	\$	12/08/23 12:15	12/11/23 15:56	10
-Xylene	ND		2.6	0.29	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
oluene	ND		1.3	0.58	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
ylenes, Total	ND		7.7	0.66	mg/Kg	¢	12/08/23 12:15	12/11/23 15:56	10
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		79 - 124				12/08/23 12:15	12/11/23 15:5 <mark>6</mark>	10
1-Bromofluorobenzene (Surr)	105		66 - 129				12/08/23 12:15	12/11/23 15:56	10
Dibromofluoromethane (Surr)	107		80 - 120				12/08/23 12:15	12/11/23 15:56	10
Toluene-d8 (Surr)	105		80 - 120				12/08/23 12:15	12/11/23 15:56	10
Method: NWTPH-Gx - Northw	vest - Volatile	e Petroleu	m Products ((GC/MS)					

Eurofins Spokane

x 12/08/23 12:15 12/11/23 15:56

64

23 mg/Kg

1400

		Clien	t Sample I	Resul	ts				
ient: GeoEngineers Inc oject/Site: Clarkston Street Sh	10p/0504-199	-00						Job ID: 590-2	22420-1
lient Sample ID: GEI056	-B4(23-24)					La	b Sample	ID: 590-224 Matrix	20-24
ate Received: 12/05/23 15:20 ate Received: 12/07/23 10:19								Percent Solid	ls: 90.2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Method: SW846 8011 - EDB	DBCP and 1	2 3-TCP	(GC)				12/00/23 12.13	12/11/23 13.30	10
Analyte	Result	Qualifier	RI	мы	Unit	р	Prepared	Analyzed	Dil Fac
,2-Dibromoethane (EDB)	ND	quanter	0.084	0.037	ug/Kg	<u>₽</u>	12/11/23 10:40	12/11/23 22:48	1
Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pe	troleum Prod	ucts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
viesel Range Organics (DRO) C10-C25)	1300	В	11	4.6	mg/Kg	¢	12/08/23 08:38	12/08/23 16:33	1
Residual Range Organics (RRO) C25-C36)	24	JB	27	5.5	mg/Kg	₽	12/08/23 08:38	12/08/23 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	120		50 - 150				12/08/23 08:38	12/08/23 16:33	1
-Triacontane-d62	93		50 - 150				12/08/23 08:38	12/08/23 16:33	1
lethod: SW846 6010D - Meta	als (ICP)				11		Drenered	Analyzad	Dil Fac
nalvte	Result	Qualitier	RI	MDL	Unit		Prepareo	Analyzeo	
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19	- Result 1.6 -B4-12052	Qualifier J 3	RL	1.0	mg/Kg	&	12/11/23 09:42	12/11/23 15:22 ID: 590-224 Matrix	1 120-26 : Water
nalyte ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola	- Result 1.6 -B4-12052	Qualifier J 3 Compour	- <u>RL</u> 2.1	<u>MDL</u> 1.0	mg/Kg	¤	12/11/23 09:42	ID: 590-224 Matrix	120-26 Water
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte	- Result 1.6 3-B4-12052 5 tile Organic Result	Qualifier J 3 Compour Qualifier	- <u>RL</u> 2.1 -	MDL 1.0	Unit	La	Prepared 12/11/23 09:42 Ib Sample Prepared	ID: 590-224 Matrix	1 120-26 : Water
nalyte ead ient Sample ID: GEI056 te Collected: 12/05/23 17:06 te Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane	tile Organic Result tile ND	Qualifier J 3 Compour Qualifier	nds by GC/MS	MDL 1.0 MDL 1.6	Unit ug/Kg	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58	1 20-26 : Water 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene	tile Organic Result tile Organic Result ND	Qualifier J 3 Compour Qualifier	nds by GC/MS - <u>RL</u> - <u>RL</u> - <u>S.0</u> 2.0	MDL 1.0 MDL 1.6 0.47	Unit ug/L ug/L	<u>b</u> <u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	<u>Dil Fac</u> 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte ,2-Dichloroethane enzene thylbenzene	tile Organic Result Result ND ND	Qualifier J 3 Compour Qualifier	nds by GC/MS RL 5.0 2.0 5.0	MDL 1.0 MDL 1.6 0.47 0.99	Unit ug/Kg	b La	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	1 120-26 : Water 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 Nethod: SW846 8260D - Vola nalyte .2-Dichloroethane enzene thylbenzene 	tile Organic Result Result ND ND ND ND	Qualifier J 3 Compour Qualifier	nds by GC/MS RL 5.0 2.0 5.0 10	MDL 1.0 MDL 1.6 0.47 0.99 1.4	Unit ug/Kg Unit ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether	tile Organic Result tile Organic Result ND ND ND ND ND ND ND	Qualifier J 3 Compour Qualifier	nds by GC/MS RL 5.0 2.0 5.0 10 5.0	MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80	Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	1 1 20-26 : Water 5 5 5 5 5 5 5 5 5 5 5 5 5
ient Sample ID: GEI056 the Collected: 12/05/23 17:06 the Received: 12/07/23 10:19 Method: SW846 8260D - Vola malyte .2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether -Xylene	tile Organic Result T.6 T.6 T.6 T.6 T.6 T.6 T.6 T.6 T.6 T.6	Qualifier J 3 Compour Qualifier J	nds by GC/MS RL 5.0 2.0 5.0 10 5.0 5.0 5.0	MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80 0.81	Unit ug/Kg Ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether -Xylene oluene	tile Organic Result tile Organic Result ND ND ND ND ND ND ND ND ND ND ND	Qualifier J 3 Compour Qualifier J	nds by GC/MS RL 5.0 2.0 5.0 10 5.0 5.0 5.0 5.0 5.0	MDL 1.0 1.0 1.6 0.47 0.99 1.4 0.80 0.81 1.6	Unit ug/Kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 Nethod: SW846 8260D - Vola nalyte ,2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether -Xylene oluene ylenes, Total	tile Organic Result 1.6 TeB4-12052 Tile Organic Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier J 3 Compour Qualifier J	RL 2.1 ads by GC/MS RL 5.0 2.0 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 15	MDL 1.0 1.0 1.0 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
inalyte ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola malyte ,2-Dichloroethane ienzene ithylbenzene n,p-Xylene Methyl tert-butyl ether -Xylene oluene Sylenes, Total	Result 1.6 -B4-12052 tile Organic Result ND ND ND 2.4 ND ND ND 2.4 %Recovery	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 2.1 ads by GC/MS RL 5.0 2.0 5.0 2.0 5.0 2.0 5.0 10 5.0 5.0 10 5.0 10 5.0 15 Limits	MDL 1.0 1.0 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit mg/Kg Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether -Xylene bluene ylenes, Total urrogate 2-Dichloroethane-d4 (Surr)	Result 1.6 -B4-12052 tile Organic Result ND ND ND ND ND ND 2.4 ND ND 2.4 ND ND 1.6	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 2.1 2.1 ads by GC/MS RL 5.0 2.0 5.0 2.0 5.0 2.0 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 15 Limits 80 - 120	MDL 1.0 1.0 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit ug/Kg Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 ite Collected: 12/05/23 17:06 ite Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether -Xylene bluene ylenes, Total urrogate 2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr)	Result 1.6 -B4-12052 tile Organic Result ND ND ND 2.4 ND ND 2.4 ND ND 1.6	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 2.1 2.1 2.1 2.1 2.1 10 5.0 2.0 5.0 2.0 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 15 <i>Limits</i> 80 - 120 76 - 120	MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nalyte ead ient Sample ID: GEI056 te Collected: 12/05/23 17:06 te Received: 12/07/23 10:19 lethod: SW846 8260D - Vola nalyte 2-Dichloroethane enzene thylbenzene h,p-Xylene lethyl tert-butyl ether Xylene bluene ylenes, Total urrogate 2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) ibromofluoromethane (Surr)	Result 1.6 -B4-12052 tile Organic Result ND ND ND 2.4 ND ND 2.4 ND ND 104 100 106	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 2.1 2.1 2.1 2.1 2.1 10 5.0 2.0 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 10 5.0 15 Limits 80 - 120 80 - 123	MDL 1.0 1.0 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
inalyte ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola analyte ,2-Dichloroethane enzene thylbenzene h,p-Xylene Methyl tert-butyl ether -Xylene oluene cylenes, Total furrogate ,2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) bibromofluoromethane (Surr) oluene-d8 (Surr)	Result 1.6 -B4-12052 tile Organic Result ND ND ND ND 2.4 ND ND 2.4 ND ND 100 106 98	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 30 - 120 30 - 120	MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte Lead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola Analyte ,2-Dichloroethane Benzene Ethylbenzene n,p-Xylene Methyl tert-butyl ether -Xylene Oluene Xylenes, Total Surrogate ,2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Oluene-d8 (Surr) Method: NWTPH-Gx - Northward	Result 1.6 -B4-12052 tile Organic Result ND 98 Vest - Volatile	Qualifier J 3 Compour Qualifier J J Qualifier	RL 2.1 3.0 5.0 <	MDL 1.0 1.0 1.0 1.0 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS)	Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 12/08/23 20:58 12/08/23	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte .ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola Analyte ,2-Dichloroethane Benzene Ethylbenzene m,p-Xylene Methyl tert-butyl ether b-Xylene Toluene Kylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) H-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline	Result 1.6 -B4-12052 tile Organic Result ND ND ND ND 2.4 ND ND 2.4 ND ND 2.4 %Recovery 104 98 vest - Volatile Result 2000	Qualifier J 3 Compour Qualifier J J J Qualifier	RL 2.1 30.120 30.120 30.120 30.120 30.120 30.120 30.720	MDL 1.0 1.0 1.0 1.0 1.0 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS) MDL 270	Unit mg/Kg Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L Unit ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte _ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola Analyte ,2-Dichloroethane Benzene Ethylbenzene n,p-Xylene Aethyl tert-butyl ether -Xylene Toluene (ylenes, Total Surrogate -2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwy Nalyte Sasoline Surrogate	Result 1.6 B4-12052 tile Organic Result ND ND ND ND 2.4 ND 2.4 %Recovery 104 98 vest - Volatile Result 2000	Qualifier J 3 Compour Qualifier J J J Qualifier Qualifier	RL 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.10 2.10 2.10 2.10 2.10 2.10	MDL 1.0 1.0 1.0 1.0 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS) MDL 270	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 </td
Analyte _ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola Analyte ,2-Dichloroethane Benzene Ethylbenzene n,p-Xylene Methyl tert-butyl ether p-Xylene Toluene Kylenes, Total Surrogate (,2-Dichloroethane-d4 (Surr) H-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwa Analyte Basoline	Result 1.6 -B4-12052 tile Organic Result ND ND	Qualifier J 3 Compour Qualifier J J J Qualifier Petroleu Qualifier	RL 2.1 3.0 5.0 <	MDL 1.0 1.0 1.0 1.0 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS) MDL 270	Unit ug/Kg Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 12/11/23 09:42 b Sample Prepared Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte _ead lient Sample ID: GEI056 ate Collected: 12/05/23 17:06 ate Received: 12/07/23 10:19 Method: SW846 8260D - Vola Analyte .2-Dichloroethane Benzene Ethylbenzene m,p-Xylene Methyl tert-butyl ether o-Xylene Toluene Kylenes, Total Surrogate (.2-Dichloroethane-d4 (Surr) H-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwa Analyte Basoline Surrogate H-Bromofluorobenzene (Surr) Method: SW846 8011 - EDB, I	Result 1.6 B4-12052 tile Organic Result ND ND ND ND ND 2.4 ND ND 2.4 %Recovery 104 98 vest - Volatile Result 2000 %Recovery 103 DBCP, and 1	Qualifier J 3 Compour Qualifier J J J Qualifier Qualifier Qualifier Qualifier	RL 2.1 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 30.120 31.120 31.120 31.120 31.120 31.120 31.120 31.120 <t< td=""><td>MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS) MDL 270</td><td>Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L</td><td> D</td><td>Prepared 12/11/23 09:42 Ib Sample Prepared Prepared Prepared Prepared</td><td>Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 12/08/23 12/08/23 12/08/2</td><td>Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td></t<>	MDL 1.0 MDL 1.6 0.47 0.99 1.4 0.80 0.81 1.6 2.2 GC/MS) MDL 270	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 12/11/23 09:42 Ib Sample Prepared Prepared Prepared Prepared	Analyzed 12/11/23 15:22 ID: 590-224 Matrix Analyzed 12/08/23 20:58 12/08/23 20:58 12/08/23 12/08/23 12/08/23 12/08/2	Dil Fac 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010	0.0025	ug/L		12/11/23 12:35	12/11/23 16:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	11		0.24	0.11	mg/L		12/11/23 08:29	12/11/23 18:09	1
(C10-C25) Residual Pange Organics (PRO)	0.20		0.30	0 12	ma/l		12/11/23 08:20	12/11/23 18.00	1
(C25-C36)	0.39		0.59	0.12	mg/∟		12/11/23 00.29	12/11/23 10:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				12/11/23 08:29	12/11/23 18:09	1
n-Triacontane-d62	89		50 - 150				12/11/23 08:29	12/11/23 18:09	1
Method: SW846 6010D - Meta	ls (ICP) - To	tal Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.060		0.060	0.0051	mg/L		12/08/23 10:55	12/18/23 16:13	1
Method: SW846 6010D - Meta	ls (ICP) - Dis	ssolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/18/23 17:27	12/19/23 12:33	1
Client Sample ID: GEI056-	B5(24-25)					La	b Sample	ID: 590-224	120-31
Date Collected: 12/06/23 14:50	(:)							Matrix	c: Solid
Date Received: 12/07/23 10:19								Percent Solid	ls: 91 3
Method: SW846 8260D - Volat	ile Organic	Compoun	ds by GC/MS) 		_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u> </u>	Prepared	Analyzed	DIIFac
	ND	" +	0.098	0.021	mg/Kg	Ф	12/08/23 12:15	12/08/23 22:20	1
Ethylhenzene			0.020	0.0096	mg/Kg	х ~	12/00/23 12:15	12/00/23 22:20	1
	ND		0.098	0.010	mg/Kg	بې 	12/08/23 12:15	12/08/23 22:20	
Methyl tert butyl ether			0.39	0.020	mg/Kg	¥ ×	12/00/23 12.13	12/00/23 22.20	1
Nanhthalana	0.076		0.049	0.029	mg/Kg	ж Ж	12/08/23 12:15	12/08/23 22.20	1
		J	0.20	0.027	mg/Kg	بر 	12/08/23 12:15	12/08/23 22:20	
Toluene			0.20	0.023	mg/Kg	*	12/08/23 12:15	12/08/23 22:20	1
Xylenes. Total	ND		0.59	0.044	mg/Kg mg/Kg	æ	12/08/23 12:15	12/08/23 22:20	1
			0.00	0.001			12/00/20 12:10	12/00/20 22:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		79 - 124				12/08/23 12:15	12/08/23 22:20	1
4-Bromofluorobenzene (Surr)	96		66 - 129				12/08/23 12:15	12/08/23 22:20	1
Dibromofluoromethane (Surr)	115		80 - 120				12/08/23 12:15	12/08/23 22:20	1
Toluene-d8 (Surr)	99		80 - 120				12/08/23 12:15	12/08/23 22:20	1
Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	250	J	490	180	mg/Kg	¢	12/08/23 12:15	12/11/23 16:17	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			A1 5 160				12/08/23 12:15	12/11/23 16.17	100
4-Bromofluorobenzene (Surr)	105		41.5 - 102				12/00/20 12.10	12/11/25 10.11	
4-Bromofluorobenzene (Surr)	105	2 3-TCP	41.5 - 102				12,00,20 12.10	12/11/23 10.11	
4-Bromofluorobenzene (Surr) Method: SW846 8011 - EDB, D Analyte	105 D <mark>BCP, and 1</mark> Result	,2,3-TCP (Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B4-120523

Date Collected: 12/05/23 17:06

Date Received: 12/07/23 10:19

Eurofins Spokane

12/19/2023

Job ID: 590-22420-1

Matrix: Water

Lab Sample ID: 590-22420-26

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B5(24-25) Date Collected: 12/06/23 14:50 Date Received: 12/07/23 10:19

Date Received: 12/07/23 10:19	Received: 12/07/23 10:19								ls: 91.3
- Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	100	В	11	4.4	mg/Kg	#	12/08/23 08:38	12/08/23 16:54	1
Residual Range Organics (RRO) (C25-C36)	ND		26	5.3	mg/Kg	¢	12/08/23 08:38	12/08/23 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	102		50 - 150
n-Triacontane-d62	84		50 - 150
-			

Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1.7	J	2.5	1.2	mg/Kg	¢	12/11/23 09:42	12/11/23 15:26	1

Client Sample ID: GEI056-B5-120623 Date Collected: 12/06/23 17:30 Date Received: 12/07/23 10:19

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	1.0	0.31	ug/L			12/11/23 21:42	1
Benzene	ND	0.40	0.093	ug/L			12/11/23 21:42	1
Ethylbenzene	ND	1.0	0.20	ug/L			12/11/23 21:42	1
m,p-Xylene	0.29 J	2.0	0.28	ug/L			12/11/23 21:42	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/11/23 21:42	1
o-Xylene	ND	1.0	0.16	ug/L			12/11/23 21:42	1
Toluene	ND	1.0	0.31	ug/L			12/11/23 21:42	1
Xylenes, Total	ND	3.0	0.44	ug/L			12/11/23 21:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 120		12/11/23 21:42	1
4-Bromofluorobenzene (Surr)	101		76 - 120		12/11/23 21:42	1
Dibromofluoromethane (Surr)	108		80 - 123		12/11/23 21:42	1
Toluene-d8 (Surr)	100		80 - 120		12/11/23 21:42	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	290		150	54	ug/L			12/11/23 21:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		68.7 - 141					12/11/23 21:42	1
	DBCP, and 1	,2,3-TCP	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010	0.0025	ug/L		12/11/23 12:35	12/11/23 16:50	1
	vest - Semi-V	olatile Pe	troleum Proc	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	1.2		0.23	0.11	mg/L		12/11/23 08:29	12/11/23 18:30	1
(C10-C25)					Ū				
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		12/11/23 08:29	12/11/23 18:30	1
(C25-C36)					-				

Eurofins Spokane

Matrix: Solid

Matrix: Water

1

1

Lab Sample ID: 590-22420-31

12/08/23 08:38 12/08/23 16:54

12/08/23 08:38 12/08/23 16:54

Lab Sample ID: 590-22420-33

6

12/19/2023

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

Client Sample ID: GEI05 Date Collected: 12/06/23 17:3 Date Received: 12/07/23 10:15	6-B5-12062 ⁰ 9	3				La	ib Sample	ID: 590-224 Matrix	120-33 : Water
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				12/11/23 08:29	12/11/23 18:30	1
n-Triacontane-d62	86		50 - 150				12/11/23 08:29	12/11/23 18:30	1
Method: SW846 6010D - Met	tals (ICP) - To	tal Recove	erable			_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/08/23 10:55	12/18/23 16:17	1
Method: SW846 6010D - Met	tals (ICP) - Dis	ssolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/18/23 17:27	12/19/23 12:37	1
Client Sample ID: GEI05	6-Comp-12	0623				La	b Sample	ID: 590-224	20-34
Date Collected: 12/06/23 12:1	0							Matrix	c: Solid
Date Received: 12/07/23 10:19	9							Percent Solic	ls: 85.5
Method: SW846 6010D - Met	tals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0		0.91	0.36	mg/Kg		. 12/11/23 09:42	12/11/23 15:30	1
Barium	31		0.91	0.24	mg/Kg	¢	12/11/23 09:42	12/11/23 15:30	1
Cadmium	ND		0.73	0.043	ma/Ka	÷.	12/11/23 09:42	12/11/23 15:30	1
Chromium	11		0.91	0.13	ma/Ka		12/11/23 09:42	12/11/23 15:30	
Lead	1.8	л	22	11	ma/Ka	÷.	12/11/23 09:42	12/11/23 15:30	1
Selenium		°	3.6	22	ma/Ka	÷.	12/11/23 09:42	12/11/23 15:30	1
Silver	ND		0.91	0.21	mg/Kg	¢	12/11/23 09:42	12/11/23 15:30	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		38	9.4	ug/Kg	☆	12/12/23 10:37	12/12/23 17:18	1
Client Sample ID: DUP-1 Date Collected: 12/05/23 12:0 Date Received: 12/07/23 10:19 Method: SW846 8260D - Vola	20523 0 9 atile Organic	Compound	ds by GC/MS	3		La	ib Sample	ID: 590-224 Matrix	120-35 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.31	ug/L			12/11/23 22:04	1
Benzene	ND		0.40	0.093	ug/L			12/11/23 22:04	1
Ethylbenzene	ND		1.0	0.20	ug/L			12/11/23 22:04	1
m,p-Xylene	ND		2.0	0.28	ug/L			12/11/23 22:04	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/11/23 22:04	1
o-Xylene	ND		1.0	0.16	ug/L			12/11/23 22:04	1
Toluene	ND		1.0	0.31	ug/L			12/11/23 22:04	1
Xylenes, Total	ND		3.0	0.44	ug/L			12/11/23 22:04	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 120					12/11/23 22:04	1
4-Bromofluorobenzene (Surr)	100		76 - 120					12/11/23 22:04	1
Dibromofluoromethane (Surr)	107		80 - 123					12/11/23 22:04	1
Toluene-d8 (Surr)	98		80 - 120					12/11/23 22:04	1

Eurofins Spokane

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: DUP-120523 Date Collected: 12/05/23 12:00 Date Received: 12/07/23 10:19

Lead

Method: NWTPH-Gx - Northw	est - Volatile	e Petroleu	m Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	55	J	150	54	ug/L			12/11/23 22:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		68.7 - 141					12/11/23 22:04	1
 Method: SW846 8011 - EDB, I	DBCP, and 1	,2,3-TCP	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010	0.0025	ug/L		12/11/23 12:35	12/11/23 17:06	1
Method: NWTPH-Dx - Northw	est - Semi-V	olatile Pe	troleum Proc	ducts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	2.7		0.23	0.11	mg/L		12/11/23 08:29	12/11/23 18:51	1
Residual Range Organics (RRO) (C25-C36)	0.27	J	0.39	0.12	mg/L		12/11/23 08:29	12/11/23 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				12/11/23 08:29	12/11/23 18:51	1
n-Triacontane-d62	95		50 - 150				12/11/23 08:29	12/11/23 18:51	1
Method: SW846 6010D - Meta	Is (ICP) - To	tal Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/08/23 10:55	12/18/23 16:21	1
Method: SW846 6010D - Meta	ls (ICP) - Dis	ssolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: Trip Blank Date Collected: 12/05/23 00:00 Date Received: 12/07/23 10:19

ND

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac 1,2-Dichloroethane ND 1.0 0.31 ug/L 12/11/23 22:47 Benzene ND 0.40 12/11/23 22:47 0.093 ug/L ND Ethylbenzene 1.0 0.20 ug/L 12/11/23 22:47 m,p-Xylene ND 2.0 0.28 ug/L 12/11/23 22:47 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/11/23 22:47 o-Xylene ND 1.0 0.16 ug/L 12/11/23 22:47 Toluene ND 1.0 0.31 ug/L 12/11/23 22:47 Xylenes, Total ND 3.0 0.44 ug/L 12/11/23 22:47 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 104 80 - 120 12/11/23 22:47 101 4-Bromofluorobenzene (Surr) 76 - 120 12/11/23 22:47 Dibromofluoromethane (Surr) 108 80 - 123 12/11/23 22:47

0.060

0.0051 mg/L

Toluene-d8 (Surr)	101		80 - 120					12/11/23 22:47	
Method: NWTPH-Gx - Northwe	est - Volatile	Petroleun	n Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	54	ug/L			12/11/23 22:47	

Job ID: 590-22420-1

Matrix: Water

Lab Sample ID: 590-22420-35

12/18/23 17:27 12/19/23 12:42

Lab Sample ID: 590-22420-36

Matrix: Water

1

1

1

1

1

1

1

1

1

1

1

5 6

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

Matrix: Water

Lab Sample ID: 590-22420-36

Client Sample ID: Trip Blank Date Collected: 12/05/23 00:00 Date Received: 12/07/23 10:19

Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 101	Qualifier	Limits 68.7 - 141				Prepared	Analyzed	Dil Fac
Client Sample ID: Trip E	Blank					La	b Sample	ID: 590-224	20-37
Date Collected: 12/05/23 00: Date Received: 12/07/23 10:	00 19							Matrix	c: Solid
Method: SW846 8260D - Vo	latile Organic	Compour	ds by GC/MS	5					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	*+	0.099	0.022	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Benzene	ND		0.020	0.0099	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Ethylbenzene	ND		0.099	0.016	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
m,p-Xylene	ND		0.40	0.028	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Methyl tert-butyl ether	ND		0.050	0.030	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Naphthalene	ND		0.20	0.028	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
o-Xylene	ND		0.20	0.023	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Toluene	ND		0.099	0.045	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Xylenes, Total	ND		0.60	0.051	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		79 - 124				12/08/23 12:15	12/08/23 22:41	1
4-Bromofluorobenzene (Surr)	108		66 - 129				12/08/23 12:15	12/08/23 22:41	1
Dibromofluoromethane (Surr)	101		80 - 120				12/08/23 12:15	12/08/23 22:41	1
Toluene-d8 (Surr)	98		80 - 120				12/08/23 12:15	12/08/23 22:41	1
- Method: NWTPH-Gx - Nortl	hwest - Volatile	e Petroleu	m Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qualifie	r RL	MDL	Unit	U	Prepared	Analyzed	DilFac
Gasoline	2.6 J	5.0	1.8	mg/Kg		12/08/23 12:15	12/08/23 22:41	1
Surrogate	%Recovery Qualifie	r Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108	41.5 - 162				12/08/23 12:15	12/08/23 22:41	1

Method: 8260D - Volatile Organic Compounds by GC/MS

103

Client Sample ID: Method Blank Prep Type: Total/NA

12/08/23 12:39

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Lab Sample ID: MB 590-45001/7 Matrix: Water

Analysis Batch: 45001

Toluene-d8 (Surr)

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.31	ug/L			12/08/23 12:39	1
Benzene	ND		0.40	0.093	ug/L			12/08/23 12:39	1
Ethylbenzene	ND		1.0	0.20	ug/L			12/08/23 12:39	1
m,p-Xylene	ND		2.0	0.28	ug/L			12/08/23 12:39	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/08/23 12:39	1
o-Xylene	ND		1.0	0.16	ug/L			12/08/23 12:39	1
Toluene	ND		1.0	0.31	ug/L			12/08/23 12:39	1
Xylenes, Total	ND		3.0	0.44	ug/L			12/08/23 12:39	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					12/08/23 12:39	1
4-Bromofluorobenzene (Surr)	100		76 - 120					12/08/23 12:39	1
Dibromofluoromethane (Surr)	103		80 - 123					12/08/23 12:39	1

Lab Sample ID: LCS 590-45001/1004 Matrix: Water Analysis Batch: 45001

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	10.0	10.3		ug/L		103	80 - 120	
Benzene	10.0	10.3		ug/L		103	80 - 120	
Ethylbenzene	10.0	10.6		ug/L		106	80 - 122	
m,p-Xylene	10.0	10.8		ug/L		108	80 - 125	
Methyl tert-butyl ether	10.0	11.9		ug/L		119	68 - 134	
o-Xylene	10.0	10.9		ug/L		109	80 - 130	
Toluene	10.0	9.84		ug/L		98	80 - 129	

80 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 120
4-Bromofluorobenzene (Surr)	100		76 - 120
Dibromofluoromethane (Surr)	103		80 - 123
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: LCSD 590-45001/5 Matrix: Water Analysis Batch: 45001

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	10.0	10.1		ug/L		101	80 - 120	2	14
Benzene	10.0	9.96		ug/L		100	80 - 120	4	15
Ethylbenzene	10.0	10.2		ug/L		102	80 - 122	4	35
m,p-Xylene	10.0	10.4		ug/L		104	80 - 125	4	35
Methyl tert-butyl ether	10.0	11.9		ug/L		119	68 - 134	1	18
o-Xylene	10.0	10.5		ug/L		105	80 - 130	4	35
Toluene	10.0	9.33		ug/L		93	80 - 129	5	35

Eurofins Spokane

5

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Job ID: 590-22420-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 45010

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 590-45001/5 Matrix: Water Analysis Batch: 45001

	LCSD	LCSD			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	100		80 - 120		
4-Bromofluorobenzene (Surr)	98		76 - 120		
Dibromofluoromethane (Surr)	101		80 - 123		
Toluene-d8 (Surr)	98		80 - 120		

Lab Sample ID: MB 590-45010/1-A Matrix: Solid Analysis Batch: 45004

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.10	0.022	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Benzene	ND		0.020	0.010	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Ethylbenzene	ND		0.10	0.016	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
m,p-Xylene	ND		0.40	0.029	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Methyl tert-butyl ether	ND		0.050	0.030	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Naphthalene	ND		0.20	0.028	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
o-Xylene	ND		0.20	0.023	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Toluene	ND		0.10	0.045	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
Xylenes, Total	ND		0.60	0.052	mg/Kg		12/08/23 12:15	12/08/23 13:44	1
	MR	MR							

		IB			
Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	79 - 124	12/08/23 12:15	12/08/23 13:44	1
4-Bromofluorobenzene (Surr)	104	66 - 129	12/08/23 12:15	12/08/23 13:44	1
Dibromofluoromethane (Surr)	99	80 - 120	12/08/23 12:15	12/08/23 13:44	1
Toluene-d8 (Surr)	106	80 - 120	12/08/23 12:15	12/08/23 13:44	1

Lab Sample ID: LCS 590-45010/2-A Matrix: Solid Analysis Batch: 45004

Analysis Batch: 45004	1								Prep Batch: 45010
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloroethane			0.500	0.687	*+	mg/Kg		137	77 - 126
Benzene			0.500	0.566		mg/Kg		113	80 - 128
Ethylbenzene			0.500	0.573		mg/Kg		115	80 - 127
m,p-Xylene			0.500	0.552		mg/Kg		110	80 - 131
Methyl tert-butyl ether			0.500	0.635		mg/Kg		127	69 - 132
Naphthalene			0.500	0.534		mg/Kg		107	57 - 131
o-Xylene			0.500	0.530		mg/Kg		106	78 - 128
Toluene			0.500	0.559		mg/Kg		112	79 - 130
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

1,2-Dichloroethane-d4 (Surr)	100	79 - 124
4-Bromofluorobenzene (Surr)	94	66 - 129
Dibromofluoromethane (Surr)	96	80 - 120
Toluene-d8 (Surr)	96	80 - 120

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-22420-6 MS Matrix: Solid

Analysis Batch: 45004									Prep Batch: 45010
-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloroethane	ND	F1 *+	0.740	0.967	F1	mg/Kg	☆	131	77 - 126
Benzene	ND		0.740	0.771		mg/Kg	¢	104	80 - 128
Ethylbenzene	ND		0.740	0.767		mg/Kg	¢	104	80 - 127
m,p-Xylene	ND		0.740	0.810		mg/Kg	☆	110	80 - 131
Methyl tert-butyl ether	ND		0.740	0.830		mg/Kg	¢	112	69 - 132
Naphthalene	ND		0.740	0.764		mg/Kg	¢	103	57 - 131
o-Xylene	ND		0.740	0.776		mg/Kg	☆	105	78 - 128
Toluene	ND		0.740	0.753		mg/Kg	¢	102	79 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	102		79 - 124						
4-Bromofluorobenzene (Surr)	89		66 - 129						
Dibromofluoromethane (Surr)	102		80 - 120						
Toluene-d8 (Surr)	98		80 - 120						

Lab Sample ID: 590-22420-6 MSD Matrix: Solid Analysis Batch: 45004

Analysis Batch: 45004									Prep E	Batch: 4	45010
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	ND	F1 *+	0.740	0.927		mg/Kg	 ₽	125	77 - 126	4	18
Benzene	ND		0.740	0.751		mg/Kg	¢	101	80 - 128	3	17
Ethylbenzene	ND		0.740	0.739		mg/Kg	¢	100	80 - 127	4	19
m,p-Xylene	ND		0.740	0.764		mg/Kg	¢	103	80 - 131	6	19
Methyl tert-butyl ether	ND		0.740	0.779		mg/Kg	¢	105	69 - 132	6	32
Naphthalene	ND		0.740	0.750		mg/Kg	¢	101	57 - 131	2	34
o-Xylene	ND		0.740	0.758		mg/Kg	¢	102	78 - 128	2	19
Toluene	ND		0.740	0.734		mg/Kg	¢	99	79 - 130	3	21

	MSD	MSD		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	106		79 - 124	
4-Bromofluorobenzene (Surr)	91		66 - 129	
Dibromofluoromethane (Surr)	101		80 - 120	
Toluene-d8 (Surr)	99		80 - 120	

Lab Sample ID: 590-22420-2 DU Matrix: Solid Analysis Batch: 45004

Client Sample	e ID: GEI056-B1(10-11)
	Prep Type: Total/NA
	Prep Batch: 45010

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
1,2-Dichloroethane	ND	*+	ND	*+	mg/Kg		NC	18
Benzene	ND		ND		mg/Kg	¢	NC	17
Ethylbenzene	ND		ND		mg/Kg	¢	NC	19
m,p-Xylene	ND		ND		mg/Kg	₽	NC	19
Methyl tert-butyl ether	ND		ND		mg/Kg	¢	NC	32
Naphthalene	ND		ND		mg/Kg	¢	NC	34
o-Xylene	ND		ND		mg/Kg	₽	NC	19
Toluene	ND		ND		mg/Kg	¢	NC	21

Prep Type: Total/NA

Client Sample ID: DUP:120523

Client Sample ID: DUP:120523

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

108

101

Lab Sample ID: 590-2242	0-2 DU					C	lient Sample	e ID: GEI056-B1(1	0-11)
Matrix: Solid								Prep Type: Tot	al/NÁ
Analysis Batch: 45004								Prep Batch: 4	45010
-	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Xylenes, Total	ND			ND		mg/Kg	ф ф	NC	25
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	119		79 - 124						
4-Bromofluorobenzene (Surr)	102		66 - 129						
Dibromofluoromethane (Surr)	116		80 - 120						
Toluene-d8 (Surr)	97		80 - 120						
Lab Sample ID: MB 590-4	45044/6						Client Sar	nple ID: Method	Blank
Matrix: Water								Prep Type: Tot	al/NA
Analysis Batch: 45044									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.31	ug/L			12/11/23 18:49	1
Benzene	ND		0.40	0.093	ug/L			12/11/23 18:49	1
Ethylbenzene	ND		1.0	0.20	ug/L			12/11/23 18:49	1
m,p-Xylene	ND		2.0	0.28	ug/L			12/11/23 18:49	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/11/23 18:49	1
o-Xylene	ND		1.0	0.16	ug/L			12/11/23 18:49	1
Toluene	ND		1.0	0.31	ug/L			12/11/23 18:49	1
Xylenes, Total	ND		3.0	0.44	ug/L			12/11/23 18:49	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 120			-		12/11/23 18:49	1
4-Bromofluorobenzene (Surr)	98		76 - 120					12/11/23 18:49	1

80 - 123

80 - 120

Lab Sample ID: LCS 590-45044/1003 Matrix: Water Analysis Batch: 45044

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	10.0	10.5		ug/L		105	80 - 120	
Benzene	10.0	10.5		ug/L		105	80 - 120	
Ethylbenzene	10.0	10.4		ug/L		104	80 - 122	
m,p-Xylene	10.0	10.6		ug/L		106	80 - 125	
Methyl tert-butyl ether	10.0	11.8		ug/L		118	68 - 134	
o-Xylene	10.0	10.9		ug/L		109	80 - 130	
Toluene	10.0	9.61		ug/L		96	80 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	100		76 - 120
Dibromofluoromethane (Surr)	103		80 - 123
Toluene-d8 (Surr)	97		80 - 120

Client Sample ID: Lab Control Sample Prep Type: Total/NA

12/11/23 18:49

12/11/23 18:49

1

1

Eurofins Spokane

LCSD LCSD

10.0

10.2

9.95

10.0

11.0

10.2

9.31

Result Qualifier Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Limits

80 - 120 76 - 120

80 - 123

80 - 120

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

%Recovery Qualifier

101

99

105

99

Lab Sample ID: LCSD 590-45044/4 Matrix: Water Analysis Batch: 45044

Analyte

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Surrogate

1,2-Dichloroethane

Methyl tert-butyl ether

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

D %Rec

100

102

100

100

110

102

93

%Rec

Limits

80 - 120

80 - 120

80 - 122

80 - 125

68 - 134

80 - 130

Client Sample ID: Method Blank

RPD

Limit

14

15

35

35

18

35

8	0.	1	2	9					3			3	5	

Prep Type: Total/NA

RPD

4

3

5

5

7

7

Lab Sample ID: MB 590-45078/8 Matrix: Water Analysis Batch: 45078

МВ	МВ							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane ND		1.0	0.31	ug/L			12/14/23 14:26	1
Benzene ND		0.40	0.093	ug/L			12/14/23 14:26	1
Ethylbenzene ND		1.0	0.20	ug/L			12/14/23 14:26	1
m,p-Xylene ND		2.0	0.28	ug/L			12/14/23 14:26	1
Methyl tert-butyl ether ND		1.0	0.16	ug/L			12/14/23 14:26	1
o-Xylene ND		1.0	0.16	ug/L			12/14/23 14:26	1
Toluene ND		1.0	0.31	ug/L			12/14/23 14:26	1
Xylenes, Total ND		3.0	0.44	ug/L			12/14/23 14:26	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 120		12/14/23 14:26	1
4-Bromofluorobenzene (Surr)	98		76 - 120		12/14/23 14:26	1
Dibromofluoromethane (Surr)	109		80 - 123		12/14/23 14:26	1
Toluene-d8 (Surr)	102		80 - 120		12/14/23 14:26	1

Lab Sample ID: LCS 590-45078/1005 Matrix: Water Analysis Batch: 45078

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	10.0	10.2		ug/L		102	80 - 120	
Benzene	10.0	10.2		ug/L		102	80 - 120	
Ethylbenzene	10.0	10.5		ug/L		105	80 - 122	
m,p-Xylene	10.0	10.7		ug/L		107	80 - 125	
Methyl tert-butyl ether	10.0	11.2		ug/L		112	68 - 134	
o-Xylene	10.0	10.6		ug/L		106	80 - 130	
Toluene	10.0	9.83		ug/L		98	80 - 129	

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-45078/1005 **Matrix: Water** Analysis Batch: 45078

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 98 80 - 120 4-Bromofluorobenzene (Surr) 99 76 - 120 Dibromofluoromethane (Surr) 103 80 - 123 Toluene-d8 (Surr) 100 80 - 120

Lab Sample ID: LCSD 590-45078/6 **Matrix: Water** Analysis Batch: 45078

S	oike	LCSD	LCSD				%Rec		RPD
Analyte Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	10.0	10.2		ug/L		102	80 - 120	1	14
Benzene	10.0	9.86		ug/L		99	80 - 120	3	15
Ethylbenzene	10.0	9.90		ug/L		99	80 - 122	5	35
m,p-Xylene	10.0	10.3		ug/L		103	80 - 125	4	35
Methyl tert-butyl ether	10.0	12.0		ug/L		120	68 - 134	7	18
o-Xylene	10.0	10.3		ug/L		103	80 - 130	3	35
Toluene	10.0	9.46		ug/L		95	80 - 129	4	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	99		76 - 120
Dibromofluoromethane (Surr)	105		80 - 123
Toluene-d8 (Surr)	99		80 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-4 Matrix: Solid Analysis Batch: 45005	5010/1-A									Cli	ent Sar	nple ID: Me Prep Typ Prep Ba	ethoc e: To atch:	I Blank otal/NA : 45010
	r	ИB	MB											
Analyte	Res	ult	Qualifier		RL		MDL	Unit		D F	Prepared	Analyze	ed	Dil Fac
Gasoline	1	ND			5.0		1.8	mg/Kg	1	12/0	08/23 12:	15 12/08/23 1	3:44	1
	I	ИВ	MB											
Surrogate	%Recove	ery	Qualifier	Lim	its					F	Prepared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)	1	04		41.5 -	162					12/	08/23 12:	15 12/08/23 1	3:44	1
_ Lab Sample ID: LCS 590-	45010/3-A								Clie	nt Sa	mple II): Lab Con	trol S	Sample
Matrix: Solid											•	Prep Typ	e: To	otal/NA
Analysis Batch: 45005												Prep B	atch	45010
				Spike		LCS	LCS	;				%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Gasoline				50.0		56.4			mg/Kg		113	74.4 - 124		
	LCS I	LCS	;											
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)			4	1 5 - 162										

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 590-22420-1

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

lient. GeoEngineers inc											JOD ID.	590-Z	Z4ZU-1
oject/Site: Clarkston Stree	et Shop/0504-	199	-00										
ethod: NWTPH-Gx -	Northwest	: - V	/olatile	Petrol	eum	Proc	ducts (0	GC/MS)	(Con	tinue	d)		
									`				
ab Sample ID: 590-2242	20-6 MS								Cli	ent Sa	mple ID:	DUP:	
Watrix: Solid											Prep ly	pe: IC	15010
Analysis Datch. 45005											Fiehr	Saturi.	45010
	MS	MS											
Surrogate	%Recovery	Qua	alifier	Limits	_								
4-Bromofluorobenzene (Surr)	89			41.5 - 162									
ab Sample ID: 590-2242	0-6 MSD								Cli	ent Sa	mple ID:	DUP:	120523
Matrix: Solid											Prep Ty	pe: To	otal/NA
Analysis Batch: 45005											Prep E	Batch:	45010
	MSD	MS	n										
Surrogate	%Recovery	Qua	- alifier	Limits									
4-Bromofluorobenzene (Surr)	<u>91</u>			41.5 - 162	-								
Lab Sample ID: 590-2242	0-2 DU							С	lient S	ample	ID: GEI0	56-B1	(10-11)
Matrix: Solid											Prep Ty	pe: To	otal/NA
Analysis Batch: 45005	Commis	6 a m				БШ	БЦ				Prep E	Batch:	45010
\nalvto	Sample	San	npie alifior			DU	DU Qualifier	Unit	п			PDD	RPD Limit
asoline		Que				ND	Quaimer	ma/Ka				NC	32.3
													02.0
	DU	DU											
Surrogate	_ %Recovery	QUa	alitier	Limits	_								
ab Sample ID: MB 590-4	45045/6								Clier	nt Sam	ple ID: M	lethod	Blank
Matrix: Water											Prep Ty	pe: To	otal/NA
Analysis Batch: 45045		MR	MB										
nalvte	Re	sult	Qualifie	r	RL		MDL Unit	ſ	D Pre	epared	Analy	zed	Dil Fac
Gasoline		ND		·	150		54 ug/L				12/11/23	18:49	1
							Ū						
	% Baaa	MB	MB	r lim	ito				Dr	anarad	Analy		
1-Bromofluorobenzene (Surr)	///////////////////////////////////////	98	Quaime	68.7	141					epareu		18·49	1 DII Fac
Bromondorobonizono (ouri)		00		00.7 -							1211120	10.10	,
Lab Sample ID: LCS 590-	-45045/1005							Clie	nt Sam	ple ID	: Lab Cor	ntrol S	Sample
Matrix: Water											Prep Ty	pe: To	otal/NA
Analysis Batch: 45045													
ha a bada				Spike		LCS	LCS	11	_	0/ D	%Rec		
				Added		Kesult	Qualifier			%Kec			
อองแบษ				1000		925		ug/L		92	00-120		
	LCS	LCS	S										
urrogate	%Recovery	Qua	alifier	Limits	_								
-Bromofluorobenzene (Surr)	99			68.7 - 141									
ah Sample ID: I CSD 50	0-45045/1014							Client Sa	mnla l	D· I at	Control	Samo	
Aatrix: Water		•							inhie I		Pren Tv	be: To	otal/NA
Analysis Batch: 45045												P0. IC	
				Spike		LCSD	LCSD				%Rec		RPD
analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline				1000		869		ug/L		87	80 - 120	6	20

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

Method: NWTPH-Gx -	Northwest -	Volatile	Petrol	eum	Proc	duct	ts (G	C/MS)	(0	or	ntinued	d)		
Lab Sample ID: LCSD 590 Matrix: Water Analysis Batch: 45045	0-45045/1016						C	lient Sa	ımı	ole	ID: Lab	Control Sar Prep Type:	npl Tot	e Dup tal/NA
Analysis Datch. 45045														
	LCSD LO	CSD												
Surrogate	%Recovery Q	ualifier	Limits	-										
4-Bromofluorobenzene (Surr)	97		68.7 - 141											
Lab Sample ID: MB 590-4 Matrix: Water	5079/8								(Clie	nt Samı	ple ID: Meth Prep Type:	od Tot	Blank tal/NA
Analysis Batch: 45079														
A secola da									_			A		D!! E
	Resu		r	150					<u> </u>	Pr	epared		<u> </u>	
Gasoline	INI	J		150		54	ug/L					12/14/23 14:2	20	1
	M	B MB												
Surrogate	%Recover	y Qualifie	r Lim	its						Pr	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	9	8	68.7 -	141					_			12/14/23 14:2	26	1
Lab Sample ID: LCS 590-	45079/1007							Clie	nt	San	nple ID:	Lab Contro	l Sa	ample
Analysis Batch: 45079												пер турс.	10	
Analysis Daten. 43073			Snike		LCS	1.05						%Rec		
Analyte			babb&		Result	Qua	lifier	Unit		п	%Rec	Limits		
Gasoline			1000		916	Guu				_	92	80 - 120		
			1000		510			ug/L			52	00-120		
	LCS LO	CS												
Surrogate	%Recovery Q	ualifier	Limits	_										
4-Bromofluorobenzene (Surr)	99		68.7 - 141											
-	45070/4040						_				ID: Lak	Control Con		- D
Lab Sample ID: LCSD 590	J-45079/1018						U U	lient Sa	Imp	JIE	ID: Lab	Control Sar	npi	
Analysis Patchy 45070												Frep Type.	10	lai/NA
Analysis Balch. 45079			Spike			1.00						% Baa		חחם
Analyta			Addod		Booult		lifiar	Unit		n	% Baa		חחו	Limit
			1000		070	Qua	iiiiei			_		20 120	5	20
Gasoline			1000		870			ug/L			07	00 - 120	5	20
	LCSD LO	CSD												
Surrogate	%Recovery Q	ualifier	Limits											
4-Bromofluorobenzene (Surr)	99		68.7 - 141	-										
	BCP, and 1,	2,3-TCI	P (GC)											
- Loh Comula ID: MD 500.4	, , ,		()							211.0				Diamir
Lau Sample ID. MD 330-4 Matrix: Salid	JUZ112-A									2116	in odill			
Analysis Potoby 45029												Prop Bot	10 shi	45027
Analysis Balch. 45056	м	R MR										Ртер Баш	л. [.]	43027
Analyte	Resu	It Qualifie	r	RL	1	MDL	Unit		D	Pr	epared	Analyzed		Dil Fac
1,2-Dibromoethane (EDB)	N	D		0.080	0	0.035	ug/Kg]		12/11	1/23 10:40	12/11/23 20:3	88	1
Lab Sample ID: LCS 590-	45027/3-A							Clie	nt	San	nple ID:	Lab Contro	ol Sa	ample
Matrix: Solid												Prep Type:	To	tal/NA
Analysis Batch: 45038												Prep Bate	:h:	45027
			Spike		LCS	LCS	i					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane (EDB)			1.00		1.23		_	ug/Kg			123	60 - 140		_

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

5

7

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC) (Continued)

Lab Sample ID: 590-22420-1 Matrix: Solid Analysis Batch: 45038	0 MS					C	lient \$	Sample	D: GEI0 Prep Ty Prep E	5 <mark>6-B2(1</mark> pe: Tot Batch: 4	l 6-17) al/NA 45027
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane (EDB)	ND		1.07	0.927		ug/Kg	\$	87	60 - 140		
Lab Sample ID: 590-22420-1 Matrix: Solid Analysis Batch: 45038	0 MSD					C	lient \$	Sample	ID: GEI0 Prep Ty Prep E	56-B2(1 pe: Tot Batch: 4	l 6-17) al/NA 45027
	Sample	Sample	Spike	MSD	MSD		_		%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		1.08	1.03		ug/Kg	¢	95	60 - 140	11	20
Lab Sample ID: MB 590-4503 Matrix: Water	34/1-A						Clie	ent Sam	ole ID: M Prep Ty	ethod I pe: Tot	Blank al/NA
Analysis Batch: 45038									Prep E	atch: 4	45034
		MB MB									
Analyte	Re	sult Qualifier	F	RL .	MDL Unit	0) P	repared	Analyz	zed	Dil Fac
1,2-Dibromoethane (EDB)		ND	0.0	0.0	0025 ug/L		12/1	1/23 12:35	12/11/23	14:55	1
Lab Sample ID: LCS 590-450 Matrix: Water Analysis Batch: 45038)34/2-A					Clier	nt Sar	nple ID:	Lab Cor Prep Ty Prep E	ntrol Sa pe: Tot Batch: 4	ample al/NA 45034
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane (EDB)			0.125	0.111		ug/L		89	60 - 140		
Lab Sample ID: LCSD 590-44 Matrix: Water Analysis Batch: 45038	5034/3-A				C	Client Sa	mple	ID: Lab	Control Prep Ty Prep E	Sample pe: Tot Batch: 4	e Dup al/NA 45034
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)			0.125	0.0943		ug/L		75	60 - 140	16	20
Method: NWTPH-Dx - No	rthwest	- Semi-Vo	olatile Pe	troleun	n Produ	cts (G	C)				

Lab Sample ID: MB 590-44992/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 44998 Prep Batch: 44992 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared D Analyzed Dil Fac Diesel Range Organics (DRO) 10 12/08/23 08:38 12/08/23 12:02 9.56 J 4.2 mg/Kg 1 (C10-C25) Residual Range Organics (RRO) 7.11 J 25 5.0 mg/Kg 12/08/23 08:38 12/08/23 12:02 1 (C25-C36) MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 50 - 150 12/08/23 08:38 12/08/23 12:02 97 1 77 n-Triacontane-d62 50 - 150 12/08/23 08:38 12/08/23 12:02 1

QC Sample Results Client: GeoEngineers Inc Job ID: 590-22420-1 Project/Site: Clarkston Street Shop/0504-199-00 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued) Lab Sample ID: LCS 590-44992/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 44998 Prep Batch: 44992 Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec Diesel Range Organics (DRO) 66.7 75.4 mg/Kg 113 50 - 150 (C10-C25) Residual Range Organics (RRO) 66.7 70.4 106 mg/Kg 50 - 150(C25-C36) LCS LCS Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 97 50 - 150 n-Triacontane-d62 89 Lab Sample ID: MB 590-45022/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 45039 Prep Batch: 45022 MB MB **Result Qualifier** RL MDL Unit Dil Fac Analyte D Prepared Analyzed Diesel Range Organics (DRO) 0.24 0.11 mg/L 12/11/23 08:29 12/11/23 15:42 ND 1 (C10-C25) Residual Range Organics (RRO) ND 0.40 0.12 mg/L 12/11/23 08:29 12/11/23 15:42 1 (C25-C36) MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac o-Terphenyl 96 50 - 150 12/11/23 08:29 12/11/23 15:42 1 n-Triacontane-d62 82 50 - 150 12/11/23 08:29 12/11/23 15:42 1 Lab Sample ID: LCS 590-45022/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 45039 Prep Batch: 45022 Spike LCS LCS %Rec Analyte Added **Result Qualifier** %Rec Limits Unit D Diesel Range Organics (DRO) 1.60 1.55 50 - 150 97 mg/L (C10-C25)

	LCS		
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	98		50 - 150
n-Triacontane-d62	92		50 - 150

Lab Sample ID: LCSD 590-45022/3-A Matrix: Water

Residual Range Organics (RRO)

(C25-C36)

Analysis Batch: 45039							Prep E	atch: 4	15022
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	1.60	1.30		mg/L		81	50 - 150	17	25
Residual Range Organics (RRO) (C25-C36)	1.60	1.53		mg/L		96	50 - 150	12	25
LCS	SD LCSD								

1.60

1.73

mg/L

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	90		50 - 150

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

108

50 - 150

Eurofins Spokane

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued) Lab Sample ID: LCSD 590-45022/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Matrix: Water Analysis Batch: 45039 Prep Batch: 45022 LCSD LCSD %Recovery Qualifier Limits Surrogate n-Triacontane-d62 78 50 - 150 Method: 6010D - Metals (ICP) Lab Sample ID: MB 590-45025/2-A **Client Sample ID: Method Blank** Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 45048 Prep Batch: 45025 MB MB Result Analyte Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Arsenic ND 1.3 0.50 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 Barium ND 1.3 0.34 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 ND Cadmium 1.0 0.059 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 Chromium ND 1.3 12/11/23 09:42 12/11/23 15:48 0.18 mg/Kg 1 Lead ND 3.0 1.5 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 Selenium ND 5.0 3.0 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 ND 13 Silver 0.29 mg/Kg 12/11/23 09:42 12/11/23 15:48 1 Lab Sample ID: LCS 590-45025/1-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 45048 Prep Batch: 45025 LCS LCS %Rec Spike Analyte Added **Result Qualifier** Unit %Rec Limits D 100 80 - 120 Arsenic 97.2 mg/Kg 97 Barium 100 96.5 mg/Kg 96 80 - 120 Cadmium 50.0 49.8 80 - 120 mg/Kg 100 Chromium 50.0 50.7 mg/Kg 101 80 - 120 I ead 50.0 50.6 mg/Kg 101 80 - 120 Selenium 100 95.9 mg/Kg 96 80 - 120 5.00 80 - 120 Silver 5.68 mg/Kg 114 Lab Sample ID: MB 590-44999/2-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total Recoverable Analysis Batch: 45018 Prep Batch: 44999 MB MB Analvte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.060 12/08/23 10:54 12/08/23 14:17 Lead ND 0.0051 mg/L Lab Sample ID: LCS 590-44999/1-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total Recoverable Analysis Batch: 45018 Prep Batch: 44999 Spike LCS LCS %Rec Added **Result Qualifier** l imits Analyte Unit D %Rec 80 - 120 Lead 1 00 1 06 mg/L 106 Lab Sample ID: MB 590-45148/2-B **Client Sample ID: Method Blank Matrix: Water Prep Type: Dissolved** Analysis Batch: 45163 Prep Batch: 45147 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.060	0.0051	mg/L		12/18/23 17:27	12/19/23 11:02	1

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Job ID: 590-22420-1

Method: 6010D - Metals	(ICP)											
Lab Sample ID: LCS 590-4 Matrix: Water	5148/1-B					Cli	ent Sa	mple II	D: Lab Cor Prep Typ	ntrol Sa e: Diss	ample olved	
Analysis Batch: 45163			Spike	LCS	LCS				Prep E %Rec	Batch: 4	45147	5
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits			
Lead			0.500	0.556		mg/L		111	80 - 120			
Lab Sample ID: 590-22420- Matrix: Water	7 MS					C	Client S	ample	ID: GEI05 Prep Typ	6-B1-12 e: Diss	20523 olved	7
Analysis Batch: 45163									Prep E	Batch: 4	45147	8
	Sample	Sample	Spike	MS	MS				%Rec			U
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			6
Lead	ND		0.500	0.550		mg/L		110	75 - 125			2
Lab Sample ID: 590-22420- Matrix: Water Analysis Batch: 45163	7 MSD					C	Client S	ample	ID: GEI05 Prep Type Prep F	6-B1-12 e: Diss Batch: 4	20523 olved 45147	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Lead	ND		0.500	0.523		mg/L		105	75 - 125	5	20	
– Lab Sample ID: 590-22420- Matrix: Water Analysis Batch: 45163	7 DU					C	Client S	ample	ID: GEI05 Prep Type Prep E	6-B1-12 e: Diss Batch: 4	20523 olved 45147	
· · · · · , · · · · · · · · · · · · · · · · · · ·	Sample	Sample		DU	DU						RPD	
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit	
Lead	ND			ND		mg/L				NC	20	

Lab Sample ID: MB 590-4505 Matrix: Solid Analysis Batch: 45068	4/9-A						Client Samp	ole ID: Method Prep Type: T Prep Batch	d Blank otal/NA : 45054
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		50	12	ug/Kg		12/12/23 10:36	12/12/23 17:05	1
Lab Sample ID: LCS 590-450	54/8-A					Clien	t Sample ID:	Lab Control	Sample
Matrix: Solid								Prep Type: Te	otal/NA
Analysis Batch: 45068								Prep Batch	: 45054

Analysis Daton. 45000							г тер г	Jaion. 44	5054
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Hg	 200	207		ug/Kg		104	80 - 120		

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B1(10-11) Date Collected: 12/05/23 08:15 Date Received: 12/07/23 10:19

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK

Client Sample ID: GEI056-B1(10-11) Date Collected: 12/05/23 08:15 Date Received: 12/07/23 10:19

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.871 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 19:08	JSP	EET SPK
Total/NA	Prep	5035			9.871 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	45005	12/08/23 19:08	JSP	EET SPK
Total/NA	Prep	8011			10.40 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 21:11	NMI	EET SPK
Total/NA	Prep	3550C			15.02 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 15:09	NMI	EET SPK
Total/NA	Prep	3050B			1.41 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:05	AMB	EET SPK

Client Sample ID: DUP:120523 Date Collected: 12/05/23 10:00 Date Received: 12/07/23 10:19

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK

Client Sample ID: DUP:120523 Date Collected: 12/05/23 10:00 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.919 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 19:51	JSP	EET SPK
Total/NA	Prep	5035			7.919 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	45005	12/08/23 19:51	JSP	EET SPK
Total/NA	Prep	8011			10.08 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 21:27	NMI	EET SPK
Total/NA	Prep	3550C			15.04 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 15:30	NMI	EET SPK
Total/NA	Prep	3050B			1.54 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:10	AMB	EET SPK

Job ID: 590-22420-1

Lab Sample ID: 590-22420-2 Matrix: Solid

Lab Sample ID: 590-22420-2

Lab Sample ID: 590-22420-6

Lab Sample ID: 590-22420-6

watrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 91.3

Percent Solids: 92.3

Initial

Amount

43 mL

43 mL

80 mL

1 mL

257.5 mL

1 mL

250 mL

50 mL

50 mL

Final

Amount

43 mL

43 mL

2 mL

1 mL

2 mL

1 mL

250 mL

50 mL

50 mL

Batch

45044

45045

45034

45038

45022

45039

45148

45147

45163

44999

45149

Number

Dil

1

1

1

1

1

1

Factor

Run

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B1-120523 Date Collected: 12/05/23 11:48 Date Received: 12/07/23 10:19

Batch

8260D

8011

8011

3510C

3005A

6010D

3005A

6010D

Method

NWTPH-Gx

NWTPH-Dx

FILTRATION

Batch

Type

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Filtration

Analysis

Analysis

Client Sample ID: GEI056-B2(16-17)

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Dissolved

Dissolved

Total Recoverable

Total Recoverable

Lab

EET SPK

Lab Sample ID: 590-22420-7 Matrix: Water

Analyst

JSP

Prepared

or Analyzed

12/11/23 20:16

12/11/23 20:16 JSP

12/11/23 12:35 MRV

12/11/23 15:45 NMI

12/11/23 08:29 MRV

12/11/23 17:06 NMI

12/18/23 17:26 AMB

12/18/23 17:27 AMB

12/19/23 11:06 AMB

12/08/23 10:55 AMB

12/18/23 15:48 AMB

5 8

Lab Sample ID: 590-22420-10

Matrix: Solid

Date Collected: 12/05/23 12:05 Date Received: 12/07/23 10:19

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK	

Client Sample ID: GEI056-B2(16-17) Date Collected: 12/05/23 12:05

Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.987 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 21:16	JSP	EET SPK
Total/NA	Prep	5035			10.987 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	45005	12/08/23 21:16	JSP	EET SPK
Total/NA	Prep	8011			10.05 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 21:43	NMI	EET SPK
Total/NA	Prep	3550C			15.44 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 15:51	NMI	EET SPK
Total/NA	Prep	3050B			1.56 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:14	AMB	EET SPK

Client Sample ID: GEI056-B2-120523 Date Collected: 12/05/23 15:00 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	45044	12/11/23 20:37	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	45045	12/11/23 20:37	JSP	EET SPK
Total/NA	Prep	8011			80 mL	2 mL	45034	12/11/23 12:35	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 16:01	NMI	EET SPK

Eurofins Spokane

Matrix: Water

Lab Sample ID: 590-22420-10 Matrix: Solid Percent Solids: 91.9

Lab Sample ID: 590-22420-14

Initial

Amount

256.1 mL

1 mL

250 mL

50 mL

50 mL

Batch

45022

45039

45148

45147

45163

44999

45149

Number

Final

Amount

2 mL

1 mL

250 mL

50 mL

50 mL

Dil

1

1

1

Factor

Run

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Batch

Туре

Prep

Prep

Prep

Analysis

Filtration

Analysis

Analysis

Client Sample ID: GEI056-B3(23-24)

Prep Type

Total/NA

Total/NA

Dissolved

Dissolved

Dissolved

Total Recoverable

Total Recoverable

Batch

Method

NWTPH-Dx

FILTRATION

3510C

3005A

6010D

3005A

6010D

Lab

EET SPK

EET SPK

EET SPK

EET SPK

EET SPK

EET SPK

Matrix: Solid

Matrix: Water

Percent Solids: 91.7

Lab Sample ID: 590-22420-14 Matrix: Water

Analyst

MRV

Lab Sample ID: 590-22420-17

Lab Sample ID: 590-22420-19

Prepared

or Analyzed

12/11/23 08:29

12/11/23 17:27 NMI

12/18/23 17:26 AMB

12/18/23 17:27 AMB

12/19/23 11:30 AMB

12/08/23 10:55 AMB

12/18/23 15:52 AMB

8

EET SPK

Lab Sample ID: 590-22420-17 Matrix: Solid

Date Collected: 12/06/23 08:20 Date Received: 12/07/23 10:19

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK

Client Sample ID: GEI056-B3(23-24) Date Collected: 12/06/23 08:20

Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			11.361 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 21:37	JSP	EET SPK
Total/NA	Prep	5035			11.361 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	0.86 mL	43 mL	45035	12/11/23 15:34	JSP	EET SPK
Total/NA	Prep	8011			10.33 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 22:32	NMI	EET SPK
Total/NA	Prep	3550C			15.26 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 16:12	NMI	EET SPK
Total/NA	Prep	3050B			1.31 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:18	AMB	EET SPK

Client Sample ID: GEI056-B3-120623 Date Collected: 12/06/23 11:21 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	45044	12/11/23 20:59	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	45078	12/14/23 14:48	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	45045	12/11/23 20:59	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	45079	12/14/23 14:48	JSP	EET SPK
Total/NA	Prep	8011			80 mL	2 mL	45034	12/11/23 12:35	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 16:17	NMI	EET SPK
Total/NA	Prep	3510C			255.9 mL	2 mL	45022	12/11/23 08:29	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	45039	12/11/23 17:48	NMI	EET SPK

Initial

Amount

250 mL

50 mL

50 mL

Initial

Amount

Dil

1

1

Dil

1

Factor

Factor

Run

Run

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B3-120623

Batch

Туре

Prep

Prep

Filtration

Analysis

Analysis

Client Sample ID: GEI056-B4(23-24)

Batch

Туре

Batch

3005A

6010D

3005A

6010D

Batch

Method

Moisture

Method

FILTRATION

Date Collected: 12/06/23 11:21

Date Received: 12/07/23 10:19

Date Collected: 12/05/23 15:20

Date Received: 12/07/23 10:19

Prep Type

Dissolved

Dissolved

Dissolved

Prep Type

Total/NA

Total Recoverable

Total Recoverable

Job ID: 590-22420-1

Matrix: Water

Lab

EET SPK

EET SPK

EET SPK

EET SPK

Lab Sample ID: 590-22420-19

Analyst

Analyst

Lab Sample ID: 590-22420-24

Lab Sample ID: 590-22420-26

AMB

Prepared

or Analyzed

12/18/23 17:26

12/18/23 17:27 AMB

12/19/23 11:35 AMB

12/08/23 10:55 AMB

12/18/23 16:09 AMB

Prepared

or Analyzed

12/07/23 14:30 MRV

Batch

45148

45147

45163

44999

45149

Batch

44987

Number

Number

Final

Amount

250 mL

50 mL

50 mL

Final

Amount

8

EET SPK Lab Sample ID: 590-22420-24

Matrix: Solid

Lab

Matrix: Solid

Matrix: Water

Percent Solids: 90.2

ona	9

EET SPK

Client Sample ID: GEI056-B4(23-24) Date Collected: 12/05/23 15:20 Date Received: 12/07/23 10:19

Analysis

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.497 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		10	0.86 mL	43 mL	45036	12/11/23 15:56	JSP	EET SPK
Total/NA	Prep	5035			9.497 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	0.86 mL	43 mL	45035	12/11/23 15:56	JSP	EET SPK
Total/NA	Prep	8011			10.50 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 22:48	NMI	EET SPK
Total/NA	Prep	3550C			15.20 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 16:33	NMI	EET SPK
Total/NA	Prep	3050B			1.56 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:22	AMB	EET SPK

Client Sample ID: GEI056-B4-120523 Date Collected: 12/05/23 17:06 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		5	43 mL	43 mL	45001	12/08/23 20:58	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		5	43 mL	43 mL	45045	12/11/23 21:20	JSP	EET SPK
Total/NA	Prep	8011			80 mL	2 mL	45034	12/11/23 12:35	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 16:34	NMI	EET SPK
Total/NA	Prep	3510C			255.1 mL	2 mL	45022	12/11/23 08:29	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	45039	12/11/23 18:09	NMI	EET SPK
Dissolved	Filtration	FILTRATION			250 mL	250 mL	45148	12/18/23 17:26	AMB	EET SPK
Dissolved	Prep	3005A			50 mL	50 mL	45147	12/18/23 17:27	AMB	EET SPK
Dissolved	Analysis	6010D		1			45163	12/19/23 12:33	AMB	EET SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	44999	12/08/23 10:55	AMB	EET SPK
Total Recoverable	Analysis	6010D		1			45149	12/18/23 16:13	AMB	EET SPK

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Client Sample ID: GEI056-B5(24-25) Date Collected: 12/06/23 14:50 Date Received: 12/07/23 10:19

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK

Client Sample ID: GEI056-B5(24-25) Date Collected: 12/06/23 14:50 Date Received: 12/07/23 10:19

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			12.398 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 22:20	JSP	EET SPK
Total/NA	Prep	5035			12.398 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	0.86 mL	43 mL	45035	12/11/23 16:17	JSP	EET SPK
Total/NA	Prep	8011			10.30 g	2 mL	45027	12/11/23 10:40	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 23:04	NMI	EET SPK
Total/NA	Prep	3550C			15.58 g	5 mL	44992	12/08/23 08:38	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	44998	12/08/23 16:54	NMI	EET SPK
Total/NA	Prep	3050B			1.33 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:26	AMB	EET SPK

Client Sample ID: GEI056-B5-120623 Date Collected: 12/06/23 17:30 Date Received: 12/07/23 10:19

Lab Sample ID: 590-22420-33 Matrix: Water

Lab Sample ID: 590-22420-34

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	45044	12/11/23 21:42	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	45045	12/11/23 21:42	JSP	EET SPK
Total/NA	Prep	8011			80 mL	2 mL	45034	12/11/23 12:35	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 16:50	NMI	EET SPK
Total/NA	Prep	3510C			258.5 mL	2 mL	45022	12/11/23 08:29	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	45039	12/11/23 18:30	NMI	EET SPK
Dissolved	Filtration	FILTRATION			250 mL	250 mL	45148	12/18/23 17:26	AMB	EET SPK
Dissolved	Prep	3005A			50 mL	50 mL	45147	12/18/23 17:27	AMB	EET SPK
Dissolved	Analysis	6010D		1			45163	12/19/23 12:37	AMB	EET SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	44999	12/08/23 10:55	AMB	EET SPK
Total Recoverable	Analysis	6010D		1			45149	12/18/23 16:17	AMB	EET SPK

Client Sample ID: GEI056-Comp-120623 Date Collected: 12/06/23 12:10 Date Received: 12/07/23 10:19

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44987	12/07/23 14:30	MRV	EET SPK

Eurofins Spokane

Matrix: Solid

Matrix: Solid

Percent Solids: 91.3

Lab Sample ID: 590-22420-31 Matrix: Solid

Lab Sample ID: 590-22420-31

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

Job ID: 590-22420-1

Client Sample ID: GEI056-Comp-120623 Date Collected: 12/06/23 12:10 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.61 g	50 mL	45025	12/11/23 09:42	AMB	EET SPK
Total/NA	Analysis	6010D		1			45050	12/11/23 15:30	AMB	EET SPK
Total/NA	Prep	7471B			0.77 g	50 mL	45054	12/12/23 10:37	AMB	EET SPK
Total/NA	Analysis	7471B		1			45068	12/12/23 17:18	AMB	EET SPK

Client Sample ID: DUP-120523 Date Collected: 12/05/23 12:00 Date Received: 12/07/23 10:19

 	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	45044	12/11/23 22:04	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	45045	12/11/23 22:04	JSP	EET SPK
Total/NA	Prep	8011			80 mL	2 mL	45034	12/11/23 12:35	MRV	EET SPK
Total/NA	Analysis	8011		1	1 mL	1 mL	45038	12/11/23 17:06	NMI	EET SPK
Total/NA	Prep	3510C			257.1 mL	2 mL	45022	12/11/23 08:29	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	45039	12/11/23 18:51	NMI	EET SPK
Dissolved	Filtration	FILTRATION			250 mL	250 mL	45148	12/18/23 17:26	AMB	EET SPK
Dissolved	Prep	3005A			50 mL	50 mL	45147	12/18/23 17:27	AMB	EET SPK
Dissolved	Analysis	6010D		1			45163	12/19/23 12:42	AMB	EET SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	44999	12/08/23 10:55	AMB	EET SPK
Total Recoverable	Analysis	6010D		1			45149	12/18/23 16:21	AMB	EET SPK

Client Sample ID: Trip Blank Date Collected: 12/05/23 00:00 Date Received: 12/07/23 10:19

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	45044	12/11/23 22:47	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	45045	12/11/23 22:47	JSP	EET SPK

Client Sample ID: Trip Blank Date Collected: 12/05/23 00:00 Date Received: 12/07/23 10:19

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.081 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	45004	12/08/23 22:41	JSP	EET SPK
Total/NA	Prep	5035			10.081 g	10 mL	45010	12/08/23 12:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	45005	12/08/23 22:41	JSP	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: 590-22420-34 Matrix: Solid Percent Solids: 85.5

Matrix: Water

Matrix: Water

Lab Sample ID: 590-22420-35

Lab Sample ID: 590-22420-37 Matrix: Solid

Lab Sample ID: 590-22420-36

Accreditation/Certification Summary

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00 Job ID: 590-22420-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Program	Identification Nu	Imber Expiration Date
ashington	State	C569	01-07-24
		1.1	southerity. This list may include analy
The following analyte: for which the agency o	are included in this report, but the does not offer certification.	laboratory is not certified by the governing	autionity. This list may include analy
The following analyte: for which the agency Analysis Method	are included in this report, but the loes not offer certification. Prep Method M	laboratory is not certified by the governing	autionty. This list may include analy
The following analyte: for which the agency Analysis Method Moisture	s are included in this report, but the does not offer certification.	laboratory is not certified by the governing atrix <u>Analyte</u> lid Percent Moisture	

Method Summary

Client: GeoEngineers Inc Project/Site: Clarkston Street Shop/0504-199-00

1	
1	
_	
_	
	5
	8
	9
	10

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
8011	EDB, DBCP, and 1,2,3-TCP (GC)	SW846	EET SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
6010D	Metals (ICP)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SPK
3550C	Ultrasonic Extraction	SW846	EET SPK
5030C	Purge and Trap	SW846	EET SPK
5035	Closed System Purge and Trap	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK
8011	Microextraction	SW846	EET SPK
FILTRATION	Sample Filtration	None	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

None = None

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins Spokane

11922 E 1st Avenue

Chain of Custody Record

💸 eurofins |

Environment Testing America

Spokane, WA 99206-5302 nhone 509.924.9200 fax 509.924.9290	Regulatory Program Dw NPDE							R۷		Other [,]	,							Eurofins Environme	nt Testina America	a 🔼
	Project M	ianager: Ju	ustin Orr			ן ו			2	0000	Hear	SM	/					COC No:		1 3
Client Contact	Email iorr	@geoengin	eers.com			Site	Con	tact	7	70		<u> </u>	Date	12/	2/23			of	COCs	-
GeoEngineers, Inc.	Tel/Fax 5	509.570.077	79			Lab	Con	tact.			36		Carri	er.	<u>, , , , , , , , , , , , , , , , , , , </u>			TALS Project #		
523 E 2nd Ave		Analysis T	urnaround	Time		Т	Т	9			19	Τ				Ī		Sampler [.]		
Spokane, WA 99202	CALEN	DAR DAYS	🗋 wo	rking da'	YS] [83			1							For Lab Use Only		5
509.363.3125 Phone		T if different fi	rom Below				z	1			2 - 2							Walk-in Client.		
Project Name: (1, c/c) he Stand Cl -	- <u> </u>	1	2 weeks			2	-	Ř		_ `	2							Lab Sampling		- 6
Site		-	1 week 2 days				2l 🗸	È	Sci	امًا.	8							Joh / SDG No		-
PO# 574-199-00		•	1 day			ld u	္ခုိ	الح ا		14	8-8	x						0007 000 NO.		7
			Sample	Τ	[log is	12	1		E I	- 2	Ľ,								-
	Sample	Sample	Type (C=Comp.		#of	fere		X	Øß	3-	民居	7								8
Sample Identification	Date	Time	G=Grab)	Matrix	Cont.	Ē	2	ι'n	ولع	4-	F -2,	<u></u>						Sample Spe	cific Notes:	_
GEJUSG-BI(4-5)	12/5/23	0745	G	S	3													Hold (H)		9
GETUSE - BI(10-11)		0815					X	X	X,	XΙλ						\downarrow				10
GETUSG - BI(16-17)		0820											ļ					<u> </u>		
GET056 - BI (23-24)		0910																<u> </u>		111
<u>GETUSG- BI (28 29)</u>		6912														_		I H		12
DUP \$ 120523		1000					ĮΧ	X	X	XŻ	⊈∣]
GETUSG - BI - 120523		1148		\mathbb{W}	7		X	X	Х	X	$\langle X \rangle$									
65T056 - BJ (5-6)		1130		S	3													<u> </u> 		
GET056 - B2(11-17)		1900		T														H		
6EI058- B2(16-17)		1905					X	X	X	XX										
GETUST - B2 (14-20)		1250																H		
GET056 - B2(23 24)		1255																<u> </u>		
Preservation Used. 1= Ice, 2= HCI, 3= H2SO4; 4=HNO3	; 5=NaOH,	6= Other _				_	1									1 1		1		-
Are any samples from a listed EPA Hazardous Waste? Plea	se List any	EPA Waste	Codes for	the sam	iple in t	he	samp	Die D	ispo	osai (A tee m	iay b	e asse	ssed	17 {					
Non-Hazard Elammable Skin Irritant	Poiso	n B	Unkn	อพก		_		Rehur	n to i	Client			Vicnocal	by Lah						
Special Instructions/QC Requirements & Comments:				0111				NC(0)		Calcin			1500501	UY LOU						1
																590-22	420 Cha	in of Custody		
Custody Seals Intact:	Custody S	Seal No.							Coc	oler T	emp. (°C	C): Ot	os'd:_2	5+7	Coi	rr'd:L	1.0	_ Therm ID No IP	wy	1
Relinquished by Rand	Company Date/Filme GET 12/7/03						W	ved	by.	~	~		>	Cor	npany:	58	20	$\frac{Date/Time}{2/7/23}$	10:19	
Relinquished by	Company [.] Date/Time: R					lecei	ved I	by.			Ċ		Cor	npany			Date/Time [.]]	
Relinquished by	Company Date/Time: R						lecei	ved i	in La	aboral	ory by			Cor	npany			Date/Time.		1
				<u> </u>	'age ∕	1-6	-44							l				<u> </u>	<u> 12/19/2023</u>	-

Eurofins Spokane

11922 E 1st Avenue

Chain of Custody Record

👶 eurofins

Fnvironment Testing Amcrica

Spokane, WA 99206-5302 phone 509.924.9200 fax 509.924 9290	Reau		s I	 	RA	П	Other:								ε	Eurofins Environment	Testing Americ:	a 2			
	Project N	lanager: .lu	ustin Orr			י ר				0110					· ·			Ī	COC No:		1 2
Client Contact	Email ion	r@decendin	eers com			Site	- Cor	itact	Ra	wro	La	\$ <i>21</i> 4	Dat	e 12	121	43			2 of 5	COCs	
GeoEngineers Inc.	Tel/Fax	509.570.07	79			Lab	Cor	tact		<u>ya</u>	1101	1001-	Car	rier [.]	+ 1	02		5	TALS Project #		
523 E 2nd Ave		Analysis T	urnaround	Time		T	Т				93	2						1 8	Sampler		1
Spokane, WA 99202	CALE	NDAR DAYS	🗌 WO	rking da'	YS			03				2							For Lab Use Only		5
509.363.3125 Phone		AT if different f	rom Below				z	89			5								Walk-in Client		
FAX		:	2 weeks			N/	2	1			33	3							ab Sampling:		- 6
Project Name: Clurkston Street Slop			1 week			2	8.	Ê.	1		93	3								<u></u>	
			2 days 1 days			lg .	ڳا≳		80	à'	ষ্ণু-ই	¥ ا							100 / SDG NO.		- 7
500(-100			Sample			Sar	<u></u>	ĮΫ		+	۽ لو	3 70									-
	Cample	Sampla	Туре			Per	₽₽	\mathbb{R}	80	E.	3 3	24									0
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	li il	ΞŚ	ET E	Ĥ	24	参ば	신전							Sample Speci	fic Notes.	
(FTTT DALAS DA)	interno?	1210	1	C	1		1							-	+				11		
642056 - 62(80-20)	10/00	1510	6		5	╇									_			+	<u>††</u>		
6 ET056 - 87 - 120573		1500		w	7	Ш	_IX	(X	Х	XŻ	<u>K</u>								1.2		10
GEI056 - B3(14-15)	12/6/23	0755		5	3		ľ												4		
GETEST - B3/19-20	1	0815		T	T		Τ												4		11
GETATE - 22/23-24)		(18.30)		11			X	X	X		X								1		
(ETUST - B2(05-00)		0000					-	$\frac{1}{2}$	<u></u>		╧								11		-112
662030 - 03 (80 81)	+ +	10970			+	++	+		$\overline{\mathbf{v}}$					_	-				<u> </u>		-
6EL056- 85-170675		1181			$\frac{\tau}{-}$		Δ	ųΔ	Δ	ργ	ΔĮŽ	\							()		4
GETUSTO BY (4-5)	19233	1425		<u> </u> }	3										_				<u>†</u>		_
6ET056-B4(9-10)		1430																	<u> </u>		
657056-84(15-16)		1435																	H		
GE TOST - BY (101-20)		1515					Τ												H		
GETUSG - B4(23-24)		1520					TX	X	Χ	1	X										1
Preservation Used 1= Ice, 2= KCI, 3= H2SO4, 4=HNO3	, 5=NaOH,	6= Other																			
Possible Hazard Identification						(Samp	ole D	ispo	osal (A fe	e may	be ass	sesse	d if sa	ample	s are reta	ained	longer than 1 mont	i h)	1
Are any samples from a listed EPA Hazardous Waste? Plea	ase List any	EPA Waste	e Codes for	the sam	iple in t	he															
	Poiso	w B	Uokr	าดพุก				Retur	n to i	Client			Dispos	albula	ħ	ſ	Archive f	οr	Months		
Special Instructions/QC Requirements & Comments.	10150							Matur		CHCIL					<i></i>						7
Custody Seals Intact: / /7 Yes No	Custody Seal No.								Coo	oler T	emp.	(°C). C)bs'd:_	30	1	Corr'd:	4.0	ר	Therm ID No[PC	rou	
Relinquished by:	Company: Date/Time:						W	Ned	by	-7		>		C	ompa	nv:	Ro		Date/Time:	10 19	
Relinquished by JUP	Company Date/Time:						Rece	ived	by.					- d	ompa	iny [.]	<u> </u>		Date/Time:	- <u>+</u>	1
Belinguished by:	Company Date/Time:						Rece	ived	in I a	abora	tory h	ov.			ompa	inv [.]			Date/Time:		-
	Company Date/Time:						£_1_1									,		ľ		42/40/2022	
				rz 0														12/13/2023	-		

Eurofins Spokane

Chain of Custody Record

🔅 eurofins |

Environment Testing America

11922 E 1st Avenue

Spokane WA 99206-5302	Reau	sΓ	٦ac	RA	Пс)ther:											Eurofiz	is Enviro	onmer	ıt Test	ina Ame	rica					
	Project M	lanagar: .li	uetin Orr			Ĩ [`]			L.) ~	Junei											COC	No:					
Client Contect	Email ion	@geoengi	ante com			Site	Cor	ntact	B	. (.	Ī.J.	100	40	Date		त्रीत्र	120	2			- 3	of	3	COC	Cs		
GeoEngineers, Inc.	Tel/Fax !	609.570.07	79			Lab	Con	tact	2	<u>ye</u>	<u>(10</u>		~~	Carr	ier i	44	<u> * *</u>				TALS	Project	#•				
523 E 2nd Ave		Analysis T	urnaround	Time		††Ť	T		T		Tŝ					Τ			ł		Sampl	er.					
Spokane, WA 99202	CALE!	DAR DAYS	🗌 wo	RKING DAY	S	11		0			A	1									For La	b Use (Only				5
509.363.3125 Phone	TA TA	T il different f	rom Below			1 12		2			J J										Walk-i	n Client					2
FAX	X		2 weeks			Ξž	3	1.12		Ş		4									Lab Si	ampling:		_			
Project Name Clinkston Street Shap			1 week			Σg		TB.			<u></u>	2															
			2 days			Pie la		a ₹,	E	4-	9										JOD / S	SDG No.	<u></u>				
<u>F0# S04-199-00</u>		1	1 day	1		-Sar		ž –	8	土	g 8	활장														_	
			Туре			Da Ra	ĮΈ	3 7	ġ,	8-		ي ال															0
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	et lite		35	ū	월 4	취순	30										Sample	e Sper	tific N	otes.		0
	Ind da	1			~>	╪╪	-			Ŧ	+			Ħ	+	+	1		+	-) (-1	a
62056-134 (28-29)	1015783	1545	6	>	2	++	1								_	_			-+	_	<u>+F</u>						
GET056-1341-120523		1706		W	7		X	X	X	\underline{X}	$\langle X \rangle$	1														_	
657056-B5(3-4)	12/6/23	1410		5	3	Ш															14						
GET056-B5(10-11)		1420																			H					1	1
6ET056-B5(15-16)		1425			Τ	T															14						
65FUS6 -B5(20-71)	\square	1445	1			\square					1					1					H						
GET058-B5(24-25)		1450					X	X	Х	XX	$\langle $																
GET057 - B5(28-29)		1555			Ţ	\square	Τ														H						
CETUS - R5-120693		1730	+-1-	W	7		Tχ	X	Х	X/X	$\langle X \rangle$	1				1			Ţ]						
hEIUS COMP - 120623		1210	C	S			ľ			<u></u>	1	$\overline{\mathbf{N}}$			-	1											
DIMP: 121523	12/5/23	1200	6	Ŵ	7	╈	Tx	X	χ	XX		ſ				1					-						
To'r Blank		+		5	_!_	$\uparrow \uparrow$	ŤX	Ŕ	ŕŤ		Ť	\															
Preservation Used: 1= Ice, 2= HCI, 3= H2SO4, 4=HNO3,	5=NaOH,	6= Other					5	Ì												-	•••						
Possible Hazard Identification The Block	ee List anv	EPA Wast	Codes	W.	ale in t	ne (S	ami	ole D	ispo	sal (A fe	e ma	y be	ass	esse	d if s	amp	les a	are re	etaine	ed long	er than	1 mor	ith)			
Comments Section if the lab is to dispose of the sample.	30 List arry	LI / 11430	5 00000 101	alo salin	510 111																						
Non-Hazard Flammable Skin Irritant	Poiso	n B	Unkr	юwn				Retur	n to (Client			D	sposa	l by La	b			Archiv	e for_		Month	<u>s</u>				
Special Instructions/QC Requirements & Comments.																											
Custody Seals Intacty Yes No	Custody Seal No.								Coo	ler Te	emp.	(°C)	Ob	s'd:	52		Corr	'd: 	(, 0)	Therm	ID No	P	υđ	4		
Relinquished by	Company: Date/Time:					F		wed	by:		,		7		C	omp	anv:	S	P		Date/	"ime: 7/2 =	Ż	_/C	19		
Relinquished by	Company Date/Time F					Rece	ived I	by [.]	~		<u> </u>			-lć	omp	any [.]				Date/	ïme:		_, _	<u> </u>			
Relinquished by	Company [,] Date/Time: R					lece	ived	n La	borat	lory b	oy.			-c	omp	any [.]				Date/	ime						
	Company Date/Time: Page 43-d																							-12/1	9/202	3 	

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 22420 List Number: 1 Creator: Morris, Mackenzie 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-22420-1

List Source: Eurofins Spokane

APPENDIX E Report Limitations and Guidelines for Use

ATTACHMENT E REPORT LIMITATIONS AND GUIDELINES FOR USE²

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers, Inc. (GeoEngineers) structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the City of Clarkston Street Shop facility located at 1455 Bridge Street in Clarkston, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

² Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state, or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No Environmental Site Assessment (ESA) can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled, or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted, or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology, and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.
Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention, or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing, or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

