TERMINAL 30 2021 ANNUAL SITE PERFORMANCE REPORT – YEAR 2

Terminal 30 Site

February 2024

ΑΞϹΟΜ

2021 Annual Terminal 30 Site Performance Report

Port of Seattle Terminal 30 Site

Project number: 60681370

February 2024

Delivering a better world

Quality information Prepared by		cked by	Verified by	Approved by		
Gus Friedman Environmental Eng	inoor	tt Larson ironmental Scientist	Jamalyn Green Senior Enginee		Paul Kalina Project Manager	
Revision His	tory					
Revision	Revision date	Details	Authorized	Name	Position	
Distribution I	ist					
# Hard Copies	PDF Required	Association / C	ompany Name			

Prepared for:

Port of Seattle

Prepared by:

AECOM 1111 Third Avenue Suite 1600 Seattle, WA 98101 aecom.com

Copyright © 2022 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Intro	oduction	
2.	Site	Monitoring	2-1
	2.1	Site Monitoring Methods	2-1
	2.1.1	PSCAA Vapor Sampling Methods	2-1
	2.1.2	Free Product Gauging and Removal Methods	2-2
	2.1.3	Groundwater Sampling Methods	2-2
	2.2	Site Monitoring Deviations from the CMP	2-2
3.	AS/S	SVE System Performance	
	3.1	System Operation and Maintenance	3-1
	3.2	System Performance – Field Data	3-1
	3.3	Soil Vapor Gas Sampling	
	3.3.1	Quality Assurance	
	3.4	System Maintenance	
4.	Free	Product Gauging and Recovery	
	4.1	Free Product Gauging	4-1
	4.2	Free Product Removal	4-2
	4.3	Free Product Recovery Termination	4-2
5.	Grou	undwater Sampling	5-1
	5.1	Performance Monitoring Wells	5-1
	5.2	Interior Monitoring Wells	5-2
	5.3	CPOC Monitoring Wells	5-2
	5.4	Shoreline Water Quality Monitoring Wells	5-2
	5.5	Quality Assurance	5-2
6.	Con	clusion	6-1
	6.1	CMP Modifications and Recommendations	6-1
	6.2	Recommended AS/SVE Adjustments for Year 3	6-1
	6.3	Schedule and Reporting	6-2
7.	Refe	erences	7-1
8.	Table	es	
9.	Figu	ires	

10. Appendices

Tables

- Table 1 Indicator Hazardous Substances
- Table 2 Compliance Monitoring Frequency and Analytes
- Table 3 Compliance Monitoring Schedule
- Table 4 AS/SVE and Oxidizer Operational Data
- Table 5 AS/SVE and Oxidizer Analytical Data
- Table 6 LNAPL Gauging and Recovery Results
- Table 7 LNAPL Gauging Results in Monitoring Wells
- Table 8 Performance and Interior Monitoring Well Groudwater Analytical Data
- Table 9 COPC and Shoreline Water Quality Monitoring Well Groundwater Analytical Data TPH and BTEX
- Table 10 COPC and Shoreline Water Quality Monitoring Well Groundwater Analytical Data PAH
- Table 11 Monitoring Well Groundwater Sampling Parameters
- Table 12 Well Construction Information

Figures

- Figure 1 Site Location
- Figure 2 Baseline Extent of Impacts and Location of Cleanup Action
- Figure 3 Compliance Monitoring Well Network With Final 2021 Groundwater Conditions
- Figure 4 End of 2021 Compliance Monitoring Analytical Results
- Figure 5 Period VOC Removal Rates
- Figure 6 Cumulative VOC Mass Removal
- Figure 7 LNAPL Thickness in Recovery Wells
- Figure 8 LNAPL Thickness in Monitoring Wells
- Figure 9 LNAPL Recovery Volumes
- Figure 10 Cumulative LNAPL Recovery Volume
- Figure 11 Performance Monitoring Well TPH-Dx Concentrations

Appendices

- Appendix A O&M Field Forms
- Appendix B Vapor Sampling Field Forms
- Appendix C Vapor Sampling Laboratory Analytical Reports
- Appendix D Vapor Sampling Summary Data Quality Review Reports
- Appendix E LNAPL Gauging and Recovery Field Notes
- Appendix F Groundwater Sampling Field Forms
- Appendix G Groundwater Sampling Laboratory Analytical Reports
- Appendix H Groundwater Sampling Summary Data Quality Review Reports
- Appendix I Select Figures from the Groundwater Compliance Monitoring Plan

Acronyms and Abbreviation

µg/L	microgram per liter
AECOM	AECOM Technical Services, Inc.
AS	air sparging
BTEX	benzene, toluene, ethyl-benzene, and total xylenes
CAP	Cleanup Action Plan
CD	Consent Decree
CMP	Groundwater Compliance Monitoring Plan
cPAH	carcinogenic polynuclear aromatic hydrocarbon
CPOC	conditional point of compliance
COI	contaminant of interest
COC	contaminant of concern
CRETE	CRETE Consulting
CUL	cleanup level
DO	dissolved oxygen
DTW	depth to water
T30 or Site	Terminal 30
EC	equivalent carbons
Ecology	Washington State Department of Ecology
EDR	Engineering Design Report
EPA	United States Environmental Protection Agency
ft	foot/feet
IHS	indicator hazardous substance
LCS/LCSD	laboratory control sample/ laboratory control sample duplicate
LNAPL	light non-aqueous phase liquid
MDL	method detection limit
MRL	method reporting limit
MS/MSD	matrix spike/ matrix spike duplicate
NAD83	North American Datum of 1983 (horizontal)
NAVD88	North American Vertical Datum of 1988
NOAA	National Oceanic and Atmospheric Administration
NOC	notice of construction
ORP	oxidation-reduction potential
PID	photoionization detector
Port	Port of Seattle
PPMV	parts per million by volume
PSCAA	Puget Sound Clean Air Agency
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
RI/FS	Remedial Investigation/Feasibility Study
REL	remediation level
RPD	relative percent difference
scfm	standard cubic feet per minute
SOP	standard operating procedure
SVE	soil vapor extraction
TEF	toxicity equivalency factor
TEQ	toxic equivalent concentration
TPH	total petroleum hydrocarbons
TPH-Dx	total petroleum hydrocarbons – diesel and lube oil range
TPH-Gx	total petroleum hydrocarbons – gasoline range
VOC	volatile organic compound
WAC	Washington Administrative Code

1. Introduction

In 2019 the Port of Seattle (Port), under the oversight of Washington State Department of Ecology (Ecology), completed construction of the selected cleanup action alternative at the Terminal 30 project site (T30, Site), located at 1901 East Marginal Way South in Seattle, Washington (Figure 1), to satisfy requirements of the Consent Decree (CD) between Ecology and the Port, filed July 19, 2017 (Ecology, 2017). Details of the construction action are documented in the Construction Completion Report (CRETE, 2020a). The selected cleanup action remedy for the T30 site includes an Air Sparging/Soil Vapor Extraction (AS/SVE) system, free product recovery, and compliance monitoring. The construction of the cleanup remedy was completed from July 6, 2019, through November 9, 2019, and cleanup elements included the installation of 3 horizontal SVE wells, 7 vertical SVE wells, 27 AS wells, 10 light non-aqueous phase liquid (LNAPL) recovery wells, an AS/SVE system, and a vapor treatment thermal oxidizer. The purpose of the AS/SVE system is to reduce contaminant mass in shallow groundwater within, and downgradient of, the sheen area. Groundwater flows generally west towards the East Waterway, as shown in Figure 1 of Pacific Groundwater Group's (PGG) 2016 Tidal Study, included as Appendix B of the RI/FS (PGG, 2016), and also included in Appendix A of the Groundwater Compliance Monitoring Plan (CMP) within Appendix E of the Engineering Design Report (EDR) (CRETE 2018). The purpose of free product recovery is to reduce free product thickness to a sheen (less than 0.01 feet). The footprint of the cleanup action is shown on Figure 2.

On September 17, 2021, remedial system operation and compliance monitoring were transferred from CRETE Consulting, Inc (CRETE) to AECOM Technical Services, Inc. (AECOM) by the Port. This annual report (Annual Report) was prepared by AECOM on behalf of the Port and was completed using data collected by CRETE from January through August 2021 and by AECOM from September through December 2021. This represents the second year of monitoring, referenced as Year 2 in this Annual Report. This Annual Report is based on the monitoring requirements in the CMP and Quality Assurance Project Plan (QAPP) included as Appendix E of the Engineering Design Report (CRETE, 2018). This Annual Report provides the operation and monitoring results for site cleanup actions conducted during Year 2, including performance and confirmational sampling data associated with the operation and monitoring of the AS/SVE system. Groundwater data is compared against site cleanup levels (CULs) and remediation levels¹ (RELs), while AS/SVE system vapor data is compared against criteria identified in the Puget Sound Clean Air Agency (PSCAA) notice of construction (NOC) worksheet (Puget Sound Clean Air Agency, 2019).

¹ The EDR and CMP explain how groundwater CULs and RELs were developed for the site.

2. Site Monitoring

The site cleanup action monitoring plan is detailed in the CMP and summarized briefly in this section. Monitoring includes AS/SVE system performance monitoring, PSCAA vapor compliance sampling, free product gauging and removal, and groundwater sampling.

The AS/SVE system operation and maintenance activities include system checks and collection of PSCAA vapor samples to verify that oxidizer destruction efficiency is above the acceptable limits.

Free product-related activities in Year 2 included product thickness gauging at 17 wells and product removal at 10 wells across the site (Figure 3, Table 6). Groundwater monitoring was completed at 6 wells in Year 2 and included depth to water (DTW) gauging, free product gauging, and groundwater sampling. The groundwater monitoring wells are also shown on Figure 3 and are grouped as follows:

- Performance Monitoring Wells (within the AS/SVE field zones): MW-59, RW-11A, and MW-89
- Performance Monitoring Wells (downgradient of AS/SVE field zones): MW-36A, RW-9, MW-39A, and MW-42
- Interior Monitoring Wells²: RW-1, RW-5A, MW-93
- Conditional Point of Compliance (CPOC) Monitoring Wells: MW-45A, MW-46B, MW-58A, MW-86B, and MW-92
- Shoreline Water Quality Monitoring Wells: MW-84A, MW-85A, MW-86B, and MW-87A
- Free Product Gauging: MW-59, RW-12, RW-101-110, MW-36, MW-39A, MW-89, and MW-93
- Interior Monitoring Wells (Gauging Only): MW-35, MW-36, MW-54, and MW-64

Samples from groundwater monitoring wells are analyzed for the site Indicator Hazardous Substances (IHSs) (Table 1). Samples are collected from performance, select Interior, CPOC, and shoreline water quality monitoring wells according to the compliance monitoring phase and sampling plan. Water quality samples are not collected from free product gauging wells, monitoring wells with free product present, and interior monitoring wells listed above as gauged only. The frequency of groundwater monitoring varies by well group and by compliance monitoring phase (Table 2 and Table 3). Compliance monitoring is divided into three sequential phases:

- Baseline Monitoring A full round of compliance well gauging and sampling that occurred shortly before or during start-up of the AS/SVE system and initiation of free product recovery activities (completed in October 2019 and summarized in the 2020 Annual Report).
- Performance Monitoring (current monitoring phase) Compliance well gauging and sampling that occurs during and for 2 years following the completion of AS/SVE system operation and free product recovery, to determine whether rebound occurs and further cleanup actions are needed to achieve RELs.
- Confirmational Monitoring Long-term compliance well gauging and sampling that occurs once RELs and CULs have been achieved in performance and CPOC monitoring wells.

Table 3 illustrates the monitoring schedule by compliance monitoring phase.

2.1 Site Monitoring Methods

Samples were collected in accordance with the CMP and QAPP (CRETE, 2018). This section provides an overview of sampling and product gauging and recovery methods and discusses any deviations from the CMP.

2.1.1 PSCAA Vapor Sampling Methods

Vapor samples are collected from two dedicated sampling ports on the treatment system. The influent port is located upstream of the thermal oxidizer and captures vapor concentrations prior to treatment. The effluent port is located on

² MW-38 was removed from the Interior Monitoring Well network due to subsurface blockage in 2020 and it was decommissioned in 2021. More information is included in Section 2.2.

the downstream side of the oxidizer and captures vapor concentrations after treatment is complete. Samples are collected with laboratory-provided summa canisters, which when opened create a negative pressure, drawing the sample stream into the sample canister. Tubing is utilized to connect the sampling port to the sample canister.

Data from the vapor samples are used to evaluate oxidizer performance and destruction efficiencies, which are calculated by comparing the pre- and post-treatment concentrations of total petroleum hydrocarbons (TPH) and volatile organic compounds (VOC) including benzene, toluene, ethylbenzene, and total xylenes (BTEX). The results of these sampling efforts are discussed in Section 3.2.

2.1.2 Free Product Gauging and Removal Methods

Free product removal is completed using a vacuum truck. The vacuum truck uses a multi-lobed positive displacement blower to create a vacuum in the attached holding tank. This tank vacuum in turn pulls fluids through the attached hoses and/or piping. During removal a down-well "stinger" or pipe is inserted into the well to just below the measured bottom of free product (the targeted level) to remove free product and water. Prior to 2021 drum vacuum was used for free product removal and was later switched to vacuum truck methods due to increased efficiency by applying a greater vacuum that is typically capable of removing fluids (oil and water) more rapidly from the target wells. Free product removal activities completed during 2021 were in accordance with standard operating procedure (SOP) 505 from the Operation Maintenance & Monitoring Plan (CRETE, 2020b).

2.1.3 Groundwater Sampling Methods

Groundwater samples were collected using the Environmental Protection Agency (EPA) Low-Flow Groundwater Sampling Procedure (US EPA, 2017), detailed in the CMP. Groundwater wells were gauged prior to purging. This information was used to verify that no free product was present and to determine the inlet placement depth for the groundwater sampling tubing. The inlet was maintained near the mid-point of the saturated well screen interval. For wells with significant tidal influence, the inlet was placed at least 2 feet from the bottom of the well. During purging field parameters (temperature, specific conductance, and pH) were measured to determine when conditions had stabilized, indicated by recording three consecutive field parameter measurements measured in 2-minute intervals or greater. Groundwater samples were collected with low-flow pumping rates (~100 to 200 mL/min) to minimize volatilization of constituents. All water samples were collected from the pump discharge lines directly into appropriate laboratory-provided sample containers. Samples submitted for dissolved analyses are field filtered using a 0.45-micron in-line disposable filters, but no samples were submitted for dissolved analyses this year. Sampling equipment was either decontaminated between monitoring wells (such as the water level tape) or new dedicated materials were used (such as tubing and gloves).

A subset of wells at T-30 are sufficiently tidally influenced that they require sampling at specific times to reduce tidal influence on groundwater chemistry. Best practice per the Tidal Study (PGG, 2016) includes sampling at the tidal lag times to ensure a representative sample. Below is a summary tidal lag times³. Note that the wells listed below were not required to be sampled during this reporting period:

- CPOC Monitoring Well MW-58A: between 70 and 130 minutes after low-low tide
- CPOC Monitoring Well MW-86B: between 130 and 190 minutes after low-low tide
- Performance Monitoring Well MW-89: between 130 and 190 minutes after low-low tide
- Shoreline Water Quality Monitoring Wells (MW-84A, MW-85A, MW-86B, MW- 87A): between 130 and 190 minutes after low-low tide
- All other CPOC, performance, and interior monitoring wells have limited tidal influence and do not require coordinating sampling time with tidal lag.

2.2 Site Monitoring Deviations from the CMP

Deviations from the groundwater CMP included the following:

³ Low-low tide is as measured at National Oceanic and Atmospheric Administration (NOAA) Tide Station ID: 9447130

- Several monitoring wells (MW-36, MW-36A, MW-93, and RW-1) had LNAPL present during baseline sampling and have been monitored for LNAPL on a monthly basis since sampling was initiated. The CMP requires LNAPL monitoring to be performed quarterly until four consecutive quarters of LNAPL thicknesses <0.01 feet (ft) are achieved, at which time monitoring can be discontinued. While monitoring continued at these four wells through the end of the reporting period, four quarters of LNAPL thickness <0.01 ft was achieved in wells MW-36A and MW-93 in January and August 2021, respectively.
- MW-39A and MW-89 are required by the CMP to be treated as recovery wells until LNAPL measurements <0.01
 ft are recorded for four consecutive quarters, at which time they can be transitioned to Performance Monitoring
 Wells and are no longer monitored for LNAPL. While MW-89 and MW-39A achieved four quarters of LNAPL
 thickness <0.01 ft in October 2020 and August 2021, respectively, field staff continued to monitor both wells on a
 monthly basis through the end of Year 2.
- The CMP does not require LNAPL gauging outside of recovery and sampling events. When the recovery schedule
 was reduced from monthly to bimonthly in November 2020, the LNAPL gauging schedule was maintained on a
 monthly basis.
- LNAPL recovery events were to be executed on a bimonthly schedule throughout the reporting period, but conflicts resulted in a quarterly schedule during the second half of the year. Events occurred in January, March, May, August, and November.
- Matrix spike/ matrix spike duplicate (MS/MSD) samples were not collected during the April sampling event. Precision and accuracy of the data was assessed by other laboratory quality control samples and found to be acceptable. Further discussion is included in Section 5.5.
- Field duplicate and MS/MSD samples were not collected during the October sampling event. Precision and accuracy of the data was assessed by other laboratory quality control samples and found to be acceptable. Further discussion is included in Section 5.5.
- MW-38, which was found to have a below-grade obstruction that prevented sampling on September 18, 2020, was decommissioned on May 6, 2021. Decommissioning activities are documented in CRETE's decommissioning report dated May 11, 2021 (CRETE, 2021). The well has been removed from the interior monitoring well network and a replacement was determined to be unnecessary as nearby MW-93 can sufficiently represent the region.

There were no other deviations from the CMP during the reporting period.

3. AS/SVE System Performance

This section summarizes the AS/SVE system performance for Year 2. The AS/SVE system requires routine system maintenance, which was performed by Port of Seattle Marine Maintenance staff (Marine Maintenance). The system also requires routine performance monitoring and adjustments to achieve optimal VOC removal and destruction. CRETE performed biweekly checks of the system from January through August 2021. AECOM assumed responsibilities of the system in September and performed weekly checks from September through December 2021. These visits included visual inspections, performance analysis via gauge and flow meter readings, and the collection of vapor samples to confirm compliance with PSCAA requirements.

Remediation system field forms are included in Appendix A. A layout of the AS/SVE system components is included on Figure 2.

3.1 System Operation and Maintenance

The data from the weekly and biweekly system performance inspections conducted by CRETE and AECOM in 2021 are available in Table 4. The work performed during these inspections included recording flow rates, operating temperatures, pressure and vacuum levels, and VOC concentrations in the oxidizer influent and effluent. Routine maintenance activities were completed by Marine Maintenance, which included changing oil, greasing components, checking and replacing filters, checking and replacing belts, and checking levels in moisture separator tanks. Copies of the field forms completed during the routine inspections are included in Appendix A.

The SVE system had operated for over 15,420 hours by the end of Year 2 (Table 4). It ran for 8,000 hours during this reporting period, for an operation rate of 91%. There was no significant maintenance needed on either the SVE or oxidizer systems during Year 2.

The AS system had operated for a total of 3,693 hours at the end of Year 2, 3,181 of which occurred during Year 2. This accounts for a 36% operational rate for this reporting period but is also 86% of the total operation of the system to date. Prior to 2021, and not including for the 5 months of shutdown due to the coronavirus disease, the AS system was only operational 6.7% of the time. Factors affecting system operation and Year 2 maintenance are described below in Section 3.4.

3.2 System Performance – Field Data

During routine inspections, CRETE and AECOM used a photoionization detector (PID) to monitor vapor concentrations at the oxidizer inlet and outlet to track removal rates and estimate destruction efficiency. VOC removal rates are calculated with the SVE flowrate and the influent VOC concentration. The analytical data from Table 5 are used for the VOC concentrations for the days that a sample was taken; for the non-sampling site visits, the concentration is an adjustment of the PID reading based on the ratio of the most recent lab datum to its associated PID reading. This is further explained in Note 4 of Table 4. For this reporting period, the influent removal rate ranged from 0.9 (December 1, 2021) to 35.2 pounds (lb) per day (February 2, 2021) (see Table 4 and Figure 5). A rate of 0.6 lb/day was recorded on October 28, 2021, but as noted in Table 4 it was taken shortly after an extended shutdown and is likely not a representative reading. Figure 6 shows the cumulative VOC mass removal to the end of the reporting period and the potential beginnings of an asymptotic leveling out of VOC removal. In the three months of 2019 after system startup the average VOC removal was 423 lb/month. In the seven months of operation in 2020 the system averaged removals of 552 lb/month. In this reporting period of 2021, the average removals were 47% lower at 280 lb/month (twelve months of operation). Per Figure 5, with a few outlier exceptions, this downward trend has been in effect since mid-February of 2021. The cumulative VOC mass removal from startup through the end of this reporting period, as calculated with the field data, is 8,918 lb

The PSCAA permit sets thresholds for the oxidizer destruction efficiency and SVE blower flowrate. The destruction efficiency requirements are applied to the laboratory results, but the field data are used to monitor operation between sampling events. The destruction efficiency must be at least 97% if the influent concentration is between 200 and 2,000 parts per million by volume (ppmv) TPH. If the TPH concentration is less than 200 ppmv, then the destruction efficiency requirement reduces to \geq 90%. Finally, if the oxidizer inlet concentration of TPH is below 10 ppmv, the destruction efficiency requirements are waived altogether. All data in the reporting period passed these thresholds with an overall

average of 98% TPH destruction (Puget Sound Clean Air Agency, 2019). As shown in Table 4, with the exception of December 20, 2021, all measurements in the reporting period were below 200 ppmv TPH and only required 90% destruction. On December 10, the influent was measured at 399.3 ppmv TPH, and the destruction efficiency was measured at 100%.

The SVE flowrate is not permitted to exceed 375 standard cubic feet per minute (scfm), and all data in the reporting period were below this limit (Puget Sound Clean Air Agency, 2019). The system operated with flow rates between 223 scfm (June 16, 2021) and 264 scfm (November 23, 2021) in this reporting period, with an average of 245 scfm (Table 4).

3.3 Soil Vapor Gas Sampling

Soil gas samples were collected on a monthly basis by CRETE from January 2021 to August 2021, and by AECOM from September 2021 to December 2021. This was done to demonstrate compliance with PSCAA destruction efficiency requirements and to ensure that the vapor treatment system was performing as designed (Puget Sound Clean Air Agency, 2019). Gas samples were collected at both the thermal oxidizer inlet and outlet in 1-liter summa cannisters. The samples were delivered to Friedman and Bruya, Inc., located in Seattle, Washington, for analysis of petroleum hydrocarbons by method MA-APH and BTEX by method TO15. The MA-APH method provides data for three petroleum subgroups (EC 5-8 aliphatics, EC 9-12 aliphatics, and EC 9-10 aromatics) that are summed for a TPH estimate. These are the TPH concentrations reported in Table 5. The destruction efficiency of the oxidizer is calculated by comparing the inlet and outlet TPH concentrations. The PSCAA permit requirements are outlined above in Section 3.2.

Soil vapor samples were collected by CRETE on: 01/12/2021, 02/17/2021, 03/23/2021, 04/29/2021, 05/20/2021, 06/16,2021, 07/20/2021 and 08/27/2021. Samples were collected by AECOM on 09/30/2021, 10/21/2021, 11/18,2021 and 12/22/2021. Vapor sampling field forms were produced by CRETE and are provided in Appendix B. The analytical data for all samples are presented in Table 5 and are incorporated, with field data, in Figure 5 and Figure 6.

The destruction efficiency in 2021 ranged from 96.6% (April 19, 2021) to 99.4% (February 17, 2021) with an average of 98.5% as summarized in Table 5. This is well above the 90% threshold for concentrations of TPH below 200 ppmv, which included samples from all monitoring events, except January 12, 2021. On that day influent TPH was 225.9 ppmv and its destruction efficiency was 99.1%, still meeting the associated requirement of 97%.

Laboratory results for the influent samples indicate that 2,677 lb of TPH were extracted from the subsurface in 2021, and 7,371 lb were extracted cumulatively from startup through the end of Year 2. These values are 20% and 17% lower, respectively, than the totals calculated with adjusted field data (Table 4). In the three months of operation in 2019 after system startup the average lab-analyzed TPH removal was 604 lb/month. In the seven months of operation in 2020 the system averaged removals of 412 lb/month. In this reporting period of 2021, the average removals were 46% lower at 223 lb/month (twelve months of operation).

The PSCAA permit dictates that a control device for extracted soil vapor is not needed once non-treated removal rates drop below contaminant of concern (COC) thresholds for two consecutive months (see Table 5). These thresholds, with the exception of TPH (2.74 lb/day), have been met for all COCs since system startup. TPH extraction rates have been below the 2.74 lb/day threshold since October 21, 2021.

3.3.1 Quality Assurance

Laboratory reports and chain-of-custody forms are provided in Appendix C. All samples were delivered to Friedman & Bruya Inc. located in Seattle, Washington. Laboratory reports were reviewed and reporting flags, when applicable, were accepted and are included in Table 5. Per the Summary Data Quality Reviews in Appendix D, all laboratory quality assurance metrics were achieved for this project, the method reporting limits (MRLs) met the project needs for all analytes, and all data were determined to be usable.

3.4 System Maintenance

As included in Table 4, the major system maintenance activities performed during Year 2 are summarized below. Note that the thermal oxidizer was updated to a catalytic oxidizer on March 19, 2020, and has been operating as such to date.

- Air sparge system:
 - Turned off from April 19, 2021, to May 4, 2021, due to an observed oil leak in the compressor. The air sparge gasket was repaired and system restarted after the repair.
 - Turned off from June 15, 2021, to July 24, 2021, due to compressor malfunction. The compressor was sent
 offsite for servicing and reinstalled once repaired.
 - The pressure switch on the air sparge system had historically caused shutdowns due to false high pressure faults. In Table 4 CRETE noted that the bleed valve on the air sparge compressor was opened all the way up on August 26 in an attempt to relieve pressure on the system. The attempt was not successful. AECOM tried closing it all the way down on November 5 but this did not resolve the issue either. Between the end of September (when AECOM assumed control) and November 17, 2021 (when a replacement pressure switch was installed by Marine Maintenance), the sparge system was operational just 18% of the time. The replacement of the pressure switch resolved the false alarms, and the system ran without issue through the end of the reporting period.

4. Free Product Gauging and Recovery

Free product gauging and recovery events have been executed in accordance with the CMP since January 2020, shortly after system startup. Events were completed on a monthly schedule until November 2020, when the product recovery frequency was reduced from monthly to bimonthly. At that time, the product gauging frequency was maintained on a monthly schedule. This made the December 2020 event the first gauge-only monitoring event, and this schedule was maintained for the duration of the reporting period. CRETE completed combination recovery and gauging events in January, March, May, and August, with AECOM completing one additional event in November. CRETE also completed gauge-only events in February, April, and June. Events in July and October were missed due to scheduling conflicts and made up the following month. Field forms for all events are included in Appendix E.

4.1 Free Product Gauging

As shown in Figure 7 and Figure 8, LNAPL thickness in 2021 was stable or decreasing until the end of the year when an increase was observed. LNAPL was thickest in the recovery wells at the southernmost end of the AS and SVE wellfield, farthest away from the remediation system (see Figure 2). Free product thicknesses and maxima since startup are reported in Tables 6 and 7 and summarized below.

- MW-35 LNAPL thickness ranged from 0.0-0.42 ft (11/11/21 and 4/15/21, respectively). This is down from a historical max of 0.52 ft on 10/8/20.
- MW-36 LNAPL thickness was measured at 0.0 ft every visit of 2021 with the exception of 8/12/21 at 0.02 ft. This is down from a historical max of 1.0 ft on 6/19/20.
- MW-59 LNAPL thickness ranged from 0.0-0.86 ft (2/12/21 and 6/10/21, respectively). This is down from a historical max of 2.19 ft on 1/9/20. There was no LNAPL encountered in this well in the six months from September 2020-February 2021.
- RW-1 LNAPL thickness ranged from 0.04-0.27 ft (2/12/21 and 8/12/21, respectively). This is down from a historical max of 0.59 ft on 6/19/20.
- RW-12 LNAPL thickness ranged from 0.05-0.31 ft (3/5/21 and 8/12/21, respectively). This is down from a historical max of 0.78 ft on 3/12/20 and 5/16/20.
- RW-101 LNAPL thickness was measured at 0.0 ft every visit of 2021 with the exception of 6/10/21 at 0.01 ft. This is down from a historical max of 0.09 ft on 7/8/20.
- RW-103 LNAPL thickness ranged from 0.23-0.87 ft (5/13/21 and 2/12/21, respectively). This is down from a historical max of 1.74 ft on 9/10/20.
- RW-104 LNAPL thickness was measured at 0.0 ft every visit of 2021 with the exception of 11/11/21 at 0.01 ft. LNAPL had not been encountered in RW-104 prior to 2021.
- RW-106 LNAPL thickness ranged from 0.58-1.19 ft (6/10/21 and 2/12/21 respectively). This is down from a historical max of 1.55 ft on 9/10/20.
- RW-107 LNAPL thickness ranged from 0.02-1.00 ft (11/11/21 and 2/12/21, respectively). This is down from a historical max of 2.49 on 10/8/20.
- RW-110 LNAPL thickness ranged from 0.0-0.48 (1/15/21 and 8/12/21, respectively). The prior historical max had been 0.46 ft on 7/28/20.

LNAPL was measured for, but not encountered in, the following wells during 2021:

- MW-36A (historical max 0.04 ft during baseline sampling on 10/16/19)
- MW-39A (historical max of 0.35 ft on 5/16/20)
- MW-89 (historical max of 2.39 ft during baseline sampling on 10/16/21)
- MW-93 (historical max of 1.04 ft during baseline sampling on 10/16/21)
- RW-102 (historical max of <0.01 ft on 10/8/20)

- RW-105 (LNAPL has never been encountered)
- RW-108 (LNAPL has never been encountered)
- RW-109 (LNAPL has never been encountered)
- LNAPL thickness was also measured at each groundwater sampling well during the groundwater sampling events (discussed in Section 5).

4.2 Free Product Removal

LNAPL removal activities transitioned from monthly to a bi-monthly schedule starting November 2020. LNAPL removal was conducted using a vacuum truck as discussed in Section 2.1.2. Table 6 provides a summary of the data collected during the free product removal events since the baseline gauging in October 2019. Approximately 225 gallons of free product were removed in the 5 bi-monthly events executed in Year 2. Approximately 735 gallons of free product have been removed since removals began in January 2020. These volumes are approximations due to the difficulties inherent in measuring a precise volume from the holding tank of the vacuum truck. Detailed gauging tables providing results of the removal events are included Appendix E.

As shown in Figure 9, the volume of LNAPL recovered varies from month to month and there were no clear trends in LNAPL removal from Year 2. The average removal volume was 45 gallons per event, with a range of 24-78 gallons (Table 6). The maximum removal occurred in August and the minimum was in May. The average removal volume for 2021 was less than the 2020 average of 51 gallons per event, over 10 events. Figure 10 shows the cumulative LNAPL recovery since system startup, and the steady slope over 2021 indicates that recovery volumes are not yet tapering off. The LNAPL thickness trends on a well-by-well basis are described above in Section 4.1 and shown in Figure 7 and Figure 8.

4.3 Free Product Recovery Termination

Free product recovery at an individual well can be terminated when product thickness has been reduced to less than a measurable thickness of 0.01 ft for a period of one year. This recovery termination criterion will result in sequential removal of recovery wells from recovery events as the area with measurable free product shrinks. Wells RW-101 through RW-110 will be left in place for one year after the last well meets the termination criteria, after which they will be decommissioned consistent with Washington Administrative Code (WAC) 173-160.

During Year 1, two wells (MW-36A and MW-89) qualified to be removed from the free product recovery program (Table 6). CRETE and AECOM continued to monitor them on a monthly basis through the end of Year 2. During Year 2, two additional wells (MW-39A and MW-93) qualified to be removed from the free product recovery program but were also monitored on a monthly basis through the end of the year. Compliance wells MW-35, MW-36, MW-59, and RW-1 all had free product detections during Year 2 and will continue to be monitored as recovery wells until a year has passed since the last detection occurred. MW-36 only had one detection during 2021 (0.02 ft on August 12, 2021) and appears close to meeting the criterion for termination. MW-35, MW-59, and RW-1 all consistently had free product present during monitoring events.

5. Groundwater Sampling

During the Year 2 reporting period, two groundwater performance monitoring events were conducted. The performance monitoring events were completed on April 03, 2021, by CRETE (the semiannual event for performance wells within AS/SVE system radius of influence) and on October 14, 2021, by AECOM (the annual event for performance wells both within and downgradient of the AS/SVE system radius of influence). Table 2 includes a summary of the sampling program and Table 3 includes the monitoring schedule.

Groundwater samples were collected and analyzed consistent with the protocols outlined in the CMP. Water quality parameters including temperature, pH, specific conductance, turbidity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured and recorded continually during purging until stable, representative conditions were met prior to sampling.

This section provides an overview of groundwater sampling activities at the wells shown on Figure 3 and Figure 4. The Interior Monitoring Wells and CPOC wells were not sampled during this reporting period per the CMP schedule. Construction information and all analytical results and field parameters since system startup are summarized in Tables 8 through 12.

5.1 Performance Monitoring Wells

Per Tables 2 and 3, the spring semiannual sampling event included Performance Monitoring Wells RW-11A, and MW-89. The fall annual sampling event included Performance Monitoring Wells RW-11A, MW-89, MW-36A, MW-39A, RW-9, and MW-42. The Performance Monitoring Wells were analyzed for TPH in the gasoline range (TPH-Gx) via NWTPH-Gx, TPH in the diesel and lube oil range (TPH-Dx) via NWTPH-Dx, and BTEX by EPA Methods 8021B and 8260. Groundwater results are summarized on Table 8 and Figure 4. TPH-Dx data are also shown on Figure 11. Copies of Year 2 field notes are included in Appendix F and Year 2 laboratory reports are provided in Appendix G.

Per the CMP, MW-39A, MW-59, and MW-89 have been LNAPL recovery wells but qualify for performance sampling once four consecutive quarters of gauging data are collected without free product detection (Table 2, Note 2). As shown in Table 6, MW-89 qualified for performance monitoring in October of 2020 and MW-39A qualified in September of 2021. Monitoring Well MW-59 continued to have free product detected >0.01 in Year 2 and was not sampled during the reporting period. Wells with detectable free product are not sampled, as the presence of free product is assumed to indicate TPH concentrations above site cleanup goals. On Figure 11, wells with free product encountered during sampling, or those not sampled due to recent LNAPL encounters, are shown with an arbitrary TPH-Dx concentration of 3,000 micrograms per liter (μ g/L). This value is used only to represent free product and does not reflect actual TPH concentrations in these wells.

As shown in Table 8 and Figure 4, neither of the samples taken during the April 2021 event (RW-11A and MW-89) were found to have COC concentrations above CULs.

During the October 2021 event, total TPH-Dx was detected above the REL of 2,085 μ g/L in MW-39A (3,520 μ g/L). It was detected above the CUL of 500 μ g/L in MW-89 (675 μ g/L) and RW-9 (1,590 μ g/L). These were the only COCs measured above the CULs during the October 2021 event.

Due to the presence of LNAPL, there were no baseline analytical data for MW-39A. During Year 1 sampling, TPH-Dx was the only COC measured (2,270 μ g/L) in exceedance of the CULs and the REL.

MW-89 COC concentrations have not exceeded any CUL since September 2020 (550 μ g/L TPH-Dx). It has not exceeded site CULs for any other COC.

RW-9 concentrations exceeded the TPH-Dx CUL in 2019 (1,200 μ g/L) but not in 2020 (450 μ g/L). It has not been above site CULs for any other COC.

RW-11A had a TPH-Dx concentration above the CUL during baseline sampling (1,100 μ g/L) but has not had a concentration in excess of the CUL since. It has not been above site CULs for any other COC.

MW-36A had free product present during baseline sampling and was not sampled until September 2020. At that event TPH-Dx was measured (560 μ g/L) in excess of the CUL. Results in this reporting period (404 μ g/L) were below the CUL. It has not been above site CULs for any other COC.

During the baseline sampling event, MW-42 exceeded cleanup level for both TPH-Gx and benzene. All COCs were measured below CULs during the September 2020 event (620 and 5.2 μ g/L, respectively, for TPH-Gx and benzene) and again during the October 2021 event (248 μ g/L and 1.31 μ g/L, respectively).

5.2 Interior Monitoring Wells

The Interior monitoring wells are located upgradient (east) of the AS/SVE system, within the original "sheen area" with <0.1 ft product thickness (Figure 2 and Figure 3). Interior monitoring wells are sampled for TPH-Gx, -Dx, and BTEX, and are used to track long-term reductions in contaminant mass that are not associated with operation of the AS/SVE system. Per the CMP these wells were not sampled during Year 2, but prior results are summarized in Table 8. The interior monitoring wells will be sampled again in the fall of 2022 (Tables 2 and 3).

5.3 CPOC Monitoring Wells

The CPOC monitoring wells are located downgradient of the Performance and Interior wells, between the source area and the East Waterway. CPOC wells are sampled for the full suite of IHSs (TPH-Gx, -Dx, BTEX, and PAHs) to monitor potential risk to the East Waterway. Per the CMP these wells were not sampled during Year 2, but prior results are summarized in Tables 9 and 10. The CPOC monitoring wells will be sampled again in the fall of 2022 (Tables 2 and 3).

5.4 Shoreline Water Quality Monitoring Wells

The Shoreline Water Quality Monitoring Wells are located along the T30 apron nearest to the East Waterway (Figure 3). During baseline sampling in 2019, these wells were sampled and analyzed for the full suite of IHSs listed in Table 1 (TPH-Gx, -Dx, BTEX, and PAHs). They are not a part of the ongoing sampling plan outside of contingent actions have not been sampled since (see Appendix I and CMP sections 6.5-6.6). The baseline analytical results are summarized in Tables 9 and 10.

5.5 Quality Assurance

The groundwater CMP includes quality assurance protocols, also detailed in the QAPP. For each groundwater sampling event, at least one duplicate sample and one set of MS/MSD samples were collected to assess field and laboratory precision. This precision is determined by the relative percent difference (RPD) between the original sample and it's duplicate, with an allowable tolerance of +/- 35%. As shown in the Summary Data Quality Reviews in Appendix H, the RPDs were within the project goals for all samples.

Laboratory reports and chain-of-custody forms are provided in Appendix G. The April 2021 samples were hand delivered to Friedman & Bruya Inc. located in Seattle, Washington. The October 2021 samples were shipped to Apex Laboratories, LLC located in Tigard, Oregon. Laboratory reports were reviewed and reporting flags, when applicable, were accepted; these are included in Tables 8-10. An MS/MSD was not performed for either sampling event in 2021. Precision and accuracy were assessed during data validation using the LCS/LCSD results and were acceptable in each case. A field duplicate was not sampled during the October 2021 event. Sampling precision was assessed during data validation using the laboratory duplicate results and the RPD was comparable. Per the Summary Data Quality Reviews in Appendix H, laboratory quality assurance metrics were achieved for this project, the MRLs met the project needs for all COCs, and all data were determined to be usable.

6. Conclusion

This report presents the results of the second year of compliance monitoring at the T30 Cleanup site. Key take-aways from the Year 2 reporting period include:

- As calculated with biweekly PID data from the field (Table 4), the AS/SVE system extracted over 3,363 lb TPH during the reporting period, for a cumulative total of 8,918 lb TPH removed since system startup. These values are slightly lower as calculated with monthly laboratory data (Table 5), which show the system extracted over 2,677 lb TPH during the reporting period and 7,377 lb TPH cumulatively. Extraction was achieved while staying within the limits of the PSCAA permit for SVE flowrate and oxidizer destruction efficiency. While significant COC removal from the subsurface was achieved in Year 2, the monthly average mass removal rates for Year 2 were 46% lower than those of Year 1.
- LNAPL recovery events recovered an estimated 224 gallons of free product during the reporting period, for a cumulative total of 734 gallons since removal activities began (Table 6). Estimated removal volumes in Year 2 were about 12% lower than those of Year 1 (45 vs 51 gallons per event).
- Groundwater TPH-Dx was measured above the REL at MW-39A, but that was the only IHS measured above its CUL in 2021 (Table 8). Concentrations were below the REL in two additional wells (MW-89 and RW-9), and below the CUL in the three remaining wells sampled (MW-36A, MW-42, and RW-11A). Free product was still present in MW-59 at the end of the year, preventing sampling.
- The SVE and oxidizer systems were successfully monitored and maintained through the reporting period (Table 4). The AS system was also successfully monitored and maintained through the reporting period, but due to equipment failures operation was limited. Following a pressure switch replacement in November, the system ran continuously for the last 1.5 months of the year.
- For the first time since system startup, in October of 2021, mass removal rates in the non-treated SVE system vapor dropped below the PSCAA's COC thresholds that require a control device to be in use. They remained below these thresholds through the end of the reporting period and will continue to be monitored.
- The cleanup actions demonstrate significant mass recovery in soil vapor and free product removal and decreasing IHS concentrations in several monitoring wells. Similar cleanup actions will continue into Year 3.

6.1 CMP Modifications and Recommendations

Data collected from the performance monitoring wells were evaluated and used to make decisions regarding AS/SVE system operation. The flow chart in Figure 5 of the CMP (included for reference in Appendix I) provides guidance on decision making criteria. There are no planned modifications or recommendations to the CMP, but several changes are recommended to be made to the monitoring tasks per CMP directives:

- Terminate free product monitoring at MW-36A, MW-39A, MW-89, and MW-93, based on CMP guidance, as free product has not been detected in any of these monitoring wells in at least four consecutive quarters.
- Terminate free product monitoring at RW-101, -102, -104, -105, -108, and -109, based on CMP guidance, as free product has not been detected in these recovery wells in at least four consecutive quarters.

6.2 Recommended AS/SVE Adjustments for Year 3

As stated in the Cleanup Action Plan (CAP), the overall goal of the AS/SVE system is to reduce contaminant mass in the sheen area and downgradient of the sparge wells. The AS/SVE system is not intended to reduce contaminant concentrations in groundwater upgradient of the AS/SVE system. The AS/SVE system will be operated until performance monitoring wells within and downgradient of the AS/SVE field zones (RW-9, RW-11A, MW-42, MW-39A, MW-36A, MW-59, and MW-89) achieve RELs, or if the AS/SVE system is no longer significantly removing contaminant

mass⁴. Two performance wells continued to exceed RELs during 2021 (MW-39A and MW-59) and the system continued to extract acceptable COC concentrations through the reporting period. Continued operation of the AS/SVE system is planned for Year 3 (2022). The following are recommendations to improve AS/SVE performance:

- Continue to monitor, analyze, and improve AS compressor operation (e.g., runtime and total flow).
- Reinstate air sparge pulsing between the five zones per the system design.
- Monitor influent vapor concentrations and evaluate vapor emission control alternatives.
- Troubleshoot water entrapment in the SVE piping/manifold to improve vapor extraction performance.

6.3 Schedule and Reporting

The groundwater monitoring frequencies are provided on Tables 2 and 3. The monitoring schedule will be adjusted as needed based on the performance of the AS/SVE system and timeline of monitoring wells achieving COC remediation levels. Free product will be gauged at least quarterly until termination criteria are achieved. Schedule revisions will be documented in quarterly progress reports.

Annual reports will continue to be prepared for Years 3 and 4. Reports will be submitted to Ecology following the end of the annual monitoring cycle.

After 5 years of system operation, an evaluation report will be prepared that will include a summary of the five preceding annual reports and discussions about longer term trends in the groundwater data. The CMP will be reviewed and updated by addendum (with Ecology review) if changes to the monitoring program are appropriate.

⁴ The statement "the AS/SVE system is no longer significantly removing contaminant mass" has not been defined. This standard will need to be negotiated, if necessary, at a future time. This could involve analysis of vapor extraction concentrations, groundwater dissolved oxygen concentrations, performance well groundwater concentrations, or other similar measure.

7. References

CRETE (CRETE Consulting). 2018. Engineering Design Report. December 20, 2018.

- CRETE. 2020a. Construction Completion Report, Terminal 30 Cleanup Project. February 27, 2020.
- CRETE. 2020b. Terminal 30 Cleanup Project Operation Maintenance & Monitoring Plan. March 2020.
- CRETE. 2021. Monitoring Well MW-38 Decommissioning. May 11, 2021.
- Ecology (Washington State Department of Ecology). 2017. Consent Decree and Cleanup Action Plan. July 19, 2017.
- PGG (Pacific Groundwater Group). 2016. Port of Seattle Terminal 30 Revised 2013 Remedial Investigation/Feasibility Study. January 11, 2016.
- PSCAA (Puget Sound Clean Air Agency). 2019. Notice of Construction (NOC) Worksheet. NOC No. 11885. August 20, 2019.
- US EPA (U.S. Environmental Agency). 2017. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. September 19, 2017.

Tables

PORT OF SEATTLE - TERMINAL 30 Table 1 Indicator Hazardous Substances

Constituent (BTEX, SVOC, TPH)	Constituent (PAH)
BTEX Compounds	PAH Compounds (filtered)
Benzene	Acenaphthene
Toluene	Acenaphthylene
Ethylbenzene	Anthracene
Xylenes (total)	Benzo[a]anthracene
Semivolatile Organic Compounds	Benzo[a]pyrene
2-Methylnaphthalene	Benzo[b]fluoranthene
Petroleum Hydrocarbons	Benzo[g,h,i]perylene
TPH, gasoline range organics	Benzo[k]fluoranthene
TPH, diesel range organics	Chrysene
TPH, heavy oils	Dibenzo[a,h]anthracene
	Fluoranthene
	Fluorene
	Indeno[1,2,3-cd]pyrene
	Naphthalene
	Phenanthrene
	Pyrene
	Naphthalene

PORT OF SEATTLE - TERMINAL 30 Table 2 Compliance Monitoring Frequency and Analytes

		Compliance Monitoring Phase	
Well Network	Baseline Sampling	Performance Monitoring*	Confirmational Monitoring
	Groundwater Samplin		
Performance Monitoring Wells – Within (MW-59**, RW-11A, MW- 89 ^{**^b)}	Single Event -	Every 6 Months - <u>Sampled: 4/2020, 9/2020,</u> <u>4/2021, & 10/2021</u> (NWTPH-G/BTEX, NWTPH-Dx)	
Performance Monitoring Wells – Downgradient (MW-36A, RW-9, MW-39A ^{**^b} , MW-42)	<u>Sampled: 10/2019</u> (NWTPH-G/BTEX, NWTPH-Dx)	Every Year - Sampled: 9/2020 & 10/2021 (NWTPH-G/BTEX, NWTPH-Dx)	None Scheduled
Interior Monitoring Wells -	Single Event - Sampled: 10/2019	Every 2 Years - Sampled: 9/2020	Every 5 Years
(MW-38 ^ª , MW-93, RW-1, RW-5A)	(NWTPH-G/BTEX, NWTPH-Dx)	(NWTPH-G/BTEX, NWTPH-Dx)	(NWTPH-G/BTEX, NWTPH-Dx)
Interior Monitoring Wells, Gauging Only -	Single Event - <u>Gauged 10/2019</u>	Every 2 Years Gauged 9/2020	Every 5 Years
(MW-35, MW-36, MW-54, MW-64)	(Free Product Gauging)	(Free Product Gauging)	(Free Product Gauging)
CPOC Monitoring Wells	Single Event - Sampled: 10/2019	Every 2 Years - Sampled: 9/2020	Varies – See Table 3
(MW-45A, MW-46B, MW-58A, MW-86B***, MW-92)	(NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	(NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	(NWTPH-G/BTEX, NWTPH- Dx, PAHs, 2- methylnaphthalene)
Shoreline Water Quality Monitoring Wells (MW-84A, MW-85A, MW-86B***, MW-87A)	Single Event <u>- Sampled:</u> <u>10/2019</u> (NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	None Scheduled	None Scheduled
	Free Product Recovery and C	Gauging (See Note 2)	
Free Product Gauging Wells (MW-59**, RW-12, New Recovery Wells [RW-101 to 110], MW-36, MW-39A**, MW-89**, MW-93)	Single Event (Free Product Gauging)	Quarterly at minimum (Free Product Gauging)	None Scheduled

Notes:

1. This schedule can be modified based on data collected during system performance.

2. For all monitoring wells, the measurement of free product in a well will trigger free product removal activities. Free product

gauging (and removal, if free product is present) will occur quarterly for a minimum of 4 consecutive quarters.^c

* Performance monitoring will continue for the duration of AS/SVE system operation plus 2 years, at which time confirmational monitoring will be initiated.

** MW-59, MW-39A, and MW-89 will become Performance Monitoring Wells once free product has not been present for four consecutive quarters.^{b,d}

***MW-86B is both a CPOC Well and a Shoreline Water Quality Well.

^a A below-grade obstruction was observed in MW-38 on 9/18/20 and the well was decomissioned on May 6, 2021.

^b MW-89 qualified in October of 2020. MW-39A qualified in August of 2021.

^c Per the CMPT, wells qualify for perfomance monitoring analyses once 4 quarters of free product gauging result in product thicknesses of <0.01 ft. If product is encountered during sampling, the well is not to be sampled.

^c The original version of Table 2 in the CMP had a typo in the ** note, stating that only two quarters of clean data were required to transition to Performance Monitoring Wells. The text of the CMP stated the duration as four quarters, and the note has been

PORT OF SEATTLE - TERMINAL 30 TABLE 3 Compliance Monitoring Schedule

Post AS/SVE Startup Years:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	22	27	32
Post AS/SVE Shutdown Years:						<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	17	22	27
Confirmational Monitoring Years									1	2	3	4	5	6	7	8	9	10	15	20	25
	Baseline	Perfo	rmanc	e Mon	itoring	Perio	d		Confi	rmatio	nal Mo	onitorii	ng Per	iod							
CPOC Wells	Once	Biann	ual						Annua	a/				Biann	ual			Every	5 year	s	
MW-45A	Х	Х		Х		Х		Х	Х	X	Х	Х	Х	Х		Х		Х	Х	X	X
MW-46B	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-58A	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-86B	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-92	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
Performance Wells																					
Within	Once	Semia	emiannual						None												
MW-59	Х	XX	XX	XX	XX	XX	XX	XX													
MW-89	Х	XX	XX	XX	XX	XX	XX	XX													
RW-11A	Х	XX	XX	XX	XX	XX	XX	XX													
Downgradient	Once	Annua	a/						None												
MW-36A	Х	Х	X	Х	Х	Х	Х	Х										i			
MW-39A	Х	Х	Х	Х	Х	Х	Х	Х					l					i			
MW-42	Х	Х	Х	Х	Х	Х	Х	Х										i i			
RW-9	Х	Х	Х	Х	Х	Х	Х	Х													
Interior Wells	Once	Biann	ual						Every	5 year	S										
MW-38¹	X	X		X		×		X					X					X	X	X	
MW-93	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х
RW-1	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х
RW-5A	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х

Notes:

The monitoring frequency for the Shoreline water quality monitoring wells and free product gauging wells are not shown on this table.

1. A below-grade obstruction was observed in MW-38 on 9/18/20 and the well was decomissioned on May 6, 2021.

Abbreviations and Formatting:

AS/SVE = air sparge/soil vapor extraction

CPOC = Conditional Point of Compliance

PORT OF SEATTLE - TERMINAL 30 Table 4 AS/SVE and Oxidizer Operational Data

				0	perating Para	meters						Mass R	emoval				Mass Remo	val	
				Calculated							Calculated			Calcul	ated		Calculate	d	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID		Box	Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔP	Temp	Flow Rate ¹		Total VOCs ^{3,4}	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal ⁶	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(µg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
9/19/2019	12:00	9.9		START	NA	35.0	0.25	72	98		0		NM	NA	NA	0.0	0.0	0.0	SVE Start; Oxidizer Start
	16:04	33.9		1.0	1.0	35.0	0.25	68	99	198	238,228		NM	4,903	NA	2.1	2.1	2.1	
9/23/2019	13:58	105.9		4.0	3.0	35.0	0.25	68	99	212	255,073		NM	4,903	NA	2.3	6.8	8.9	
	10:00	129.9		5.0	1.0	30.0	0.25	70	99	215	258,682		NM	4,903	NA	2.3	2.3	11.2	
9/25/2019	9:20	153.9		6.0	1.0	34.0	0.25	66	99	218	262,292		NM	4,903	NA	2.3	2.3	13.5	
9/26/2019	9:00	176.1		6.9	0.9	38.0	0.25	66	98	405	487,285		NM	4,903	NA	4.3	4.0	17.5	
9/28/2019	12:19	227.5		9.1	2.1	46.0	0.25	65	97	440	529,396		NM	4,903	NA	4.6	9.9	27.5	
9/30/2019	9:35	272.5		10.9	1.9	56.0	0.25	62	96	463	557,069		NM	4,903	NA	4.8	9.1	36.5	
10/1/2019	9:25	296.6		11.9	1.0	54.0	0.25	61	97	488	587,148		9.4	4,903	99	5.1	5.1	41.6	
10/2/2019	9:20	320.6		12.9	1.0	44.0	0.25	62	98	427	513,755		8.7	4,538	99	4.5	4.5	46.2	
10/3/2019	8:50	344.1		13.9	1.0	50.0	0.25	61	97	457	549,850		NM	4,538	NA	4.8	4.7	50.9	
10/4/2019	11:40	371.0		15.0	1.1	55.0	0.25	66	96	469	564,288		7.9	4,121	99	4.9	5.5	56.4	
10/7/2019	12:08	443.4		18.1	3.0	61.0	0.25	65	95	466	560,678		5.2	2,712	100	4.8	14.5	70.9	
10/8/2019	9:05	464.4		18.9	0.9	70.0	0.25	60	95	487	585,945		8.8	4,590	99	5.0	4.4	75.2	
10/9/2019		489.4		20.0	1.0	73.0	0.25	60	94	494	594,367		7.0	3,651	99	5.0	5.2	80.5	
10/10/2019		513.7		21.0	1.0	69.0	0.25	61	95	517	622,040		4.1	2,139	100	5.3	5.4	85.8	
10/13/2019	9:33	585.7		24.0	3.0	78.0	0.5	60	132	550	661,745		8.3	4,329	99	7.9	23.6	109.4	
10/14/2019	9:39	608.9		25.0	1.0	81.0	0.5	61	131	558	671,370		NM	4,329	NA	7.9	7.7	117.1	
10/15/2019	12:25	632.9		26.0	1.0	82.0	0.75	64	160	667	802,516		5.4	2,817	100	11.6	11.6	128.7	
10/23/2019		826.5		34.0	8.1	86.0	1	60	185	662	796,500		8.8	4,590	99	13.2	106.7	235.4	Lab Data
10/24/2019	9:35	848.8		35.0	0.9	93.0	1.5	57	224	637	766,421		7.7	4,016	99	15.5	14.4	249.7	
10/25/2019	9:50	873.0		36.0	1.0	90.0	1.75	58	243	752	904,785		6.3	3,286	100	19.8	20.0	269.7	
	11:00 9:15	946.1 969.6		39.0 40.0	3.0	85.0 82.0	2.5	56 56	294 295	793	954,116 990.211		7.3	3,808	100	25.2 26.3	76.7 25.7	346.4 372.1	
10/29/2019		969.6 995.7		40.0		82.0 81.0	-			823				1	100			372.1 398.0	
10/30/2019 11/1/2019	12:30	995.7		41.1 43.1	1.1 2.1	81.0 79.0	2.5	56 56	295 296	744 734	895,160 883.128		6.7 6.1	3,495	100	23.8 23.5	25.9 48.4	398.0 446.4	
11/1/2019		1,045.1		43.1 46.3	2.1	80.0	2.5	55	311	660	883,128 794,094		4.8	3,182	100	23.5	40.4 60.5	446.4 515.9	
	10:05	1,120.5		40.3	1.8	86.0	2.75	56	307	670	806.125		4.8	2,556	100	22.2	39.2	555.1	
11/8/2019	9:08	1,209.3		48.0	2.0	86.0	2.75	55	308	628	755,592		5.0	2,608	100	20.9	40.8	595.9	
11/12/2019		1,205.5		54.0	4.1	92.0	2.75	56	290	654	786.875		3.6	1.878	100	20.5	83.3	679.2	
11/13/2019	9:30	1,329.6		55.0	1.0	91.0	2.5	56	291	631	759,202		7.0	3,651	100	19.9	19.0	698.2	
	12:40	1,325.6		57.0	2.0	91.0	2.75	56	305	614	738,748		3.7	1,930	100	20.3	40.5	738.7	
11/25/2019	10:52	1,477.2		61.1	4.2	89.0	2.75	50	308	546	656,932		7.5	3,912	99	18.2	75.5	814.2	SVE & oxidizer down on 11/19/19 at 12:23 due to low propane. Restarted on 11/25/19 at 10:00.
11/26/2019	10:25	1,500.8		62.1	1.0	88.0	2.75	50	308	621	747.170		4.4	2.295	100	20.7	20.3	834.5	
				-										,					
11/27/2019	10:40	1,524.8		63.1	1.0	88.0	2.75	50	308	541	650,916		5.6	1,705	100	18.0	18.1	852.6	Lab Data is questionable and not used in calculations. Destruction Efficiency Based on PID.
12/2/2019	9:53	1,644.2		68.1	5.0	88.0	2.75	50	308	424	510,145		4.0	1,218	100	14.1	70.4	922.9	
12/3/2019	14:00	1,671.1		69.2	1.1	84.0	2.75	50	310	508	611,211		4.5	1,370	100	17.0	19.1	942.1	SVE system shutdown on 12/3/19 between 12:13 and 13:45 due to power outage.
12/6/2019	9:21	1,738.4		72.0	2.8	89.0	2.75	50	308	477	573,913		4.8	1,461	100	15.9	44.5	986.6	
12/9/2019	9:14	1,810.3		75.0	3.0	98.0	2.75	50	303	469	564,288		4.4	1,340	100	15.4	46.1	1,032.7	
	10:47	1,979.9		82.1	7.1	99.0	2.5	50	289	507	610,008		4.0	1,218	100	15.8	112.0	1,144.7	
12/18/2019	10:34	2,027.4		84.1	2.0	94.0	2.5	50	291	442	531,802		8.2	2,497	100	13.9	27.6	1,172.2	
12/20/2019	9:46	2,074.7		86.0	2.0	94.0	2	50	260	734	883,128		4.6	1,401	100	20.7	40.8	1,213.0	
	12:02	2,148.9		89.1	3.1	96.0	2	50	260	662	1,381,000		4.9	1,125	100	32.2	99.7	1,312.7	Lab Data. Re-sample for 11/27/19.
12/26/2019	9:38	2,218.6		92.0	2.9	90.0	2.25	50	278	375	782,289		6.6	1,515	100	19.6	56.8	1,369.4	Empty water storage tank on 12/24/19.
1/3/2020		2,416.1		100.3	8.2	88.0	2	50	263	486	1,013,846		4.9	1,125	100	24.0	197.2	1,566.7	
	10:25	2,507.7		104.1	3.8	85.0	1.75	50	247	617	1,287,125		5.1	1,171	100	28.6	109.1	1,675.8	Empty water storage tank on 1/7/20.
	10:55	2,556.2		106.1	2.0	81.0	1.75	50	249	432	901,196		4.3	987	100	20.1	40.7	1,716.5	
1/15/2020	11:32	2,701.0		112.1	6.0	84.0	1.5	50	229	353	188,970		6.9	340	100	3.9	23.5	1,740.0	Lab Data.
1/17/2020	14:30	2,750.6		114.2	2.1	84.0	1.75	50	247	342	183,081		6.0	296	100	4.1	8.4		Started air sparging.
-,,	10:00	2,848.0		118.3	4.1	86.0	1.75	50	247	465	248,926		3.3	163	100	5.5	22.4	1,770.8	
1/22/2020		2,873.1		119.3	1.0	92.0	1.75	50	244	522	279,440		2.6	128	100	6.1	6.4	1,777.3	
=,==,====	11:00	2,893.3		120.1	0.8	93.0	1.5	50	226	564	301,924		5.0	246	100	6.1	5.2		Empty water storage tank on 1/23/20.
1/27/2020	1:51	2,992.2		124.3	4.1	88.0	1.75	50	246	492	263,380		2.5	123	100	5.8	24.0		Empty water storage tank on 1/27/20.
1/30/2020	9:36	3,059.8		127.1	2.8	93.0	1.75	50	244	549	293,894		5.9	291	100	6.4	18.2		Empty water storage tank on 1/30/20.
2/4/2020	13:25	3,183.4		132.2	5.2	97.0	1.75	50	242	569	304,600		6.1	301	100	6.6	34.2		Empty water storage tank on 2/5/20.
2/6/2020		3,234.4		134.4	2.1	84.0	1.5	50	229	638	341,538		2.8	138	100	7.0	15.0	1,873.7	
2/11/2020	12:05	3,350.2		139.2	4.8	75.0	1.5	50	232	462	247,321		4.9	1,090	100	5.2	24.9	1,898.7	Collected lab air sample. Sample suspect. Lab data not used in calculations.
2/14/2020	9:34	3,418.1		142.0	2.8	69.0	1.5	50	234	450	240,897		5.6	1,246	99	5.1	14.4	1,913.0	Empty water storage tank on 2/13/20. AS system off from 2/13/20 @ 09:00 to 2/14/20 @ 09:00.
	9:40	2 400 2		145.0	3.0	72.0			222	462	247 221			013			15.6	1.020.0	
2/17/2020	9:40	3,490.3		145.0	3.0	72.0	1.5	50	233	462	247,321		4.1	912	100	5.2	15.b	1,928.6	
2/20/2020	13:45	3,566.4		148.2	3.2	40.0	0.75	52	172	377	201,818		6.3	1,401	99	3.1	9.9	1,938.6	Empty water storage tank on 2/20/20. Approximately 12" in tank. Turned down vacuum to SVE v field to reduce water extracted.
2/26/2025									400								24.5		Tield to reduce water extracted. Started pulsing AS system. Zones 4 & 5 ON. Pulsing every 8 hours between Zones 1, 2, and 3. AS
2/26/2020	13:34	3,710.3		154.2	6.0	42.0	1	56	198	377	201,818		NT	1,401	NA	3.6	21.5	1,960.1	system down between 08:24 on 2/27/20 and 10:00 on 2/27/20 due to PSH Alarm.
2/28/2020	10:23	3,755.2		156.1	1.9	50.0	1.25	51	220	377	201,818		NT	1,401	NA	4.0	7.5	1,967.5	AS system down between 18:49 on 2/27/20 and 09:00 on 2/28/20 due to PSH Alarm. Pulsing AS system with Zone 5 ON. Pulsing every 6 hours between Zones 1, 2, 3, and 4.
-,-,	10:30	3,923.5		163.1	7.0	50.0	1	52	196	401	214,666		NT	1,401	NA	3.8	26.6	1,994.1	
3/11/2020	14:30	4,046.3		168.2	5.1	50.0	1.25	52	219	360	192,717		5.7	1,268	99	3.8	19.5	2,013.6	
3/12/2020	10:15	4,066.0		169.0	0.8	50.0	1.25	51	220	318	170,234		7.5	1,668	99	3.4	2.8	2,016.3	Collected Lab air sample. Inlet concentration lab data suspect. Need to re-sample upon start up. data not used in calculations.
							1 05				450.000			770			40.0	0.004.5	
3/19/2020 3/24/2020		4,211.6 4,325.4		175.1 179.8	6.1 4.7	50.0 50.0	1.25	52 56	219 219	284 319	152,033 170,769		3.5 3.1	779 690	99 100	3.0 3.4	18.2		System off for 6.5 hours on 3/19/20 to install catalyst in oxidizer. System shut off at 15:00 on 3/24/20 due to COVID-19 travel restrictions.

PORT OF SEATTLE - TERMINAL 30 Table 4 AS/SVE and Oxidizer Operational Data

UNDER UNDER <th< th=""><th></th><th></th><th></th><th></th><th>0</th><th>perating Parar</th><th>meters</th><th></th><th></th><th></th><th></th><th></th><th>Mass F</th><th>Removal</th><th></th><th></th><th></th><th>Mass Remo</th><th>val</th><th></th></th<>					0	perating Parar	meters						Mass F	Removal				Mass Remo	val	
Interpretation Interpr												Calculated			Calcul	ated				
No. No. <th></th> <th></th> <th></th> <th>Cumulative</th> <th>Cumulative</th> <th>Period SVE</th> <th>SVE</th> <th>SVE</th> <th>SVE</th> <th>SVE</th> <th>SVE Discharge</th> <th>SVE Discharge</th> <th>Oxidizer Fire</th> <th>Oxidizer</th> <th>Oxidizer</th> <th>Period</th> <th>Mass</th> <th>Period</th> <th>Cumulative</th> <th></th>				Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
Image Image <t< td=""><td></td><td></td><td>SVE Blower</td><td>SVE Blower</td><td>SVE Blower</td><td>Blower</td><td>Inlet</td><td>Inlet</td><td>Inlet</td><td>Inlet</td><td>Total VOC PID</td><td></td><td>Box</td><td>Discharge Total</td><td>Discharge Total</td><td>Destruction</td><td>Removal</td><td>Mass</td><td>Mass</td><td></td></t<>			SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID		Box	Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
Strate Strat Strat Strat <td></td> <td></td> <td>Hr Meter²</td> <td>Runtime²</td> <td>Runtime</td> <td>Runtime</td> <td>Vacuum</td> <td>ΔP</td> <td>Temp</td> <td>Flow Rate¹</td> <td></td> <td>Total VOCs.</td> <td>Temp⁸</td> <td>VOC PID⁷</td> <td>VOCs^{3,4,6}</td> <td>Efficiency⁷</td> <td>Rate⁵</td> <td>Removal⁶</td> <td>Removal⁹</td> <td></td>			Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔP	Temp	Flow Rate ¹		Total VOCs.	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal ⁶	Removal ⁹	
Strate Strat Strat Strat <th>Date</th> <th>Time</th> <th>(Hours)</th> <th>(Hours)</th> <th>(Days)</th> <th>(Days)</th> <th>(In. H₂O)</th> <th>(In. H₂O)</th> <th>(°F)</th> <th>(scfm)</th> <th>(ppmv)</th> <th>(ug/m³)</th> <th>(F)</th> <th>(ppmv)</th> <th>$(\mu g/m^3)$</th> <th>(%)</th> <th>(Lb/Day)</th> <th>(Lb)</th> <th>(Lb)</th> <th>Comments/Notes</th>	Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(ug/m ³)	(F)	(ppmv)	$(\mu g/m^3)$	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
	8/17/2020	9:59	4,334.7		180.2	0.4					147			1.3		100			2,050.9	Measurement within 2-hours after system re-start since 3/24/2020. SVE wells being turned on one
NUMP NUMP <t< td=""><td>0/17/2020</td><td>11.50</td><td>4,220,0</td><td></td><td></td><td>0.1</td><td>(2)</td><td></td><td></td><td>100</td><td>141</td><td>75.404</td><td></td><td>0.5</td><td>111</td><td>100</td><td>1.2</td><td>0.1</td><td>2.051.1</td><td></td></t<>	0/17/2020	11.50	4,220,0			0.1	(2)			100	141	75.404		0.5	111	100	1.2	0.1	2.051.1	
NUME NUME <th< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			1					-												
Since																				
SimeSi		0.0.1																		
NUMENU		6:51	4.427.8		184.1					211	485	259.633		0.6	133	100	4.9		1	
with with with with with with with with						5.3		1.25												
Nome Nome Nome Nome Nome Nome No Nome No	8/26/2020		4,556.3		189.4	0.0	68	1.25		209	334	2,101,500		0.6			39.4	1.0	2,278.6	Adjusted Hertz on SVE blower and made individual SVE well adjustments on manifold.
Wilding <	8/28/2020	13:48	4,602.8		191.4	1.9	68	1.25	80	208	303	1,903,305		0.7	11,498	99	35.6	69.0	2,347.7	No appreciable oil in SVE-4 and SVE-5 flow gauges.
9000000000000000000000000000000000000																				
NMM IM MM	9/2/2020	11:22	4,719.9		196.3	4.8	64	1.25	81	209	295	1,856,115		0.6	9,855	99	34.9	169.2	2,518.1	Readings pre-adjustments
Mom Mom /</td <td>9/2/2020</td> <td>14:44</td> <td>4,723.3</td> <td></td> <td>196.4</td> <td>0.1</td> <td>63</td> <td>1.5</td> <td>81</td> <td>230</td> <td>303</td> <td>1,906,451</td> <td></td> <td>0.5</td> <td>8,213</td> <td>100</td> <td>39.4</td> <td>5.6</td> <td>2,523.7</td> <td>Readings post-adjustments. Post AS system re-start since 3/24/2020.</td>	9/2/2020	14:44	4,723.3		196.4	0.1	63	1.5	81	230	303	1,906,451		0.5	8,213	100	39.4	5.6	2,523.7	Readings post-adjustments. Post AS system re-start since 3/24/2020.
Wint	9/4/2020	11:55	4,768.6		198.3	1.9	80	2	80	259	333	2,095,837		0.0	0	100	48.8	92.0	2,615.7	Readings after draining water from SVE-6, SVE-8, SVE-9, and after air sparge schedule and flow adjustments
9000 910 </td <td>9/10/2020</td> <td>8:08</td> <td>4,909.0</td> <td></td> <td>204.1</td> <td>5.8</td> <td>84</td> <td>2</td> <td>78</td> <td>258</td> <td>348</td> <td>2,188,958</td> <td></td> <td>0.9</td> <td>14,783</td> <td>99</td> <td>50.7</td> <td>296.6</td> <td>2,912.3</td> <td>Before system tweaks/adjustments.</td>	9/10/2020	8:08	4,909.0		204.1	5.8	84	2	78	258	348	2,188,958		0.9	14,783	99	50.7	296.6	2,912.3	Before system tweaks/adjustments.
91000 <			4,909.4		204.1	0.0	76	2		261	329	2,071,299		0.6		100	48.6			
NYM NY	9/15/2020	15:21	5,036.3		209.4	5.3	78	2	78	260	353	2,220,417		0.7	11,498	99	51.9	274.4	3,187.5	
100000 141 5.814 - 9.202 10 10 10 10.10	9/23/2020	7:00	5,220.0		217.1	7.7	77	1.75	72	245	316	1,988,560		NM	11,498	NA	43.8	335.2	3,522.7	Collected measurements without PID/LEL meter. Used averages of before and after values
Differe Vision Visio	9/29/2020	9:02	5,366.3		223.2	6.1	78	1.75	78	243	279	1,460,900		0.7	9,570	99	31.9	194.7	3,717.4	Collected lab gas sample
index index </td <td>10/6/2020</td> <td>8:14</td> <td>5,533.6</td> <td></td> <td>230.2</td> <td>7.0</td> <td>78</td> <td>2</td> <td>69</td> <td>262</td> <td>400</td> <td>2,090,887</td> <td></td> <td>1.9</td> <td>25,976</td> <td>99</td> <td>49.3</td> <td>343.6</td> <td>4,061.0</td> <td></td>	10/6/2020	8:14	5,533.6		230.2	7.0	78	2	69	262	400	2,090,887		1.9	25,976	99	49.3	343.6	4,061.0	
1972/200 82 5893 - 285 6 8 1 885 1.388.00 - 1.00 1.10 1.10 1.00	10/16/2020	14:59	5,748.9		239.1	9.0	81	2	66	262	400	2,092,980		1.9	25,976		49.3	441.8	4,502.8	Suspect MultiRAE PID probe saturation (biased high measurement). Measurement >999-ppm. Used
1071000 840 6688 - 849 6088 - 849 6088 - 849 6088 - 849 6088 - 849 649 849 649 849 649 849 640 849 640	10/23/2020	8:22	5.910.3		245.9	6.7	82	2	60	263	256	1.339.507		1.0	13.671	99	31.7	212.9	4,715,7	
11/12/00 14 6.34 - 7.84 7.8 1.8 7.9 1.8 1.9	10/27/2020	8:43	6,006.8			4.0		2	59							99		37.5	4,753.2	
111111111111111111111111111111111111			6,158.1		256.2	6.3	80	2	63	263	113	267,967		0.8			6.3	39.9	4,793.1	
111 121 <td>11/10/2020</td> <td>14:39</td> <td>6,348.7</td> <td></td> <td>264.1</td> <td>7.9</td> <td>86</td> <td>2</td> <td>54</td> <td>263</td> <td>114</td> <td>270,341</td> <td></td> <td>0.8</td> <td>4,200</td> <td>98</td> <td>6.4</td> <td>50.7</td> <td>4,843.8</td> <td>Used RKI. Readings SVE flow pre-adjustments.</td>	11/10/2020	14:39	6,348.7		264.1	7.9	86	2	54	263	114	270,341		0.8	4,200	98	6.4	50.7	4,843.8	Used RKI. Readings SVE flow pre-adjustments.
No. No. <td>11/10/2020</td> <td>15:01</td> <td>6,349.0</td> <td></td> <td>264.1</td> <td>0.0</td> <td>80</td> <td>2</td> <td>54</td> <td>265</td> <td>129</td> <td>304,994</td> <td></td> <td>1.3</td> <td>6,825</td> <td>98</td> <td>7.3</td> <td>0.1</td> <td>4,843.9</td> <td>Used RKI. Readings SVE flow post-adjustments.</td>	11/10/2020	15:01	6,349.0		264.1	0.0	80	2	54	265	129	304,994		1.3	6,825	98	7.3	0.1	4,843.9	Used RKI. Readings SVE flow post-adjustments.
Image of the set of t	11/18/2020	13:56	6,540.1		272.1	8.0	84	2	52	264	139	452,000		0.7	14,400	97	10.7	85.4	4,929.4	Used RKI. Readings SVE flow post-adjustments. Gas sample results suspect. Re-sampling
11/1/2000 11/2 12/2	12/4/2020	13:18	29.4	6,832.3	284.3	12.2	76	2	52	267	107	348,342		1.6	32,914	91	8.4	101.9	5,031.3	Used MultiRAE. Readings SVE flow pre-adjustments. Run time hour tally reset on PLC, SVE
111 111 <td>12/4/2020</td> <td>13:40</td> <td>29.8</td> <td>6 832 7</td> <td>284.3</td> <td>0.0</td> <td>79</td> <td>2</td> <td>53</td> <td>266</td> <td>115</td> <td>374 663</td> <td></td> <td>17</td> <td>34 971</td> <td>91</td> <td>9.0</td> <td>0.1</td> <td>5 031 4</td> <td></td>	12/4/2020	13:40	29.8	6 832 7	284.3	0.0	79	2	53	266	115	374 663		17	34 971	91	9.0	0.1	5 031 4	
Difference Sinteger																				Used RKI. Probe saturation. Individual PID value not representative. Used average of previous two
12/12/201 15.2 61.2 74.01 308.8 110 94.8 15.0 94.8 71.27 15.4 95.0 94.8 91.00 94.0 91.00 94.0 95.3 No differed parameters includes many. Proceed parameters includes many. 17/17/201 95.5 1.649.8 84.27.8 84.28 8.04.2 8.00.6 6.651.4 Beastments includes many. Beastments includes many. Beastments includes many. Beastment includes many. Beastmentincludes many.	12/16/2020	0.21	205.0	7 107 0	205.7	5.4	02	15	50	220	70	1 151 000		1.0	0.170	00	22.7	128.0	E 212 E	
1712/102 188 171.8 <t< td=""><td>1 .1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>., .</td><td></td></t<>	1 .1																		., .	
17/12/12 16.9 8.27.8 9.27.8 9.27.8 9.27.8 9.27.8 9.27.9 10.0 10.0 9.00 10.0 9.00 10.0 9.00 10.0 9.00 10.0 9.00 10.0 9.00 10.0 9.00 10.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,000.0</td><td></td></th<>																			0,000.0	
171700 183 1647 847.0 1847.0 184.0 110 66524 Collected lap as samples. Measurement collected parts samples. Measurement collected part samples. Measurement				,	-					-										
17/12/201 84 194.6 8,7455 384.6 14.4 78 1.5 49 211 56.8 227 184.8 526.1 103.8 127.7 184.8 57.7 Measurements, collected bases samples,																				
17/27/021 15.8 24.49 9.27.8 38.45 0.05 84 1.5 58 27.00 1.6 1.850 98 1.15 20.81 7.0032 Collected lap is simple. Measurement collected dap is simple. Measurement			-/	0,															0,000111	
4/5/2021 164/4 2953 95124 9593 114 82 15 60 228 85.8 975.04 0.1 723 100 77 97.8 71.11 Measurements clusted before systement algustments. 4/19/201 14.6 3.064. 3.064. 9.690.0 4.08.3 15.6 6.0 228 85.8 641.00 0.1 723 100 77 97.8 7.11.1 Measurements clusted before systement algustments. 100 for algustments 10																		236.1		
419 50.00 9.800 9.800 9.800 9.			2,709.5	9,512.4		11.4	82			228	85.8	375,042			723	100	7.7	87.8	7,121.1	
5/20201 7.57 3.8.14 10,843 4239 15.6 82 1.5 62 227 1345 1.06 3.06.14 97 21.2 3.10 7.613 Ansatz and end		14:50		9,809.0	408.3	12.4	78	1.5			83.2			0.7		97	13.1	161.7		Collected lab gas samples. Measurement collected pre-adjustments. Turned off air sparge system a
5/2/020 9.99 3.66.2 10.465.4 435.6 11.7 80 1.5 66 227 72.9 420.900 1.4 7,010 98 8.6 100.6 7,71.4 Power tage safier this morning. Normal system operations for "2-hours prior to date a finance on late a farmon 6/3, system was shutdown from 6/3 - 150 to 0.6 6/4/2021 911 4245.0 10,760.4 447.9 12.3 81 1.5 71 226 83.1 479,791 0.7 3,505 99 9.7 119.6 7,73.40 Power tage safier this morning. Normal system operations for "2-hours prior to calcutate a farmon 6/3, system was shutdown from 6/3 - 150 to 0.5 6/16/2021 911 4245.0 11.047.9 459.9 12.0 91 1.5 68 223 133.3 421,000 1.0 2,763 99 5.1 81.8 8016.8 satisfier tage system stall of thower of tage applies. A system stall of tage applies. A system stall of tage applies. A system stall of tage applies. A system stal	5/5/2021	7:57	3,381.4	10,184.3	423.9	15.6	82	1.5	62	227	134.5	1,036,232		1.0	30,814	97	21.2	331.0	7,613.8	Air sparge repaired (gasket oil leak) and restarted on 5/4/2021 at ~12:25. No system adjustments
3/1/1/2021 9/9 8/9/6.2.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,46.5 10,47.5 10,46.5 10,47.5 10,46.5 10,47.5 10,57.5 10,47.5 10,57.5 10,47.5 10,57.5 <																				
h/r/201 6.7 5.7.5 10,000 447.9 11.3 11.0 12.0 11.0 11.0 11.05 11.	5/20/2021	9:09	3,662.5	10,465.4	435.6	11.7	80	1.5	66	227	72.9	420,900		1.4	7,010	98	8.6	100.6	7,714.4	Increased setting on pressure switch.
(x)/(x)	6/4/2021	8:29	3,957.5	10,760.4	447.9	12.3	81	1.5	71	226	83.1	479,791		0.7	3,505	99	9.7	119.6	7,834.0	System running for ~50-minutes prior to collection of readings.
17/27202 1000 46288 114317 475.9 16.0 800 150 204 203 23326 1.0 2.763 99 5.1 81.8 80168 $austres. Drained fluids out of SVE manifold (hoses and sump) and then e-adjusted and the e-adjusted andecompositi and the e-adjusted and the e-adjusted and the e-adjus$	6/16/2021	9:11	4,245.0	11,047.9	459.9	12.0	91	1.5	68	223	133.3	421,000		1.9	5,250	99	8.4	101.0	7,935.0	
7/19/2021 14:06 5,024.6 11,827.5 492.4 16.5 81 1.5 83 223 81.8 257,000 1.0 5,700 98 5.2 85.0 8,10.8 Collected lab gas samples. Air sparge system still OFF (blower to be re-installed). 8/7/2021 722 5,423.6 12,226.5 509.0 1.6 77 1.5 78 225 106.5 334,603 1.4 7,980 98 6.8 112.8 8,214.6 Air sparge system still OFF (blower to be re-installed). 8/7/2021 14:25 5935.1 12,78.0 5930.3 21.3 77.0 1.5 77 226 66.4 251,000 1.4 7,980 98 6.8 112.8 8,104.6 Air sparge system still OFF (blower to be re-installed). 8/7/2021 14:25 5935.1 12,78.0 530.3 21.3 77.0 1.5 77 226 66.4 251,000 0.0 4,070 98 5.1 108.6 8,102.8 Collected lab gas samples. Air sparge system	7/2/2021	10:00	4,628.8	11,431.7	475.9	16.0	80	1.5	80	224	80.4	253,926		1.0	2,763	99	5.1	81.8	8,016.8	Air sparge system still OFF (blower sent out for servicing). Measurements collected prior to system adjustments. Drained fluids out of SVE manifold (hoses and sumps) and then re-adjusted SVE flow rates.
85/2021 722 5,423.6 12,26.5 509.0 16.6 77 1.5 78 225 106.5 334,603 1.4 7,980 98 6.8 112.8 8,214.6 Air spage restarted 7/24/21 8/26/2021 14.25 5,935.1 12,738.0 530.3 2.1.3 77.0 1.5 78 225 0.66.4 251,000 0.0 4,070 98 5.1 108.6 8,232.4 Collected bag as samples. Air spage bedeer valve wide open, reducing air closs wide in spected, may be deaned/re-developed. AS flow meters need to 6.5 0.0 4,070 98 5.1 108.6 8,232.4 Collected bag as samples. Air spage bedeer valve wide open, reducing air closs wide in spected, may be deaned/re-developed. AS flow meters need to 6.5 225 0.0 4.070 98 5.1 108.6 8,232.4 Collected bag as samples. Air spage bedeer valve wide open, reducing air closs wide in spected, may be deaned/re-developed. AS flow meters need to 6.5 0.0 0.0 0.0 3.000 98 5.1 108.6 8,232.4 Collected bag as samples. Air spage bedeer valve wide open, reducing air samples. Ast flow meters need to 6.5 0.000 </td <td>7/19/2021</td> <td>14:06</td> <td>5,024.6</td> <td>11,827.5</td> <td>492.4</td> <td>16.5</td> <td>81</td> <td>1.5</td> <td>83</td> <td>223</td> <td>81.8</td> <td>257,000</td> <td></td> <td>1.0</td> <td>5,700</td> <td>98</td> <td>5.2</td> <td>85.0</td> <td>8,101.8</td> <td></td>	7/19/2021	14:06	5,024.6	11,827.5	492.4	16.5	81	1.5	83	223	81.8	257,000		1.0	5,700	98	5.2	85.0	8,101.8	
1/2/2 5/3.51 1/2.58 5/3.51	8/5/2021	7:22	5,423.6	12,226.5	509.0	16.6	77	1.5	78	225	106.5	334,603		1.4	7,980	98	6.8	112.8	8,214.6	
9/30/202 13.43 55.47 13.43.4 55.47 13.43.4 55.77 14.43.4 55.77 14.43.4	8/26/2021	14:25	5,935.1	12,738.0	530.3	21.3	77.0	1.5	77	226	66.4	251,000		0.0	4,070	98	5.1	108.6	8,323.2	Collected lab gas samples. Air sparge bleeder valve wide open, reducing air to AS wells. Air sparge wells need inspected, maybe cleaned/re-developed. AS flow meters need cleaned.
10/14/2021 Provide Pro	9/30/2021	13:05	6,640.2	13,443.1	559.7	29.4	78.0	1.5	62	229	56.0	269,500	680	0.9	3,030	99	5.5	162.7	8,485.9	AECOM assumes control of system operations from CRETE. See Footnote 6. Collected lab gas samples. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
	10/6/2021	15:20	6,785.5	13,588.4	565.8	6.1	78.0	1.5	65	227.9	144.8	696,850	689	2.5	8,417	99	14.3	86.5	8,572.3	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
	10/14/2021	9:03	6,972.3	13,775.2	573.6	7.8	78.0	1.5	60	229.0	100.2	482,213	684	1.9	6,397	99	9.9	77.3	8,649.6	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
10/21/2021 14:30 7,141.7 13,944.6 580.6 7.1 76.0 1.5 60 229.7 117.6 108,510 680 2.6 1,900 98 2.2 15.8 8,655.4 Collected bag as amples. PAH atarms continue to shut down the AS system. Mailunction	10/21/2021	14:30	7,141.7	13,944.6	580.6	7.1	76.0	1.5	60	229.7	117.6	108,510	680	2.6	1,900	98	2.2	15.8	8,665.4	Collected lab gas samples. PAH alarms continue to shut down the AS system. Malfunctioning

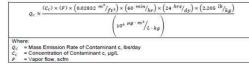
PORT OF SEATTLE - TERMINAL 30 Table 4 AS/SVE and Oxidizer Operational Data

				0	perating Para	meters						Mass F	Removal				Mass Remo	val	
				Calculated							Calculated			Calcul	ated		Calculated	i	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total		Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔP	Temp	Flow Rate ¹		Total Vocs	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate⁵	Removal ⁶	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(µg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
10/28/2021	14:15	7,309.8	14,112.7	587.6	7.0	80.0	2.0	60	263.6	28.6	26,389	664	0.5	365	99	0.6	4.4	8.669.8	SVE Blower off from 10/21/2021 until 10/28/2021. Could be result of low PID measurement. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/5/2021	14:30	7,502.7	14,305.6	595.7	8.0	84.0	2.0	55	263.3	50.6	46,689	681	6.6	4,823	90	1.1	8.9	8,678.7	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/11/2021	21:21	7,654.1	14,457.0	602.0	6.3	86.0	1.5	54	227.5	109.7	101,221	680	2.5	1,827	98	2.1	13.1	8,691.8	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/18/2021	12:30	7,807.8	14,610.7	608.4	6.4	86.0	1.5	50	228.4	47.6	103,250	686	1.0	1,020	99	2.1	13.6	8,705.3	Collected lab gas samples. Replacement AS Compressor pressure switch installed on 11/17/21 by Marine Maintenance.
11/23/2021	16:30	7,932.0	14,734.9	613.5	5.2	86.0	2.0	50	263.7	87.5	189,798	682	0.9	918	100	4.5	23.3	8,728.6	No new PAH alarms since the pressure switch replacement.
12/1/2021	15:55	8,122.9	14,925.8	621.5	8.0	85.0	1.5	55	227.6	19.4	42,081	652	1.1	1,122	97	0.9	6.9	8,735.5	No new PAH alarms since the pressure switch replacement.
12/10/2021	14:15	8,337.3	15,140.2	630.4	8.9	86.0	1.5	50	228.4	399.3	866,129	676	0.0	0	100	17.8	158.9	8,894.4	No new PAH alarms since the pressure switch replacement.
12/17/2021	15:17	8,499.7	15,302.6	637.2	6.8	88.0	1.5	50	227.7	42.5	92,188	676	0.6	612	99	1.9	12.8	8,907.2	No new PAH alarms since the pressure switch replacement.
12/22/2021	12:15	8,616.9	15,419.8	642.1	4.9	90.0	1.5	50	227.0	55.3	109,700	682	0.7	1,250	99	2.2	10.9	8,918.1	Collected lab gas samples. No new PAH alarms since the pressure switch replacement.

Footnotes:

1. Standard flow (scfm) is calculated using differential pressure, pressure, and temperature as recorded in the field per the equation below (as

identified with green highlighting in the table). The PSCAA permit requires the SVE flowrate to be less than or equal to 375 scfm.


itot Tube Flov	w Equation f	or Any Gas	Notes:								
2 (SCFM) = 12	28.8 x K x D	^2 x SQRT ((P x delta P)/(T+460) x Ss)	From Dwyer Bulletin F-50								
Q	SCFM	Flow in standard cubic feet per minute	See Table for Calculation from Gauge Reading								
K	0.67	Flow Coefficient for 3 and 4-inch pipe	From Dwyer Bulletin F-50								
D	3.79	Inside Diameter of Pipe measured in inches	SVE Sch. 80 PVC Pipe Inside Diameter								
Т	50	Degrees Fahrenheit	Average Temp of Extracted Air								
delta P	0.4	Differential Pressure read on Magnehelic Gauge	See Table for Gauge Reading (in H2O)								
V	-3.0	Pressure (vacuum psig) inside pipe	Field Measurements Recorded as in H20. Conversion is 1.00 in H20 = 0.0361 psig								
Р	11.7	Static Line Pressure (psia) = 14.7 + V	PSIA plus Vacuum. Calculate Vacuum as a Negative Number.								
Ss	1.00	Specific Gravity (SG) of Air at 60 degrees F	SG is Unitless								

2. On 12/03/20, the blower hour meter was reset after an extended power outage and changeover to generator power.

3. The TPH concentration is the sum of APH EC5-8 aliphatics, APH EC9-12 aliphatics, and APH EC9-10 aromatics. If one of these was not detected, a conservative approach of 1x the reporting limit was used in the calculation.

4. For dates with laboratory data, the Total VOC Concentration equals the laboratory TPH concentration. For dates without laboratory data, the Total VOC Concentration is calculated by adjusting the PID measurement with a correction factor. This correction factor is calculated by dividing the laboratory-measured TPH concentration from the most recent sampling event by the field-collected PID measurement from the same day.

5. Removal rates are calculated via:

6. Unless otherwise indicated, all data from before 9/30/2021 was collected by CRETE and was not reviewed or validated by AECOM.

7. Destruction efficiency is calculated with the Total VOC Oxidizer Outlet Concentration and the Total VOC Oxidizer Inlet Concentration. The PSCAA permit dictates that:

At all times during operation of the SVE system, the abatement device shall meet the following requirements, as applicable:

a) ≥98.5% control efficiency if inlet TPH ≥2,000 ppmv, measured as hexane or its equivalent; or

b) ≥97% control efficiency if inlet TPH ≥200 ppmv and <2,000 ppmv, measured as hexane or its equivalent; or

c) \geq 90% control efficiency if inlet TPH <200 ppmv, measured as hexane or its equivalent; or

d) ≤10 ppmv at the outlet of the control device, measured as hexane or its equivalent.

8. The PSCAA permit states that: The minimum operating temperature at the fire box of the thermal oxidizer shall be at least 1,400°F, on an hourly average. When the thermal oxidizer was retrofitted to a

catalytic oxidizer on 3/19/20, the minimum operating temperature became 600°F. The hourly requirement is met by the shut-down alarm programmed if the temperature drops below the permitted threshold.

9. This calculation was revised by AECOM to use the mass removal rate from the single day's data rather than the average with the previous visit as CRETE had done.

Abbreviations, Symbols, and Notes:

 $\label{eq:approx_appr$

Red values indicate approximated values or averaged values as placeholder for data not recorded in the field. Blue values indicate data collected by CRETE but input by AECOM, or calculated by AECOM with data previously collected by CRETE.

PORT OF SEATTLE - TERMINAL 30 Table 5 AS/SVE and Oxidizer Analytical Data

	9	VE Field Data			Labora	tory Oxidize	er Influent I	Results					Mass Remov	/al ³					Laboratory	/ Oxidizer E	ffluent Res	ults		
		Calculated		Calcula		,							Calculated				Calcu	lated				-	Calculated	1
	Cumulative SVE Blower	Period SVE Blower	SVE Inlet Vapor Flow					Ethyl-	Total				Ethyl-	Total	TPH Period Mass	TPH Cumulative Mass					Ethyl-	Total	TPH Destruction	
	Runtime ¹	Runtime ¹	Rate ¹	TPH ²	TPH ^{7,8}	Benzene	Toluene	benzene	Xvlenes	TPH ^{2,9}	Benzene ⁹	Toluene ⁹	benzene ⁹	Xvlene ⁹	Removed	Removed	TPH ²	TPH ^{7,8}	Benzene	Toluene	benzene	Xvlenes	Efficiencv ^{4,8}	
Date	(Days)	(Days)	(scfm)	(µg/m ³)	(ppmv)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lb)	(lb)	(µg/m ³)	(ppmv)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(%)	Comments
10/23/2019	34.03	34.03	185	796,500	194.8	160	7,200	170	500	13.23	0.0027	0.120	0.003	0.008	450.1	450.1	4,590	1.1	210	150	4	18	99.4	SVE was started on 9/19/2019.
11/27/2019	63.12	29.10	308	917	0.2	1	58	1	4	18.04					525.0	975.1	1,705	0.4	130	64	1.5	4.5	99.7	Lab Data is questionable and not used in calculations. See Note 5.
12/23/2019	89.13	26.00	260	1,381,000	337.7	320	770	54	96	32.24	0.0075	0.018	0.001	0.002	838.3	1,813.3	1,125	0.3	18	57	1.3	3.9	99.9	
1/15/2020	112.13	23.00	229	188,970	46.2	23	730	17	51	3.89	0.0005	0.015	0.000	0.001	89.6	1,902.9	340	0.1	2.6	60	1.4	4.2	99.8	
2/11/2020	139.18	27.05	232	94,970	23.2	12	730	17	51	1.98	0.0003	0.015	0.000	0.001	53.7	1,956.5	1,090	0.3	2.6	150	3.5	10.5	98.9	
3/12/2020	169.00	29.83	220	641	0.2	1	62	1	4	3.36					100.3	2,056.8	515	0.1	0.96	57	1.3	3.9	99.7	Inlet concentration lab data suspect. Need to re-sample upon start up. Lab data not used in calculations. See Note 5.
8/26/2020	189.43	20.43	134	2,101,500	513.9	260	680	97	251	25.26	0.0031	0.008	0.001	0.003	516.0	2,572.9	6,570	1.6	11	660	15	45	99.7	System was off line March 24 - August 17, 2020 due to the Covid 19 Pandemic
9/29/2020	223.18	33.75	243.2	1,460,900	357.2	120	680	56	118	31.94	0.0026	0.015	0.001	0.003	1,078.1	3,650.9	9,570	2.3	11	660	15	45	99.3	
10/27/2020	249.87	26.69	263.1	394,000	96.3	270	16,000	370	1,120	9.32	0.0064	0.378	0.009	0.026	248.7	3,899.7	5,250	1.3	4.5	260	6.1	18.1	98.7	
11/18/2020	272.09	22.22	264.0	452,000	110.5	140	8,100	190	560	10.73	0.0033	0.192	0.005	0.013	238.5	4,138.1	14,400	3.5	12	680	16	47	99.0 ⁵	
12/16/2020	295.75	23.66	229.5	1,151,000	281.5	73	2,600	61	181	23.75	0.0015	0.054	0.001	0.004	561.8	4,699.9	9,170	2.2	4.8	280	6.5	31.5	99.2	
1/12/2021	321.72	25.98	227.7	924,000	225.9	86	3,000	69	209	18.92	0.0018	0.061	0.001	0.004	491.4	5,191.3	8,570	2.1	4.8	280	9.1	53.3	99.1	
2/17/2021	352.59	30.86	230.7	566,950	138.6	50	720	28	50	11.76	0.0010	0.015	0.001	0.001	363.1	5,554.4	3,160	0.8	50.0	720	28	50	99.4	
3/23/2021	384.49	31.91	227.3	563,000	137.7	140	8,500	200	590	11.51	0.0029	0.174	0.004	0.012	367.2	5,921.6	10,850	2.7	5.8	340	32	83	98.1	
4/19/2021	408.29	23.80	227.0	641,000	156.7	140	8,300	190	570	13.09	0.0029	0.169	0.004	0.012	311.4	6,233.0	21,570	5.3	4.8	280	59	217	96.6	AS blower shut down due to oil leak.
5/20/2021	435.64	27.35	227.0	420,900	102.9	17	680	24	47	8.59	0.0003	0.014	0.000	0.001	235.0	6,468.0	7,010	1.7	1.5	87	69	233	98.3	AS blower restarted on 5/4/21 with repaired oil gasket.
6/16/2021	459.92	24.27	222.7	421,000	102.9	140	8,100	190	560	8.43	0.0028	0.162	0.004	0.011	204.6	6,672.6	5,250	1.3	4.5	260	6.1	18.1	98.8	AS system down since 6/15/21 for blower servicing.
7/19/2021	492.40	32.48	223.1	257,000	62.8	150	8,700	200	600	5.15	0.0030	0.175	0.004	0.012	167.4	6,840.1	5,700	1.4	5.1	300	6.9	20.9	97.8	AS system down since 6/15/21 for blower servicing.
8/26/2021	530.34	37.94	225.7	251,000	61.4	150 U	8,900 U	J 200 L	J 610 U	5.09	0.0030	0.181	0.004	0.012	193.2	7,033.3	4,070	1.0	4.8 U	J 280 U	0 6.5 U	19.5 U	98.4	AS system restarted 7/24/21. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
9/30/2021	559.72	29.38	228.5	269,500 J	65.9	83 U	4,900 U	J 110 U	J 340 U	5.54	0.0017	0.101	0.002	0.007	162.7	7,196.0	3,030	0.7	1.9 U	J 110 U	J 2.6 L	7.7 U	98.9	AECOM takes over system operation. See Footnote 6. SVE and Oxidizer running smoothly. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
10/21/2021	580.61	20.90	229.7	108,510 J	26.5	6.0	340 L	J 10	24 U	2.24	0.0001	0.007	0.000	0.000	46.8	7,242.9	1,900	0.5	1.9 l	J 110 L	J 2.5 L	J 7.5 U	98.2	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/18/2021	608.37	27.75	228.4	103,250 J	25.2	7.5	340 U	J 11 .	1 24 UJ	2.12	0.0002	0.007	0.000	0.000	58.9	7,301.7	1,020	0.2	1.9 U	J 110 U	J 2.6 L	J 7.9 U	99.0	SVE and Oxidizer running smoothly with the exception of SVE downtime 10/2: 10/28. Replacement AS Compressor pressure switch installed on 11/17/21 by Marine Maintenance. AS system running smoothly since.
12/22/2021	642.08	33.71	227.0	109,700 L	26.8	56 U	3,300 U	J 76 L	J 226 U	2.24	0.0011	0.067	0.002	0.005	75.5	7,377.2	1,250	0.3	1.8 U	J 110 U	J 2.5 L	J 7.5 U	98.9	AS, SVE, and Oxidizer running smoothly. No new AS PAH alarms since the pressure switch replacement.
								Cumulative	2019	1233	0	4	0	0										
							Mass Rem	noved	2020	2650	0.4	16.5	0.4	1.3										
							(lb/yr) ⁹ :		2021	2358	0.6	31.5	0.7	2.2										
								rmit Thresh		1,000	6.62		76.9											
							Control De	evice Need	[lbs/yr) ⁹ :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														

Footnotes

1. Refer to Table 4 for details and calculations. The PSCAA permit requires the SVE flowrate to be less than or equal to 375 scfm.

 The TPH concentration is the sum of APH ECS-8 aliphatics, APH EC9-12 aliphatics, and APH EC9-10 aromatics. If one of these was not detected, a consertaive approach of 1x the reporting limit was used in the calculation.
 Mass emission and removal rates are calculated by variations of:

4. Destruction efficiency is calculated with the Total VOC Oxidizer Outlet Concentration and the Total VOC Oxidizer Inlet Concentration.

5. TPH calculations are based on the Table 4 adjusted field PID readings as the samples may have been diluted.

 Unless otherwise indicated, all data from before 9/30/2021 was collected by CRETE and was not reviewed or validated by AECOM.

7. 100 g/mol is used as the average molecular weight of TPH-G used to calculate ppmv. In the equation below, P is atmospheric pressure at sea level, or 101.325 kPa. T is standard temperautre, 298 K.

 $ppmV = \frac{\mu g}{L} \times \frac{1}{Molecular Weight_{contaminant}[g/mole]} \times 8.3144 \left[\frac{L \cdot kPa}{mol \cdot K}\right] \times T_{air}[K] \times \frac{1}{P_{air}[kPa]}$

8. The PSCAA permit dictates that:

At all times during operation of the SVF system, the abatement device shall meet the following requirements, as applicable: a) 298.5% control efficiency if inlet TPH 22,000 ppmv, measured as hexane or its equivalent; or b) 29% control efficiency if inlet TPH 2200 ppmv and <2,000 ppmv, measured as hexane or its equivalent; or c) 290% control efficiency if inlet TPH <200 ppmv, measured as hexane or its equivalent; or d) s100 mov at the outlet of the control device. measured as hexane or its equivalent; or d) s100 mov at the outlet of the control device. measured as hexane or its equivalent.

9. The PSCAA permit dictates the following. Values in excess of the permit are indicated with bold formatting. The owner or operator may operate the SVE system without the control device when inlet sampling data from two or mor e consecutive months

a) Pre-control TPH emission rate is equal to or less than 2.74 lbs/day [eq 1,000 lb/yt]; b) Pre-control benzene emission rate is equal to or less than 0.018 lbs/day [eq 6.62bs/yt]; c) Pre-control ethylbenzene emission rate is equal to or less than 0.21 lbs/day [eq 76.9 lbs/yt]; d) Pre-control toluene emission rate is equal to or less than 657 lbs/day [no annual equivalent]; and e) Pre-control yelnene emission rate is equal to or less than 657 lbs/day [no annual equivalent].

Abbreviations, Symbols, and Notes:

μg/m² = micrograms per cubic meter J = Estimated value Ib = Stimated value Ibs/yr = pound Ibs/yr = pounds per year NL = Not listed Sc/m = standard cubic feet per minute Sc/m = standard cubic feet per minute Sc/m = s-small Quantity Emission Rates TPH = Total Petroleum Hydroarbons U = Concentration is below the laboratory reporting limit, so the reporting limit is shown Red values indicate approximated values or averaged values as placeholder for

data not recorded in the field.

Blue values indicate data collected by CRETE but input by AECOM, or calculated by AECOM with data previously collected by CRETE.

Bold values = exceeds PSCAA permit limit for removal of control device

		Tidal	Position	Period	Cumulative	MW-	35 ^{K,M}	MW	-36 ^M	MW-3	36A ^M	MW	-39A
		Time of	Time of	Product	Product	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL
	Time of	Nearest	Nearest	Removed ^L	Removed	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H
Date	Fieldwork	Low Tide ^F	High Tide ^F	(Gal)	(Gal)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)
Baseline	NA			NA	NA	NM		0.18		0.04		0.05	
01/09/2020	NM			46.7	46.7	NM	NM	0.14	0.00	<0.01	<0.01	<0.01	<0.01
02/13/2020	NM			21.3	68	NM	NM	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
03/12/2020	NM			48.4	116.4	NM	NM	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
05/16/2020	NM			20	136.4	NM	NM	0.04		0.00		0.35	
06/19/2020	NM			156	292.4	NM	NM	1.00	0.01	0.00		0.16	<0.01
07/28/2020	NM			35	327.4	NM	NM	0.95	<0.01	0.00		0.10	0.01
08/21/2020	NM			32	359.4	NM	NM	0.16	0.00	< 0.01 ^B		0.04	<0.01
09/10/2020	NM			16.4	375.8	NM	NM	0.00		0.00		TRACE	TRACE
10/08/2020	15:30-21:51	20:24	14:24	35.1	410.9	0.52	0.00	0.00		0.00		0.00	
11/11/2020	07:50-14:45	05:48	12:18	99	509.9	0.19	DRY	0.00		0.00		0.00	
12/10/2020 ^C	16:12-17:46	17:24	12:12	NA	509.9	0.02		0.00		0.00		0.00	
01/15/2021	07:53-16:02	07:42	15:06	39	548.9	0.28	0.00	0.00		0.00		0.00	
2/12/2021 ^{C,I}	08:07-10:07	11:49	06:09	NA	548.9	0.06		0.00		0.00		0.00	
03/05/2021	07:15-13:14	11:00	05:54	39 ^D	587.9	0.10	0.00	0.00		0.00		0.00	
4/15/2021 ^C	16:33-18:35	20:42	13:54	NA	587.9	0.42		0.00		0.00		0.00	
05/13/2021	16:01-20:39	19:30	13:00	24	611.9	0.04	0.00	0.00		0.00		0.00	
6/10/2021 ^C	15:05-17:29	18:36	11:48	NA	611.9	0.02		0.00		0.00		0.00	
08/12/2021	16:31-20:26	21:03	14:50	78	689.9	0.02	0.00	0.02	0.00	0.00		TRACE	
11/11/2021 ^G	15:25-21:20	11:18	19:06	44.3	734.2	0.00		0.00		0.00		0.00	

	MW	/-59	MW	-89	MW	MW-93 ^M		RW-1 ^M		-12	RW-101	
	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)
Baseline	0.90		2.39		1.04		0.55		0.00		0.02	
01/09/2020	2.19	0.00	<0.01 ^A	<0.01	<0.01	<0.01	0.03	0.01 ^B	0.71	0.03 ^B	0.02	<0.01
02/13/2020	0.23	0.10	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.25	0.03 ^B	<0.01	NM
03/12/2020	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	<0.01	0.78	0.08 ^B	0.03	<0.01
05/16/2020	1.06		0.00		0.10	0.00	0.56	0.22 ^B	0.78	0.05 ^B	0.08	
06/19/2020	0.93	<0.01	0.00		0.18	<0.01	0.59	0.08 ^B	0.59	0.00	0.07 ^B	0.05 ^B
07/28/2020	0.76	0.01	0.00		0.18	0.00	0.47	0.02 ^B	0.60	0.00	0.09	0.00
08/21/2020	1.12	<0.01	0.00		0.05	<0.01	0.32	0.01 ^B	0.35	0.02 ^B	0.00	
09/10/2020	0.00	NM	0.00		TRACE	TRACE	0.20	<0.01	0.24	0.02 ^B	0.00	
10/08/2020	<0.01	0.00	0.00		0.00		0.11	0.01B	0.45	0.02 ^B	0.05	0.00
11/11/2020	0.00		0.00		0.00		0.28	0.09 ^B	0.43	NM	<0.01	0.00
12/10/2020 ^C	0.00		0.00		0.00		0.04		0.16		0.00	
01/15/2021	0.00		0.00		0.00		0.06	0.01 ^B	0.18	0.01 ^B	0.00	
2/12/2021 ^{C,I}	0.00		0.00		0.00		0.03		0.03		0.00	
03/05/2021	0.09	0.00	0.00		0.00		0.17	0.01 ^B	0.05	0.00	0.00	
4/15/2021 ^C	0.01		0.00		0.00		0.11		0.25		0.00	
05/13/2021	0.62	0.00	0.00		0.00		0.17	0.02 ^B	>0.10	0.00	WI	WI
6/10/2021 ^C	0.86		0.00		0.00		0.26		0.21		0.01	
08/12/2021	WI	WI	0.00		0.00		0.27	0.1 ^B	0.31	0.01 ^B	0.00	
11/11/2021 ^G	0.20	0.00	0.00		0.00		0.15	0.00	0.30	0.00	0.00	

	RW-	102	RW-	103	RW-	104	RW-105		RW-106		RW-107	
	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)
Baseline	0.00		1.16		0.00		0.00		1.00		0.98	
01/09/2020	0.00	NM	1.16	<0.01	0.00	NM	0.00	NM	1.00	<0.01	0.98	<0.01
02/13/2020	WI	WI	WI	WI	NM	NM	NM	NM	1.40	<0.01	0.34	0.09 ^B
03/12/2020	0.00	NM	0.71	0.01 ^B	0.00	NM	0.00	NM	1.05	0.06 ^B	1.37	<0.01
05/16/2020	0.00		0.45	0.01 ^B	0.00		0.00		1.10	0.00	0.84	0.00
06/19/2020	0.00		0.29	0.01 ^B	0.00		0.00		1.01	0.00	1.09	0.27 ^B
07/28/2020	0.00		0.31 ^B		0.00		0.00		0.77	<0.01	1.19	<0.01
08/21/2020	0.00		0.23	0.01 ^B	0.00		0.00		0.73	0.00	1.41	0.00
09/10/2020	0.00		1.74	0.00	0.00		0.00		1.55	0.00	2.17	0.00
10/08/2020	< 0.01 ^B		0.86	0.00	0.00		0.00		0.73	0.00	2.49	NM
11/11/2020	0.00		1.01	0.00	0.00		0.00		0.80	0.00	1.83	0.00
12/10/2020 ^C	0.00		0.40		0.00		0.00		0.84		1.05	
01/15/2021	0.00		0.75	0.00	0.00		0.00		1.13	0.00	0.78	0.00
2/12/2021 ^{C,I}	0.00		0.87		0.00		0.00		1.19		1.00	
03/05/2021	0.00		0.49	0.00	0.00		0.00		1.08	0.00	0.96	0.00
4/15/2021 ^C	0.00		0.31		0.00		0.00		0.78		0.74	
05/13/2021	0.00		0.23	0.00	0.00		0.00		0.71	0.00	0.59	0.00
6/10/2021 ^C	WI	WI	WI	WI	0.00		0.00		0.58		0.61	
08/12/2021	WI	WI	WI	WI	0.00		0.00		0.59	0.00	0.72	0.02 ^B
11/11/2021 ^G	0.00		0.61	0.00	0.01	0.00	0.00		1.05	0.00	0.02	0.00

Ft = Feet

	RW-	108	RW-	109	RW-110			
	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL		
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H		
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)		
Baseline	0.00		0.00		0.02			
01/09/2020	0.00	NM	0.00	NM	0.02	<0.01		
02/13/2020	0.00	NM	0.00	NM	0.09	<0.01		
03/12/2020	0.00	NM	0.00	NM	0.04	<0.01		
05/16/2020	0.00		0.00		0.10	0.00		
06/19/2020	0.00		0.00		0.34	0.00		
07/28/2020	0.00		0.00		0.46	<0.01		
08/21/2020	0.00		0.00		0.30			
09/10/2020	0.00		0.00		0.00			
10/08/2020	0.00		0.00		0.01	<0.01		
11/11/2020	0.00		0.00		0.02	0.00		
12/10/2020 ^C	0.00		0.00		0.00			
01/15/2021	0.00		0.00		0.00			
2/12/2021 ^{C,I}	0.00		0.00		0.19			
03/05/2021	0.00		0.00		0.17	0.00		
4/15/2021 ^C	0.00		0.00		0.10			
05/13/2021	0.00		0.00		0.20	0.00		
6/10/2021 ^C	0.00		0.00		0.25			
08/12/2021	0.00		0.00		0.48	0.00		
11/11/2021 ^G	0.00		0.00		0.01	0.00		

Abbreviations, Symbols, and Formatting:

--- = Data not needed/relevant

for data not recorded in the field.

Gal = Gallon LNAPL = Light Non-Aqueous Phase Liquid NM = Not Measured

NA = Well not intended to be gauged/vacuumed WI = Well inaccessible

calculated by AECOM with data previously collected by CRETE. = Interior Monitoring Well

Red values = approximated values or averaged values as placeholder

Blue values = data collected by CRETE but input by AECOM, or

= Performance Monitoring well

Notes:

A. Approximately 4 gallons of LNAPL and water were previously removed from this well (MW-89) on November 14, 2019.

B. Vacuum removal was not executed.

C. LNAPL gauging event; no LNAPL removal.

D. Measurement not taken. The total volume extracted was similar to the prior removal event, so the prior product volume was repeated as an estimate.

E. MW-38 was found to be obstructed during during field activities on 09/18/2020. It was not monitored thereafter and was decomissioned on 05/06/2021.

F. Tidal information source: https://tidesandcurrents.noaa.gov/stationhome. html?id=9447130

G. Unless otherwise indicated, all data prior to 10/14/2021 was collected by CRETE and was not reviewed or validated by AECOM.

H. The final LNAPL thickness is the value measured after the final recovery cycle at a well is complete. Recovery is determined complete when the LNAPL thickness is reduced to <0.01 ft or three recovery cycles have been executed within a single event.

I. The data previously entered for the 2/12/21 gauging event did not match the field notes. Values have been updated by AECOM as needed.

J. Baseline LNAPL data was collected during the 10/16/19-10/18/19 gauging and sampling event and during to the first LNAPL recovery event on 1/9/20. AECOM reviewed the historical field notes and revised all wells that had non-detect LNAPL thicknesses to 0.0 ft from the previously reported values of <0.01 ft. Depth to product was not successfully measured/recorded at MW-35 prior to gauging on 10/8/20.

K. MW-35 was initially identified as a biannual gauging well in the CMP. After LNAPL was measured in the well on 10/9/20 it entered into the monthly gauging/removal protocol.

L. Product volume estimated by the vac truck contractor after allowing the water and free product in the truck tank to separate out over night.

M. These monitoring wells temporarily became recovery wells when product was encountered during gauging activities. The CMP dictates that they be monitored at least quarterly after product is encountered, and sample data cannot be used for performance monitoring purposes until 4 consecutive quarters occur with measurements of ≤ 0.01 ft.

PORT OF SEATTLE - TERMINAL 30 Table 7 LNAPL Gauging Results in Monitoring Wells

		Tidal Position		MW-35	MW-38 ^B	MW-42	MW-45A	MW-46B	MW-54	MW-58A	MW-64
		Time of	Time of	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL
	Time of	Nearest	Nearest High	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness
Date	Fieldwork	Low Tide ^A	Tide ^A	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)
Baseline ^C	NA			NM	0.0	0.0	0.0	0.0	NM	0.0	NM
10/8/2020 ^D	NM			0.52 ^E	NA	NA	NA	NA	NM	NA	NM

PORT OF SEATTLE - TERMINAL 30 Table 7 LNAPL Gauging Results in Monitoring Wells

	MW-84A	MW-85A	MW-86B	MW-87A	MW-92	RW-5A	RW-9	RW-11A
	LNAPL							
	Thickness							
Date	(Ft)							
Baseline ^C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10/8/2020 ^D	NA							

Abbreviations, Symbols, and Formatting:

Ft = Feet

LNAPL = Light Non-Aqueous Phase Liquid

NM = Not Measured

NA = Well not intended to be

gauged/vacuumed

WI = Well inaccessible

--- = Data not needed/relevant

Blue values = data collected by

CRETE but input by AECOM

- = Interior Monitoring Well
 - = Performance Monitoring well
 - = CPOC Monitoring Well
 - = Shoreline Monitoring Well

Notes:

A. Tidal information sourced from

https://tidesandcurrents.noaa.gov/stationhome.html?id=9447130 B. MW-38 was found to be obstructed during during field activities on 09/18/2020. It was not monitored thereafter and was decomissioned on 05/06/2021.

C. Baseline LNAPL data was collected during the gauging and sampling event from 10/16/19-10/18/19. Depth to product was not successfully measured/recorded at MW-54 or MW-64. All wells with thicknesses of 0.0 were corrected from the previously reported values of <0.01 ft after a review of the field notes. Depth to product was not successfully measured/recorded at MW-35 prior to the gauging on 10/8/20.

D. Biannual gauging event for MW-35, MW-36, MW-54, and MW-64.

E. MW-35 was initially identified as a biannual gauging well in the CMP. After LNAPL was measured in the well on 10/9/20 it entered into the product gauging/removal protocol. That data is shown in Table 6.

PORT OF SEATTLE - TERMINAL 30 Table 8 Performance and Interior Monitoring Well Groundwater Analytical Data

					Discut			1			1			
			Diesel		Diesel Range		TPH-Dx	Gasoline						
			Range		Organics	Lube Oil	(Diesel +	Range			Ethyl-	Total		
			Organics	Lube Oil	SGC	SGC	Lube Oil) ^a	Organics	Benzene	Toluene	benzene	Xylenes		
	Well ID	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µq/L)	(µq/L)		
Well		GW CULs (µg/L)					500	1,000/800 ^e	23	15,000	2,100	1,000		
Type		GW RELs (µg/L)					2,085	2,085	47	30,000	4,200	2,000		
- /	RW-11A	10/17/19	5,600	1,100 ^b	1,100	250 U	1,100	260	1 U	1 U	10	3		
		4/11/20	3,700 ^b	440 ^b	140	250 U	140	100 U	1 U	1 U	10	3 U		
		4/11/20 DUP	4,400 ^b	480 ^b	160	250 U	160	100 U	10	1 U	10	3 U		
		9/18/20	2,800	330 ^b	98	250 U	98	100 U	10	1 U	10	3 U		
		4/3/21	NAn	NAn	50 U	250 U	250 U	100 U	10	10	10	3 U		
		10/14/21	1,230	163 U	133 ^d	157 U	133	100 U	0.200 U	1.00 U	0.500 U	1.50 U		
	MW-59	10/17/19	.,				npled due to fro							
		4/11/20												
		9/29/2020 ^f	1,600	250 U	830	250 U	830	100 U	1 U	1 U	1 U	3 U		
		4/3/21			W	ell not san	npled due to fr	ee product en	countered					
		10/14/21	Well not sampled due to free product encountered											
v	MW-89	10/18/19	Well not sampled due to free product encountered											
Vell		4/11/2020 ^f	1,500 ^b	420 ^b	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U		
N ec		9/29/2020 ^f	6,000	540 ^b	550	250 U	550	140 ^b	1 U	1 U	1 U	3 U		
and		4/3/21	NAn	NAn	93	250 U	93	100 U	1 U	1 U	1 U	3 U		
Performance Wells		4/3/21 DUP	NAn	NAn	88	250 U	88	100 U	1 U	1 U	1 U	3 U		
erfo		10/14/21	827	334	410 ^d	265	675	100 U	0.200 U	1.00 U	0.500 U	1.50 U		
۵.	RW-9	10/17/19	3,100	750 b	1200	250 U	1,200	720	1 U	1 U	1.6	3.9		
		9/18/20	3,300	440 b	450	250 U	450	430	1 U	1.4	10	3 U		
		10/14/21	6,360	150 U	1,590	165 U	1,590	227	0.200 U	1.00 U	0.500 U	1.50 U		
	MW-36A	10/17/19	Well not sampled due to free product encountered											
		9/19/2020 [†]	3,100	360 ^b	560	250 U	560	120	1 U	1 U	1 U	3 U		
		10/14/21	2,610	178 U	404	167 U	404	100 U	0.200 U	1.00 U	0.500 U	1.50 U		
	MW-39A	10/17/19	0.400	4 4 0 0			npled due to fro			4.1.1	411	0.11		
		9/19/2020 ^t	3,100	1,100	1,500	770	2,270	160	1 U	1 U	10	3 U		
		10/14/21	2,870	1,760	1,980 ^d	1,540	3,520	100 U	0.200 U	1.00 U	0.500 U	1.50 U		
	MW-42	10/17/19	6,600	2,600 ^b	330 ^b	250 U	330 ^b	2,100	37	17	5.1	16		
		9/18/20	5,500	1,300 ^b	110 ^b	250 U	110 ^b	620	5.2	3.5	1 U	7.4		
		10/14/21	4,780	165 U	315 °	150 U	315 °	248	1.31	1.00 U	0.500 U	1.50 U		
	RW-1	10/17/19					npled due to fr							
s		9/19/20					npled due to fro							
/ells	RW-5A	10/17/19	1,300	810 ^b	290 ^b	250 U	290 ^b	190	1 U	1 U	10	3 U		
L N		9/18/20	1,700	330 ^b	120 ^b	250 U	120 ^b	230	1 U	1 U	1 U	3 U		
Interior Wells	MW-38	10/16/19					sampled; wate							
LT LT		9/18/20		Well obse		0	rade, not samp			d on May 6	, 2021.			
	MW-93	10/17/19	0 700	4 4 9 9			npled due to fr			4	4			
		9/19/2020 ^f	8,700	4,100	5,400	3,200	8,600	280	1 U	1 U	1 U	3 U		

Notes:

^a Total TPH D + lube oil is the sum of the Silica Gel Cleanup results.

^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^c Result is estimated due to overlap from Gasoline Range Organics or other VOCs.

^d The sample chromatographic pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component

e If benzene is present below method detection limits, the TPH-Gx cleanup level is 1000 μg/L. If not, the TPH-Gx cleanup level is 800 μg/L.

^f Data is not to be used for performance monitoring purposes. Free product was present in excess of 0.01 ft during the four quarters prior to the sampling event, rendering the well ineligible per CMP guidance on qualifaction for performance monitoring sampling.

Abbreviations and Formatting:

 BOLD
 = result was detected above the CUL
 NR =

 BOLD
 = result was detected above the REL
 NAn

 µg/L = micrograms per liter
 REL

 CUL = cleanup level
 SGC

GW = groundwater

J = estimated value

NR = not reported NAn = not analyzed (analysis was not requested) REL = remediation level SGC = silica gel cleanup

U = not detected above the value shown

PORT OF SEATTLE - TERMINAL 30 Table 9 CPOC and Shoreline Water Qaulity Monitoring Well Groundwater Analytical Data - TPH and BTEX

	Well ID	Sample Date	Diesel Range Organics (µg/L)	Lube Oil (µg/L)	Diesel Range Organics w/ SGC (µg/L)	Lube Oil w/ SGC (µg/L)	TPH-Dx (Diesel + Lube Oil) ^a (µg/L)	Gasoline Range Organics (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (µg/L)
Well Type		GW CULs (ug/L) GW RELs (ug/L)					500 2085	1000/800 2085	23 47	15,000 30,000	2,100 4,200	1,000 2,000
Туре	MW-45A	10/21/19	610 ^b	250 U	71 ^b	250 U	71 ^b	100 U	1 U	1 U	1 U	<u>2,000</u> 3 U
		10/21/19 DUP	600 ^b	250 U	66 ^b	250 U	66 ^b	100 U	10	10	10	3 U
		9/18/20	490	250 U	54 ^b	250 U	54 ^b	100 U	10	10	1 U	3 U
	MW-46B	10/16/19	1500	380 ^b	150 ^b	250 U	150 ^b	100 U	1 U	1 U	1 U	3 U
s III		9/18/20	1300	250 U	81 ^b	250 U	81 ^b	110	1 U	1 U	1 U	3 U
CPOC Wells	MW-58A	10/17/19	1900	610 ^b	280 ^b	250 U	280 ^b	360	1 U	1 U	1 U	3 U
Ö		9/24/20	3000	320 ^b	420	250 U	420	390	1 U	1 U	1 U	4.7
ц Ц	MW-86B	10/17/19	1500	610 ^b	1600	250 U	1600	360	1 U	1 U	1 U	3 U
		9/24/20	650	250 U	95	250 U	95	130	1 U	1 U	1 U	3 U
		9/24/20 DUP	890	250 U	94	250 U	94	100	1 U	1 U	1 U	3 U
	MW-92	10/16/19	5200	1100 ^b	120 ^b	250 U	120 ^b	250	1 U	1 U	1.2	3 U
		9/18/20	4800	720 ^b	75 ^b	250 U	75 ^b	200	1 U	1 U	1 U	3 U
e lity	MW-84A	10/17/19	1100	250 U	410 ^b	250 U	410 ^b	100 U	1 U	1 U	1 U	3 U
Shoreline Water Quality Wells	MW-85A	10/18/19	130 ^b	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
ter (10/18/19 DUP	130 ^b	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
S Va	MW-87A	10/18/19	420 ^b	570 ^b	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U

Notes :

^a Total TPH (Diesel + lube oil) is the sum of the Silica Gel Cleanup results.

^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Abbreviations/formatting

BOLD = result was detected above the CUL

BOLD = result was detected above the REL

ug/L = micrograms per liter

CPOC = Conditional Point of Compliance

- CUL = cleanup level
- GW = groundwater
- REL = remediation level
- SGC = silica gel cleanup

U - not detected above the laboratory reporting limit

PORT OF SEATTLE - TERMINAL 30 Table 10 CPOC and Shoreline Water Qaulity Monitoring Well Groundwater Analytical Data - PAH

			alene	Acenaph- thylene	thene	Fluorene		Anthracene	Fluoran- thene	Pyrene	Benzo (g,h,i) perylene		2-Methyl naphthalene			Benzo[a] pyrene	Benzo[b] fluoran- thene	Benzo[k] fluoran- thene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene	Total cPAH TEQ ^a
Well	-	Sample Date	(-3/	(µg/L)	(µg/L) 643	(µg/L) 3,460	(µg/L)	(µg/L) 25,900	(µg/L) 90	(µg/L) 2,590	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L) Total cPAH	(µg/L)	(µg/L)	(µg/L)	(µg/L) 0.018
Туре	MW-45A	10/21/19	4,940 0.1 U	0.039	4.0	0.35		0.01 U	0.032	0.017	 0.01 U	 NR	 0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/21/19 DUP		NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn
		9/18/20	0.11	0.036	4.3	0.17	0.21	0.022	0.014	0.012	0.02 U	0.11	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
	MW-46B	10/16/19	0.11	0.030 0.01 U	4.3	0.036	0.21	0.022 0.01 U	0.014	0.012	0.02 U 0.01 U	0.11 NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
					-																
Wells		9/18/20	0.1 U	0.012	2.3	0.01 U	0.052 J	0.013	0.017	0.017	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
≥ ∪	MW-58A	10/17/19	0.96	0.10	5.8	1.3	4.2	0.34	1.0	0.51	0.01 U	NR	0.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
Ō		9/24/20	0.65	0.22	6.0	2.1	0.054	0.33	0.52	0.26	0.02 U	0.24	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
6	MW-86B	10/17/19	0.1 U	0.053	3.2	0.079	0.17	0.15	0.51	0.26	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/24/20	0.1 U	0.057	1.9	0.01 U	0.016	0.041	0.49	0.31	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/24/20 DUP	0.1 U	0.050	2.2	0.01 U	0.012	0.048	0.53	0.38	0.02 U	0.1 U	0.1 U	0.011	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
	MW-92	10/16/19	0.1 U	0.012	0.071	0.027	0.029	0.01 U	0.01 U	0.01 U	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/18/20	0.1 U	0.01 U	0.087	0.01 U	0.02 J	0.013	0.01 U	0.01 U	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
re ality	MW-84A	10/17/19	0.1 U	0.56	64	0.74	1.3	0.05	0.031	0.033	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
eline Qual	MW-85A	10/18/19	0.1 U	0.38	49	0.51	0.90	0.034	0.018	0.018	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
hore ter 0		10/18/19 DUP	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn
Vat Vat	MW-87A	10/18/19	0.1 U	0.01 U	0.14	0.015	0.019	0.01 U	0.01 U	0.01 U	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008

Notes:

^a cPAH TEQ values are calculated by multiplying the laboratory concentrations by the TEFs provided in provided in MTCA Table 708-2 (WAC 173-340-900). For ND values, 1/2 of the reporting limit is used as the concentration.

^b Individual cPAH compounds do not have remediation levels

Abbreviations/Formatting:

BOLD = result was detected above the CUL

-- = No Value

μg/L = micrograms per liter cPAH = carcinogenic polyaromatic hydrocarbon

CPAH = carcinogenic polyaromatic hydrocarbon CPOC = Conditional Point of Compliance

CUL = cleanup level

GW = groundwater

J = estimated value

MTCA = Model Toxics Control Act NAn = not analyzed (analysis was not requested) NR = not reported PAH = polyaromatic hydrocarbon TEF = toxicity equivalency factor TEQ = toxic equivalent concentration U = not detected above the laboratory reporting limit WAC = Washington Administrative Code

PORT OF SEATTLE - TERMINAL 30 Table 11 Monitoring Well Groundwater Sampling Parameters

		Total Well	MP			Depth to	Depth to	Groundwater	Groundwater	LNAPL						Dissolved		
	Well	Depth	Elevation	MP Elevation	Sample	LNAPL (ft	Groundwater	Elevation	Elevation	Thickness	TEMP	TEMP		Conductivity	Turbidity	Oxygen	ORP	
	Identification	(ft)	(ft NAD 83)	(ft NAVD 88)	Date	BTOC)	(ft BTOC)	(ft NAD 83)	(ft NAVD 88)	(ft)	(°F)	(°C)	рН	(µS/cm)	(NTU)	(mg/L)	(mV)	
	RW-11A	20	18.02		10/17/19 04/11/20													
					09/18/20 04/03/21		9.37	8.65		0	64.04	17.8	6.47	1.03	6.6	0.03	-33	
											70.16	21.20	7.42		7.3	0.03	-33	
					10/14/21 04/14/22		9.70 9.38	8.32 8.64		0	60.42	15.79	6.66	128.00 1.21	3.6	2.58	49	
	MW-59				10/17/19		9.56	8.04						1.21	3.0	2.56	49	
	10100-59				04/11/20						led due to free led due to free							
					9/29/20													
					04/03/21						led due to free	 product enco						
					10/14/21			10/6	ell not sampled d					two quarters				
					04/14/22				ell not sampled d									
	MW-89	20	17.91		10/18/19													
	10100-05	20	17.51		04/11/20													
Performance					09/29/20													
Wells					03/23/20													
W ells					10/14/21		9.87	8.04			69.69	20.94	4.37	4.56	38.1	3.6	460	
					04/15/22		10.22	7.69			64.92	18.29	4.72	1.50	4.8	7.43	150	
	RW-9				10/17/19													
					09/18/20													
					10/14/21		9.33				73.87	23.26	7.13	1.10	5.1	0	-107	
-	MW-36A	20.5	NM	NM	10/17/19		5.55				led due to free			1110	5.1	, v		
	10100 307	20.5			09/19/20													
					10/14/21		10.05				66.52	19.18	7.73	2.61	12.8	0.54	-318	
	MW-39A 20.5		NM	NM	10/17/19													
	MW-39A 20.5	20.5	20.5	INIVI		09/19/20												
					10/14/21		9.4				68.79	20.44	7.25	1.12	3.8	0.13	-142	
	MW-42				10/17/19													
	10100 42				09/18/20													
					10/14/21		10.08			0	67.12	19.51	-168	1.87	1.4	0.3	7.55	
	RW-1				10/17/19				N N		led due to free					0.0		
					09/19/20						led due to free							
	RW-5A	20	18.07		10/17/19													
	NW SA	20	10.07		09/18/20													
Interior Wells	MW-38				10/16/19					Well not sa	mpled; water v	volume insuffi						
	11111 30				9/18/20			We	ll observed brok					May 6 2021				
	MW-93	20.5	NM	NM	10/17/19						led due to free			11107 0, 20221				
		20.5			09/19/20													
	MW-45A	20.1		16.52	10/21/19													
	1.1.1	20.1		10.02	09/18/20													
	MW-46B	20.3		16.07	10/16/19													
	10100 400	20.5		10.07	09/18/20													
	MW-58A	25	NM	NM	10/17/19													
CPOC Wells	10100 5004	25			09/24/20													
	MW-86B	20	18.28		10/17/19													
	1111-000	20	10.20		09/24/20													
	MW-92	20	NM	NM	10/16/19													
	10100-52	20		INIVI	09/18/20													
Shoreline	MW-84A	40	NM	NM	10/17/19													
Shoreline Water Quality	MW-85A	20	18.09		10/17/19													
Wells	MW-87A	20	17.98		10/18/19													
wens	IVI VV-07A	20	11.90		10/10/19													

Abbreviations/Formatting: -- Data irrelevant/not available

BTOC = below top of casing

Ft = Feet

Gal = Gallon

mg/L = milligram per liter µS/cm = microsiemens per centimeter MP = monitoring point mV = millivolt CPOC = Conditional Point of Compliance NM = Not Measured NTU = Nephelometric Turbidity unit ORP = oxididation-reduction potential

LNAPL = Light Non-Aqueous Phase Liquid

PORT OF SEATTLE - TERMINAL 30 Table 12 Well Construction Information

	Well Identification	Date of Installation	Casing Diameter (inch)	Well Screen Interval (ft BGS)	Well Depth (ft BGS)	Northing (ft)	Easting (ft)	MP Elevation (ft NAD83/NAVD88)
	RW-9		6					
	RW-11A	04/24/08	4	5 - 20	20.0	216683.94	1268216.99	18.02 ^a
	MW-36A	10/15/16	2	5 - 20	20.5	NM	NM	NM
Performance Wells	MW-39A	10/15/17	2	5 - 20	20.5	NM	NM	NM
	MW-42		2					
	MW-59		2					
	MW-89	04/22/08	2	5 - 20	20.0	217003.93	1268079.62	17.91 ^a
	RW-1							
Interior Wells	RW-5A	04/25/08	4	5 - 20	20.0	216931.12	1268445.78	18.07 ^a
interior wens	MW-38 ^c							
	MW-93	10/15/17	2	5 - 20	20.5	NM	NM	NM
	MW-45A	11/17/16	2	5.1 - 20.1	20.1	216490.82	1268124.80	16.52 ^b
	MW-46B	11/14/16	2	5.3 - 20.3	20.3	216602.90	1268114.90	16.07 ^b
CPOC Wells	MW-58A	08/29/13	2	5 - 25	25.0	NM	NM	NM
	MW-86B	04/22/08	2	5 - 20	20.0	216946.15	126807.76	18.28 ^a
	MW-92	08/30/13	2	5 - 20	20.0	NM	NM	NM
	MW-84A	04/29/09	2	30-40	40.0	NM	NM	NM
Shoreline Water	MW-85A	04/24/08	2	5 - 20	20.0	216682.46	1268002.20	18.09 ^a
Quality Wells	MW-87A	04/22/08	2	5 - 20	20.0	217186.75	1268010.28	17.98 ^a

Notes:

^a Monitoring Point (MP) and water table elevations in ft (NAD 83)

^b Monitoring Point (MP) and water table elevations in ft (NAVD 88)

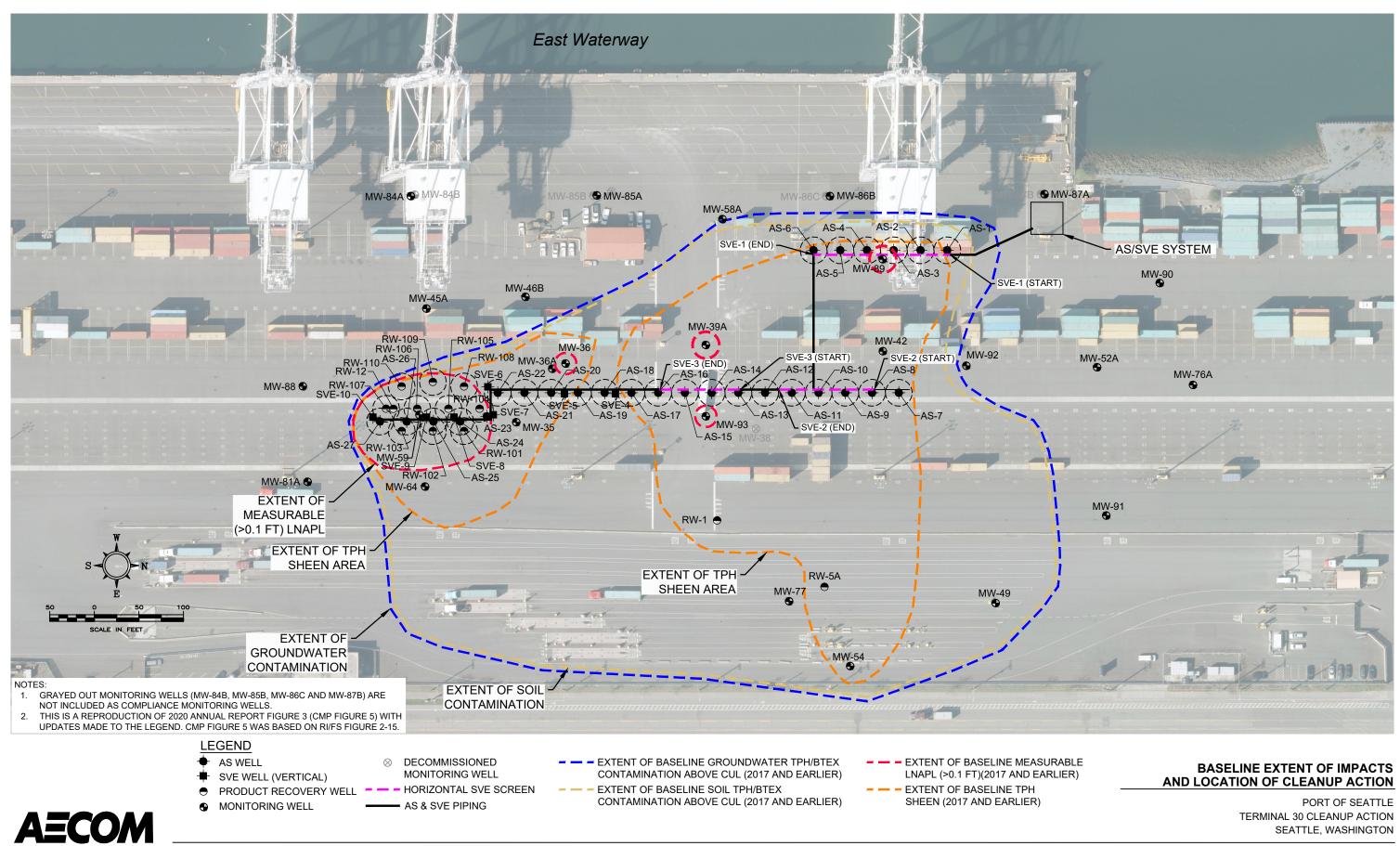
^c MW-38 decomission May 6, 2021 due to a subsurface obstruction.

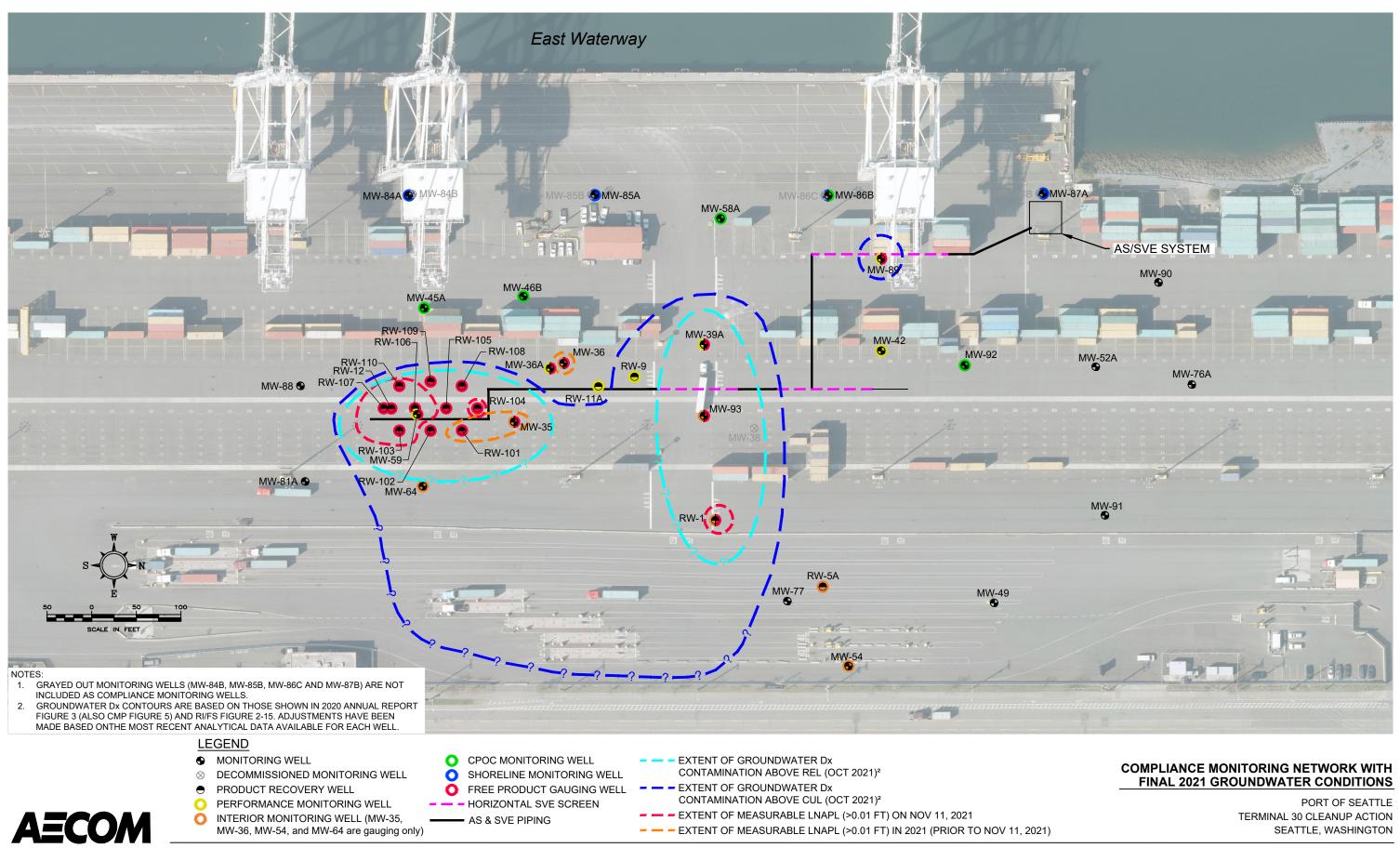
Abbreviations/Formatting:

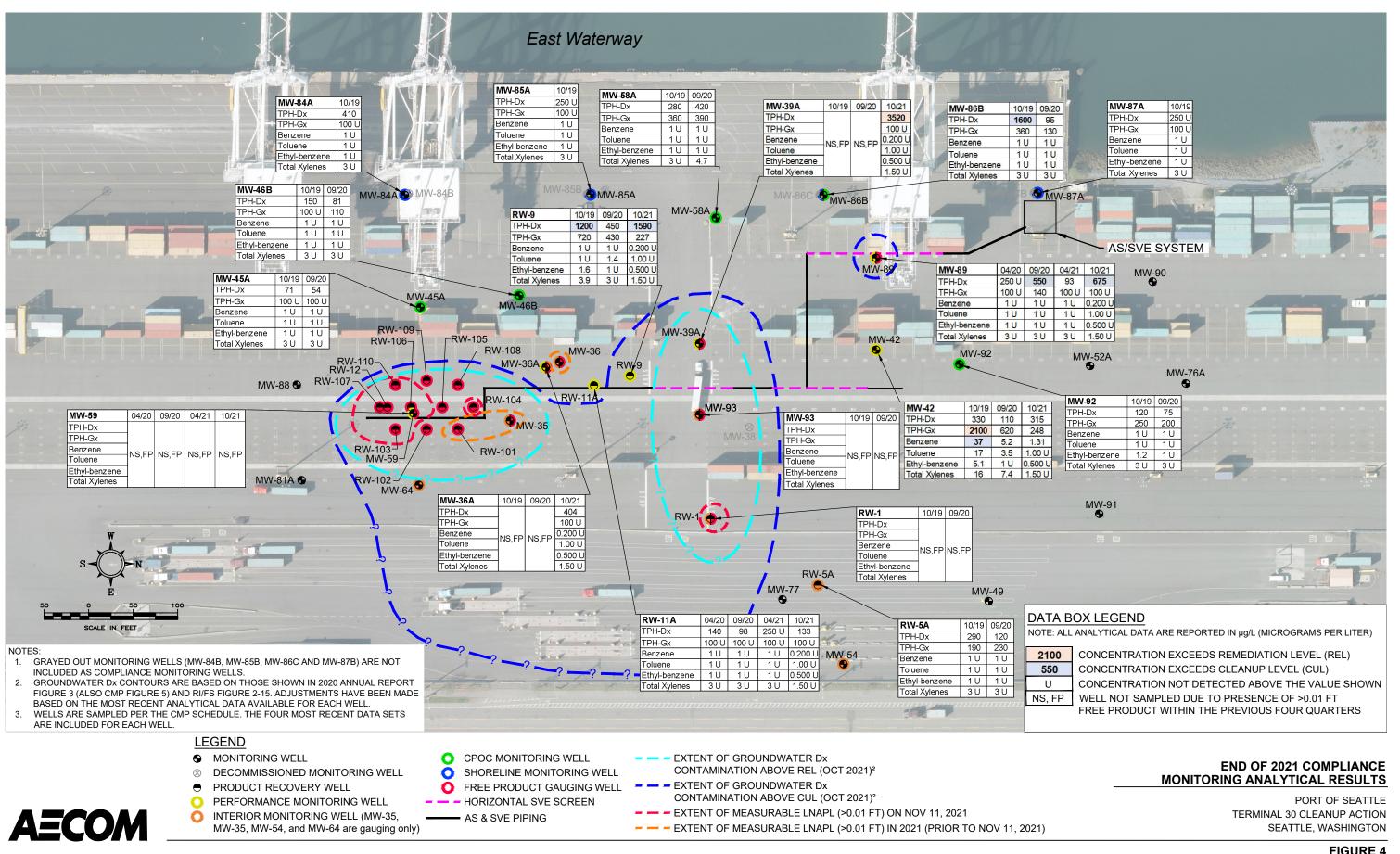
-- = data not available

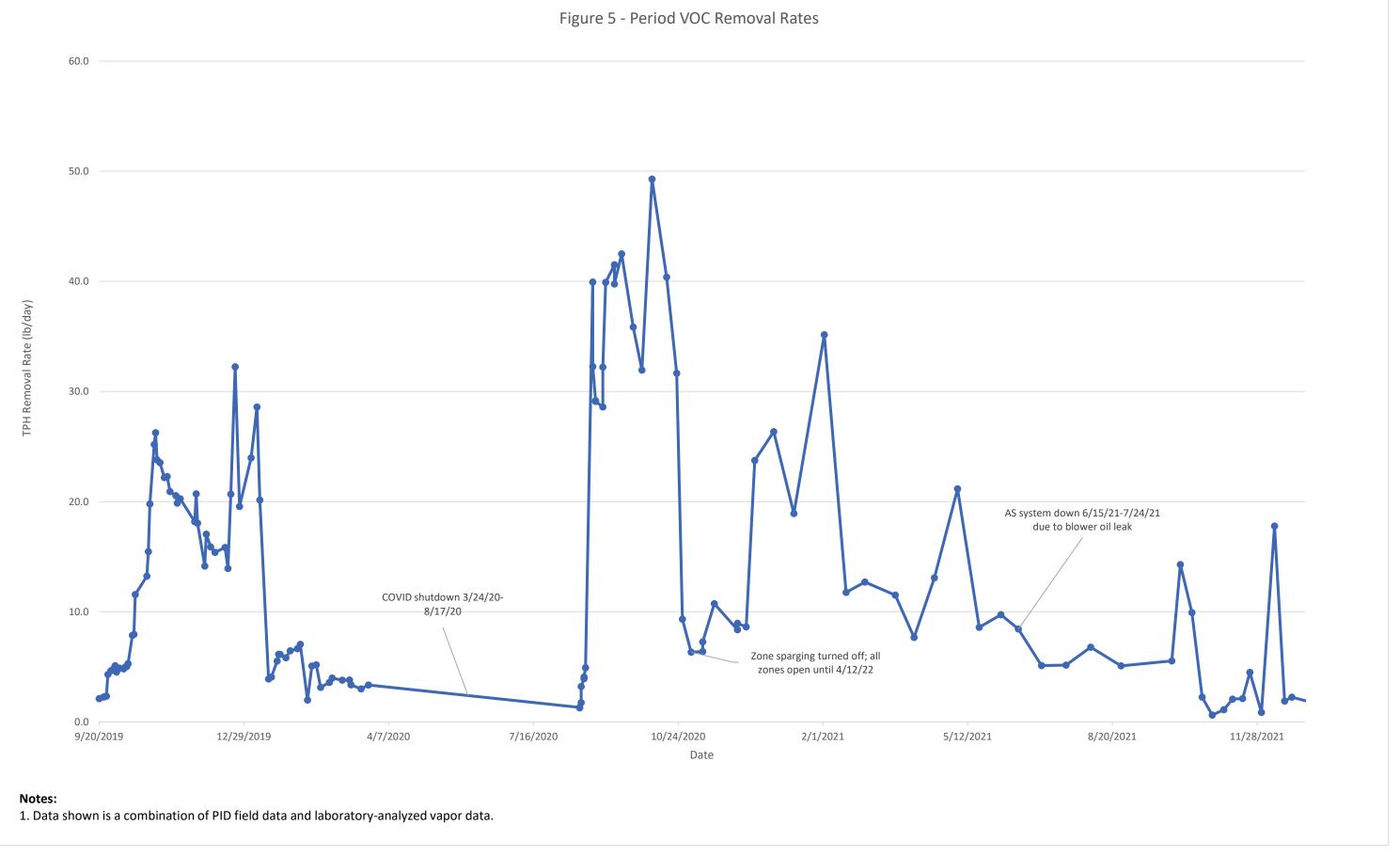
BGS = below ground surface

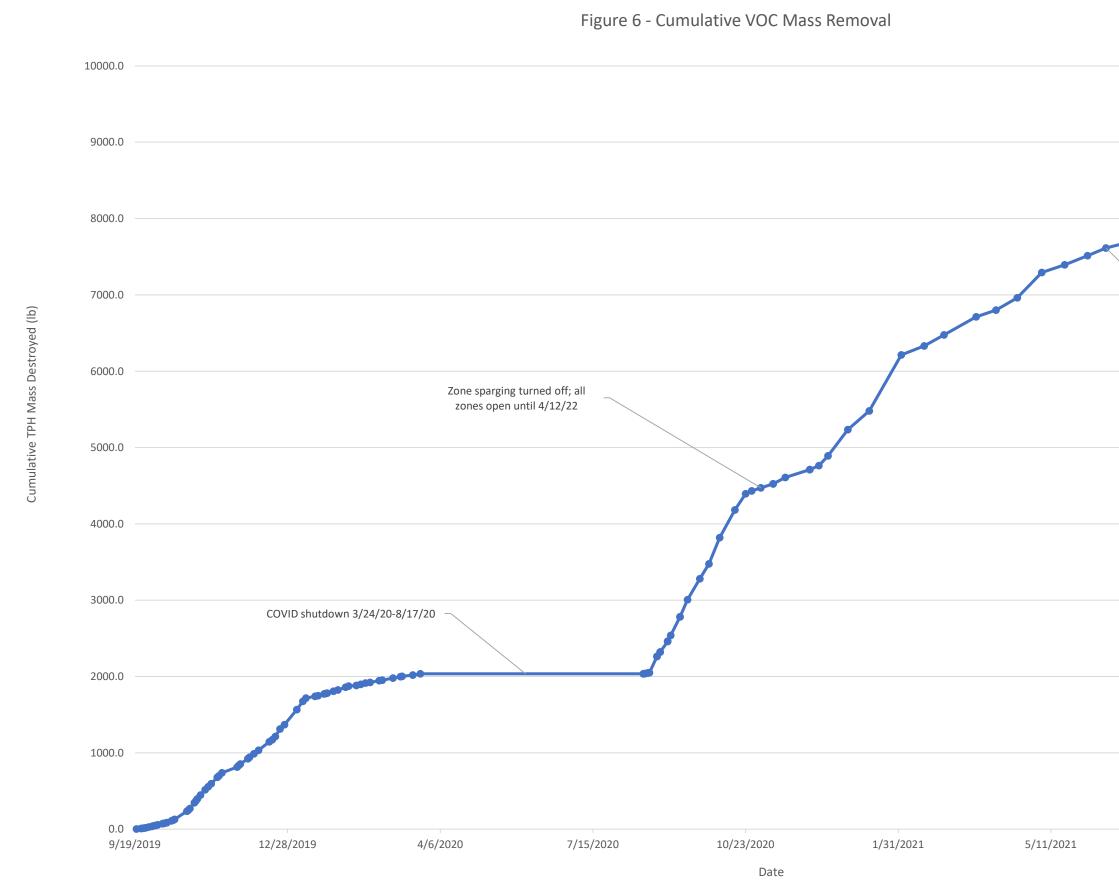
- CPOC = Conditional Point of Compliance
- MP = monitoring ponit

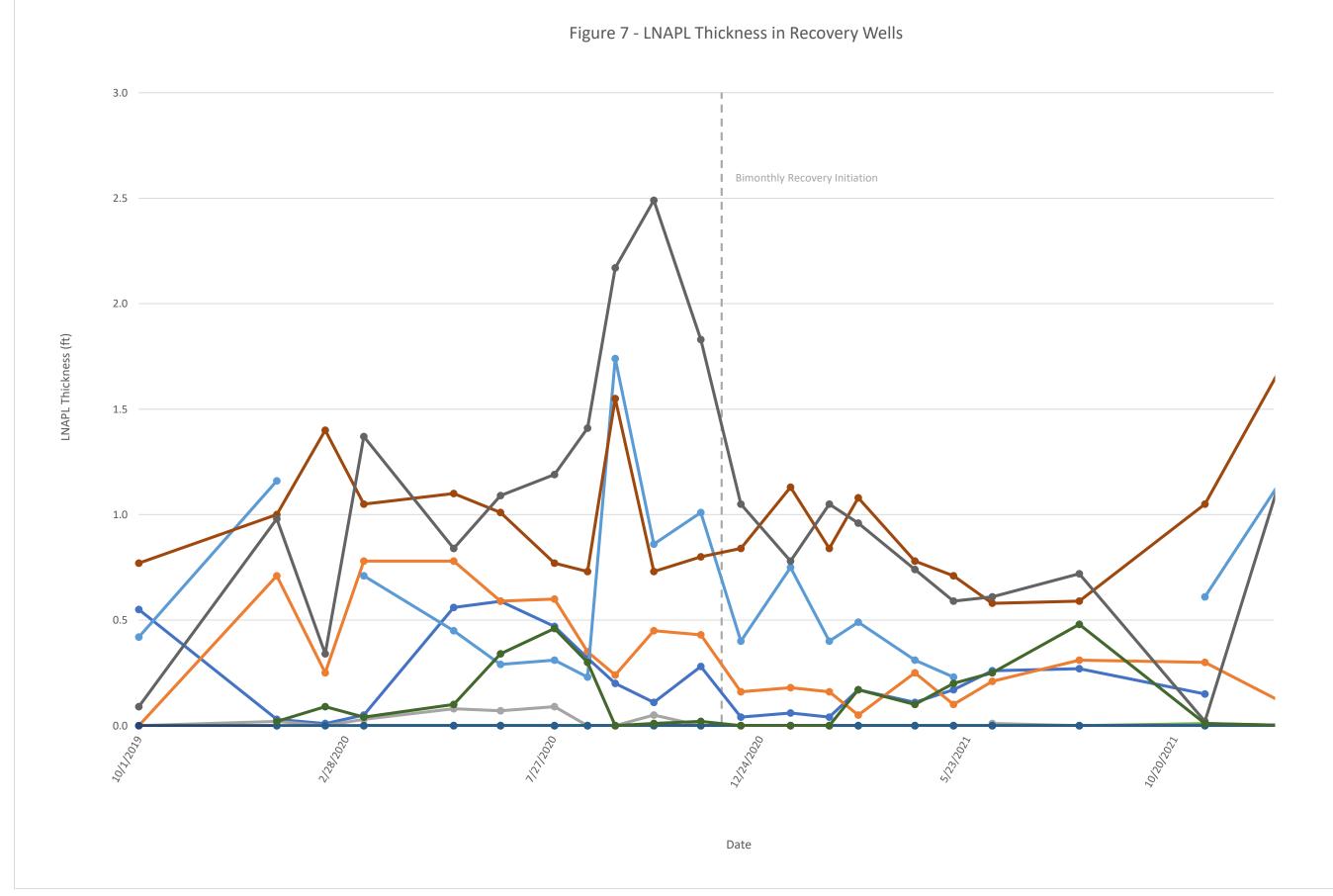

NM - not measured

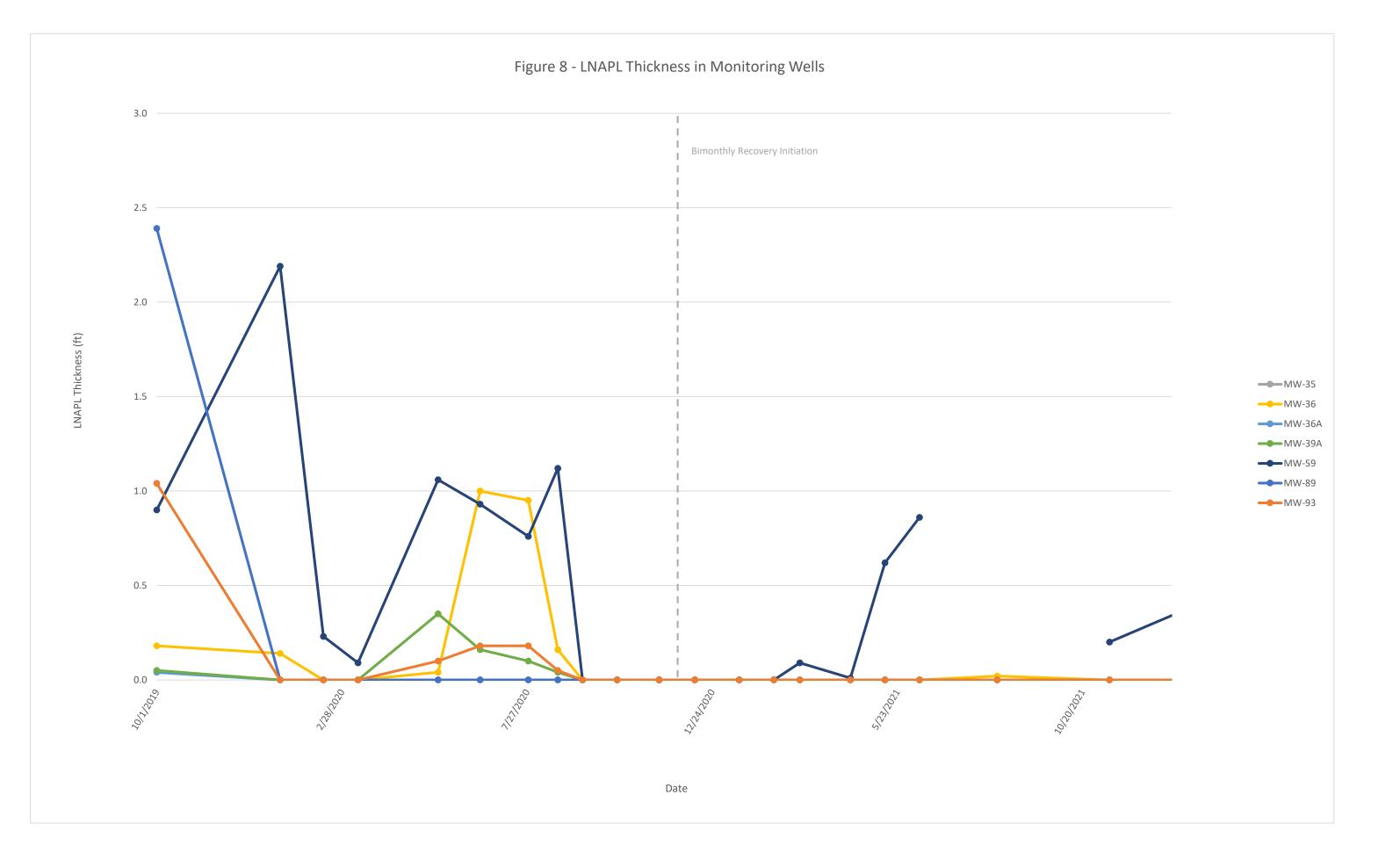

Figures

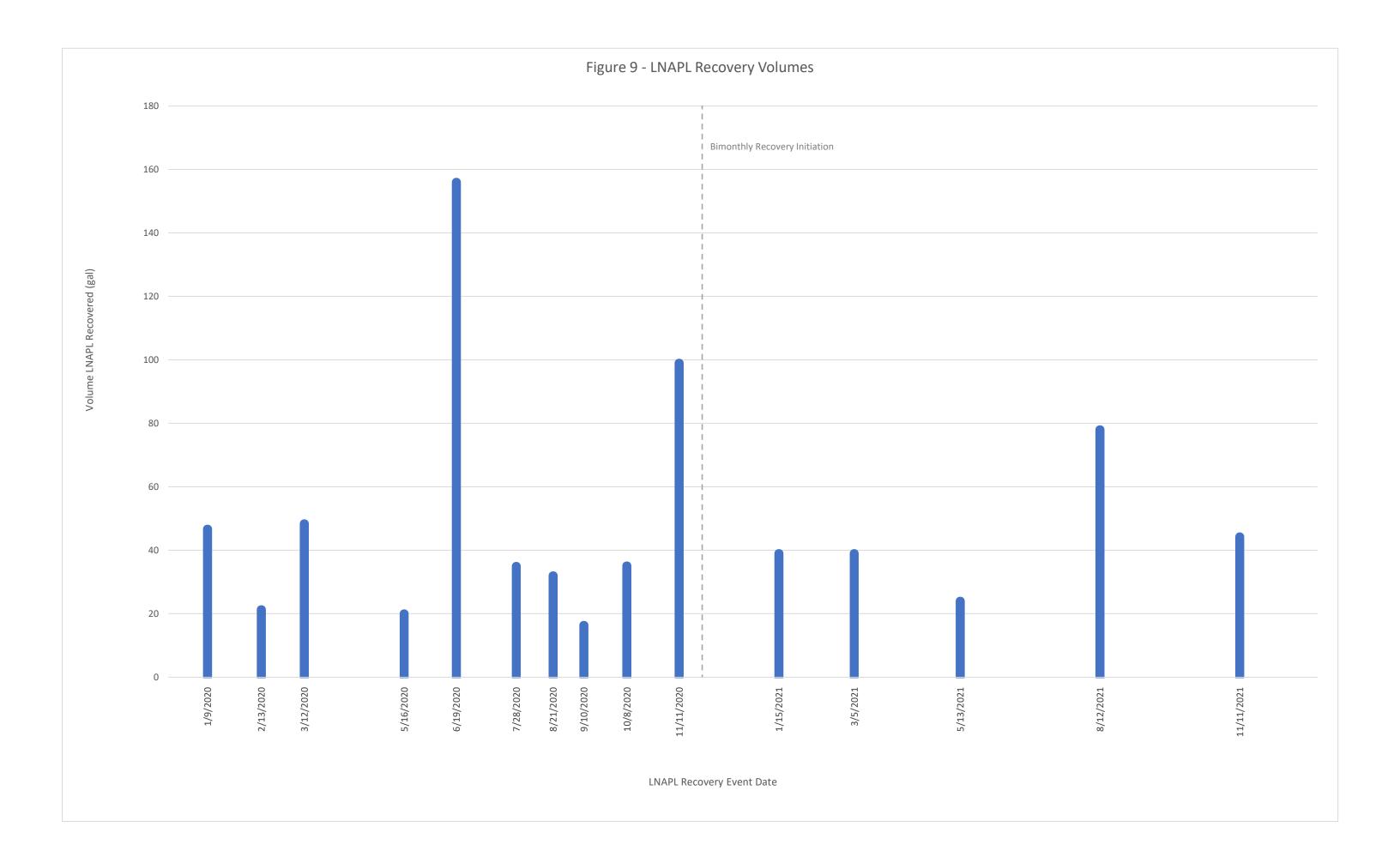


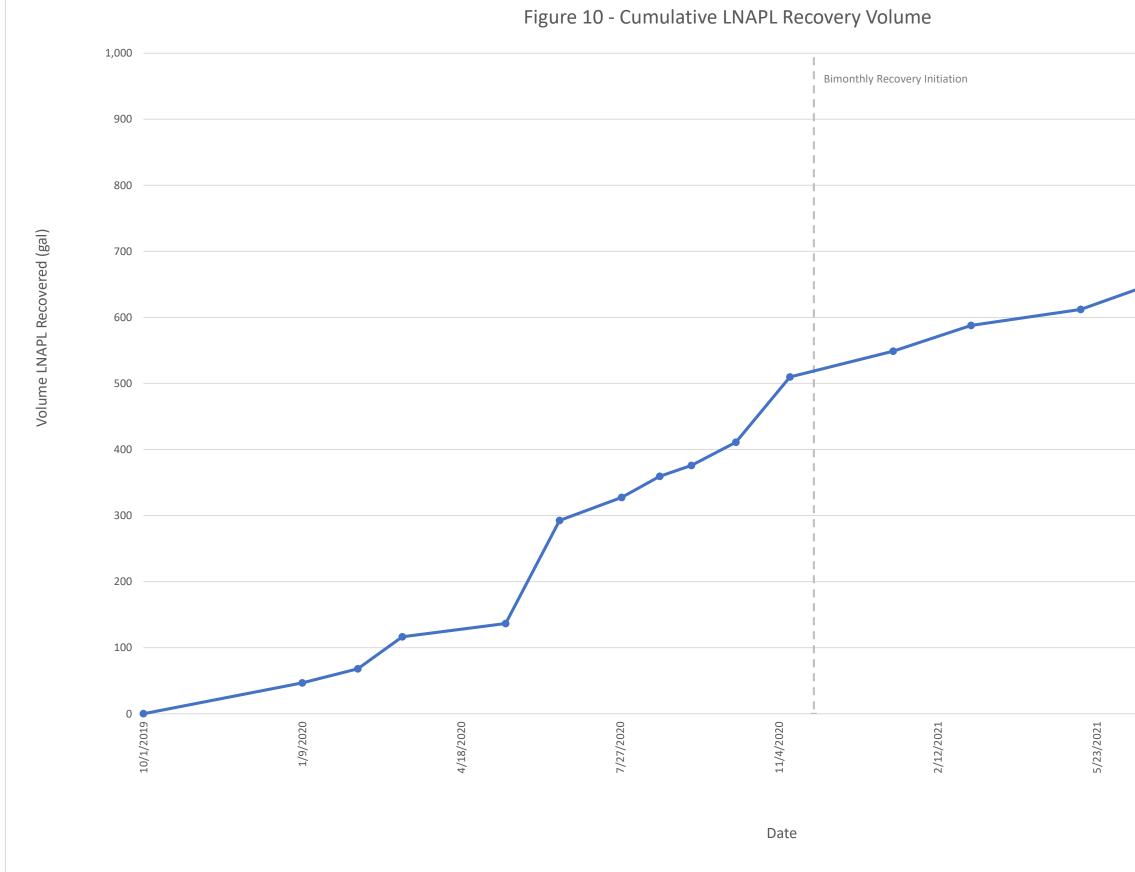

SITE LOCATION

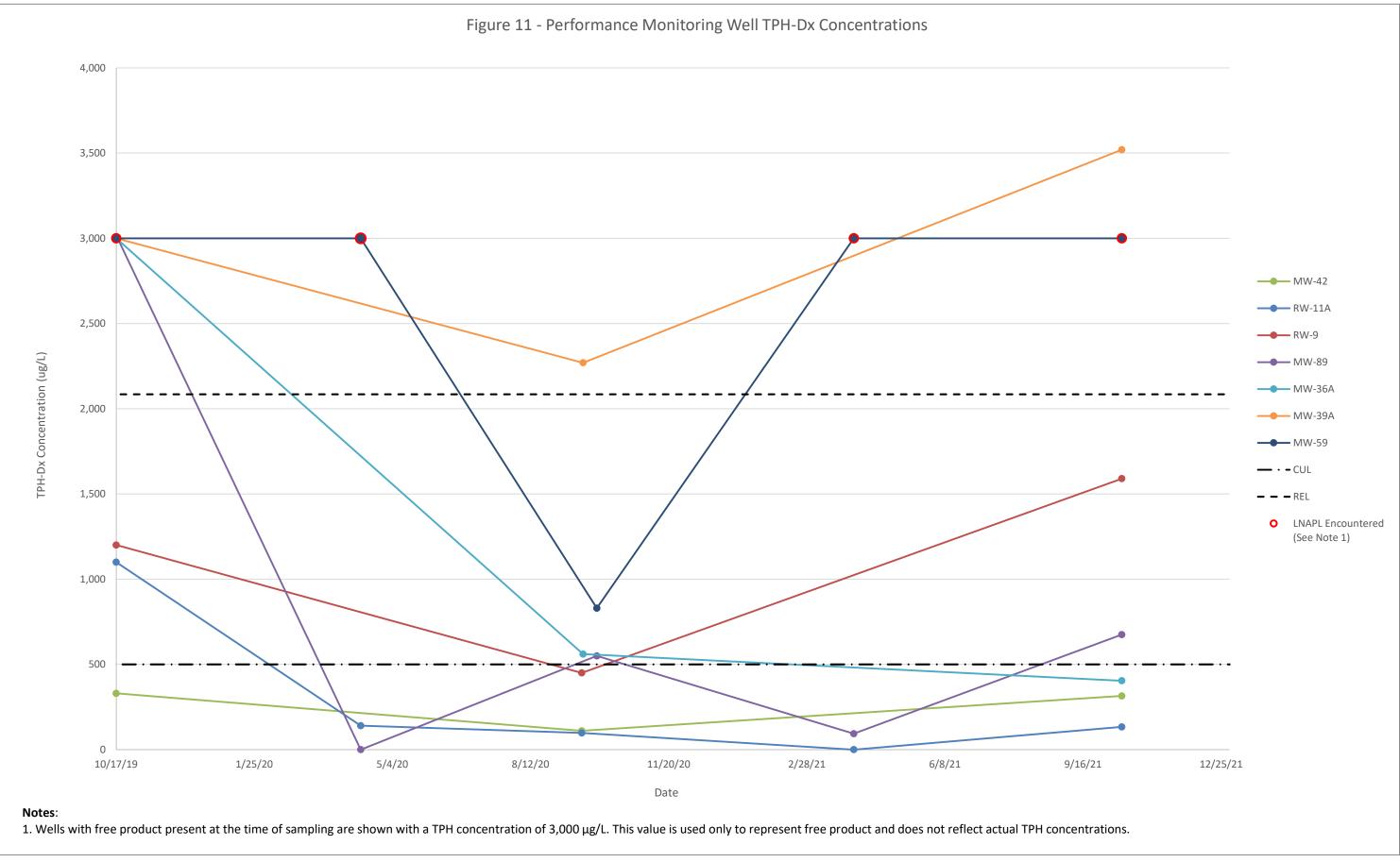

PORT OF SEATTLE TERMINAL 30 CLEANUP ACTION SEATTLE, WASHINGTON








and the second s	*******	
and the second s		
AS system down 6/15/21-7 due to blower oil lea	7/24/21 k	
8/19/2021	11/27/2021	



21	
2021	
3/2021	
/31/2021 2/9/2021	
8/31/2021 12/9/2021	
8/31/2021	
8/31/2021	
8/31/2021 8/31/2021 12/9/2021	
8/31/2021 12/9/2021	

<u>Appendix A</u> O&M Field Forms

NOTE: Field notes from CRETE O&M visits between 5/20/21 and 9/30/21 were unavailable for inclusion in this report. The data in Table 4 indicates this includes visits on 6/4/21, 6/16/21, 7/2/21, 7/19/21, 8/5/21, and 8/26/21.

PORT OF SEATTLE - TERMINAL 30 SVE System Startup Adjustment Data

Ð

Date:	2.2.7021	2.2.200			1 1	
Watch Time:	2.2.2021 0905-0978	0952-0958	ـــــــــــــــــــــــــــــــــــــ			Design
System Time:		-1047	$h_{\Gamma_{n}}^{(i)}(x)$			Parameters
System Location	1.20	_				
SVE Discharge LEL (%)	163.7	-				
	0					<25
Oxygen (%) Hz G C (Apr.		<u> </u>				
SVE System Inlet Vacuum (¹ ' H ₂ O)	85	78		-		
SVE System Inlet ΔP (" H ₂ O)	steady i max	1-1.5				
Oxidizer Discharge VOC (ppm)	Steady (max 0.61 (4.2)				<10
HSVE-1 Vacuum (" H ₂ O)	16	16				
HŞVE-1 Flow (SCFM)	78	77				75
HSVE-2 Vacuum (" H ₂ O)	36	32				
HSVE-2 Flow (SCFM)	78	75				75
HSVE-3 Vacuum (" H ₂ O)	47	46				
HSVE-3 Flow (SCFM)	-78	74				75
SVE-4 Vacuum (" H ₂ O)	89	80				
SVE-4 Flow (SCFM)	10	L6TW				25
SVE-5 Vacuum (" H ₂ O)	86-87	84				
SVE-5 Flow (SCFM)	8-9	K6TTW				20
SVE-6 Vacuum (" H ₂ O)	76					
SVE-6 Flow (SCFM)	×6W	22 46W				30
SVE-7 Vacuum (" H ₂ O)	72	78				
SVE-7 Flow (SCFM)	10	14				18~19
SVE-8 Vacuum (" H ₂ O)	85	82				
SVE-8 Flow (SCFM)	LGW	~6 W				18~19
SVE-9 Vacuum (" H ₂ O)	* 96	90				
SVE-9 Flow (SCFM)	LGTW	46				18~19
SVE-10 Vacuum (" H ₂ O)	78	-76-80				
SVE-10 Flow (SCFM)	8	8 TW				18~19
Oxidizer Inlet Temp. (deg F)	105-106	101-102				
SVE Manifold Temp. (deg F)	\$50	150			-	
SVE Blower Hours	1423.9	1424.7				
	1.0 33	110101				
Discharge HzS /CO (ppm) Notes:						
Discharge 0% LELY.	16.1/0%					
Notes: 1. ppm = Parts per Million (CHq) 2. % = Percent 3. " H ₂ O = Inches of Water	16-POINTM	ents				
 SCFM = Standard Cubic Feet per N deg F - degrees Fahrenheit 	Vinute	Throttled				
		SVE-6,-B				
		back a lot				
		Throttled SVE-6,-B back a lot Oller SVE acjustin	Y.		¥1	
		adjustu	NOMIC			

5. deg F - degrees Fahrenheit

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

	000		 	
Date:			 	
Watch Time:			 	
Screen Time:	0947-0950		 	
Oxidizer System Location				
Inlet Temperature (°F)	104-105		 	
Burner Chamber Temperature (°F)	669			
Discharge Temperature (°F)	647			
Inlet Limit Controller Temperature (°F)	673			
Outlet Limit Controller Temperature (°F)	648		 	
Process Fan Valve Position (Open/Closed)	OPEN		 	
Dilution Valve Position (%)	0,0			
Combustion Valve Position (%)	8.011			
Process Blower Runtime (Hours)	8239			
Combustion Fan Runtime (Hours)	8239			
Burner Runtime (Hours)	8231			
Processing Vapors Runtime (Hours)	8221	X		
Panel Temperature (°F)	61			
Flame Signal (Volts)	5.0			
Burner Chamber Inlet Differential Pressure (" H_2O)	20			
Propane Tank A Level (%)	2.58 Kh	55		
Propane Tank A Level (%) CLOGEST Propane Tank B Level (%) FURTHEST	1.58			
			1	
NOTES				

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

Date:	2,2.21
Watch Time:	0858-0901
Screen Time:	0947-
SVE/AS System Location	
SVE Blower Speed (Hertz)	54.0
SVE Blower Runtime (Hours)	1423,8
SVE Blower Filter Differential Pressure (" H_20)	0.5
SVE Blower Inlet Differential Pressure (" H_2 0)	1.5
SVE Blower Inlet Temperature (°F)	£50
SVE Blower Inlet Vacuum (" H ₂ 0)	85
SVE Blower Discharge Pressure (PSI)	0
SVE Blower Discharge Temperature (°F)	105
AS Blower Speed (Hertz)	48.0
AS Blower Runtime (Hours)	1157.8
AS Blower Pressure (PSI)	7.5
AS Blower Flow (" H₂O)	0,51
Sparge Zone 1 Operating Cycle - Open Interval(s)	OPENON
Sparge Zone 2 Operating Cycle - Open Interval(s)	
Sparge Zone 3 Operating Cycle - Open Interval(s)	
Sparge Zone 4 Operating Cycle - Open Interval(s)	
Sparge Zone 5 Operating Cycle - Open Interval(s)	
Heat Exchanger Runtime (Hours)	1157.7
Heat Exchanger Discharge Temperature (°F)	56
Transfer Pump Runtime (Hours)	0.8
Transfer Pump Discharge Pressure (PSI)	
Moisture Separator Level (% Full)	3
Water Storage Tank Level (DTF, TD from MP; inches)	13-14 Total
NOTES:	Nostly water trace oil
Notes:	TD 82-75"

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

Date: 2	.2.202				
ocation	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
AS-1	0930	7.5	4.4	100% OFEH	
AS-2		7.5	1.4		
AS-3	0931	7.5	1.2		Water in flow meter
AS-4	ł	7	8.1		
AS-5		8	7.6		
AS-6	\downarrow	7.5	9,0		
AS-7	0937	7.5	4.3		
AS-8	J	7.5	2.7		
AS-9	0933	7,5	2.6		
AS-10		7.5	2.5		
AS-11		8,0	5.0		
AS-12		7.5	3.1		
AS-13	1	7.5	5.2		
AS-14	0934	7	3.6		
AS-15		8	3,4		
AS-16		8	4.3		
AS-17		7.5	2.6		
AS-18		7.5	1.3		
AS-19	\checkmark	8,5	5.1		
AS-20	0935	7.5	2.7		
AS-21		7.5	21		
AS-22		7.5	2.1		
AS-23		7.5			
AS-24		7	1.8		
AS-25		7.5	21		
AS-26		8	2.5		
AS-27		7,5	1.4	*	

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date	2.17.2021	2.7.285	3.2., 2021	
Watch Time:	1254-1251		08:24= 0827	
	1349-1352		0919-0922	
Oxidizer System Location				
Inlet Temperature (°F)	102		100	
Burner Chamber Temperature (°F)	699		670	
Discharge Temperature (°F)	623		629	
Inlet Limit Controller Temperature (°F)	689		668	
Outlet Limit Controller Temperature (°F)	626		630	
Process Fan Valve Position (Open/Closed)	OPEN		OPEN	
Dilution Valve Position (%)	0.0		0.0	
Combustion Valve Position (%)	12.2		8.9	
Process Blower Runtime (Hours)	5485		8759	
Combustion Fan Runtime (Hours)	6485		\$759	
Burner Runtime (Hours)	8477		8751	
Processing Vapors Runtime (Hours)	8466		8740	
Panel Temperature (°F)	72		65	
Flame Signal (Volts)	5.0		5.0	
Burner Chamber Inlet Differential Pressure (" H ₂ O)	20		20	
Propane Tank A Level (%) CLOSEST	58-59		30	
Propane Tank B Level (%) FURTHEST	59		62-63	
	system re-stadel		AS OFF overnight	
NOTES:	System re-stadel @ ~0600 this morning			
otec:				

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

Date:					T
Watch Time:	2.11.2	3.2.2021 0830-241	821		
Screen Time:		0918-0925	074		
SVE/AS System Location	1549-1559	0110-0127			
SVE Blower Speed (Hertz)	54.0	54.0		1	
SVE Blower Runtime (Hours)	1668.8	1942.3			
SVE Blower Filter Differential Pressure (" H ₂ 0)	0.5	0.5			
SVE Blower Inlet Differential Pressure (" H ₂ 0)	1-1.5	1-1.5			
SVE Blower Inlet Temperature (°F) 250	SORT	250			
SVE Blower Inlet Vacuum (" H ₂ 0)	80	79		1	
SVE Blower Discharge Pressure (PSI)	0	0			
SVE Blower Discharge Temperature (°F)	102	100			
AS Blower Speed (Hertz)	48.0	48.0			
AS Blower Runtime (Hours)	1366.0	1634.8			
AS Blower Pressure (PSI)	10.5	7.5			
AS Blower Flow (" H ₂ O)	0.5-	0.5-1			
Sparge Zone 1 Operating Cycle - Open Interval(s)	OPEN	OPEN			
Sparge Zone 2 Operating Cycle - Open Interval(s)					
Sparge Zone 3 Operating Cycle - Open Interval(s)					
Sparge Zone 4 Operating Cycle - Open Interval(s)					
Sparge Zone 5 Operating Cycle - Open Interval(s)		\checkmark			
Heat Exchanger Runtime (Hours)	1365.8	1634.7			
Heat Exchanger Discharge Temperature (°F)	55	54			
Transfer Pump Runtime (Hours)	0.9	0.9	v.		
Transfer Pump Discharge Pressure (PSI)	Jars RJ	D			
Moisture Separator Level (% Full)		n 3/4 (15%)		
Water Storage Tank Level (DTF, TD from MP; inches)		524" Fluids			
NOTES:	AS bleeder 10 Zots ofen	AG offallnia PAH alarm trips	ht		

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

MP= notche manhole port

Adjusting AS P Switch

-

PORT OF SEATTLE - TERMINAL 30 SVE System Startup Adjustment Data

Dat Watch Tim	6310000	3.2,2021			
System Tim		0843-0912	2		Design Parameter
System Location	-10	01792			T
SVE Discharge VOC (ppm)	43.00	= 57, 4 K	56.814		
SVE Discharge CEL (H) Hz 5 (C	1.0 2	0.0 556	- co spite @ 55	ppm!	<25
Dxygen (%) /LEL %	15:20%	15.7/0			
SVE System Inlet Vacuum (" H ₂ O)	80	7878			
SVE System Inlet ΔP (" H_2O)	0.5 (1-1.5)	0.5 1.5			•>
Oxidizer Discharge VOC (ppm)	0.7 (max)	0.1 (max)			<10
HSVE-1 Vacuum (" H ₂ O)	16	14			
HSVE-1 Flow (SCFM)	78	76			75
HSVE-2 Vacuum (" H ₂ O)	32	30			
HSVE-2 Flow (SCFM)	77	76			75
HSVE-3 Vacuum (" H ₂ O)	43	40			
ISVE-3 Flow (SCFM)	76	75			75
VE-4 Vacuum (" H _z O)	79	78			
VE-4 Flow (SCFM)	8 MW	~6			25
VE-5 Vacuum (" H ₂ O)	82	82			
VE-5 Flow (SCFM)	6-12(8)	~10			20
VE-6 Vacuum (" H ₂ O)	Sottut	5 30/74			
VE-6 Flow (SCFM)	<6NW	26W			30
VE-7 Vacuum (" Ḫ₂O)	82	88			
VE-7 Flow (SCFM)	8.9	8-18(11)			18~19
VE-8 Vəcuum (" H ₂ O)	88	85			
VE-8 Flow (SCFM)	6	~ 6 NW			18~19
VE-9 Vacuum (" H ₂ O)	Laton	29/88			
VE-9 Flow (SCFM)	LONW	LONW			18~19
VE-10 Vacuum (" H ₂ O)	4 43	£8(88)			
VE-10 Flow (SCFM)	6-14/2)	6-25(12)			18~19
xidizer Inlet Temp. (deg F)	102	100			
VE Manifold Temp. (deg F)	150	450			
VE Blower Hours	1669.1	1942.6			
Avid. Dis. H2S/CO	0.52	Measurements	A ;		
NOTES		Pre-Adjustone	Ats		
0.2 LEL	(15.2)	194 0%	-		

3. "H₂O = Inches of Water SVE Discharge 56.4 ppm 4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit driftly MW - Minor Water in Meter NW - No Water

Date: 3	.2.20	71			
	Time	Pressure	Flow	Valve Position	Notes
Location		(PSI)	(SCFM)	(% Open/Closed)	Notes
AS-1	0903	7.5	5.2	100% OPEN	PAH alarm tripping AS OFF since
AS-2		7.5	1.6		last night.
AS-3	√	7.5	41		Adjusted AS Pressure Switch
AS-4	0904	7.5	4:3		last night. Adjusted AS Pressure Switch (increased P->turned Clockwise)
AS-5		8.0	4.6		Clockwise)
AS-6	\checkmark	7	5.3		
AS-7	0905	7.5	2:2		
AS-8		7	21		
AS-9		7.5	21		
AS-10		7.5	1		
AS-11	~	Ş	2.8		
AS-12	0906	7.5	1.8		
AS-13		7.5	3.7		
AS-14		7.0	2.0		
AS-15		7.5	1.8		
AS-16	\checkmark	7.5	3.2		
AS-17	0908	7.5	21		
AS-18		7.5	<u>C1</u>		
AS-19		8.5	5.2		
AS-20		7.5	2.3		
AS-21		7.0	4		
AS-22	\checkmark	7.5	21		
AS-23	0909	7.5	21		
AS-24		7	21		
AS-25		7.5	2.2		
AS-26		7.5	41		
AS-27	X	7	21	V	

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	3.23.2021	4.5.2021		
Watch Time:		1352-1355		
Screen Time:	1513-1518	1347-1350		
Oxidizer System Location				
Inlet Temperature (°F)	108-109	114		
Burner Chamber Temperature (°F)	659	670		
Discharge Temperature (°F)	641	638		1
Inlet Limit Controller Temperature (°F)	673	663		
Outlet Limit Controller Temperature ([°] F)	640	645		(2)
Process Fan Valve Position (Open/Closed)	OPEN	OPEN		
Dilution Valve Position (%)	0.0	0,0		
Combustion Valve Position (%)	10.5	7.1	· ·	
Process Blower Runtime (Hours)	9251	9525		
Combustion Fan Runtime (Hours)	259252	9526		
Burner Runtime (Hours)	9243	9517		
Processing Vapors Runtime (Hours)	9232	9506		
Panel Temperature (°F)	91	80		
Flame Signal (Volts)	5.0	5.0		
Burner Chamber Inlet Differential Pressure (" H ₂ O)	20	40		
Propane Tank A Level (%) CLCSEST	B O	72		
Propane Tank B Level (%) FURTHEST	78	78		
NOTES:	Propane de livery earlier today			

Notes:

ŝ

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

Date:	3:23,2021			
	1516-1523			
Screen Time: SVE/AS System Location	- 1514	~1347-1353	 	
SVE Blower Speed (Hertz)	ala	540		
SVE Blower Runtime (Hours)	54.0	54.0	 	
	2434.7	2709.1		
SVE Blower Filter Differential Pressure (" H ₂ 0)	0.5	~ 0.5	 	
SVE Blower Inlet Differential Pressure (" H ₂ 0)	1.5	~1.5	 	
SVE Blower Inlet Temperature (°F)	58	60		
SVE Blower Inlet Vacuum (" H ₂ 0)	82-85	82-83		
SVE Blower Discharge Pressure (PSI)	c jooty	D		
SVE Blower Discharge Temperature (°F)	109	114		
AS Blower Speed (Hertz)	48.0	48.0		
AS Blower Runtime (Hours)	1830.8	1989.4		
AS Blower Pressure (PSI)	6	6		
AS Blower Flow (" H ₂ O)	0,5-1	0.5-1		
Sparge Zone 1 Operating Cycle - Open Interval(s)	OPEN	OPEH		2
Sparge Zone 2 Operating Cycle - Open Interval(s)				
Sparge Zone 3 Operating Cycle - Open Interval(s)				
Sparge Zone 4 Operating Cycle - Open Interval(s)				
Sparge Zone 5 Operating Cycle - Open Interval(s)		\checkmark		n
Heat Exchanger Runtime (Hours)	1830.6	1989.2		
Heat Exchanger Discharge Temperature (°F)	60	61		
Transfer Pump Runtime (Hours)	0.9	1.0		
Transfer Pump Discharge Pressure (PSI)	0	0		
Moisture Separator Level (% Full)		~ 50-75%		
Water Storage Tank Level (DTF, TD from MP; inches)	83"TD total up to 3" thirds	TO 33" 17" fluids		
MP = notth in menhole NOTES:	Turned	As running continuously since		
Notes: 1. " H ₂ O = Inches of Water	(PAH)	4/3/21 C ~1	I	1
2 YE - Degrees Fabrandait		1 1 1 1 /		

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

4/3/21C ~1915 AS blecker partially open

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date:	3.73,202	3:23 2021	4.51	oztr	115,2021		
Watch Time:	1528-1555		1404	R	4.5-2021		Design
System Time:	15/8-	-1616	-1-1	· ·	-1410		Paramete
System Location			11	1			
SVE Discharge VOC (ppm)	128,81			5	85.8 (80.1)	85,8/8to.1	IJ
SVE Discharge LEL (%)	O			0/10-	XRO SY	E Discharge	<25
Oxygen (%) H25 1-1.5	16.7-19.2		127	2.8	Per 18.7	CO O (1 may)	
SVE System Inlet Vacuum ("H ₂ O)	824584	84	00 0-0-		82-83		
SVE System Inlet ΔP (" H_2O)	0.5/1.5	0.5/1.5			0.5 1.5		
Oxidizer Discharge VOC (ppm)	1.5 (37.5	1	0.1	(13-5n	ay 10,1 (13.5	mary	<10
HSVE-1 Vacuum (" H ₂ O)	15	15			14		
HSVE-1 Flow (SCFM)	78-79	78-79			78		75
HSVE-2 Vacuum (" H ₂ O)	33	32			30		
HSVE-2 Flow (SCFM)	79	78			78		75
HSVE-3 Vacuum (" H ₂ O)	42	41			40		
HSVE-3 Flow (SCFM)	80 0	80			80	2	75
SVE-4 Vacuum (" H ₂ O)	£4(82)	85			83-84		
SVE-4 Flow (SCFM)	510	56			7-8TW		25
SVE-5 Vacuum (" H_2O) ((6 60-70	76-82(78)			82 (82-88		
SVE-5 Flow (SCFM)	46	9-12-TW			10 (6-14)		20
SVE-6 Vacuum (" H ₂ O)	78-92 (78)	78-84(82)			74 62-80		
SVE-6 Flow (SCFM)	26	46			6 (16-9)W	l	30
SVE-7 Vacuum (" H ₂ O)	78-82 (80)	84-92 (88)			67 (66-78))	
SVE-7 Flow (SCFM)	11	12-21(12)			12		18~19
SVE-8 Vacuum (" H ₂ O)	91	90-91			89		
VE-8 Flow (SCFM)	<6	56			26 VTW		18~19
WE-9 Vacuum (" H ₂ O)	64-66/64	78-84 (80)			93-94		
VE-9 Flow (SCFM)	40	56			26		18~19
SVE-10 Vacuum (" H ₂ O)	90-100 (90)	80-98 (90)	\ \		70 (64-80)		
VE-10 Flow (SCFM)	17_	9-18(10)			11(9-13)		18~19
Oxidizer Inlet Temp. (deg F)	* 108%	115			- 114		
VE Manifold Temp. (deg F)	510	51-			60		
	2434.9	2435.8			60 27	09.5	
ex Discharge H25 CU	0.0 30		Ř	hunge	H25 0.0 (1.0 may		
NOTES:	it not at			cid. Sischa	0, 16.4-16,8%		
V Oz CHy E	16.7% 040			2.1	LEL 0%0		

1. ppm = Parts per Million

1. ppm = Parts per Million 2. % = Percent 3. "H₂O = Inches of Water 4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit Frc-Adjust Mutts After SVE adjust Ments

Date: 🧳	3.23.20	21			
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
AS-1	160(;	7	4.2	100%00PE	1
AS-2	1607	6.5	41		4.
AS-3	1607	6.5	51		
AS-4		6.5 5.5	7.8		
AS-5		6.5	7.8 5.6		
AS-6	V	10	7		
AS-7	1608	6.5	2.4		
AS-8	1	6.5	1.2-1.4		
AS-9		6	1.4		
AS-10		6.5	1		
AS-11	\checkmark	6.5 6.5	3		
AS-12	1608	6.5	2,2		
AS-13	1609	6.5	3.6		
AS-14		5	2.1		
AS-15		6.5	2.1		
AS-16		6.5	3.1		
AS-17	1610	6	21		
AS-18		6.5	21		
AS-19		7	5.1		
AS-20		6	1.9		
AS-21		5.5	41		
AS-22	\checkmark	5.5	41		
AS-23	1611	6-6.5	21		No apartent flow
AS-24		6	4		
AS-25		5.5-6	<1		
AS-26		6-6.5	21		
AS-27		4.5-5	21	\checkmark	\bigvee

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

Date:	4.5.202	-			
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
AS-1	1433	7	3.6	100% OPEN	AS system continuously on signe ~1915 4/2
AS-2		6.5	<1		AB system continuously on signe -1915 4/3 AB pressure (blue & Gpsi)
AS-3		6.5	<1		
AS-4		6	51 4/8		
AS-5		6.5	6.8		
AS-6	Ļ	6			
AS-7	1434	6.5	7.5		
AS-8	1	6.5	2.3		
AS-9		6.5	1.6		
AS-10	1435	6.5	2.4		
AS-11		7.0	4.2		
AS-12		6.5	2.0		
AS-13	V	6.5	4.0 (2-4.2		
AS-14	1436	5.5	3.2		
AS-15	1	6.5	2,0		
AS-16		6.5	3.2		
AS-17	1436	6	1,4		
AS-18	1436	6.5	51		
AS-19	1437	7	5.1		
AS-20	1	6-6.5	2.2		
AS-21		5.5	41		
AS-22	V	6	1.6		
AS-23	1439	6.5	51.6		
AS-24		6	52.1		
AS-25		6	21		
AS-26		6.5	2.1		
AS-27	V	5	1.8	\checkmark	
Notes:			* 1.	1/22/02 (2).02	

1. " H₂O = Inches of Water

As bleeder value partially open

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	4.19.2021	5,5,2021			
Watch Time:		0743-0746			
Screen Time:		0738-0741	·		
Oxidizer System Location					
Inlet Temperature (°F)	118	114-115			
Burner Chamber Temperature (°F)	677	697			
Discharge Temperature (°F)	631	623			
Inlet Limit Controller Temperature (°F)	699	686			
Outlet Limit Controller Temperature (°F)	627	627			
Process Fan Valve Position (Open/Closed)	O PEN	OPEN			
Dilution Valve Position (%)	0.0	0.0			
Combustion Valve Position (%)	9.8	12.1			
Process Blower Runtime (Hours)	9822	10198			
Combustion Fan Runtime (Hours)	9823	10198			
Burner Runtime (Hours)	9814	10189			
Processing Vapors Runtime (Hours)	980Z	10178			
Panel Temperature (°F)	85	72			
Flame Signal (Volts)	5.0	5.0			
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0-0.25	40			
Propane Tank A Level (%) CLOSEST	74	58			
Propane Tank B Level (%) Fu FTHEST	76	62			
	System restart this morning	AS OFF ~18:33 5/4/ (PAH) Turned ON ~ 06/16 on 5/5/21	21	a	
NOTES:		~ 0616 on 515/21			
Notes:					

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

Date:	4.19,2021	5.5.2021
	1438-1448	
	1427-1438	0734-0746
SVE/AS System Location		
SVE Blower Speed (Hertz)	54.0	54.0
SVE Blower Runtime (Hours)	3005.7	3381.4
SVE Blower Filter Differential Pressure (" H_20)	0,25-0,5	0.5
SVE Blower Inlet Differential Pressure (" H_20)	1.5	1-1.5
SVE Blower Inlet Temperature (°F)	68	62
SVE Blower Inlet Vacuum (" H ₂ 0)	78	82
SVE Blower Discharge Pressure (PSI)	0	0
SVE Blower Discharge Temperature (°F)	118	115
AS Blower Speed (Hertz)	48.0	48.0
AS Blower Runtime (Hours)	2201.5	zzio.7
AS Blower Pressure (PSI)	6.5-7	47
AS Blower Flow (" H ₂ O)	0.5-1	0.5-1 (0.75)
Sparge Zone 1 Operating Cycle - Open Interval(s)	OPEN	OPEN
Sparge Zone 2 Operating Cycle - Open Interval(s)		
Sparge Zone 3 Operating Cycle - Open Interval(s)		1
Sparge Zone 4 Operating Cycle - Open Interval(s)		
Sparge Zone 5 Operating Cycle - Open Interval(s)	V	
Heat Exchanger Runtime (Hours)	2201.3	2210.5
Heat Exchanger Discharge Temperature (°F)	75	69-61
Transfer Pump Runtime (Hours)	10	1.1
Transfer Pump Discharge Pressure (PSI))6.5-7.0R	5 0
Moisture Separator Level (% Full)		LZ070
Water Storage Tank Level (DTF, TD from MP; inches)	LI"	LES .
NOTES:	AS oil leak? or spillage duving oil	-3.5" -3.5" As bleeder
Notes: 1. " H ₂ O = Inches of Water	charges?	slightly open

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

Discartinuus layer on tank bottom (0-1" fluids)

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Dat	11000	5.5.2021		
Watch Tim System Tim		-757-0BIZ		Design Parameters
System Location	e.			-
SVE Discharge VOC (ppm)	83.2	134.6		
SVE Discharge LEL (%) CHy	0	0		<25
Oxygen (%) HzSlppm PUlpa		18.10.50		
SVE System Inlet Vacuum (" H ₂ O)		82		
SVE System Inlet ΔP (" H ₂ O)	0,25 (1.5)	0.5(1.5)		
Oxidizer Discharge VOC (ppm)	(0. D Peak	1. D (4,5)		<10
HSVE-1 Vacuum (" H ₂ O)	14	14		
HSVE-1 Flow (SCFM)	77	78		75
HSVE-2 Vacuum (" H ₂ O)	27	31		
HSVE-2 Flow (SCFM)	78	78		75
HSVE-3 Vacuum (" H ₂ O)	35	40		
HSVE-3 Flow (SCFM)	78	81		75
SVE-4 Vacuum (" H ₂ O)	80	84		
SVE-4 Flow (SCFM)	6-7	NOW		25
SVE-5 Vacuum (" H ₂ O)	70-90 (74)	83		
SVE-5 Flow (SCFM)	6-15 (125	7-19(1)		20
SVE-6 Vacuum (" H ₂ O)	64-78(70)	78-79		
SVE-6 Flow (SCFM)	6-12 (8)W	~6W		30
SVE-7 Vacuum (" H ₂ O)	48	58		
VE-7 Flow (SCFM)	15	14		18~19
SVE-8 Vacuum (" H ₂ O)	82	81		
SVE-8 Flow (SCFM)	26W	36W		18~19
VE-9 Vacuum (" H ₂ O)	78-84 (8)	89		
VE-9 Flow (SCFM)	~6W	56W		18~19
SVE-10 Vacuum (" H ₂ O)	56-66(58)	~63		
VE-10 Flow (SCFM)	12-13	-44		18~19
Oxidizer Inlet Temp. (deg F)	119-120	116		
VE Manifold Temp. (deg F)	69	61(62)		
VE Blower Hours	3006. 10 1503	3391.60080	4	
Oxid, Discharge HE/CO NOTE	5: 0,0/0 (max)	0.0 0 (18)		
Jotes:	15.0/0	16.0 0		

1. ppm = Parts per Million 2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

Date: 4	19.2021				
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
AS-1	1555	6.5	3.6	100% OPEN	After all readings, promptly
AS-2		6	۷		turned off AS @ 1600
AS-3		6			After all readings, promptly turned off AS @ 1600 (passible As blower oil leak).
AS-4	\downarrow	5.5	7,4		
AS-5	1556	6.5	6.7		
AS-6		6	7.2		
AS-7		6	3		
AS-8		6	41		
AS-9		6	2.2		
AS-10		6.5	1.4		
AS-11		6.5	3.3		
AS-12	1557	6.5	Z		
AS-13		6.5	3.9		
AS-14		5	2.1		
AS-15		6-6.5	2.5		
AS-16	V	↓ ↓	3.3		
AS-17	1558	5,5-6	۷١		
AS-18		6-6.5	21		
AS-19		6.5	5.1		
AS-20		6	1.9		
AS-21		5	۷ ا		
AS-22	J	6.045.5	2		
AS-23	1559	6	21		
AS-24		10	21		
AS-25			21		
AS-26		5.5	21		
AS-27	\checkmark	4.5	1,1		

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

Date: 🎉	5/5/2021		r		ř	_
	Time: 0814-	-0816	Time: 0817-	0819		
Location	Pressure (PSI)	Flow (SCFM)	Pressure (PSI)	Flow (SCFM)	Notes	
AS-1	7,5	3.2		4	Valveg 100% open	
AS-2	7.5	4				
AS-3	7,5	41		-		
AS-4	7.5					
AS-5	7.5-8	6.4 5,9				
AS-6	7	7.3				
AS-7	7.5	2.6				
AS-8	7.5	41				
4S-9	4	21				
AS-10	7.5-8	21				
AS-11	8	3.2				
AS-12	7.5	2.1				
AS-13	7.5	3.9				
AS-14	7.0-7.5	1.9				
AS-15	7.5-8	1.9-2				
AS-16	7.5-8					
AS-17	75	TR	7.5	61		Fm BP7 Fm BP7
AS-18	7.5	-21-15	7.5	41		Fm BP7
AS-19	8-8.5	-S-KI	8-8.5	5		
AS-20	7.5	1.50	7.5	1.8		
AS-21	7	-ZI B	7	41		
AS-22	7.5-8	- they	7.5-8	61		Fm BP?
AS-23			8	41		
AS-24			7-7.5	21		
AS-25			7.5	21		
AS-26			8 1-7.5 17.5 8 7.5	≤ 1		
AS-27			7.5	41	V	

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

As bleeder partially open Fin BP? = Formation backpress we susperted AS pressure 7.5.85 6.5.7 (27 psi)

Date	5.20,2021	1		
	0856-0859			
Screen Time	0851-0854	5 C		
Oxidizer System Location				
Inlet Temperature (°F)	116			
Burner Chamber Temperature (°F)	672			
Discharge Temperature (°F)	632			
Inlet Limit Controller Temperature (°F)	689			
Outlet Limit Controller Temperature (°F)	625			
Process Fan Valve Position (Open/Closed)	OPEN			
Dilution Valve Position (%)	0.0			
Combustion Valve Position (%)	11.1			
Process Blower Runtime (Hours)	10478			
Combustion Fan Runtime (Hours)	10479			
Burner Runtime (Hours)	10470			
Processing Vapors Runtime (Hours)	10458			
Panel Temperature (°F)	68			
Flame Signal (Volts)	5.0			
Burner Chamber Inlet Differential Pressure (" H_2O)	20			
Propane Tank A Level (%) CLOSEST	62			
Propane Tank B Level (%) FURTHEST	65			
NOTES:	Perver 1055 Rev. 545, OFF 20211- e714 Huis Morn,			Ŷ
lotes:			 	

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	5.20,2021	
	0902-0908	
Screen Time:	0851-0857	
SVE/AS System Location		
SVE Blower Speed (Hertz)	54.0	
SVE Blower Runtime (Hours)	3661.9	
SVE Blower Filter Differential Pressure (" H_2 0)	0.5	
SVE Blower Inlet Differential Pressure (" H ₂ 0)	1.5	
SVE Blower Inlet Temperature (°F)	66	
SVE Blower Inlet Vacuum (" H ₂ 0)	80	
SVE Blower Discharge Pressure (PSI)	0	
SVE Blower Discharge Temperature (°F)	116	
AS Blower Speed (Hertz)	48.0	
AS Blower Runtime (Hours)	2329.8	
AS Blower Pressure (PSI)	~6	
AS Blower Flow (" H ₂ O)	0.5-1	
Sparge Zone 1 Operating Cycle - Open Interval(s)	OPEN ON	
Sparge Zone 2 Operating Cycle - Open Interval(s)		
Sparge Zone 3 Operating Cycle - Open Interval(s)		
Sparge Zone 4 Operating Cycle - Open Interval(s)		
Sparge Zone 5 Operating Cycle - Open Interval(s)	.+	
Heat Exchanger Runtime (Hours)	2329.5	
Heat Exchanger Discharge Temperature (°F)	55-56	
Transfer Pump Runtime (Hours)		
Transfer Pump Discharge Pressure (PSI)	0	
Moisture Separator Level (% Full)	60-75%	
Water Storage Tank Level (DTF, TD from MP; inches)	1-1.5"	
NOTES:	1-1.5" P-switch adjusted up @~0715	

Notes:

1. " H_2O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Watch T System T		Design Parametr
System Location	1	
See Discharge VOC (ppm)	(m) (it) D	
	0 0 15.1	<25
Oxygen (%) Hy B/CO (PP		
SVE System Inlet Vacuum (" H ₂		
SVE System inlet ΔP (" H ₂ O)	6.5/1.5	
Oxidizer Discharge VOC (ppm)		<10
HSVE-1 Vacuum (" H ₂ O)	14	
HSVE-1 Flow (SCFM)	78	75
HSVE-2 Vacuum (" H ₂ O)	31	
HSVE-2 Flow (SCFM)	76	75
HSVE-3 Vacuum (" H ₂ O)	38	
HSVE-3 Flow (SCFM)	78	75
SVE-4 Vacuum (" H ₂ O)	82	
SVE-4 Flow (SCFM)	~ 10MW	25
SVE-5 Vacuum (" H ₂ O)	80	
SVE-5 Flow (SCFM)	6-18(3)	20
SVE-6 Vacuum (" H ₂ O)	76-82 (78)	
SVE-6 Flow (SCFM)	6-12 (3)	30
SVE-7 Vacuum (" H ₂ O)	66-70 (67)	
SVE-7 Flow (SCFM)	19	18~19
SVE-8 Vacuum (" H ₂ O)	78-80	
SVE-8 Flow (SCFM)	<6W	18~19
SVE-9 Vacuum (" H ₂ O)	6 Stow AS	
SVE-9 Flow (SCFM)	NS 4 < UW	18~19
SVE-10 Vacuum (" H ₂ O)	70-50 (92)	
SVE-10 Flow (SCFM)	12-16 (15)	18~19
Oxidizer Inlet Temp. (deg F)	117	
SVE Manifold Temp. (deg F)	66	
SVE Blower Hours	3662.5.0.0474	
SNE Disch. 02/LEL% NOT		
SVEDIG H-S/1010	W-1-15/0-1	

1, ppm = Parts per Million 2. % = Percent

3. " H_zO = Inches of Water

SCFM = Standard Cubic Feet per Minute
 deg F - degrees Fahrenheit

SVEDIS. NOC(ppm) - 72.9

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

	-20,7 Time	Pressure	Flow	Valve Pos	sition				
ocation		(PSI)	(SCFM)	(% Open/C	- D			Notes	
AS-1	10000	K 7	41	100%0 0	PEN	150	FF OZIL+	io ~0840	
AS-2		6.5	21						
AS-3		6.5							
4S-4		6-6.5	3.9						
AS-5		7	2						
AS-6	V	6.5	Z.8						
AS-7	1003	65-7	1						
AS-8		6.5	1.6						
\ S-9		7	51						
AS-10		7	2.3						
S-11	\checkmark	Ż	51						
S-12	1004	7	2:2						
S-13	1	6.5	1.3						
S-14		6.5	41						
S-15		7	51						
S-16	V	5	1.1						
S-17	1005	7	51						
S-18		6.5	41						
S-19		7.5	5.1						
S-20		7	51						
S-21		6.5	41						
S-22	V	7	51						
5-23	1006	6.5-7	31						
S-24		6							
S-25		6.5							
S-26		7							
S-27	V	6.5	V	V					

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute 3. PSI = Pounds per Square Inch

Bleeder value partially open. Adjusted (increased) pressure switch @ 0715

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	9-30-21				
Watch Time:	13:20				
Screen Time:	1305				
SVE/AS System Location					
SVE Blower Speed (Hertz)	54				
SVE Blower Runtime (Hours)	6440.2				
SVE Blower Filter Differential Pressure (" H ₂ 0)	0.5			1	~
SVE Blower Inlet Differential Pressure (" H ₂ 0)	1.5	in the	1 2 5	6	
SVE Blower Inlet Temperature (°F)	f J,t	- 1			
SVE Blower Inlet Vacuum (" H ₂ 0)	78				
SVE Blower Discharge Pressure (PSI)					
SVE Blower Discharge Temperature (°F)	114°F	1.9			
AS Blower Speed (Hertz)	52				
AS Blower Runtime (Hours)	2011.7				
AS Blower Pressure (PSI)	6.5	1.1.1			8
AS Blower Flow (" H ₂ O)	0.9				
Sparge Zone 1 Operating Cycle - Open Interval(s)	10070				
Sparge Zone 2 Operating Cycle - Open Interval(s)					
Sparge Zone 3 Operating Cycle - Open Interval(s)					
Sparge Zone 4 Operating Cycle - Open Interval(s)					
Sparge Zone 5 Operating Cycle - Open Interval(s)					
Heat Exchanger Runtime (Hours)	2671-1				
Heat Exchanger Discharge Temperature (°F)					
Transfer Pump Runtime (Hours)	1.7				
Transfer Pump Discharge Pressure (PSI)	0				
Moisture Separator Level (% Full)	7570	×			
Water Storage Tank Level (DTF, TD from MP; inches)	/57"				
NOTES:	Empty? Diang sight				
Notes: 1. " H_2O = Inches of Water 2. °F = Degrees Fahrenheit 3. PSI = Pounds per Square Inch	the Toc		H	s eff J.	emp : 69

1

4. % = Percent

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	9-30-21			
Watch Time:		5 M 212		
Screen Time:				
Oxidizer System Location				
Inlet Temperature (°F)	669°F			
Burner Chamber Temperature (°F)				
Discharge Temperature (°F)	625°F			
Inlet Limit Controller Temperature (°F)	672			
Outlet Limit Controller Temperature (°F)	631		e*	
Process Fan Valve Position (Open/Closed)	UN/GEN			
Dilution Valve Position (%)	0			
Combustion Valve Position (%)	13.2			
Process Blower Runtime (Hours)	13456	-		
Combustion Fan Runtime (Hours)	13457			
Burner Runtime (Hours)	13447			
Processing Vapors Runtime (Hours)	13434			
Panel Temperature (°F)	74.F			
Flame Signal (Volts)	5.0			
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0			
Propane Tank A Level (%)	72			
Propane Tank B Level (%)	122			
NOTES:)		

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent 3. " H_2O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Watch Time	9-20-29			[-	Design
System Time	:					Parameters
System Location						
SVE Discharge VOC (ppm)	56.0					
SVE Discharge LEL (%)			·			<25
Oxygen (%)						
SVE System Inlet Vacuum (" H ₂ O)	50° 🖈					
SVE System Inlet ΔP (" H ₂ O)						,
Oxidizer Discharge VOC (ppm)	0.9	-				<10
HSVE-1 Vacuum (" H ₂ O)	14					
HSVE-1 Flow (SCFM)	78					75
HSVE-2 Vacuum (" H ₂ O)	34					
HSVE-2 Flow (SCFM)	74					75
HSVE-3 Vacuum (" H _z O)	43					
HSVE-3 Flow (SCFM)	74					75
SVE-4 Vacuum (" H ₂ O)	81					
SVE-4 Flow (SCFM)	water - 5					25
SVE-5 Vacuum (" H ₂ O)	82					
SVE-5 Flow (SCFM)	water NID					20
SVE-6 Vacuum (" H ₂ O)	-78					
SVE-6 Flow (SCFM)	10 mater					30
SVE-7 Vacuum (" H ₂ O)	84		. <u></u> .			
SVE-7 Flow (SCFM)	17					18~19
SVE-8 Vacuum (" H ₂ O)	78	_				
SVE-8 Flow (SCFM)	Wayer					18~19
SVE-9 Vacuum (" H ₂ O)	84					
SVE-9 Flow (SCFM)	water					18~19
SVE-10 Vacuum (" H ₂ O)	100					
SVE-10 Flow (SCFM)	20 Shaky					18~19
Dxidizer Inlet Temp. (deg F)	UTLOF					
SVE Manifold Temp. (deg F)	6415 +	10.				
SVE Blower Hours	6640.2					
	MA					
NOTES:						

Notes:

1: ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit

10/4/21 7-30 Field Log 1415 BD arrives on site. Calls paul. Goes over HAJD/Jailghe Begins Taking System readings for As comprision - shit upp on 10/4 from Alarm PAH alarn @ 14:58 Will take system readings "I PID readings as is, then turn system or & take thir round. 1515 Take P10 readings Ly Talk To Carry about AS Blower Restart 1518 - Jun Blower Back Or. 1535 * While on site Propane Tanks get filled. 1530 - Take to measurements. Lits of the flow guiss seen broken. (600 - BD deans of - calls paul Br Any last min tasks.

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	10/1/21	10/6/21			
Watch Time:	1442	1520			
SVE/AS System Location	1428				A. A.
SVE Blower Speed (Hertz)	54	-11.		No.	
SVE Blower Runtime (Hours)	54	54			
SVE Blower Filter Differential Pressure (" H ₂ 0)	6185.5			1	
SVE Blower Inlet Differential Pressure ("H ₂ 0)	0.5	0.5		1	
	1.5	1.5		A Constant	
SVE Blower Inlet Temperature (°F)	45	65	100		10
SVE Blower Inlet Vacuum (" H ₂ 0)	78	78	1.		and the second
SVE Blower Discharge Pressure (PSI)	0	D			
SVE Blower Discharge Temperature (°F)	113	113	an in the	1	inte
AS Blower Speed (Hertz)	0	52		F	-
AS Blower Runtime (Hours)	27004 3	2700 5	25 Change		33
AS Blower Pressure (PSI)		6.0	a state of the second s		and the second
AS Blower Flow (" H ₂ O)		1.0			
Sparge Zone 1 Operating Cycle - Open Interval(s)	- 11	12	-		
Sparge Zone 2 Operating Cycle - Open Interval(s)	A		10 Day		
Sparge Zone 3 Operating Cycle - Open Interval(s)	-	1 -14			
Sparge Zone 4 Operating Cycle - Open Interval(s)	-	1-21			
Sparge Zone 5 Operating Cycle - Open Interval(s)	-				
Heat Exchanger Runtime (Hours)	2699.8				
Heat Exchanger Discharge Temperature (°F)	2	2			
Transfer Pump Runtime (Hours)	1.7				
Transfer Pump Discharge Pressure (PSI)	O			6. San	101 · 300.
Moisture Separator Level (% Full)					
Water Storage Tank Level (DTF, TD from MP; inches)	81"		All all		14
NOTES	AS Blower PBH Alarm				
	A 14:58 00 10/4			1	

ans,

Notes:

1. " H_2O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	1014/21	104 P	After turning	JE 15 Olo	-m
Watch Time:	1415	R22			
Screen Time:	1113	1200			
Oxidizer System Location	1.2		1		100
Inlet Temperature (°F)	691	682			
Burner Chamber Temperature (°F)	689	697			
Discharge Temperature (°F)	630	634		in the second	-
nlet Limit Controller Temperature (°F)	6602	683	Sec.	and the second second	and the second s
Dutlet Limit Controller Temperature (°F)	630	433		1	
Process Fan Valve Position (Open/Closed)	Open	Open			10 10 2
Dilution Valve Position (%)	0	O		1. N. 7	1.
Combustion Valve Position (%)	400 10.4	13.1		ing the staff	
Process Blower Runtime (Hours)	13601.	12	a start in		
Combustion Fan Runtime (Hours)	13601	0122	S. S. S.		
Burner Runtime (Hours)	13660	-			
Processing Vapors Runtime (Hours)	13579	-	No. Sec.		1.
Panel Temperature (°F)	Ble	92	500.00		2.00
Flame Signal (Volts)	5.0	5			George Street
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0	D			
Propane Tank A Level (%)	40		and the second		
Propane Tank B Level (%)	D	11111	37	and the second	1
				6.0	
NOTES			*		alter ?
		- Sen. 2	1.		

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE System Data

	1	SVE Syst		0 03 carp Blave	1
Date:	10/1/21	10/6	1. ALLES		
Watch Time:	1451	1520			Design Parameters
System Time: System Location					, u privetors
SVE Discharge VOC (ppm)				1	
SVE Discharge LEL (%)	160.82	144.8			<25
Oxygen (%)	14010	119-0			
SVE System Inlet Vacuum (" H ₂ O)	78	70			
SVE System Inlet ΔP (" H ₂ O)	1.5	78			
Oxidizer Discharge VOC (ppm)	2.5	4.1			<10
HSVE-1 Vacuum (" H ₂ O)	19	18			1
HSVE-1 Flow (SCFM)	78	78			75
HSVE-2 Vacuum (" H ₂ O)	33	33			
HSVE-2 Flow (SCFM)	74				75
HSVE-3 Vacuum (" H ₂ O)	41	74			
HSVE-3 Flow (SCFM)	75	41			75
SVE-4 Vacuum (" H ₂ O)	80	75			
SVE-4 Flow (SCFM)	O Pity &	80			25
SVE-5 Vacuum (" H ₂ O)	80 Barris	0			
SVE-5 Flow (SCFM)	-5 Dirmy	80 5 · · ·			20
SVE-6 Vacuum (" H ₂ O)	1 Bornes	76			
SVE-6 Flow (SCFM)	10				30
SVE-7 Vacuum (" H ₂ O)	86	. 84			
SVE-7 Flow (SCFM)	16	16			18~19
SVE-8 Vacuum (" H ₂ O)	77	14			
SVE-8 Flow (SCFM)		4		100	18~19
SVE-9 Vacuum (" H ₂ O)	8D	0			
SVE-9 Flow (SCFM)	O-water	80			18~19
SVE-10 Vacuum (" H ₂ O)	97	97			
SVE-10 Flow (SCFM)	~15 bouncy				18~19
Oxidizer Inlet Temp. (deg F)	0				Ja Li
SVE Manifold Temp. (deg F)					
SVE Blower Hours	6785.5				
NOTES:	41000		2		

Notes:

1. ppm = Parts per Million 2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit

ΑΞϹΟΝ

S3AM-209-FM5

Americas Daily Tailgate Meeting Instructions: Conduct meeting prior to sending crews to individual tasks. Require AECOM Supervisor Name: Boyan Darby Phone Number: 253-677-0783 andance of all AECOM employees and subcontractors. Invite personnel from ultaneous operations for coordination purposes. Review scope of work and fly discuss required and applicable topics. This meeting is a daily refresher, AECOM SH&E Rep. Name: not a full orientation. Task-specific discussions associated with Task Hazard Phone Number: Assessment (THA) follow this meeting at the task location immediately before Meeting Leader: BD individual task is started. Date: 10 4 21 Project Name/Location: T-30 Project Number: Today's Scope of Work: Weekly DAM First Ald Kit Location: Muster Point Location: Fire Extinguisher Location: Spill Kit Location: Inside Area Cal Connex/Car 1. Required Topics 2. Discuss if Applicable to Today's Work Check 🖌 as reviewed or mark 🔳 as not applicable Fitness for Duty requirements, all sign in / sign out Required training (incl. task specific) completed and current Biological/ Chemical / Electrical Hazards N SH&E Plan onsite - understood, reviewed, signed by all Ergonomics - Lifting, Body Position 2 (incl. scope, preplanning hazard assessments / risk Lock Out/ Tag Out registers, controls, procedures, requirements, etc.) Short Service Employees - visual identifier and mentor/ Task Hazard Assessments (THAs) are to be reviewed and oversight assignment completed for each task immediately prior to conducting Simultaneous/ Neighbouring Operations STOP WORK Right & Responsibility- all task Slip/ Trip/ Fall Hazards changes/changed conditions re-assess with THA Specialized PPE Needs Requirement to report to supervisor any injury, illness, Traffic Control damage, near miss, unsafe act / condition Waste Management/ Decontamination Emergency Response Plan - including muster point, first aid kit, fire extinguisher, clinic/hospital location Weather Hazards / Heat Stress / Cold Stress Personal Protective Equipment (PPE) - Required items per Subcontractor Requirements (e.g., JHAs, THAs, hazard assessments in good condition / in use by all procedures, reporting, etc.) Equipment/machinery inspected (documented as required) Work Permits / Plans required (e.g., Fall Protection, and in good condition - operators properly trained/certified Confined Space, Hot Work, Critical Lifts, etc.); in place, Work area set up and demarcation/ barricades in place to understood (identify/attach): protect workers, site staff, and the public Required checklists/records available, understood (describe) Other Topics (describe/attach): Lessons Learned / SH&E improvements (describe): Client specific requirements (describe):

3. Daily Check Out by Site Supervisor Describe incidents, near misses, observations or Stop Work Describe Lessons Learned/ Improvement Areas from today: interventions from today: The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above. Date 10/4/21 Site Supervisor Name Signature Time (at end of day / shift) Duran Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached. Daily Tailgate Meeting (S3AM-209-FM5)

Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

AECOM

All employees:

- ٠
- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA. Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor. Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (Including AECOM Contractors and Subcontractors): Your signature below means that you understand: The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).

- The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities). That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" Intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning: You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.

• You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely. • You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or

impairment/fatigue issue to the AECOM Supervisor. You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	initials & Sign In Time	Initials & Sign Out Time
Bryan Dalby AELOM	BD	In & Fit	Out & Fit
	1912	1415 00	and a second
and the second second		In & Fit	Out & Fit
and the second second	and the second	In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
	and the second second	In & Fit	Out & Fit
		in & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

Name	Company Name	Arrival Time	Departure Time	Signature
and a second				
		and the second second	1999	States and
	- Color			
a solution and the		1999	0.0	

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

2 of 2

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	10/14/21			
Watch Time:	0903			
Screen Time:	0843			
SVE/AS System Location		<i>.</i>		
SVE Blower Speed (Hertz)	51	54	*	
SVE Blower Runtime (Hours)	6972.7	6972.3		
SVE Blower Filter Differential Pressure (" H ₂ 0)		0.25		
SVE Blower Inlet Differential Pressure (" H ₂ 0)	0.7/	1.5		
SVE Blower Inlet Temperature (°F)	X	60°F		
5VE Blower Inlet Vacuum (" H ₂ 0)	V.F	78		
SVE Blower Discharge Pressure (PSI)	5.5	0		
SVE Blower Discharge Temperature (°F)	fil F	109		
AS Blower Speed (Hertz)	52			
AS Blower Runtime (Hours)	2721.8			
AS Blower Pressure (PSI)	5.5		1	
AS Blower Flow (" H ₂ O)	0.9			
Sparge Zone 1 Operating Cycle - Open Interval(s)	1			
Sparge Zone 2 Operating Cycle - Open Interval(s)	1	.v.		
Sparge Zone 3 Operating Cycle - Open Interval(s)	/			
Sparge Zone 4 Operating Cycle - Open Interval(s)	/		105	
Sparge Zone 5 Operating Cycle - Open Interval(s)	/			
Heat Exchanger Runtime (Hours)	2721.1			
Heat Exchanger Discharge Temperature (°F)	40°F			
Transfer Pump Runtime (Hours)	1.7			
Transfer Pump Discharge Pressure (PSI)	0			
Moisture Separator Level (% Full)				
Water Storage Tank Level (DTF, TD from MP; inches)	90"			
NOTES:				

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

PID # - 592908211

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date Watch Time Screen Time Oxidizer System Location	0914			
Screen Time				1
	0109			1
Inlet Temperature (°F)	684			
Burner Chamber Temperature (°F)	684			
Discharge Temperature (°F)	636			
Inlet Limit Controller Temperature (°F)	685			
Outlet Limit Controller Temperature (°F)	436	· · · · · ·		
Process Fan Valve Position (Open/Closed)	open			
Dilution Valve Position (%)	0			
Combustion Valve Position (%)	11.9			
Process Blower Runtime (Hours)	13787			
Combustion Fan Runtime (Hours)	13788			
Burner Runtime (Hours)	13788			
Processing Vapors Runtime (Hours)	13765			
Panel Temperature (°F)	וך			
Flame Signal (Volts)	5			
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0			
Propane Tank A Level (%)	57			
Propane Tank B Level (%)	45			
NOTES	* Burner Chamber Diff Bressun - Supposed to be 0? Ast Cany Laild be bad switch			

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date:	<u> </u>			 	
Watch Time:				 	Design
System Time:				 	Parameters
System Location	100.2		1		
SVE Discharge VOC (ppm)				 	
SVE Discharge LEL (%)	~				<25
Oxygen (%)	-			 	
SVE System Inlet Vacuum (" H ₂ O)	78				
SVE System Inlet ΔP (" H ₂ O)	9.5				
Oxidizer Discharge VOC (ppm)	1.9				<10
HSVE-1 Vacuum (" H ₂ O)	16				
HSVE-1 Flow (SCFM)	79				75
HSVE-2 Vacuum (" H ₂ O)	B332				
HSVE-2 Flow (SCFM)	15				75
HSVE-3 Vacuum (" H ₂ O)	75				
HSVE-3 Flow (SCFM)	43				75
SVE-4 Vacuum (" H _z O)	680				
SVE-4 Flow (SCFM)	0				25
SVE-5 Vacuum (" H ₂ O)	82				
SVE-5 Flow (SCFM)	5 - Burny				20
SVE-6 Vacuum (" H ₂ O)	-13				
SVE-6 Flow (SCFM)	10 maket				30
SVE-7 Vacuum (" H ₂ O)	88	-			
SVE-7 Flow (SCFM)	17				18~19
SVE-8 Vacuum (" H ₂ O)	78				
SVE-8 Flow (SCFM)	0-water				18~19
SVE-9 Vacuum (" H ₂ O)	86				
SVE-9 Flow (SCFM)	0				18~19
SVE-10 Vacuum (" H ₂ O)	98				
SVE-10 Flow (SCFM)	15 - burney				18~19
Oxidizer Inlet Temp. (deg F)					
SVE Manifold Temp. (deg F)					
SVE Blower Hours					
NOTES:					
NOTES.					

Notes:

? ?

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date:					Equipment I.D. #
	Time	Pressure	Flow	Valve Position	Notes
Location	0070	(PSI)	(SCFM)	(% Open/Closed)	
AS-1	0130	7	1.8	(0070	
AS-2		6.5	8.5	/	
AS-3		4.5	0		
AS-4		6.5	13		
AS-5		7	2%		
AS-6		ط	4.4		
AS-7	1	6.5	22		
AS-8		6.5	1.5		
AS-9		6.5	¢		
AS-10		٦	7.3		
AS-11		1	2.7		š
AS-12		6.15	1.2		
AS-13		6.5	1.6		
AS-14		6	2.8		
AS-15		6.15	1		
AS-16		Т	1.2		
AS-17		7	0		
AS-18		4.5	0		
AS-19		7.5	5		
AS-20		6.5	1		
AS-21		l	و		
AS-22		6.5	D		
A\$-23		6.5	2.8		
AS-24		6	0		
AS-25		6	0		
AS-26			0		
AS-27	0940	5.5	1.8		

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE Well Field Data Collection Form

Location	Date	Time	Vacuum (" H ₂ O)	Flow (SCFM)	LEL (%)	VOC (ppm)	Oxygen (%)	Notes
HSVE-1								
HSVE-2								
HSVE-3								
SVE-4								
SVE-5								
SVE-6								
SVE-7								
SVE-8								
SVE-9								
SVE-10								
Notes:								

1. " $H_2O = Inches of Water$

2. SCFM = Standard Cubic Feet per Minute

3. % = Percent

ppm = parts per million

AECOM

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument ID 19935 Description MIniRae 3000 Calibrated 10/12/2021 12:14:03PM State Certified Manufacturer Rae Systems Model Number MiniRAE 3000 Status Pass Serial Number/ Lot 592-908216 Temp °C 16 Number Humidity % 44 Location Seattle Department **Calibration Specifications** Range Acc % 0.0000 Group # 1 Group Name Isobutylene Reading Acc % 3.0000 Plus/Minus 0.0 Stated Accy Pct of Reading Fnd As Lft As Pass/Fail Nom In Val / In Val **Out Type** Dev% In Type Out Val 100.0 / 100.0 100.0 PPM 100.1 100.0 0.00% Pass PPM Test Instruments Used During the Calibration (As Of Cal Entry Date) Next Cal Date / Serial Number / Last Cal Date/ Expiration Date Model Number Lot Number Manufacturer Test Standard ID Description **Opened Date** 8/11/2025 x02ai99cp342066 304-402162466 SEA ISO 100 Isobutylene (C4H8) 100 Airgas -1 PPM PPM 304-402162466-1

Pine Environmental Services, Inc.

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT QC/ PACKING LIST

Description	RAE Systems MiniRAE 3000
Instrument ID	19935
Lamp Voltage	□ 10.6 eV □ 11.7 eV □ 9.8 eV
Date Calibrated	1200072021

www.pine-environmental.com

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 with carry case		4		
Rechargeable battery (installed)		1		
Protective rubber boot				
Manual				
Quick reference card		4		
Probe tip		4		
Charger/ adapter, or charger and cradle	4	4		
(2) Hydrophobic filters				
Alkaline adapter with (4) AA alkaline batteries installed		4		
ProCal calibration sheet				
Supporting Items				
100 ppm isobutylene calibration gas				
Gas regulator				. <u></u>
Tedlar bag				
Datalogging software				
Communications cable			<u></u>	
*100 ppm Isobutylene SDS				
✓ Must match cylinder with setup			0 	· · · · · · · · · · · · · · · · · · ·
*SDS provided upon request				
Spare alkaline battery pack				
Alkaline AA batteries				

Prepared by: QC checked by: Date:

Agy Detrezi

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date: (0/21/2]					Equipment I.D. # 43808
Location	Time	Pressure (PSI)	Flow (SCFM)		Position n/Closed)	Notes
AS-1	1435	9226	1.2	1000	ic open	
AS-2	1	5	8.6		•	
AS-3		5	0			
AS-4		4.5	13			
AS-5		6	1.6			
AS-6		5	4_6			
AS-7		6	0			
AS-8		6	0			
AS-9		5	0			
AS-10		6	0			
AS-11		6.5	2.8			
AS-12		6	1.6			
AS-13		6	1.2			
AS-14		4	0			
AS-15		6	G			
AS-16		6	G			
AS-17		5	0			
AS-18		5.5	0			
AS-19		6.5	5.2			
AS-20		5	0			
AS-21		5	0			
AS-22		5	0			
AS-23		5.5	0			
AS-24		5	0			
AS-25		5	0			
AS-26		6	0			
AS-27		4	2.8			

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date	10/21/21		1 - ¹⁰ -5
Watch Time			
Screen Time			
SVE/AS System Location			
SVE Blower Speed (Hertz)	54.0		
SVE Blower Runtime (Hours)	7141.7		
SVE Blower Filter Differential Pressure (" H_20)	0		
SVE Blower Inlet Differential Pressure (" H_20)	781.5	С. Т.	
SVE Blower Inlet Temperature (°F)	0°		
SVE Blower Inlet Vacuum (" H_20)	+5 1878		
SVE Blower Discharge Pressure (PSI)	0		
SVE Blower Discharge Temperature (°F)	117		
AS Blower Speed (Hertz)	52.0		
AS Blower Runtime (Hours)	2764.5		
AS Blower Pressure (PSI)	5,0		
AS Blower Flow (" H ₂ O)	1		
Sparge Zone 1 Operating Cycle - Open Interval(s)	~		
Sparge Zone 2 Operating Cycle - Open Interval(s)			
Sparge Zone 3 Operating Cycle - Open Interval(s)	-		
Sparge Zone 4 Operating Cycle - Open Interval(s)	-		
Sparge Zone 5 Operating Cycle - Open Interval(s)			
Heat Exchanger Runtime (Hours)	2763.9		
Heat Exchanger Discharge Temperature (°F)	51		
Transfer Pump Runtime (Hours)	1.7		
Transfer Pump Discharge Pressure (PSI)	0-0		
Moisture Separator Level (% Full)	0		
Water Storage Tank Level (DTF, TD from MP; inches)	'7 ⁿ		
NOTES			

PH/

Notes:

1. " H_2O = inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Data	10/21/21		1	1	
Watch Time:	11126				
Screen Time:					
Oxidizer System Location					
Inlet Temperature (°F)	678			. Se	
Burner Chamber Temperature (°F)	680				
Discharge Temperature (°F)	629	-			
Inlet Limit Controller Temperature (°F)	691				
Outlet Limit Controller Temperature (°F)	633				
Process Fan Valve Position (Open/Closed)	open				
Dilution Valve Position (%)	0.0				
Combustion Valve Position (%)	13.700				
Process Blower Runtime (Hours)	13157				
Combustion Fan Runtime (Hours)	13957				
Burner Runtime (Hours)	13947	<u></u>			
Processing Vapors Runtime (Hours)	13934				
Panel Temperature (°F)	12°				
Flame Signal (Volts)	5.0 V				
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0.0				
Propane Tank A Level (%)	8000				
Propane Tank B Level (%)	70000				
NOTES:					
		(*)			
		(3)			
		5			

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date:	10/21/21			1	4
Watch Time:					Design Parameter
System Time: System Location			1		
SVE Discharge VOC (ppm)	117.6				
SVE Discharge LEL (%)					<25
Oxygen (%)					
SVE System Inlet Vacuum (" H ₂ O)	71				
SVE System Inlet ΔP (" H ₂ O)	76				
Oxidizer Discharge VOC (ppm)	2.6				-10
					<10
HSVE-1 Vacuum (" H ₂ O)	14				
HSVE-1 Flow (SCFM)	75				75
HSVE-2 Vacuum (" H ₂ O)	30	 			
HSVE-2 Flow (SCFM)	.74	 _			75
HSVE-3 Vacuum (" H ₂ O)	38				
HSVE-3 Flow (SCFM)	74				75
SVE-4 Vacuum (" H ₂ O)	5 20				
SVE-4 Flow (SCFM)	805				25
SVE-5 Vacuum (" H ₂ O)	80				
SVE-5 Flow (SCFM)	10-15				20
SVE-6 Vacuum (" H ₂ O)	# 78				
SVE-6 Flow (SCFM)	2012				30
SVE-7 Vacuum (" H ₂ O)	84				
SVE-7 Flow (SCFM)	20		·		18~19
SVE-8 Vacuum (" H ₂ O)	76				
SVE-8 Flow (SCFM)	5				18~19
	82				
SVE-9 Flow (SCFM)	5 10-10				18~19
5VE-10 Vacuum (" H ₂ O)	JB 95				
SVE-10 Flow (SCFM)	15-35				18~19
Dxidizer Inlet Temp. (deg F)					
SVE Manifold Temp. (deg F)	-				
SVE Blower Hours	-				
NOTES:					

Notes:

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrum	ent ID 48808								
Desci	ription MiniRAE 300	0							
Cali	brated 10/20/2021 12	:06:20PM							
Manufa	cturer Rae Systems			State Certified	l				
Model N	umber PGM 7320			Status	a Pass				
	er/ Lot 592-600846 umber			Temp °C	2 19				
Lo	cation Seattle			Humidity %	50				
Depar	rtment			-					
Calibration Specifications									
	Group # 1		Range Acc %	0.0000					
Gro	up Name VOC		eading Acc %						
	ted Accy Pct of Read		Plus/Minus						
<u>Nom In Val / In Va</u>	l In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail		
100.0 / 100.0	РРМ	100.0	PPM	100.1	100.0	0.00%	Pass		
Test Instruments I	Used During the Calib	ration			(45 0	f Cal Entr	v Date)		
<u>Test Insti uments (</u>	Joed During the Canb	Tation		Carriel Number					
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Numbe</u> Lot Number		al Date/ Ex	ext Cal Date / opiration Date		
PPM	Isobutylene (C4H8) 10 PPM	0 Airgas	x02ai99cp34206	6 305-4018820 -1			9/2024		
305-401882019- 1									
	SEA ULTRA ZERO AIR 20.9%	Gasco	31844	304-4018983 1	35-	10	/21/2024		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

AECOM

DATE 10/21/21

	DAY	S	мт	W	H) F	S
PROJECT MANAGER: Paul Leathing	WEATHER	BRIGHT	CLEAR	OVERCAST	RAIN	SNOW
PROJECT: T-30 P.O.S	TEMP	To 32	32-50	50.70	70-85	85 up
JOBNO: 60667994	WIND	Suit	Moder	High	Repo	rt No.
AECOMFIELD REP: A. Utter	HUMIDITY	Dry	Moder	Humid		
SUB-CONTRACTORS ON SITE:					+	
EQUIPMENT ON SITE: PID						
			_			
WORK PERFORMED:						
1230 A. Ulter arrives ensite, restarts	As suster	, bea	iles a	o'M c	allect	Ya.
1330 A. Uffer arrives assite, restarts 1321 : 1329 sampled Discharge-102221 :	Exbet - 102	.121		4. 0	STIL VI	1 2 1 1
i po						
Collected PID readings, Read offe	site to dr	op Vo	ссим	pump c	ffw	B.D.
1400 continue collecting of m readings		'	/			
1440 complete other readings, adjust pre	SSURE gaug	pe bol	t 64	HURNing	it ~	20
turns decknise to try and reduce P.	AH alarms					
1445 R.M. (Pars.) arrives anote roche	sknin, head	ls off	site i	+1-5	minute	.25
1500 A.U. locks up site theads to mai	h gate.					
~						
	en e					
					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
titler.						
there	HEN OF	19191		ar sure	12.24	(Brief)
	loci,					
	X					
		/				
			/			
				/		
					~	
BY		TITLE				
				SHEET	OF	

	Page #of	■ Standard □ RUSH `Rush charges authorized by:	SAMPLE DISPOSAL B Default: Clean after 3 days		EQUESTED	Ū	H¶A avil9H	Notes	X	X							ANY DATE TIME	10/11/61 530	95-21 Hallelo1		
		PO#	INVOICE TO		ANALYSIS REQUESTED	NXS	16 eV(OJ IOL	×.	8							COMPANY	AECOM	TBT		
rody	R WHOR						Einel Field	Vac. ("Hg)	L (334	5 [325						_	ME				
SAMPLE CHAIN OF CUSTODY)	& ADD Sea	e and and				ד_:ינייד דיייבו	Vac.		27 1321							PRINT NAME	-	MULL R am		
IPLE CHA	SAMPLERS (signature)	PROJECT NAME &	NOTES:				ing	Gas Date Date Sampled		1 (36) 1 0/21/21	SG	SG	SG	SG	SG	SG		Anders	[m-Ctr	2	
SAW	SA	Id (L.Com				w IA=Indoor Alr it. SG=Soil Gas) (Circle One)		IA	IA / SG	IA /	TR R	K CERT	an						
	· 14	C		1. Laliza @ arcas		-2	ī	Canister Cont.	m	01 250							CICNIATI IBF	Relinquished by:	Received by: And	Relinquished by:	Received by:
	in Gr	5 T 16	the WA	Email Pau	NO			Lab	2795	1305							•	_		Reling	Receiv
	Renort To Paul (caling	Company AE(OM) Company AE(OM)	City, State, ZIP Sectle WA	Phone 206. 138-27 a Email Calleding Oarcon.com	SAMPLE INFORMATION				Sample Name	Discharge - 1 = 221								Friedman & Bruya, Inc. 3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044

FORMS\COC\COCTO-15.DOC

AECOM Daily Tailgate Meeting Summary

Section One

Project Name	Terminal-30 Port of Seattle			
Project Number	60667994			
Project Manager	Paul Kalina			
Project Manager Phone #	2063105097			
Muster Point location	System Location or Entrance Gate			
Meeting date	10/21/2021			
Business Line	Environment			
SH&E Manager	Tim Gilles			
SH&E Manager Phone #	3128335991			
First Aid Kit Location	Vehicles			
Prepared by	Utter, Anders			

Section Two

Attendees	Anders Utter
Location	Seattle
Tasks to be performed	AS/SVE System O&M weekly Maintenance
Hazards to be considered today	pressure, noise, motion, mechanical, electrical
Will there be Lone Workers?	Yes
Hierarchy of controls	elimination, substitution, engineering, administrativecontrols, ppe
Personal Protective Equipment	Task Specific: gloves, earprotection Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	Impact by vehicle or mobile equipment
Topic of the week	Frayed Electrical Cords - replace, mark out of service

Other topics discussed	
Mid day reviews	
End of the day Comments	
Hazards	 Mechanical Motion Noise Pressure Electrical

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date: c	128/21				Equipment I.D. # R 19214
	Time	Pressure	Flow	Valve Position	RIGLIG
ocation		(PSI)	(SCFM)	(% Open/Closed)	Notes
AS-1	1430	1	0	100 A	
AS-2		6	8.6		
AS-3		6	0		
AS-4		6	13 -		
AS-5		7	1.6		
AS-6		6	4.6		
AS-7		6.5	1.5		
AS-8		6.5	0		
AS-9		6	0		
AS-10		7	G		
AS-11		7	2.6		
AS-12		6.5	1.4		
AS-13		65	1.2		
AS-14		5.5	G	1.1	
AS-15		7	0		
AS-16		7	Ø		
AS-17		6.5	0		
AS-18		6.5	0		moline marked which in the second
AS-19		7.5	5.2		
AS-20		6	1.0		
AS-21		6	0		
AS-22		6	Ø		
AS-23		6.5	Ö		
AS-24		6	0		
AS-25		6	6		
AS-26		7	0		
AS-27	1	5	1.8		and the second

AECOM

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	10/28/21				
Watch Time:	1415				
Screen Time: Oxidizer System Location		<u> </u>			
	- 6				
Inlet Temperature (°F)	668				
Burner Chamber Temperature (°F)	664				
Discharge Temperature (°F)	629				
Inlet Limit Controller Temperature (°F)	680				
Outlet Limit Controller Temperature (°F)	626				
Process Fan Valve Position (Open/Closed)	open				
Dilution Valve Position (%)	0.0		A 2 4		
Combustion Valve Position (%)	11.2			4	
Process Blower Runtime (Hours)	14125				
Combustion Fan Runtime (Hours)	14125				
Burner Runtime (Hours)	14115				
Processing Vapors Runtime (Hours)	14102				
Panel Temperature (°F)	78	-			
Flame Signal (Volts)	5.0				1
Burner Chamber Inlet Differential Pressure (" H_2O)	G.a				
Propane Tank A Level (%)	50		La Villa	-	
Propane Tank B Level (%)	45				
NOTES:	alarm on 10/21/21 was not turne 2 off antil 2 arrived				

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date: Watch Time:	1.1.1		-			Design
System Time	- localization					Paramete
System Location	1					
SVE Discharge VOC (ppm)	20.4 28.6					
SVE Discharge LEL (%)	-	-				<25
Oxygen (%)	-					
SVE System Inlet Vacuum (" H ₂ O)	80					
SVE System Inlet ΔP (" H ₂ O)	20		1			
Oxidizer Discharge VOC (ppm)	0.0 0.5			1		<10
HSVE-1 Vacuum (" H ₂ O)	-18					
HSVE-1 Flow (SCFM)	80					75
HSVE-2 Vacuum (" H ₂ O)	- 34					
HSVE-2 Flow (SCFM)	76					75
HSVE-3 Vacuum (" H ₂ O)	-44					
HSVE-3 Flow (SCFM)	76					75
SVE-4 Vacuum (" H _z O)	- 54 ,					
SVE-4 Flow (SCFM)	5-10					25
SVE-5 Vacuum (" H ₂ O)	5-10 R					
SVE-5 Flow (SCFM)	- 85 V					20
SVE-6 Vacuum (" H ₂ O)	- 80					
SVE-6 Flow (SCFM)	10					30
SVE-7 Vacuum (" H ₂ O)	-90					
SVE-7 Flow (SCFM)	15					18~19
SVE-8 Vacuum (" H ₂ O)	-t 80					
VE-8 Flow (SCFM)	15-305					18~19
SVE-9 Vacuum (" H ₂ O)	-10-90					
VE-9 Flow (SCFM)	5					18~19
VE-10 Vacuum (" H ₂ O)	14-20-100					
VE-10 Flow (SCFM)	-10 15-30					18~19
xidizer Inlet Temp. (deg F)		22				Sec. 1
VE Manifold Temp. (deg F)	1				a come of	
VE Blower Hours	-					

Notes:

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit 6.9

NS 6TB

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	0/28/21				
Watch Time:	1475		1		
Screen Time:					
SVE/AS System Location					
SVE Blower Speed (Hertz)	54		2		
SVE Blower Runtime (Hours)	73095				
SVE Blower Filter Differential Pressure (" H ₂ 0)	+05				
SVE Blower Inlet Differential Pressure (" H ₂ 0)	2.0				
SVE Blower Inlet Temperature (°F)	60				
SVE Blower Inlet Vacuum (" H ₂ 0)	80		1		
SVE Blower Discharge Pressure (PSI)	6.00.0				
SVE Blower Discharge Temperature (°F)	110				
AS Blower Speed (Hertz)	52				11.00
AS Blower Runtime (Hours)	2765.3	-19485			
AS Blower Pressure (PSI)	6.0				
AS Blower Flow (" H ₂ O)	1.0		E.		
Sparge Zone 1 Operating Cycle - Open Interval(s)	-	ALL AL			1.15
Sparge Zone 2 Operating Cycle - Open Interval(s)	1				
Sparge Zone 3 Operating Cycle - Open Interval(s)	5				
Sparge Zone 4 Operating Cycle - Open Interval(s)	1	4000 C			
Sparge Zone 5 Operating Cycle - Open Interval(s)	1	13 4 12			
Heat Exchanger Runtime (Hours)	2764.7	8.22 H		19.00	
Heat Exchanger Discharge Temperature (°F)	60.0				
Transfer Pump Runtime (Hours)	1.7				
Transfer Pump Discharge Pressure (PSI)	0				1.2
Moisture Separator Level (% Full)	0			1	
Water Storage Tank Level (DTF, TD from MP; inches)	G.9 DTB				
NOTES:					

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

VECUW

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument ID R19214 Description MIniRAE 3000 Calibrated 10/25/2021 1:07:22PM Manufacturer Rae Systems State Certified Model Number PGM-7320 Status Pass Serial Number/ Lot 592-906004 Temp °C 18 Number Location Seattle Humidity % 46 Department **Calibration** Specifications Group # 1 Range Acc % 0.0000 Group Name Isobutylene Reading Acc % 3.0000 Stated Accy Pct of Reading Plus/Minus 0 Nom In Val / In Val In Type Out Val Out Type Pass/Fail Dev% Fnd As Lft As 100 / 100 PPM 100 PPM Pass 0.00% 100 100 Test Instruments Used During the Calibration (As Of Cal Entry Date) Next Cal Date / Serial Number / Test Standard ID Description Last Cal Date/ Expiration Date Manufacturer Model Number Lot Number **Opened** Date SEA ISO 100 Isobutylene (C4H8) 100 Airgas 6/23/2025 x02ai99cp342066 PPM PPM 304-402150198 304-402150198--1

Pine Environmental Services, Inc.

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

AECOM Daily Tailgate Meeting Summary

Section One

Project Name	Terminal-30 Port of Seattle			
Project Number	60667994			
Project Manager	Paul Kalina			
Project Manager Phone #	2063105097			
Muster Point location	System Location or Entrance Gate			
Meeting date	10/28/2021			
Business Line	Environment			
SH&E Manager	Tim Gilles			
SH&E Manager Phone #	3128335991			
First Aid Kit Location	Vehicles			
Prepared by	Utter, Anders			

Section Two

Attendees	Anders Utter			
Location	Seattle			
Tasks to be performed	Weekly O&M			
Hazards to be considered today	noise, motion, mechanical, electrical			
Will there be Lone Workers?	Yes			
Hierarchy of controls	substitution, engineering, administrativecontrols, ppe			
Personal Protective Equipment	Task Specific: gloves Mandatory: hardhat, safetyglasses, longpants, reflectivevest, workboots			
High Risk Events	 Impact by vehicle or mobile equipment Contact with moving parts of machinery 			
Topic of the week	Have you got your red card - Stop Work Authority			

Other topics discussed	
Mid day reviews	
End of the day Comments	
Hazards	 Mechanical Motion Noise Electrical

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date:			_			· · · · ·	Equipment I.D. #
Location	Time	1	essure PSI)		low CFM)	Valve Position (% Open/Closed)	Notes
AS-1		7	9	1.4	3.8	(% Open/closed)	
AS-2		6	8	0	0		Stuck
AS-3		+ +	8	0	0		Stuck
AS-4		6-5	7.5	$\left \right $	d		
AS-5		6	8	0	6.8		Stuck
AS-6		+ · · ·		2.6			
AS-0 AS-7		6	8		HUG 7.	4	Stuck
			8.5	1.0	4.6		bouncing
AS-8		6.5	+	0	2		
AS-9		65		0	2.2		Stuck
AS-10		7	2.8	0	1.4		
AS-11		7.	5)9	2.6	2.6	-	Stuc &
AS-12		7	85	2.2	- 3.2		
AS-13		6.5	85	2.2	. 5		Stuck
AS-14		5.5	7	G	4.2		
AS-15		7	8.5	1.0	3.6		-
AS-16		7	8.5	0	5.6		
AS-17		7	9	0	1.6		
AS-18		6.5	8.5	σ	G		Stuck
AS-19		7.5	9	5.2	5.2		Stuck
AS-20		6.5	8	1.2	2.6		
AS-21		6/	7.5	G	0		Stuck_
AS-22		6 -	1.5	0	1.2		
AS-23			85		1.8		bouncies
AS-24		+	8		1.4		
AS-25		6.5	7.5	G	G		
AS-26		7	8.8	G	٥	17.63	
AS-27		5.5	6.5	[.8	2.8		
Notes:		<u> </u>	K		T		

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

· Post Bleed value skut off

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE System Data

System Time: ystem Location VE Discharge VOC (ppm) VE Discharge LEL (%) Dxygen (%) VE System Inlet Vacuum (" H ₂ O) VE System Inlet ΔP (" H ₂ O) Dxidizer Discharge VOC (ppm) SVE-1 Vacuum (" H ₂ O)	50.6					Parameters
VE Discharge VOC (ppm) VE Discharge LEL (%) Dxygen (%) VE System Inlet Vacuum (" H ₂ O) VE System Inlet ΔP (" H ₂ O) Dxidizer Discharge VOC (ppm)						<25
VE Discharge LEL (%) Dxygen (%) VE System Inlet Vacuum (" H₂O) VE System Inlet △P (" H₂O) Dxidizer Discharge VOC (ppm)						<25
Dxygen (%) VE System Inlet Vacuum (" H ₂ O) VE System Inlet ΔP (" H ₂ O) Dxidizer Discharge VOC (ppm)	-				· ·	<25
VE System Inlet Vacuum (" H₂O) VE System Inlet ∆P (" H₂O) Ixidizer Discharge VOC (ppm)	-					
VE System Inlet ∆P (" H ₂ O) Ixidizer Discharge VOC (ppm)	-					
xidizer Discharge VOC (ppm)						
	101					
SVE 1 Vacuum (" H O)	0.6					<10
	24					
SVE-1 Flow (SCFM)	80				⁻	75
SVE-2 Vacuum (" H ₂ O)	34					
SVE-2 Flow (SCFM)	76					75
SVE-3 Vacuum (" H ₂ O)						
SVE-3 Flow (SCFM)	1.1.1.7.1					75
VE-4 Vacuum (" H ₂ O)						
VE-4 Flow (SCFM)	5		-			25
VE-5 Vacuum (" H ₂ O)	85					
VE-5 Flow (SCFM)	15					20
VE-6 Vacuum (" H ₂ O)	AU 800					
VE-6 Flow (SCFM)	13					30
VE-7 Vacuum (" H₂O)	94					
/E-7 Flow (SCFM)	17					18~19
/E-8 Vacuum (" H ₂ O)	80					
/E-8 Flow (SCFM)	6					18~19
/E-9 Vacuum (" H ₂ O)	90					
/E-9 Flow (SCFM)	0					18~19
/E-10 Vacuum (" H ₂ O)	00					
/E-10 Flow (SCFM)	5					18~19
xidizer Inlet Temp. (deg F)						
/E Manifold Temp. (deg F)						
/E Blower Hours	~					
NOTES:	0	28				
	SVE-2 Vacuum (" H ₂ O) SVE-2 Flow (SCFM) SVE-3 Vacuum (" H ₂ O) SVE-3 Flow (SCFM) /E-4 Vacuum (" H ₂ O) /E-4 Vacuum (" H ₂ O) /E-5 Vacuum (" H ₂ O) /E-5 Flow (SCFM) /E-5 Flow (SCFM) /E-5 Flow (SCFM) /E-6 Vacuum (" H ₂ O) /E-7 Vacuum (" H ₂ O) /E-7 Flow (SCFM) /E-8 Vacuum (" H ₂ O) /E-8 Vacuum (" H ₂ O) /E-9 Vacuum (" H ₂ O) /E-9 Flow (SCFM) /E-9 Flow (SCFM) /E-10 Vacuum (" H ₂ O) /E-10 Flow (SCFM) /E-10 Flow (SCFM) <t< td=""><td>SVE-1 Flow (SCFM) $\\$0$ SVE-2 Vacuum (" H₂O) $\\$4$ SVE-2 Flow (SCFM) 76 SVE-3 Vacuum (" H₂O) 414 SVE-3 Flow (SCFM) 76 726 726 726 726 727 726 727 726 727 726 727 726 727 726 727</td><td>SVE-1 Flow (SCFM) \mathcal{BO} SVE-2 Vacuum (" H₂O) $\mathcal{3}$ $\mathcal{4}$ SVE-2 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ SVE-3 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ SVE-3 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ $\mathcal{7}$ $\mathcal{7}$ $\mathcal{7}$ $\mathcal{6}$ $\mathcal{7}$ $\mathcal{7}$</td><td>SVE-1 Flow (SCFM) 80 SVE-2 Vacuum (" H₂O) 34 SVE-2 Flow (SCFM) 76 SVE-3 Vacuum (" H₂O) 1/4 SVE-3 Flow (SCFM) 76 /E-4 Vacuum (" H₂O) 86 /E-4 Vacuum (" H₂O) 85 /E-4 Flow (SCFM) 5 /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 17 /E-6 Flow (SCFM) 17 /E-7 Vacuum (" H₂O) 9/4 /E-7 Vacuum (" H₂O) 9/4 /E-7 Flow (SCFM) 17 /E-8 Vacuum (" H₂O) 9/2 /E-8 Vacuum (" H₂O) 9/2 /E-8 Flow (SCFM) 0 /E-9 Flow (SCFM) 0 /E-9 Flow (SCFM) 0 /E-9 Flow (SCFM) 15* /E-10 Vacuum (" H₂O) 16* /E-10 Flow (SCFM) 15* /E-10 Flow (SCFM</td><td>SVE-1 Flow (SCFM) 80 </td><td>SVE-1 Flow (SCFM) 80 </td></t<>	SVE-1 Flow (SCFM) $\$0$ SVE-2 Vacuum (" H ₂ O) $\$4$ SVE-2 Flow (SCFM) 76 SVE-3 Vacuum (" H ₂ O) 414 SVE-3 Flow (SCFM) 76 726 726 726 726 727 726 727 726 727 726 727 726 727 726 727	SVE-1 Flow (SCFM) \mathcal{BO} SVE-2 Vacuum (" H ₂ O) $\mathcal{3}$ $\mathcal{4}$ SVE-2 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ SVE-3 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ SVE-3 Flow (SCFM) $\mathcal{7}$ $\mathcal{6}$ $\mathcal{7}$ $\mathcal{7}$ $\mathcal{7}$ $\mathcal{6}$ $\mathcal{7}$	SVE-1 Flow (SCFM) 80 SVE-2 Vacuum (" H ₂ O) 34 SVE-2 Flow (SCFM) 76 SVE-3 Vacuum (" H ₂ O) 1/4 SVE-3 Flow (SCFM) 76 /E-4 Vacuum (" H ₂ O) 86 /E-4 Vacuum (" H ₂ O) 85 /E-4 Flow (SCFM) 5 /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 16* /E-5 Flow (SCFM) 17 /E-6 Flow (SCFM) 17 /E-7 Vacuum (" H ₂ O) 9/4 /E-7 Vacuum (" H ₂ O) 9/4 /E-7 Flow (SCFM) 17 /E-8 Vacuum (" H ₂ O) 9/2 /E-8 Vacuum (" H ₂ O) 9/2 /E-8 Flow (SCFM) 0 /E-9 Flow (SCFM) 0 /E-9 Flow (SCFM) 0 /E-9 Flow (SCFM) 15* /E-10 Vacuum (" H ₂ O) 16* /E-10 Flow (SCFM) 15* /E-10 Flow (SCFM	SVE-1 Flow (SCFM) 80	SVE-1 Flow (SCFM) 80

Notes:

brane.

1. ppm = Parts per Million 2. % = Percent

PID 713839 Instrument ID-

3. " H_2O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	11/5/21			
Watch Time:				
Screen Time:	<pre></pre>			
Oxidizer System Location	6.62			
Inlet Temperature (°F)	682			
Burner Chamber Temperature (°F)	681			
Discharge Temperature (°F)	632			
Inlet Limit Controller Temperature (°F)	682			
Outlet Limit Controller Temperature (°F)	633			
Process Fan Valve Position (Open/Closed)	Open			
Dilution Valve Position (%)	0.0			
Combustion Valve Position (%)	12.1			
Process Blower Runtime (Hours)	14317			5
Combustion Fan Runtime (Hours)	14318			
Burner Runtime (Hours)	14308			
Processing Vapors Runtime (Hours)	14295			
Panel Temperature (°F)	78	1		
Flame Signal (Volts)	5.0			
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0.0			
Propane Tank A Level (%)	65			
Propane Tank B Level (%)	65			
NOTES:				

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date	e: /5/21
Watch Time	e: [430
Screen Time	2:
SVE/AS System Location	
SVE Blower Speed (Hertz)	54.0
SVE Blower Runtime (Hours)	75-2-7
SVE Blower Filter Differential Pressure (" H_20)	0.5
SVE Blower Inlet Differential Pressure (" H ₂ 0)	2.0
SVE Blower Inlet Temperature (°F)	55
SVE Blower Inlet Vacuum (" H ₂ 0)	+84
SVE Blower Discharge Pressure (PSI)	0
SVE Blower Discharge Temperature (°F)	110
AS Blower Speed (Hertz)	52.0
AS Blower Runtime (Hours)	2522.2
AS Blower Pressure (PSI)	6.5
AS Blower Flow (" H ₂ O)	0.2
Sparge Zone 1 Operating Cycle - Open Interval(s)	-
Sparge Zone 2 Operating Cycle - Open Interval(s)	-
Sparge Zone 3 Operating Cycle - Open Interval(s)	-
Sparge Zone 4 Operating Cycle - Open Interval(s)	
Sparge Zone 5 Operating Cycle - Open Interval(s)	-
Heat Exchanger Runtime (Hours)	2821.5
Heat Exchanger Discharge Temperature (°F)	56-0
Transfer Pump Runtime (Hours)	1.7
Transfer Pump Discharge Pressure (PSI)	0
Moisture Separator Level (% Full)	75 °1 °
Water Storage Tank Level (DTF, TD from MP; inches)	1.SftTD
NOTES	

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

INSTRUMENT QC/ PACKING LIST

Description	RAE Systems MiniRAE 3000			
Instrument ID	13839			
Lamp Voltage	□ 10.6 eV □ 11.7 eV □ 9.8 eV			
Date Calibrated	Ø2 Norter 1			

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 with carry case				
Rechargeable battery (installed)		\checkmark		
Protective rubber boot				
Manual		-		<u></u>
Quick reference card				
Probe tip		-		
Charger/ adapter, or charger and cradle		-		
(2) Hydrophobic filters		-		
Alkaline adapter with (4) AA alkaline batteries installed				
ProCal calibration sheet				
Supporting Items				
100 ppm isobutylene calibration gas				
Gas regulator				
Tedlar bag	_			
Datalogging software				
Communications cable	_			
*100 ppm Isobutylene SDS				
✓ Must match cylinder with setup	+			
*SDS provided upon request	ł			
Spare alkaline battery pack				
Alkaline AA batteries				

Prepared by: QC checked by: Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Des	ment ID 13839 cription MiniRae 3000 librated 11/2/2021 12:5	8:34PM				
Manufacturer Rae Systems Model Number PGM-7320		State Certified Status Pass				
Serial Number/ Lot 592-002600 Number			Temp °C	18		
	ocation Seattle artment			Humidity %	52	
		Calibra	tion Specifications			
	Group # 1 oup Name VOC tated Accy Pct of Readi	ng		Range Acc % 0. ading Acc % 3. Plus/Minus 0.	0000	
<u>Nom In Val / In V</u> 100.0 / 100.0	/al <u>In Type</u> PPM	<u>Out Val</u> 100.0			ft As Dev% 00.0 0.00%	
Test Instruments	Used During the Calib	ration			(As Of Cal E	ntry Date)
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Number</u> Lot Number		<u>Next Cal Date /</u> Expiration Date
SEA ISO 100 PPM 305-401882019- I	Isobutylene (C4H8) 100 PPM) Airgas	x02ai99cp342066	5 305-40188201 -1		9/9/2024

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

AECOM

Americas

Daily Tailgate Meeting

sessement (THA) follow this meeting at the task location immediately before Meeting Leader: A ₁ A ₂ A ₂ C ₅ UK ₂ F Date: / 5/2 ¹ Project Name/Location: GTA { T-3σ Project Number: Coday's Scope of Work: GTA / T-3σ C A Muster Point Location: First Aid Kit Location: Fire Extinguisher Location: Spill Kit Location: 1, Required Topics 2. Discuss if Applicable to Today's Work Check [as reviewed or mark] as not applicable Y Fitness for Duty requirements, all sign in / sign out Biological / Chemical / Electrical Hazards Y SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting Stort Work Right & Responsibility- all task Store WORK Right & Responsibility- all task Specialized PPE Needs Simultaneous/ Neighbouring Operations Y equirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition Y areaff control Weather Hazards / Heat Stress / Coil Stress Y equirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition / serators projective Equipment (PPE). Required thesk lists/records available, understood (describe): Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach): Equipment/machinery inspected (documented as required	attendance of all AECOM employee simultaneous operations for coordir priefly discuss required and applica	or to sending crews to individual tasks. F as and subcontractors. Invite personnel nation purposes. Review scope of work ble topics. This meeting is a daily refra- c discussions associated with Task Haz	and AECOM SHA	ber: kE Rep. N	ame: ILGER Miller ame: Tim Giles
Date: \[\[\[\[\] \[\] \] Project Name/Location: \[\] T-3 o \[Project Number: Today's Scope of Work: \(\) \[\] \[\	Assessment (THA) follow this meet				lete Utter
Today's Scope of Work: GTA / [-3 o C : M Auster Point Location: Fire Aid Kit Location: Fire Extinguisher Location: Spill Kit Location: 1., Required Topics 2. Discuss if Applicable to Today's Work Pitness for Duty requirements, all sign in / sign out Image: Code of the		iect Name/Location: OTA (T-3)		/14	
ATA T-3 o C Muster Point Location: First Ald Kit Location: Fire Extinguisher Location: Spill Kit Location: 1. Required Topics 2. Discuss if Applicable to Today's Work If Thess for Duty requirements, all sign in / sign out Image: Check Counce of the second t				Trojec	
Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, etc.) Image: Pitness for ach task immediately prior to conducting completed for each task immediately prior to conducting Image: Pitness for Duty requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition Image: Pitness for Duty requirement (PE) - Required items print, first aid kit, fire extinguisher, clinic/hospital location Image: Protective Equipment (PE) - Required items print, first aid kit, fire extinguisher, clinic/hospital location Image: Pitness for Duty requirement (e.g., JHAs, THAs, protective Cipation - operators properly trained/certified and igood condition - operators properly trained/certified and igood condition - operators properly trained/certified in gloace to protect workers, site staff, and the public Image: Pitness form today: Image: Protective Equipment (PE) - Required items protect workers, site staff, and the public Image: Pitness form today: Image: Protective Equipment (PE) - Required items protect workers, site staff, and the public Image: Pitness form today: Image: Pitness form today: Image: Pitness form today: Image: Pitness form today: Image: Pitness f	Muster Point Location:			ocation:	Spill Kit Location:
Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, all sign in / sign out Image: Pitness for Duty requirements, etc.) Image: Pitness for ach task immediately prior to conducting completed for each task immediately prior to conducting Image: Pitness for Duty requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition Image: Pitness for Duty requirement (PE) - Required items print, first aid kit, fire extinguisher, clinic/hospital location Image: Protective Equipment (PE) - Required items print, first aid kit, fire extinguisher, clinic/hospital location Image: Pitness for Duty requirement (e.g., JHAs, THAs, protective Cipation - operators properly trained/certified and igood condition - operators properly trained/certified and igood condition - operators properly trained/certified in gloace to protect workers, site staff, and the public Image: Pitness form today: Image: Protective Equipment (PE) - Required items protect workers, site staff, and the public Image: Pitness form today: Image: Protective Equipment (PE) - Required items protect workers, site staff, and the public Image: Pitness form today: Image: Pitness form today: Image: Pitness form today: Image: Pitness form today: Image: Pitness f					
Required training (incl. task specific) completed and current SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.) Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all equipment/machinery inspected (documented as required) and in good condition / barricades in place to protect workers, site staff, and the public Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public Required checklists/records available, understood (describe): Lessons Learned / SH&E improvements (describe): Daily Check Out by Site Supervisor Describe Lessons Learned / Improvement Areas from today: The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above. Site Supervisor Name			Territor Contraction of the second se		
B. Daily Check Out by Site Supervisor Describe incidents, near misses, observations or Stop Work Describe Lessons Learned/ Improvement Areas from today: The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above. Site Supervisor Name Signature A how Utility	 SH&E Plan onsite - unders (incl. scope, preplanning have registers, controls, procedu Task Hazard Assessments completed for each task im STOP WORK Right & Reschanges/changed condition Requirement to report to sudamage, near miss, unsafe Emergency Response Plan first aid kit, fire extinguishe Personal Protective Equipm hazard assessments in good Equipment/machinery insp and in good condition - ope Work area set up and dem protect workers, site staff, a Required checklists/record 	tood, reviewed, signed by all azard assessments / risk ures, requirements, etc.) (THAs) are to be reviewed and imediately prior to conducting ponsibility- all task hs re-assess with THA upervisor any injury, illness, e act / condition n – including muster point, r, clinic/hospital location nent (PPE) - Required items per od condition / in use by all ected (documented as required) erators properly trained/certified arcation/ barricades in place to and the public s available, understood (describe):	Image: Construct of the service oversight as simultaneou. Image: Construct oversight as simultaneou. <t< td=""><td>- Lifting, E ag Out e Employe signment us/ Neighbo all Hazards PPE Need ol gement/ D zards / He or Require reporting, s / Plans r ace, Hot V (identify/at</td><th>ees - visual identifier and mentor puring Operations s Decontamination at Stress / Cold Stress ments (e.g., JHAs, THAs, etc.) equired (e.g., Fall Protection, Vork, Critical Lifts, etc.); in place, tach):</th></t<>	- Lifting, E ag Out e Employe signment us/ Neighbo all Hazards PPE Need ol gement/ D zards / He or Require reporting, s / Plans r ace, Hot V (identify/at	ees - visual identifier and mentor puring Operations s Decontamination at Stress / Cold Stress ments (e.g., JHAs, THAs, etc.) equired (e.g., Fall Protection, Vork, Critical Lifts, etc.); in place, tach):
Describe incidents, near misses, observations or Stop Work Describe Lessons Learned/ Improvement Areas from today: The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above. Site Supervisor Name Signature A b a t till HHTT,	n an ing an	a Mart			
Interventions from today: The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above. Site Supervisor Name Signature A > Life				214-30	
And are (Ither And MOUL) Time (at and of day / shift)	nterventions from today: The site is being left in	a safe condition and work crew of Signature	checked out as fit un	less othe	yan ne
			TII.		

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

AECOM

All employees:

STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.

Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.

Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand: * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s). * The hazards & control measures associated with each task you are about to perform.

- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.

* Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning: * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.

- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.

* You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
		In & Fit	Out & Fit
Anders Vitter AECOM Gues Frildman AErom Lucy Payteleeff AECOM	AS Uttor	ongo An	
		In & Fit	Out & Fit
Gwis Frildman AEro.M	1-with-	0445 GP	
		In & Fit	Out & Fit
Lucy Payteleeff AEOM	Lucy Pantetalf	1945 LP	
	, , , , , , , , , , , , , , , , , , ,	In & Fit	Out & Fit
	- 14	In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		-	
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

Name	Company Name	Arrival Time	Departure Time	Signature
A				
	N			

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date: 11/1	1/2021				Equipment I.D. # 46548		
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes		
AS-1	2105	9	5	(// Open/elosed/			
AS-2		8.5	8.8				
AS-3		8.5	0				
AS-4		8	13				
AS-5		8.5	6				
AS-6		8	7.8				
AS-7		9	4.8				
AS-8		8.5	3.8				
AS-9		8.5	2.6				
AS-10		9	2.8				
AS-11		9.5	2.8				
AS-12		9	2.8				
AS-13		9	6				
AS-14		8	4.2				
AS-15		8.5	4.6				
AS-16		9	6				
AS-17		9	2				
AS-18		8.5	0				
AS-19		9.5	5.4				
AS-20		9	2.8				
AS-21		8	4.4				
AS-22		8	0				
AS-23		9	0				
AS-24		8	0				
AS-25		8.5	0				
AS-26		9	0				
AS-27		7.5	2.4				

Notes:

1. " H_2O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

ne Environmental Services, Inc.						<i>N</i>
Instrument ID Description	and the second se	V2.22A				
Manufacturer Model Number		1		State Certified Status	Pass	
Serial Number/ Lot Number	592-928505			Temp °C		
Location Seattle Humidity % 41 Department						
		Calibra	tion Specifications			
Group # 1 Group Name Isobutylene Stated Accy Pct of Range			Range Acc %3.0ading Acc %0.0Plus/Minus0.0	000		
Stated A						

Notes about this calibration

304-402162466-

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

АЕСОМ

Americas

attendance of all AECOM employ simultaneous operations for coor briefly discuss required and appl not a full orientation. Task-sper Assessment (THA) follow this me	prior to sending crews to individual tasks, yees and subcontractors. Invite personnel dination purposes. Review scope of work icable topics. This meeting is a daily refi fific discussions associated with Task Haz eeting at the task location immediately befi	from and resher,	AECOM SH&E Rep Phone Number:	S3AM-209-Fl r Name: Karra Mixica D. Name: Tin Gilles
Individual task is started.				Anders Utter
Date: 1//1/21 P Today's Scope of Work:	roject Name/Location: T-3 역	1	Pro	oject Number:
Muster Point Location: Secur. by Gate 1. Required Topics	LNAPL ProJuct First Aid Kit Location: COMMEX	Fire E	xtinguisher Location ハセン scuss if Applicable t	COARE
 SH&E Plan onsite - under (incl. scope, preplanning) registers, controls, proce Task Hazard Assessmer completed for each task STOP WORK Right & Re changes/changed conditi Requirement to report to damage, near miss, unsatistication Emergency Response Pling Personal Protective Equiping Azard assessments in grading and in good condition - op Work area set up and dem protect workers, site staff, 	ons re-assess with THA supervisor any injury, illness, afe act / condition an – including muster point, er, clinic/hospital location oment (PPE) - Required items per bod condition / in use by all pected (documented as required) perators properly trained/certified narcation/ barricades in place to and the public ds available, understood (describe):	0 3 <td> Biological/ Chemica Ergonomics - Lifting Lock Out/ Tag Out Short Service Employersight assignme Simultaneous/ Neig Slip/ Trip/ Fall Haza Specialized PPE Neig Traffic Control Waste Managemen Weather Hazards / Subcontractor Require procedures, reportin Work Permits / Plan </td> <td>al / Electrical Hazards g, Body Position loyees - visual identifier and mento ent hbouring Operations ards eeds t/ Decontamination Heat Stress / Cold Stress uirements (e.g., JHAs, THAs, ng, etc.) as required (e.g., Fall Protection, of Work, Critical Lifts, etc.); in place //attach): ibe/attach):</td>	 Biological/ Chemica Ergonomics - Lifting Lock Out/ Tag Out Short Service Employersight assignme Simultaneous/ Neig Slip/ Trip/ Fall Haza Specialized PPE Neig Traffic Control Waste Managemen Weather Hazards / Subcontractor Require procedures, reportin Work Permits / Plan 	al / Electrical Hazards g, Body Position loyees - visual identifier and mento ent hbouring Operations ards eeds t/ Decontamination Heat Stress / Cold Stress uirements (e.g., JHAs, THAs, ng, etc.) as required (e.g., Fall Protection, of Work, Critical Lifts, etc.); in place //attach): ibe/attach):
Daily Check Out by Site Secribe incidents, near missenterventions from today:	es, observations or Stop Work	Describ	and the second	Improvement Areas from today:
	N/A a safe condition and work crew of Signature	hecked	Street Street	And the statements of the stat
Site Supervisor Name Signature			Dat Tim	e 11/11/21

Daily Faigate Meeting (SAM-209-FMS) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED, CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

AECOM

All employees:

. STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.

· Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.

Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (Including AECOM Contractors and Subcontractors): Your signature below means that you understand: * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).

- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time	
- HT (3-	K UttoE	In & Fit All 1530	Out & Fit	100
Alters Vitter AECOM	Ale	In & Fit Port (No	- Out & Fit	A STATE OF
71		In & Fit	Out & Fit	80
		In & Fit	Out & Fit	1.000
the state	te sille	In & Fit	Out & Fit	,
and the second		In & Fit	Out & Fit	
		In & Fit	Out & Fit	ACONA CON
	ie de	- In & Fit	Out & Fit	
18		In & Fit	Out & Fit	2
A second second	1.20	In & Fit	Out & Fit	

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

 Name 	Company Name	Arrival Time	Departure Time	Signature
	L. The NW		No. 1	NS 26 . and All
9.67 6	1 de la Maria	Participation of the	195	16 1 18 19 19
1. 1 TH		and the	Astal .	
and the states		1. 189 1	124	
Press.		19-20 19-3	2. 8. 2	Section of the second

Daily Tailgate Meeting (S3AM-209-FM5)

Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED, CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

2 of 2

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date:]	1/18/21				Equipment I.D. # 39946
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
AS-1	12:55	7.0	1.4		
AS-2		65	8.4		
AS-3		6.5	0		
AS-4		6.5	0		
AS-5		7.0	4.0		
AS-6		6,5	4.5		
AS-7	12:51	7.0	10		
AS-8	\$-4	6.5	2.4		
AS-9		6.5	0		
AS-10		7.0	0		
AS-11		7.5	2.6		
AS-12	12:52	7.0	1.8		
AS-13	1	6.5	1.6		
AS-14		6.0	1.0		
AS-15		7.0	1.2		
AS-16	1	7.0	0		
AS-17	12:54	7.0	1.5		
AS-18		6.5	0		
AS-19		7.5	0		
AS-20		4.5	0		
AS-21		6.5	D		
AS-22		6.5	U		
AS-23	12:53	7.0	01.4		building gauge
AS-24		6.5	D		
AS-25		6.5	0		
AS-26		7.0	0		
AS-27		55	1.6		

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	11/18/21		
Watch Time:	2.45		
Screen Time:	21.44	 	
Oxidizer System Location		 +	
Inlet Temperature (°F) Powel bottom	689	 	
Burner Chamber Temperature (°F)	686		
Discharge Temperature (°F) $(outlet)'$	·(03D		
Inlet Limit Controller Temperature (°F)	688		
Outlet Limit Controller Temperature (°F)	630		
Process Fan Valve Position (Open/Closed)	open		
Dilution Valve Position (%)	0.0%		
Combustion Valve Position (%)	9.7%		
Process Blower Runtime (Hours)	14622		
Combustion Fan Runtime (Hours)	14623		
Burner Runtime (Hours)	14613		
Processing Vapors Runtime (Hours)	14600		
Panel Temperature (°F)	69		
Flame Signal (Volts) (payel battlef)	5.0		
Burner Chamber Inlet Differential Pressure (" H_2O)	0		
Propane Tank A Level (%)	60		
Propane Tank B Level (%)	55		
NOTES:			
Noter			

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:					
Watch Time:					
Screen Time:					
SVE/AS System Location					
SVE Blower Speed (Hertz) (VドD)	54.D_				
SVE Blower Runtime (Hours)	7807.8				
SVE Blower Filter Differential Pressure (" H ₂ 0) (DPI - 2 U	0,5				
SVE Blower Inlet Differential Pressure (" $H_{20}(F/\cdot 200)$	15				
SVE Blower Inlet Temperature (°F) (T1-200)	50				
SVE Blower Inlet Vacuum (" H ₂ 0) (1200)	15 86	S See Se	- 5 AN		
SVE Blower Discharge Pressure (PSI) P1-40D	0			2-12	1
SVE Blower Discharge Temperature (°F) $(T + 400)$	50 106°		N. S.	1	
AS Blower Speed (Hertz) (V デ)	52.0			I.T	
AS Blower Runtime (Hours) (Sparie Blower)	2887.1			1.1.21	
AS Blower Pressure (PSI) (PI-501)	6.0				
AS Blower Flow (" H2O) (Sparge Air Tiller)	0.1				
Sparge Zone 1 Operating Cycle - Open Interval(s)	Open				
Sparge Zone 2 Operating Cycle - Open Interval(s)	1				
Sparge Zone 3 Operating Cycle - Open Interval(s)					
Sparge Zone 4 Operating Cycle - Open Interval(s)					11.12
Sparge Zone 5 Operating Cycle - Open Interval(s)					1. 6
Heat Exchanger Runtime (Hours)	2886,4				6 . A .
Heat Exchanger Discharge Temperature (°F) (77500)	59°				
Transfer Pump Runtime (Hours) (MS PUMP)	1.8				
Transfer Pump Discharge Pressure (PSI) (P1-300)	0				
Moisture Separator Level (% Full)	~ 10%				
Water Storage Tank Level (DTF, TD from MP; inches)					1000
NOTES:					

Notes:

1. " H₂O = Inches of Water

2. ^oF = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date:					
Watch Time:	12:57				Design Parameter
System Time: System Location					Parameter
SVE Discharge VOC (ppm) PID	1101	wo rediar bag		1	
SVE Discharge LEL (%)	91.(q				<25
Oxygen (%)	-				
SVE System Inlet Vacuum (" H ₂ O)					
SVE System Inlet ΔP (" H ₂ O)					
Oxidizer Discharge VOC (ppm)		10-51			<10
HSVE-1 Vacuum (" H ₂ O)	1.0	whater			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	16				75
HSVE-1 Flow (SCFM)	82				/3
HSVE-2 Vacuum (" H ₂ O)	32				
HSVE-2 Flow (SCFM)	80				75
HSVE-3 Vacuum (" H ₂ O)	42				
HSVE-3 Flow (SCFM)	82				75
SVE-4 Vacuum (" H ₂ O)	86				
SVE-4 Flow (SCFM)	90				25
SVE-5 Vacuum (" H ₂ O)	18				
SVE-5 Flow (SCFM)	-				20
SVE-6 Vacuum (" H ₂ O)	唐 84				1 7 7 2 2
SVE-6 Flow (SCFM)	10212				30
SVE-7 Vacuum (" H ₂ O)	94				
SVE-7 Flow (SCFM)	15				18~19
SVE-8 Vacuum (" H ₂ O)	86				
SVE-8 Flow (SCFM)	-				18~19
SVE-9 Vacuum (" H ₂ O)	98				-
SVE-9 Flow (SCFM)	9.5				18~19
SVE-10 Vacuum (" H ₂ O)	>Max				
SVE-10 Flow (SCFM)	·20				18~19
Oxidizer Inlet Temp. (deg F)					
VE Manifold Temp. (deg F)					
SVE Blower Hours					
NOTES:	Water 1	up of ox	clizer a	sCharge	

Notes:

1. ppm = Parts per Million

2. % = Percent

3. " H_2O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

AECOM

Americas

Daily Tailgate Me		a state		and the second	S3AM-209-FM	
	or to sending crews to individual tasks. es and subcontractors. Invite personnel		AECOM Supe Phone Numbe		me: Karen mixon	
imultaneous operations for coordin	nation purposes. Review scope of work	k and	AECOM SH&E		me The Gille	
	ble topics. This meeting is a daily refined to the second se		Phone Numbe			
Assessment (THA) follow this meetindividual task is started.		Meeting Lead	er: Ander	s utter		
Date: 1/18/21 Pro	ject Name/Location: QTA +	T-30		and the second second second	t Number:	
Today's Scope of Work:		Same.	Statute and	- 24	and a survey of the state of the	
	B:-weekly of M ! h	reekly c	7+N			
Muster Point Location:	First Aid Kit Location:	Fire E	ctinguisher Lo	cation:	Spill Kit Location:	
1. Required Topics		2. Dis	cuss if Applic	able to T	odavie Work	
	ete elleine in / sine eut				d or mark 🔳 as not applicable	
Fitness for Duty requireme			and the second sec			
\mathbf{Z}	< specific) completed and current				Electrical Hazards	
	tood, reviewed, signed by all		Ergonomics -		ody Position	
(incl. scope, preplanning ha			Lock Out/ Tag	g Out		
registers, controls, procedu		1	Short Service	Employe	es - visual identifier and mentor	
Task Hazard Assessments	(THAs) are to be reviewed and	,	oversight assi	ignment		
	mediately prior to conducting		Simultaneous	/ Neiahba	ouring Operations	
STOP WORK Right & Res			Slip/ Trip/ Fall			
changes/changed condition		1 H H				
	upervisor any injury, illness,	$ \square \square$			6	
damage, near miss, unsafe			Traffic Contro			
Emergency Response Plar			Waste Manag	ement/ D	econtamination	
first aid kit, fire extinguishe			Weather Haza	ards / Hea	t Stress / Cold Stress	
hazard assessments in goo			Subcontractor		ments (e.g., JHAs, THAs, etc.)	
and in good condition - ope	ected (documented as required) erators properly trained/certified	Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place understood (identify/attach):				
protect workers, site staff, a						
Required checklists/record	s available, understood (describe):): Other Topics (describe/attach):				
			- Seren ropiou (
Lessons Learned / SH&E in	nprovements (describe):				_	
			Client specific	requirem	ents (describe):	
3. Daily Check Out by Site S	upervisor		1 FEE	NT 205 Y	1 4 12 5 5 5 5 5	
Describe incidents, near misses nterventions from today:	, observations or Stop Work	Describ	e Lessons Lea	rned/ Imp	rovement Areas from today:	
NA		NA				
The site is being left in	a safe condition and work crew	checked	l out as fit unle	ess other	wise specified as above.	
Site Supervisor Name	Signature			Date	1/18/21	
Anders Utter	1 Will	50				
TINDOLL VII6	A Utte	$M \cup$		Time (at end of day / shift) 4 3 0	

Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

• STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.

Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.

Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (Including AECOM Contractors and Subcontractors): Your signature below means that you understand: * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s). * The hazards & control measures associated with each task you are about to perform.

* The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).

* That no tasks or work is to be performed without a hazard assessment.

* Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning: * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.

* You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.

* You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.

* You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
	Constant The New Constant	In & Fit	Out & Fit
Anders Utter AECOM	Kury Pantotelff	0900 Ay	
1 1 1 1		In & Fit	Out & Fit
LUCY Pantelsett AERIM	Aur Pantoterft	9:12 LP	
	and managed the	In & Fit	Out & Fit
and a second		In & Fit	Out & Fit
envier en estatutioner (In & Fit	Out & Fit
or a film State (and States 2 Ph. (Correction - 199) 1 A	and a set of the set o	In & Fit	Out & Fit
a real of the second	a state and a state of	In & Fit	Out & Fit
		In & Fit	Out & Fit
	forder to be a second	In & Fit	Out & Fit
denaity and contrasts are		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

Name	Company Name	Arrival Time	Departure Time	Signature
				March 199
				DOL:
NOT THE ALL OF	n sylther contract of the state	- 2012 million data	her	To a difference in the second of the second
	Og D		104.250K	for a second and

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Descr	ent ID 39946 iption MiniRAE 3000 prated 11/16/2021 12						
Model Nu Serial Numbe Nu	cturer Rae Systems Imber PGM7320 r/ Lot 592-920831 Imber			Tem	atus Pass p°C 17		
Loo Depar	cation Seattle tment			Humidit	y % 57		
		Calibra	tion Specification	S			
Grou	Group # 1 1p Name ISOBUTYL ted Accy Pct of Read		R	Range Acc eading Acc Plus/Min	% 3.0000		
<u>Nom In Val / In Val</u> 100.00 / 100.00	<u>In Type</u> PPM	<u>Out Val</u> 100.00	<u>Out Type</u> PPM	<u>Fnd As</u> 100.00	<u>Lft As</u> 100.00	<u>Dev%</u> 0.00%	<u>Pass/Fail</u> Pass
fest Instruments U	sed During the Calib	oration			<u>(As C</u>	of Cal Ent	ry Date)
<u>Fest Standard ID</u> <u>I</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Nu</u> Lot Num	ber Last (ext Cal Date / opiration Dat
	sobutylene (C4H8) 10 PPM	0 Airgas	x02ai99cp34206	56 304-402 -1			11/2025

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Date:			PO AS V	Vell Field Data Collec	
	-Lime				Equipment I D. # 24052
ocation	Pressure	Pressure F ^{\∉W} (PSI)	Elew	Valve Position	Notes
AS-1	3.0	7.0	(SCFM)	(% Open/Closed)	
45-2	0	6.5			water in nanifold
NS-3	0				
15-4	13	6.5			water is Mart-12
AS-5	4.0	6.5			
AS-6	4.2	7.0			
AS-7	2.0	6.0			
AS-8		7.0			
AS-9	2.4	6.5			
AS-10	1.8	6.5			
	2.8	7.0			
AS-11	2.8	75			
AS-12	3.2	7.0			
AS-13	3.4	6.5			
AS-14	3.2	6.0		2.4	
AS-15	2.8	7.0			BOUACING
AS-16	3.0	7.0			Uvaner /
AS-17	2.0	7.0	2.	19 C	
AS-18	0	6.5			
AS-19	5.4	7.5			1980 S.
AS-20	2.4	6.5			
AS-21	0	6.5		1. 1. 1. 1	
S-22	0	6.5		- 1 / · · ·	
45-23	1.4	7.0			
S-24	2.4	6.0			
S-25	C	6.0			
5-26	0	7.0	1		
AS-27	3.2	5.5	1		

AECOM

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Watch Time	100	1630		
SVE/AS System Location Screen Time	1001			
SVE Blower Speed (Hertz)	54.0			
SVE Blower Runtime (Hours)	7932.0			
SVE Blower Filter Differential Pressure (" H ₂ 0)	0.5			
SVE Blower Inlet Differential Pressure ("H ₂ 0)	2.0			
SVE Blower Inlet Temperature (°F)	50			
SVE Blower Inlet Vacuum (" H ₂ 0)	- 86			
SVE Blower Discharge Pressure (PSI)	0			
SVE Blower Discharge Temperature (°F)	109			
AS Blower Speed (Hertz)	52.0			
AS Blower Runtime (Hours)	3011.4			
AS Blower Pressure (PSI)	6.0			
AS Blower Flow (" H ₂ O)	0.1	•		
Sparge Zone 1 Operating Cycle - Open Interval(s)	Open			
Sparge Zone 2 Operating Cycle - Open Interval(s)	1			
Sparge Zone 3 Operating Cycle - Open Interval(s)				
Sparge Zone 4 Operating Cycle - Open Interval(s)				
oparge Zone 5 Operating Cycle - Open Interval(s)	1			1.00
Heat Exchanger Runtime (Hours)	3010.7			
Heat Exchanger Discharge Temperature (°F)	60.0		1.1	
Fransfer Pump Runtime (Hours)	1.9			
Fransfer Pump Discharge Pressure (PSI)	0			440
Aoisture Separator Level (% Full)	3/4	dirty-hard	to tell	
Nater Storage Tank Level (DTF, TD from MP; inches)	3.4' 🛤			

Notes:

2

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE System Data

		SVE SY	stem Data		
Date:	11/23/21				Design
Watch Time:	1430				Paramete
System Time: ystem Location					
and the second distance of the second distanc					
VE Discharge VOC (ppm)	87.5				<25
VE Discharge LEL (%)				_	\$23
Dxygen (%)	-				
VE System Inlet Vacuum (" H ₂ O)	86				
VE System Inlet ΔP (" H ₂ O)					
Oxidizer Discharge VOC (ppm)	2.0				 <10
HSVE-1 Vacuum (" H ₂ O)	0.9	Condensate	in line		
HSVE-1 Flow (SCFM)	6				75
HSVE-2 Vacuum (" H ₂ O)	80+				
HSVE-2 Flow (SCFM)	34				 75
	80				
HSVE-3 Vacuum (" H ₂ O)	46				75
HSVE-3 Flow (SCFM)	80				75
SVE-4 Vacuum (" H ₂ O)	190				
SVE-4 Flow (SCFM)	5	dirty			25
SVE-5 Vacuum (" H ₂ O)	20	01179			
SVE-5 Flow (SCFM)	0				20
SVE-6 Vacuum (" H ₂ O)	88				
SVE-6 Flow (SCFM)	14				30
SVE-7 Vacuum (" H ₂ O)	100				
SVE-7 Flow (SCFM)	17				18~19
SVE-8 Vacuum (" H ₂ O)	88				
SVE-8 Flow (SCFM)	0				18~19
SVE-9 Vacuum (" H ₂ O)	96				
SVE-9 Flow (SCFM)	200				18~19
SVE-10 Vacuum (" H ₂ O)	100 +				
SVE-10 Flow (SCFM)	20				18~19
Oxidizer Inlet Temp. (deg F)	-				
SVE Manifold Temp. (deg F)	-				
SVE Blower Hours	-				
NOTES:					

Notes:

ſ

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

11/23/21				
1620 711				
10101111				
1801				
0.1				
680 683				
\$28682				
628				
679				
5.0				
0.0				
		-		
75				
S .				
	6.20.683 6.28 6.28 6.28 6.27 0.0 11.1 14.746 14.747 14.724 71 5.0 0.0 8.7	$ \begin{array}{c} \hline 6 & \underline{9} & \underline{0} & \underline{6} & \underline{3} \\ \hline 5 & \underline{7} & \underline{6} & \underline{3} \\ \hline 5 & \underline{7} & \underline{6} & \underline{6} & \underline{3} \\ \hline 6 & \underline{7} & \underline{7} \\ \hline 6 & \underline{7} & \underline{7} \\ \hline 7 & \underline{7} & \underline{7} \\ \hline 1 & \underline{7} & \underline{7} \\ \hline 1 & \underline{7} & \underline{7} \\ \hline 7 & \underline{1} & \underline{7} \\ \hline 7 & \underline{7} & \underline{7} \\ \hline 7 & \underline{7} & \underline{5} \\ \end{array} $	$ \begin{array}{c} \hline 6 & \underline{9} & \underline{6} & \underline{8} & \underline{3} \\ \hline 5 & \underline{7} & \underline{6} & \underline{8} & \underline{3} \\ \hline 6 & \underline{7} & \underline{6} & \underline{8} & \underline{3} \\ \hline 6 & \underline{7} & \underline{7} & \underline{6} & \underline{7} \\ \hline 6 & \underline{7} & \underline{7} & \underline{7} \\ \hline 7 & \underline{1} & \underline{7} & \underline{7} \\ \hline 7 & \underline{1} & \underline{7} & \underline{7} \\ \hline 7 & \underline{1} & \underline{7} & \underline{7} \\ \hline 7 & \underline{7} & \underline{5} \\ \end{array} $	6.20.683 6.28 6.28 6.27 0PeA 0.0 11.1 14746 14747 14724 71 5.0 0.0 87 7.5

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H₂O = Inches of Water

AECOM

AECOM

Americas							
Daily Tailgate Mee	41					3AM-209-FM	
nstructions: Conduct meeting prior ittendance of all AECOM employees imultaneous operations for	ting			vieor Ni	ame: karex Mixo	Λ	
tendance of all AECOM employees imultaneous operations for coordina refigure and applicab tot a full orientation. Task	to sending crews to individual tasks and subcontractors. Invite person	s Require	AECOM Super Phone Numbe	r:	The Cale		
tot a full and	ation purposes. Review scope of w	ork and	AECOM SH&E	Rep. Na	ame: Tim Gilles		
tot a full orientation. Task-specific Assessment (THA) follow this meetin individual task is started	discussions associated with Task H	efresher, lazard	Phone Numbe		11		
urvidual task in the meeting	ig at the task location immediately b	efore	Meeting Leade	r: And	ers Utter		
				Projec	t Number:		
Today's Scope of Work:	ect Name/Location: GE { T	-30					
	Weekly of M f VIMS		weekly of,		Spill Kit Location	on:	
Muster Point Location:	First Aid Kit Location:		xtinguisher Loc			-	
1. Required Topics	1		scuss if Applica	ble to T	oday's Work	i santicabla	
Fitness for Duty requi				reviewe		ot applicable	
Fitness for Duty requirement	nts, all sign in / sign out		Riological/ Che	emical / I	Electrical Hazards		
a contrary (Inc) tack	Conself 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ergonomics - L	ifting, B	ody Position		
(incl. scope, preplanning ba	tood, reviewed, signed by all			-			
registers, controls, procedu	Izard assessments / risk		Short Service	Employe	ees - visual identifie	r and mentor	
V Task Hazard Assessments	(THAs) are to be reviewed and		oversight assig	nment			
my Guidin Lask Im	mediately prior to conducting	Simultaneous/ Neighbouring Operations					
UP STOP WORK Right & Page	annah ila di sa l		Slip/ Trip/ Fall Hazards Specialized PPE Needs Traffic Control Waste Management/ Decontamination				
- and indiged condition	is re-assess with THA						
LV Requirement to report to su	inenvisor onu iniun/ illness	122					
/ duringe, near miss unsafe	act / condition						
Emergency Response Plan first aid kit, fire extinguisher	 including muster point, 	HE	Weather Haza	rds / Hea	at Stress / Cold Str	ess	
Personal Protective Equing	nent (PPE) - Required items per	HE	Subcontractor	Require	ments (e.g., JHAs,	THAS,	
hazard assessments in goo	id condition / in use by all		procedures, re	porting,	etc.)		
V Equipment/machinery inspe	ected (documented as required)		Work Permits /	Plans r	equired (e.g., Fall F	Protection,	
and in good condition - ope	rators properly trained/certified		Confined Space, Hot Work, Critical Lifts, etc.); in place,				
Work area set up and dema	arcation/ barricades in place to		understood (id				
protect workers, site staff, a							
Required checklists/records	s available, understood (describe		Other Topics (describe	/attach):		
Lessons Learned / SH&E in	nprovements (describe)		1	1	anto (docorbo):		
		Client specific requirements (describe):					
3. Daily Check Out by Site St		991					
Describe incidents, near misses interventions from today:	, observations or Stop Work	Descri	be Lessons Lear	ned/ Imp	provement Areas fr	om today:	
N/A			N/A				
The site is being left in	a safe condition and work cre	w checke	d out as fit unle	ss othe	rwise specified as	s above.	
The site is being felt in							
Site Supervisor Name Anders Her	Signature AS Utt	07			/23/2 (at end of day / shift)	1730	

Daily Tailgate Meeting (SJAM-209-FM5) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

AECOM

All employees: STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded or Be alert and communicate any about safety / hazard or additional precaution is not recorded or	the THA
	1 life this -
STOP WORK is	
 Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor. Reassess task base task base	
· Be alert and come	
and communicate any changes in personnel or conditions at the work and d	
 Reassess task have been any changes in personnel or conditions at the THA if needed. 	nderstand:

SITE WORKERS (Including AECOM Contractors and Subcontractors): Your signature below means that you understand: * The requirement to participate in constructors and Subcontractors): Your signature below means that you understand: * The requirement to participate in constructors and Subcontractors): Your signature below means that you understand: The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
 The hazards & control measurement is a supervised of the supervis

* The hazards & control measures associated with each task you are about to perform. The permit to work requirements applicable to the work you are about to perform.
That no tasks or work is to be performed activities).

* That no tasks or work is to be performed without a hazard assessment.

* Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your Initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning: * You are physically and mentally fit for

* You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition. * You are not under the influence of the physical physic

* You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely * You are aware of your recommendation, drugs, or alcohol that could affect your ability to courred). * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the Above and the state of the s

impairment/fatigue issue to the AECOM Supervisor.

* You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor Initials & Sign In Initials & Sign Out Time Time Print Name & Company Out & Fit Signature In & Fit 1730 14 Booku Anders VHE AECOM ALLER Out & Fit In & Fit Out & Fit In & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets

Name	EPRESENTATIVE Company Name	Arrival Time	Departure Time	Signature
Name	Company			
	-			
		1.00		

Daily Tailgate Meeting (S3AM-209-FM5) n 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument II	24052						
Description	n MIniRae 3000						
Calibrate	d 11/19/2021 7:4	4:27PM					
Manufacture	r Rae Systems			State Certifi	ied		
Model Numbe	r MiniRAE 3000	1		Stat	tus Pass		
Serial Number/ Lo	t 592-910634			Temp	°C 17		
Numbe	r			-			
Locatio	n Seattle			Humidity	% 41		
Departmen	t						
		Calibra	tion Specifications				
C	4/ 1	Canbra	· · · · · · · · · · · · · · · · · · ·		0.0000		
	1p# 1			Range Acc %			
	ame VOC		K	eading Acc %			
	ccy Pct of Readi	ng		Plus/Minus	s 0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	104.20	100.00	0.00%	Pass
Test Instruments Used	During the Calib	ration			()		
Test mistruments Oscu	burning the Callb			o		Of Cal Enti	
Test Standard ID Descri	ntion	Manufacturer	Model Number	<u>Serial Num</u> Lot Numbe		Cal Data/ Er	<u>ext Cal Date /</u> xpiration Date
Test Standard ID	peron	<u></u>	Model Humber	<u>Lot rumb</u>		red Date	xpiration Date
SEA ISO 100 Isobut	ylene (C4H8) 100) Airgas	x02ai99cp34206	6 305-40188			9/2024
PPM PPM	A		-	-1			
305-401882019-							
1							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

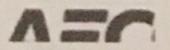
Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

AECOM	FIELD ACTIVITY LOG
PROJECT	T30 FIELD ACTIVITY LOU COMPLETED BY LUCY Partleff
	2066 7994 APPROVED BY
DAV & DATE	Wednesday 12/1/21 SHEET OF
CALL OF DALLS	Weinksned stiller
FIELD ACTIV DESCRIPTION	TTY SUBJECT: N OF DAILY ACTIVITIES AND EVENTS:
TIME	
1500	Arrive on site. Notified PK upon arrival
1510	Take readuras at HIM. SVF. BOURY, BM ADDIAL
1530	Talle oxider readings Took photos billing and
	have time finding all readings Missed Kin These
1540	Sturted read pressure and flow reading at
	AS wells. In advas of SVE
1555	Started pressure and flow readings at SVE
	wells.
1610	LOOK CARAGE ISTUGE ON COULD NOT ARE MOSTO
	PID readings (eff with from tilbung. Forgot
11.25	Put with Paul I bood take level in Tank. Went
110.55	Fall Envol tape mensive and took level. Triel
	Lo mappisore potton Jo. Be later realized probably should
	ineque top down te Pit in tape with hit water
1700	Teft site
	Missed propone Levels
	CHANCES FROM BLANS OF IMPORTANT DECISIONS:

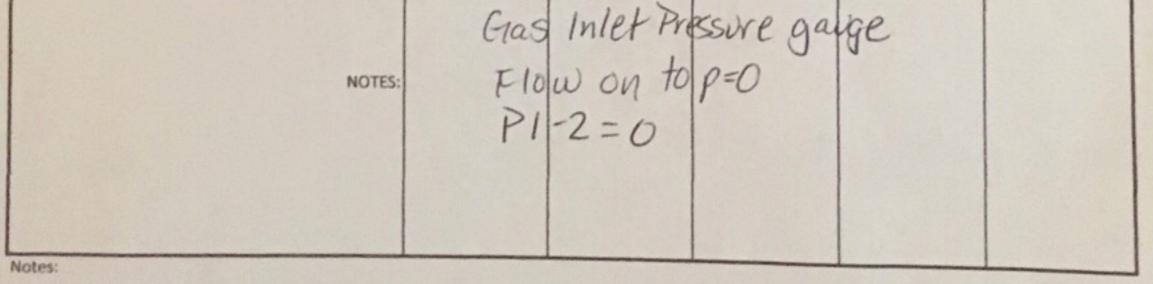
CHANGES FROM PLANS

VISITORS ON SITE: NA NA IMPORTANT TELEPHONE CALLS: WEATHER CONDITIONS: CLOUDY 550 PERSONNEL ON SITE:


PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Screen Time:	1513			
SVE/AS System Location				
SVE Blower Speed (Hertz) VFD bottom	54.0			
SVE Blower Runtime (Hourș)	8122,9			
AS Blower Speed (Hertz) VFD	52.0			
AS Blower Runtime (Hours) Sparge Blower	3202.2			
Transfer Pump Runtime (Hours) MS Pump	2.0			
SVE Blower Filter Differential Pressure (" H ₂ 0) DPI-200	0.5	above t	he one b	elow
SVE Blower Inlet Differential Pressure (" H ₂ 0) F1-200	1.5	on gray	Box behing Blower Eng	SVEWEII
SVE Blower Inlet Temperature (°F) T1-200	\$55	around		SVEwell
SVE Blower Inlet Vacuum (" H ₂ 0) V1-200	85	to left a	f SVE h	eil head
SVE Blower Discharge Pressure (PSI) P1-400	0	Right	at PI	readin
SVE Blower Discharge Temperature (°F) 71-400	122	Farsia	le next t	PID rea
AS Blower Pressure (PSI) P1-501	5.6	othe	erside 1	side
AS Blower Flow (" H ₂ O) DP1-500	1	oth	er side	outside
Sparge Zone 1 Operating Cycle - Open Interval(s)	Open			
Sparge Zone 2 Operating Cycle - Open Interval(s)				
Sparge Zone 3 Operating Cycle - Open Interval(s)				
Sparge Zone 4 Operating Cycle - Open Interval(s)				
Sparge Zone 5 Operating Cycle - Open Interval(s)	1			
Heat Exchanger Runtime (Hours)	3201.5			
Sparrage Heat Exchanger Discharge Temperature (°F) T1-500	72			
Transfer Pump Discharge Pressure (PSI) P1-300	0	far	side nea	PIDrey
Moisture Separator Level (% Full)	10%			
Water Storage Tank Level (DTF, TD from MP; inches)				

Notes:


- 1. " H_2O = Inches of Water
- 2. °F = Degrees Fahrenheit
- 3. PSI = Pounds per Square Inch

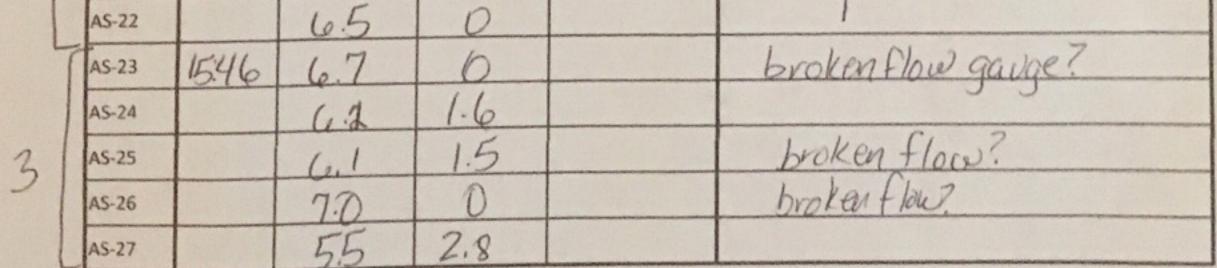
4. % = Percent

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	12/121				
Watch Time:					
Screen Time:	LADI	135			
Oxidizer System Location		6			
Inlet Temperature (°F)	668				
Burner Chamber Temperature (°F)	668				
Discharge Temperature (°F)	622				
Inlet Limit Controller Temperature (°F)	688	H Cha	rt recorde	v 11	
Outlet Limit Controller Temperature (°F)	623	•	11		1.1.1
Process Fan Valve Position (Open/Closed)	open				
Dilution Valve Position (%)	D.D				
Combustion Valve Position (%)	16.9%				
Process Blower Runtime (Hours)					
Combustion Fan Runtime (Hours)					
Burner Runtime (Hours)		missed +	hese		
Processing Vapors Runtime (Hours)					
Panel Temperature (°F)					
Flame Signal (Volts)	5.0	"Flame?	visplay "		
Burner Chamber Inlet Differential Pressure (" H ₂ O)					
Propane Tank A Level (%)	-	Missed	these		
Propane Tank B Level (%)	_				
	PI-	1=0	TENCE DO		
	1 1.0	Inlow Dr	Pre. 100 00	ha	

3:37

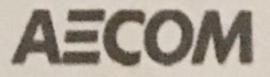
1. ^oF = Degrees Fahrenheit


2. % = Percent

3. " H₂O = Inches of Water

AECOM

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form


	Date: /	2/1/2	1			Equipment 1.D. # PID 039946
	Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes
r	AS-1	15:51	7.2	3.0		bouncing
	AS-2		6.5	8.4		broken? wet, havd to see
	AS-3		6.5	0		water in Flow
	AS-4		5.8	129		broken
	AS-5		7.0	3.8		bouncing 3.8-4
L	AS-6		65	3.5		
[AS-7	B :41	7.8	2.1		broken Flow gauge?
	AS-8		6.6	2.3		broken Flas gauge.
	AS-9		6.4	1.6		
1	AS-10		7.0	1.8		
1	AS-11		7.5	2.5		broken Flow
F	AS-12	15:44	7.0	2.8		
1	AS-13		Le.le	3533		
	AS-14		5.7	3.0		bound Flow gauge
1	AS-15		7.0	2.4		
1	AS-16		7.D	1.0		bouncy fbw bouncing 0-1
Ē	AS-17	15:48	7.0	1.0		bouncing 0-1
	AS-18		6.5	1.0		broken?
	AS-19		75	5.0		
	AS-20		65	2.3		
	AS-21		6.3	0		Broken flow?

Notes:

4

- 1. "H₂O = Inches of Water
- 2. SCFM = Standard Cubic Feet per Minute
- 3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE System Data

	[and the second	
	Date:	2/1/21 15:55		-
	Watch Time:	15:55		Design Parameters
	System Time:			- rananiesers
	System Location			
	SVE Discharge VOC (ppm) PID	19.4		
	SVE Discharge LEL (%)			<25
	Oxygen (%)			
	SVE System Inlet Vacuum (" H ₂ O)			
	SVE System inlet ΔP (* H ₂ O)			
	Oxidizer Discharge VOC (ppm) PID	11.1		<10
7	HSVE-1 Vacuum (* H ₂ O)			
	HSVE-1 Flow (SCFM)	16 82		75
ſ	HSVE-2 Vacuum (" H ₂ O)	33		
	HSVE-2 Flow (SCFM)	79		75
	HSVE-3 Vacuum (* H ₂ O)	46		
	HSVE-3 Flow (SCFM)	80		75
1	SVE-4 Vacuum (" H ₂ O)	92	bounding Pressure 90-5094	
	SVE-4 Flow (SCFM)	6		25
	SVE-5 Vacuum (° H ₂ O)	19		
	SVE-5 Flow (SCFM)	0		20
6	SVE-6 Vacuum (" H ₂ O)	85	bouncing 84.90	
	SVE-6 Flow (SCFM)	9.4		30
2	SVE-7 Vacuum (° H ₂ O)	87696	bounding \$ \$ 96-100	
	SVE-7 Flow (SCFM)	20	Water Bouncing 10-45	18~19
5	SVE-8 Vacuum (* H ₂ O)	86	boincing 84-90	
-	SVE-8 Flow (SCFM)	< 9.2		18~19
4	SVE-9 Vacuum (° H ₂ O)	96	bounding 96 100	
	SVE-9 Flow (SCFM)	< 9.2	bounding 96-100 Stick, Water	18~19
3	SVE-10 Vacuum (" H ₂ O)	7100		
-	SVE-10 Flow (SCFM)	20	bouncing to-30	18~19
	Oxidizer Inlet Temp. (deg F)			
	SVE Manifold Temp. (deg F)			
	SVE Blower Hours			
	NOTES:			

Notes:

1. ppm = Parts per Million

2 %= Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

AECOM

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

Date:	12/1	0/21		Equipment I.D. # 23463				
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)	Notes			
AS-7		7.0	24					
AS-8		6.5	26					
AS-9		7.0	2.2					
AS-10		7.0	2.2					
AS-11		7.5	2.8					
AS-12		7.c	3.2					
AS-13		7.0	3.4					
AS-14		6.0	3.0					
AS-15		7.0	2.6					
AS-16		7.0	1.6					
AS-23		7.0	0,0		-1			
AS-24		6.5	1.8					
AS-25		6.5	1.8					
AS-26		7.0	0.0					
AS-27		6.0	2.2					
AS-17		7.5	0.0					
AS-18		6.5	1.2					
AS-19		7.5	5.2					
AS-20		6.5	2.4					
AS-21		6.5	0.0					
AS-22		6.5	6.0					
AS-1		7.0	3,4					
AS-2		f. 5	8-8					
AS-3		6-5	0.0					
AS-4		7.0	3.0					
AS-5		7.0	4.0					
AS-6		6.5	4.4					

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:				
Watch Time:				
Screen Time:				
SVE/AS System Location				
SVE Blower Speed (Hertz) VFD	54.0			
SVE Blower Runtime (Hours)	8337.3			4
Transfer Pump Runtime (Hours) MS Pump	2.2			
Sparge Blower Speed (Hertz) VFD	52.0			
AS Blower Runtime (Hours) Sparge Blower	3417.3			
Sparge Heat Exchanger Runtime (Hours)	3416.6			
Sparge Heat Exchanger Discharge Temperature (°F) <i>TI-500</i>	59			
AS Blower Pressure (PSI) PI-501	6.0			
AS Blower Flow (" H ₂ O) DPI-500	0.2			
SVE Blower Inlet Temperature (°F) <i>TI-200</i>	50			
SVE Blower Inlet Vacuum (" H ₂ 0) <i>VI-200</i>	86			
SVE Blower Filter Differential Pressure (" H ₂ 0) DPI-200	0,			
SVE Blower Inlet Differential Pressure (" H ₂ 0) <i>FI-200</i>	1,5			
Transfer Pump Discharge Pressure (PSI) PI-300	0			
SVE Blower Discharge Pressure (PSI) PI-400	G			
SVE Blower Discharge Temperature (°F) TI-400	102			
Sparge Zone 1 Operating Cycle - Open Interval(s)	6P21			
Sparge Zone 2 Operating Cycle - Open Interval(s)		(4) (4)		
Sparge Zone 3 Operating Cycle - Open Interval(s)				
Sparge Zone 4 Operating Cycle - Open Interval(s)				
Sparge Zone 5 Operating Cycle - Open Interval(s)	L			
Moisture Separator Level (% Full)	75 "	Jirly can't	read	
Water Storage Tank Level (DTF, TD from MP; inches)	3'	at float w	PRINTE	
NOTES:				

Notes:

1. " H₂O = Inches of Water

2. ^oF = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

5. DTF - Depth to Fluid, TD - Total Depth, MP - Measuring Point

PORT OF SEATTLE - TERMINAL 30 SVE System Data

Date:	12/10/21				
Watch Time:					Design
System Time:					Parameters
System Location	2001			1	
SVE Discharge VOC (ppm) PID	399.4				
SVE Discharge LEL (%)					 <25
Oxygen (%)					
SVE System Inlet Vacuum (" H ₂ O)					
SVE System Inlet △P (" H ₂ O)					
Oxidizer Discharge VOC (ppm) PID	0.0				<10
HSVE-2 Vacuum (" H ₂ O)	32				
HSVE-2 Flow (SCFM)	86				75
HSVE-3 Vacuum (" H ₂ O)	44				
HSVE-3 Flow (SCFM)	86				75
SVE-4 Vacuum (" H ₂ O)	90				
SVE-4 Flow (SCFM)	C			-	25
SVE-5 Vacuum (" H _z O)	16				
SVE-5 Flow (SCFM)	0				20
SVE-7 Vacuum (" H ₂ O)	leot				
SVE-7 Flow (SCFM)	20				18~19
SVE-10 Vacuum (" H ₂ O)	100+				
SVE-10 Flow (SCFM)	20				18~19
SVE-9 Vacuum (" H ₂ O)	16	· · · ·	-		
SVE-9 Flow (SCFM)	0				18~19
SVE-8 Vacuum (" H ₂ O)	86				
SVE-8 Flow (SCFM)	0				 18~19
SVE-6 Vacuum (" H ₂ O)	84				
SVE-6 Flow (SCFM)	10		<u></u>		30
HSVE-1 Vacuum (" H ₂ O)	16				
HSVE-1 Flow (SCFM)	84				75
Oxidizer Inlet Temp. (deg F)	<u> </u>	~ ~ ~			
SVE Manifold Temp. (deg F)					
SVE Blower Hours	~	1.1.5			
NOTES:					

Notes:

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute

5. deg F - degrees Fahrenheit

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:				
Watch Time:				
Screen Time:		 		
Oxidizer System Location			ļ	
Inlet Temperature (°F)	675			
Burner Chamber Temperature ([°] F)	676			
Outlet Temperature (°F)	618			
Inlet Limit Controller Temperature (°F)	674			
Outlet Limit Controller Temperature (°F)	618			
Process Fan Valve Position (Open/Closed)	GPZA			
Dilution Valve Position (%)	0.0			
Combustion Valve Position (%)	14-6			
Process Blower Runtime (Hours)	15152			
Combustion Fan Runtime (Hours)	15153	i i		
Burner Runtime (Hours)	151430	G.		
Processing Vapors Runtime (Hours)	15130			
Panel Temperature (°F)	66			
Flame Signal (Volts)	50			
Burner Chamber Inlet Differential Pressure (" H ₂ O)	0. O			
Propane Tank A Level (%)	70			
Propane Tank B Level (%)	65			
NOTES:				

Notes:

1. °F = Degrees Fahrenheit

2. % = Percent

3. " H_2O = Inches of Water

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

				· · · · ·			
Instrum	nent ID 23463						
Desc	ription MiniRAE 300	00					
	ibrated 12/8/2021 12						
	acturer Rae Systems			State Certif	ïed		
Model N	umber MiniRAE 300)0		Sta	tus Pass		
Serial Numb	er/Lot 592-910325			Temp	°C 15	3	
N	lumber						
L	ocation Seattle			Humidity	% 50		
Depa	rtment						
		Calibra	tion Specifications	}			
	Group # 1			Range Acc %	6 0.0000		
Gro	oup Name Isobutylen	2		eading Acc %			
	ated Accy Pct of Read			Plus/Minu			
<u>Nom In Val / In V</u>	al <u>In Type</u>	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.0 / 100.0	РРМ	100.0	PPM	100.2	100.0	0.00%	Pass
Test Instruments	Used During the Cali	hustion			()		
Test Instruments	Used During the Cali	Dration				Of Cal Ent	
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Nun</u> Lot Numb			ext Cal Date / piration Date
Test Standard ID	Description	Manufacturer	Model Mullber	<u>Dot Humb</u>		ned Date	Appliation Date
SEA ISO 100	Isobutylene (C4H8) 1	00 Airgas	x02ai99cp34206	6 304-4021			11/2025
PPM	PPM		-	-1			
304-402162466-							
1							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

OJECT_7	-30	COMPLETED BY	
DB NO.		APPROVED BY	
AY & DATE_	12/17/21 Frida	✓ SHEET / OF /	
-		/ (//	
DESCRIPTION	TTY SUBJECT: N OF DAILY ACTIVITIES	AND EVENTS:	_
TIME	- And and a start of the		
17:40	Arrived on	Site	_
14:48		nas	
15:00		Padings, PIDS For EFF & Inf	-
15:36		Pradings TIDS FOU CIT THE	-
15:40	Measure d		
16:15	leave site	e to take equip ball to office	
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			- Aler
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	AN COMPANY		
		and the second	
		and the second sec	-
		-Contraction of the second sec	
			<u></u>
SITORS ON SI	TE:	CHANGES FROM PLANS OR IMPORTANT DECISIONS:	
			and the
			_
EATHER CONI	DITIONS:	IMPORTANT TELEPHONE CALLS:	
		i i i i i i i i i i i i i i i i i i i	
	and a support		- west
RSONNEL ON	SITE:		Sec. 35

A CARLES AND A PROPERTY AND A STOCK

11

-

175

1

5

-

-

SVE System Data

Watch Time:	5:17					
System Time:						_
E Discharge VOC (nom) NO	32876					Design Parameter
/E Discharge LEL (%)	129425					
xygen (%)						
VE System Inlet Vacuum (" H ₂ O)			1			<25
EVE System Inlet ΔP (* H ₂ O)						
Oxidizer Discharge VOC (ppm) PID						
HSVE-2 Vacuum (" H ₂ O)	0.6		the series and			
HSVE-2 Flow (SCFM)	34					<10
	81	Sec. Salaria				Server Concern
HSVE-3 Vacuum (" H ₂ O)	32.45				- and the second	75
HSVE-3 Flow (SCFM)	82					
SVE-4 Vacuum (" H ₂ O)	92					75
SVE-4 Flow (SCFM)	9.6	bound	ing between	188-92		
SVE-5 Vacuum (" H ₂ O)	20	diving	buncing	11 88-92	Ó	25
- SVE-S Flow (SCFM)	0					
SVE-7 Vacuum (" H ₂ O)				and the second second second	in the sec	20
SVE-7 Flow (SCFM)	98		98-710	0	a second a second	and the second
SVE-10 Vacuum (" H ₂ O)	20		0-20	water	a series and	18~19
SVE-10 Flow (SCFM)	7100	A Margaretine of the	and the second particular		an and and the	
SVE-9 Vacuum (" H ₂ O)	25		0-25			18~19
SVE-9 Flow (SCFM)	100					
SVE-8 Vacuum (" H ₂ O)						18~19
SVE-8 Flow (SCFM)	92					
	D	1	vater			18~19
SVE-6 Vacuum (" H ₂ O)	84		84-90		Service of	
SVE-6 Flow (SCFM)	10.011		nater	and the second second second	Care Carlos and	30
HSVE-1 Vacuum (* H ₂ O)	16	-	States -	and a second second		
HSVE-1 Flow (SCFM)	84	and the second second	and his and			75
Oxidizer Inlet Temp. (deg F)				A LONG	1. 5.	
SVE Manifold Temp. (deg F)				and the second		
SVE Blower Hours					Chiefer and Chiefer and Chiefer and	and the second se

Notes:

1. ppm = Parts per Million

2. % = Percent

3. " H₂O = Inches of Water

4. SCFM = Standard Cubic Feet per Minute 5. deg F - degrees Fahrenheit

CLID-N.

24

PORT OF SEATTLE - TERMINAL 30 AS Well Field Data Collection Form

ate: /	2/17/2		Flow	Valve Position	Equipment I.D. # 32876
ocation	Time	Pressure (PSI)	Flow (SCFM)	(% Open/Closed)	Notes
AS-7	1535	7.0	1.6	Hereit	
AS-8		7.0	3.0		
AS-9		7.0	1.6		
AS-10		7.5	3.8		
AS-11		8.0	2.6		
AS-12	1536		2.6		
AS-13	1.5.04	7.0	3.2		
AS-14		(e.D	2.8		
AS-15		7.5	2:2	the second	10 between 2.0-2.4
AS-16		657.	5 2.0	1.1. June	
AS-23	1538	7.0	D	C. Landerson	
AS-24		6.5	2.4	Standares.	and the second
AS-25		105	1.4	and the second	
AS-26	and the second	75	0		
AS-27	10000	6.0	1.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AS-17	153		0		
AS-18	3	7.0	0		
AS-19		8.0	5.2		
AS-2	0	7.0	2.0	14	
AS-2	1	7.0	0		
AS-2		7.0	1.2		
AS-1	153		26		
AS-2		7.0	8,5		water & particles
AS-		7.0	0	a september	for pure
AS-		7.0		A SALE	3.4.3.6
AS-		7.0	3.6		3.4-3.6

Notes:

1. " H₂O = Inches of Water

2. SCFM = Standard Cubic Feet per Minute

3. PSI = Pounds per Square Inch

PORT OF SEATTLE - TERMINAL 30 Oxidizer Field Data Collection Form

Date:	12/17/21				
Watch Time:	1500				
Screen Time:	1551				
izer System Location					
t Temperature (°F)	678				
ner Chamber Temperature (°F)	676				
tlet Temperature (°F)	624				
et Limit Controller Temperature (°F)	675				
utlet Limit Controller Temperature (°F)	624		-		
rocess Fan Valve Position (Open/Closed)	open	and the second sec	1		
ilution Valve Position (%)	0.	1.62			
Combustion Valve Position (%)	12.11.1	120			
Process Blower Runtime (Hours)	15315			- Coliciona	
Combustion Fan Runtime (Hours)	15316				
Burner Runtime (Hours)	15306			100 (100 (100)) 100 (100)	a manager
Processing Vapors Runtime (Hours)	15293			-	
Panel Temperature (°F)	66F	3	and the second second	and the second second	and the second states
Flame Signal (Volts)	5.0			-	
Burner Chamber Inlet Differential Pressure (" H ₂ C			1	an Agener	and the second second
Propane Tank A Level (%)	40	and and all have	and and a provide	3	
Propane Tank B Level (%)	45		1322		
Flow on top of fansD PII=0.5 PIZ=0	OTES: A-	- Bon ILIX PS R			

1. °F = Degrees Fahrenheit 2. % = Percent 3. " H_2O = Inches of Water

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Date:	12/17/21	1.1.2 3 1	10.00	
Watch Time:				
Screen Time:)			
SVE/AS System Location				
SVE Blower Speed (Hertz) VFD	54.0			
SVE Blower Runtime (Hours)	8499.7		1.1.1.3.	
Transfer Pump Runtime (Hours) MS Pump	2.4			
Sparge Blower Speed (Hertz) VFD	52.0			
AS Blower Runtime (Hours) Sparge Blower	3580.6	7.16.2		
Sparge Heat Exchanger Runtime (Hours)	3579.8			1.11
Sparge Heat Exchanger Discharge Temperature (°F) TI-500	61			1
AS Blower Pressure (PSI) PI-501	6.0			
AS Blower Flow (" H ₂ O) DPI-500	1.0	No. Contraction		10-10-6
SVE Blower Inlet Temperature (°F) 71-200	<50	1240.00		Sec. A sec.
SVE Blower Inlet Vacuum (" H ₂ 0) VI-200	88		12.143	
SVE Blower Filter Differential Pressure (" H ₂ 0) DPI-200	0.5	1.15		
SVE Blower Inlet Differential Pressure (" H ₂ 0) FI-200	1.5		A. C. S.	1 States
Transfer Pump Discharge Pressure (PSI) PI-300	0		13	
SVE Blower Discharge Pressure (PSI) PI-400	0	Server,		
SVE Blower Discharge Temperature (°F) 71-400	106			
Sparge Zone 1 Operating Cycle - Open Interval(s)			Tree Life	
Sparge Zone 2 Operating Cycle - Open Interval(s)		Sec. 11	and the	
Sparge Zone 3 Operating Cycle - Open Interval(s)			· 1	Section 1
Sparge Zone 4 Operating Cycle - Open Interval(s)			in his	
Sparge Zone 5 Operating Cycle - Open Interval(s)			April 1	a Carala
Noisture Separator Level (% Full)		1.1.1.1.1.1	di wat	
Vater Storage Tank Level (DTF, TD from MP; inches)	tota DT	F=6.5F	-	1
NOTES:			1	

Notes:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

5. DTF - Depth to Fluid, TD - Total Depth, MP - Measuring Point

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Field Data Collection Form

Fe Blower Runtime Se Blower Runtime Hours) Blower Runtime Hours) MS Pump Harge Heat Exchanger Discharge Temperature Se Blower Pressure F) TI-500 Se Blower Pressure Se Blower Flow ''H2O) DPI-500 /'E Blower Inlet Temperature Se Blower Inlet Temperature 'F) TI-200 //E Blower Inlet Vacuum Se Blower Filter Differential Pressure ''H ₂ O) DPI-200 //E Blower Filter Differential Pressure ''H ₂ O) DPI-200	Watch Time: Screen Time: 54 9 616.9 1.5 66 5.5 0.1 50 -90 0.5	Sparge Blower Speed (Hertz) VFD AS Blower Runtime (Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	5°20 3698. 3697.6 0.0 0.0 110 0pen
E Blower Speed 5 ertz) VFD 5 E Blower Runtime 8 ansfer Pump Runtime 7 Hours) 8 ansfer Pump Runtime 7 Hours) MS Pump 7 arge Heat Exchanger Discharge Temperature 7 F) 7I-500 6 Blower Pressure 25 PI-501 5 Blower Flow 7 'H2O) DPI-500 7 /E Blower Inlet Temperature 1 'F) TI-200 7 /E Blower Inlet Vacuum 1 'H2O) VI-200 7 /E Blower Filter Differential Pressure 1 'H2O) DPI-200 7	Screen Time: 54 0 6669 1.5 66 5.5 0.1 50 -90 0.5	Sparge Blower Speed (Hertz) VFD AS Blower Runtime (Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3698. 3697.6 0.0 0.0 110
E Blower Speed 5 ertz) VFD 5 E Blower Runtime 8 ansfer Pump Runtime 7 Hours) 8 ansfer Pump Runtime 7 Hours) MS Pump 7 arge Heat Exchanger Discharge Temperature 7 F) 7I-500 6 Blower Pressure 25 PI-501 5 Blower Inlet Temperature 1 F) 7I-200 7 Z Blower Inlet Vacuum 1 F) 17-200 7 Z Blower Filter Differential Pressure 1 F) H_20) DPI-200 7	54 9 2616.9 1.5 5.5 5.1 50 -90 0.5	(Hertz) VFD AS Blower Runtime (Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3698. 3697.6 0.0 0.0 110
E Blower Speed 5 ertz) VFD 5 E Blower Runtime 8 ansfer Pump Runtime 7 Hours) 8 ansfer Pump Runtime 7 Hours) MS Pump 7 arge Heat Exchanger Discharge Temperature 7 F) 7I-500 6 Blower Pressure 25 PI-501 5 Blower Inlet Temperature 1 F) 7I-200 7 Z Blower Inlet Vacuum 1 F) 17-200 7 Z Blower Filter Differential Pressure 1 F) H_20) DPI-200 7	616.9 1.5 5.5 5.1 50 -10 0.5	(Hertz) VFD AS Blower Runtime (Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3698. 3697.6 0.0 0.0 110
ertz) VFD 5 IE Blower Runtime Hours) 8 ansfer Pump Runtime Hours) MS Pump 7 Harge Heat Exchanger Discharge Temperature F) 71-500 7 S Blower Pressure PSI) PI-501 8 S Blower Flow 7 ' H2O) DPI-500 7 /E Blower Inlet Temperature 1 'F) TI-200 7 //E Blower Inlet Vacuum 1 '' H ₂ O) VI-200 7 //E Blower Filter Differential Pressure 1 '' H ₂ O) DPI-200 7	616.9 1.5 5.5 5.1 50 -10 0.5	AS Blower Runtime (Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3698. 3697.6 0.0 0.0 110
E Blower Runtime 8 Ansfer Pump Runtime 7 Hours) MS Pump 7 Farge Heat Exchanger Discharge Temperature 7 For TI-500 8 Blower Pressure 8 Soll PI-501 8 Blower Flow 7 * H20) DPI-500 7 /E Blower Inlet Temperature 1 * H, 20) VI-200 7 /E Blower Filter Differential Pressure 1 * H20) DPI-200 7	66 5.5 0.1 50 -90 0.5	(Hours) Sparge Blower Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3697.6 0.0 0.0 110
Nours) S ansfer Pump Runtime S Hours) MS Pump S arge Heat Exchanger Discharge Temperature S F) 7I-500 S S Blower Pressure S S'SI PI-501 S S Blower Flow C ' H2O) DPI-500 C /E Blower Inlet Temperature S 'F) TI-200 S /E Blower Inlet Vacuum S '' H ₂ O) VI-200 S //E Blower Filter Differential Pressure S '' H ₂ O) DPI-200 S	66 5.5 0.1 50 -90 0.5	Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) 7I-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	3697.6 0.0 0.0 110
ansfer Pump Runtime Image Heat Exchanger Discharge Temperature For Figure Pressure Image Heat Exchanger Discharge Temperature For Figure Pressure Image Heat Exchanger Discharge Temperature Solower Flow Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Temperature Image Heat Exchanger Discharge Temperature Image Temperature Image Temper	66 5.5 0.1 50 -90 0.5	Sparge Heat Exchanger Runtime (Hours) Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) 7I-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	0.0 0.0 110
Hours) MS Pump Image Heat Exchanger Discharge Temperature F) 7I-500 Image Heat Exchanger Discharge Temperature F) 7I-500 Image Heat Exchanger Discharge Temperature S Blower Pressure Image Heat Exchanger Discharge Temperature F) 7I-500 Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature F) 7I-200 Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature F) 7I-200 Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharge Temperature Image Heat Exchanger Discharger Temperature Image Heat Exchanger Discharger Temperature Image Heat Exchanger Discharger Temperature Image Heat Exchanger Discharger Discharger Temperature Image Heat Exchanger Discharger Disc	66 5.5 0.1 50 -90 0.5	Transfer Pump Discharge Pressure (PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) 7I-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	0.0 0.0 110
arge Heat Exchanger Discharge Temperature F) 7I-500 S Blower Pressure SSI) PI-501 S Blower Flow ' H2O) DPI-500 //E Blower Inlet Temperature F) 7I-200 //E Blower Inlet Vacuum '' H ₂ O) VI-200 //E Blower Filter Differential Pressure '' H ₂ O) DPI-200	5.5 0.1 50 -90 0.5	(PSI) PI-300 SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	0.0 110
F) 7I-500 F) 7I-500 S Blower Pressure PSI) PI-501 S Blower Flow F) 7I-500 //E Blower Inlet Temperature F) 7I-200 //E Blower Inlet Vacuum F) 7I-200 //E Blower Filter Differential Pressure F) 7I-200	5.5 0.1 50 -90 0.5	SVE Blower Discharge Pressure (PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	0.0 110
6 Blower Pressure 251) PI-501 5 Blower Flow * H2O) DPI-500 //E Blower Inlet Temperature *F) TI-200 //E Blower Inlet Vacuum *H ₂ O) VI-200 //E Blower Filter Differential Pressure *H ₂ O) DPI-200	0.1 50 -90 0.5	(PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	110
PSI) PI-501 S Blower Flow ' H2O) DPI-500 /E Blower Inlet Temperature 'F) TI-200 /E Blower Inlet Vacuum '' H ₂ O) VI-200 /E Blower Filter Differential Pressure '' H ₂ O) DPI-200	0.1 50 -90 0.5	(PSI) PI-400 SVE Blower Discharge Temperature (°F) TI-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	110
S Blower Flow (' H2O) DPI-500 (/E Blower Inlet Temperature ('F) TI-200 (/E Blower Inlet Vacuum ('' H ₂ O) VI-200 (/E Blower Filter Differential Pressure ('' H ₂ O) DPI-200 (50 -90 0.5	SVE Blower Discharge Temperature (°F) 71-400 Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	
"H2O) DPI-500 C "/E Blower Inlet Temperature I "F) TI-200	50 -90 0.5	Sparge Zone 1 Operating Cycle Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	
/E Blower Inlet Temperature F) <i>TI-200</i> /E Blower Inlet Vacuum " H ₂ 0) <i>VI-200</i> /E Blower Filter Differential Pressure " H ₂ 0) <i>DPI-200</i>	-90 0.5	Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	open
F) <i>TI-200</i> /E Blower Inlet Vacuum " H ₂ 0) <i>VI-200</i> /E Blower Filter Differential Pressure " H ₂ 0) <i>DPI-200</i>	-90 0.5	Open Interval(s) Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	open
/E Blower Inlet Vacuum "H ₂ 0) VI-200 /E Blower Filter Differential Pressure "H ₂ 0) DPI-200	0.5	Sparge Zone 2 Operating Cycle Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	
" H ₂ 0) VI-200 VE Blower Filter Differential Pressure " H ₂ 0) DPI-200	0.5	Open Interval(s) Sparge Zone 3 Operating Cycle Open Interval(s)	
VE Blower Filter Differential Pressure " H ₂ 0) DPI-200	0.5	Open Interval(s)	
"H ₂ 0) <i>DPI-200</i>		Open Interval(s)	
R ₂ 0) DFI-200			
" H ₂ 0) FI-200		Sparge Zone 4 Operating Cycle	
H ₂ 0) FI-200	.5	Open Interval(s)	
		Sparge Zone 5 Operating Cycle	
		Open Interval(s)	
		Open Interval(s)	
xidizer System Location			
	668	a Diana Diatima (ilaura)	1543
let l'emperature (F)		Process Blower Runtime (Hours)	
6	532	and the Destine (Users)	15433
urner Chamber Temperature (°F)		Combustion Fan Runtime (Hours)	
1	628	Den an Den time (Hause)	1542
utlet Temperature (°F)	, = 0	Burner Runtime (Hours)	
	670	Develop Manager Burghime (Hours)	15410
nlet Limit Controller Temperature (°F)	0 10	Processing Vapors Runtime (Hours)	- >
	25		73
utlet Limit Controller Temperature (°F)	23	Panel Temperature (oF)	-
	open	Flower General (Malte)	5.0
rocess Fan Valve Position (Open/Closed)		Flame Signal (Volts) Burner Chamber Inlet Differential Pressure	
	0.0		0.0
ilution Valve Position (%)		(" H2O)	
ombustion Valve Position (%)	8.1		
			- F
loisture Separator Level	75	Propane Tank A Level (%)	25
% FUII)		riopalie falls A cerei (/8)	
Vater Storage Tank Level	2301W	Propane Tank B Level (%)	20
DTF, TD from MP; inches)	tolow		1

Abbreviations:

1. " H₂O = Inches of Water

2. °F = Degrees Fahrenheit

3. PSI = Pounds per Square Inch

4. % = Percent

5. DTF - Depth to Fluid, TD - Total Depth, MP - Measuring Point

ield Tech:	AU		Date: 12/2	2/21	-	Equipment	I.D. #: 1	1317 HE			
VE Discharg				5	3.3						
VE Dischar		-									
Dxygen (%)		(8.11.0)									
		ium (" H ₂ O)	_								
SVE System		C (ppm) PID			0.77						
UXIUIZEI DIS	charge ac	C (ppm) PIL	,		0.7 SVE	Wells					
	Time	Vacuum	Flow	Valv	e Position		Time	Vacuum	Flow		ve Position
Location		("H2O)	(SCFM)	(% Open/Closed)		Location		(*H2O)	(SCFM)		pen/Closed
HSVE-2		36	80	Open		HSVE-10		100	15	Of	en
HSVE-3		46	80	1		HSVE-9		100	D	1	
HSVE-4		94	0			HSVE-8		96	0		
HSVE-5		20	0			HSVE-6		90	10		100
HSVE-7		100	20	I		HSVE-10	8 8	16	80	1	
					AS	Wells					
Location	Time	Pressure (PSI)	Flow (SCFM)	Valve Position (% Open/Closed)		Location	Time	Pressure (PSI)	Flow (SCFM)		ve Position pen/Closed
AS-7		6	2.4	Ope	٨	AS-17		7.0	1.4	Op	en
AS-8		6	3	1		AS-18		6.0	0		
AS-9		6	G			AS-19	1	7.0	5.2		
AS-10		6.5	18			AS-20		6.0	2.0	1	
AS-11		7	2.8			AS-21		6.0	0		
AS-12		7	3.0			AS-22	1.1	60	σ		2
AS-13	1	6.5	3.2		and the	AS-1		7.0	3.2	1	
AS-14		5	3.0			AS-2		6.5	8,6		
AS-15		6.5	2.6	1997		AS-3		6.5	0		
AS-16	199	65	1.8		-	AS-4	1	6.0	13		
AS-23		6.5	0			AS-5	120	7.0	3,8		
AS-24		6.0	0	200		AS-6	672	6.0	36	-	L
AS-25		6.0	1.6	1800		Notes:					
AS-26		65	G	1.0		1000					
AS-27		5.0	G	-	L						

Abbreviations:

ppm = Parts per Million % = Percent deg F - degrees Fahrenheit

" H₂O = Inches of Water SCFM = Standard Cubic Feet per Minute PSI = Pounds per Square Inch

AECOM

AECOM

Americas							
Daily Tailgate N	leeting		S3AM-209-FM				
Instructions: Conduct meeting attendance of all AECOM empli simultaneous operations for co- briefly discuss required and app	prior to sending crews to individual tasks. oyees and subcontractors. Invite personnel ordination purposes. Review scope of work plicable topics. This meeting is a daily refr	from Phone Number: and AECOM SH&E R	Rep. Name: Tim Gilles				
	ecific discussions associated with Task Haz neeting at the task location immediately before		and the second				
individual task is started.	the and the second s	Meeting Leader:	A. Uter				
Date: 12/22/21	Project Name/Location: GE + 7	-30	Project Number:				
Muster Point Location:	First Aid Kit Location:	Fire Extinguisher Locat	tion: Spill Kit Location:				
Mckustry / T-30 estran	a Lackbox/ site	Each Box / site	NIA				
1. Required Topics	Contract In the second	2. Discuss if Applicab	le to Today's Work eviewed or mark 🔳 as not applicable				
registers, controls, pro Task Hazard Assessm completed for each tas STOP WORK Right & changes/changed con Requirement to report damage, near miss, ur Emergency Response first aid kit, fire extingut Personal Protective Ec hazard assessments in Equipment/machinery end in good condition Work area set up and protect workers, site st Required checklists/re	Plan – including muster point, isher, clinic/hospital location quipment (PPE) - Required items per n good condition / in use by all inspected (documented as required) - operators properly trained/certified demarcation/ barricades in place to taff, and the public cords available, understood (describe) &E improvements (describe):	oversight assign Simultaneous/ N Slip/ Trip/ Fall H Specialized PPE V Specialized PPE V Traffic Control V Waste Managen V Weather Hazard Subcontractor R procedures, report V Work Permits / F Confined Space understood (ider	mployees - visual identifier and mentor/ iment leighbouring Operations azards E Needs nent/ Decontamination ds / Heat Stress / Cold Stress lequirements (e.g., JHAs, THAs, orting, etc.) Plans required (e.g., Fall Protection, , Hot Work, Critical Lifts, etc.); in place, ntify/attach):				
interventions from today:	isses, observations or Stop Work	NA	ed/ Improvement Areas from today:				
The site is being le	ft in a safe condition and work crew	checked out as fit unles	s otherwise specified as above.				
Site Supervisor Name Anders Utter	Signature		Date [2/2/2/ Time (at end of day / shift) [34]5				

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.

Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.

Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (Including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
 * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

* You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.

* You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.

* You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or

impairment/fatigue issue to the AECOM Supervisor.

* You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
		In & Fit	Out & Fit
Anders VHEr AECOM	A Uttors	1215 44	1345 19
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

Name	Company Name	Arrival Time	Departure Time	Signature

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15 2019

Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

		,				
Instrum	nent ID 39946					
Desc	ription MiniRAE 300	0				
Cal	ibrated 12/20/2021 1	:01:41PM				
Manuf	facturer Rae Systems	TRATE DAVIS	5	State Certified		
Model	Number PGM7320			Status Pas	SS	
	ber/ Lot 592-920831			Temp °C 14		
	Number					
	Location Seattle			Humidity % 46		
Dep	artment					
		Gull	tion Encolfications			
		Calibra	tion Specifications			
	Group # 1			ange Acc % 0.00		
Gr	oup Name ISOBUTY	LENE	Rea	ding Acc % 3.00		
S	tated Accy Pct of Read	ling		Plus/Minus 0.00		
Nom In Val / In V	al In Type	Out Val	Out Type F	nd As Lft A	s Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM 1	00.00 100.	00 0.00%	Pass
Fest Instruments	Used During the Calil	bration			(As Of Cal Ent	try Date)
				Serial Number /		Next Cal Date
Fest Standard ID	Description	Manufacturer	Model Number	Lot Number	Last Cal Date/ F	Expiration Dat
SEA 100 100	Labort Jana (CAUR) 1(0 Airana	x02ai99cp342066	305-401840823	Opened Date	/10/2024
SEA ISO 100	Isobutylene (C4H8) 10	o Airgas	202819900542066	-1	8	10/2024
PPM	PPM			-1		
3054018408231		and the second sec		and the second second second		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com Appendix B

Vapor Sampling Field Forms

NOTE: Vapor sampling field forms for the sampling events on 9/30/21, 10/21/21, 11/18/21, and 12/22/21 are not included. However, sampling was completed in accordance with OMMP Section 6.2.

			V	apor Samplin	g - Field For	m			
		Р	roject	Porto	F-Seattle	, Termine	a 3	>	
		Sa	mpler						
	Date	and Star	t Time	1.12.202	21				
	Date	and Enc	l Time	1.12.20	Z				
Weather Ba	rometric P	ressure (in Hg)						
(attach co	pies of de		eather ports)		D				
	San	nple Por			0				
	Leak Dete								
Location ID	DISC	HARG	E-c	11221					
Surface Conditions				st, coul					
Sample				Flow			Sam	nple	29-MC11
Canister	37	57		Controller	111		Can	ister	1.1
LAB ID	10	71		LAB ID	1.1		Size		16
Start		Start			End		End		1.10
Sample	0915	Pressu	re	29.5	Sample	0924		ssure	1-1.5
Time		(" Hg)			Time		(" H	g)	
Analysis			Durin						
Durge Vol				ging Volumes			u e el	1	
Purge Vol (ml)	NA		Purg (ml/i	e Rate min)	Open Valve	, Time Requi		Pump on RKI	
			<u></u>	Leak T					
Observation of mins [if Yes, and re-do lea	reinstall sa	mple Va	por Pi						
			ole Co	llection Note	s/General Ob	servations			
PID (PPM)	52.1, R	KT							
			-						
Shut-Ir	Testing (r	ninimun	ו dura	tion 5 minute	es, system sh	ould mainta	in >1(D" of va	icuum)
Start Time			NА		End Time				
Start Pressure	e (" Hg)				End Pressur	e (" Hg)			

			Soil V	/apor Samp	ling - Field F	orm			
		Р	roject	Portof	Southe,	Terminal	30		
		Sa	mpler	R. Jo	ines				
	Date	and Start	t Time	1.12.202	A ~ 093	5			
		e and End		1.12.20	200 ~10	000			
Weather Ba (attach co	rometric l opies of de	etailed we	0, 1	27.7	'5				
	Sa	mple Port	t Type	Dedicate	d				
	Leak De	tection M	ethod	NA					
Location ID	INLE	ET-0112	221						
Surface Conditions	Rai	ning, co	001,00	rereast					
Sample Canister LAB ID	24	34 c		ow introller B ID	ØZ		Samı Canis Size		IL
Start Sample Time Analysis	0942	Start Pressur ("Hg)	e	29	End Sample Time	0957	End Press (" Hg	ssure 1-1.5	
Anarysis		-	Purgi	ng Volumes	and Purge T	imo			
Purge Vol (ml)	N,	IA	Purge F (ml/mii	Rate	Open Value	Time Requi	red	Pump	on PKI
				Leak T	esting				
Observation o [if Yes, reinsta do leak testing	ll sample	Vapor Pin	and re-	N/A					
DID (0001)		4			/General Ob	servations			
PID (PPM)	\$8.5	RKIC	~0941	7					
5.					·				
Shut-li	n Testing	(minimum	n duratio	on 5 minute	s, system sh	ould maintai	n >10″	of vac	cuum)
Start Time			A		End Time				
Start Pressure	(" Hg)				End Pressure	e (" Hg)			

			Vapor Samp	ling - Field For	m		
		Proje	ect Port	of Seattle	e, Terv	ninal 7	30
		Sampl	er R.	Jones (C	rete)		
	Date a	nd Start Tin	ne 2.17.	2021 132	5		
	Date	and End Tin	ne 2.17	1.2021 13	39		
Weather Ba	rometric Pr	essure (in H	0, 1				
(attach co	opies of det	ailed weath		10			
		repor					
		ple Port Ty		ATEN			
	Leak Dete	ction Metho	od N/A				
Location ID			021721	4			
Surface Conditions	Sunny	, 40-50	sof, Par	No ra	.'1		
Sample			Flow			Sample	Silonite
Canister	24	36	Controller	102	Canister	11 Minica	
LAB ID			LAB ID		Size	JEMINICO	
Start		Start		End			
Sample	1329	Pressure	·30+				2
Time		(" Hg)		Time		(" Hg)	
Analysis					•		
Durge Vol	- T	I Du		es and Purge T	1	and 1	
Purge Vol (ml)	N	1.0	irge Rate I/min)		Time Requi	rea	
(111)		1 (11		Testing			
Observation (of Leak (bu	bbles) after					
mins [if Yes,		•	1 1	Ι Δ			
and re-do lea							
	01	Sample (Collection No	tes/General Ol	oservations		
PID (PPM)	0:7-3,0	ppm@1		1			
		17 7					
				.1	,	11 H	
Shut-Ir	n Testing (n	ninimum du	ration 5 minu	utes, system sh	ould mainta	in >10" of va	acuum)
Start Time				End Time			
Start Pressure	e (" Hg)			End Pressur	e (" Hg)		

.

			V	apor	Samplin	g - Field Fori	m			
		P	roject	F	ort o	f Seattle	e, Tern	nina	13	0
		Sa	mpler			ones (C 1021 13 2021 13	N			
	Date a	and Star	t Time	07	2.17.2	1021 13	39			
	Date	and End	l Time	0	2.17.	2021 13	352			
Weather Ba										
(attach co	pies of de		eather ports)	1	30.4	D				
	San	nple Por	t Type	Þ	EDICAT	ED				
	Leak Dete	ection M	ethod	N	I.A.					
Location ID	INLET	-021	721							
Surface Conditions	Mosth	1 Sur	ny i	4	0-50;	۴F				
Sample				Flow			-	Sam		Silonite
Canister	3	341		Controller		35		Can	ister	11 MiniCar
LAB ID			LAB ID					Size		IL MINICAP
Start		Start		End			1.0.00	End		
Sample	1341	Pressu	re	2	9,5	Sample	1350		sure	2
Time		(" Hg)		-		Time		(" H	g)	
Analysis		-	Deer	_1	Value as	and Dames T	•			
Durgo Vol	1	_	1	-		and Purge T	E	ine el	1	
Purge Vol (ml)	NI	A	Purg (ml/I		.e		Time Requ	irea		
(111)			[(my)	,	Leak To	ecting				
Observation of	of Leak (bu	hbles) a	fter 5	_	Leak It	coung			_	
mins [if Yes, and re-do lea	reinstall sa	•		n	N	Ą				
		Sam	ole Col	llecti	on Notes	/General Ob	servations			
PID (PPM)	52.4 C	1313								
	Testing (r	ninimun	n dura	tion	5 minute	s, system sh	ould mainta	in >1()" of va	cuum)
Start Time		N	A			End Time				
Start Pressure (" Hg)					End Pressure (" Hg)					

2/17/2021 OZM + Gas Sampling

FIELD ENVIRONMENTAL INSTRUMENTS, INC.

RKI Multi-Gas Detector Calibration Certificate

www.fieldenvironmental.com

301 Brushton Avenue Suite A Pittsburgh PA 15221 800-393-4009 Toll Free (412) 436-2600 Local (412) 436-2616 Fax

Fresh Air			Reading %	Acceptable Range
Oxygen			18.0	(17.5% - 18.5%)
0.10				
Cal Gas	Lot #	Expiration	Reading ppm	Acceptable Range
H2S	20-7690	12/03/22	10	(9 - 11)
Cal Gas	Lot #	Expiration	Reading ppm	Acceptable Range
со	20-7690	12/03/22	50	(48 - 52)
Cal Gas	Lot #	Expiration	Reading %	Acceptable Range
Ch4 % LEL	20-7690	12/03/22	50	(48 - 52)
CallCar	Т.4.4	Frankiss	$\mathbf{D}_{1} = \mathbf{I}_{1}^{1} = 0_{1}^{1}$	Assessfully Deserve
Cal Gas Ch4 %Vol	Lot #	Expiration	Reading %	Acceptable Range
	1/201			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Cal Gas	Lot #	Expiration	Reading % / ppm	Acceptable Range
	11			
Cal Gas	Lot #	Expiration	Reading ppm	Acceptable Range
VOC	20-7553	09/16/24	100	(98 - 102)
	GX6000	-		
S/N			Pump Flow	
Barcode	U90369X		506	(450 - 550) 🔻
Order #	449273			
		Calibrated By	0	

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

All calibration gas used is traceable to NIST. Additional documentation is available upon request.

			Va	por Samplir	ng - Field Form	n			
		Р	roject	Port of	Seattle, T	erminal 3	60		
		Sa	mpler	R. Jo	mes (cret	e)			
	Date a	and Start	Time	2.17.2	TRS 3.23	5.2021	1530		
	Date	and End	Time	3.23.2	17KS 3.23	45			
Weather Ba		•	.						
(attach co	pies of det		ather ports)	30.	.50" Hg	(watch))		
	San	nple Port	Туре	DEDICATE	ED				
	Leak Dete	ection Me	ethod	NA					
Location ID	DISCH	HARGE	-03	2321					
Surface Conditions	Conditions Mostly Sunny, no precipitation, >50 F								
Sample				low			Sample	Silonite	
Canister	229	6		Controller	#01		Canister	1 Liter	
LAB ID			L	ABID	Size End	MiniCan			
Start	1 1	Start							
Sample Time	1534	Pressur	e	29.5	Sample	1543	Pressure		
Analysis	1015	(" Hg)	11	101 20	Time		(" Hg)		
Analysis	1013	BTEX		<u>AP4</u>	and Purge Ti				
Purge Vol			Purge		and Furge I	Time Requi	rod		
(ml)	N	A	(ml/n			i iiiie kequi	ieu		
			<u>tin</u> vn	Leak T	esting				
Observation of	of Leak (bu	bbles) af	ter 5		1				
mins [if Yes,					14				
and re-do lea				1-					
		Samp	le Coll	ection Note	s/General Ob	servations			
PID (PPM)	~1.5 a fe	w minu	tes	prior w	EKT_				
CHyl	pom PT			13.9	1.12-				
CH.1 0%	0.0 pp	1H2S							
CO2 0 40	30 ppm	1, O2	21	6.7%					
Shut-In	Testing (n	ninimum	durat	ion 5 minute	es, system sh	ould maintai	n >10" of	vacuum)	
Start Time					End Time				
Start Pressure	itart Pressure ("Hg) End Pressure ("Hg)								

			Va	por Samplin	g - Field Forr	n			
		Pro	oject	Port of	Scattle T	Ferminal 3	>		
		Sam	pler	R. Jo	ms (Cret	es			
	Date a	ind Start 1	Гime	3.23.20	521 15	50			
		and End 1		3.23.2	021 110	05			
Weather Bar (attach co	rometric Pr pies of det	•	<i>.</i> ,	30,4	5 (writst	=watch			
		repo	orts)						
	Sam	ple Port 1	Гуре	DEDICAT	ED				
	Leak Dete	ction Met	thod	NA					
Location ID	INLET-	03232	21						
Surface Conditions	Alostly	Sunn	71 "	no precipit.	ation, bree	27, 75	0°F	-	
Sample				IOW			Sam	ple	Silontle
Canister	36	-13		ontroller	#109			ister	1Liter
LAB ID			L.	AB ID		1	Size		MiniCan
Start		Start			End		End		
Sample	555	Pressure		29.5	Sample	1601		sure	
Time		(" Hg)			Time	- 1	(" H	g)	(
Analysis	BIENC	1015), A		la a Maluma a a	and Dunce T			_	
Durgo Val	-				and Purge Ti		n o d		
Purge Vol (ml)	N		Purge (ml/m			Time Requi	rea		
()			(111) 11	Leak Te	esting				
Observation of	of Leak (bu	bbles) afte	er 5	1.					
mins [if Yes, and re-do lea	reinstall sa			NA	l				
		Sample	e Coll	ection Notes	/General Ob	servations			
PID (PPM)	128.8	0							
(Hy 100)	0%								
H2S (ppm)	1-1.5	NBR-		~	7				7 9
0- 100	16.7.	-19.2%	2		> As measu	ared w/k	KL	a ter	w minutes
CO2 (ppm)	6-1	(up to	720 m	nay.		prior			
Shut-In	Testing (n	ninimum	durati	ion 5 minute	s, system sh	ould maintai	n >1()" of va	cuum)
Start Time					End Time				
Start Pressure	Start Pressure (" Hg) End Pressure (" Hg)								

			Sc	oil Vap	oor Samp	ling - Field F	orm				
			Projec	t	Port of	- Seattle,	Termin	ali	30		
			Sample	r	R. J.	nes					
	Dat	e and S	Start Tim	e (1.19,20	21 1521					
	Da	ite and	End Tim	e	4.19,24	ZI 1521 0ZI (153)	3				
Weather Ba	arometric	: Pressu	ire (in Hg	;)							
(attach c	opies of a	detailed	d weathe	r	30.2	0 (wat	ch				
			reports	5)			/				
	S	ample	Port Typ	e D	edicated						
	Leak De	etectio	n Metho	d M	<u> ۱/۲</u>						
Location ID	INLE	ET-C	41921			Opidizer 1.	let/SVE	disci	narge	to Oxie	172ch
Surface Conditions	Sunn	7. 10	. w 80	°s F			1				
Sample				Flow				Sam	ple	Silon	ite
Canister	2	5344		Cont	roller	11-	1	Cani	ster		u'n'Can
LAB ID				LAB	ABID			Size		101	
Start		Sta				End		End		1	-
Sample	1523	> Pre	ssure	7	30	Sample	153		sure	- (w	5
Time		("⊦	lg)			Time		(" H _£	g)		
Analysis											
						and Purge T	ľ				
Purge Vol		A		ge Rat	te		Time Requi	red			
(ml)		In	(ml,	/min)						_	_
	6 //				Leak T	esting					
Observation	•					A Contraction					
[if Yes, reinst		e Vapoi	r Pin and	re-	N	А					
do leak testir	IB]			- 11 4		10					
	1.7 /7		12		Ion Notes	s/General Ob	servations				
PID (PPM)	83.2	J RK	IPI	כול							
Ch. e	la Tasti				E				n _ c		_
	in lesting	g (minii	mum du	ration	5 minute		ould maintai	n >10	of va	cuum)	
Start Time						End Time					
							- /// 11->				
Start Pressure	e(Hg)			End Pressure (" Hg)							

-

 $\widehat{\boldsymbol{\beta}}_{j_0}$

			Vapor	Samplin	g - Field For	m			
		Proje	ct F	ort of	Seattle.	Terminal	30		
		Sample		R. Jo	2				
	Date	and Start Tim							
		and End Tim		V 19.20	071 15	27 1521			
Weather Ba						3			
		ailed weath		30.	20 (w	atch			
•		report							
	San	nple Port Typ	e 🗅	<i>vedicate</i>	d				
	Leak Dete	ection Metho	d b	ЧA					
Location ID	DISCI	HARGE-	0419	21	(oxidizerd	ischarge		
Surface Conditions	Sunn	1. ~70-	805 T				1		
Sample			Flow						
Canister	341	r D	Cont				Canister	11	
LAB ID			LABI	ABID				PIN 29-10-110	
Start		Start		End			End		
Sample	1509	Pressure	20	29 Sample 520		Pressure			
Time		(" Hg)			Time		(" Hg)	`	
Analysis		D.		1		•			
Durge Val	1	1			and Purge T	1	in a d		
Purge Vol (ml)	N/A	1 1	rge Rat I/min)	e		Time Requi	irea		
(111)	1	. 100	7111117	Leak Te	eting				
Observation of	of Leak (bu	hhles) after !		Leakite	sung				
mins [if Yes,	•			NU	Į				
and re-do lea		inple tupor		10/2					
		Sample C	ollectio	on Notes	/General Ob	servations			
PID (PPM)	0.70~	100 100 100	RKI						
Muint	3.3 max (-iv						
	n	1 /							
Shut-In	Testing (n	ninimum du	ration !	5 minute	s, system sh	ould maintai	in >10" of v	/acuum)	
Start Time					End Time				
Start Pressure (" Hg) End Pressure (" Hg)									

			Vapor Sampli	ng - Field For	m		
		Proje	ct Port of	Seattle, T	erminal 3	0	
		Sample	Kust-	Jones Cl			
	Date a	and Start Tim	e 5 20/202	1 ~0915 21 ~0930			
		and End Tim		21 ~ 0930			
	pies of det	ressure (in H _l ailed weathe report	er 30, s)	10 in Hq f			
		nple Port Typ	0.000	1 fee ks	dedicated so	ample port	new tubing
	Leak Dete	ction Metho	d NA	3			
Location ID	DISCH	AKGE-052	021				
Surface Conditions	Partly	Sunny,	-60sF, v Flow	Pery light	rain pre	viously	
Sample Canister LAB ID	354	10	Flow Controller LAB ID	# (03	Sample Canister Size	1 liter PN 29-MCILGT
Start Sample	0918	Start Pressure	29	End Sample	0926	End Pressure	
Time		(" Hg)	- (Time		(" Hg)	(
Analysis							
Dunna Mal			rging Volumes	s and Purge T			
Purge Vol (ml)			ge Rate /min)	-	Time Requi	ired	
(,				esting			
Observation of mins [if Yes, i	einstall sa			Å			
and re-do lea	k testing]	Course la C		10			
PID (PPM)	1.4 per	0	notes	s/General Ob	servations		
Shut-In	Testing (m	ninimum dur	ation 5 minute	es, system sh	ould maintai	in >10" of va	cuum)
Start Time			1/A	End Time		U	12
					e (" Hg)	N	(A

			Vapor Sam	oling - Field For	m			
		Proje	ct Port	-of Scattle	- Termi	ng 30		
		Sample	er Ru	- of Seattle - y Jones 1021 ~ 100 12021 ~ 100	s (CRETE			
	Date a	and Start Tim	e 5/20/2	Lot1 ~ 0935				
		and End Tim	e 5/20	2021 ~ 100	D			
		ressure (in H _f	7					
(attach co	pies of de	tailed weathe reports	er 30. s)	15 in Hg pe	r Watch			
	San	nple Port Typ	e dedisate	d sample po	rt, new	tubing		
	Leak Dete	ection Metho	d N/A	1 1				
Location ID	INLE	T-0576	,21					
Surface Conditions	Parel.	cloudy	, 50-60)s F, ver	y light r	ain earlie	r today	
Sample		l r	Flow			Sample	1-11+	
Canister	37	30	controller	#12		Canister	1 YIN	
LAB ID			LADID SIZE 24					
Start		Start		End		End		
Sample	0940	Pressure	29.5	Sample	0951	Pressure	2	
Time		(" Hg)		Time		(" Hg)		
Analysis				100000000000000000000000000000000000000				
Purge Vol		1	the second se	nes and Purge T				
(ml)			ge Rate		Time Requi	red		
(111)		(mi	/min)	k Testing				
Observation of	of Leak (bu	hbles) after 5		cresting				
mins [if Yes,				1				
and re-do lea			[/					
		Sample Co	ollection No	tes/General Ob	servations			
PID (PPM)	72.9 pe			ces, deneral ob	Scivations			
	cer pe	CKKL pri	07					
Shut-In	Testing (n	ninimum dur	ation 5 min	utes, system she	ould maintai	n >10" of va	cuum)	
Start Time		ľ	AIA	End Time			A	
Start Pressure	e (" Hg)	À	JA	End Pressure	e (" Hg)	N	A	

			Vapor Sampli	ng - Field For	m				
		Proje	ct Port of	P Seattle,	Termir	nal 3	30		
		Sample	K.T	Tones					
	Date	and Start Tim	ie 6.16.7	ZOZI 100 ZOZI	Ũ				
	Date	and End Tim	ie 6.16.	2021	1015				
Weather Ba	rometric P	ressure (in H							
(attach co	ppies of de	tailed weathe	er						
		report	-						
		nple Port Typ		ATED					
	Leak Dete	ection Metho	d N/A						
Location ID		T-0616							
Surface Conditions	Sunn	Y, no rai	nldry						
Sample	STATION Flow Sample Silonite Canister Silonite LAB ID South Size IL Minice								
Canister	S	535	Controller	Controller 304 Canister					
LAB ID			LAB ID		1	Size		IL Minila	
Start		Start		End				1	
Sample	1002	Pressure	30				sure		
Time		(" Hg)		Time		(" H _£	g)	(
Analysis						_			
Durge Val			rging Volume	s and Purge T		1			
Purge Vol (ml)			ge Rate		Time Requ	ired			
(111)		(mi	/min)	Ta atin -					
Observation of	of Look (bu			Testing					
mins [if Yes,									
and re-do lea			-111						
und le do led	K (CSUIIB)	Sample C	ollection Note	s/General Of	servations				
PID (PPM)	133.3	PID (909	the second se				- 1	×	
	1) .) (0	1 mg ci							
					I				
Shut-In	Testing (n	ninimum dur	ation 5 minut	es, system sh	ould mainta	in >10	" of va	cuum)	
Start Time				End Time				,	
Start Pressure	e (" Hg)			End Pressur	e (" Hg)				

÷

			Vapor Samplin	g - Field For	m			
		Proje	ct Port e	of Seattle	e, Termh	nal 30		
		Sample	er R.J	oves				
	Datea	and Start Tim	ie 6.16.2	021 0	945			
		and End Tim	ie 6.16-	2021	600			
		ressure (in H _i tailed weathe report	er 30	0.40			-	
	San	nple Port Typ	-	TrN				
		ection Metho						
Location ID		ARGE - 0						
Surface Conditions		y, dry						
Sample			Flow			Sample	Silonte	
Canister	85	853Z Controller Z47 Canister 11 A						
LAB ID			LAB ID		12	Size	IC / Micau	
Start	0.0	Start	2.0	End		End		
Sample	0949	Pressure	30	Sample	0957	Pressure	\bigcirc	
Time		(" Hg)		Time		(" Hg)		
Analysis		Di	raina Volumoo	and Dunce T	·!			
Purge Vol			rging Volumes ge Rate	and Purge I		ired		
(ml)			/min)		Time Requi	irea		
()		1 /110	Leak T	esting				
Observation mins [if Yes, and re-do lea	reinstall sa	mple Vapor I	5 Pin					
			ollection Notes	General Of	servations			
PID (PPM)	A Del	PIDE OF	20					
Shut-Ir	Testing (n	ninimum dur	ation 5 minute	s, system sh	ould maintai	in >10" of v	/acuum)	
Start Time				End Time				
Start Pressure (" Hg) End Pressure (" Hg)					e (" Hg)			

			Va	apor Sai	mplin	g - Field Fori	m				
		Pro	oject	Por	tof	Seattle,	Terminal	30			
		San	npler			oves					
	Date a	nd Start	Time	7.1	9.20	021 142	3-05 1420	>			
	Date	and End	Time	7.	19.2	021 143	34 RS 14:	35			
Weather Ba	rometric Pr	essure (ir	n Hg)								
(attach co	pies of det	ailed wea	ather								
			orts)								
		ple Port		DED	ICAT	ED					
	Leak Dete	ction Me	thod	A/N	v						
Location ID	DISC	HARGE	5-0	7192	-{						
Surface Conditions											
Sample		Flow Sample Silonite									
Canister	85	8531 Controller 256 Canister IL Minico								IL MiniCan PN 29-M1 JOL	
LAB ID		-		AB ID				Size		PN 29-14101	
Start		Start						End			
Sample	1423	Pressure	5	29+	-	Sample	1434		sure	2	
Time Analysis		(" Hg)	1			Time		(" H	g)		
Analysis		_	Durg	ing Vol	umor	and Purge Ti	mo				
Purge Vol				e Rate	umes		Time Requi	rod	ľ		
(ml)			(ml/n					ieu			
()			(111)/11		eak To	esting					
Observation of	of Leak (bu	bbles) aft	er 5								
mins [if Yes,	-	•		n							
and re-do lea											
		Sampl	e Coll	lection	Notes	General Ob	servations				
PID (PPM)											
Canister	cool to -	touch (not u	varm							
Shut-In	Testing (n	ninimum	durat	tion 5 m	inute	es, system she	ould maintai	in >1()" of va	acuum)	
Start Time						End Time					
Start Pressure	tart Pressure (" Hg) End Pressure (" Hg)										

	Vapor Sampling - Field Form										
Project				ct {	Port of Scattle, Terminal 30						
Sampler				er	R.Jones						
	Date	and Star	t Tim	e 7	1.19.20	21 143	35				
	Dat	e and End	d Tim	e -	7.19.2.	21 14:	15		_		
Weather Barometric Pressure (in Hg) (attach copies of detailed weather reports)			er								
	Sa	mple Por	t Typ		EDICA	TEN					
	Leak Det	ection M	etho	d /	NA						
Location ID	INLE	T-07	192	21	1.						
Surface Conditions											
Sample				Flow				Sam	•	Silo	aite
Canister	85	35	< Contro			307			ister	11.	HiniCan
LAB ID			J LAB ID					Size		PN-M	CIOLSV
Start		Start			~	End	LUUR	End		1	
Sample Time	1437	Pressu	re		30	Sample	1444		sure	/	
Analysis		(ng)				Time		(" H	B)		
Analysis			Pu	rging	Volumes	and Purge T	ime				
Purge Vol	1		1	ge Rat			Time Requ	uired	1		
(ml)				/min)							
					Leak Te	esting					
Observation of	of Leak (b	ubbles) a	fter 5	5				_			
mins [if Yes,	reinstall s	ample Va	por F	Pin							
and re-do lea	k testing]										
		Sam	ole C	ollecti	on Notes	/General Ob	servations				
PID (PPM)											
SVE Disch	arge 1	28° F									
Shut-In	Testing (minimun	n dur	ation	5 minute	s, system sh	ould mainta	ain >1()" of va	icuum)	
Start Time						End Time				•	
Start Pressure (" Hg)						End Pressur	e (" Hg)				

.

Vapor Sampling - Field Form								
		Pro	ject	Port	of Scattle	- 730		5
		Sam	pler	R.J.	of Scattle			
	Date	and Start T	ime 💡		21 1435			
	Date	and End T			2021 1450)		
Weather Barometric Pressure (in Hg) (attach copies of detailed weather reports)				30.10				
		nple Port T	ype D	N/A !	ED	Oxidizer	Discharge	e)
	Leak Dete	ection Met	hod	NAI		(/
Location ID	DISCH,	ARGE-0	8262	1				
Surface Conditions Overcast, ~70°F, No rain								
Sample Canister LAB ID	1	60	Flow	roller '	. 34	5	Sample Canister Size	12
Start Sample Time Analysis	1439	Start Pressure ("Hg)	Pressure 7		End Sample Time	1447	End Pressure (" Hg)	2
	1		Purging	Volumes	and Purge Ti	me		
Purge Vol (ml)	Purge Vol Purge			Rate Time Required			red	
				Leak To	esting			
Observation of Leak (bubbles) after 5 mins [if Yes, reinstall sample Vapor Pin and re-do leak testing]								
					/General Ob	servations		
PID (PPM)	O WR	KI prior	- fo sa	mplina				
							· · · · · · · · · · · · · · · · · · ·	
Shut-In	Testing (r	ninimum c	luration	5 minute	s, system sh	ould maintai	n >10" of v	acuum)
Start Time	i resting (i				End Time			
Start Pressure (" Hg)					End Pressure	e (" Hg)		

11

•

19 m.	and the second second second			Samplin	g - Field For	m				
		Proj	ŀ	Port of Seattle Terminal 30						
		Samp	ler	R.J	enes					
	Date and Start Time 8.26.2021 1450 Date and End Time 8.26.2021 1515									
Weather Bar	ometric Pr	essure (in H	lg)							
(attach co	pies of det	ailed weath	ner	30.1	U					
		repor								
		ple Port Ty	pe l	DEDICA	TED	04	idizer	-Inle	4	
	Leak Dete	ction Meth	od	NLA		C				
Location ID		-0826								
Conditions	Surface Conditions Overcast, ~70°F, No rain									
Sample		R	Flow			:		ble	Silon	ste
Canister	27	9 2432	Cont	roller	2:	Canis	ster	Me	lican	
LAB ID			LAB	טו			Size			
Start		Start			End		End			-
Sample Time	1500	Pressure ("Hg)	2	50	Sample Time	1511	Press (" Hg			Ζ
Analysis					Time		П	1		
Analysis			urging	Volumes	and Purge T	ime				
Purge Vol			urge Rat		and runger	Time Requ	ired			
(ml)			nl/min)			e nequ				
,		(V.	.,	Leak To	esting					
Observation of	of Leak (bu	bbles) after	5							
mins [if Yes,					4					
and re-do lea	k testing]				7					
Sample Collection Notes/General Observations										
PID (PPM)	(do.4 u	FKI	immed	ately	20101					
		1		/						
Shut-In Testing (minimum duration 5 minutes, system should maintain >10" of vacuum)										
Start Time				ents :	End Time					
Start Pressure ("Hg) End Pressure ("Hg)										

Pos T30 8/26/2021

301 Brushton Ave Suite A Pittsburgh, PA 15221 Toll Free (800) 393-4 Local (412) 436-260(Fax (412) 436-2616

RKI Multi-Gas Detector Calibration Certificate

Cal Gas	_	Lot #	Expiration	Reading %	Acceptable Range
Oxygen		20-7690	12/03/22	18.0	(17.5% - 18.5%)
	1		-		
Cal Gas		Lot #	Expiration	Reading ppm	Acceptable Range
H2S	Γ	20-7690	12/03/22	10	(9 - 11)
Cal Gas		Lot #	Expiration	Reading ppm	Acceptable Range
CO		20-7690	12/03/22	51	(48 - 52) 💌
					[
Cal Gas		Lot #	Expiration	Reading %	Acceptable Range
Ch4 % LEL	[20-7690	12/03/22	50	(48 - 52)
Cal Gas	_	Lot #	Expiration	Reading %	Acceptable Range
Ch4 %Vol		N/A	N/A	N/A	-
Cal Gas		Lot #	Expiration	Reading % / ppm	Acceptable Range
SO2	-	N/A	N/A	N/A	▼
Cal Gas		Lot #	Expiration	Reading % / ppm	Acceptable Range
CO2	•	N/A	N/A	N/A	▼
Cal Gas		Lot #	Expiration	Reading ppm	Acceptable Range
VOC	L	21-8065	07/09/25	100	(98 - 102)
Model S/N Barcode Order #		GX6000 52H0104501- u87334x 464167	•	Pump Flow 550	(300+)
		formed by FEI cor	nours of receiv	irer's specifications. Plea	ise report any issues within 24
All calib	rati	on gas used is trac	eable to NIST. Ad	ditional documentation is	available upon request.

<u>Appendix C</u> Vapor Sampling Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 21, 2021

Rusty Jones, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Jones:

Included are the results from the testing of material submitted on January 12, 2021 from the Port of Seattle Terminal 30, F&BI 101134 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0121R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 12, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 101134 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
101134 -01	DISCHARGE-011221
101134 -02	INLET-011221

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics range concentration for sample INLET-011221 exceeded the calibration range. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	DISCHARGE-011221 01/12/21 01/12/20 01/16/21 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30, F&BI 101134 101134-01 1/15 011526.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		Lov Lin		Upper Limit: 130	
a 1	Concentration				
Compounds:	ug/m3				
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 3,800				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INLET-011221 01/12/21 01/12/20 01/16/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30, F&BI 101134 101134-02 1/160 011528.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 97	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 110,000			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable O1/15/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30, F&BI 101134 01-95 MB 011511.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		Lower Limit: 70	Upper Limit: 130	
0 1	Concentration			
Compounds:	ug/m3			
APH EC5-8 aliphatics<40				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	DISCHARGE-011: 01/12/21 01/12/21 01/16/21 Air ug/m3	Pro Lab Dat Inst	ent: ject:) ID: :a File: trument: erator:	Crete Consulting Port of Seattle Terminal 30, F&BI 101134 101134-01 1/15 011526.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 100	Lower Limit: 70	Upper Limit: 130	
Concent		tration		
Compounds:	ug/m3	ppbv		
Benzene	<4.8	<1.5		
Toluene	<280	<75		
Ethylbenzene	9.1	2.1		
m,p-Xylene	44	10		
o-Xylene	9.3	2.1		
Naphthalene	<3.9	< 0.75		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INLET-011221 01/12/21 01/12/21 01/16/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30, F&BI 101134 101134-02 1/160 011528.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	tration			
Compounds:	ug/m3	ppbv		
Benzene	86	27		
Toluene	<3,000	<800		
Ethylbenzene	<69	<16		
m,p-Xylene	<140	<32		
o-Xylene	<69	<16		
Naphthalene	<42	<8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 01/15/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30, F&BI 101134 01-95 MB 011511.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 94	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	<0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/21 Date Received: 01/12/21 Project: Port of Seattle Terminal 30, F&BI 101134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 101164-01 1/5.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	2,100	1,900	10
APH EC9-12 aliphatics	ug/m3	3,700	3,900	5
APH EC9-10 aromatics	ug/m3	1,900	2,000	5

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	80	70-130
APH EC9-12 aliphatics	ug/m3	67	109	70-130
APH EC9-10 aromatics	ug/m3	67	112	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/21 Date Received: 01/12/21 Project: Port of Seattle Terminal 30, F&BI 101134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 101164-01 1/5.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	60	56	7
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	63	67	6
m,p-Xylene	ug/m3	280	300	7
o-Xylene	ug/m3	210	230	9
Naphthalene	ug/m3	5.8	6.2	7

Laboratory Code: Laboratory Control Sample

Laboratory coact. Laboratory con	iteror sumpre		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	98	70-130
Toluene	ug/m3	51	100	70-130
Ethylbenzene	ug/m3	59	107	70-130
m,p-Xylene	ug/m3	120	95	70-130
o-Xylene	ug/m3	59	97	70-130
Naphthalene	ug/m3	71	81	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029		Friedman & Bruya, Inc.								INLET-011221	DISCHARCHE-011721	Sample Name		SAMPLE INFORMATION	Phone <u>32-530-1359</u> Email	e, ZIP	108 S.	Company Joves S	Report To Crete Con	
Received by:	Relinquished by:	Received by:	Relinquíshed by:									02 :	01	ID (nail	He w	Washington	Stevens	builtinsue	
y:	ned by:	NN NN	hed by:	SIG								2434	3757	Canister ID				Seattle WA 98104	in Ge,		MC.	
		1/1/hws	. a lane	SIGNATURE					-			20		U Cont	T O Q			104	, 300			
		E I		ß		IA / SG	IA I SG	IA 1/SG	SG=Soil Gas (Circle One)	Reporting Level: IA=Indoor Air			NOTES:	1	PROJ		0111					
		2	N									1.12.21	12.21	Date Sampled				S	Terminal	ECT NA	SAMPLENS (STATISTICS)	<u>, v oga r</u>
····· .	· · · · · ·	د	L' ASA	PRI			, ,		-			12 29	1 29.5	يسريم منتخب متشك	[nitia]				ia Vratic	VIE & AI	Sindime	· · · · · · · · · · · · · · · · · · ·
		phan	Savo	PRINT NAME								2460	0915	1	l Field				03.	DRESS		
		>		B								1.5 1.5	T-S		Final						Same	
	-	t	0									0957	0924	Final Time	Field			IJ				
Samp			Crote	CO								X	X	1	15 Full Scan 15 BTEXN	ANALYSIS REQUESTED		INVOICE TO		PO #		
Samples received at			onsultive	COMPANY					-			×	X	1	D15 cVOCs APH	SIS REQ		ð 				
eived			ã		5 y										Helium	UESTE	U Archiv	D Defau	Rush ch	C RUSH	TT , t	Pa
at 18 %	5	1-12-21	1.12.21	DATE										z		D	⊔ Archive (r ee may apply)	SAMPLE DISPOSAL D Default: Clean after 3 days	Rush charges authorized by:	ard	TURNAROUND TIME	The Hanness Ha Hanness Hanness
		1108	801)	TIME									-	Notes			(pp.y)	OSAL r 3 days	ized by:		D TIME	Df.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 2, 2021

Jamie Stevens, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Ms Stevens:

Included are the results from the testing of material submitted on February 17, 2021 from the Port of Seattle, Terminal 30, F&BI 102267 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Rusty Jones CTC0302R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 17, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle, Terminal 30, F&BI 102267 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
102267 -01	Discharge-021721
102267 -02	Inlet-021721

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics range concentration for sample Discharge-021721 exceeded the calibration range. In addition, APH EC5-8 aliphatics and APH EC9-12 aliphatics exceeded the calibration range in sample Inlet-021721. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-021721 02/17/21 02/17/21 02/25/21 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Crete Consulting Port of Seattle, Terminal 30 102267-01 1/4.7 022428.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 91	Lower Limit: 70	Upper Limit: 130	
Compounds: APH EC5-8 alipha	,			
APH EC9-12 aliphatics2APH EC9-10 aromatics<1				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-021721 02/17/21 02/17/21 02/25/21 Air ug/m3	Client: Project Lab ID Data F Instrux Operat	::): 'ile: ment:	Crete Consulting Port of Seattle, Terminal 30 102267-02 1/38 022429.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 102	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 76,000 ve			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/24/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle, Terminal 30 01-395 MB 022411.D GCMS7 bat
Surrogates: 4-Bromofluoroben	% Recovery: zene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <30			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-021721 02/17/21 02/17/21 02/25/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 102267-01 1/4.7 022428.D GCMS7 bat
Surrogates:	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene 93	70	130	
	Concent	cration		
Compounds:	ug/m3	ppbv		
Benzene	1.7	0.52		
Toluene	<89	<23		
Ethylbenzene	<2	< 0.47		
m,p-Xylene	<4.1	< 0.94		
o-Xylene	<2	< 0.47		
Naphthalene	<1.2	< 0.23		
Surrogates: 4-Bromofluorobenze Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	% Recovery: 93 Concent ug/m3 1.7 <89 <2 <4.1 <2	Lower Limit: 70 cration ppbv 0.52 <23 <0.47 <0.94 <0.47	Upper Limit:	bat

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-021721 02/17/21 02/17/21 02/25/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 102267-02 1/38 022429.D GCMS7 bat
Surrogates:	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenz	•	70	130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	50	16		
Toluene	<720	<190		
Ethylbenzene	28	6.5		
m,p-Xylene	<33	<7.6		
o-Xylene	<17	<3.8		
Naphthalene	<10	<1.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/24/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 01-395 MB 022411.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.32 <19 <0.43 <0.87 <0.43 <0.26	<0.1 <5 <0.1 <0.2 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/21 Date Received: 02/17/21 Project: Port of Seattle, Terminal 30, F&BI 102267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 102326-02 1/6.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	500	470	6
APH EC9-12 aliphatics	ug/m3	190	170	11
APH EC9-10 aromatics	ug/m3	<150	<150	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	oror sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	100	70-130
APH EC9-12 aliphatics	ug/m3	67	110	70-130
APH EC9-10 aromatics	ug/m3	67	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/02/21 Date Received: 02/17/21 Project: Port of Seattle, Terminal 30, F&BI 102267

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 102326-02 1/6.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<2	<2	nm
Toluene	ug/m3	<120	<120	nm
Ethylbenzene	ug/m3	<2.7	<2.7	nm
m,p-Xylene	ug/m3	<5.4	<5.4	nm
o-Xylene	ug/m3	<2.7	<2.7	nm
Naphthalene	ug/m3	<1.6	<1.6	nm

Laboratory Code: Laboratory Control Sample

	control Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	105	70-130
Toluene	ug/m3	51	97	70-130
Ethylbenzene	ug/m3	59	108	70-130
m,p-Xylene	ug/m3	120	108	70-130
o-Xylene	ug/m3	59	109	70-130
Naphthalene	ug/m3	71	110	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	D. J. B. Benne Inc.	· · · ·						INLET-021721	DISCHARGE-021721	Sample Name		SAMPLE INFORMATIO N		Address <u>108 S, Was</u> City, State, ZIP <u>Scattl</u> C	of the	792601
	Received by:	Relinquished by:	Received by: m	Relinquished by:	[S							62 3344	or 2436	Lab Canister ID ID			Email	Scattic, WA alloy	1 1 1 1	****
		+	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SIGNATURE							35	107	Flow Cont. ID				Sloy	9	
**			hung	only	RE	IA / SG	IA / 80)	IA / SG	IA=Indoor Air SG=Soil Gas (Circle One)	, Reporting Level:			NOTES:	PROJECT I	SAMPLE					
			Nonah	NAV.	PRIN		¢					V 295		Date Vac. Sampled ("Hg)				C [butwa]	TAME &	SAMPLE CHAIN UP LUSI
			Phan	Saves	PRINT NAME							1341 2	2 N	Final Vac. ("Hg)					RESS	
			+	fc								094	82,41			A		INVO	P	ME
	Samples received at		120 -	ł No	COMPANY	3						7		< то1	5 Full Scar 5 BTEXN 15 cVOCs			INVOICE TO	PO#	1+1/00
	eceived	-		WALLAND .	YV										APH Helium	QUESTE		Defau Archiv	TURN Standard RUSH Rush charge	A/ Page #
• •	[at 1γ °C	5		i k.										Notes		P		SAMPLE DISPOSAL [] Default: Clean after 3 days [] Archive (Fee may apply)	TURNAROUND TIME Standard D RUSH Rush charges authorized by:	
				ΨŸ		×						<u>.</u>								

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2021

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on March 23, 2021 from the Port of Seattle Terminal 30, F&BI 103440 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens, Rusty Jones CTC0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 103440 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
103440 -01	DISCHARGE-032321
103440 -02	INLET-032321

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

APH EC5-8 aliphatics were detected in the MA-APH method blank at a level greater than one tenth the concentration detected in the samples. The data were flagged accordingly.

The MA-APH EC5-8 aliphatics concentration in sample INLET-032321 exceeded the calibration range. The data were qualified accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	DISCHARGE-032321 03/23/21 03/22/21 03/27/21 Air ug/m3		Client: Project: Lab ID: Data Fil Instrume Operator	ent:	Crete Consulting Port of Seattle Terminal 30, F&BI 103440 103440-01 1/18 032629.D GCMS12 bat
Surrogates: 4-Bromofluorobenz		r: Lii 9	wer mit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m				
Compounds.	ug/m	J			
APH EC5-8 alipha	tics 5,300 f	b			
APH EC9-12 aliph		C			
APH EC9-10 arom	atics <45	C			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INLET-032321 03/23/21 03/22/21 03/27/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30, F&BI 103440 103440-02 1/450 032630.D GCMS12 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 100	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			

APH EC5-8 aliphatics 480,000 ve fbAPH EC9-12 aliphatics72,000APH EC9-10 aromatics<11,000</td>

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed:	ate Collected: Not Applicable		: : ile:	Crete Consulting Port of Seattle Terminal 30, F&BI 103440 01-655 mb 032612.D
Matrix:	Air	Instru		GCMS12
Units:	ug/m3	Operat	or:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 101	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	DISCHARGE-0323 03/23/21 03/23/21 03/27/21 Air ug/m3	Proj Lab Data Inst	ject:	Crete Consulting Port of Seattle Terminal 30, F&BI 103440 103440-01 1/18 032629.D GCMS12 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 114	Lower Limit: 70	Upper Limit: 130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene	<5.8	<1.8		
Toluene	<340	<90		
Ethylbenzene	32	7.3		
m,p-Xylene	67	15		
o-Xylene	16	3.7		
Naphthalene	<2.4	< 0.46		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INLET-032321 03/23/21 03/23/21 03/27/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30, F&BI 103440 103440-02 1/450 032630.D GCMS12 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 104	Lower Limit: 70	Upper Limit: 130	
	Concent	tration		
Compounds:	ug/m3	ppbv		
Benzene	<140	<45		
Toluene	<8,500	<2,200		
Ethylbenzene	<200	<45		
m,p-Xylene	<390	<90		
o-Xylene	<200	<45		
Naphthalene	<33	<6.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 03/26/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Crete Consulting Port of Seattle Terminal 30, F&BI 103440 01-655 mb 032612.D GCMS12 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 106	Lower Limit: 70	Upper Limit: 130	
Concent		tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.1	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/21 Date Received: 03/23/21 Project: Port of Seattle Terminal 30, F&BI 103440

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 103478-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	780	870	11
APH EC9-12 aliphatics	ug/m3	280	310	10
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	90	70-130
APH EC9-12 aliphatics	ug/m3	67	108	70-130
APH EC9-10 aromatics	ug/m3	67	94	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/21 Date Received: 03/23/21 Project: Port of Seattle Terminal 30, F&BI 103440

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 103478-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<100	<100	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	<2.4	<2.4	nm
Naphthalene	ug/m3	<1.4	<1.4	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/21 Date Received: 03/23/21 Project: Port of Seattle Terminal 30, F&BI 103440

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Lasoratory Couc. Lasoratory	control sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	96	70-130
Toluene	ug/m3	51	98	70-130
Ethylbenzene	ug/m3	59	98	70-130
m,p-Xylene	ug/m3	120	92	70-130
o-Xylene	ug/m3	59	96	70-130
Naphthalene	ug/m3	71	99	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} \text{SAMPLERS (signature)} & \text{SAMPLERS (signature)} & \text{Coss} & Co$	SAMPLE CHAIN OF CUSTODY J. Steken's SAMPLERS (signature) (code Code Sampler J. Steken's PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Standpin, Ste. 3cc PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Ite, WA 92164 Reporting Reporting Invoice no Ite, WA 92164 Prove Lineal Invoice no Invoice no Ite, WA 92164 Prove Lineal Initial Field Prove Lineal Ite, WA 92164 Cont. SG-Soil Gas Date Initial Field Prove Lineal In In In Intial Field Prime Prime In In In Intial Field Prime Prime In In In In Intial Prime Prime In In In In Intial Prime Prime In In In In Intial Prime Prime In In In In In In In In In In In In In In In In In In In <td< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Lab Canister Flow IA=Indoor Air SG-Soil Gas Initial Field	T. Staten's SAMPLERS Gender v.s.uth.a PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# PROJECT NAME & ADDRESS PO# Ite_WA 9364 Reporting Lavel: Lavel: ID Reporting Lavel: Lavel: ID INVOICE TO Ita_UA Plow IA revel: IA revel: IA / SG Initial Picat Final Final Final Final ID Final Final Final Final Final ID Final Final Final Final ID Final Final Final Final ID Final Final Final Final Final ID Final ISSEN 0/1 ZZ6/C IA IA / SG J.Z.Z.I IA / SG J.Z.Z.I IA / SG ISSEN PHINT NAME SIGNATURE IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG	SAMPLE CHAIN OF CUSTORY J. Stadaws SAMPLE CHAIN OF CUSTORY Samples Gignature) Ford Construction PROJECT NAME and Construction Prove Custory Prove Construction Prove Custory Ital Canister Cont. Second Construction Intel Prove Construction Intal	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Schens SAMPLESS (signature) Usulfua PROJECT MAME & ADDRESS Subidian Str. Str. Str. PROJECT MAME & ADDRESS Inail Provide the str. Imail Reporting Lab Canister Canister Cont. SG=Soil Gas Date ID ID ID ID ID ID (Circle One) Sampled ("Hg) The (Hg) Time IA / SG J.Z.Z.Z.Z IA /	SAMPLE CHAIN OF CUSTORY J. Stelens SAMPLE CHAIN OF CUSTORY Sample E Chain of Custors Sample Custors Sample Crime Reporting Lab Canister Cont. SG-SG-SGI Gas Lab Canister Cont. SG-SGI Gas Lab Canister Cont. SG-SGI Gas Lab Circle One) SG-T3 Lavel: Lab Circle One) Circle One) Sampled Circle One)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Stekens SAMPLERS (signature) PROJECT NAME & ADDRESS PO# Shindlen, Ste. Sec. PROJECT NAME & ADDRESS Provention Provention Shindlen, Ste. Sec. Proventing Proventing Proventing Proventing Lab Canister Cont. SG-Soil Gas Date Price Vac. Involce To Din ID ID ID Circle One) Sampled Price Vac. Final Field Field Final Field Final Field	SAMPLE CHAIN OF CUSTODY 0.7-7.3 - 7.1 SAMPLE CHAIN OF CUSTODY 0.7-7.2.3 - 7.1 Imail Imail Imail Involues Involues Involues <th colspan<="" td=""><td>Insulfingen, Ste. 3cc. PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Proventing Level: Intial Flow In</td></th>	<td>Insulfingen, Ste. 3cc. PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Proventing Level: Intial Flow In</td>	Insulfingen, Ste. 3cc. PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Proventing Level: Intial Flow In
Lab Canister Flow IA=Indoor Air Initial Field Final Field	J. Stekens SAMPLERS (signature) PROJECT NAME & ADDRESS Power eshindlen, Ste. Jec. PROJECT NAME & ADDRESS Prover Prover eshindlen, Ste. Jec. Prover Prover Prover Itab Canister Flow Intial Flow Intial Itab Canister Cont. SG=Solid Gas Date Intial Fled Final ID ID ID ID ID ID Circle One) Sampled Prime Final Fled K X X Jac CGT IA / SG JZ; Z] Z; S ISZ I I/CCC A Jac IA / SG JZ; Z] Z; S I I/CCC X X Jac IA IA SG JZ; Z] <	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ashindigen, Ste. Sec. PROJECT NAME & ADDRÉSS PO# ashindigen, Ste. Sec. Port of Scattle Port of Scattle Dmail Ite, WA 98/64 Reporting Involce To Dmail Reporting Reporting Involce To Lab Canister Cont. SG=Soil Gas Date Vac. ID ID Circle One) Sampled Final Final Final 01 Z2673 Icq IA /SG 3.73,71 Z4.5 ISSK Yac. 01 IA SG 3.73,71 Z4.5 ISSK I Icc/1 X 1A SG IA SG X X X 1A IA SG I I Icc/1 X 1A IA IA IA I I	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Stellen's SAMPLERS (signature) Jords	T. Stedens SAMPLERS (signature) usulting En, Ste. Sec. PROJECT NAME & ADDRESS estimation, Ste. Sec. ProJECT NAME & ADDRESS naul Projecting Lab Canister Cont. SG=Soil Gas Date Vac. ID ID ID ID ID ID ID ID ID IA / SG JA / SG IA / SG	ANALYSIS REQU PROJECT NAME & ADDRÉSS PO# Schinder Sec Port af Seattle Port af Seattle Imail Imail Imail Invoice ro Imail Reporting Invoice ro Ind Canister Cont. SG=Soil Gas ID ID ID Initial ID ID Cort. SG=Soil Gas SG=Soil Gas Date Vac. Vac. Initial Final Vac. Final Field ID ID Coricle Onel SG=Soil Gas Date Vac. Vac. Final Field ID ID Coricle Onel Sampled Time CHES ID IA /SG Jack SG IA SG IA SG IA SG	
Iab Canister Flow IA=Indoor Air Initial Field Final Field	J. Statensy SAMPLERS (signature) (vist, Ste. 3cc. PROJECT NAME & ADDRESS Schinden, Ste. 3cc. PROJECT NAME & ADDRESS Port and the state of the	J. Stekey SAMPLE CHAIN OF CUSTODY 0.2 - 2.3 - 2.4 SAMPLERS (signature) Cost for cost for custory 0.2 - 2.3 - 2.4 Sampled (rest) PROJECT NAME & ADDRESS Proof for cost f	Ashingfer, Ste. 3cc. PROJECT NAME & ADDRÉSS PO# Amail Port S. Scattle Port S. Scattle INVOICE TO Imail Reporting Reporting Initial Lab Canister Cont. SG-Soil Gas Date ID ID ID (Circle One) Sampled ("Hg) Final 62 3673 169 IA (SG 3737,71 63 3673 169 IA SG 155 1A IA SG 175,71 155 FO IA IA SG 169 IA SG	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Stevens SAMPLERS (signature) Jords Shinden, Ste. 3cc PROJECT NAME & ADDRESS Port Stevens Schinden, Ste. 3cc PROJECT NAME & ADDRESS PO# Imail Reporting Level: Initial Lab Canister Cont. SG=Soil Gas Date Vac. Initial Final Final Field ID ID (Circle One) Sampled Time OI Z2GL IA /SG 3.75.71 2.554 ISSE IA /SG 3.75.71 2.554 ISSE Y X	J. Staden S My Hind Canister Cont. SG=Solid Gas Date Cont. SG=Solid Gas Cont. SG=Solid Gas Date Cont. SG=Solid Gas Date Cont. SG=Solid Gas Cont. SG	ashindfon, Ste. 3cc. PROJECT NAME & ADDRESS PO # ashindfon, Ste. 3cc. Port SC. Port SC. imail Port SC. Port SC. imail Proventing Reporting Lab Canister Flow ID ID IA-Indoor Air ID ID SG=Soil Gas ID ID Circle One) SG=Soil Gas Sampled ID ID ID IA / SG Jonal IA / SG IA / SG INVOICE TO IA / SG INVOICE TO	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. Stevens SAMPLERS (signature) Mail Cust, Ears PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Project Reporting Lab Canister Cont. SG-Solid as Date Vac. Initial Flow IA=Indoor Air Date Vac. Initial Final Final Flow IA=Solid as Date Vac. Initial Vac. Vac. </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Image PROJECT NAME & ADDRESS PO# Schindgen, Ste. Scc. Protestatic Protestatic Imail Protestatic Protestatic Indicatic Protestatic Protestatic Intrial Protestatic Protest</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image PROJECT NAME & ADDRESS PO# Schindgen, Ste. Scc. Protestatic Protestatic Imail Protestatic Protestatic Indicatic Protestatic Protestatic Intrial Protestatic Protest	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T. Stelens SAMPLERS (signature) Insulting PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Project Stelens Project NAME & ADDRESS Project Stelens Port Stelens Imail Plow Imail Reporting Lab Canister Cont. SG=Soil Gas ID ID ID ID	SAMPLE CHAIN OF CUSTODY $0.3 - 2.3 - 2.1$ SAMPLE CHAIN OF CUSTODY $0.3 - 2.3 - 2.1$ SAMPLE CHAIN OF CUSTODY $0.3 - 2.3 - 2.1$ SAMPLE CHAIN OF CUSTODY $0.3 - 2.3 - 2.1$ SAMPLERS (signature) Custor Source Cont. Ste. Sec PROJECT NAME & ADDRESS PO # Project Terminal Source INVOICE TO ANALYSIS REQU ANALYSIS REQU ANALYSIS REQU Invoice To Invoice To	Insulting PROJECT NAME & ADDRÉSS PO# Shingfen, Ste. 3cc Pert of Scattle Pert of Scattle Imail Reporting Reporting Invoice To Inab Canister Cont. SG=Soil Gas Date ID ID ID ID Circle One) Sampled 62 3673 169 IA 1(SG 3.73.71 74.5 1555	
Image: Content of the system Reporting Image: Content of the system Reporting Lab Canister Flow IA=Indoor Air Initial Field Final Field ID ID ID ID SG=Soil Gas Date Vac. Initial Field Final Field Scan ID ID ID (Circle One) Sampled ("Hg) Time Time TO 15 BTEXN TO15 cover cover Sampled ("Hg) Time TO 15 Stan TO15 cover cover Sampled ("Hg) Time X X	J. Stelens SAMPLERS (signature) Construction Insulting PROJECT NAME & ADDRESS PO# PROJECT NAME & ADDRESS PO# Project NAME & ADDRESS PO# Imail Reporting Invoice To Intrail Reporting Initial Project NALYSIS REQU Intrail Poet Science NALYSIS REQU ANALYSIS REQU Initial Poet Science Sampled ("Hg) Time Pinal Pinal Pinal ID ID ID ID PH PH PH ID ID ID PH PH PH PH ID ID ID PO PH </td <td>J. Statens SAMPLE CHAIN OF CUSTODY 0.3 - 2.3 - 2.1 SAMPLERS (signature) SAMPLERS (signature) 0.4 - 3 - 5 - 2.4 Sample Crivity Fort at Seattle PROJECT NAME & ADDRESS PO# Smail Project at Seattle Port at Seattle Port at Seattle Smail Provide at Seattle NOTES: INVOICE TO Smail Reporting Level: Initial Field Lab Canister Cont. SG=Soil Gas Date Vac. Initial ID ID ID Circle One) Sampled Time Time Final OI Z3/6 C1 IA /SG 3.72,71 Z5 ISH 1</td> <td>Imail PROJECT NAME & ADDRÉSS PO# Imail Project Name & Address Portef Scattle Imail Proventing Proventing Imail Plow Reporting Level: Level: Initial ID ID SG=Soil Gas ID ID ID ID ID (Circle One) Sampled ("Hg) To 15 Flow IA=Indoor Air Initial Final Field Final Field Final Field Final To 15 BT Sampled ("Hg) Time To 15 Y</td>	J. Statens SAMPLE CHAIN OF CUSTODY 0.3 - 2.3 - 2.1 SAMPLERS (signature) SAMPLERS (signature) 0.4 - 3 - 5 - 2.4 Sample Crivity Fort at Seattle PROJECT NAME & ADDRESS PO# Smail Project at Seattle Port at Seattle Port at Seattle Smail Provide at Seattle NOTES: INVOICE TO Smail Reporting Level: Initial Field Lab Canister Cont. SG=Soil Gas Date Vac. Initial ID ID ID Circle One) Sampled Time Time Final OI Z3/6 C1 IA /SG 3.72,71 Z5 ISH 1	Imail PROJECT NAME & ADDRÉSS PO# Imail Project Name & Address Portef Scattle Imail Proventing Proventing Imail Plow Reporting Level: Level: Initial ID ID SG=Soil Gas ID ID ID ID ID (Circle One) Sampled ("Hg) To 15 Flow IA=Indoor Air Initial Final Field Final Field Final Field Final To 15 BT Sampled ("Hg) Time To 15 Y	
ID ID <td< td=""><td>J. Stevens SAMPLERS (signature) J. Stevens Reporting Shindler Stevens Inail PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Imail Project of Scattle Imail Reporting Lab Canister Cont. SG=Soil Gas JD ID ID ID ID ID ID ID ID ID</td><td>J. Stevens J. Stevens SAMPLE CHAIN OF CUSTODY SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME & ADDRESS Project of Seattle Project of Seattle Projec</td><td>Insulting PROJECT NAME & ADDRESS PO# ashingten, Ste. Sec Port of Scattle Port of Scattle Imail Propring Port of Scattle Imail Invoice To Imail Provide Scattle Imail Invoice To Imail Provide Scattle Imail Invoice To Imail Invoice To Imail Invoice To Imail Invoice To Imail Reporting Imail Invoice To Imail Reporting Imail Initial Imail Field Imail Field</td></td<>	J. Stevens SAMPLERS (signature) J. Stevens Reporting Shindler Stevens Inail PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS PO# Imail Project of Scattle Imail Reporting Lab Canister Cont. SG=Soil Gas JD ID ID ID ID ID ID ID ID ID	J. Stevens J. Stevens SAMPLE CHAIN OF CUSTODY SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME & ADDRESS Project of Seattle Project of Seattle Projec	Insulting PROJECT NAME & ADDRESS PO# ashingten, Ste. Sec Port of Scattle Port of Scattle Imail Propring Port of Scattle Imail Invoice To Imail Provide Scattle Imail Invoice To Imail Provide Scattle Imail Invoice To Imail Invoice To Imail Invoice To Imail Invoice To Imail Reporting Imail Invoice To Imail Reporting Imail Initial Imail Field	
	J. Stevens SAMPLERS (signature) Minsutting Insutting PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Port of Scattle Terminal 20 INVOICE TO ANALYSIS REQU	SAMPLE CHAIN OF CUSTODY 03-23-24 SAMPLERS (signature) Samplers (signature) Cush Jones PROJECT NAME & ADDRESS PO # PROJECT NAME & ADDRESS PO # Project of Scatte Port of Scatte Terminal 30 INVOICE TO NOTES: INVOICE TO ANALYSIS REQU	mail PROJECT NAME & ADDRÉSS PO# Port of Scattle Port of Scattle NOTES: PO# Iter WA 98164 NOTES: NOTES: INVOICE TO ANALYSIS REQU	
	108 S. Washington, Ste. Jec te, ZIP Seattle, WA 93104 NOTES: NOR S. Washington, Ste. Jec NOTES: NOTES: SAMPLERS (signature) PROJECT NAME & ADDRESS PROJECT NAME & ADDRESS Project of Scattle Port of Scattle NOTES: NOTES:	103440 103440 103440 1035 10 1035 103	Seattle, WA 98104 NOTES: NOTES: INVOICE TO	
Email	108 S. Washington, Ste. Jec 108 S. Washington, Ste. Jec 109 S. Washingto	103440 103440 103440 103440 1035	Consulting PROJECT'NAME & ADDRESS PO# ASta S. Washington, Ste Jec Port of Scattle Rush Terming 20	
tate, ZIP Seattle (W) A 98164 NOTES: INVOICE TO Email 0	K. Jones J. Stevens Rush Jones K. Jones	SAMPLE CHAIN OF CUSTODY 03-23-24 SAMPLERS (signature) Cust Jones Conts		
uny Crete Consulting 102 S. Washington, Ste. 300 tate, ZIP Seattle, WA 92104 Email Email Email PROJECT NAME & ADDRESS PO#		3440 SAMPLE CHAIN OF CUSTODY 03-2	2 J. Stevens SAMPLERS (signature) (Jones K. Jones	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 27, 2021

Rusty Jones, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Jones:

Included are the results from the testing of material submitted on April 19, 2021 from the Port of Seattle Terminal 30, F&BI 104327 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0427R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 19, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 104327 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
104327 -01	Discharge-041921
104327 -02	Inlet-041921

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC9-12 aliphatics for sample Discharge-041921 and APH EC5-8 aliphatics concentration for sample Inlet-041921 exceeded the calibration range. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	Discharge-041921 04/19/21	Client: Project		Crete Consulting Port of Seattle Terminal 30, F&BI 104327
Date Collected:	04/19/21	Lab II		104327-01 1/15
Date Analyzed:	04/22/21	Data F	File:	042131.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Operat	tor:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 16,000 ve			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	Inlet-041921 04/19/21 04/19/21 04/22/21 Air	Client Projec Lab II Data I Instru	t: D: File:	Crete Consulting Port of Seattle Terminal 30, F&BI 104327 104327-02 1/440 042132.D GCMS7
				-
Units:	ug/m3	Opera	tor:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 102	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph	atics 110,000			
APH EC9-10 arom	atics <11,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID:		Client		Crete Consulting
Date Received:	Not Applicable	Projec	t:	Port of Seattle Terminal 30, F&BI 104327
Date Collected:	Not Applicable	Lab II):	01-823 MB
Date Analyzed:	04/21/21	Data I	File:	042116.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 92	70	130	
	O			
~ .	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <75			
APH EC9-12 aliphatics <25				
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-041921 04/19/21 04/19/21 04/22/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ament:	Crete Consulting Port of Seattle Terminal 30, F&BI 104327 104327-01 1/15 042131.D GCMS7 bat
Surrogates: 4-Bromofluorobenzo	% Recovery: ene 97	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<4.8 <280 59 180 37 2.3	<1.5 <75 14 42 8.6 0.43		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-041921 04/19/21 04/19/21 04/22/21 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: iment:	Crete Consulting Port of Seattle Terminal 30, F&BI 104327 104327-02 1/440 042132.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 105	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<140 <8,300 <190 <380 <190 <120	<44 <2,200 <44 <88 <44 <22		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 04/21/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30, F&BI 104327 01-823 MB 042116.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.1	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/27/21 Date Received: 04/19/21 Project: Port of Seattle Terminal 30, F&BI 104327

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 104370-01 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	460	500	8
APH EC9-12 aliphatics	ug/m3	190	200	5
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	or or sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	99	70-130
APH EC9-12 aliphatics	ug/m3	67	122	70-130
APH EC9-10 aromatics	ug/m3	67	104	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/27/21 Date Received: 04/19/21 Project: Port of Seattle Terminal 30, F&BI 104327

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 104370-01 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.5	<1.5	nm
Toluene	ug/m3	<90	<90	nm
Ethylbenzene	ug/m3	<2.1	<2.1	nm
m,p-Xylene	ug/m3	<4.2	<4.2	nm
o-Xylene	ug/m3	<2.1	<2.1	nm
Naphthalene	ug/m3	1.5	1.5	0

Laboratory Code: Laboratory Control Sample

hasolutoly code. hasolutoly	control sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	96	70-130
Toluene	ug/m3	51	102	70-130
Ethylbenzene	ug/m3	59	93	70-130
m,p-Xylene	ug/m3	120	97	70-130
o-Xylene	ug/m3	59	101	70-130
Naphthalene	ug/m3	71	101	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		- 4									
									by:	Received by:	Fax (206) 283-5044
		instruction in the second s							shed by:	Relinquished by	Ph. (206) 285-8282
1636	of man	FART	9	morthmend	JJOET				by:	Received by:	Seattle, WA 98119-2029
110360	4.19.21	Crete Consulting		lones	Rush		25	Tones	shed by:	Relinquished by:	T
TIME	DATE	COMPANY		PRINT NAME	PRIN		W	SIGNATURE	SIG		יי דיייד
					÷						
	-						IA / SG				
							IA / SG				
							IA / SG				
							IA / SG				
	-						IA / SG				
							IA / SG		The second se		
· · · · · · · · · · · · · · · · · · ·		XX	1.5 153(1523	4,19,21 730	$\sum u''$	IA / SG	Ē	4158	30	INLET-0419ZI
		> X X	1 1520	PS	12 29	4.19.21	IA 1/SG	38	Still	9	DISCHARGE- OHI921
Notes		TO15 Full Scan TO15 BTEXN TO15 cVOCs APH Helium	Final Field Vac. Final ("Hg) Time	Field Initial Time	Date Vac. Sampled ("Hg)		Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	ID Lab	Sample Name
	UTIC UTIC	ANALYSIS REQUESTED				-					SAMPLE INFORMATIO N
(Krđđæ	o munite (ree may apply)					-				_Email	PhoneE
SPOSAL ter 3 days	SAMPLE DISPOSAL Default: Clean after 3 days	INVOICE TO			ana na si sina atau dalam	NOTES:	NO	ŧ	48144	Seattle, WA	City, State, ZIP Scott
nized by:	Rush charges authorized by:	Rus	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	runing (3	Port of Sattle, Terminal 30	t of c	1 55	õ	<u>Ste</u> , 31	"haton	Address 108 S. Washington Ste, 300
	A Standard	PO# XSt			PROJECT NAME & ADDRESS	DJECT J	PRC				Company Crete Consulting
of (TURNAROUND TIME		10		SAMPLERS (signature)	MPLER:		17.5t	R. Jones J. Steven	Consulfing	Report To Crete Cons
-	ty.	14-21	VDX	e cost	SAMPLE CHAIN OF CUSTODY	ETR C	SAM		-		Infistr

Samples received at US of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 1, 2021

Jamie Stevens, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Ms Stevens:

Included are the results from the testing of material submitted on May 20, 2021 from the Port of Seattle Terminal 30, F&BI 105383 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures CTC0601R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 105383 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
105383 -01	Discharge-052021
105383 -02	Inlet-052021

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Client Sample ID: Discharge-052021		Client:		Crete Consulting
Date Received:	05/20/21		Project:		Port of Seattle Terminal 30
Date Collected:	05/20/21		Lab ID:		105383-01 1/4.6
Date Analyzed:	05/24/21		Data File:		052416.D
Matrix:	Air		Instrument:		GCMS8
Units:	ug/m3		Operator:		bat
		%	Lower	Upper	
Surrogates:	Recove	ry:	Limit:	Limit:	
4-Bromofluorobenz	zene 1	01	70	130	
	Concentrati	ion			
Compounds:	ug/i	m3			
APH EC5-8 alipha	tics 2.4	100			
APH EC9-12 aliph	,				
APH EC9-10 arom	-	10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-052021 05/20/21 05/20/21 05/24/21 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 105383-02 1/36 052418.D GCMS8 bat
Surrogates: 4-Bromofluoroben;	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 110,000 ve			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	Method Blank Not Applicable Not Applicable 05/24/21 Air	Project: Lab ID: Data File: Instrument:		Crete Consulting Port of Seattle Terminal 30 01-1145 MB 052410.D GCMS8
Units:	ug/m3	Operator:		bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics<75APH EC9-12 aliphatics<25				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-052021 05/20/21 05/20/21 05/24/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 105383-01 1/4.6 052416.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 100	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.5 <87 69 200 33 1.8	$<\!\!\!\begin{array}{c} <\!$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-052021 05/20/21 05/20/21 05/24/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 105383-02 1/36 052418.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 104	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	17 <680 24 <31 <16 <9.4	5.2 <180 5.5 <7.2 <3.6 <1.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 05/24/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 01-1145 MB 052410.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 92	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/01/21 Date Received: 05/20/21 Project: Port of Seattle Terminal 30, F&BI 105383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 105383-01 1/4.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	2,400	2,300	4
APH EC9-12 aliphatics	ug/m3	4,500	4,600	2
APH EC9-10 aromatics	ug/m3	<110	<110	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	91	70-130
APH EC9-12 aliphatics	ug/m3	67	117	70-130
APH EC9-10 aromatics	ug/m3	67	87	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/01/21 Date Received: 05/20/21 Project: Port of Seattle Terminal 30, F&BI 105383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 105383-01 1/4.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.5	<1.5	nm
Toluene	ug/m3	<87	<87	nm
Ethylbenzene	ug/m3	69	70	1
m,p-Xylene	ug/m3	200	200	0
o-Xylene	ug/m3	33	33	0
Naphthalene	ug/m3	1.8	1.9	5

Laboratory Code: Laboratory Control Sample

Laboratory couct Laboratory con	teror sumple		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	90	70-130
Toluene	ug/m3	51	91	70-130
Ethylbenzene	ug/m3	59	83	70-130
m,p-Xylene	ug/m3	120	84	70-130
o-Xylene	ug/m3	59	88	70-130
Naphthalene	ug/m3	71	76	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.20C	1	2029			· · · · · · · · · · · · · · · · · · ·						INLET-052021	DISCHARGE-05Z0Z1	Sample Name	SAMPLE INFORMATION	PhoneE	Address 108 S. Washington ye 200	Company Crete Consulting	Report To C. Jews	105383
Received by:	Relinquished by:	Received by: ANM	Relinquished by:	SIGNATURE							02 3230 12	01 3540 03	b Canister ID		Email	ington ye 300	sulting	T. Stevens	
		2		RE	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA 1(80) 5	IA / SG	Reporting Level: LA=Indoor Air SG=Soil Gas (Circle One)			NOTES:	PROJEC	SAMPLI	SAMPLE
		Ann Wonya	Rustv Tows	PRINT NAME							5.20.21 29,5 0125	5,20.21 29 0918	Date Sampled ("Hg) Time			Terminal 30	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY ME
		-	t and	E							2 0957	-	Final Field ("Hg) Time TO15 Full Scar			INVO		L'Come	
		NO THE WAY	5	COMPANY	 Samples received at /S oc						XX	X X	TO15 BTEXN TO15 cVOCs APH Helium	ANALYSIS REQUESTED		INVOICE TO	PO # Standard		05-20-21
		State 1	20 Jacob</td <td>DATE TIME</td> <td>red at 18 °C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0946-0957</td> <td>0918-0926</td> <td>Notes</td> <td></td> <td> Default: Clean after 3 days Archive (Fee may apply) </td> <td>Rush charges authorized by:</td> <td>dard H</td> <td>Page # of</td> <td></td>	DATE TIME	red at 18 °C						0946-0957	0918-0926	Notes		 Default: Clean after 3 days Archive (Fee may apply) 	Rush charges authorized by:	dard H	Page # of	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 23, 2021

Jamie Stevens, Project Manager Crete Consulting 16300 Christensen Road, Suite 214 Tukwila, WA 98188

Dear Ms Stevens:

Included are the results from the testing of material submitted on June 16, 2021 from the Port of Seattle, Terminal 30, F&BI 106258 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Rusty Jones CTC0623R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 16, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle, Terminal 30, F&BI 106258 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
106258 -01	Discharge-061621
106258 -02	Inlet-061621

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in sample Inlet-061621 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-061621 06/16/21 06/16/21 06/17/21 Air ug/m3	Client: Project Lab ID Data F Instrui Operat	::): 'ile: ment:	Crete Consulting Port of Seattle, Terminal 30 106258-01 1/14 061635.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics1,900APH EC9-12 aliphatics3,000APH EC9-10 aromatics<350				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-061621 06/16/21 06/16/21 06/17/21 Air ug/m3	Project: Lab ID: Data File: Instrument:		Crete Consulting Port of Seattle, Terminal 30 106258-02 1/430 061636.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed:	Method Blank Not Applicable Not Applicable 06/16/21	Client Projec Lab II Data I	t: D:	Crete Consulting Port of Seattle, Terminal 30 01-1219 MB 061614.D
Matrix:	Air		iment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Discharge-061621 06/16/21 06/16/21 06/17/21 Air ug/m3	Proje Lab I Data Instru	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 106258-01 1/14 061635.D GCMS7 bat
% Recovery:	Lower Limit:	Upper Limit:	
ne 93	70	130	
Concent	ration		
ug/m3	ppbv		
<4.5	<1.4		
<260	<70		
< 6.1	<1.4		
<12	<2.8		
< 6.1	<1.4		
<1.5	< 0.28		
	06/16/21 06/16/21 06/17/21 Air 1g/m3 Recovery: 93 Concent ug/m3 <4.5 <260 <6.1 <12 <6.1	$\begin{array}{cccccccc} 06/16/21 & Projector \\ 06/16/21 & Lab I \\ 06/17/21 & Data \\ Air & Instructor \\ 1g/m3 & Opera \\ & & & \\ Recovery: Limit: \\ 03 & 70 \\ \hline \\ Concentration \\ ug/m3 & ppbv \\ & & \\ <4.5 & <1.4 \\ <260 & <70 \\ <6.1 & <1.4 \\ <12 & <2.8 \\ <6.1 & <1.4 \\ \end{array}$	$\begin{array}{cccccccc} 06/16/21 & Project: \\ 06/16/21 & Lab ID: \\ 06/17/21 & Data File: \\ Air & Instrument: \\ 1g/m3 & Operator: \\ \\ e & 93 & 70 & 130 \\ \hline \\ Concentration \\ ug/m3 & ppbv \\ & <4.5 & <1.4 \\ <260 & <70 \\ <6.1 & <1.4 \\ <12 & <2.8 \\ <6.1 & <1.4 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-061621 06/16/21 06/16/21 06/17/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 106258-02 1/430 061636.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 100	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<140 <8,100 <190 <370 <190 <110	<43 <2,100 <43 <86 <43 <21		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 06/16/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30 01-1219 MB 061614.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene	<0.32 <19 <0.43 <0.87	<0.1 <5 <0.1 <0.2		
o-Xylene Naphthalene	<0.43 <0.1	<0.1 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/21 Date Received: 06/16/21 Project: Port of Seattle, Terminal 30, F&BI 106258

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 106243-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<420	<420	nm
APH EC9-12 aliphatics	ug/m3	<140	<140	nm
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	87	70-130
APH EC9-12 aliphatics	ug/m3	67	107	70-130
APH EC9-10 aromatics	ug/m3	67	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/21 Date Received: 06/16/21 Project: Port of Seattle, Terminal 30, F&BI 106258

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 106243-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	8.1	8.0	1
o-Xylene	ug/m3	2.7	2.7	0
Naphthalene	ug/m3	<1.5	<1.5	nm

Laboratory Code: Laboratory Control Sample

	oneror sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	84	70-130
Toluene	ug/m3	51	86	70-130
Ethylbenzene	ug/m3	59	76	70-130
m,p-Xylene	ug/m3	120	80	70-130
o-Xylene	ug/m3	59	82	70-130
Naphthalene	ug/m3	71	88	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Fax (206) 283-5044	Seattle, WA 98119-2029	Friedman & Bruya, Inc. 3012 16th Avenue West							INLET-061621	DASCHARCE-061/21	Sample Name	AT THE AT A THE AT WARDEN TO T	SAMPLE INTERDAMATION	City, State, ZIP	Report To <u>Kusty</u> Company <u>Crefe</u> Co Address
Relinquished by: Received by:	Received by:	Relinoui							3 P	9	Lab ID		Email		Jenes /
shed by: by:	by: hind	Relinouished hv							5258	8532	Canister ID	· · · · · · · · · · · · · · · · · · ·			I. Stevens
rentles	. Jones	SIGNATURE							304	242	Flow Cont. ID	·			
Ŷ		5	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	1A 1/80	IA / SG	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)			- NOTES:	PROJ PROJ Part
	- more	A						1			Date				ERS (signa Jenes JT NAME (St Scat
adtore	Tores	PRINT NAME					ĸ		30 1002		Initial Field Vac. Initial ("Hg) Time	***			ture) (o. & ADDRESS He, 36
									(Final Vac.	und 1 - 1	14.1111-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		SS SS
1915	crete								1012		TO15 Full Scar	ANA		INVOICE TO	PO#
H	e Consulting	COMPANY		Samples						\times	TO15 BTEXN TO15 cVOCs APH	ANALYSIS REQUESTED			
					×						Helium	JESTED	Archive	SA Default	Page # TURN XStandard RUSH Rush charge
16/21	6.16.21	DATE		received at									Archive (Fee may apply)	SAMPLE DISPOSAL Default: Clean after 3 days	Page # of TURNAROUND TIME Standard I RUSH Rush charges authorized by:
80:11-	80)	TIME		1 22 °C									apply)	SPOSAL ter 3 days	of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 28, 2021

Rusty Jones, Project Manager Crete Consulting 16300 Christensen Road, Suite 214 Tukwila, WA 98188

Dear Mr Jones:

Included are the results from the testing of material submitted on July 20, 2021 from the Port of Seattle Terminal 30, F&BI 107307 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0728R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 20, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 107307 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
107307 -01	Discharge-071921
107307 -02	Inlet-071921

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-071921 07/20/21 07/20/21 07/22/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30 107307-01 1/16 072224.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery:	Lower Limit: 70	Upper Limit: 130	Dat
Compounds: APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 2,200			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Client Sample ID: Inlet-071921		:	Crete Consulting
Date Received:	07/20/21	Projec	t:	Port of Seattle Terminal 30
Date Collected:	07/20/21	Lab II):	107307-02 1/460
Date Analyzed:	07/23/21	Data l	File:	072225.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 94	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 aliphatics190,000APH EC9-12 aliphatics56,000APH EC9-10 aromatics<11,000				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 07/22/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle Terminal 30 01-1599 MB 072210.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 85	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics<75APH EC9-12 aliphatics<25				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-071921 07/20/21 07/20/21 07/22/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 107307-01 1/16 072224.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: sene 87	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<5.1 <300 <6.9 <14 <6.9 <4.2	<1.6 <80 <1.6 <3.2 <1.6 <0.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-071921 07/20/21 07/20/21 07/23/21 Air ug/m3	Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 107307-02 1/460 072225.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<150 <8,700 <200 <400 <200 <120	<46 <2,300 <46 <92 <46 <23		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 07/22/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Crete Consulting Port of Seattle Terminal 30 01-1599 MB 072210.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 86	Lower Limit: 70	Upper Limit: 130	
C I	Concent			
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/21 Date Received: 07/20/21 Project: Port of Seattle Terminal 30, F&BI 107307

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 107346-01 1/5.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	1,200	1,100	9
APH EC9-12 aliphatics	ug/m3	<150	<150	nm
APH EC9-10 aromatics	ug/m3	<150	<150	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	77	70-130
APH EC9-12 aliphatics	ug/m3	67	97	70-130
APH EC9-10 aromatics	ug/m3	67	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/21 Date Received: 07/20/21 Project: Port of Seattle Terminal 30, F&BI 107307

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 107346-01 1/5.9 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Benzene	ug/m3	<1.9	<1.9	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.6	<2.6	nm
m,p-Xylene	ug/m3	<5.1	<5.1	nm
o-Xylene	ug/m3	<2.6	<2.6	nm
Naphthalene	ug/m3	<1.5	<1.5	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	tion bampic		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	80	70-130
Toluene	ug/m3	51	90	70-130
Ethylbenzene	ug/m3	59	73	70-130
m,p-Xylene	ug/m3	120	83	70-130
o-Xylene	ug/m3	59	86	70-130
Naphthalene	ug/m3	71	91	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044		Friedman & Bruva. Inc.							1NLET-071921	DISCHARGE-071921	Sample Name	SAMPLE INFORMATION	PhoneEr	City, State, ZIP	Crete C	+05tal
Received by: Relinquished by: Received by:	Relinqui								02	<u>°</u>	Lab ID		Email		onsultino	5
I by:	Relinquished by: C. Lowes	SIC							8535	8531	Canister ID					Stevens
6hc	0.7	MATUH							302	256	Flow Cont. ID					
R	er,	E	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA SG	IA / SG	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)			NOTES:	PROJE	SAMPLE CHAIN OF CUST SAMPLERS (signature) Rush Tones
#6	Z								4	7.70.71	Date Sampled				PROJECT NAME & ADDRESS Port of Seattle, Terminal 30	SAMPLERS (signature)
NG7	i Atsi	PRIN							30	11 29	Initial Vac. d ("Hg)				NAME & ADDF of Seattle, erminal 30	IN OF (
NZ.	Tones	PRINT NAME							1437	1423	Field Initial Time				DDRESS	CUST
M		E								21	Final Vac. ("Hg)					ODY
- Č									IHU4	1434	Field Final Time	P		INV		× 2m
H H	rete	co							\times	×	TO15 Full Scan TO15 BTEXN	ANALYSIS REQUESTED		INVOICE TO	PO #	M Co.
P.	Consulting	COMPANY		N N					-4	×	TO15 cVOCs	IS REQ				7-20-
	Ψw	Y		amples							Helium	UESTEI		Sk Defaul	X Standard	
	7/20/21	DATE		Samples received at 23 °C	~						N		D FROMAE (r.ce. may apply)	Default: Clean after 3 days	X Standard C RUSH Rush charges authorized by:	AROUND
	1532	TIME		3 °C							Notes		. [2-2])SAL 3 days	3d by:	of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 1, 2021

Rusty Jones, Project Manager Crete Consulting 16300 Christensen Road, Suite 214 Tukwila, WA 98188

Dear Mr Jones:

Included are the results from the testing of material submitted on August 27, 2021 from the Port of Seattle, Terminal 30, F&BI 108450 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures CTC0901R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 27, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
108450 -01	Discharge-082621
108450 -02	Inlet-082621

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected:	Discharge-082621 08/27/21 08/26/21	Clien Proje Lab I	ct:	Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 108450-01 1/15			
Date Collected. Date Analyzed:	08/27/21	Data		082723.D			
Matrix:	Air		ument:	GCMS7			
Units:	ug/m3	Opera	ator:	bat			
Surrogates: 4-Bromofluorobenz	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130				
	Concentration						
Compounds:	ug/m3						
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 1,700						

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Inlet-082621	Client	:	Crete Consulting
Date Received:	08/27/21	Projec	t:	Port of Seattle, Terminal 30, F&BI 108450
Date Collected:	08/26/21	Lab II):	108450-02 1/470
Date Analyzed:	08/27/21	Data I	File:	082724.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 101	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 59,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected:	Not Applicable Not Applicable	Client: Project: Lab ID: Data File:		Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 01-1868 MB
Date Analyzed: Matrix:	08/27/21 Air		rile: iment:	082711.D GCMS7
Units:				-
Units.	ug/m3	Opera	ttor.	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 101	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <75			
APH EC9-12 aliphatics <25				
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-082621 08/27/21 08/26/21 08/27/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 108450-01 1/15 082723.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 98	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	<4.8	<1.5		
Toluene	<280	<75		
Ethylbenzene	<6.5	<1.5		
m,p-Xylene	<13	<3		
o-Xylene	< 6.5	<1.5		
Naphthalene	<3.9	< 0.75		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-082621 08/27/21 08/26/21 08/27/21 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ament:	Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 108450-02 1/470 082724.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 99	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	<150	<47		
Toluene	<8,900	<2,300		
Ethylbenzene	<200	<47		
m,p-Xylene	<410	<94		
o-Xylene	<200	<47		
Naphthalene	<120	<23		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 08/27/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Crete Consulting Port of Seattle, Terminal 30, F&BI 108450 01-1868 MB 082711.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromolluorobenze	ene 99	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/21 Date Received: 08/27/21 Project: Port of Seattle, Terminal 30, F&BI 108450

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 108455-01 1/5.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<440	470	nm
APH EC9-12 aliphatics	ug/m3	540	560	4
APH EC9-10 aromatics	ug/m3	<150	<150	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	91	70-130
APH EC9-12 aliphatics	ug/m3	67	121	70-130
APH EC9-10 aromatics	ug/m3	67	106	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/21 Date Received: 08/27/21 Project: Port of Seattle, Terminal 30, F&BI 108450

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 108455-01 1/5.9 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Benzene	ug/m3	<1.9	<1.9	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.6	<2.6	nm
m,p-Xylene	ug/m3	<5.1	<5.1	nm
o-Xylene	ug/m3	<2.6	<2.6	nm
Naphthalene	ug/m3	<1.5	<1.5	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couct Laboratory C	oneror sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	107	70-130
Toluene	ug/m3	51	106	70-130
Ethylbenzene	ug/m3	59	103	70-130
m,p-Xylene	ug/m3	120	107	70-130
o-Xylene	ug/m3	59	106	70-130
Naphthalene	ug/m3	71	101	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

											by:	Received by:	Fax (206) 283-5044
											shed by:	Relinquished by:	Ph. (206) 285-8282
-12/22/8		Row	FLRN		\leq	aluch	E	Miche			72/2	Receipted By	Seattle, WA 98119-2029
14 8.27.2 1059	ato musulting	5	1			o l	۷ 	Kust		2 Tone	shed by:	Relinquished by:	
Y DATE TIME	COMPANY	8			B	TNAME	PRINT			SIGNATURE	SIGN		Friedman & Bruya, Inc.
				-					IA / SG				
es received at 19 °C	Sample	1.0				-			IA / SG				
									IA / SG				
							-		IA / SG				
				.			-		IA / SG				
×		\times		<u>v</u>	N	1500	Se .	8/26/21	IA /(SG)	229	2433	02	INUET-082621
×		\times		1447	N	NEH1	22	8/20/21	IA /(SG)	123	\$260	6	DISCHARGE-082621
									IA / SG				
	_			_			10		_	_			a de la compansión de la c
APH Helium	TO15 cVOCs	TO15 BTEXN	5 巴瓦 TO15 Full Scan	L Field Pinal	Final Vac.	Field Initial Time	Initial Vac.	Date	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow I ID	Canister ID	Lab	Sample Name
ANALYSIS REQUESTED	SIS RE	LYS	AN										SAMPLE INFORMATION
Archive (Fee may apply)				·								Email	
SAMPLE DISPOSAL	0	CET	INVOICE TO						. NOTES:				City. State. ZIP
O KUSH Rush charges authorized by:				<u> </u>	MA ST	lerm)	H_	Part of Seattle, Terminal 30	70				1 1(
TURNAROUND TIME		#	PO#	ove	1.1	DRESS	ature) & AD	PROJECT NAME & ADDRESS	SAMPL PROJE		lens	Strens	R. Jones
f	1/80	ME	M	Y	USTODY	CUS	N OF	CHAI	SAMPLE CHAIN OF C		÷		064301
							1						いい

, · · · ·

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 11, 2021

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on September 30, 2021 from the NA (Non-PO), AECOM PN 60667994.3, F&BI 109593 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures NAA1011R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 30, 2020 by Friedman & Bruya, Inc. from the NA (Non-PO), AECOM PN 60667994.3, F&BI 109593 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
109593 -01	Discharge-090321
109593 -02	Inlet-090321

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in sample Inlet-090321 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-090321 09/30/21 09/30/21 10/04/21 Air ug/m3	Projec Lab II Data	et: D: File: ument:	AECOM 60667994.3, F&BI 109593 109593-01 1/5.9 100425.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds: APH EC5-8 alipha	Concentration ug/m3			
APH EC9-12 aliph APH EC9-10 arom	atics 680			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-090321 09/30/21 09/30/21 10/05/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	AECOM 60667994.3, F&BI 109593 109593-02 1/260 100426.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 53,000			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/04/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	AECOM 60667994.3, F&BI 109593 01-2212 MB 100411a.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 91	Lower Limit: 70	Upper Limit: 130	
Compounds: APH EC5-8 alipha				
APH EC9-12 aliph APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-090321 09/30/21 09/30/21 10/04/21 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	AECOM 60667994.3, F&BI 109593 109593-01 1/5.9 100425.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: sene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.9 <110 <2.6 <5.1 <2.6 <1.5	<0.59 <29 <0.59 <1.2 <0.59 <0.29		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-090321 09/30/21 09/30/21 10/05/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	AECOM 60667994.3, F&BI 109593 109593-02 1/260 100426.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<83 <4,900 <110 <230 <110 <68	<26 <1,300 <26 <52 <26 <13		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 10/04/21 10/04/21 Air ug/m3	Pro La Da Ins	ent: oject: b ID: ta File: strument: eerator:	AECOM 60667994.3, F&BI 109593 01-2212 MB 100411a.D GCMS7 bat	
Surrogates:	% Recovery:	Lower Limit:	- I , I , -		
4-Bromofluorobenze	ene 90	70	130		
	Concent	tration			
Compounds:	ug/m3	ppbv			
Benzene	< 0.32	< 0.1			
Toluene	<19	<5			
Ethylbenzene	< 0.43	< 0.1			
m,p-Xylene	< 0.87	< 0.2			
o-Xylene	< 0.43	< 0.1			
Naphthalene	< 0.26	< 0.05			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/11/21 Date Received: 09/30/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 109593

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 109556-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	780	770	1
APH EC9-12 aliphatics	ug/m3	340	350	3
APH EC9-10 aromatics	ug/m3	<130	<130	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	87	70-130
APH EC9-12 aliphatics	ug/m3	67	116	70-130
APH EC9-10 aromatics	ug/m3	67	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/11/21 Date Received: 09/30/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 109593

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 109556-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	1.8	<1.7	nm
Toluene	ug/m3	<98	<98	nm
Ethylbenzene	ug/m3	2.6	2.6	0
m,p-Xylene	ug/m3	7.8	7.9	1
o-Xylene	ug/m3	3.0	3.0	0
Naphthalene	ug/m3	3.2	3.4	6

Laboratory Code: Laboratory Control Sample

haberatory coue. haberatory con	iteror sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	97	70-130
Toluene	ug/m3	51	98	70-130
Ethylbenzene	ug/m3	59	90	70-130
m,p-Xylene	ug/m3	120	95	70-130
o-Xylene	ug/m3	59	96	70-130
Naphthalene	ug/m3	71	72	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 Foxsscocccocro.is.poc						Inlet-093021 2295	Vischarge - 093021 3259	Sample Name	SAMPLE INFORMATION	2700	City, State, ZIP Seatly, W	Company <u>AEcom</u> Address <u>111 3^{r I} Ave Suite</u>	Report To Peul Calina	56560
SI Relinquished by Received by: Reinquisted by: Received by:						20. 51	19 65	CA Lat Canister ID ID		Email anders after Dacconson	wA 98101	E 1600		
SIGNATURE						280	ين درا	r Flow ID		даесын.с«м рч				
	IA / SG	LA / SG	IA / SG	IA / SG.	IA / SG	IA / (SG)	IA / (SG)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		en of peul-kaling@azcon.con	NOTES:	- PROJEC	SAMP	SAMPI
BA						9/30/21	9/30/21	Date Sampled		š	ÿ	PROJECT NAME & ADDRESS $f_{0.5}$ $T_{-3\sigma}$	SAMPLERS (signature)	SAMPLE CHAIN OF CUST
PRINT						1-9	28	Initial Vac.				AE & AD	guature)	UN OF
PRINT NAME						53 h i	1440	Field Initial Time		an Anna an Anna Anna Anna Anna Anna Ann		DRESS	629	CUST
						0.51 5		Final F Vac. F ("Hg) T	-				Ş	ODY
						00	1945	TO15 Full Scan	AI		INVC	ب ېز		69
COMPANY HE COM						X	×	TO15 BTEXN	ANALYSIS REQUESTED		INVOICE TO	PO #		1001
Samples received at						X	×	TO15 cVOCs APH	REQUI		3	ষ্ঠান্থ		2
								Helium	ESTED	D Archive (Fee may apply)	SAN	A) Standard □ RUSH Rush charges authorized by:	Page #	
DATE 1-30-3 2(2)										(Fee may	SAMPLE DISPOSAL	d ges autho	WAROUN	
TIME 1700								Notes		apply)	POSAL	rized by:	Page # of	.)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 1, 2021

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on October 21, 2021 from the NA (Non-PO), AECOM PN 60667994.3, F&BI 110427 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEC1101R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 21, 2021 by Friedman & Bruya, Inc. from the AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI 110427 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
110427 -01	Inlet-102121
110427 -02	Discharge-102121

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The concentration of APH EC5-8 aliphatics and APH EC9-12 aliphatics in sample Inlet-102121 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-102121 10/21/21 10/21/21 10/23/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		AECOM 60667994.3, F&BI 110427 110427-01 1/18 102233.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics81,000 veAPH EC9-12 aliphatics27,000 veAPH EC9-10 aromatics510				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-102121 10/21/21 10/21/21 10/23/21 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		AECOM 60667994.3, F&BI 110427 110427-02 1/5.8 102232.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics1,200APH EC9-12 aliphatics560APH EC9-10 aromatics<140				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/22/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AECOM 60667994.3, F&BI 110427 01-2391 MB 102210.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Date Received: Date Collected: Date Analyzed: Matrix:	Inlet-102121 10/21/21 10/21/21 10/23/21 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	AECOM 60667994.3, F&BI 110427 110427-01 1/18 102233.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne 100	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	6.0	1.9		
Toluene	<340	<90		
Ethylbenzene	10	2.4		
m,p-Xylene	<16	<3.6		
o-Xylene	<7.8	<1.8		
Naphthalene	<4.7	< 0.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-102121 10/21/21 10/21/21 10/23/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AECOM 60667994.3, F&BI 110427 110427-02 1/5.8 102232.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 91	70	130	
	Concent	cration		
Compounds:	ug/m3	ppbv		
Benzene	<1.9	< 0.58		
Toluene	<110	<29		
Ethylbenzene	<2.5	< 0.58		
m,p-Xylene	<5	<1.2		
o-Xylene	<2.5	< 0.58		
Naphthalene	<1.5	< 0.29		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/22/21 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ument:	AECOM 60667994.3, F&BI 110427 01-2391 MB 102210.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 84	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.32 <19 <0.43 <0.87 <0.43 <0.26	<0.1 <5 <0.1 <0.2 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/21 Date Received: 10/21/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 110427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 110450-01 1/6.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	640	630	2
APH EC9-12 aliphatics	ug/m3	2,800	2,800	0
APH EC9-10 aromatics	ug/m3	<170	<170	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	110	70-130
APH EC9-12 aliphatics	ug/m3	67	111	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/21 Date Received: 10/21/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 110427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 110450-01 1/6.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	2.6	2.6	0
Toluene	ug/m3	<130	<130	nm
Ethylbenzene	ug/m3	<2.9	<2.9	nm
m,p-Xylene	ug/m3	9.8	10	2
o-Xylene	ug/m3	4.1	4.0	2
Naphthalene	ug/m3	<1.8	<1.8	nm

Laboratory Code: Laboratory Control Sample

hasofatory coue. hasofatory	control Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	88	70-130
Toluene	ug/m3	51	101	70-130
Ethylbenzene	ug/m3	59	84	70-130
m,p-Xylene	ug/m3	120	91	70-130
o-Xylene	ug/m3	59	95	70-130
Naphthalene	ug/m3	71	97	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.	-						Discharge -1 c 221	Int - 102/21	Sample Name		SAMPLE INFORMATION	Phone 2-6-238-27 - C	City, State, ZIP Seally WA	Address IIII 3 ¹³ five Suite Ice o	Company AECOM	Report To Paul (caling	10427
	Received by:	Relinquished by:	Received by: MgAam	Keiinquished by:	SIGNATURE							of7 To the 5012	20E 10 - II 5622	ID ID ID			Email Paul. Icalis Darcon. con	WA	Suite Iceo		7	
			Much	Anders Uffer	PRINT NAME	 IA / SG	IA / (G) 10/21/21 27 1321	IA 1(SG) 10/21/21 30 1329	LA=Indoor AirInitialFieldSG=Soil GasDateVac.Initial(Circle One)Sampled("Hg)Time	******			NOTES:	T-30 Port of Seattle	PROJECT NAME & ADDRESS	SAMPLERS (signature) $\mathcal{K}($	SAMPLE CHAIN OF CUSTODY					
			PAT	AECOM	E COMPANY							× 1325 X X	X X X X	Final Field 15 Vac. Final 10 11 ("Hg) Time 11 11		ANALYSIS REQUESTED		INVOICE TO		PO#	SMAPS	ME IC
				War/21 530	DATE TIME								•	H	lelium	ESTED	□ Archive (Fee may apply)	SAMPLE DISPOSAL B Default: Clean after 3 days	Rush charges authorized by:	b Standard	Page # of TURNAROUND TIME	21/21

.

÷,

Samples received at $\sqrt{20}$ C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 2, 2021

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on November 18, 2021 from the NA (Non-PO), AECOM PN 60667994.3, F&BI 111351 project. There are 12 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEC1202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2021 by Friedman & Bruya, Inc. from the AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI 111351 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
111351 -01	Discharge-111821
111351 -02	Inlet-111821

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-111821 11/18/21 11/18/21 11/23/21 Air ug/m3	Projec Lab II Data	et: D: File: ament:	AECOM 60667994.3, F&BI 111351 111351-01 1/6.1 112227.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 80	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <150			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-111821 11/18/21 11/18/21 11/23/21 Air ug/m3	21Project:'21Lab ID:'21Data File:Instrument:		AECOM 60667994.3, F&BI 111351 111351-02 1/18 112228.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 103	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 7,800			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	Inlet-111821 11/18/21 11/18/21 11/24/21 Air	Client Projec Lab I Data Instru	et: D:	AECOM 60667994.3, F&BI 111351 111351-02 1/270 112323.D GCMS7
Units:	ug/m3	Opera	ator:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 87	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <6,700			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 11/22/21 Air ug/m3	Clien Proje Lab I Data Instru Opera	et: D: File: ument:	AECOM 60667994.3, F&BI 111351 01-2595 MB 112212.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 81	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Discharge-111821 11/18/21 11/18/21 11/23/21 Air ug/m3	Instr	ect:	AECOM 60667994.3, F&BI 111351 111351-01 1/6.1 112227.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 87	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	<1.9	< 0.61		
Toluene	<110	<30		
Ethylbenzene	<2.6	< 0.61		
m,p-Xylene	<5.3	<1.2		
o-Xylene	<2.6	< 0.61		
Naphthalene	<1.6	< 0.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-111821 11/18/21 11/18/21 11/23/21 Air ug/m3	Insti	ect:	AECOM 60667994.3, F&BI 111351 111351-02 1/18 112228.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 122	70	130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene	7.5	2.3		
Toluene	<340	<90		
Ethylbenzene	11 J	$2.5~\mathrm{J}$		
m,p-Xylene	<16 J	<3.6 J		
o-Xylene	<7.8 J	<1.8 J		
Naphthalene	<2.4 J	<0.46 J		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Inlet-111821 11/18/21 11/18/21 11/24/21 Air ug/m3	Instr	ect:	AECOM 60667994.3, F&BI 111351 111351-02 1/270 112323.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<86 <5,100 <120 <230 <120 <71	<27 <1,300 <27 <54 <27 <13		

ENVIRONMENTAL CHEMISTS

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/21 Date Received: 11/18/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 111351

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 111360-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	530	560	6
APH EC9-12 aliphatics	ug/m3	<140	<140	nm
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	or or sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	93	70-130
APH EC9-12 aliphatics	ug/m3	67	106	70-130
APH EC9-10 aromatics	ug/m3	67	87	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/21 Date Received: 11/18/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 111351

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 111360-01 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<100	<100	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	<2.4	<2.4	nm
Naphthalene	ug/m3	<1.4	<1.4	nm

Laboratory Code: Laboratory Control Sample

Laboratory coac. Laboratory co.	inter of Sumple		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	112	70-130
Toluene	ug/m3	51	115	70-130
Ethylbenzene	ug/m3	59	110	70-130
m,p-Xylene	ug/m3	120	114	70-130
o-Xylene	ug/m3	59	119	70-130
Naphthalene	ug/m3	71	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

The FORMSNCOCKCOCTO-15.DOC	Fax (206) 283-5044 Re	Ph. (206) 285-8282 Re	Seattle, WA 98119-2029 Re	3012 16th Avenue West Re	Friedman & Bruya, Inc.								Int -111821 2	Discharge -111821 01	Sample Name			SAMPLE INFORMATION	Phone 208. 458- 21 co Emai	E	Address 1111 3' Ave Suite	Company AECCM	Report To Paul Iculia	11135
	Received by:	Relinquished by:	Received by	Relinquished by:	SIGN								2-8533	5258 7	*****	Canister *			Email Tayl. Kalua Caccon. com Ande 15. VHer @accon. com	1 98101	te 16er		Anders Uter	
			Ţ	Safrey So	SIGNATURE								E.	0	B	Flow			CON.CON	*				
							IA / SG	IA / SG	(Circle One)	Level: Level: IA=Indoor Air	Renarting		AGLOM	- NOTES:	1-30	PROJI	SAMP	SAMPLE CHAIN OF CUSTODY						
		Ş	ti	Ander									11/18/21	W18/21	Sampled]]]]]]]		,	m R	ų.	1	ICT NAM	SAMPLERS (signature)	ECHA
				Anders Utter	PRIN	10 s ² and diff b	2						24	a D		Initial		->		t i santa salang	Port of Seattle	IB & AD	șniature)	IN OF
			5	P	PRINT NAME								327	1318	Time	Field		1217	100 kg 2994.3			DRESS	4	CUST
			Ì									с. 1	57	5	("Hg)	Final Vac	· · · · · · · · · · · · · · · · · · ·		14.3				ANG R	ODY
-													1333	HZE H	Time	Field Final					Z	z P	ſ	
			Fals	AECOM	COMPANY								X	X	1	015 Ful I015 BI T015 cV	EXN	ANALYSIS REQUESTED		NOTE TO	ded el	PO#		MA
					W									\geq		APH Heliu		QUEST			Rush	D RU	~	
			$\overline{\Gamma}$	W/15/21 1	DATE										Notes				Contraction of the contraction o	□ Default: Clean after 3 days	Rush charges authorized by:	D RUSH	Page # _/ of _/	18 21
			1600	602	TIME										tes	• - - - - -	2 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7)SAL 3 days	ed by:		TIME	-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 10, 2022

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on December 22, 2021 from the NA (Non-PO), AECOM PN 60667994.3, F&BI 112448 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEC0110R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 22, 2021 by Friedman & Bruya, Inc. from the AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI 112448 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
112448 -01	Inlet-122221
112448 -02	Discharge-122221

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: F&BI 112448			:	AECOM NA (Non-PO), AECOM PN 60667994.3,
Date Collected:	01/05/22	Lab ID:		112448-01 1/175
Date Analyzed:	01/06/22	Data Fi	le:	010524.D
Matrix:	Air	Instrun	nent:	GCMS7
Units:	ug/m3	Operate	or:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 8,300			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: F&BI 112448			;:	AECOM NA (Non-PO), AECOM PN 60667994.3,
Date Collected:	01/05/22	Lab ID	-	112448-02 1/5.7
Date Analyzed:	01/05/22	Data F	'ile:	010523.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Operat	or:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 970			
APH EC9-12 aliph	atics <140			
APH EC9-10 arom	atics <140			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: F&BI 112448	Method Blank Not Applicable	Client: Project	:	AECOM NA (Non-PO), AECOM PN 60667994.3,
Date Collected:	Not Applicable	Lab ID	:	02-011 MB
Date Analyzed:	01/05/22	Data Fi	ile:	010510.D
Matrix:	Air	Instrun	nent:	GCMS7
Units:	ug/m3	Operate	or:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <75			
APH EC9-12 aliph	atics <25			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	Inlet-122221 12/22/21	Client Projec		AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI
112448 Date Collected: Date Analyzed: Matrix:	01/05/21 01/06/22 Air		File: ament:	112448-01 1/175 010524.D GCMS7 bet
Units:	ug/m3	Opera	itor:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	<56	<17		
Toluene	<3,300	<870		
Ethylbenzene	<76	<17		
m,p-Xylene	<150	<35		
o-Xylene	<76	<17		
Naphthalene	<46	<8.7		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	Discharge-122221 12/22/21	Client Projec		AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI
112448 Date Collected: Date Analyzed: Matrix: Units:	01/05/21 01/05/22 Air ug/m3	Lab II Data I Instru Opera	File: iment:	112448-02 1/5.7 010523.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.8 <110 <2.5 <5 <2.5 <1.5	<0.57 <28 <0.57 <1.1 <0.57 <0.28		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	Method Blank Not Applicable	Client Projec		AECOM NA (Non-PO), AECOM PN 60667994.3, F&BI
112448 Date Collected: Date Analyzed: Matrix: Units:	Not Applicable 01/05/22 Air ug/m3	Lab II Data I Instru Opera	File: iment:	02-011 MB 010510.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.32 <19 <0.43 <0.87 <0.43 <0.26	<0.1 <5 <0.1 <0.2 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/10/22 Date Received: 12/22/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 112448

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 112506-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	460	<430	nm
APH EC9-12 aliphatics	ug/m3	<140	<140	nm
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	84	70-130
APH EC9-12 aliphatics	ug/m3	67	114	70-130
APH EC9-10 aromatics	ug/m3	67	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/10/22 Date Received: 12/22/21 Project: NA (Non-PO), AECOM PN 60667994.3, F&BI 112448

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 112506-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.5	$<\!\!2.5$	nm
m,p-Xylene	ug/m3	<5	<5	nm
o-Xylene	ug/m3	<2.5	$<\!\!2.5$	nm
Naphthalene	ug/m3	<1.5	<1.5	nm

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory c	oneror sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	91	70-130
Toluene	ug/m3	51	93	70-130
Ethylbenzene	ug/m3	59	97	70-130
m,p-Xylene	ug/m3	120	100	70-130
o-Xylene	ug/m3	59	100	70-130
Naphthalene	ug/m3	71	98	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1 at 17 oc	Samples received at	Sa							***********	l by:	Received by:	Fax (206) 283-5044
					<					shed by:	Relinquished by:	Ph. (206) 285-8282
12/22		F&B			2 Z	NO S	Annulburger	COM	INVI		Received by:	Seattle, WA 98119-2029
12/22/21		AEcom			utter		Anders	5	88 A	shed by:	Relinqui	
DATE	COMPANY	, COV		IAME	PRINT NAM	PRI			NATURE	SIGNATURE		Friedman & Bruya, Inc.
								IA / SG				
								IA / SG				
						Nuel 11 Tarr	Nat 11 100	IA / SG				
				_			PERSONAL ST	IA / SG				
								IA / SG				
								IA / SG				
	X	X	652	6	TH7	W Q	12/22/21	IA / SO	8	2436	203	Oischarge -122221
	X	X	1361	נט נ	1253	2	12/12/21	IA / (\$G)	0	34(2	101	Inlet - 122221
		TO				Vac.	Date Sampled		·	Canister ID	Lab ID	Sample Name
	015 cVOCs APH Helium	15 Full Scar 215 BTEXN	1 Field	Final	1 Field	Initial		Reporting Level: IA=Indoor Air	Flock	-	<u>.</u>	
	ANALYSIS REQUESTED	ANALYSI										SAMPLE INFORMATION
□ Archive (Fee may apply)		AECOM						A, COX	Acen	Email Paul before Present. un	mail_Pau	Phone 206 438 27 cc E1
SAMPLE DISPOSAL Default: Clean after 3 days		INVOICE TO				می _ا یریک ا		NOTES:			, Wh	City, State, ZIP Seally
Rush charges authorized by:	Rush cha		· 、	ŧ	Port of Seattle	er.	1-30			600	e Saite (600	Address 1111 3 rJ Ave
ard	☐ Standard	PO#			DRESS	E & AD	CT NAMI	PROJE			*	Company AEccM
TURNAROUND TIME	TURN		ð	Setter .	8	nature)	SAMPLERS (signature)	SAMPL				Report To Paul Icaliau
	F					<u></u>	*******					

<u>Appendix D</u>

Vapor Sampling Summary Data Quality Review Reports

NOTE: Data Quality Review Reports from the eight sets of CRETE vapor samples collected between January and August 2021 are not included in this report.

Memorandum

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – August 2021		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	January 6, 2022		

The summary data quality review of two vapor samples collected on August 26, 2021, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEX+N) by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-082621). The following samples are associated with Friedman & Bruya, Inc. laboratory group 108450:

Sample ID	Laboratory ID
Discharge-082621	108450 -01
Inlet-082621	108450 -02

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – August 2021 Laboratory Group: 108450

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

Samples were analyzed for APHs and BTEX+N by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample from an unrelated project. Results were comparable.

6. Reporting Limits - Acceptable

Overall Assessment of Data

The data reported in this laboratory group are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 108450 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
	No data were	qualified in association w	ith laboratory	, group 1084	150.

Memorandum

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – September 2021		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	January 6, 2022		

The summary data quality review of two vapor samples collected on September 30, 2021, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEX+N) by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-093021). The following samples are associated with Friedman & Bruya, Inc. laboratory group 109593:

Sample ID	Laboratory ID		
Discharge-090321	109593 -01		
Inlet-090321	109593 -02		

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling- September 2021 Laboratory Group: 109593

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). The laboratory logged the date suffixes on both samples incorrectly as -090321, when they should have been logged as -093021.

Organic Analyses

Samples were analyzed for APHs and BTEX+N by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample from an unrelated project. Results were comparable.

- 6. Reporting Limits Acceptable
- 7. Other Items of Note:

<u>APHs by MA-APH</u> – The laboratory noted that the result for APH EC5-8 aliphatics in Inlet exceeded the calibration range of the instrument and was flagged 've'. The result for APH EC5-8 aliphatics in Inlet was qualified as estimated and flagged 'J' based on the calibration exceedance.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 109593 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
Inlet-090321	109593 -02	APH EC5-8 aliphatics	210,000 ve	ug/m³	210,000 J

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – October 2021		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	January 6, 2022		

The summary data quality review of two vapor samples collected on October 21, 2021, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEX+N) by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-102121). The following samples are associated with Friedman & Bruya, Inc. laboratory group 110427:

Sample ID	Laboratory ID
Inlet-102121	110427-01
Discharge-102121	110427-02

Data were evaluated based on validation criteria established in the National Functional Guidelines for Organic Superfund Methods Data Review, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – October 2021 Laboratory Group: 110427

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

Samples were analyzed for APHs and BTEX+N by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample from an unrelated project. Results were comparable.

- 6. Reporting Limits Acceptable
- 7. Other Items of Note:

<u>APHs by MA-APH</u> – The laboratory noted that the results for APH EC5-8 aliphatics and APH EC9-12 aliphatics in Inlet exceeded the calibration range of the instrument and were flagged 've'. The results for APH EC5-8 aliphatics and APH EC9-12 aliphatics in Inlet were qualified as estimated and flagged 'J' based on these calibration exceedances.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 110427 is 100%.

Sample ID	Lab ID	Analyte	Result	Units	Final Result
Inlet-102121	110427-01	APH EC5-8 aliphatics	81,000 ve	ug/m ³	81,000 J
Inlet-102121	110427-01	APH EC9-12 aliphatics	27,000 ve	ug/m ³	27,000 J

Table 1. Summary of Qualified Data

Memorandum

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – November 2021		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	January 5, 2022		

The summary data quality review of two vapor samples collected on November 18, 2021, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEX+N) by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-111821). The following samples are associated with Friedman & Bruya, Inc. laboratory group 111351:

Sample ID	Laboratory ID
Discharge-111821	111351 -01
Inlet-111821	111351 -02

Data were evaluated based on validation criteria established in the National Functional Guidelines for Organic Superfund Methods Data Review, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – November 2021 Laboratory Group: 111351

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

Samples were analyzed for APHs and BTEX+N by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Internal Standard Acceptable except as noted below:

<u>VOCs by Method TO-15</u> – The laboratory noted that the internal standard associated with ethylbenzene, m,p-xylene, o-xylene, and naphthalene in Inlet recovered above the control limits. The sample was re-analyzed at a dilution with elevated reporting limits; therefore, the results were reported from the initial analysis with the failing internal standard. The results for ethylbenzene, m,p-xylene, o xylene, and naphthalene were qualified as estimated and flagged 'J' or 'UJ' based on this internal standard result.

- 5. Laboratory Control Sample (LCS) Acceptable
- 6. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample that was not associated with this laboratory group. Results were comparable.

- 7. Reporting Limits Acceptable
- 8. Other Items of Note:

<u>APHs by MA-APH</u> – The result for APH EC5-8 aliphatics in Inlet exceeded the calibration range of the instrument and was flagged 've' by the laboratory. The sample was re-analyzed at a dilution and the result was within the calibration range of the instrument. The result for APH EC-5 aliphatics was reported from the dilution of Inlet and APH EC5-8 aliphatics in the initial analysis of Inlet was flagged 'DNR' for "Do Not Report." The results for APH EC9-12 aliphatics and APH EC9-10 aromatics were reported from the initial analysis of Inlet and were flagged 'DNR' in the dilution of Inlet.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 111351 is 100%.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – November 2021 Laboratory Group: 111351

Sample ID	Lab ID	Analyte	Result	Units	Final Result
Inlet-111821	111351-02	Ethylbenzene	11 J	ug/m ³	11 J
Inlet-111821	111351-02	m,p-Xylene	16 U	ug/m ³	16 UJ
Inlet-111821	111351-02	o-Xylene	7.8 U	ug/m ³	7.8 UJ
Inlet-111821	111351-02	Naphthalene	2.4 U	ug/m ³	2.4 UJ
Inlet-111821	111351-02	APH EC5-8 aliphatics	74,000	ug/m ³	DNR
Inlet-111821	111351-02	APH EC9-12 aliphatics	6700 U	ug/m ³	DNR
Inlet-111821	111351-02	APH EC9-10 aromatics	6700 U	ug/m ³	DNR

Table 1. Summary of Qualified Data

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	Draft
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – December 2021		
	Amelia McArthur, Chemist		
From	Lucy Panteleeff, Chemist		
Date	June 14, 2022		

The summary data quality review of two vapor samples collected on December 22, 2021, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEX+N) by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-122221). The following samples are associated with Friedman & Bruya, Inc. laboratory group 112448:

Sample ID	Laboratory ID
Inlet-122221	112448 -01
Discharge-122221	112448 -02

Data were evaluated based on validation criteria established in the National Functional Guidelines for Organic Superfund Methods Data Review, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – December 2021 Laboratory Group: 112448

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

Samples were analyzed for APHs and BTEX+N by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Internal Standard Acceptable
- 5. Laboratory Control Sample (LCS) Acceptable
- 6. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample that was not associated with this laboratory group. Results were comparable.

7. Reporting Limits – Acceptable

The reporting limits for analytes in methods MA-APH and BTEX+N reported as not detected in samples 112448 -01 and 112448 -02 were elevated due to a dilution required for high concentrations of target analytes.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 112448 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Result	Units	Final Result	
	Data were n	ot qualified for 112448 during the	his data val	idation.	

<u>Appendix E</u> LNAPL Gauging and Recovery Field Notes

Port of Seattle Terminal 30 LNAPL Removal Event 11 (January 15, 2021)

							First Removal				Post I	Removal			S	econd Remov	al				End of Day		
Location	Time of Gaging	Initial Depth to LNAPL	Initial Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start/End Times	Estimated LNAPL Removed ⁵	Estimated Water Removed ⁵	Estimated Total Fluid Removal	Time of Gaging	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start/End Times	Estimated LNAPL Removed ⁵	Estimated Water Removed ⁵	Estimated Total Fluid Removal	Time of Gaging	End of Day Depth to LNAPL	Depth to Water	LNAPL Thickness	Time Lapse Since Extraction
		(Feet TOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)	(Gallons)	(Gallons)	(Gallons)		(Feet TOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)	(Gallons)	(Gallons)	(Gallons)		(Feet TOC)	(Feet TOC)	(Feet)	(minutes)
MW-35	1029	8.79	9.07	0.28	18	1025-1045	MINOR EMU.	<2	<2	1058	NL	12.99							1541	8.82	8.85	0.03	296
MW-36	0759	NL	9.22		30	0834-0904	0	5.0	5.0	0915	NL	9.71											
MW-36A	0753	NL	9.98		30	0801-0831	0	20.5	20.5	0916	NL	10.17											
MW-39A	0911	NL	8.69		30	0953-1023	0	35.2	35.2	1040	NL	8.68											
MW-59	1004	NL	8.74		30	1250-1320	0	6.6	6.6	1405	NL	8.72											
MW-89 ³	1446	NL	9.40																				
MW-93	0906	NL	8.91		30	0916-0946	0	57.4	57.4	0955	NL	8.86											
RW-1	1218	8.04	8.10	0.06	60	1238-1338	NA	9.8	9.8	1342	11.80	11.81	0.01	7 ¹³	1344-1351	NA	NA	NA	1602	8.63	8.65	0.02	131
RW-12	0930	8.93	9.10	0.18	40	1200-1240	~1.5	29.5	31.0	1309	9.75	9.76	0.01						1556	9.02	9.04	0.02	196
RW-101	1121	NL	8.00		30	1148-1218	0	6.6	6.6	1223	NL	8.73											
RW-102	0937	NL	8.43																				
RW-103	0950	8.12	8.87	0.75	60	1038-1143	NA	NA	NA	1149	NL	8.54							1545	7.90	8.12	0.22	243
RW-104	0921	NL	7.89																				
RW-105	1018	NL	8.67																				
RW-106	0810	8.11	9.24	1.13	60	0855-0955	NA	NA	NA	0959	NL	8.84							1553	8.02	8.75	0.73	358
RW-107	0739	8.30	9.08	0.78	60	0750-0850	NA	NA	NA	0901	NL	8.51		30 ¹⁰	1405-1434	NA	NA	NA	1549	8.29	8.51	0.22	75
RW-108	0819	NL	8.60																				
RW-109 RW-110	0825 0832	NL NL	8.82 8.72		30	1001-1031	~0	 NA	 NA	 1052		 8.80											
RVV-110	0832	INL	0.72		30	1001-1031	0	NA	NA	1052	NL	8.80											
				DRUM V	ACUUM ESTIM	ATED TOTALS:	~1.5	156.1	157.6										[
		VACUI	JM TRUCK MF				NA	<=1234	~1234														
					ED APPROXIM		>=1.5	~1390.1	~1391.6														
COMBINE	D APPROXI	MATED TOTA	LS IN VACUUN	A TRUCK (IN	ICLUDING HOL	DING TANK) ¹¹ :	>=4.5	<=1495.5	~1500														
				•	TOTALS A MEA	1	-		~1853														

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 1446. Low Tide at 1256.

4. NL = LNAPL not detected using interface probe.

5. Total removals calculated from drum volumes from each well post-recovery at each well.

6. NA - Not Available (not able to detect)

7. TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

8. MW-35 total depth tagged at 13.90-ft TOC.

9. DH Vacuum Truck removal volumes only (stick measured in vac truck tank).

10. RW-107 was additionally extracted at for 30-minutes prior to site departure to remove recharged oil.

11. Approximately 3-gallons of oil and 275-gallons of water in the holding tank prior to removal.

12. EMU. - Emulsified

13. Additional time conducted at well prior to demobilization to skim 0.01-ft LNAPL out of well.

Blues wells extracted by Marine Maintenance with drum vacuum.

Red wells extracted by DH Environmental with vacuum truck.

Location	Time of Gaging	Depth to LNAPL	Depth to Water	LNAPL Thickness	Estimated LNAPL in Well	Notes
		(Feet TOC)	(Feet TOC)	(Feet)	(Gallons)	
MW-35	9:16	8.69	8.75	0.06	0.01	
MW-36	9:29	NL	8.95	NL		
MW-36A	9:25	NL	9.65	NL		
MW-39A	9:55	NL	8.90	NL		
MW-59	8:24	NL	8.79	NL		
MW-89 ³	10:07	NL	9.78	NL		
MW-93	9:53	NL	9.10	NL		
RW-1	9:37	8.08	8.11	0.03	0.04	
RW-12	8:15	8.92	8.95	0.03	0.04	
RW-101	9:02	NL	7.54	NL		
RW-102	8:46	NL	8.08	NL		
RW-103	9:09	7.80	8.67	0.87	0.57	
RW-104	8:59	NL	7.58	NL		
RW-105	8:49	NL	8.30	NL		
RW-106	8:19	7.96	9.15	1.19	0.79	
RW-107	8:07	8.23	9.23	1.00	0.66	
RW-108	8:37	NL	8.35	NL		
RW-109	8:33	NL	8.63	NL		
RW-110	8:29	8.60	8.79	0.19	0.13	1st re-appearance of LNAPL since 8/2020

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 10:07. Low tide at 11:48. Well not gauged during optimal low tide window.

Port of Seattle Terminal 30 LNAPL Removal Event 12 (March 5, 2021)

					First R	emoval		Post F	Removal			9	Second Remov	al				End of Day		
Location	Time of Gaging	Initial Depth to LNAPL	Initial Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start/End Times	Time of Gaging	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start/End Times	Pre-Removal Depth to LNAPL	Pre-Removal Depth to Water	Estimated LNAPL Removed	Time of Gaging	End of Day Depth to LNAPL	Depth to Water	LNAPL Thickness	Time Lapse Since Extraction
		(Feet TOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)		(Feet TOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)	(Feet TOC)	(Feet TOC)	(Gallons)		(Feet TOC)	, ,	(Feet)	(minutes)
MW-35	1205	8.64	8.74	0.1	~5	DRIES RAPIDLY	NA	NA	NA	NA						13:14	NL	8.76		NA
MW-36	7:50	NL	8.90																	
MW-36A	7:49	NL	9.71																	
MW-39A	7:53	NL	8.99																	
MW-59	1000	8.55	8.64	0.09	20	1100-1122	11:23	NL	9.40							13:06	NL	8.89		104
MW-89 ³	11:35	NL	9.52																	
MW-93	8:00	NL	9.25																	
RW-1	1224	8.09	8.16	0.17	40	1226-1306	13:10	9.68	9.69	0.01	20	1357-1417	9.09	9.11	NA	NA	NA	NA	NA	NA
RW-12	738	9.03	9.08	0.05	20	0826-0846	9:04	NL	10.12		20	1315-1335	9.20	9.23	NA	NA	NA	NA	NA	NA
RW-101	8:52	NL	7.64																	
RW-102	8:54	NL	8.33																	
RW-103	9:11	8.21	8.70	0.49	60	0954-1054	11:01	NL	8.53							NA	NA	NA	NA	NA
RW-104	8:09	NL	7.73																	
RW-105	8:13	NL	8.53																	
RW-106	7:26	8.10	9.18	1.08	60	0849-0949	9:54	NL	8.65		20	1335-1355	8.29	8.49	NA	NA	NA	NA	NA	NA
RW-107	7:15	8.35	9.31	0.96	60	0726-0826	8:35	NL	8.83		20	1255-1315	8.50	8.82	NA	NA	NA	NA	NA	NA
RW-108	9:29	NL	8.63																	
RW-109	9:24	NL	8.99																	
RW-110	9:06	8.85	9.02	0.17	40	1126-1206	12:09	NL	9.06							13:02	NL	8.82		56
											•					•				
				DRUM VA		IATED TOTALS:	NA													
		VACUL	JM TRUCK ME	ASURED AN	D APPROXIM	ATED TOTALS ⁹ :	~1400													
				COMBINE	ED APPROXIM	ATED TOTALS:	~1400													
COMBIN	D APPROXI	MATED TOTA	LS IN VACUUN	1 TRUCK (IN		DING TANK) ¹¹ :	~2015													
						i on 3/8/2021:	~2083													┼───┤

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 1135. Low Tide at 0256, Lower low tide at 1554.

4. NL = LNAPL not detected using interface probe.

5. For drum vaccuumed wells, total removals calculated from drum volumes from each well post-recovery at each well.

6. NA - Not Available (not able to detect or measure)

7. TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

8. MW-35 total depth tagged at 13.90-ft TOC.

9. DH Vacuum Truck removal volumes only (stick measured in vac truck tank).

Blues wells extracted by Marine Maintenance with drum vacuum.

Red wells extracted by DH Environmental with vacuum truck.

Location	Time of Gaging	Depth to LNAPL (Feet TOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	Estimated LNAPL in Well (Gallons)	Notes
MW-35	16:59	(Feet TOC) 8.67	9.09	(Feel) 0.42	(Gallous) 0.07	
MW-36	16:39	NL	9.15			
MW-36A	16:40	NL	10.19			
MW-39A	16:44	NL	10.84	🖉		
MW-59	17:54	9.18	9.19	0.01	0.00	
MW-89 ³	16:33	NL	11.19			
MW-93	16:47	NL	10.70			
RW-1	18:35	8.78	8.89	0.11	0.17	
RW-12	18:13	9.43	9.68	0.25	0.38	
RW-101	17:29	NL	8.03			
RW-102	17:26	NL	8.63			
RW-103	17:37	8.38	8.69	0.31	0.20	
RW-104	17:48	NL	7.93			
RW-105	17:44	NL	8.81			
RW-106	17:57	8.50	9.28	0.78	0.51	
RW-107	18:16	8.78	9.52	0.74	0.49	
RW-108	18:23	NL	8.85			
RW-109	17:13	NL	9.05			
RW-110	17:14	9.10	9.20	0.10	0.07	

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 16:33. Low tide at 13:45. Well not gauged during optimal low tide window due to limited site access.

4. NL = LNAPL not detected using interface probe.

5. MW-35 total depth previously tagged at 13.90-ft TOC.

Port of Seattle Terminal 30 LNAPL Removal Event 13 (May 13, 2021)

					First R	emoval			Post F	Removal			S	econd Remov	al				Third Remova	l				End of Day		
Location	Time of Gaging	Initial Depth to LNAPL (Feet TOC)	Initial Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Estimated Total Fluid Removal (Gallons)	Time of Gaging	Depth to LNAPL (Feet TOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Time of Gaging	Pre-Removal Depth to LNAPL (Feet TOC)	Pre-Removal Depth to Water (Feet TOC)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Pre-Removal Depth to LNAPL (Feet TOC)	Pre-Removal Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	Time of Gaging	End of Day Depth to LNAPL (Feet TOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	Time Lapse Since Extraction (minutes)
MW-35	16:29	8.88	8.92	0.04	UNTIL DRY	1927-1933	NA	19:34	NL	13.65	0											20:31	NL	10.18	0.00	57
MW-36	17:41	NL	9.27																							
MW-36A	17:39	NL	9.91																							
MW-39A	17:50	NL	9.94																							
MW-59	16:37	9.00	9.62	0.62	30	1727-1757	NA	17:59	NL	9.90	0.00											20:17	NL	9.26	0.00	258
MW-89 ³	15:56	NL	10.68																							
MW-93	17:55	NL	9.99																							
RW-1	19:40	8.88	9.05	0.17	20	1943-2003	NA	20:03	10.58	10.60	0.02															
RW-12		No Initial G	auging Data		30	1613-1643	NA	16:53	10.47	10.57	0.10	10	2012-2022	20:07	9.69	9.82	20:23	5 minutes	10.63	10.67	0.04	20:39	NL	12.00	0.00	16
RW-101					-			-				Co	ontainer on we	II - Not access	ible		-					-				
RW-102	16:24	NL	8.54																							
RW-103	16:17	8.36	8.59	0.23	20	1833-1853	NA	18:54	NL	9.04	0.00											20:18	NL	8.55	0.00	84
RW-104	18:05	NL	8.17																							
RW-105	17:07	NL	8.76																							
RW-106	17:30	8.95	9.66	0.71	30	1758-1828	NA	18:29	NL	9.47	0.00											20:12	NL	8.66	0.00	103
RW-107	16:01	8.75	9.34	0.59	30	1645-1715	NA	17:19	NL	9.33	0.00	10	2022-2032	20:10	8.90	9.31						20:35	NL	9.15	0.00	25
RW-108	16:59	NL	8.74																							
RW-109	16:51	NL	9.03																							
RW-110	16:41	9.08	9.28	0.20	20	1858-1718	NA	17:20	NL	9.51	0.00											20:24	NL	9.20	0.00	184
		VACUL	JM TRUCK ME	ASURED AN	D APPROXIMA	ATED TOTALS ⁹ :	676																			
COMBINE					CLUDING HOL	40	839																			
	COM	IBINED APPRO	OXIMATED TO	TALS A MEA	SURED BY DH	on 5/14/2021	930 (24 is oil)																			
Notes:																										

1. Feet TOC = Feet below top of well casing.

Peet roc - Peet below top of wen casing.
 LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 16:37. Low Tide at 12:39.

3. Glouidwater measurements taken at 10.57. Low

4. NL = LNAPL not detected using interface probe.

5. For drum vacuumed wells, total removals calculated from drum volumes from each well post-recovery at each well.

6. NA - Not Available (not able to detect or measure)

7. TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

8. MW-35 total depth tagged at 13.90-ft TOC.

9. DH Vacuum Truck removal volumes only (stick measured in vac truck tank).

10. Approximately 163-gallons of oily water (total fluids) in the holding tank prior to removal. 839-gallons total fluids as measured on-site by field crew.

Red wells extracted by DH Environmental with vacuum truck.

RW-107: Saw 69% LNAPL recovery (0.59-ft to 0.41-ft) in 2:51-hours after initial pumpout.

DH Environmental - Vac Truck Volume Estimator

Project:Port of Seattle, T30 Product RecoveryDate:5/13/2021

Inch	Gallons				land Manufact	turing					LNAF	PL Volu	me Calc	ulator		
1	7.37			9	Stick Chart											
2	20.93			Tank Volum	e Versus Liquio	d Depth				depth to pro	duct (from	lip of a	ccess ha	tch; ft)	:	4.75
3	38.48				Tank Diameter	. ,	78			Depth to w	ater (from	lip of a	iccess ha	tch; ft)	:	4.79
4	59.24		Tank Ler	ngth, includes	straight flanges	(in.)	138			depth to pro	duct (from	lip of a	ccess hat	tch; in)	:	57
5	82.76				Shell Thickness	(in.)	0.25			Depth to w	ater (from	lip of a	ccess hat	tch; in)	:	57.48
6	108.72			Tot	al Tank Volume	(gal)	2900			coml	bined dept	h produ	ict + wate	er (in.):	:	25.8
7	136.89			Volum	ne In Each Head	(gal)	172					dep	th of wat	er (in.)	:	25.32
8	167.08				Total Volume	(gal)	3244				volume at	produc	t thickne	ess (gal)	930.00
9	199.15	dista	ance fron	n lip of access	hatch to top of	tank	4.8						er thickne			905.63
10	232.94					(in):	4.0					Produc	t Volum	ne (gal)	24.37
11	268.37	dista	ance fron	n lip of access	hatch to top of	tank	0.40					Wate	er volum	ne (gal)	905.63
12	305.31					(ft):	0.40									
13	343.68															
14	383.39						Terr	l. Danti	h	Valuesa						
15	424.37						Ian	k Depti	n vs.	Volume						
16	466.54		3500													
17	509.83															
18	554.18		2000												••••	
10	599.53		3000											• • •		
20	645.82												•••			
20	692.99		2500													
22	740.98															
22	789.75	gal)									•					
23	839.23	me (2000													
24	889.38	/olu								•						
25	940.16	Tank Volume (gal)	1500													
20	991.5	Ta														
28	1043.37		1000													
29	1095.72		1000				•									
30	1148.5					• • •										
31	1201.66		500													
32	1255.16															
33	1308.96															
34	1363.01		0 4	1	.0 20	0	30		4	0	50	6	0	7	0	80
35	1417.27		0	-		-	50					0	-	,	-	00
36	1471.68							Tank E	Depth	(in.)						
37	1526.22															
38	1580.84	_														
39	1635.48		59	2666.9												
40	1690.12		60	2711.76												
41	1744.7		61	2755.59												
42	1799.18		62	2798.33												
43	1853.53		63	2839.91												
11	1007.68	1	64	2880 27	1											

59	2666.9
60	2711.76
61	2755.59
62	2798.33
63	2839.91
64	2880.27
65	2919.32
66	2956.99
67	2993.18
68	3027.8
69	3060.75
70	3091.9
71	3121.1
72	3148.19
73	3172.96
74	3195.15
75	3214.37
76	3230.06
77	3241.06
78	3244

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

1907.68

1961.61

2015.27

2068.61 2121.58

2174.15

2226.26

2277.88

2328.94

2379.41

2429.24

2478.37

2526.75

2574.34

2621.08

Location	Time of Gaging	Depth to LNAPL	Depth to Water	LNAPL Thickness	Estimated LNAPL in Well	Notes
		(Feet TOC)	(Feet TOC)	(Feet)	(Gallons)	
MW-35	16:18	9.01	9.03	0.02		
MW-36	16:09	NL	9.93			Trace product on probe
MW-36A	16:12	NL	9.87			
MW-39A	16:00	NL	10.10			Trace product on probe
MW-59	16:47	9.14	10.00	0.86		Biological growth or debris in well/probe.
MW-89 ³	15:55	NL	10.58			
MW-93	16:04	NL	9.97			
RW-1	17:29	8.89	9.15	0.26		
RW-12	16:59	9.54	9.75	0.21		
RW-101	16:36	8.50	8.51	0.01		1st time with product since 11/2020
RW-102			Inac	cessible due to co	ontainer on well	
RW-103			Inac	cessible due to co	ontainer on well	
RW-104	16:29	NL	8.35			
RW-105	16:26	NL	8.81			
RW-106	16:51	8.53	9.11	0.58		
RW-107	17:03	8.82	9.43	0.61		
RW-108	17:25	NL	8.80			
RW-109	17:20	NL	9.06			
RW-110	17:15	9.12	9.37	0.25		

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 15:55. Low tide at 11:40.

4. NL = LNAPL not detected using interface probe.

5. MW-35 total depth previously tagged at 13.90-ft TOC.

Port of Seattle Terminal 30 LNAPL Removal Event 14 (August 12, 2021)

					First R	emoval			Post F	Removal				End of Day		
Location	Time of Gaging	Initial Depth to LNAPL	to Water	LNAPL Thickness	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times	Estimated Total Fluid Removal (Gallons)	Time of Gaging	Depth to LNAPL	Depth to Water	LNAPL Thickness (Feet)	Time of Gaging	End of Day Depth to LNAPL	Depth to Water	LNAPL Thickness	Time Lapse Since Extraction
MW-35	17:50	(Feet TOC) 9.18	(Feet TOC) 9.20	(Feet) 0.02	Until Dry	(Approx.) 20:01-20:10	(Gallons) NA	20:11	(Feet TOC) NL	(Feet TOC) 13.35	(Feet) 0.00		(Feet TOC)	(Feet TOC)	(Feet)	(minutes)
MW-36	18:08	9.35	9.37	0.02	20	20:22-20:42	NA	20:39	NL	12.15	0.00					
MW-36A	17:59	NL	9.90													
MW-39A	19:19	NL	9.69	TRACE												
MW-59							Conta	iner on wel	l - Not accessik	ble						L
MW-89 ³	17:15	NL	10.33													
MW-93	19:26	NL	9.75													
RW-1	20:22	9.03	9.30	0.27	25	20:49-21:14	NA	21:17	13.49	13.59	0.10					
RW-12	16:31	9.61	9.92	0.31	40	17:31-18:11	NA	18:14	15.50	15.51	0.01	20:09	10.25	10.39	0.19	115
RW-101	17:43	NL	8.51													
RW-102		•					Conta	iner on wel	l - Not accessit	le						
RW-103							Conta	iner on wel	l - Not accessit	ole						
RW-104	18:27	NL	8.55													
RW-105	17:03	NL	8.85													
RW-106	16:47	8.58	9.17	0.59	40	19:10-19:50	NA	19:53	NL	9.46	0.00	20:26	NL	8.94	0.00	33
RW-107	16:28	8.89	9.61	0.72	40	16:45-17:25	NA	17:33	9.13	9.15	0.02	20:16	9.06	9.69	0.60	73
RW-108	17:36	NL	8.87													
RW-109	16:56	NL	9.13													
RW-110	16:52	9.16	9.64	0.48	40	18:22-19:02	NA	19:09	NL	9.49	0.00	20:22	9.38	9.41	0.03	163
			HOLDING	G TANK VOL	UME PRIOR TO	D REMOVALS ⁹ :	870									
COMBIN		MATED TOTA					1635									
Notos:	COMBI	NED APPROXI	MATED TOTAI	S A MEASU	RED BY DH on	8/12-13/2021	1733 (78 is oil)									

Notes:

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at 17:15. Low Tide at 14:11.

4. NL = LNAPL not detected using interface probe.

5. For drum vacuumed wells, total removals calculated from drum volumes from each well post-recovery at each well.

6. NA - Not Available (not able to detect or measure)

7. TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

8. MW-35 total depth tagged at 13.85-ft TOC.

9. Approximately 871-gallons of oily water (total fluids) in the holding tank prior to removal.

10. Approximately 1635-gallons in vacuum truck as measured immediately after recovery event (stick gauged).

Red wells extracted by DH Environmental with vacuum truck.

RW-107: Saw 83% LNAPL recovery (0.72-ft to 0.60-ft) in 2:51-hours after initial pump out.

DH Environmental - Vac Truck Volume Estimator

Project: Terminal 30 Date: 8/12/2021

Г

		land Manufact Stick Chart	turing					LNAPL Volu	ume Calculator	
	Tank Volume	e Versus Liquio	Depth				depth to produ	uct (from lip of	access hatch; ft):	3.5
		Tank Diameter	(in.)	78			Depth to wat	ter (from lip of	access hatch; ft):	3.62
Tank Le	ength, includes	straight flanges	(in.)	138			depth to produ	ct (from lip of a	access hatch; in):	42
		Shell Thickness	(in.)	0.25			Depth to wat	er (from lip of	access hatch; in):	43.44
	Tota	al Tank Volume	(gal)	2900)		combir	ned depth prod	uct + water (in.):	40.8
	Volum	e In Each Head	(gal)	172				dep	oth of water (in.):	39.36
		Total Volume	(gal)	3244	1		v	olume at produ	ct thickness (gal)	1,733.78
ance fro	om lip of access	hatch to top of	tank	4.8					er thickness (gal)	1,655.15
			(in):	4.0				Produ	ct Volume (gal)	78.63
ance fro	om lip of access	hatch to top of	tank	0.40				Wat	er volume (gal)	1,655.15
			(ft):	0.40	,					
3500 3000 2500 2000							••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
1500						•••				
1000				•••						
500										
0		0 2	D	3	D	4	D 5	60	60 70	80
					Tank	Depth	(in)			

Inch	Gallons	
1	7.37	
2	20.93	
3	38.48	
4	59.24	1
5	82.76	
6	108.72	
0		
7	136.89	
8	167.08	
9	199.15	distar
10	232.94	
11	268.37	distar
12	305.31	
13	343.68	
14	383.39	
15	424.37	
16	466.54	
17	509.83	
18	554.18	
19	599.53	
20	645.82	
20	692.99	
22	740.98	_
22	789.75	(gal)
23	839.23	me (
24	839.23	'oluı
		Tank Volume (gal)
26	940.16	Tar
27	991.5	
28	1043.37	
29	1095.72	
30	1148.5	
31	1201.66	
32	1255.16	
33	1308.96	
34	1363.01	
35	1417.27	
36	1471.68	
37	1526.22	
38	1580.84	
39	1635.48	
40	1690.12	
41 42	1744.7 1799.18	
42	1853.53	
43	1907.68	
44	1961.61	
45	2015.27	
40	2013.27	
48	2121.58	
49	2174.15	
50	2226.26	
51	2277.88	
52	2328.94	
53	2379.41	
54	2429.24	
55	2478.37	
56	2526.75	
57	2574.34	

2666.9

2711.76 2755.59

2798.33

2839.91

2880.27

2919.32

2956.99

2993.18 3027.8

3060.75

3091.9

3121.1

3148.19

3172.96

3195.15

3214.37

3230.06

3241.06

3244

59 60

61

62

63 64

65

66

67

68 69

70

71

72

73

74

75

76

77

78

Port of Seattle Terminal 30 LNAPL Removal Event (November 11, 2021)

					First Rei	moval			Post R	emoval				Second Remova	I		[Third Removal					End of Day		
Location	Time of Gaging	Initial Depth to LNAPL (Feet TOC)	Initial Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Estimated Total Fluid Removal (Gallons)	Time of Gaging	Depth to LNAPL (Feet TOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Time of Gaging	Pre-Removal Depth to LNAPL (Feet TOC)	Pre-Removal Depth to Water (Feet TOC)	LNAPL Extraction Duration (Minutes)	Extraction Start/End Times (Approx.)	Pre-Removal Depth to LNAPL (Feet TOC)	Pre-Removal Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	Time of Gaging	End of Day Depth to LNAPL (Feet TOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	Time Lapse Since Extraction (minutes)
MW-35	1800	NL	8.82																			1800	NL	8.82		
MW-36	1810	NL	9.15																			1810	NL	9.15		
MW-36A	1830	NL	9.45																			1830	NL	9.45	'	
MW-39A	1805	NL	9.06																			1805	NL	9.06		
MW-59	1700	8.15	8.35	0.20	20	1900-1920	NM	1905	NL	9.05												1905	NL	9.05		125
MW-89 ³	1925	NL	9.40																			1925	NL	9.40		
MW-93	1838	NL	9.30																			1838	NL	9.30		
RW-1	1845	8.63	8.78	0.15	20	2020-2040	NM	2110	NL	9.90												2030	NL	9.90		30
RW-12	1530	9.35	9.65	0.3	40	1600-1640	NM	1900	9.41	9.42	0.01	10	2050-2100	2105	9.41	9.42						2050	NL	10.11		250
RW-101	1642	NL	7.95																			1642	NL	7.95		
RW-102	1610	NL	8.33																			1610	NL	8.33		
RW-103	1605	8.26	8.87	0.61	60	1650-1750	NM	1910	8.31	8.32	0.01	10	2105-2115	2120	8.31	8.32						2120	NL	8.67		300
RW-104	1725	8.11	8.12	0.01	20	1930-1950	NM	1952	NL	9.76												1952	NL	9.76		147
RW-105	1700	NL	8.91																			1700	NL	8.91		
RW-106	1635	8.25	9.30	1.05	60	1755-1855	NM	1910	NL	8.87												1910	NL	8.87		275
RW-107	1525	9.04	9.06	0.02	20	1530-1550	NM	1605	NL	9.94												1605	NL	9.94		80
RW-108	1800	NL	8.39																			1800	NL	8.39		
RW-109	1755	NL	8.61																			1755	NL	8.61		
RW-110	1750	8.87	8.88	0.01	20	1955-2015	NM	1926	NL	8.92												1926	NL	8.92		176
		VACIJIM T	RUCK MEASURED		MATED TOTALS ⁹		NM					1											1			
																									ļ'	
COMBIN			ACUUM TRUCK (II				2122																			<u> </u>
Notes:	COMBINE	ED APPROXIMA	TED TOTALS A MEA	SURED BY DH	l on 11/12/2021		2102.51																		<u> </u>	

1. Feet TOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. Groundwater measurements taken at throughout the evening

4. NL = LNAPL not detected using interface probe.

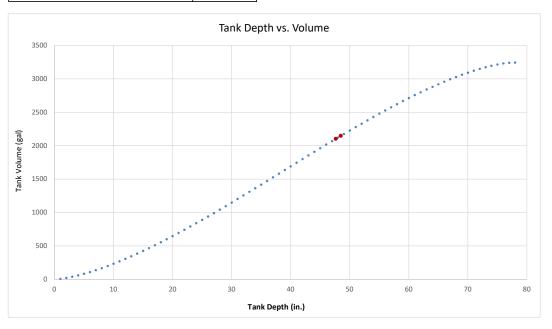
5. For drum vacuumed wells, total removals calculated from drum volumes from each well post-recovery at each well.

6. NA - Not Available (not able to detect or measure)

7. TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

8. MW-35 total depth tagged at 13.90-ft TOC.

9. DH Vacuum Truck removal volumes only (stick measured in vac truck tank).


10. Approximately 163-gallons of oily water (total fluids) in the holding tank prior to removal. Red wells extracted by DH Environmental with vacuum truck.

DH Environmental - Vac Truck Volume Estimator

Rush-Overland Manufacturin Stick Chart Tank Volume Versus Liquid Deg	-
Tank Diameter (in.)	78
Tank Length, includes straight flanges (in.)	138
Shell Thickness (in.)	0.25
Total Tank Volume (gal)	2900
Volume In Each Head (gal)	172
Total Volume (gal)	3244
distance from lip of access hatch to top of tank (in):	4.8
distance from lip of access hatch to top of tank (ft):	0.40

LNAPL Volume Calculator	
depth to product (from lip of access hatch; ft):	2.86
Depth to water (from lip of access hatch; ft):	2.93
depth to product (from lip of access hatch; in):	34.32
Depth to water (from lip of access hatch; in):	35.16
combined depth product + water (in.):	48.48
depth of water (in.):	47.64
volume at product thickness (gal)	2,146.81
volume at water thickness (gal)	2,102.51
Product Volume (gal)	44.30
Water volume (gal)	2,102.51

59	2666.9
60	2711.76
61	2755.59
62	2798.33
63	2839.91
64	2880.27
65	2919.32
66	2956.99
67	2993.18
68	3027.8
69	3060.75
70	3091.9
71	3121.1
72	3148.19
73	3172.96
74	3195.15
75	3214.37
76	3230.06
77	3241.06
78	3244

Project:	Terminal 30
Date:	11/11/2021
Inch	Gallons
1	7.37
2	20.93
3	38.48
4	59.24
5	82.76
6	108.72
7	136.89
8	167.08
9	199.15
10	232.94
11	268.37
12	305.31
13	343.68
14	383.39
15	424.37
16	466.54
17	509.83
18	554.18
19	599.53
20	645.82
21	692.99
22	740.98
23	789.75
24	839.23
25	889.38
26	940.16
27	991.5
28	1043.37
29	1095.72
30	1148.5
31	1201.66
32	1255.16
33	1308.96
2/	1262.01

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

1363.01

1417.27

1471.68

1526.22

1580.84

1635.48

1690.12

1744.7

1799.18

1853.53

1907.68

1961.61

2015.27

2068.61

2121.58

2174.15

2226.26

2277.88

2328.94

2379.41

2429.24

2478.37

2526.75

2574.34

2621.08

<u>Appendix F</u> Groundwater Sampling Field Forms

Port of Seattle, Terminal 30 l. Jones 4/3/21 Semi- Annual Ciw Sampling 1550 At Crote office. Crather field equipment and supplies 1614 Departing Crate office for Terminal 30/1730). n1621 divive at T30 1625 Arrive at well field. Equipment List - LDPE and silcone tubing, nitrile gloves - Geotech Geotrumis peristattic pump (Field# UTZOK8X) - Heron Instruments H.O.L. oil/water interface - Horiba U-52 War LEFUS F (FELL# U93314X) +See separate calibration data sheet. * 1630-1650 H+ MW-59 to gage and sampled * DTP - 9.00 *DTW - 19.04 H BTUC * Difficulty obtaining accurate DTP and DTW measure, due to emplosified oil (?) or acrated water [vil or something (moving interface) SVE/AS remediation system has been off for >24 hours) Z *No sample due to LNAPL present. *-1655 At RW-11A setup to micro-purge and sample. 1750 Sample time for RW-112 - All wells. 7 ~ 1800 Setting up on UN-89 (Hiday influenced well) l'optimiel unindoro ~130 unimites post LLTY Taday's LLT is -0.9A @ 1622 1840 Sample time for MW-89-0421 4321 (collected duplicate DUP-0421 fime stamp 1700) 10 nes 1850 Pack up GWS equipment and supplies, consolidate pune IDW to Kernediation System holding tank ~1859-1910 Power up and twin on Remediation System ~1917 Making way off Terminal 30, _____RS ~1930 At Creter office to unload all equipment THOLD ONTO SUMPLES OVER WEEKEND of ICE .X 4/3/2021 ones

P.S T30 4/3 GWS

301 Brushton Ave Suite A Pittsburgh, PA 15221 Toll Free (800) 393-4009 Local (412) 436-2600 Fax (412) 436-2616

www.fieldenvironmental.com

		Lot #	Expiration	2
Horiba Auto-Cal So	olution	7005360	6/2/2022]
Cal Standard			Reading	Acceptable Range
			4.00	(3.96 - 4.04)
PH 4 @ 25°			4.00	(3.90 - 4.04)
Cal Standard			Reading ms/cm	Acceptable Range
Conductivity			4.48	(4.31 - 4.58)
Cal Standard			Reading NTU	Acceptable Range
Turbidity		0 NTU	0.0	(-2 - +2)
		100 NTU 💌	100.0	(95 - 105) 💌
			100.0	(95 - 105)
Dissolved Oxygen			Reading mg/L	
100% Saturation			9.40	
0% Saturation			0.00	1
Cal Standard	Lot #	Expiration	Reading	Acceptable Range
PH 7 @ 25 [°]	7912260.00	12/1/2021	7.00	(6.93 - 7.07)
Cal Standard	Τ - 4 #	Freedow Athe	Derk	A
	Lot #	Expiration 11/1/2021	Reading 10.00	Acceptable Range
PH 10 @ 25 ^c	/911113.00	11/1/2021	10.00	(9.9 - 10.1)
Check Standard		Temp ^c	Deletive Deeding	Acceptable Range
ORP		20.0	220.0	(+/- 15mV)
	12 240	20.0		(*/ 15111*)
*Solutions provided by L	abChem (412-826-523	30)	✓ ORP pin in place	
		ť		55
Model	U-52-2 V			
S/N				
Sonde	U89744X			
Barcode Order #	U70497X			
Oruer #	452552			
		Calibrated By	Don Redeen	•
		Date of Calibration	4/1/2021	ase report any issues wit
All calibrations p		hours of receiving		ease report any issues wit

All calibration solutions used are traceable to NIST. Additional documentation is available upon request.

SITE ID: Refer Scatte Groundwater Sampling	Terminal 30 W	ELL ID: <u>MW-59</u>
Project Number: <u>Gemi-Ann</u>	ual GW Sampling, April 2021	Date: 4 3 2.21
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
Initial Static Water from (ft BTOC) $\sim 9, cY$	Depth of Sample Intake (ft BTOC)	Analytical Equipment
Product Level from (ft BTOC) ~ 9.00	Total Time Purged	Additional Details Addated water of emulsified
Length of Water Column (ft)	Pump Setting	*Acrated water or emulsified oil causing trouble obtaining accuvate Depth to water to il
1 Well Volume (gal)		Depth to inter \$ oil measurements. *

					r			
Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)	ORP (mV)	DO (mg/L)	рН (S.U.)	Turbidity (NTU)
1635	~ 9.04 ~		Nets	impled	(LNAPL F	resent		
					_			
								-
								15
								3

Jampled	432021 3
Observations: Difficulty obtaining accur (acrated or cmn	rate DTP and DTW readings Isified water loil in well -rinconsistent)
Analytical Parameters:	
Disposition of Purged Water:	Sampler Name & Date R. Jones 4/3/2021

SITE ID: Port of Scattle Terminal 30 WELL ID: RW-112

Groundwater	[.] Sampling	Field	Data	Sheet
-------------	-----------------------	-------	------	-------

Project Number: <u>Semi-Annual</u>	GW Sampling, April 2021	Date: 432021
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
4		5150 mUmin
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
19.82 (reported)	GeoPum Perista Hic Dump Depth of Sample Intake (ft BTOC)	NEW LOPE + Silicone tubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (ft BTOC)	Analytical Equipment
9,37	~ 2-3 A from bottom	Huriba U-SZ WOM
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- No Product -	33+ minutes	
Length of Water Column (ft)	Pump Setting	
10.45		
1 Well Volume (gal)		
~1.78		

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)	ORP (mV)	DO (mg/L)	рН (S.U.)	Turbidity (NTU)	TDS (912)
1715	9.37	Begin M	icropurge	. Filling	fiow cell			i25	-
1720	Re-start	microp	arge M	Highte	leaky flow	cell. —		P)	-
1724	9,70	Decreasing. ~ 250	18.06	1.09	-58	1.42	6.55	17.8	0.689
1723	9.79	\$200	18.03	1.02	- 39	0.40	6.53	11.8	0.649
1732	9.84	Decreasing	17.93	1.01	-26	0.24	6.50	4.1	0.649
1736	9.85	150-200	17.88	1.01	-20	0.15	6.47	4.6	0.648
1740	9.87	1	17.85	1.02	-20	0.10	6.48	4.8	0.652
1744	9.89		17.82	1.03	-29	0.05	6.48	6.0	0.657
1748	9.91	V	17.90	1.03	-33	0.03	6.47	6.6	0.658
							E.		

Sample ID: ZW-11A -0721	Sample Date: 4.3.2021	Sample Time: 1750
Observations:		
Analytical Parameters: BIEK TPH-C	ax, TPH-Dy w SGC	
Disposition of Purged Water: Clear no appreciable odo	Sampler Nam	Real Covers 4.3.21
L'hear no appreciable our		In jones inter

SITE ID: B.A. of Seattle, Terminal 30 WELL ID: MW-89 Groundwater Sampling Field Data Sheet								
Project Number: Semi-Annual Gw Sampling, April 2021 Date: 4.3.2021								
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well						
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment						
19,89	GeoRums peristrillic pump Depth of Sample Intake (ft BTOC)	New LDPE + Sillcone tubing Analytical Equipment						
Initial Static Water from (ft BTOC)	**	Analytical Equipment						
10:42	~ 17.00 (approx.)	Horiba 4-52 WQM						
Product Level from (ft BTOC)	Total Time Purged	Additional Details						
- No product	Zlot minutes							
Length of Water Column (ft) 9,47	Pump Setting							
1 Well Volume (gal)		ē.						
~ 1,6								

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)	ORP (mV)	DO (mg/L)	рН (S.U.)	Turbidity (NTU)	TDS (9/2)
18,12	10,42	Bigin n	icopurgo	Filling	fiow cell				-
1814	10.65	~275	19.33	2.49	132	4.97	4.02	51.3	1.61
1818	10.76	Decreusin	919.96	2.57	245	4.11	4.03	42.5	1.64
1822	10.60	5175	20.05	2.56	296	3.96	4.02	31.7	1.64
1826	10.68		20.07	2.54	318	3.8	4.05	15.9	1.62
1830	10.69		20.12	2.51	328	3.65	4.07	7.9	1-60
1834	10.69	<i>C</i>	20.15	2.48	339	3.54	4.10	6.0	1.59
1838	10.70		20.13	2.47	348	3.61	4.12	39	1.58

Sample ID: Sample Date: 4	3,2021	Sample Time:	1840
Observations: Dup-0421 collected duplicate		421 lused	itou astime
Analytical Parameters: BTEX TPH-G, TPH-Dy	w SGC		
Disposition of Purged Water: Clear, no appreciable adors	Sampler Name & Dat		.3.21

SAMPLE CHAIN OF CUSTODY

			STIMIT LL				JIC							1	K		1	Ì
Report To R. Jones -	T. Stevens		SAMPL	ERS (signo	ture)		1.	T	res			v .					IAROUND T	
Report To R. Jones, - Company Crele Con			PROJEC	Cust-1- CT NAME	Jones	2	1	Jon	T		PC) #			Star	ndard	Turnaround	
Company Color	1 1 1 C	1. 1	Port of Seattle, Terminal 30											l RUS Rush		es authorized	l by:	
Address 109 5. W	ashington, 3	12,300	REMARKS					INVOICE TO			SAMPLE DISPOSAL							
City, State, ZIP	4 WA 9810	4	- REMAR	KS						INVOICE IU			Dispose after 30 days					
PhoneEr														nive S er	amples			
						r –			ł	ANAI	LYSI	ES RI	EQU	ESTE				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		TPH-Diesel	-Gasoline	by 8021B	VOCs by 8260C	s by 8270D	PAHs 8270D SIM					Not	es
		Sumpion	Sampion	~JP0		TPI	TPF	TPH-	BTEX	VOCs	SVOC	PAHs 8		_				
RW-11A-0421		4/3/2021	1750	WATER	Ч		×	X	×								with BQ	n
RW-11A-0421 MW-89-0421			1940		4		X	X	X									
DUP-0421		\checkmark	1700	\checkmark	4		X	X	X									
l																		
														_				
																1		
1 1 1 1																	100	
		GNATURE			PRIN	NT N	JAM	E				(COM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	R. Couls		Rug	ty -	Tow	25				C	e-le	Co	nsul	Hind		4/5/21	1314
3012 16 th Avenue West								e E				I	4/3BI	1314				
Seattle, WA 98119-2029	Relinquished by:	1																
Ph. (206) 285-8282	Received by:					-												

8

	1		12	
AECOM	and the second	1	2. 14	
topologic and the second s	DATE	10/14/	21	
	DAY	S M T	w (T	TH F S
PROJECT MANAGER: Paul Lealing	WEATHER	BRIGHT CLEAR	OVERCAST	RAIN SNOW
PROJECT: T-30 P.O.S	TEMP	To 32 32-50	50-70	70-85 85 up
JOB NO .:	WIND	Suit Moder) High	Report No.
AECOM FIELD REP: A. Utter	HUMIDITY	Dry Moder	Humid	
SUB-CONTRACTORS ON SITE: N/A				
EQUIPMENT ON SITE: XIZ HERiber XZ P-PUMP XZ O	IN Tehorgan	h1 PTT	7	
	,			
VORK PERFORMED:				
0730 AU, BD arrive assite, conduct daily H	ts meeting, s	afety observa	tioni Work	Fina Durina
longshore men operation. Use proper				1 4
0800 Arrive at MW-59, neet Jeff Hidal			110	
MITTE NOW OF TOET VELL MIGHT	go (JSA Maria	e/		
0810 Setup on MW-89 begin purging.	- 4 10.			
839 Sampled MW-E9-1021 @ 058 5	bottles			and the second second
00 Begin system Oth, see field form 1	or values			
000 offsite whil evening Sampling even				
515 Arrive @ site shuf Jour System				
Geo Locate wells to sample.				
620 P.K. rails to discuss system a	larms. C.B	G.F. ici	to to	ubleshoot
45 BO Gets up on MW-39A				
700 Au sets up an un 42 ANO	te: Olwinter	force did no	+ registe	r product
735 Simpled MW-42-1021 @ 1735	Hovener in	hen probe wa	5 branch	t un there
725 Sampled MW- 39A @ 1725	Wels VISM	al product	- on the f.	dy at the 1
755 Setup on RW-9 RW-11A	Ceuld be f	ren well ca	sing has	no produc
837 Sampled ANNURW-11-1021@1831	called on.		stag not	and provide
8to Sampled RW-9-1021@ 1840				
900 Setup on MW-36A :MW-59				
9.5 MW-59 contains product, will no	tsample			
133 Sanpled MW-36A-1021 @1933				
50 Dump purpe Water ~ 10.25 gallons, r	estart AS/SI	15 States	i hend a	Crizbo
Netify P.K. of depacture		- Josem	1 100 1 01	OIT.
7		TITLE		
BY	15	TITLE		
			CHECT	OF

AECOM

Americas **Daily Tailgate Meeting**

Daily Tailgate Me		S3AM-209-FM							
attendance of all AECOM employe	ior to sending crews to individual tasks sees and subcontractors. Invite personne ination purposes. Review scope of wo	el from	Filone Mulliber.		ame: Icaren Mirton				
briefly discuss required and applic not a full orientation. Task-speci	able topics. This meeting is a daily re fic discussions associated with Task Ha eting at the task location immediately be	fresher, azard	AECOM SH&E F Phone Number:	Rep. Na	ame: Tim Giles				
individual task is started.		loie	Meeting Leaders	And	ers Viller				
Date: 10/4/2/ Pr	oject Name/Location:	Project Number:							
Today's Scope of Work:	GWM T-30								
Muster Point Location:	First Aid Kit Location:		xtinguisher Loca	tion:	Spill Kit Location:				
System	tomerb		net		Concer				
1. Required Topics		-	scuss if Applicab						
Fitness for Duty requirem			Record		d or mark 🔳 as not applicable				
<u> </u>	sk specific) completed and current				Electrical Hazards				
	stood, reviewed, signed by all		Ergonomics - Lif		ody Position				
registers, controls, procec	hazard assessments / risk lures, requirements, etc.)		Lock Out/ Tag C		1.				
	ts (THAs) are to be reviewed and				es - visual identifier and mentor/				
	mmediately prior to conducting	EN E	oversight assign						
STOP WORK Right & Re			-		ouring Operations				
			Slip/ Trip/ Fall H						
Requirement to report to a damage, near miss, unsa	supervisor any injury, illness, fe act / condition		Y Specialized PPE Needs Y Traffic Control						
Emergency Response Pla	an – including muster point, er, clinic/hospital location	Waste Management/ Decontamination							
hazard assessments in go	oment (PPE) - Required items per bod condition / in use by all	Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.)							
and in good condition - op	pected (documented as required) perators properly trained/certified narcation/ barricades in place to	Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place,							
protect workers, site staff,	and the public		understood (ider	ntify/att	ach):				
V Required checklists/recor	ds available, understood (describe		Other Topics (de	escribe	/attach):				
Lessons Learned / SH&E	improvements (describe):								
			Client specific re	quirem	nents (describe):				
3. Daily Check Out by Site	Supervisor								
Describe incidents, near misse interventions from today:	es, observations or Stop Work	Descri	be Lessons Learne	ed/ Imp	rovement Areas from today:				
NA			NA						
The site is being left i	n a safe condition and work crew	v checke	d out as fit unless	s other	wise specified as above.				
Site Supervisor Name Anders VHer	Signature	HATT		Date (Time (o/l4/21 at end of day/shift) Zavor⊙				
Daily Tailgate Meeting (S3AN Revision 9 January 15, 2019			is meeting are on	revers	se and, if applicable, attached.				

All employees:

STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.

• Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.

• Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand: * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).

* The hazards & control measures associated with each task you are about to perform.

- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition. * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are not under the initiance of any type of medication, drugs, of alcohol that could affect your ability to work safety. * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or
- impairment/fatigue issue to the AECOM Supervisor.

* You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
		In & Fit	Out & Fit
Anders Utter AECOM	Kutter	0730 An	2000 AV
Anders Utter AEcom Bryon Darby AECom	Kutter J BA	0730 GD	Out & Fit 2020 69D
	0	In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets:

SITE VISITOR / SITE REPRESENTATIVE												
Name	Company Name	Arrival Time	Departure Time	Signature								

Daily Tailgate Meeting (S3AM-209-FM5) Revision 9 January 15, 2019 PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

			GROUN	DWATE	R SAMP	LING LC	00					
T >				29						A	CON	
PROJECT NAME 1-3-			WELL NO		ት ከ	_						
PROJECT NO.			WEATHE		<u>v</u>	1.1	_					
DATE 0/14/21						1						
	ELL INFORM	ATION					Commen	its		_	_	
DEPTH TO WATER 9.40		(ft) TOC							-		-	
VELL DIAMETER 2		(ft) (inches)	_			ļ						-
EET OF WATER 10.20		(1101100)					Instru	Mont I	D 25	341	Horib	6 V-5.
WELL CONDITION Good		C]	Instru	ment ID	402	06	Solins	+ IP (201
PUMP ADJUSTMENT 12'		(ft)	NOTE: Onl	y on Shallo	w Wells							
				PUR	GE DATA							
START PURGE TIME: 1445			5									
ſIME	1650	1455	1700	1705	071	1715	1720	1725	1			
DTW (Ft-TOC)												/
	1								/		/	
	20.57	10.52	70.31	20.32	20.39	20.112	20.45	20.44		\backslash	1	
TEMPERATURE (*C)	1.13	1.14	1.12	1.12	1.12	1.12	1.12	1.12	1	/	/-	
CONDUCTIVITY (uS/cm)	208	0.88	0.53	0.31		0	0.12	0.13		\rightarrow		
D. O. (mg/L)			7.08		0.09		-	7.25		/		
oH (units) (units)	6.94	7.09		7.10	7.13	7.18	1.23			/		
ORP (mv)	-98	-113	-125	-129	-133	-137.	- 141	- 192	1		\rightarrow	
FURBIDITY (NTU)	962	72.2	39.7	22.4	13.9 ontinued f	4.7	2.7	3.8	/			
			PURGE	DAIAC			<u>/e</u>				*************	010000000000000
						-	-	-		-		
DTW (Ft-TOC)	-										-	
FLOW RATE (mL/min)												
TEMPERATURE (°C)												
CONDUCTIVITY (uS/cm)										1.1		
D. O. (mg/L)						\geq	\leq					
pH (units) (units)				-	-							
ORP (mv)			-						17			
TURBIDITY (NTU)												1
PURGE AND SAMPLE EQUIPT:	Dedicat	ed QED	pump				23 T					
						AMIER				ppcer	DVATRUE	
SAMPLE	20 12122234232323232323	NPLE ME	ANA	LYSIS	CONT	AINER	# BO	TTLES		PRESE	RVATIVE	
NUMBER		W/442(2100000)	000000000000	444499999			0			10		
				-G/BTEX,	1 L AI	NBER	2			HCI		
MW-39A-1071	17	15	1	PH-Dx			<u> </u>					
···· Jud i Ar			-		40 mL	VON	3			1401		3
ADDITIONAL INFORMATION:	1						/		i			
TOC=Top of well casing	Addition	al comm	ents:									
wl.prot.=top of well protector					1.1							
Turbidity: Less than 5 NTU or +/- 10%												
DO: +/-10% Sp Cond: +/- 3%												
Temp: +/- 3%												
pH: +/- 0.1 standard units												

				GROU	DWATE	R SAMP	LING LC	G					
PROJECT NAME				WELL N SAMPLE WEATHI	DBY	2-9 BD					A	ECO/	M
	Ŵ	ELL INFOR	MATION				1	Commer	nts				
DEPTH TO WATER	9.33	inter in the later	(ft) TOC				1						
DEPTH OF WELL	101		(ft)										
WELL DIAMETER	10		(inches)				-	Talac		0 0 67	n		11.1.0
FEET OF WATER	10.67	- burrieh	0.	4			-	Instru Tustru	iment I	0 253	TI HO	TIDA	V-52
WELL CONDITION PUMP ADJUSTMENT	12:	- Driver	(ft)	886	y on Shallo	w Wells		LINSTYN	ment I	1 402	06 30	linst	IP (260+
						GE DATA							
START PURGE TIME:	1800												
TIME		1805	1810	1815	1820	1825	1830	1835	1840	1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(5) 700)	9.33		10.0	10								
DTW	(Ft-TOC)		10	taa	10	150		150			<u>}</u>		-
FLOW RATE	(mL/min)	150	150	150	150		150				$ \vdash $	\vdash	
TEMPERATURE	(°C)	20.08	21.60	2281	23.15			23.24	23.24				_
CONDUCTIVITY	(uS/cm)	1.14	1.11	101.10	1.10	1.10	1-10	1.10	1.10			1	_
D. O.	(mg/L)	1.52	0.53	0.14	D	0	0	0	0				2
pH (units)	(units)	7.17	6.97	00.1	6.99	7.04	01.1	7.13	7.13	×			
ORP	(mv)	- 73	-81	- 89	-91	-99	-102	-106	-107	BÉ	> 14/	In	
TURBIDITY	(NTU)	50.7	43.8	30.8	28.3	18.4	10.8	4.4	5.1	01	1.54	147	41
						ontinued f		e					
TIME									4				
DTW	(Ft-TOC)								· · · ·				
FLOW RATE	(mL/min)							-		_	2		
	("C)												
						\sim	<						
CONDUCTIVITY	(uS/cm)												
D. O.	(mg/L)												
pH (units)	(units)	-											
ORP	(mv)	<u> </u>										\geq	
TURBIDITY	(NTU)												
PURGE AND SAMPLE EQUIPT	:	Dedicat	ed QED	pump				ä					
SAMPLE			(PLE	ANAI	YSIS	CONT	AINER	# B01	TLES		PRESE	RVATIVE	
NUMBER		TI	ME										
RW-9-102	1	181	10		G/BTEX, PH-Dx	1 L Am	ber L VOA	2		HCJ			
1. 1. 4	ę				IT DX	40 m	L VOA	3			HCI		
ADDITIONAL INFORMATION	N:												
TOC=Top of well casing		Addition	al commo	ents:								_	
wl.prot.=top of well protector Turbidity: Less than 5 NTU or +/-	10%								4				
DO: +/-10%												5 C 1000	
Sp Cond: +/- 3%													
Temp: +/- 3%													
pH: +/- 0.1 standard units ORP: +/- 10 millivolts													
										6	A.		
										1	19		A
											Naber / State		

		GROUNDWATER	SAMPLING LO	G						
PROJECT NAME 1-30		WELL NO. Mu-	59		AECOM					
PROJECT NO.		SAMPLED BY								
DATE 10/14/21		WEATHER								
	VELL INFORMATION			Comments						
DEPTH TO WATER 9,29	(ft) TO(101011101101010		· ·					
DEPTH OF WELL 20'	(ft)									
WELL DIAMETER 2"	(inches)								
FEET OF WATER				Instrument] Instrument]	0 25341 Horiba	0-52				
WELL CONDITION Grand				LAStrament 1	D 40206 Solinst	IP (200				
PUMP ADJUSTMENT 12'	(ft)	NOTE: Only on Shallow We	/lls							
		PURGE	JATA							
START PURGE TIME: 91916										
TIME	1915									
DTW (Ft-TOC)										
FLOW RATE (mL/min)	150									
TEMPERATURE (*C)	1944									
	0					1 1 1 1				
CONDUCTIVITY (uS/cm)										
D. O. (mg/L)	26.16			<u> </u>		_				
pH (units) (units)	7.33									
ORP (mv)	-50									
TURBIDITY (NTU)	227									
		PURGE DATA Conti	nued from Above							
TIME						-				
DTW (Ft-TOC)										
FLOW RATE (mL/min)										
TEMPERATURE (°C)						1				
CONDUCTIVITY (uS/cm)										
D. O. (mg/L)										
pH (units) (units)										
ORP (mv)										
TURBIDITY (NTU)										
PURGE AND SAMPLE EQUIPT:	Dedicated QE									
SAMPLE	SAMPLE	ANALYSIS	CONTAINER	# BOTTLES	PRESERVATIV	E				
NUMBER	TIME									
MW-59-1021		NWTPH-G/BTEX,								
1 1 1 1 1 1 1 1		NWTPH-Dx								
ADDITIONAL INFORMATION:										
TOC=Top of well casing	Additional con		6	0						
wl.prot.=top of well protector Turbidity: Less than 5 NTU or +/- 10%	indi	ict Detected	Sp	purging.						
DO: +/-10%		<u> </u>	<u>'</u> /	1 / 0						
Sp Cond: +/- 3%		3				3				
Temp: +/- 3%	9.	35 product .	- 10.7.1) Water						
pH: +/- 0.1 standard units ORP: +/- 10 millivolts	t			•						

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	40206									
Description	Solinst IP (200	ft)								
Calibrated	10/12/2021 3::	58:03PM								
Manufacturer	Solinst			State Certified						
Model Number	N/A			Status Pa	iss					
Serial Number/ Lot	312227			Temp °C 16	<u>.</u>					
Number										
Location	Seattle			Humidity % 44	ļ					
Department										
Calibration Specifications										
Group	o #			Range Acc %						
Group Nar			F	Reading Acc %						
Stated Ac	cy			Plus/Minus						
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As Lft A	<u>S Dev%</u>	Pass/Fail				
Test Instruments Used D	uring the Calib	ration		<u>Serial Number /</u>	(As Of Cal Entr	<u>y Date)</u> ext Cal Date /				
Test Standard ID Descrip	tion	<u>Manufacturer</u>	<u>Model Number</u>	Lot Number	Last Cal Date/ Ex Opened Date	piration Date				

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT QC/ PACKING LIST

Description	Solinst 122 Oil/ Water Interface Meter	
Instrument ID	YRZEG	
Cable length	2,00 ^{,47}	O PINE
Cable unit of measure	Metric Imperial	www.pine-environmental.com
Date Prepared	120/07/2021	

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
(2) 9V Alkaline battery, spare	_	\checkmark		
Optional Items		/		
Carry case	4	4		
Tape guide		_		
Instructions		/		
ProCal Inspection Report		4		

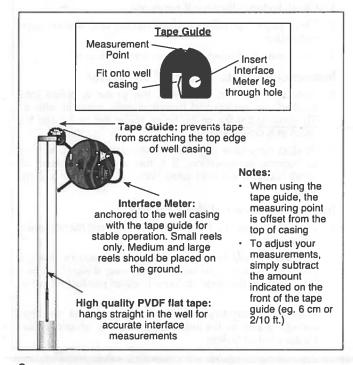
Prepared by: QC checked by: Date:

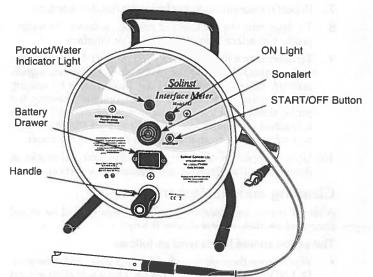
This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC.

Interface Meter Operating Instructions

Operating Principle

Solinst[®]


The Solinst Model 122 Interface Meter has a narrow 5/8" (16 mm) diameter probe and uses laser-marked PVDF flat tape. It is certified to CSA Standards, for use in hazardous locations Class 1, Div. 1, Groups C & D T3C, and is ATEX certified under directive 94/9/EC, as II 3 G Ex ic IIB T4 Gc. It has an infra-red circuit which detects the presence of a liquid. A conductivity circuit differentiates between conductive liquid (water) and non-conductive liquid (LNAPL or DNAPL product).


Equipment Check

Before beginning any measurements, check the electronics and battery condition by pushing the 'START/OFF' button. Five quick beeps with the green light flashing, indicates that the meter is functional. A flashing green light every second indicates the meter is on. It will automatically turn off after 5 minutes to preserve battery life.

Using the Tape Guide

- 1. The tape guide has been designed to: improve accuracy when reading interface measurements; to prevent the laser-marked PVDF flat tape being cut by well casing; and to allow the tape and probe to hang straight from the side of the well.
- 2. If interface measurements are being taken in a 2" dia well, then simply fit the small end of the tape guide onto the edge of the well casing.
- 3. Insert the leg of the Interface Meter into the hole on the Tape Guide (small reels only).
- Once inserted, rest the Interface Meter on the side of the well casing.

Model 122

Field Measurements

IMPORTANT

- 1. To meet safety requirements and to protect the electronics from damage, always ground the meter by attaching the grounding clip to the metal well casing or to a suitable ground rod.
- 2. Push the 'START/OFF' button. Five brief tones and green light indicate that the meter is functional and the flashing green light indicates that the meter is on. The meter automatically turns off after 5 minutes. Press the 'START/OFF' button as necessary during operation to turn the meter back on.
- 3. Place the slotted part of the tape guide onto the edge of the well casing. Lay the Interface Meter laser-marked PVDF flat tape into the groove on the top of the tape guide. Measurements are read at the V-notch on the tape guide.

Note: When using the tape guide, remember to subtract the compensation factor stamped onto the side of the guide from each measurement.

- 4. A steady tone and red light indicates a non-conductive liquid (e.g. product). An intermittent tone and red light indicates a conductive liquid (e.g. water).
- 5. For floating product (LNAPL), take the air/product interface measurement on the way into the liquid, and the water/product interface on the way up. When passing through product into water, some product may adhere to the probe sensors due to surface tension. Therefore, when water is detected below product, the probe should be raised and lowered rapidly in a short vertical motion to remove any product that may have been carried down with the probe.

Continued overleaf...

High Quality Groundwater and Surface Water Monitoring Instrumentation

[®]Solinst is a registered trademark of Solinst Canada Ltd.

- 6. The water/product interface should then be measured as the probe is raised very slowly back up. Once the interface is detected the probe can be raised and lowered in small increments to precisely determine the interface.
- 7. Repeat measurements to confirm water/product interface.
- To determine the thickness of product, subtract the water/ product interface from the product/air interface.
- 9. To determine if there is any sinking product (DNAPL) in the well, continue lowering the probe slowly. If steady signals activate, determine the top of the sinking layer by reading directly from the PVDF flat tape. Continue lowering the probe slowly until the tape slackens when the well bottom is reached. Read the level directly from the PVDF flat tape and subtract one from the other to determine thickness.
- 10. Upon completion of readings clean the tape and probe; as described in the Cleaning and Maintenance section.

Cleaning and Maintenance

After each use, the laser-marked PVDF tape should be wiped clean and carefully rewound onto the reel.

The probe should be cleaned as follows:

 Wash probe thoroughly with a non-abrasive mild detergent.
 DO NOT USE ANY SOLVENTS. Use a soft cloth around the pins on the end of the probe to remove all product. Use the brush provided to remove all product from inner part of the probe.

USE LUKE-WARM, NOT HOT WATER. DAMAGE TO THE PROBE MAY RESULT.

- Rinse probe thoroughly with distilled water, wipe dry.
- Return the probe to the holder.

Troubleshooting

When instrument is turned 'ON' there is a solid red light (no tone)

1. Indicates a connection issue. Contact Solinst for further troubleshooting options.

Instrument will not turn 'ON' (no starting tone)

- 1. Replace the battery
- 2. Check the polarity of the battery in the drawer: make sure the + and on the battery and the drawer match. The probe may be harmed by a reversed battery.
- 3. ON/OFF button could be faulty. Contact Solinst.

When instrument is turned 'ON', it immediately sounds product tone or intermittent water tone

- 1. Probe sensor may be dirty. Clean according to Cleaning and Maintenance instructions.
- 2. Water may have leaked into the probe. Carefully, remove the probe, keeping the wires connected. Dry out the probe, wipe and inspect the o-ring, replace if necessary and/or lubricate with silicone. To avoid any nicks, make sure the wires are tucked back into the probe body when replacing the probe. See Probe Replacement Instructions.
- 3. Tape may be damaged. Clean the tape and look for any cuts or nicks. If necessary, replace the damaged tape. To maintain the 122 Intrinsic Safety rating, do not splice or repair a damaged tape. Contact Solinst for assistance.

Other suitable cleaning method:

Steam clean the PVDF flat tape only.

Battery Replacement

Push the battery drawer in and up and then release. The battery drawer should eject slightly, allowing it to be pulled out. Replace the 9V alkaline battery.

Other General Tips:

- 1. The probe should be cleaned after each use.
- 2. Always use the grounding cable.
- 3. Do not drop probe: damage to probe tip may result.
- 4. <u>If battery is weak</u>, the start tone will not sound, and flashing "green" light will be off. Replace the 9V alkaline battery.
- 5. Where possible, use a Solinst tape guide to protect the tape from scraping on well casing.
- 6. <u>Before storage</u>, make sure the meter is turned off. If the Interface Meter is going to be stored for longer than two months, the 9V alkaline battery should be removed to avoid potential leakage.
- 7. The meter can be checked by placing the probe in distilled (non-conductive) water or pure phase product, for example lamp oil (avoid bright sunlight during testing and resting the probe on the bottom of the container). A steady tone and light should be observed.
- 8. To maintain Intrinsic Safety Certifications, do not splice the tape.

Note: In rare circumstances it is possible that the 122 might sound when directed toward sunlight, and not in a liquid. This is normal and does not affect proper operation in a monitoring well.

4. The reel or probe circuitry could be damaged. Contact Solinst.

Instrument does not detect liquid

- 1. Check battery. Replace if necessary.
- 2. Clean probe tip following the Cleaning and Maintenance instructions.
- 3. Probe may be damaged. Please contact Solinst.

Instrument detects "Product" as "Water"

- 1. Note that this can happen if the probe is pulled into product too quickly and therefore pulls water in with it. Thoroughly dry the probe tip or shake the probe and try again at a slower speed.
- 2. Product may have degraded or is now disturbed enough to become an emulsion. If it has a detectable level of conductivity, it will read water. Wait for it to settle and try again.

Instrument does not detect water

- 1. Clean the probe tip. Follow the Cleaning and Maintenance instructions.
- 2. The water could be pure and non-conductive or product may be coating the probe, in which case, shake the probe for a while in the water column to clean product from the probe.
- 3. The probe circuitry could be damaged due to high voltage (static) in the well. Always use a ground cable. Please contact Solinst.

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc. Instrument ID 25341 Description Horiba U-52 Calibrated 10/12/2021 1:27:09PM Manufacturer Horiba **State Certified** Status Pass Model Number U-5000 Temp °C 17 Serial Number/Lot S3DY69D0 Number Humidity % 43 Location Seattle Department **Calibration Specifications** Range Acc % 0.0000 Group # 1 Group Name PH Reading Acc % 3.0000 Stated Accy Pct of Reading Plus/Minus 0.00 In Type **Out Type** Fnd As Lft As Dev% **Pass/Fail** Nom In Val / In Val Out Val Pass 7.19 7.00 0.00% 7.00 / 7.00 PH 7.00 PH 4.00 0.00% Pass 4.00 / 4.00 PH 4.00 PH 3.93 Range Acc % 0.0000 Group # 2 Group Name Turbidity Reading Acc % 3.0000 Plus/Minus 0.00 Stated Accy Pct of Reading Pass/Fail In Type Fnd As Lft As **Out Type** Dev% Nom In Val / In Val Out Val Pass 0.00 0.00 0.00% 0.00 / 0.00 NTU 0.00 NTU 0.00% Pass 736.00 800.00 NTU 800.00 NTU 800.00 / 800.00 Range Acc % 0.0000 Group # 3 Group Name Conductivity Reading Acc % 3.0000 Plus/Minus 0.000 Stated Accy Pct of Reading Pass/Fail Nom In Val / In Val In Type **Out Val Out Type** Fnd As Lft As Dev% Pass 0.716 0.718 0.00% 0.718/0.718 ms/cm 0.718 ms/cm 0.00% Pass ms/cm 4.860 5.000 5.000 / 5.000 ms/cm 5.000 0.00% Pass 79.700 80.000 80.000 / 80.000 ms/cm 80.000 ms/cm 0.000 0.000 0.00% Pass 0.000 / 0.000 ms/cm 0.000 ms/cm Range Acc % 0.0000 Group # 4 Group Name Redox (ORP) Reading Acc % 3.0000 Plus/Minus 0.00 Stated Accy Pct of Reading Lft As Dev% Pass/Fail **Out Type** Fnd As Nom In Val / In Val In Type **Out Val** 0.00% Pass 246.00 240.00 240.00 / 240.00 240.00 mv mv

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Des	ment ID 25341 cription Horiba U-52 librated 10/12/2021 1:2	27·09PM					
	Group # 5			Range Acc %	0.0000	in the second	1
Gr	oup Name Temperature	DO Span		ading Acc %			
	tated Accy Pct of Readi			Plus/Minus			
Nom In Val / In V		Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
18.00 / 18.00	degrees C	9.47	mg/L	7.42	9.47	0.00%	Pass
Toet Instruments	Used During the Calib	ration			(As	Of Cal Entr	v Data)
rest mstruments	Used During the Canb	ation		Serial Numb			xt Cal Date
Test Standard ID	Description	Manufacturer	<u>Model Number</u>	Lot Number	Las	t Cal Date/ Ex	
SEA AUTOCAL 21150206	SEA AUTOCAL AMCO Clear	GFS	8483	21150206	115 - Q-		31/2022
SEA COND 0.718 - 0GJ991	Conductivity solution 0.718 mS/cm	AquaPhoenix Scientific	conductivity 0.71 mS/cm	8 0GJ991		10	/30/2021
SEA COND 5 -)GJ993	Conductivity solution 5.0 mS/cm	AquaPhoenix Scientific	conductivity 5.0 mS/cm	0GJ993		10	/30/2021
SEA COND 80 -)GJ1012	Conductivity solution 80.0 mS/cm	AquaPhoenix Scientific	conductivity 80.0 mS/cm	0GJ1012		10	/30/2021
SEA NTU 800 U52 0GJ184	SEA 800 NTU for Horiba U52 and YSI	AquaPhoenix Scientific	33039	0GJ184		10	/31/2021
SEA ORP 240 IGC715	only 240 mV ORP Solution	AquaPhoenix Scientific	32001	1GC715		12	/31/2021
SEA PH4 IGC758	pH 4 Buffer Solution	AquaPhoenix Scientific	32017	1GC758		3/3	80/2023
SEA PH7 IGD151	pH 7 Buffer Solution	AquaPhoenix Scientific	32025	1GD151		4/3	30/2023

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

 Instrument ID
 25341

 Description
 Horiba U-52

 Calibrated
 10/12/2021
 1:27:09PM

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	29744			
Description	Horiba U-52 Display			
Calibrated	10/12/2021 1:34:29PM			
Manufacturer	Horiba		State Certified	
Model Number	U-5000		Status	Pass
Serial Number/ Lot	D6B3MVYP		Temp °C	17
Number				
Location	Seattle		Humidity %	43
Department				
	Calibratio	on Specifications	;	
Group	# 1			
Group Nan	ne INSTRUMENT TEST			
Test Performed: Yes	As Found Result: Pass		As Left Result: F	ass
Test Instruments Used Dr Test Standard ID Descrip		<u>Model Number</u>	<u>Serial Number</u> Lot Number	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT QC/ PACKING LIST

Description	Horiba U-52/ U-53
Sonde ID#	25341
Display ID#	29744
Date Calibrated	10-12-21

OPINE www.pine-environmental.com

Standard Items Prepared QC check Received by customer **Returned to Pine** Horiba U-52/ 53 w/ ____ cable and display w/ case Manual Quick reference card (4) C Alkaline batteries Probe Guard Calibration cup (clear) Sample cup (Black) Flow cell . Cell body Center window . Base and black bottom . O-ring cover . Threaded ring . (2) black O-rings . (1) red O-ring • 2 of each black barb sizes (1/4, 3/8, and 1/2) . D.O. probe reconditioning kit 330 internal pH reference solution (1) 250 ml Autocal solution ProCal calibration sheet **Optional Items** U-50 Data Collection Software USB Cable

Prepared by: QC checked by: Date:

0-12 -21

This backing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC

and the second				GROU	DWAT		LING LO	DG					
PROJECT NAME T-3 PROJECT NO.	0		-		O. M.W	1-42			_		A	ECON	Λ
DATE 10/14/21		1.1	- 2		ER Own		_	-	-				
							a		-				
	Marine Ma	CLL INFOR						Comme utal		, E	20'50	- R.Ø A	
DEPTH TO WATER DEPTH OF WELL		10.00	(ft) TOC (ft)	<u></u>	-		-		carber 1			/ _	
WELL DIAMETER	2	60	(inches)				-		Call Non 1				
FEET OF WATER	9.9	2					1	Insti	mment .	(1) 419	155 5	alin6t :	IP (2
WELL CONDITION	Far	0/2 601	13					Heriba	# 29	762	Instru	unent I	0 484
PUMP ADJUSTMENT			(ft)	NOTE: On	y on Shallo	w Wells					~	Horiba	i U-52
					PUF	GE DATA							
START PURGE TIME:		1707		And Constraints of Second									0*12**10.0550.0*
TIME		1313	1318	1723	728	731	1738						
DTW	(Ft-TOC)	10.98	10.79	ful	10	NN	11.7						
FLOW RATE	(mL/min)	175	170	9.11	11 11	u. 7	44						
TEMPERATURE	("C)	19.91	19.75	19.69	11-62	19.50	19.51	-		$\left \right\rangle$	1		
CONDUCTIVITY	(uS/cm)	198	1.93	1.92	1.91	1.81	1.87					1	1
		0.81	0.47	0.40	0.33	0.34					+		
D. O.	(mg/L)	-150	-158	1 4 4		-167	- 168	-			+		<u> </u>
pH (units)	(units)			- 162	-166		7.55					+	<u> </u>
ORP	(mv)	7.55	7.56	7.55	7.54	7.55					+		-
TURBIDITY	(NTU)	40.5	336	\$.39	¢.34	0ntinued 1	¢.40						
TINAE		\sim				Ginibucu		A 201300 81919	1				
							1	 	+	+	+		
	(Ft-TOC)	-		<u> </u>	~			2		+	+		1
FLOW RATE	(mL/min)	+				-	114			<u> </u>			
TEMPERATURE	(°C)	-		-	-		Uttor						
CONDUCTIVITY	(uS/cm)					ļ		10.	4-21				<u> </u>
D. O.	(mg/L)		ļ				<u></u>		-	-			
pH (units)	(units)							<u> </u>					
ORP	(mv)												
TURBIDITY	(NTU)												
PURGE AND SAMPLE EQUIPT		Dedicat	ed QED	pump									
SAMPLE NUMBER			APLE ME	ANA	l ys is	CONT	AINER	# BQ	TTLES		PRESE	RVATIVE	
	21	17		NWTPH	-G/BTEX.	11	-	2					
nw-42-1	1021				PH-Dx	VOA		3				Ŷ.,	
ADDITIONAL INFORMATION OC=Top of well casing d.prot.=top of well protector Turbidity: Less than 5 NTU or +/- DO: +/-10%		Addition	al comm	ents:									
Sp Cond: +/- 3% Temp: +/- 3% DH: +/- 0.1 standard units DRP: +/- 10 millivolts													1

				GROUI	NDWATE	ER SAMP	LING LC	G	1				
PROJECT NAME	30			WELL N SAMPLE		<u>v-11A</u>					A	ECON	Λ
DATE 10/12/21				WEATH	ER Over	reast			_				
		ELL INFOR	MATION					Comme	nts				
DEPTH TO WATER	9	1.70	(ft) TOC						fake la	2			
DEPTH OF WELL		.CI	(ft)]						
WELL DIAMETER	1.00		(inches)			- N - 7	4	Trachy	(m 1	T 0	MACE	(Junk)	TO /20
FEET OF WATER	Pere	6	_				-		<i>ument</i>	<u>TD</u>	41955 48409	Solinst Horit	
PUMP ADJUSTMENT	Pere	1	(ft)	NOTE: On	y on Shallo	w Weils	1		IMMONT		10.01		A U VE
					PUR	GE DATA							
START PURGE TIME:		1804					1=1=1+1=1+1+1=1+1+1+1+1+1+1+1+1+1+1+1+1						
TIME	3	1809	1814	1819	1824	1827	1830	1833	1836				
DTW	(Ft-TOC)	0.03	10.10	10.15	in te	11.17	1.4	1.4	1. 11		\checkmark		
FLOW RATE	(mL/min)	185	114	10.15	170	1.11	1,11	1111	1. 11	1	\uparrow		
		21.92	22.10	22.07	21.70	21.65	21.63	21.33	21.20	1			
	(°C)	1.27	1.27	1.27	1.28	1.28	1.28	1.28	1.28			\mathbb{N}	
	(uS/cm)		1.45	1.07	1.34	1.19	1.08	1.02	0.17				
D. O.	(mg/L)	1.64	-	1							_		
pH (units)	(units)	7.33	7.35	7.37	7.38	7.39	7.39	7.41	7.42		-	-	\wedge
ORP	(mv)	31	22	19	20	21	23	24	27				
TURBIDITY	(NTU)	47.5	45.3	43.2 PURGE	IG 4	ontinued f	7.7	7.9	7.3				
TIME													
DTW	(Ft-TOC)												
FLOW RATE	(mL/min)											1	
TEMPERATURE	(°C)					with				1			
					-	0	Utto						
	(uS/cm)							E Ic	14				
D. O.	(mg/L)								14 21				
pH (units)	(units)										-		
ORP	(mv)										\rightarrow	-	
TURBIDITY	(NTU)												
PURGE AND SAMPLE EQUIP	Г:	Dedicat	ed QED	pump		1.1							
SAMPLE NUMBER			/IPLE Me	ÁNA	L YSIS	CONT	AINER	# BO	ITLES		PRESE	RVATIVE	
Rw-1(A - 10	21	183	9		-G/BTEX, PH-Dx								
	IN:	<u>ا</u>	al comm	L	<u> </u>			L		1			
TOC=Top of well casing wl.prot.=top of well protector		Addition	al comm	51115:									
Turbidity: Less than 5 NTU or +/	- 10%												
DO: +/-10%													
Sp Cond: +/- 3% Temp: +/- 3%												e	100
pH: +/- 0.1 standard units				· · · ·				2 I -					
ORP: +/- 10 millivolts													

				GROU	NDWAT	ER SAMF	LING LC)G		182 3	05-02		
TROOLOT RAME	30			WELL N		W-36,	4		_		A	ECON	1
PROJECT NO.			_	SAMPLE	ED BY				_				
DATE 10/14/21			_	WEATH	ER				-				
		ELL INFOR	MATION					Commer	nts				
DEPTH TO WATER	11.05		(ft) TOC				_	intala	2 12'				
DEPTH OF WELL	20		(ft)										
WELL DIAMETER	2	-	(inches)					515644		11168			0 (000 #)
FEET OF WATER	9.15	-					-		unant Il			olinse L	P (200 Fr)
WELL CONDITION PUMP ADJUSTMENT			(ft)	NOTE: On	ly on Shallo	w Wells	1	24 Stru	ment It	484	04	oriba	0-52
					PUR	GE DATA	_						
START PURGE TIME:		1903											
TIME		1910	1113	1 9.16	1918	1921	1924	1927	1930	~			
DTW	(Ft-TOC)												
FLOW RATE	(mL/min)				1				Q				
TEMPERATURE	("C)	19.33	17.45	19-44	19.38	19.25	19.22	17.24	17.15	-	\sim		
CONDUCTIVITY	(uS/cm)	2.63	2.63	2.63	2.63		2 (2	2.61	2.61				
D. O	(mg/L)	0.57	0.41	0.48	0.50		0.52	0.53	0.54				
pH (units)	(units)	7.70	7.70	7.71	7.72	7,73	7.73	7.73	7.73				
ORP	(mv)	-250	-262	-263	-287	-304	-308	-314	-318				
TURBIDITY	(NTU)	25.5	2.4.1	17.0	17.4	15.6	152	13.9	11.8			<u> </u>	
	((110)					ontinued f		e					
TIME													
DTW	(Ft-TOC)												
FLOW RATE	(mL/min)						~						
TEMPERATURE	(°C)						06	Haz					
CONDUCTIVITY	(uS/cm)							- C	10-14	-2/			
D. O.	(mg/L)												
pH (units)	(units)												
ORP	(mv)												
TURBIDITY	(NTU)												
PURGE AND SAMPLE EQUIPT:		Dedicate	ed QED	pump									
SAMPLE NUMBER			(PLE ME	ANA	LYSIS	CONT	AINER	# BØ1	TLES		PRESE	RVATIVE	
MW-36A-	1021	-13		1	-G/BTEX, PH-Dx								
ADDITIONAL INFORMATION TOC=Top of well casing wi.prot.=top of well protector		Addition	al comme	nts:			-						
Turbidity: Less than 5 NTU or +/- DO: +/-10%	10%									0			-
Sp Cond: +/- 3%													
Temp: +/- 3% pH: +/- 0.1 standard units ORP: +/- 10 millivolts					T								
in t													

A.

100	it was a set			GROU	NDWATE	ER SAMP	LING LO	DG -					
PROJECT NAME T-3	0			WELL N	0. //	w- 89	and the second second				A	CON	
PROJECT NO.			-		DBY		- C	1					
DATE 10/14/21			_		ER Over								
	W	ELL INFOR	MATION					Commen	ts				
DEPTH TO WATER	9.87		(ft) TOC]						1.1
DEPTH OF WELL	201		(ft)										
WELL DIAMETER	2		(inches)				-	Talas		0 15	1.005001	HACE	11.
	10.13	11.						Instru	ment_	D. 4	8409	Ho1	
WELL CONDITION PUMP ADJUSTMENT	0/2 60	145	(ft)	NOTE: On	ly on Shallo	w Wells		INSTEAM		V	8701	IOTI	IPA (
	1810	T			PUR	GE DATA							
START PURGE TIME:	0010	- Dim	1	0 875	100		1.5.0.	1		[1		/
TIME		0815	0820		0720	0833	0836	0839				\square	
DTW	(Ft-TOC)	10.10	10.05	10.01	10.01	10.01	-						
FLOW RATE	(mL/min)	125	125	125	125	125					\backslash		
TEMPERATURE	(°C)	20.11	20.99	20.92	20.97	20.95	20.94	20,94					
CONDUCTIVITY	(#6/cm)	4.60	4.54	4.Se	4.51	4.51	4.55	4.50					
D. O.	(mg/L)	4.01	3.75	3.69	3.10	3.53	3.59	3.40					
pH (units)	(units)	4,28	4.30	4.32	4.34	4.35	4.34	4.37		1			
ORP	(mv)	417	427	433	444	450	456	460	_/	-10	14/2	\sim	$\overline{}$
TURBIDITY	(NTU)	137	127	105	84.2	68.1	39.0	37.1	\leftarrow		+++-		
					DATA C	ontinued f							
TIME													
WTO	(Ft-TOC)												
LOW RATE	(mL/min)			/									
EMPERATURE	(°C)					/							
CONDUCTIVITY	(uS/cm)												
0. 0.	(mg/L)						2			/			
oH (units)	(units)	t		\sim	ſ			-					
ORP		1											
	(mv)	1											-
	(NTU)	Dediact		nume	1						1		
PURGE AND SAMPLE EQUIP	1	Dedicat	ed QED	pump									
SAMPLE NUMBER			VIPLE ME	ÁNA	LY\$IS	CONT	AINER	# B01	TLES		PRESE	RVATIVE	
					*************		nber	2			UN		-1
M11220 1001		02	~		-G/BTEX,	1 - 10	NV01				HC/		
MW-89-102	1	083	7	NWT	PH-Dx	40 m	. VOA	3			HCI		
	DN:	A					,	<u>`</u>					
OC=Top of well casing d.prot.=top of well protector		Addition	al comme	ents: +	race	NyJ 10 Co	rboi a	10 TO6	OW IN	ertace	probe		
urbidity: Less than 5 NTU or +/	- 10%												
00: +/-10%													
Sp Cond: +/- 3%													
Femp: +/- 3% oH: +/- 0.1 standard units													

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Des	ment ID 48409 cription Horiba U-52 librated 10/12/2021 1:2	21:30PM	14	921-1 936 - 121- 1410		ÖL matandes notice (seet) Betendlic's	8.
	Group # 5 roup Name Temperature tated Accy Pct of Readi			Range Acc % Reading Acc % Plus/Minus			
<u>Nom In Val / In V</u>	The second se	Out Val		Fnd As	Lft As	<u>Dev%</u>	Pass/Fail
16.00 / 16.00	degrees C	9.87	mg/L	10.71	9.87	0.00%	Pass
Test Instruments	Used During the Calib	ration			<u>(A</u>	s Of Cal Entr	y Date)
<u>Test Standard ID</u>	Description	Manufacturer	<u>Model Number</u>	<u>Serial Numl</u> Lot Number	r La	<u>Ne</u> st Cal Date/ Ex pened Date	<u>xt Cal Date /</u> piration Date
SEA AUTOCAL 21150206	SEA AUTOCAL AMCO Clear	GFS	8483	21150206	1154 (P		1/2022
SEA COND 0.718 - 0GJ991	Conductivity solution 0.718 mS/cm	AquaPhoenix Scientific	conductivity 0.71 mS/cm	8 0GJ991		10/	30/2021
SEA COND 5 - 0GJ993	Conductivity solution 5.0 mS/cm	AquaPhoenix Scientific	conductivity 5.0 mS/cm	0GJ993		10/	30/2021
SEA COND 80 - 0GJ1012	Conductivity solution 80.0 mS/cm	AquaPhoenix Scientific	conductivity 80.0 mS/cm	0GJ1012		10/	30/2021
SEA NTU 800 U52 0GJ184	SEA 800 NTU for Horiba U52 and YSI only	AquaPhoenix Scientific	33039	0GJ184		10/	31/2021
SEA ORP 240 IGC715	240 mV ORP Solution	AquaPhoenix Scientific	32001	1GC715		12/	31/2021
SEA PH4 1GC758	pH 4 Buffer Solution	AquaPhoenix Scientific	32017	1GC758			0/2023
SEA PH7 1GD151	pH 7 Buffer Solution	AquaPhoenix Scientific	32025	1GD151	main	4/3	0/2023
Notes about this o	calibration	1000 p 100 p	stradity statistic	org a u reșt		- 000 1000 0	5-040-5 5-040-5

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

	D 48409 Dn Horiba U-5	2					
	ed 10/12/2021						
Manufactur	er Horiba	Rene-Ace		State Certifie	d	5. F T	
Model Number	er U-5000				is Pass		
Serial Number/ L		N		Temp °	C 17		
Numb				Humidity %	1 12		
Departme	on Seattle nt			numuny	0 45		
		Calib	ration Specific	ations			
	up# 1			Range Acc %			
	lame PH			Reading Acc %			
Stated A	Accy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	PH	7.00	РН	5.86	7.00	0.00%	Pass
4.00 / 4.00	РН	4.00	PH	3.98	4.00	0.00%	Pass
Gro	up# 2			Range Acc %	0.0000		
Group N	lame Turbidity	yos com consegu		Reading Acc %			
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
0.00 / 0.00	NTU	0.00	NTU	1.20	0.00	0.00%	Pass
	NTU	800.00	NTU	656.00	800.00	0.00%	Pass
800.00 / 800.00							
	oup# 3			Range Acc %	0.0000		615.03
Gro	oup # 3 ame Conduct	ivity	21025	Range Acc % Reading Acc %		(2014)	ALC: N
Gro Group N		•	11057		3.0000	(A) III	
Gro Group N	lame Conduct	•	<u>Out Type</u>	Reading Acc %	3.0000	Dev%	<u>Pass/Fai</u>
Gro Group N Stated A	lame Conduct Accy Pct of Re	eading		Reading Acc % Plus/Minus	3.0000 0.000	<u>Dev%</u> 0.00%	<u>Pass/Fai</u> Pass
Gro Group N Stated A <u>Nom In Val / In Val</u>	lame Conduct Accy Pct of Re <u>In Type</u>	eading Out Val	<u>Out Type</u>	Reading Acc % Plus/Minus <u>Fnd As</u> 0.701 4.960	3.0000 0.000 <u>Lft As</u> 0.718 5.000	0.00% 0.00%	L Contra t
Gro Group N Stated 2 <u>Nom In Val / In Val</u> 0.718 / 0.718	Name Conduct Accy Pct of Ro <u>In Type</u> ms/cm	eading <u>Out Val</u> 0.718	<u>Out Түре</u> ms/cm	Reading Acc % Plus/Minus <u>Fnd As</u> 0.701	3.0000 0.000 <u>Lft As</u> 0.718 5.000 80.000	0.00% 0.00% 0.00%	Pass Pass Pass
Gro Group N Stated 2 <u>Nom In Val / In Val</u> 0.718 / 0.718 5.000 / 5.000 80.000 / 80.000	Accy Pct of Ro <u>In Type</u> ms/cm ms/cm	eading <u>Out Val</u> 0.718 5.000	<u>Out Type</u> ms/cm ms/cm	Reading Acc % Plus/Minus <u>Fnd As</u> 0.701 4.960	3.0000 0.000 <u>Lft As</u> 0.718 5.000	0.00% 0.00%	Pass Pass
Gro Group N Stated 2 Nom In Val / In Val 0.718 / 0.718 5.000 / 5.000 80.000 / 80.000 0.000 / 0.000	Accy Pct of Re <u>In Type</u> ms/cm ms/cm ms/cm	eading <u>Out Val</u> 0.718 5.000 80.000	<u>Out Type</u> ms/cm ms/cm ms/cm	Reading Acc % Plus/Minus <u>Fnd As</u> 0.701 4.960 79.600	3.0000 0.000 <u>Lft As</u> 0.718 5.000 80.000 0.000	0.00% 0.00% 0.00%	Pass Pass
Gro Group N Stated 2 <u>Nom In Val / In Val</u> 0.718 / 0.718 5.000 / 5.000 80.000 / 80.000 0.000 / 0.000 Gro	Accy Pct of Ro <u>In Type</u> ms/cm ms/cm ms/cm ms/cm ms/cm	eading <u>Out Val</u> 0.718 5.000 80.000 0.000	<u>Out Type</u> ms/cm ms/cm ms/cm	Reading Acc % Plus/Minus <u>Fnd As</u> 0.701 4.960 79.600 0.000	3.0000 0.000 Lft As 0.718 5.000 80.000 0.000 0.0000	0.00% 0.00% 0.00%	Pass Pass Pass
Gro Group N Stated 2 <u>Nom In Val / In Val</u> 0.718 / 0.718 5.000 / 5.000 80.000 / 80.000 0.000 / 0.000 Gro Group N	Accy Pct of Re <u>In Type</u> ms/cm ms/cm ms/cm ms/cm ms/cm ms/cm	eading <u>Out Val</u> 0.718 5.000 80.000 0.000 DRP)	<u>Out Type</u> ms/cm ms/cm ms/cm	Reading Acc % Plus/Minus Fnd As 0.701 4.960 79.600 0.000 Range Acc %	3.0000 0.000 Lft As 0.718 5.000 80.000 0.000 0.0000 3.0000	0.00% 0.00% 0.00%	Pass Pass Pass
Gro Group N Stated 2 <u>Nom In Val / In Val</u> 0.718 / 0.718 5.000 / 5.000 80.000 / 80.000 0.000 / 0.000 Gro Group N	Accy Pct of Re <u>In Type</u> ms/cm ms/cm ms/cm ms/cm oup # 4 Hame Redox (Contents)	eading <u>Out Val</u> 0.718 5.000 80.000 0.000 DRP)	<u>Out Type</u> ms/cm ms/cm ms/cm	Reading Acc % Plus/Minus Fnd As 0.701 4.960 79.600 0.000 Range Acc % Reading Acc %	3.0000 0.000 Lft As 0.718 5.000 80.000 0.000 0.0000 3.0000	0.00% 0.00% 0.00%	Pass Pass Pass

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

 Instrument ID
 48409

 Description
 Horiba U-52

 Calibrated
 10/12/2021
 1:21:30PM

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	29762		
Description	Horiba U-50 Display		
Calibrated	10/12/2021 1:33:55PM		
Manufacturer	Horiba	State Certified	
Model Number	U-5000	Status	Pass
Serial Number/ Lot	4H00F29T	Temp °C	17
Number			
Location	Seattle	Humidity %	43
Department			
	Calibrat	ion Specifications	
Group) # 1		
Group Nar	ne Functional Test		
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
<u>Test Instruments Used D</u> <u>Test Standard ID</u> <u>Descrip</u>		<u>Serial Number</u> Model Number Lot Number	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date <u>Opened Date</u>

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jose Arroyo

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT QC/ PACKING LIST

Description	Horiba U-52/ U-53
Sonde ID#	48409
Display ID#	29762
Date Calibrated	10-12-21

OPINE www.pine-environmental.com

Standard Items Prepared QC check **Received by customer Returned to Pine** Horiba U-52/ 53 w/ _____ cable and display w/ case Manual Quick reference card (4) C Alkaline batteries Probe Guard Calibration cup (clear) Sample cup (Black) Flow cell Cell body . Center window . Base and black bottom O-ring cover Threaded ring . (2) black O-rings . (1) red O-ring . 2 of each black barb sizes (1/4, 3/8, and 1/2) . D.O. probe reconditioning kit 330 internal pH reference solution (1) 250 ml Autocal solution ProCal calibration sheet **Optional Items** U-50 Data Collection Software USB Cable

Prepared by: QC checked by: Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID		()					
	Solinst IP (200 10/12/2021 12						
Manufacturer Model Number	Solinst			State Certified Status	Pass		
Serial Number/ Lot Number	311597			Temp °C			
Location Department	Seattle			Humidity %	44		
Group		Calibra	tion Specificatior	Range Acc %			
Group Nan Stated Ac			I	Reading Acc % Plus/Minus			
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As L	ft As	Dev%	Pass/Fail
<u>Test Instruments Used D</u> <u>Test Standard ID</u> <u>Descrip</u>		ration Manufacturer	<u>Model Number</u>	<u>Serial Number</u> Lot Number	·/	Date/ Ex	y Date) ext Cal Date / spiration Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Stethan Holmes

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT QC/ PACKING LIST

Description	Solinst 122 Oil/ Water Inter	face Meter		
Instrument ID	41955			
Cable length	2,000-87		OPI	NE
Cable unit of measure	C Metric	Imperial	www.pine-environ	
Date Prepared	1200+2021			
standard Items	Prepared	QC check	Received by customer	Returned to Pine
2) 9V Alkaline battery, spare	\frown	\neq		

Optional Items

Carry case Tape guide

. .

Instructions

ProCal Inspection Report

Prepared by: QC checked by: Date:

120/170

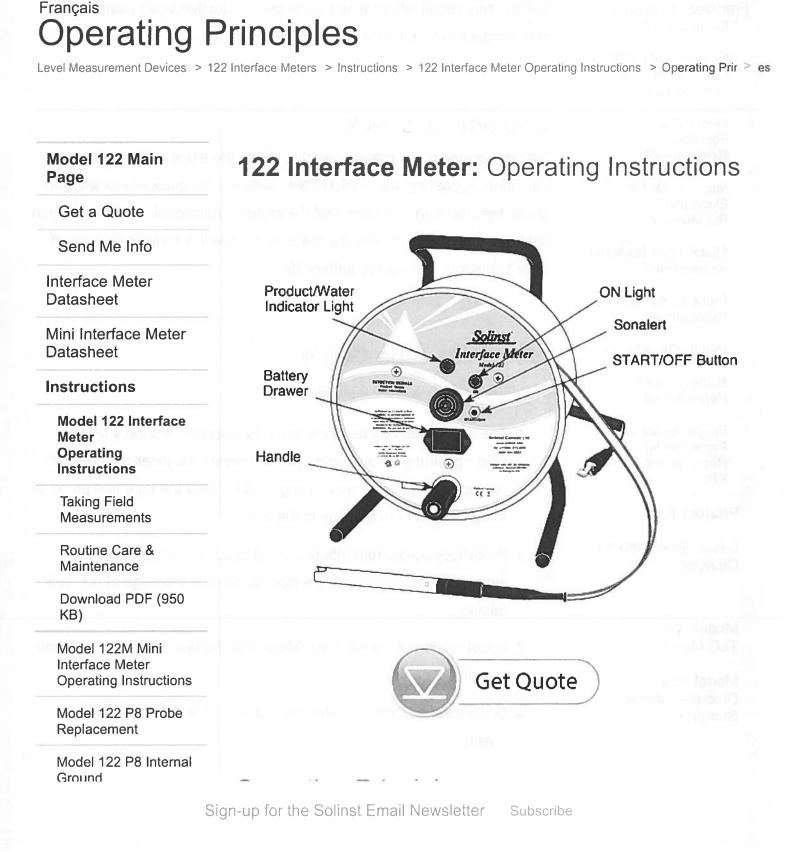
This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services LLC.

Solinst

Contact

Downloads

Papers


Events

News

Blog

Español

Products

Solinst

Professing PVDF Laser Replacement Tape to Reel

Français 122 Backplate Replacement

> Model 122M PVDF Laser Replacement Cable to Reel

Model 122M P8 Faceplate Replacement

Model 122M P8 Electronics Replacement

Model 122M Backplate Replacement

Probe Crimp Terminal Replacement

Handle Replacement

Battery Drawer Replacement

Frame, Brake, and Probe Holder Replacement (PDF 372 KB)

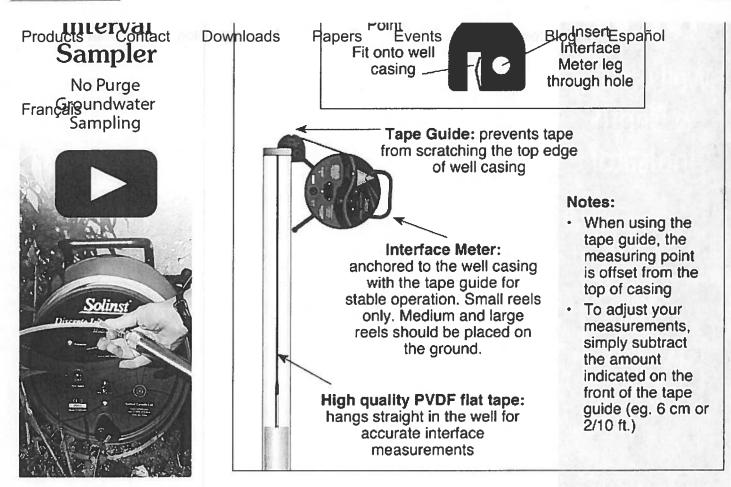
Product Tour

Level Measurement Devices

Model 107 TLC Meter

Model 425 Discrete Interval Sampler CSA Standards, for use in hazardous locations Class 1 Div. 1 Groups C Blog 1 Events News Blog 1 Español & D T3C, and is ATEX certified under directive 94/9/EC, as II 3 G Ex ic IIB T4 Gc. It has an infra-red circuit which detects the presence of a liquid. A conductivity circuit differentiates between conductive liquid (water) and non-conductive liquid (LNAPL or DNAPL product).

Equipment Check


Before beginning any measurements, check the electronics and battery condition by pushing the 'START/OFF' button. Five quick beeps with the green light flashing, indicates that the meter is functional. A flashing green light every second indicates the meter is on. It will automatically turn off after 5 minutes to preserve battery life.

Using the Tape Guide

The tape guide has been designed to:

- The tape guide has been designed to: improve accuracy when reading interface measurements; to prevent the laser-marked PVDF flat tape being cut by well casing; and to allow the tape and probe to hang straight from the side of the well.
- If interface measurements are being taken in a 2" dia well then simply fit the small end of the tape guide onto the edge of the well casing.
- 3. Insert the leg of the Interface Meter into the hole on the Tape Guide (small reels only).
- 4. Once inserted, rest the Interface Meter on the side of the well casing.

Solinst

<u>Appendix G</u> Groundwater Sampling Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 12, 2021

Rusty Jones, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Jones:

Included are the results from the testing of material submitted on April 5, 2021 from the Port of Seattle Terminal 30, F&BI 104069 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0412R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 5, 2021 by Friedman & Bruya, Inc. from the Crete Consulting Port of Seattle Terminal 30, F&BI 104069 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
104069 -01	RW-11A-0421
104069 -02	MW-89-0421
104069 -03	DUP-0421

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/12/21 Date Received: 04/05/21 Project: Port of Seattle Terminal 30, F&BI 104069 Date Extracted: 04/07/21 Date Analyzed: 04/07/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
RW-11A-0421 104069-01	<1	<1	<1	<3	<100	74
MW-89-0421 104069-02	<1	<1	<1	<3	<100	77
DUP-0421 104069-03	<1	<1	<1	<3	<100	77
Method Blank 01-604 MB	<1	<1	<1	<3	<100	74

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/12/21 Date Received: 04/05/21 Project: Port of Seattle Terminal 30, F&BI 104069 Date Extracted: 04/06/21 Date Analyzed: 04/08/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 41-152)
RW-11A-0421 104069-01	<50	<250	81
MW-89-0421 104069-02	93	<250	83
DUP-0421 104069-03	88	<250	83
Method Blank 01-785 MB2	<50	<250	89

ENVIRONMENTAL CHEMISTS

Date of Report: 04/12/21 Date Received: 04/05/21 Project: Port of Seattle Terminal 30, F&BI 104069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 104044-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria
Benzene	ug/L (ppb)	50	<1	96	96	50-150
Toluene	ug/L (ppb)	50	<1	87	82	50 - 150
Ethylbenzene	ug/L (ppb)	50	<1	82	82	50 - 150
Xylenes	ug/L (ppb)	150	<3	81	81	50 - 150
Gasoline	ug/L (ppb)	1,000	<100	89	89	53 - 117

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	104	65-118
Toluene	ug/L (ppb)	50	94	72 - 122
Ethylbenzene	ug/L (ppb)	50	91	73-126
Xylenes	ug/L (ppb)	150	89	74-118
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/12/21 Date Received: 04/05/21 Project: Port of Seattle Terminal 30, F&BI 104069

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: I	Laboratory Contr	ol Sample	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	128	63-142	13

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16" Avenue West Seattle, WA 98119-2029	ر ن	T					«		Dup-0421	MW-89-0421	RW-11A-0421	Sample ID		PhoneEmail	te, ZIP	201	Crete	5	104069
Received by:	Relinquished by:	Relinquished by:	SIG							03 1	02	0/ A-D	Lab ID		a:1	Seattle, WX 98104	S. Washington, Ste. 300	Sulting	J. Stevens	,
	mm	Jones	SIGNATURE				e t			<		4/3/2021	Date Sampled				. 300			
				1 Mart	ter an					1700	1040	1750	Time Sampled		,	- REMARKS		PROJE	SAMPL	SAMPLE CHAIN OF CUSTO
	Nhan	Kusty								<i><</i>		WAR	Sample Type			KS	Terminal 30	PROJECT NAME	SAMPLERS (signature)	CHAIN
		$\frac{1}{1}$	PRI							2	4	2	# of Jars				2	H 4	Tows	OF
	Phan	Towes	PRINT NAME										TPH-HCID					Ì	Ś	CUS
	5	5	AMI	 						\succ	\succ	\succ	TPH-Diesel			۰.			7	 OTS
							÷.]	\succ	4	1	TPH-Gasoline					ļ	51	DY
									-	\leq	\geq	1	BTEX by 8021B	A					over 1	
· .									<u> </u>				VOCs by 8260C	ANAL		R				ME
	1	1 Ca									1		SVOCs by 8270D	YSES		/010		PO #		140
	æ	te	CC	 <u>0</u>							+		PAHs 8270D SIM	REO	****	INVOICE TO		#		20
		No No	COMPANY	 Samples										S REQUESTED		0				4
		mithered	ANY	1							ļ			STEI			দ্র			
	-	2		 rece	ļ		<u> </u>		<u> </u>		ļ	ļ			D Other	E Dispo	tsh cł	Stands RUSH		UNI
				 received		ļ									ve oa	SAMP	narge	Hard 7	Page #TURN/	(Ed3
	4/5	77	DATE	at						2		with			Other	SAMPLE DISPOSAL	Rush charges authorized by	Standard Turnaround	AROU	ŝ
	6	12	ľΕ	4								902	No		0.	ISPO days	lorize	roun		
	1314	1		ို								0	Notes			SAL	,d by:	ستنز ا	Page # of TURNAROUND TIME	•
	6		TIME																	

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, November 17, 2021 Paul Kalina AECOM-Seattle 710 2nd Ave #1000 Seattle, WA 98104

RE: A1J0665 - Port of Seattle - T 30 - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1J0665, which was received by the laboratory on 10/16/2021 at 9:50:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>DAuvil@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Rece	ipt Information	
	(See Cooler Rece	eipt Form for details)	
Cooler #1	3.6 degC	Cooler #2	4.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

mall la finint

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle 710 2nd Ave #1000 Seattle, WA 98104 Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

Report ID:	
A1J0665 - 11 17 21	1718

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
MW-89-1021	A1J0665-01	Water	10/14/21 08:39	10/16/21 09:50				
MW-39A-1021	A1J0665-02	Water	10/14/21 17:25	10/16/21 09:50				
MW-42-1021	A1J0665-03	Water	10/14/21 17:45	10/16/21 09:50				
RW-9-1021	A1J0665-04	Water	10/14/21 18:40	10/16/21 09:50				
RW-11A-1021	A1J0665-05	Water	10/14/21 18:39	10/16/21 09:50				
MW-36A-1021	A1J0665-06	Water	10/14/21 19:33	10/16/21 09:50				
Trip Blank	A1J0665-07	Water	10/14/21 00:00	10/16/21 09:50				

Apex Laboratories

amul la finil

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle 710 2nd Ave #1000

710 2nd Ave #1000 Seattle, WA 98104 Project: Port of Seattle - T 30

Project Number: [none] Project Manager: Paul Kalina <u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL CASE NARRATIVE

Work Order: A1J0665

Amended Report Revision 1:

Additional NW-TPH Dx with Silica Gel Analysis-

This report supersedes all previous reports.

The final report has been amended to include NW-TPH Dx with Silica Gel cleanup, to all samples.

Darrell Auvil Project Manager 11/16/2021

Apex Laboratories

Dunnel la finiel

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: Project Number: [none]
Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	II Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-89-1021 (A1J0665-01)				Matrix: Wate	ər	Batch:	21J0739	
Diesel	0.827		0.0833	mg/L	1	10/21/21 23:29	NWTPH-Dx LL	F-11
Oil	0.334		0.167	mg/L	1	10/21/21 23:29	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recon	very: 87 %	Limits: 50-150 %	6 I	10/21/21 23:29	NWTPH-Dx LL	
MW-39A-1021 (A1J0665-02)				Matrix: Wate	ər	Batch:	21J0739	
Diesel	2.87		0.0784	mg/L	1	10/21/21 23:50	NWTPH-Dx LL	F-11
Oil	1.76		0.157	mg/L	1	10/21/21 23:50	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recon	very: 74 %	Limits: 50-150 %	6 I	10/21/21 23:50	NWTPH-Dx LL	
MW-42-1021 (A1J0665-03)				Matrix: Wate	ər	Batch:	21J0739	
Diesel	4.78		0.0825	mg/L	1	10/22/21 00:10	NWTPH-Dx LL	
Oil	ND		0.165	mg/L	1	10/22/21 00:10	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recon	very: 74 %	Limits: 50-150 %	6 1	10/22/21 00:10	NWTPH-Dx LL	
RW-9-1021 (A1J0665-04)				Matrix: Wate	ər	Batch:	21J0739	
Diesel	6.36		0.0748	mg/L	1	10/22/21 00:30	NWTPH-Dx LL	
Oil	ND		0.150	mg/L	1	10/22/21 00:30	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recon	very: 62 %	Limits: 50-150 %	6 I	10/22/21 00:30	NWTPH-Dx LL	
RW-11A-1021 (A1J0665-05)				Matrix: Wate	ər	Batch:	21J0739	
Diesel	1.23		0.0816	mg/L	1	10/22/21 00:51	NWTPH-Dx LL	
Oil	ND		0.163	mg/L	1	10/22/21 00:51	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-150 %	6 I	10/22/21 00:51	NWTPH-Dx LL	
				Matrix: Wate	ər	Batch:	21J0739	
Diesel	2.61		0.0889	mg/L	1	10/22/21 01:11	NWTPH-Dx LL	
Oil	ND		0.178	mg/L	1	10/22/21 01:11	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recon	very: 75 %	Limits: 50-150 %	6 I	10/22/21 01:11	NWTPH-Dx LL	

Apex Laboratories

much la finial

Darrell Auvil, Client Services Manager

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>AECOM-Seattle</u> 710 2nd Ave #1000

Seattle, WA 98104

Project: Project Number: [none]
Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note		
MW-89-1021 (A1J0665-01)		Matrix: Water			Batch:					
Diesel	0.410		0.0889	mg/L	1	11/15/21 23:31	NWTPH-Dx/SGC	F-1		
Oil	0.265		0.178	mg/L	1	11/15/21 23:31	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	: 82 %	Limits: 50-150 %	1	11/15/21 23:31	NWTPH-Dx/SGC			
MW-39A-1021 (A1J0665-02)				Matrix: Water		Batch: 21K0639				
Diesel	1.98		0.0816	mg/L	1	11/15/21 23:52	NWTPH-Dx/SGC	F-1		
Oil	1.54		0.163	mg/L	1	11/15/21 23:52	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	v: 79 %	Limits: 50-150 %	1	11/15/21 23:52	NWTPH-Dx/SGC			
MW-42-1021 (A1J0665-03)				Matrix: Water		Batch: 21K0639				
Diesel	0.315		0.0748	mg/L	1	11/16/21 00:13	NWTPH-Dx/SGC	F-2		
Oil	ND		0.150	mg/L	1	11/16/21 00:13	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	v: 77 %	Limits: 50-150 %	1	11/16/21 00:13	NWTPH-Dx/SGC			
RW-9-1021 (A1J0665-04)				Matrix: Water		Batch: 21K0639				
Diesel	1.59		0.0825	mg/L	1	11/16/21 00:35	NWTPH-Dx/SGC			
Oil	ND		0.165	mg/L	1	11/16/21 00:35	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	v: 76 %	Limits: 50-150 %	1	11/16/21 00:35	NWTPH-Dx/SGC			
RW-11A-1021 (A1J0665-05)				Matrix: Water		Batch: 21K0639				
Diesel	0.133		0.0784	mg/L	1	11/16/21 00:56	NWTPH-Dx/SGC	F-1		
Oil	ND		0.157	mg/L	1	11/16/21 00:56	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	v: 74 %	Limits: 50-150 %	1	11/16/21 00:56	NWTPH-Dx/SGC			
MW-36A-1021 (A1J0665-06)				Matrix: Water		Batch: 21K0639				
Diesel	0.404		0.0833	mg/L	1	11/16/21 01:17	NWTPH-Dx/SGC			
Oil	ND		0.167	mg/L	1	11/16/21 01:17	NWTPH-Dx/SGC			
Surrogate: o-Terphenyl (Surr)		Recovery	: 73 %	Limits: 50-150 %	1	11/16/21 01:17	NWTPH-Dx/SGC			

Apex Laboratories

mul la finit

Darrell Auvil, Client Services Manager

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>AECOM-Seattle</u> 710 2nd Ave #1000

Seattle, WA 98104

Project: Port of Seattle - T 30
Project Number: [none]
Project Number: Project Number: Project Number: Project Number: Project Number: Project Number Number

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-89-1021 (A1J0665-01)			/	Matrix: Water		•	: 21J0639	
Gasoline Range Organics	ND		0.100	mg/L	1	10/19/21 13:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	· 116 % 116 %	Limits: 50-150 % 50-150 %		10/19/21 13:20 10/19/21 13:20	NWTPH-Gx (MS) NWTPH-Gx (MS)	
				Matrix: Water		Batch: 21J0683		
Gasoline Range Organics	ND		0.100	mg/L	1	10/20/21 10:29	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	117 % 116 %	Limits: 50-150 % 50-150 %		10/20/21 10:29 10/20/21 10:29	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW-42-1021 (A1J0665-03RE1)				Matrix: Water		Batch: 21J0683		
Gasoline Range Organics	0.248		0.100	mg/L	1	10/20/21 11:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 111 % 106 %	Limits: 50-150 % 50-150 %		10/20/21 11:50 10/20/21 11:50	NWTPH-Gx (MS) NWTPH-Gx (MS)	
RW-9-1021 (A1J0665-04RE1)				Matrix: Water		Batch: 21J0683		
Gasoline Range Organics	0.227		0.100	mg/L	1	10/20/21 10:56	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	118 % 111 %	Limits: 50-150 % 50-150 %		10/20/21 10:56 10/20/21 10:56	NWTPH-Gx (MS) NWTPH-Gx (MS)	
RW-11A-1021 (A1J0665-05)				Matrix: Water		Batch: 21J0639		
Gasoline Range Organics	ND		0.100	mg/L	1	10/19/21 14:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	- 115 % 115 %	Limits: 50-150 % 50-150 %		10/19/21 14:15 10/19/21 14:15	NWTPH-Gx (MS) NWTPH-Gx (MS)	
MW-36A-1021 (A1J0665-06RE1)				Matrix: Water		Batch: 21J0683		
Gasoline Range Organics	ND		0.100	mg/L	1	10/20/21 11:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	· 116 % 114 %	Limits: 50-150 % 50-150 %		10/20/21 11:23 10/20/21 11:23	NWTPH-Gx (MS) NWTPH-Gx (MS)	
Frip Blank (A1J0665-07)				Matrix: Water		Batch: 21J0639		
Gasoline Range Organics	ND		0.100	mg/L	1	10/19/21 12:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	- 112 % 116 %	Limits: 50-150 % 50-150 %		10/19/21 12:53 10/19/21 12:53	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

und la finit

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000

Seattle, WA 98104

Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL SAMPLE RESULTS

		BTEX Com	pounds b	y EPA 8260D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-89-1021 (A1J0665-01)	Matrix: Water			er	Batch:			
Benzene	ND		0.200	ug/L	1	10/19/21 13:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/19/21 13:20	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/19/21 13:20	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/19/21 13:20	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 111 %	Limits: 80-120 %	1	10/19/21 13:20	EPA 8260D	
Toluene-d8 (Surr)			<i>99 %</i>	80-120 %	1	10/19/21 13:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	10/19/21 13:20	EPA 8260D	
MW-39A-1021 (A1J0665-02RE1)				Matrix: Wate	er	Batch: 21J0683		
Benzene	ND		0.200	ug/L	1	10/20/21 10:29	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/20/21 10:29	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/20/21 10:29	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/20/21 10:29	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	1	10/20/21 10:29	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	Ι	10/20/21 10:29	EPA 8260D	
4-Bromofluorobenzene (Surr)			90 %	80-120 %	1	10/20/21 10:29	EPA 8260D	
				Matrix: Water		Batch: 21J0683		
Benzene	1.31		0.200	ug/L	1	10/20/21 11:50	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/20/21 11:50	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/20/21 11:50	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/20/21 11:50	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	1	10/20/21 11:50	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	10/20/21 11:50	EPA 8260D	
4-Bromofluorobenzene (Surr)			89 %	80-120 %	1	10/20/21 11:50	EPA 8260D	
RW-9-1021 (A1J0665-04RE1)				Matrix: Water		Batch: 21J0683		
Benzene	ND		0.200	ug/L	1	10/20/21 10:56	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/20/21 10:56	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/20/21 10:56	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/20/21 10:56	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	10/20/21 10:56	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	Ι	10/20/21 10:56	EPA 8260D	
4-Bromofluorobenzene (Surr)			90 %	80-120 %	1	10/20/21 10:56	EPA 8260D	

Apex Laboratories

much la finiel

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000

Seattle, WA 98104

Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
RW-11A-1021 (A1J0665-05)				Matrix: Wate	er	Batch:	21J0639	
Benzene	ND		0.200	ug/L	1	10/19/21 14:15	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/19/21 14:15	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/19/21 14:15	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/19/21 14:15	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	10/19/21 14:15	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	10/19/21 14:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	10/19/21 14:15	EPA 8260D	
MW-36A-1021 (A1J0665-06RE1)				Matrix: Wate	er	Batch:	21J0683	
Benzene	ND		0.200	ug/L	1	10/20/21 11:23	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/20/21 11:23	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/20/21 11:23	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/20/21 11:23	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 109 %	Limits: 80-120 %	1	10/20/21 11:23	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	10/20/21 11:23	EPA 8260D	
4-Bromofluorobenzene (Surr)			89 %	80-120 %	1	10/20/21 11:23	EPA 8260D	
Trip Blank (A1J0665-07)				Matrix: Wate	er	Batch:	21J0639	
Benzene	ND		0.200	ug/L	1	10/19/21 12:53	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/19/21 12:53	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/19/21 12:53	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	10/19/21 12:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	10/19/21 12:53	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	10/19/21 12:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	10/19/21 12:53	EPA 8260D	

Apex Laboratories

Que la finil

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: Project Number: [none]
Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbor	s by NW1	[PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0739 - EPA 3510C (Fuels/Acid	Ext.)					Wa	ter				
Blank (21J0739-BLK1)			Prepared	: 10/21/21	07:01 Ana	yzed: 10/21	/21 22:07					
NWTPH-Dx LL												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 85 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (21J0739-BS1)			Prepared	: 10/21/21	07:01 Ana	yzed: 10/21	/21 22:28					
NWTPH-Dx LL												
Diesel	0.430		0.0800	mg/L	1	0.500		86	36-132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 92 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS Dup (21J0739-BSD1)			Prepared	: 10/21/21	07:01 Ana	yzed: 10/21	/21 22:48					Q-
NWTPH-Dx LL												
Diesel	0.406		0.0800	mg/L	1	0.500		81	36-132%	6	30%	
Surr: o-Terphenyl (Surr)		n	overy: 92 %	Limits: 50	150.0/	Dil	ution: 1x					

Apex Laboratories

Dunnel la finial

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: Project Number: [none]
Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel a	and/or Oil	Hydrocarbo	ons by N	NTPH-Dx	with Silic	ca Gel Co	olumn Cle	anup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21K0639 - EPA 3510C (Fuels/Acid	Ext.) w/Sili	ca Gel Colur	nn			Wa	ter				
Blank (21K0639-BLK1)			Prepared	: 10/21/21	07:01 Ana	lyzed: 11/15	/21 22:26					
NWTPH-Dx/SGC												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 77 %	Limits: 50	-150 %	Dilt	ution: 1x					
LCS (21K0639-BS1)			Prepared	: 10/21/21	07:01 Ana	lyzed: 11/15	/21 22:48					
NWTPH-Dx/SGC												
Diesel	0.401		0.0800	mg/L	1	0.500		80	36-132%			
Surr: o-Terphenyl (Surr)		Rece	overy: 85 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS Dup (21K0639-BSD1)			Prepared	: 10/21/21	07:01 Ana	lyzed: 11/15	/21 23:09					Q-
NWTPH-Dx/SGC												
Diesel	0.380		0.0800	mg/L	1	0.500		76	36-132%	5	30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 87 %	Limits: 50	-150 %	Dilt	ution: 1x					

Apex Laboratories

Dunnel la finine

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0639 - EPA 5030B							Wa	ter				
Blank (21J0639-BLK1)			Preparec	1: 10/19/21	09:30 Ana	yzed: 10/19	/21 12:26					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 111 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			115 %	5	0-150 %		"					
LCS (21J0639-BS2)			Preparec	d: 10/19/21	09:30 Ana	lyzed: 10/19	/21 11:59					
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	0.508		0.100	mg/L	1	0.500		102	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 106 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"					
Duplicate (21J0639-DUP1)			Preparec	d: 10/19/21	11:45 Ana	yzed: 10/19/	/21 13:48					
QC Source Sample: MW-89-1021	(A1J0665-0	<u>1)</u>										
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 116 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			118 %	5	0-150 %		"					

Apex Laboratories

mul la finiel

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104
 Project:
 Port of Seattle - T 30

 Project Number:
 [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0683 - EPA 5030B							Wa	ter				
Blank (21J0683-BLK1)			Prepared	d: 10/20/21	08:00 Ana	lyzed: 10/20/	/21 10:02					
<u>NWTPH-Gx (MS)</u> Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 110 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			115 %	50	0-150 %		"					
LCS (21J0683-BS2)			Prepareo	d: 10/20/21	08:00 Ana	lyzed: 10/20/	/21 09:34					
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	0.533		0.100	mg/L	1	0.500		107	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 104 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					
Duplicate (21J0683-DUP1)			Prepared	d: 10/20/21	08:40 Ana	lyzed: 10/20/	/21 12:45					
QC Source Sample: Non-SDG (A)	1J0727-02)											
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 112 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			114 %	50	0-150 %		"					

Apex Laboratories

Dunnel la finine

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project:Port of Seattle - T 30Project Number:[none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	nds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 21J0639 - EPA 5030B							Wa	ter				
Blank (21J0639-BLK1)			Prepared	: 10/19/21 ()9:30 Anal	yzed: 10/19/	/21 12:26					
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
LCS (21J0639-BS1)			Prepared	l: 10/19/21 ()9:30 Anal	yzed: 10/19	/21 11:25					
EPA 8260D												
Benzene	20.0		0.200	ug/L	1	20.0		100	80-120%			
Toluene	18.9		1.00	ug/L	1	20.0		94	80-120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		102	80-120%			
Xylenes, total	62.0		1.50	ug/L	1	60.0		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97%	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	-120 %		"					
Duplicate (21J0639-DUP1)			Prepared	: 10/19/21	1:45 Anal	yzed: 10/19/	/21 13:48					
QC Source Sample: MW-89-1021	(A1J0665-0	1)										
EPA 8260D												
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					

<u>QC Source Sample: Non-SDG (A1J0571-17)</u> <u>EPA 8260D</u>

Apex Laboratories

Dunnel la finiel

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104
 Project:
 Port of Seattle - T 30

 Project Number:
 [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0639 - EPA 5030B							Wa	ter				
Matrix Spike (21J0639-MS1)			Prepared	l: 10/19/21	11:45 Anal	yzed: 10/19/	21 22:24					
QC Source Sample: Non-SDG (A1	<u>J0571-17)</u>											
Benzene	20.6		0.200	ug/L	1	20.0	0.110	103	79-120%			
Toluene	22.0		1.00	ug/L	1	20.0	3.10	94	80-121%			
Ethylbenzene	23.1		0.500	ug/L	1	20.0	3.21	99	79-121%			
Xylenes, total	86.0		1.50	ug/L	1	60.0	22.5	106	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			87 %	80	-120 %		"					

Apex Laboratories

Dunnel la finial

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: Port of Seattle - T 30
Project Number: [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260D)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0683 - EPA 5030B							Wa	ter				
Blank (21J0683-BLK1)			Prepared	l: 10/20/21 (08:00 Anal	yzed: 10/20	/21 10:02					
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
LCS (21J0683-BS1)			Prepared	l: 10/20/21 (08:00 Anal	yzed: 10/20	/21 09:02					
EPA 8260D												
Benzene	18.8		0.200	ug/L	1	20.0		94	80-120%			
Toluene	17.9		1.00	ug/L	1	20.0		89	80-120%			
Ethylbenzene	18.9		0.500	ug/L	1	20.0		95	80-120%			
Xylenes, total	57.4		1.50	ug/L	1	60.0		96	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 100 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			86 %	80	-120 %		"					
Duplicate (21J0683-DUP1)			Preparec	l: 10/20/21 ()8:40 Anal	yzed: 10/20	/21 12:45					
QC Source Sample: Non-SDG (A1.	J0727-02)											
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon		Limits: 80		Dili	ution: 1x					
Toluene-d8 (Surr)		110001	100 %		-120 %	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
4-Bromofluorobenzene (Surr)			91 %		-120 %		"					
Matrix Spike (21J0683-MS1)			Prepared	l: 10/20/21	12:35 Anal	yzed: 10/20	/21 14:33					
QC Source Sample: Non-SDG (A1.	<u>J0752-01)</u>		*			-						
<u>EPA 8260D</u> Benzene	20.6		0.200	ug/L	1	20.0	ND	103	79-120%			

Apex Laboratories

much la finiet

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project Number: [none]

Project:

Project Manager: Paul Kalina

Port of Seattle - T 30

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 21J0683 - EPA 5030B							Wa	ter				
Matrix Spike (21J0683-MS1)			Prepared	: 10/20/21	12:35 Anal	yzed: 10/20/	/21 14:33					
QC Source Sample: Non-SDG (A1	J0752-01)											
Toluene	19.5		1.00	ug/L	1	20.0	ND	97	80-121%			
Ethylbenzene	20.8		0.500	ug/L	1	20.0	ND	104	79-121%			
Xylenes, total	63.3		1.50	ug/L	1	60.0	ND	106	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			86 %	80	-120 %		"					

Apex Laboratories

Dunnel la finine

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>AECOM-Seattle</u> 710 2nd Ave #1000

Seattle, WA 98104

Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	is by NWTPH-Dx			
Prep: EPA 3510C (Fu	iels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 21J0739							
A1J0665-01	Water	NWTPH-Dx LL	10/14/21 08:39	10/21/21 07:01	960mL/2mL	1000mL/2mL	1.04
A1J0665-02	Water	NWTPH-Dx LL	10/14/21 17:25	10/21/21 07:01	1020mL/2mL	1000mL/2mL	0.98
A1J0665-03	Water	NWTPH-Dx LL	10/14/21 17:45	10/21/21 07:01	970mL/2mL	1000mL/2mL	1.03
A1J0665-04	Water	NWTPH-Dx LL	10/14/21 18:40	10/21/21 07:01	1070mL/2mL	1000mL/2mL	0.94
A1J0665-05	Water	NWTPH-Dx LL	10/14/21 18:39	10/21/21 07:01	980mL/2mL	1000mL/2mL	1.02
A1J0665-06	Water	NWTPH-Dx LL	10/14/21 19:33	10/21/21 07:01	900mL/2mL	1000mL/2mL	1.11

Prep: EPA 3510C (I	uels/Acid Ext.) w/	Silica Gel Column			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 21K0639							
A1J0665-01	Water	NWTPH-Dx/SGC	10/14/21 08:39	10/21/21 07:01	900mL/2mL	1000mL/2mL	1.11
A1J0665-02	Water	NWTPH-Dx/SGC	10/14/21 17:25	10/21/21 07:01	980mL/2mL	1000mL/2mL	1.02
A1J0665-03	Water	NWTPH-Dx/SGC	10/14/21 17:45	10/21/21 07:01	1070mL/2mL	1000mL/2mL	0.94
A1J0665-04	Water	NWTPH-Dx/SGC	10/14/21 18:40	10/21/21 07:01	970mL/2mL	1000mL/2mL	1.03
A1J0665-05	Water	NWTPH-Dx/SGC	10/14/21 18:39	10/21/21 07:01	1020mL/2mL	1000mL/2mL	0.98
A1J0665-06	Water	NWTPH-Dx/SGC	10/14/21 19:33	10/21/21 07:01	960mL/2mL	1000mL/2mL	1.04

	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 21J0639							
A1J0665-01	Water	NWTPH-Gx (MS)	10/14/21 08:39	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
A1J0665-05	Water	NWTPH-Gx (MS)	10/14/21 18:39	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
A1J0665-07	Water	NWTPH-Gx (MS)	10/14/21 00:00	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
Batch: 21J0683							
A1J0665-02RE1	Water	NWTPH-Gx (MS)	10/14/21 17:25	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-03RE1	Water	NWTPH-Gx (MS)	10/14/21 17:45	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-04RE1	Water	NWTPH-Gx (MS)	10/14/21 18:40	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-06RE1	Water	NWTPH-Gx (MS)	10/14/21 19:33	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00

BTEX Compounds by EPA 8260D

Apex Laboratories

much la finit

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: <u>Port of Seattle - T 30</u> Project Number: [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

SAMPLE PREPARATION INFORMATION

BTEX Compounds by EPA 8260D							
<u>Prep: EPA 5030B</u> Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Batch: 21J0639			Samprea	Tioparou			
A1J0665-01	Water	EPA 8260D	10/14/21 08:39	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
A1J0665-05	Water	EPA 8260D	10/14/21 18:39	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
A1J0665-07	Water	EPA 8260D	10/14/21 00:00	10/19/21 11:45	5mL/5mL	5mL/5mL	1.00
Batch: 21J0683							
A1J0665-02RE1	Water	EPA 8260D	10/14/21 17:25	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-03RE1	Water	EPA 8260D	10/14/21 17:45	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-04RE1	Water	EPA 8260D	10/14/21 18:40	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00
A1J0665-06RE1	Water	EPA 8260D	10/14/21 19:33	10/20/21 08:40	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Dunnel la finial

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle 710 2nd Ave #1000

Seattle, WA 98104

Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

Dunnel la finiel

Darrell Auvil, Client Services Manager

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: Port of Seattle - T 30

Project Number: [none] Project Manager: Paul Kalina <u>Report ID:</u> A1J0665 - 11 17 21 1718

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

mull la finist

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle

710 2nd Ave #1000 Seattle, WA 98104 Project: <u>Port of Seattle - T 30</u> Project Number: [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

mul la finint

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>AECOM-Seattle</u> 710 2nd Ave #1000

Seattle, WA 98104

 Project:
 Port of Seattle - T 30

 Project Number:
 [none]

Project Manager: Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	<u>oratories</u>				
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
		All reported analytes are inclu	ided in Apex Laboratories' current OREL	AP scope	

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

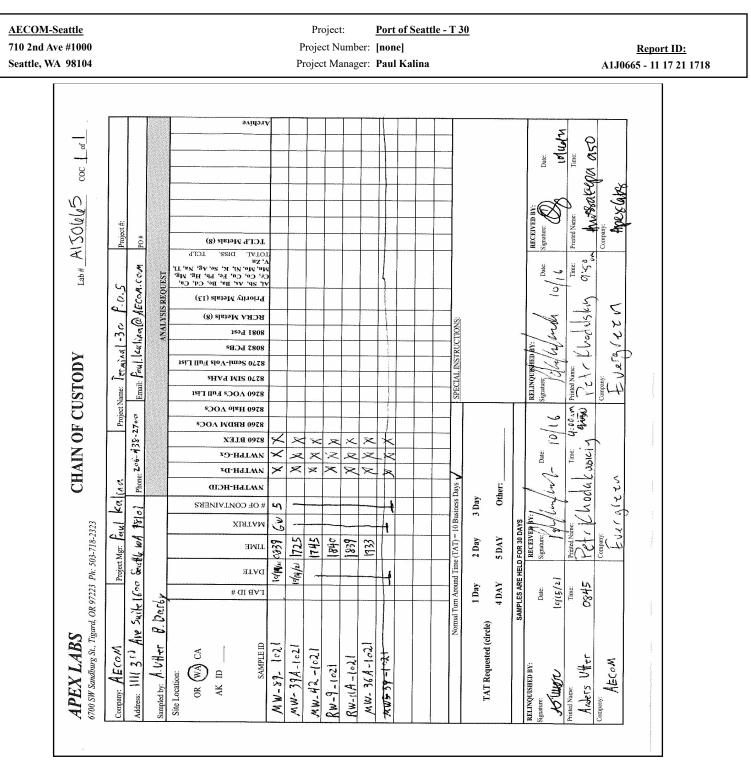
Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories


mul la finit

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

nd la finini

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AECOM-Seattle				
710 2nd Ave #1000				
Seattle, WA 98104				

Project:Port of Seattle - T 30Project Number:[none]Project Manager:Paul Kalina

<u>Report ID:</u> A1J0665 - 11 17 21 1718

Client: AECOM	APEX LABS COOLER RECEIPT FORM
	Element WO#: A1 0665
Project/Project #: <u>Te</u>	rmina(-30 P.O.5
Delivery Info :	
	<u>uln @ 950 By: AKK</u>
	lientESSFedExUPSSwift_SenvoySDSOther_Evergreen
Cooler Inspection Da	te/time inspected: <u>voluel N @ 950</u> By: <u>Alk</u>
Chain of Custody included	? Yes <u>Y</u> No Custody seals? Yes No <u>Y</u>
Signed/dated by client?	Yes <u>Y</u> No
Signed/dated by Apex?	Yes <u>/</u> No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3.6 4.3
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other)	
Condition:	Melty Melty
Out of temperature sample Sample Inspection: Dat	f temperature samples? Yes (10) s form initiated? Yes (10) e/time inspected: 16115[21_@_1410By:AS
Bottle labels/COCs agree?	Yes No Comments: MW-42-1021 - time on containers
	ip blanks provided but not listed on COC
	es form initiated? Yes No
Containers/volumes receive	ed appropriate for analysis? Yes 🔀 No Comments:
Comments <u>MW-42-1021</u>	headspace? Yes X No NA NA '12 Weadspace. - 13 Wadspace. Trip Dlank '12 Weadspace d: Yes X No NA pH appropriate? Yes XNo NA
Additional information:	TB # 2453
Labeled by:	
Labered by.	Witness: Cooler Inspected by:

Apex Laboratories

und la finit

Appendix H

Groundwater Sampling Summary

Data Quality Review Reports

NOTE: A data quality review report from the groundwater samples CRETE collected in April 2021 is not included in this report.

Memorandum

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	October Groundwater Sampling		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	November 18, 2021		

The summary data quality review of six groundwater samples and 1 trip blank collected on October 14, 2021, has been completed. The samples were analyzed at Apex Laboratories, LLC (Apex) located in Tigard, Oregon for selected volatile organic compounds (VOCs) by EPA Method 8260D; total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology Methods: NWTPH-Gx (gasoline-range TPH); and NWTPH-Dx (diesel-range and motor oil-range TPH) with silica gel cleanup and NWTPH-Dx (diesel-range and motor oil-range TPH) without silica gel cleanup. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-1021). The following samples are associated with Apex laboratory group A1J0665:

Sample ID	Laboratory ID	Requested Analyses
MW-89-1021	A1J0665-01	VOCs, NWTPH-Gx, NWTPH-Dx
MW-39A-1021	A1J0665-02	VOCs, NWTPH-Gx, NWTPH-Dx
MW-42-1021	A1J0665-03	VOCs, NWTPH-Gx, NWTPH-Dx
RW-9-1021	A1J0665-04	VOCs, NWTPH-Gx, NWTPH-Dx
RW-11A-1021	A1J0665-05	VOCs, NWTPH-Gx, NWTPH-Dx
MW-36A-1021	A1J0665-06	VOCs, NWTPH-Gx, NWTPH-Dx
Trip Blank	A1J0665-07	VOCs, NWTPH-Gx

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Summary Data Quality Review Port of Seattle - T 30 October Groundwater Sampling Laboratory Group: A1J0665

- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Sample Receipt

Upon receipt by the laboratory, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperatures were recorded. The laboratory noted that the sample time on the container label for MW-42 was different than the COC. This sample time was correctly logged in according to the COC. The coolers were received at temperatures within the EPA-recommended limits of greater than 0°C and less than or equal to 6°C.

Organic Analyses

Samples were analyzed for VOCs and TPHs by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

<u>General</u> – MS/MSDs were performed using samples from unrelated projects. Accuracy and precision were assessed using LCS/LCSD and/or laboratory duplicate results.

6. Laboratory Duplicate - Acceptable

<u>BTEX by EPA 8260D</u> – A laboratory duplicate was performed using MW-89. Results were comparable.

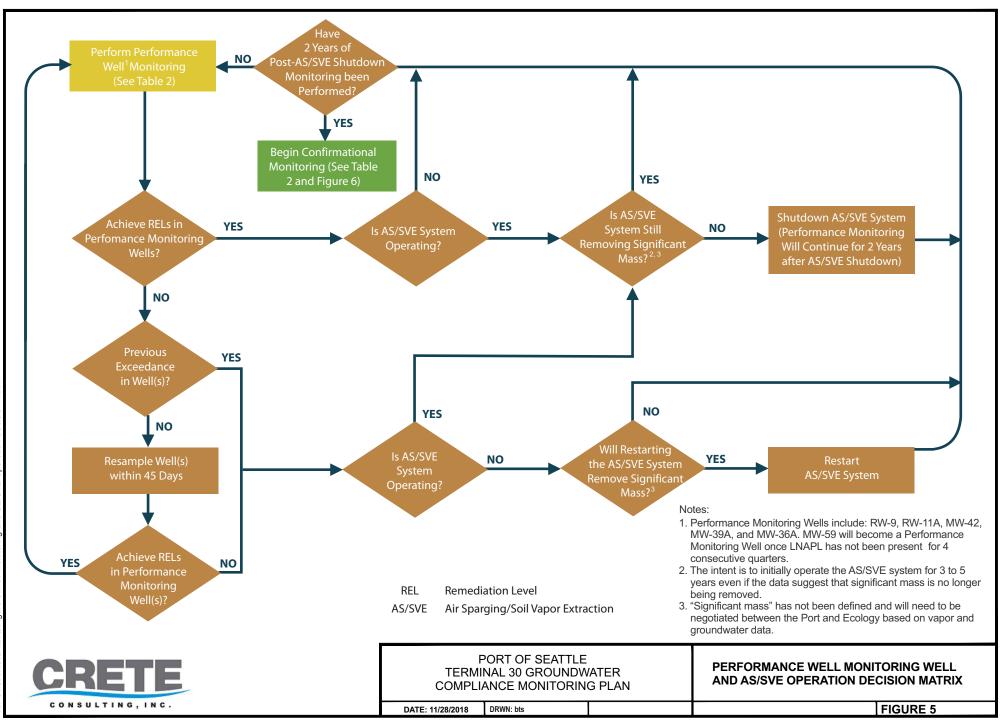
<u>Gasoline-range TPH by NWTPH-Gx</u> – A laboratory duplicate was performed using MW-89. Results were comparable.

- 7. Reporting Limits Acceptable
- 8. Other Items of Note:

<u>Diesel-range and Motor Oil-range TPH by NWTPH-Dx</u> – The laboratory noted that the dieselrange hydrocarbon patterns in MW-89, MW-39A, and RW-11A indicated possible weathered diesel, mineral oil, or a contribution from a related component. No qualifiers were assigned based on these qualitative observations.

Summary Data Quality Review Port of Seattle - T 30 October Groundwater Sampling Laboratory Group: A1J0665

The laboratory noted that the result for diesel in MW-42 is estimated due to overlap from gasoline range TPHs or other VOCs. No qualifiers were assigned based on these qualitative observations.


Overall Assessment of Data

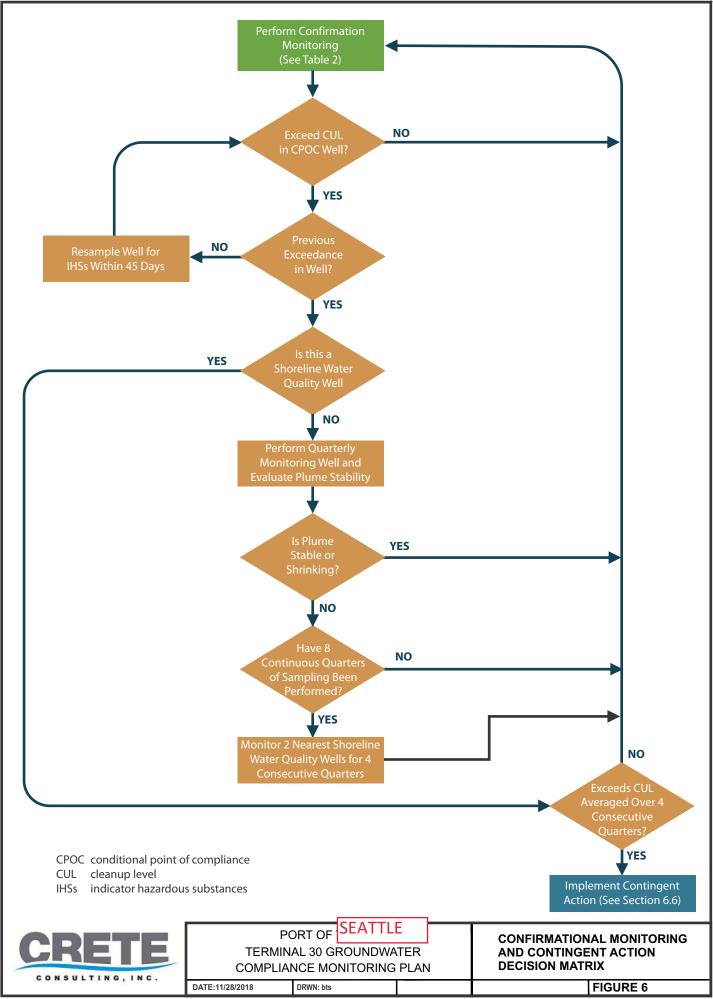

The data reported in this laboratory group are considered to be usable for meeting project objectives. The completeness for Apex laboratory group A1J0665 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result	
No data qualifiers were assigned to the results reported in laboratory group A1J0665 during validation.						

<u>Appendix I</u> Select Figures from the Groundwater Compliance Monitoring Plan

