

March 18, 2024 Project No. TR0837I

Andrew Smith
Site Manager
Washington Department of Ecology
Southwest Regional Office
300 Desmond Drive
Lacey, WA 98503

Dear Mr. Smith:

Re: Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2023 Bonneville Power Administration Site Consent Order No. 97206045

On behalf of Occidental Chemical Corporation, Geosyntec Consultants is submitting the enclosed "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report 2023". This report summarizes the operation and maintenance (O&M) activities and groundwater monitoring results for the period of November 2022 through November 2023 and presents an overview of the effectiveness of the Site remedy.

Based on the review of the Site remedy and Compliance Monitoring Program analytical data it is concluded that:

- The Remedial Action has been effective in addressing the concerns for protection of human health and the environment as laid forth in the Consent Decree.
- No further remedial action is required at the Site at this time.

Should you have any questions, require additional information, or wish to meet to discuss the performance of the Remedial Action, please do not hesitate to contact us.

Yours truly,

Geosyntec Consultants

Rick Bieber

cc: R. Bakemeier (Bakemeier PC)

C. Babcock (GSHI)

I. Richardson (Geosyntec)

engineers | scientists | innovators

Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2023

Bonneville Power Administration Site Tacoma, Washington
Consent Order No. 97206045

Prepared for

Occidental Chemical Corporation 605 Alexander East Ave Tacoma, WA 98421

Prepared by

Geosyntec Consultants 520 Pike Street, Suite 2600 Seattle, WA 98101

Project Number TR0837D

February 2023

Executive Summary

In March 1997, Occidental Chemical Corporation (OCC) and the Bonneville Power Administration (BPA) entered into a Consent Decree with the Washington Department of Ecology (Ecology) to provide for the performance of a Remedial Action (RA) at the Site. The RA included excavation of impacted fill materials and soils and placement of these excavated materials in an on Site engineered landfill. The RA was considered complete on August 24, 1998.

The RA Operation and Maintenance (O&M) Program includes the performance of routine Site inspections, compliance monitoring of groundwater, and comprehensive annual reporting to evaluate the effectiveness of the RA in addressing the concerns of Ecology, stated in the Consent Decree as follows:

- i) Ongoing impact of groundwater in the Lower Sand unit by volatile organic compounds (VOCs) in buried sludge and soils
- ii) Potential for direct human exposure to asbestos contained in the sludge
- iii) Potential for direct human exposure to metal contained in grit and shot
- iv) Potential surface and groundwater impacts from metals contained in the grit and shot

The O&M Program commenced with baseline groundwater monitoring in September 1998 following completion of the RA. This annual report has been prepared covering the period of November 2022 through November 2023.

The results of the O&M and Compliance Monitoring activities demonstrate that:

- i) The security and integrity of the landfill was maintained throughout this reporting period; therefore, there was no potential for direct human exposure to impacted materials.
- ii) There were no systematic increases in the concentrations of monitoring parameters in groundwater during this reporting period; therefore, there is no ongoing impact of chemicals to groundwater in the Lower Sand unit.

The O&M activities and Compliance Monitoring performed during this reporting period demonstrate that the RA is effective in mitigating Ecology's concerns for human health exposure and groundwater impacts.

Table of Contents

Exect	utive	Summary .		ES-i
1.	Intro	duction		1
2.	Oper	ation and l	Maintenance Activities	2
	2.1	Site Inspe 2.1.1 2.1.2	ections and Corrective Actions Security Site	3
	2.2	Routine N	Maintenance	4
3.	Com	pliance Mo	onitoring	4
	3.1	Hydraulid	c Monitoring	5
	3.2	Water Qu	uality Monitoring	5
4.	Asse	ssment of	Site Conditions	6
	4.1	Direct Co	ontact with Impacted Materials	7
	4.2	Groundw	vater and Surface Water Impact	7
5.	Conc	lusions an	nd Recommendations	8
			List of Tables	
Table	2.0	Target	t Analytes	
Table	3.1	Comp	pliance Monitoring Points	
Table	3.2	Summ	nary of Water Level Elevations	
Table	3.3	Groun	ndwater Compliance Monitoring Analytical Parameters	
Table	3.4	Analy	rtical Results Summary	
Table	3.5	Monit	tored Natural Attenuation Analytical Results Summary	
			List of Figures	
Figur	e 3.1	Site P	lan and Groundwater Contour Map	
Figur	e 4.1	Conce	entration Versus Time – 1 20	
Figur	e 4.2	Conce	entration Versus Time – 7 26	

i

List of Appendices

Appendix A	Site Ins	spection	Sheets
------------	----------	----------	--------

Appendix B Groundwater Sample Collection Summary Logs

Appendix C Analytical Data Verification and Assessment

Appendix D Analytical Database

1. Introduction

The Bonneville Power Administration (BPA) property (Site) is located at the corner of Taylor Way and Highway 509 in Tacoma, Washington. In the late 1960s and early 1970s, fill material from the Occidental Chemical Corporation (OCC) Tacoma facility was deposited at the Site. At about the same time, baghouse grit/shot material from an unidentified source was also placed at the Site.

In March 1997, OCC and BPA entered into a Consent Decree with the Washington Department of Ecology (Ecology) to provide for the performance of a Remedial Action (RA) at the Site. The RA included excavation of impacted fill materials and soils and placement of these excavated materials in an on-Site engineered landfill. The RA was considered complete on August 24, 1998.

An RA Operation and Maintenance (O&M) Plan was submitted to Ecology with the remedial design documents. The RA O&M Plan includes the performance of routine Site inspections, compliance monitoring of groundwater, and comprehensive annual reporting. The O&M Program commenced in September 1998.

This report presents the annual report for the period of November 2022 through November 2023. The report is organized as follows:

- i) <u>Section 1 Introduction:</u> The introduction presents a brief summary of the project history and the organization of the report.
- ii) <u>Section 2 Operation and Maintenance Activities:</u> The O&M activities performed during this reporting period are discussed in Section 2.
- iii) <u>Section 3 Compliance Monitoring:</u> The groundwater compliance monitoring activities performed during this reporting period are described in Section 3 and the resultant data are presented.
- iv) <u>Section 4 Assessment of Site Conditions:</u> An assessment of the Site conditions in terms of the effectiveness of the remedy is presented in Section 4.
- v) <u>Section 5 Conclusions and Recommendations:</u> Section 5 presents the conclusions drawn from the Site assessment.

1

The current project coordinators for the Site are:

Ecology:

Mr. Andrew Smith 300 Desmond Drive Lacey, Washington 98503

BPA:

Chad Browning Environmental Engineer 707 W. Main Street, Suite 500 Spokane, Washington 99201-0641

OCC:

Mr. Clint Babcock Director Operations Glenn Springs Holdings, Inc. 605 Alexander Avenue Tacoma, WA 98421

The designated Site Custodian is:

Geosyntec:

520 Pike Street, Suite 2600 Seattle, WA 98101 Telephone: (253) 993-0190

The primary contact at Geosyntec is Rick Bieber.

2. Operation and Maintenance Activities

O&M activities performed during this reporting period included Site inspections and compliance monitoring. The O&M activities were performed by GHD, on behalf of OCC in accordance with the requirements of the "Operation and Maintenance Plan" (May 1997) with the modifications approved by Ecology in letters dated August 3, 1998, September 16, 1998, March 18, 1999, and November 14, 2003. The approved modifications consist of:

- i) The use of monitoring well 9-30 instead of monitoring well 5-21 (August 3, 1998)
- ii) The use of low-flow well purging and sampling techniques in the Compliance Monitoring Plan (CMP) (September 16, 1998)
- iii) Revision of the analyte list for compliance monitoring (March 18, 1999, and November 14, 2003)
- iv) Reduction in monitoring points from 7 to 2 (November 14, 2003)
- v) Reduction in the frequency of sampling from semi-annual to annual (November 14, 2003)
- vi) Installation of a replacement well for 1-20 in 2020

vii) Following the 2020 review Ecology requested the addition of monitored natural attenuation parameters bringing the new target analytes list to the following:

Table 2.0 Targ	get Analytes	
Matrix	Analyte	Method
GW	SSPL VOCs (annual)	8260
GW	Dissolved Gases (methane, ethane,	RSK 175
	ethene)	
GW	Total Iron and Manganese	200.7
GW	Dissolved Iron and Manganese	200.7
GW	Chloride, Sulfate	300
GW	Total Organic Carbon	9060A
GW	Nitrate	300

2.1 Site Inspections and Corrective Actions

Site inspections were performed on a quarterly basis during this reporting period. Observations were logged on inspection log sheets. The inspection log sheets for the 2023 reporting period are contained in Appendix A.

Descriptions of the inspection observations are presented in the following subsections. No deficiencies requiring corrective action were observed during this reporting period.

2.1.1 Security

The security features include landfill perimeter fence, fence gates and locks, and signs. Each feature was examined during each Site inspection. No damage to security features was noted and the integrity of the security features was maintained. The security features and their conditions during this reporting period are described below.

Perimeter Fence

No damage to the perimeter fence was identified during the quarterly inspections conducted for this reporting period.

Gates and Locks

No damage to perimeter fence gates or locks was identified during the quarterly inspections conducted for this reporting period.

Signs

All signs were in place and legible.

2.1.2 Site

The Site features include final and vegetative covers, drainage swales, and monitoring wells. Each of these features was examined during each Site inspection. The integrity of the Site features was maintained. The condition of the Site features during this reporting period is described below.

Final and Vegetative Covers

No surface cracking or failure of the landfill cap was observed during this reporting period. Issues identified during the quarterly inspections included deep rooted vegetation and stressed vegetation due to area drought. The deep rooted growth was hand pulled during maintenance activities in September 2023. Mowing of the entire mound was conducted following the hand removal of weeds. The cut vegetation was raked and removed. No burrows were observed during recent inspections and during the mowing of the cap, GHD will continue to monitor for the presence of burrowing animals during quarterly inspections.

Drainage Swales

No erosion or excessive buildup of sediment was identified in the drainage swales during the quarterly inspections conducted for this reporting period. Limited vegetation has begun to encroach on the drainage swales. In September 2023 contractors applied an Ecology approved herbicide to knock back the vegetation from the rockery in the swales and the vegetation has been significantly reduced.

Monitoring Wells

The inspection of the monitoring wells was conducted in November 30, 2023 and included the verification of the presence and condition of well caps and locks, integrity of protective casings, and inspection for settlement or displacement of the wells. Each of the wells were found in proper working order.

2.2 Routine Maintenance

The O&M Plan requires that the landfill cap vegetative cover be fertilized and maintained as necessary. In September 2023 crews hand removed the deep-rooted vegetation and sprayed the encroaching vegetation in the rockery in the swales. Mowing of the mound was completed following the hand weeding. Overall the landfill cap is in good condition and no repairs outside of the routine maintenance activities are required at this time.

3. Compliance Monitoring

The CMP is included as Appendix B of the O&M Plan. The groundwater CMP commenced in September 1998 at the completion of the RA. The CMP states that groundwater monitoring will be conducted semi-annually for 5 years following which a review will be conducted. The first 5-year review period ended in September 2003. A review of the groundwater monitoring program

was presented in the "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2004." Based on the review, a modified groundwater monitoring program was approved by Ecology (see letter from G. Barrett (Ecology) to C. Barron (CRA) dated November 14, 2003).

The second 5-year review period ended in September 2008. A review of the groundwater monitoring program was presented in the "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2008." There were no approved modifications to the CMP following the second 5-year review period; however, potentiometric contour lines have been added to the site plan, as recommended by Ecology (see letter from G. Barrett (Ecology) to J. Cornetta (CRA) dated February 4, 2008). A third 5-year review was completed by Ecology in 2014, results were presented in a March 2015 report. A fourth 5-year review was completed by Ecology in 2018 with results presented in the 2019 report. No amendments to the CMP were made following this review. In 2020 Ecology requested in response to public comment for natural attenuation parameters be added to the annual analysis. Starting in November 2020 to following parameters have been added to the sampling suite:

Compliance monitoring currently consists of:

- Metals Iron, Iron (dissolved), Manganese, Manganese (dissolved)
- Dissolved Gases Ethane, Ethene, Methane
- General Chemistry Chloride, Nitrate (as N), Sulfate, Total organic carbon (TOC)
- i) Annual hydraulic monitoring of all site monitoring wells
- ii) Annual groundwater sample collection and analyses of two wells, 1-20 and 7-26

The monitoring wells included in the Site monitoring program are listed in Table 3.1 and shown on Figure 3.1.

3.1 Hydraulic Monitoring

Site-wide hydraulic monitoring is performed in conjunction with each groundwater sampling event. A tabulation of the groundwater elevations measured since the commencement of the CMP is presented in Table 3.2. Groundwater elevations, potentiometric contour lines and groundwater flow direction are presented on Figure 3.1.

3.2 Water Quality Monitoring

Groundwater samples were collected in accordance with the low-flow monitoring well purging and sample collection procedures approved by Ecology on September 16, 1998 with one exception. As noted above, GHD was unable to use the bladder pump lodged in the well. The sample was collected using a peristaltic pump following approval from Ecology. A sample collection summary log is contained in Appendix B.

Groundwater samples collected during this reporting period were analyzed for the parameters listed in Table 3.3. Cleanup levels for the monitoring parameters listed in Table 3.3 are the Model Toxic Control Act (MTCA) Method B groundwater levels, or the analytical method's Practical Quantitation Limit (PQL) where the Method B levels are lower than the PQL.

The groundwater analytical data generated during this reporting period and cleanup levels are presented in Table 3.4. The results are consistent with the historic data. The addition of the monitored natural attenuation (MNA) parameters are presented in table 3.5. As we collected more rounds of MNA data, trends will be plotted and presented in this section. The data validation for this reporting period is contained in Appendix C of this report. A complete groundwater analytical database is presented in Appendix D. All investigative samples were analyzed within the recommended holding time.

4. Assessment of Site Conditions

One of the purposes of the annual review of the O&M activities and monitoring data is to assess the current Site conditions in terms of the effectiveness of the RA.

Based upon the findings of the site investigations performed prior to the RA, Ecology stated the following concerns regarding fill materials present at the Site:

- i) Ongoing impact to groundwater in the Lower Sand unit by volatile organic compounds (VOCs) in buried sludge and soils
- ii) Potential for direct human exposure to asbestos contained in the sludge
- iii) Potential for direct human exposure to metals contained in grit and shot
- iv) Potential surface and groundwater impacts from metals contained in the grit and shot

These concerns were presented in Exhibit B, "Cleanup Action Plan," of the Consent Decree filed March 3, 1997.

The RA addressed each of these concerns through the removal of impacted sludge, grit, and shot and containment of these materials in the on-Site engineered landfill. Confirmatory analyses were performed on samples of in situ soils to confirm that concentrations of the Site compounds which exceeded the cleanup standards specified in Table 2 of Exhibit B of the Consent Decree did not remain following the completion of the RA.

The following subsections present evaluations of the current Site condition relative to these concerns. The evaluations are based upon the O&M activities performed during this reporting period and on the Compliance Monitoring data.

4.1 Direct Contact with Impacted Materials

The security and integrity of the landfill was maintained throughout this reporting period; therefore, there was no potential for direct human exposure to asbestos contained in sludge or metals contained in grit or shot.

4.2 Groundwater and Surface Water Impact

The sludge and soils containing concentrations of the Site compounds at concentrations exceeding the cleanup standards are isolated within the landfill and the integrity of the landfill was maintained throughout this reporting period. Therefore, the sludge or soils no longer represent a continuing source of VOCs or metals to groundwater or surface water.

The groundwater points of compliance are Lower Sand Unit monitoring wells located adjacent to the containment facility (MW-2) and at the downgradient boundaries of the Site (1-20, 2-27, 6-26, and 7-26). The locations of the points of compliance are shown on Figure 3.1. In the first 5-year review of the groundwater monitoring program conducted in November 2003, it was demonstrated that compliance with cleanup standards was achieved and maintained at all monitoring points except 1-20 and 7-26. Therefore, routine monitoring of the remaining compliance points is no longer required.

The 2023 groundwater sampling event was conducted on November 30, 2023. Samples were collected from monitoring wells 1-20 and 7-26. Data results for fall 2023 show an increase in vinyl chloride above site cleanup levels. The analytical data for cis-1,2-DCE and vinyl chloride in monitoring wells 1-20 and 7-26 have been graphed as shown on Figures 4.1 and 4.2. To assist in the evaluation of chemical presence at these locations, linear trend lines have been added to the graphs. The graphs show overall downward trends in the cis-1,2-DCE concentrations in these wells since the baseline monitoring event was conducted in September 1998. The graphs also show a downward trend in vinyl chloride concentrations in well 1-20 and stable concentrations in well 7-26.

For the last 8 years the concentrations of cis-1,2-DCE in well 1-20 have continued to show some variability hovering at or below the clean-up criteria for the site. Data results for fall 2023 show an increase in vinyl chloride above site cleanup levels. These detections are consistent with the historic data and the general decreasing trend of both contaminates continues. This increase will be further assessed following the fall 2024 sampling event. Continued monitoring is scheduled and appropriate.

The presence of cis-1,2-DCE, vinyl chloride, and ethene suggest that natural attenuation is occurring at the site. We will continue to monitor the MNA parameters and prepare trend graphics in subsequent sampling rounds. It is expected that, over time, the natural attenuation process will restore the Lower Sand groundwater to a quality that meets or exceeds the cleanup standards.

5. Conclusions and Recommendations

The O&M activities and Compliance Monitoring performed during this reporting period demonstrate that the RA remains effective in mitigating the concerns for human health exposure and groundwater impact that are stated in the Cleanup Action Plan. There is no further remedial action required at the Site at this time.

Tables

Table 3.1
Compliance Monitoring Points
Bonneville Power Administration Site
Taylor Way
Tacoma, Washington

Well No.	Hydraulic Monitoring	Water Quality
1-20	X	X
2-27	X	
6-26	X	
7-26	X	X
9-30	X	
MW-1	X	
MW-2	X	

BPA Annual Rpt2023-T3.1-3.5 Page 1 of 1

Table 3.2 Summary of Groundwater Elevations Bonneville Power Administration Site Taylor Way Tacoma, Washington

	Top of									
Well No.	Casing*	Nov. 98	May 99	Nov. 99	May 00	Nov. 00	May 01	Nov. 01	May 02	Nov. 02
1-20	8.40	2.00	2.94	2.24	3.42	3.10	3.15	2.24	3.70	2.01
2-27	14.92	3.14	5.13	3.48	5.44	4.34	5.00	3.58	6.07	2.96
6-26	13.27	2.38	4.09	2.77	4.55	3.57	4.06	2.87	4.87	2.41
7-26	12.73	1.85	2.91	2.14	3.55	2.94	3.02	2.14	3.54	1.90
9-30	14.65	3.76	5.74	4.22	5.99	4.96	5.66	4.28	6.43	3.49
MW-1	13.97	2.42	4.03	1.87	4.48	4.06	4.11	NM	4.88	3.85
MW-2	12.32	2.12	3.03	2.42	3.92	3.23	3.28	2.25	3.85	NM
	Top of									
Well No.	Casing*	May. 03	Nov. 03	Nov. 04	Nov. 05	Nov. 06	Nov. 07	Nov. 08	Nov. 09	Nov. 10
1-20	8.40	3.58	3.04	3.01	3.66	1.04	2.71	4.29	-0.36	4.39
2-27	14.92	5.76	5.02	4.81	5.34	3.18	4.16	6.36	6.30	6.60
6-26	13.27	4.66	4.04	3.86	4.59	2.49	3.45	5.73	5.39	5.76
7-26	12.73	3.46	2.86	2.92	3.58	1.91	2.73	4.15	3.20	4.38
9-30	14.65	6.28	5.68	5.52	5.82	3.82	4.74	6.27	6.14	6.68
MW-1	13.97	4.73	4.02	3.94	4.57	NM	3.11	5.56	5.42	5.59
MW-2	12.32	3.79	2.92	3.15	3.8	2.00	2.90	4.47	4.39	4.45
	Top of									
Well No.	Casing*	Nov. 11	Nov. 12	Nov. 13	Nov. 14	Nov. 15	Nov. 16	Nov. 17	Nov. 18	Nov. 19
1-20	8.40	2.71	4.78	3.80	4.10	4.55	4.93	4.09	2.28	2.37
2-27	14.92	3.93	6.93	5.94	5.96	6.79	7.53	5.85	3.21	3.02
6-26	13.27	3.27	6.09	4.99	5.2	5.96	6.80	5.30	2.62	2.47
7-26	12.73	2.62	4.72	3.79	4.04	5.47	4.01	4.47	2.21	1.87
9-30	14.65	4.43	7.01	6.21	6.25	6.70	7.26	6.54	3.68	3.88
MW-1	13.97	3.17	5.92	4.92	5.12	5.71	6.51	4.30	1.99	2.37
MW-2	12.32	2.74	4.90	3.88	4.14	4.66	5.15	4.25	2.26	3.05
Well No.	Top of Casing*	Nov. 20	Nov. 21	Nov. 22	Nov. 23					
1-20	12.40	2.37	4.7	2.4	4.22					
2-27	14.92	3.02	7.12	3.02	4.37					
6-26	13.27	2.47	6.49	2.57	4.22					
7-26	12.73	1.87	4.93	2.8	4.93					
9-30	14.65	3.88	6.35	3.26	5.07					
MW-1	13.97	2.37	6.16	2.34	4.81					
MW-2	12.32	3.05	4.82	2.32	4.06					

Notes:

BPA Annual Rpt2023-T3.1-3.5 Page 1 of 1

 ^{*} Elevation surveyed January 2010. Vertical Datum: NGVD 29. Water level elevations updated based on 2010 survey. 1-20 replaced 2020
 NM Not measured

Table 3.3 Groundwater Compliance Monitoring Analytical Parameters Bonneville Power Administration Site Taylor Way Tacoma, Washington

Parameter ⁽¹⁾	Cleanup Level ⁽²⁾ (μg/L)
cis-1,2-Dichloroethene	70
Dichloromethane (methylene chloride)	5
Tetrachloroethene	5
Trichloroethene	5
Vinyl chloride	10*

Notes:

- (1) Analytical parameter list modified in January 2004.
- Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, updated November 2001.
- * Practical Quantitation Limit (PQL), "Washington State Department of Ecology Toxics Cleanup Program, Guidance on Sampling and Data Analysis Methods," January 1995.

Table 3.4 Analytical Results Summary Bonneville Power Administration Site Taylor Way Tacoma, Washington

S	Sample Location: Sample		1-20 GW-113023-MM-		7-26 GW-113023-MM-7-
	ID: Sample Date:		1-20 11/30/2023	7-26 11/30/2023	26-DUP 11/30/2023 (Duplicate)
Parameter	Units	Cleanup Level ⁽¹⁾			(= up)
Volatile Organic Compo	unds				
cis-1,2-Dichloroethene	$\mu g/L$	70	28	5.2	5.3
Methylene chloride	$\mu g/L$	5	5.0U	5.0U	5.0U
Tetrachloroethene	$\mu g/L$	5	1.0U	1.0U	1.0U
Trichloroethene	$\mu g/L$	5	1.0U	1.0U	1.0U
Vinyl chloride	$\mu g/L$	10*	2.5	0.50	0.5

Notes:

⁽¹⁾ Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC). Version 3.1, updated November 2001.

J Estimated.

U Non-detect at associated value.

^{*} Practical quantitation limit.

Concentration exceeds the cleanup standard.

Table 3.5

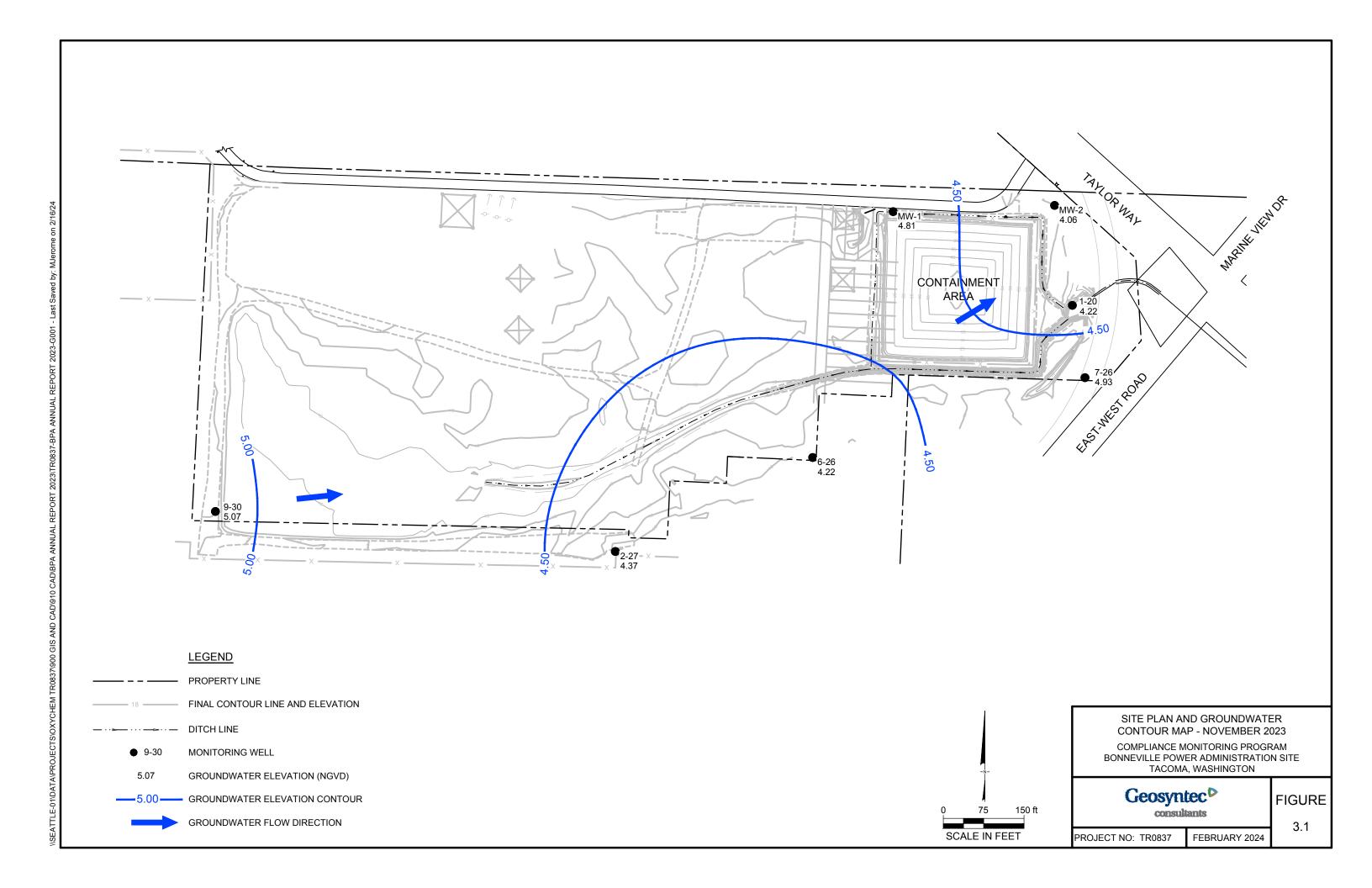
Monitored Natural Attenuation Analytical Results Summary
Bonneville Power Administration Site
Taylor Way
Tacoma, Washington

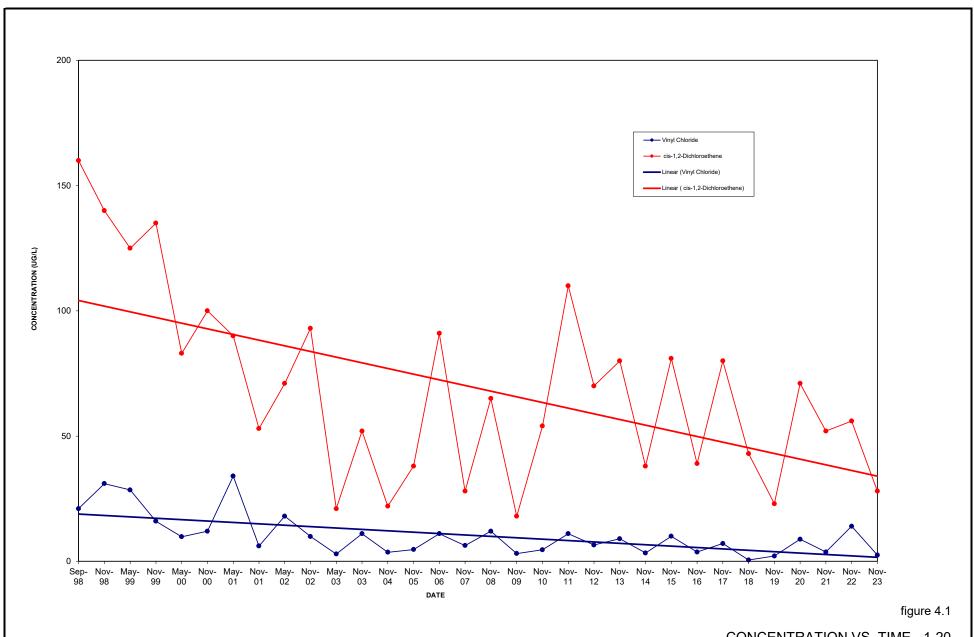
	Sample Location:	1-20	7-26	7-26
	Sample ID: Sample Date:	GW-113023-MM-1- 20 11/30/2023	GW-113023-MM-7- 26 11/30/2023	GW-113023-MM-7- 26-DUP 11/30/2023 (Duplicate)
Parameter Dissolved Gases	Units			(Suprieute)
Ethane	μg/L	0.010U	0.010U	0.010U
Ethene	$\mu g/L$	0.010U	0.010U	0.010U
Methane	$\mu g/L$	0.16	0.59	0.55
Metals				
Iron	$\mu g/L$	41000	33000	31000
Iron (dissolved)	$\mu g/L$	40000	31000	31000
Manganese	$\mu g/L$	2700	3600	3500
Manganese (dissolved)	$\mu g/L$	2700	3300	3400
General Chemistry				
Chloride	$\mu g/L$	30	22	25
Nitrate (as N)	$\mu g/L$	0.15U	0.15U	0.15U
Sulfate	$\mu g/L$	45	25	22
Total organic carbon (TOC	C) µg/L	33	50 U	18

Notes:

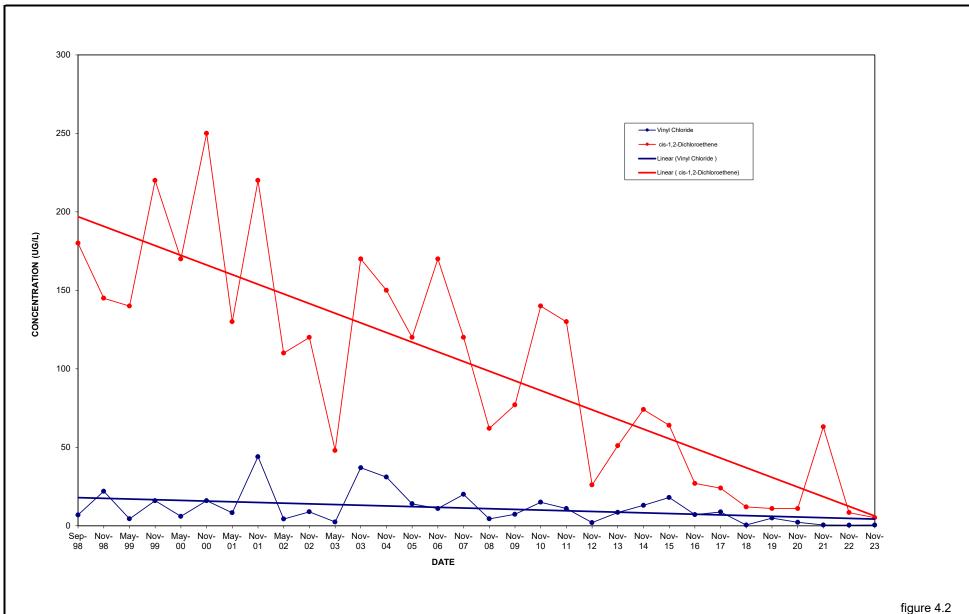
Concentration exceeds the cleanup standard.

⁽¹⁾ Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, updated November 2001.


J Estimated.


U Non-detect at associated value.

^{*} Practical quantitation limit.


⁻ Not Sampled

Figures

CONCENTRATION VS. TIME - 1-20 COMPLIANCE MONITORING PROGRAM BONNEVILLE POWER ADMINISTRATION Tacoma, Washington

CONCENTRATION VS. TIME - 7-26 COMPLIANCE MONITORING PROGRAM **BONNEVILLE POWER ADMINISTRATION** Tacoma, Washington

Appendix A Site Inspection Sheets

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

ACO AT YOU KNOW OCCOM
Comments: If no problems with cap noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.

(Inspector's Name - Please Print)

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SECURITY

Specific Item		No	Yes (If yes give details below)
Perimeter Fence (i.e. damage or excessive deterioration)			
Gates and Locks (missing damaged or inoperable)			
Signs (damaged, missing or no longer readable)			
Comments: If no problems with perimeter fence, gates or locks noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.	r locks noted - state "No tive actions taken, use ac	Problems Noted." Iditional sheets if ne	
			INO DURKINS MOTEO

Rick Bibbar

(Inspector's)Name - Please Print)

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SILE

Specific Item	No	Yes (If ves give details below)
Erosion or Settlement of Low Permeability Cap	7	
		the strategies of the strategi
Surface Cracking or Failure of Cap Along Slopes	7	
Emergence/Presence of Deep Rooted Vegetation (i.e. trees, brush, etc.)		
Vegetation Burnout	5	
Excessive Growth of Vegetation Cap Drainage Swale		
Presence of Burrowing Mammals		A COMMON COMPROR COMMON COMPROR COMMON COMPR
Well Protective Casings and Appurtenances in Acceptable Condition		
Erosion of Drainage Swale/Ditch		
Comments: If no problems with cap noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.	litional sheets if neo	ressary. No poblems noted
	The second secon	

Tinspector's Name - Please Print)

BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE INSPECTION LOG SHEET TACOMA, WASHINGTON

SECURITY

		1	
Specific Hem		No	Yes (If yes give details below)
Perimeter Fence (i.e. damage or excessive deterioration)			
			3
Gates and Locks (missing damaged or inoperable)			Account of the contract of the
		,	
Signs (damaged, missing or no longer readable)			
Comments: If no problems with perimeter fence, gates or locks noted - state "No Problems Noted."	locks noted - state "No	Problems Noted."	
TI DI ODI CHIMI CHIMINE CANCEL CHIMINE CANCEL CHIMINE CONTROLL CHIMINE CHIMINE CONTROLL CHIMINE CHIM			
	an	no business water	\mathcal{S}

(Inspector's Name - Please Print)

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SITE

Specific Item	No	Yes (If yes give details below)
Erosion or Settlement of Low Permeability Cap	7	
Surface Cracking or Failure of Cap Along Slopes	1	
Emergence/Presence of Deep Rooted Vegetation (i.e. trees, brush, etc.)	/	
Vegetation Burnout		
Excessive Growth of Vegetation Cap Drainage Swale		
Presence of Burrowing Mammals		
Well Protective Casings and Appurtenances in Acceptable Condition		
Erosion of Drainage Swale/Ditch		
Comments: If no problems with cap noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.	ditional sheets if ne	ressary. No problems miles

Inspector's Name - Please Print)

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SECURITY

Specific Hem		No	Yes (If yes give details below)
Perimeter Fence (i.e. damage or excessive deterioration)			
Gates and Locks (missing damaged or inoperable)			
Signs (damaged, missing or no longer readable)			
		<u></u>	
Comments: If no problems with perimeter fence, gates or locks noted - state "No Problems Noted." If problems noted summarize problems helow and corrective actions taken tuse additional sheets if r			
If problems noted summarize problems below and corrective actions taken, use additional sheets it necessary.	locks noted - state "No	Problems Noted."	
	locks noted - state "No	Problems Noted."	essary.
	locks noted - state "No	Problems Noted." dditional sheets if neo	essary.

(mspector's Name - Please Print)

R. L. Kiehuc

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SITE

Specific Item	No	Yes (If yes give details below)
Erosion or Settlement of Low Permeability Cap	_	
Surface Cracking or Failure of Cap Along Slopes		
Emergence/Presence of Deep Rooted Vegetation (i.e. trees, brush, etc.)		
Vegetation Burnout		
Excessive Growth of Vegetation Cap Drainage Swale		
Presence of Burrowing Mammals		
Well Protective Casings and Appurtenances in Acceptable Condition		
Erosion of Drainage Swale/Ditch		
Comments: If no problems with cap noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.	litional sheets if nec	ressary.
	A STATE OF THE STA	
		Lik Khan

(Inspector's Name - Please Print)

INSPECTION LOG SHEET BONNEVILLE POWER ADMINISTRATION/OXYCHEM SITE TACOMA, WASHINGTON

SECURITY

CECCINIII			
Specific Item		No	Yes (If yes give details below)
Perimeter Fence (i.e. damage or excessive deterioration)			
Gates and Locks (missing damaged or inoperable)			
Signs (damaged, missing or no longer readable)			
Comments: If no problems with perimeter fence, gates or locks noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.	r locks noted - state "No tive actions taken, use a	Problems Noted." dditional sheets if ne	cessary. No publicy noted

(mspector's Name - Please Print) Kick Brober

Appendix B Groundwater Sample Collection Summary Logs

Table B Sample Collection Data Sheet - Groundwater Sampling Program Occidental Chemical Corporation BPA Site Tacoma, Washington

SAMPLE COLLECTION DATA SHEET - GROUNDWATER SAMPLING PROGRAM

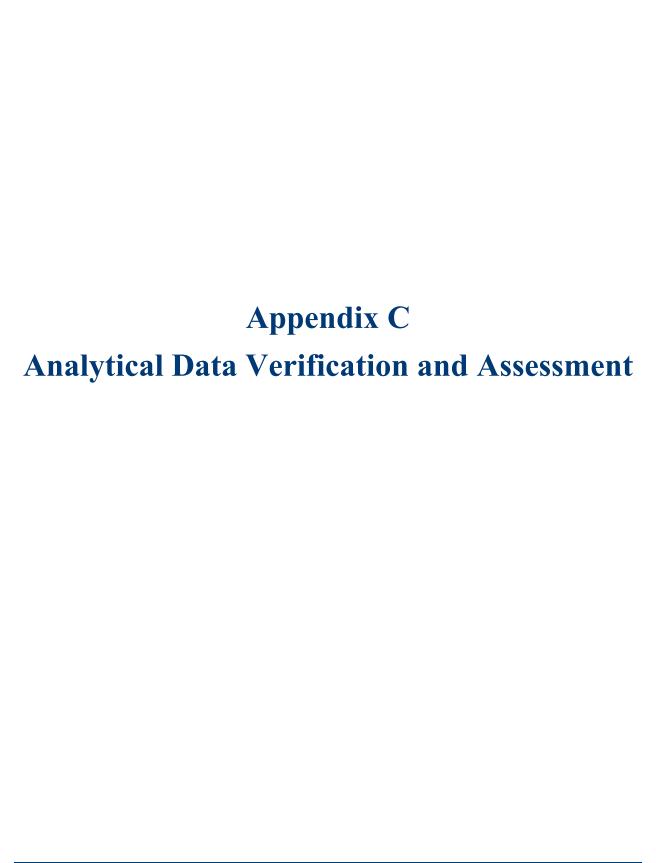
PROJECT NAME BPA PROJECT NO. TR0837

SAMPLING CREW MEMBERS Matt Mohr SUPERVISOR R. Bieber

DATE OF SAMPLE COLLECTION 11/30/2023

[Note: For 2" dia. well, 1 ft. = 0.14 gal (imp) or 0.16 gal (us)]

Sample I.D.	Well Number	Measuring Point Elev.	Water Depth	Water Elevation	Volume Flow	Volume Purged	Field pH	Field Temp.	Field Cond.	Time	Sample Description
Number		(NGVD)	(ft. btoc)	(NGVD)	(ml/min)	(gal US)		(C)	(uS/cm)		& Analysis
GW-113023-MM-1-20	1-20	12.40	8.18	4.22	1	8	6.67	10.3	779	14:40	Clear
GW-113023-MM-7-26	7-26	12.73	7.6	5.13	-	9	6.85	12.3	599	12:45	Clear


Additional Comments: SAMPLE SET: 3 x 40ml glass w/ HCl preserve for VOC

Copies to: (1) MS / MSD taken

(2) field duplicate taken

Geosyntec consultants

BPA Annual Rpt2023-APPB Page 1 of 1

Data Verification Report

January 11, 2024

То	Rick Bieber-Geosyntec	Project No.	11218874
Copy to	File	DVR No.	N/A
From	Sheri Finn/eew/10	Contact No.	716-205-1977
Project Name	Biennial Groundwater Sampling-Tacoma	Email	Sheri.finn@ghd.com
Subject	Analytical Results and Data Verification Biennial Groundwater Sampling Glenn Springs Holdings, Inc Tacoma Tacoma, Washington November 2023		

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

1. Introduction

This document details a reduced validation of analytical results for groundwater samples collected in support of the Biennial Groundwater Monitoring at the Tacoma Site located in Tacoma, Washington during November 2023. Samples were submitted to ALS Environmental Laboratory located in Everett, Washington. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spike/matrix spike duplicates (MS/MSD), and field QA/QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 1 and applicable guidance from the documents entitled:

- i) January 2017 Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002)
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", United States Environmental Protection Agency (USEPA) 540-R-2017-001

Items i) and ii) will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses is summarized in Table 3. The sample chain of custody document and analytical report were used to determine sample holding times. Samples were analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries-Organic Analysis

In accordance with the method employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compounds (VOC) determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries met the laboratory criteria.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the method employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all compounds of interest. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with known concentrations of the analytes of concern and analyzed as MS/MSD samples. The relative percent difference (RPD) between the MS and MSD is used to assess analytical precision.

MS/MSD analysis was performed as specified in Table 1.

The MS/MSD sample was spiked with all analytes of interest. All percent recoveries and RPD values were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision.

7. Field QA/QC Samples

The field QA/QC consisted of one trip blank and one field duplicate sample sets.

7.1 Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, a trip blank was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

7.2 Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, one field duplicate sample was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with the duplicate sample must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criterion is one times the RL value.

All field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

8. Analyte Reporting

The laboratory evaluated detected results down to the laboratory's method detection limit (MDL) for each analyte. No positive analyte detections less than the RL but greater than the MDL were reported. Non-detect results were presented as non-detect at the RL in Table 2.

9. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable without qualification.

Regards

Sheri Finn Analyst

Table 1

Sample Collection and Analysis Summary Biennial Groundwater Monitoring Glenn Springs Holdings, Inc. - Tacoma BPA Tacoma, Washington November 2023

							Ana	alysis		
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Volatiles	Dissolved Gases	Metals	Total Organic Carbon	Chloride,Nitrate, Sulfate	Comments
GW-113023-MM-1-20	MW1-20	Water	11/30/2023	15:00	Х	Х	Χ	Х	Χ	MS/MSD
GW-113023-MM-7-26	MW7-26	Water	11/30/2023	12:45	Х	Χ	Χ	Χ	X	
GW-113023-MM-7-26-DUP	MW7-26	Water	11/30/2023	12:50	Х	Χ	Χ	Χ	X	Field Duplicate of GW-113023-MM-7-26
Trip Blank	-	Water	11/30/2023	08:00	Χ					Trip Blank

Notes:

"-" - Not applicable

MS/MSD - Matrix Spike/Matrix Spike Duplicate

Table 2

Analytical Results Summary Biennial Groundwater Monitoring Glenn Springs Holdings, Inc. - Tacoma BPA Tacoma, Washington November 2023

Location ID: Sample Name: Sample Date:		MW1-20 GW-113023-MM-1-20 11/30/2023	MW7-26 GW-113023-MM-7-26 11/30/2023	MW7-26 GW-113023-MM-7-26-DUP 11/30/2023 Duplicate	Trip Blank Trip Blank 11/30/2023
Parameters	Unit				
Volatile Organic Compounds					
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2.5	0.50 U	0.50 U	0.50 U
Dissolved Gases					
Ethane	mg/L	0.010 U	0.010 U	0.010 U	
Ethene	mg/L	0.010 U	0.010 U	0.010 U	
Methane	mg/L	0.16	0.59	0.55	
Metals					
Iron	μg/L	41000	33000	31000	
Iron (dissolved)	μg/L	40000	31000	31000	
Manganese	μg/L	2700	3600	3500	
Manganese (dissolved)	μg/L	2700	3300	3400	

Table 2

Analytical Results Summary Biennial Groundwater Monitoring Glenn Springs Holdings, Inc. - Tacoma BPA Tacoma, Washington November 2023

Location ID:		MW1-20	MW7-26	MW7-26	Trip Blank
Sample Name:		GW-113023-MM-1-20	GW-113023-MM-7-26	GW-113023-MM-7-26-DUP	Trip Blank
Sample Date:		11/30/2023	11/30/2023	11/30/2023	11/30/2023
				Duplicate	
Parameters	Unit				
General Chemistry					
Chloride	mg/L	30	22	25	
Nitrate	mg/L	0.15 U	0.15 U	0.15 U	
Sulfate	mg/L	45	25	22	
Total organic carbon (TOC)	mg/L	33	50 U	18	

Notes:

U - Not detected at the associated reporting limit

[&]quot;--" - Not analyzed

Table 3

Analytical Method Biennial Groundwater Monitoring Glenn Springs Holdings, Inc. - Tacoma BPA Tacoma, Washington November 2023

			Holding Time
			Collection to
Parameter	Method	Matrix	to Analysis
			(Days)
Volatile Organic Compounds (VOCs)	SW-846 8260B	Water	14
Dissolved Gases	RSK-175	Water	28
Metals	EPA 200.8	Water	180
Total Organic Carbon(TOC)	SM 5310C	Water	28
Chloride, Nitrate, Sulfate	EPA 300	Water	48 hours/ 28

Notes:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

- "Methods for Chemical Analysis of Water and Waste," EPA-600/4-79-020,
 revised March 1983, with subsequent revisions

SM - "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992,
 with subsequent revisions

Appendix D Analytical Database

Sample Location: Sample ID: Sample Date:		1-20 W-7412-092398-MW1-20-D 9/23/1998	1-20 GMW1-20-1198-TF 11/5/1998	1-20 MW1-20-0599-TF 5/12/1999	1-20 RMWD1-0599-TR 5/12/1999 Duplicate	1-20 MW1-20-1199-TR 11/8/1999	1-20 MWD1-1199-TRN 11/8/1999 Duplicate	1-20 AW1-20-0500-TF 5/9/2000	1-20 MW1-20-1100-TF 11/9/2000	1-20 FD1-1100-TR 11/9/2000 Duplicate	1-20 MW1-20-0501-TR 5/21/2001	1-20 FD1-0501-TR 5/21/2001 Duplicate	1-20 MW1-20-1101-TF 11/9/2001	1-20 FD1-1101-TR 11/9/2001 Duplicate
Parameter	Units													
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	160 J 5 J 5 J 9 J 21 J	140 ^J 5 5 8.0 31	130 5 5 4.1 J 25	120 5 5 4.4 J 32	130 1.0 U 1.0 U 3.4 16	140 1.0 U 1.0 U 3.6 16	83 2.3 U 1.0 U 2.2 9.8	100 4.0 U 4.0 U 1.2 J 12	100 10 U 10 U 10 U 12	90 2.5 U 2.5 U 1.7 J 33	89 2.5 U 2.5 U 1.7 J 34	51 2.5 U 2.5 U 1.3 J 5.8	55 2.5 U 2.5 U 1.3 J 6.4
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	3.5 ^J 1.3 ^J 0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.5 - 5	5.2 5 J	4.8	4.2	4.2 U 2.7 U	4.2 u - 2.7 u	4.2 u - 2.7 u	3.0 uj 2.7 u	3.0 UJ 2.7 U	1.0 U 3.0 UJ	1.0 U 3.0 UJ	1.0 U - 3.0 U	1.0 U - 3.0 U

Dissolved Gases

μg/L μg/L μg/L Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		1-20 MW1-20-0502-TF 5/1/2002	1-20 FD1-0502-TR 5/1/2002 Duplicate	1-20 MW1-20-1102-DC 11/14/2002	1-20 FD1-1102-DC 11/14/2002 Duplicate	1-20 1-20-0503 5/8/2003	1-20 FD1-0503 5/8/2003 Duplicate	1-20 1-20-1103 11/11/2003	1-20 1-20-1104 11/11/2004	1-20 1-20-1105-NR-001 11/18/2005	1-20 1-20-1105-NR-002 11/18/2005 Duplicate	1-20 1-20-1106-ILM-001 11/3/2006	1-20 1-20-1107-ILM-0010 11/2/2007	1-20 GW-111408-TG-BPA-1-20-01 11/14/2008
Parameter	Units													
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	72 2.5 u 2.5 u 2.5 u 18	71 2.5 U 2.5 U 2.5 U 18	94 2.5 uj 2.5 u 2.0 j 10	91 2.5 uj 2.5 u 1.9 j 9.8	22 UJ 2.5 U 2.5 U 2.5 U 3.1	19 2.5 u 2.5 u 2.5 u 2.7	52 2.5 U 2.5 U 2.5 U	22 J 2.5 U 2.5 U 2.5 U 3.6	38 J 2.5 U 2.5 U 2.5 U 4.7 J	160/ 2.5uJ 2.5uJ 2.5uJ 14J	91 2.5u 2.5u 0.43 11	28 J 2.5u 2.5u 2.5u 6.3	65 2.5 U 2.5 U 0.26 J 12
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 U 3.0 U	1.0 u 3.0 u	1.0 U 3.0 U	1.0 U 3.0 U	0.4 3.0 U	0.7 3.0 u	0.7 3.0 U	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -

Dissolved Gases

μg/L μg/L μg/L Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		1-20 GW-110609-TG-1-20 11/6/2009	1-20 GW-111610-JS-1-20 11/16/2010	1-20 GW-111610-JS-1-20 11/16/2010 Duplicate	1-20 GW-111711-AK-1-20 11/17/2011	1-20 GW-112912-MD-1-20 11/29/2012	1-20 GW-112613-BP-1-20 11/26/2013	1-20 GW-111814-BP-1-20 11/18/2014	1-20 GW-113015-BP-1-20 11/30/2015	1-20 GW-111716-NT-1-20 11/17/16
Parameter	Units									
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	18 2.5U 2.5U 0.17J 3.1	54 2.5 U 2.5 U 2.5 U 4.6	50 2.5 U 2.5 U 2.5 U 4.2	110 2.5 U 2.5 U 2.5 U 11	70 2.0 U 0.50 U 0.10 J 6.5	80 2.0 U 0.50 U 0.50 U 9.0	38 2.0 U 0.50 U 0.50 U 3.3	81 2.0 U 0.50 U 0.50 U 10	39 J 2.5 U 2.5 U 2.5 U 3.7
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - -	- - - -	- - - -	- - -	- - - -	- - - -	- - - -	- - - -	- -
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L									

Sample Location: Sample ID: Sample Date:		1-20 GW-201117-NT-1-20 11/20/17	1-20 GW-201117-NT-FD1 11/20/17 Duplicate	1-20 GW-110618-NT-1-20 11/06/2018	1-20 GW-112519-NT-1-20 11/25/2019	1-20 GW-112519-NT-FD3 11/25/19 Duplicate	1-20 GW-111820-NT-1-20 11/18/2020	1-20 1-20-111721-RB 11/17/2021	1-20 1-20-111722-MM 11/16/2022	1-20 1-20-111722-MM 11/16/2022 Duplicate
Parameter	Units									
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	80 2.5 U 2.5 U 2.5 U 7.1	75 2.5 U 2.5 U 2.5 U 5.5	43 2.5 U 2.5 U 2.5 U 0.5 U	23 2.5 U 0.15 U 0.46 J 2.1	23 2.5 U 0.15 U 0.15 U 2.3	71J 2.5 U 2.5 U 2.5 U 8.8	52 5.0 U 2.0 U 2.0 U 3.7	56 5.0 U 2.0 U 2.0 U 14	59 5.0 U 2.0 U 2.0 U 15
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -				
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - -	- - - -	- - - -	- - - -	- - - -	45900 3070 2720	60000 2700	38000 2800 2600	37000 2700 2600
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L						11J 6.9 6400	0.01U 0.01U 0.11	- - -	
General Chemistry Chloride Nitrate (as N) Sulfate Total Organic Carbon (TOC)	mg/l mg/l mg/l mg/l						30.2 0.050J 43.3 31.2	34 0.66 37 36	31 0.15U 27 36	31 0.15U 26 37

Sample Location: Sample ID: Sample Date:		1-20 GW-113023-MM-1-20 11/30/23	7-26 W-7412-092398-MW7-26-D0 9/23/1998	7-26 GMW7-26-1198-TI 11/4/1998	7-26 F MWD1-1198-TR 11/4/1998 Duplicate	7-26 MW7-26-0599-TF 5/12/1999	7-26 RMW7-26-1199-TF 11/8/1999	7-26 RMW7-26-0500-TF 5/10/2000	7-26 MW7-26-1100-TI 11/9/2000	7-26 SMW7-26-0501-TF 5/21/2001	7-26 MW7-26-1101-TF 11/8/2001	7-26 MW7-26-0502-TF 5/1/2002	7-26 MW7-26-1102-DC 11/14/2002
Parameter	Units												
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	28 5.0U 1.0U 1.0U 2.5	180 ^J 5.3 5 10J 6.9J	140 _J 5 5 9.2 22	150j 5 5 9.4 22	140j 5 5 5.5 4.4	220 D 1.0 U 1.0 U 4 16	170 D 5.3 D 1.3 U 1.8 6.0	250 8.0 U 8.0 U 8.0 U 16	130 2.5 U 2.5 U 1.4 J 8.3	220 2.5 u 2.5 u 2.5 u 44	110 2.5 U 2.5 U 2.5 U 4.3	120 2.5 UJ 2.5 UJ 2.0 J 8.9
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L		3.5 1.3 0.75	3.5 1.3 0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	41000 2700 2700	5.4 - 5	7.8 - 5	6.4	7.5 _J	5.5 B - 2.7 U	4.2 - 2.7 U	3.8 J 2.7 U	7.8 3.0 uj	7.2 3.0 U	3.0 U	6.4 3.0 U
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L	0.010U 0.010U 0.16											

Sample Location: Sample ID: Sample Date:		7-26 7-26-0503 5/8/2003	7-26 7-26-1103 11/10/2003	7-26 FD1-1103 11/10/2003 Duplicate	7-26 7-26-1104 11/11/2004	7-26 FD1-1104 11/11/2004 Duplicate	7-26 7-26-1105-NR 11/18/2005	7-26 -26-1106-ILM-00 11/3/2006	7-26 7-26-1106-ILM-003 11/3/2006 Duplicate	7-26 7-26-1107-ILM 11/2/2007	7-26 FDUP-1107-ILM (11/2/2007 Duplicate	7-26 GW-111408-TG-BPA-7-26-04 11/14/2008	7-26 4GW-111408-TG-BPA-FD-05 11/14/2008 Duplicate
Parameter	Units												
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	48 2.5 U 2.5 U 2.5 U 2.4	170 2.5 u 2.5 u 1.4 J 37	220 2.5 U 2.5 U 1.5 J 37	150 2.5 u 2.5 u 1.3 J 31	150 2.5 U 2.5 U 1.3 J 31	120 2.5 u 2.5 u 2.5 u 14	170J 2.5 U 2.5 U 0.78J 11	170 2.5 U 0.24J 0.85J 11	110 2.5 u 2.5 u 2.5 u 16	100 2.5 u 2.5 u 2.5 u 2.5 u	62 2.5 U 2.5 U 0.34 J 4.4	94 2.5 U 2.5 U 0.44 J 7.5
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	7.1 - 3.0 U	7.6 3.0 U	8.1 3.0 U	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -
Dissolved Gases													

μg/L μg/L μg/L Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		7-26 GW-110609-TG-7-26 11/6/2009	7-26 GW-110609-TG-FD1 11/6/2009 Duplicate	7-26 GW-111610-JS-7-26 11/16/2010 Duplicate	7-26 GW-111711-AK-7-26 11/17/2011	7-26 GW-111711-AK-D1 11/17/2011 Duplicate	7-26 GW-112912-MD-7-26 11/29/2012	7-26 GW-112912-MD-FD1 11/29/2012 (Duplicate)	7-26 GW-112613-BP-7-26 11/26/2013
Parameter	Units								
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L μg/L	77 2.5 U 2.5 U 0.40J 7.3	91 2.5 U 2.5 U 0.39J 9.7	140 2.5 U 2.5 U 0.30 J 15 J	130 2.5 U 2.5 U 0.30 J 11	130 2.5 U 2.5 U 0.31 J 9.9	26 2.0 U 0.50 U 0.21 J 2.0 J	40 2.0 U 0.50 U 0.22 J 3.7 J	51 J 2.0 U 0.50 U 0.22 J 8.5 J
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L								

Sample Location: Sample ID: Sample Date:		7-26 GW-112613-BP-FD-1 11/26/2013	7-26 GW-111814-BP-7-26 11/18/2014	7-26 GW-111814-BP-FD-1 11/18/2014	7-26 GW-120115-BP-7-26 12/1/2015	7-26 GW-120115-BP-FD-1 12/1/2015	7-26 GW-111716-NT-7-26 11/17/2016	7-26 GW-111716-NT-FD-1 11/17/2016	7-26 GW-201117-NT-7-26 11/20/2017
Parameter	Units	(Duplicate)		(Duplicate)				Duplicate	
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L μg/L	100 J 2.0 U 0.50 U 0.26 J 23 J	74 2.0 U 0.50 U 0.23 J 13	73 2.0 U 0.50 U 0.20 J 13	64 2.0 U 0.50 U 0.20 J 18	61 2.0 U 0.50 U 0.20 J 17	27 2.5 U 2.5 U 0.23 J 7.1	38 2.5 U 2.5 U 2.5 U 11	24J 2.5 U 2.5 U 0.21J 8.8
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -

Dissolved Gases

μg/L μg/L μg/L Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		7-26 GW-110618-NT-7-26 11/6/2018	7-26 GW-110618-NT-FD1 11/6/2018	7-26 GW-112519-NT-7-26 11/25/2019	7-26 GW-111820-NT-7-26 11/18/2020	7-26 GW-111820-NT-FD-1 11/18/2020	7-26 7-26-111721-RB 11/17/2021	7-26 7-26-111721-RB 11/17/2021	7-26 7-26-111626-MM 11/16/2022
Parameter	Units					Duplicate		Duplicate	
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	12 2.5 U 2.5 U 0.22 J 0.5 U	12 2.5 U 2.5 U 0.22 J 0.5 U	11 2.5 U 2.5 U 0.32 J 4.9	11 2.5 U 2.5 U 2.5 U 2.5 U	10 2.5 U 2.5 U 2.5 U 2.1	6.3 5.0 U 2.0 U 2.0 U 0.49	6.6 5.0 U 2.0 U 2.0 U 0.52	8.4 5.0 U 2.0 U 2.0 U 0.41
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	- - -				
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	- - - -	- - - -	- - - -	28100 1710J 3220 2760	28000 666J 3220 2760	38000 3400	36000 3400	28000 2700 2700
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L				64 9.6 7000	67 11 6300	0.01U 0.01U 0.18	0.01U 0.01U 0.14	- - -
General Chemistry Chloride Nitrate (as N) Sulfate Total Organic Carbon (TOC)	mg/l mg/l mg/l mg/l				29.9 0.5U 40.4 16.4	29.5 0.5U 40 16.5	20 0.31U 24 19	15 0.31U 26 20	24 0.15U 28 15

Sample Location: Sample ID: Sample Date:		7-26 GW-1130223-MM-7-26 11/30/2023	7-26 GW-1130223-MM-7-26 11/30/2023	MW1 W-7412-092298-MW1-DG 9/22/1998	MW1 MW1-1198-TR 11/4/1998	MW1 MW1-0599-TR 5/11/1999	MW1 MW1-1199-TR 11/8/1999	MW1 MW1-0500-TR 5/9/2000	MW1 MWD1-0500-TR 5/9/2000 Duplicate	MW1 MW1-1100-TR 11/9/2000	MW1 MW1-0501-TR 5/21/2001	MW1 MW1-1101-DC 11/8/2001	MW1 MW1-0502-TR 5/1/2002
Parameter	Units		Duplicate										
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	5.2 5.0U 1.0U 1.0U 0.5U	5.3 5.0U 1.0U 1.0U 0.5U	5 5 5 2.4 J 0.18 J	5 J 5 J 5 J 5 J 0.18 J	10 5 5 5 5 26	12 1.0 U 1.0 U 1.0 U 13	59 1.0 U 1.0 U 1.0 U 15	88 2.7 U 1.0 U 2.6 11	5.7 4.0 U 4.0 U 4.0 U 2.3	41 2.5 U 2.5 U 2.5 U 16	9.2 2.5 U 2.5 U 2.5 U 0.5U	17 2.5 U 2.5 U 2.5 U 3.7
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L			4.4 1.3 0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	33000 3500 3400	31000 3500 3400	3.2 5	4.5 5 J	4.4	4.2 U 2.7 u	4.2 U 2.7 u	4.2 U - 2.7 u	3.0 uj - 2.7 u	1.0 U 3.0 UJ	1.0 U 3.0 U	1.0 U 3.0 U
Dissolved Gases Ethane Ethene Methane General Chemistry Chloride Nitrate (as N) Sulfate Total Organic Carbon (TOC	μg/L μg/L μg/L mg/l mg/l mg/l mg/l	0.010U 0.010U 0.59 22 0.15U 25 50U	0.010U 0.010U 0.55 25 0.15U 22 18										

						, in the second of the second	Ü							
Sample Location: Sample ID: Sample Date:		MW1 MW-1-1102-DC 11/14/2002	MW1 MW-1-0503 5/8/2003	MW1 MW1-1103 11/11/2003	MW2 W-7412-092298-MW2-DG 9/22/1998	MW2 MW2-1198-TR 11/5/1998	MW2 MW2-0599-TR 5/11/1999	MW2 MW2-1199-TR 11/8/1999	MW2 MW2-0500-TR 5/10/2000	MW2 MW2-1100-TR 11/9/2000	MW2 MW2-0501-TR 5/21/2001	MW2 MW2-1101-TR 11/9/2001	MW2 MW2-0502-TR 5/1/2002	MW2 MW-2-1102-DC 11/14/2002
Parameter	Units													
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	8.6 2.5 UJ 2.5 U 2.5 U 1.1	15 2.5 u 2.5 u 2.5 u 1.4	6.2 2.5 U 2.5 U 2.5 U 0.42 J	100 J 5 5 5 5 J 22 J	72 J 5.3 5 5 23	35 5 5 5 4.4	27 1.0 u 1.0 u 1.0 u 2.0	18 1.0 U 1.0 U 1.0 U 3.0	16 8.0 U 8.0 U 8.0 U 4.0	15 2.5 u 2.5 u 2.5 u 8.9	10 2.5 u 2.5 u 2.5 u 5.0	11 2.5 u 2.5 u 2.5 u 6.1	16 2.5 uj 2.5 u 2.5 u 5.6
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	- - -	3.5 1.3 0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 U - 3.0 U	1.0 U 3.0 U	0.05 U - 3.0 U	5.3	6.0 5 J	7.9 - 5	4.2 U - 2.7 u	4.2 U - 2.7 U	3.0 uj 2.7 u	1.0 U 3.0 UJ	1.0 U - 3.0 U	1.0 U - 3.0 U	1.0 U 3.0 U
Dissolved Gases														

 $\begin{array}{c} \mu g/L \\ \mu g/L \\ \mu g/L \end{array}$ Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		MW2 MW-2-0503 5/8/2003	MW2 MW2-1103 11/11/2003	MW2-27 W-7412-092398-MW2-27-DGV 9/23/1998	MW2-27 V-7412-092398-MW100-D0 9/23/1998 Duplicate	MW2-27 GMW2-27-1198-TF 11/4/1998	MW2-27 MW2-27-0599-TF 5/12/1999	MW2-27 RMW2-27-1199-TF 11/8/1999	MW2-27 MW2-27-0500-TF 5/10/2000	MW2-27 MW2-27-1100-TF 11/9/2000	MW2-27 MW2-27-0501-TF 5/21/2001	MW2-27 MW2-27-1101-TF 11/8/2001	MW2-27 MW2-27-0502-TF 5/1/2002
Parameter	Units												
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	16 2.5 u 2.5 u 2.5 u 6.1	23 2.5 U 2.5 U 2.5 U 5.0	5 10 5 5 J 0.18 J	5 38 5 5 J 0.18 J	5 5.1 5 5 0.18	5 5 5 5 0.49	0.28 J 1.0 U 1.0 U 1.0 U 0.5U	1.2 1.0 U 1.0 U 1.0 U 0.60	10 U 10 U 10 U 10 U 5.0 U	2.5 u 2.5 u 2.5 u 2.5 u 0.84	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	1.0 J 2.5 U 2.5 U 2.5 U 0.80
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	5.3 1.3 0.75	4.4 1.3 0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 U 3.0 U	0.1 3.0 u	4.8 - 5	5.2	5.9	4.5	4.2 U - 2.7 U	4.2 U - 2.7 u	3.0 UJ - 2.7 U	1.0 U 3.0 UJ	1.0 U - 3.0 U	1.2 3.0 u

Dissolved Gases

 $\mu g/L$ Ethane μg/L μg/L Ethene Methane

Sample Location: Sample ID: Sample Date:	М	MW2-27 W2-27-1102-DO 11/14/2002	MW2-27 MW2-27-0503 5/8/2003	MW2-27 2-27-1103 11/10/2003	6-26 W-7412-092398-MW6-26-DC 9/23/1998	6-26 SMW6-26-1198-TF 11/4/1998	6-26 MW6-26-0599-TF 5/12/1999	6-26 MW6-26-1199-TF 11/8/1999	6-26 MW6-26-0500-TF 5/10/2000	6-26 MW6-26-1100-TF 11/9/2000	6-26 MW6-26-0501-TF 5/21/2001	6-26 RMW6-26-1101-TRV 11/8/2001	6-26 MW6-26-0502-TI 5/1/2002	6-26 MW6-26-1102-DC 11/14/2002
Parameter	Units													
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride Semi-Volatiles bis(2-Ethylhexyl)phthalate	μg/L μg/L μg/L μg/L μg/L μg/L	2.5 U 2.5 UJ 2.5 U 2.5 U 0.5 U	2.5 U 2.5 U 2.5 U 2.5 U 2.5 U	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	4.0 J 5 5 5 J 1.7 J	5.1 5 5 5 3.5	4.1 J 5 5 5 5 3.2	3.6 1.0 u 1.0 u 1.0 u 2.5	2.8 1.0 U 1.0 U 0.34 J 3.0	10 U 10 U 10 U 10 U 5.0 U	2.1 J 2.5 U 2.5 U 2.5 U 2.0	2.5 U 2.5 U 2.5 U 2.5 U 1.4	1.6 J 2.5 U 2.5 U 2.5 U 2.3	1.2 J 2.5 UJ 2.5 U 2.5 U 1.0
Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L	-	-	- -	1.3 J 0.75 J	1.3 0.75	- -	-	- -	-	-	-	-	- -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 U 3.0 U	0.2 3.0 U	0.7 3.0 U	5.4 - 5	4.2	6.8 J - 5	4.2 u - 2.7 u	4.2 u - 2.7 u	3.0 ty - 2.7 t	1.0 U 3.0 UJ	0.47766 J - 3.0 U	1.0 U - 3.0 U	1.0 U 3.0 u
Dissolved Gases														

μg/L μg/L μg/L Ethane Ethene Methane

Sample Location: Sample ID: Sample Date:		6-26 6-26-0503 5/8/2003	6-26 6-26-1103 11/10/2003	MW9 W-7412-092398-MW9- 9/23/1998	MW9 DG MW9-1198-TR 11/4/1998	MW9 MW9-0599-TR 5/11/1999	MW9 MW9-30-1199-TF 11/8/1999	MW9-30 1W9-30-0500-TIV 5/9/2000	MW9-30 IW9-30-1100-TI 11/9/2000	MW9-30 AW9-30-0501-TF 5/21/2001	MW9-30 RMW9-30-1101-TFN 11/8/2001	MW9-30 1W9-30-0502-TE 5/1/2002	MW9-30 MW9-30-1102-DC 11/14/2002	MW9-30 MW9-30-0503 5/8/2003
Parameter	Units													
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	1.4 J 2.5 U 2.5 U 2.5 U 2.0	2.5 U 2.5 U 2.5 U 2.5 U 1.1	5 36 5 5 J 5 J0.18	5 6.9 5 5 0.18	5 5 5 5 0.49	2.7u 3.2u 3.2u 3.2u 3.2u 3.2u	1.6 U 1.6 U 1.6 U 1.6 U 1.6 U	10 U 10 U 10 U 10 U 5.0 U	2.5u 2.5u 2.5u 2.5u 0.5u	2.5 U 2.5 U 2.5 UI 2.5 U 0.5 U	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -	- - -	ј 3.5 ј 1.3 ј0.75	3.5 1.3 0.75	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 U 3.0 U	0.3 3.0 U	5.3 - 5	17 J - 5	5 J - 5	8.4 _U - 2.7 _U	8.4 u - 2.7 u	3.0 UJ - 2.7 U	1.0 _J - 3.0 _{UJ}	1.0 U - 3.0 U	1.0 U 3.0 U	1.0 U - 3.0 U	1.0 U - 15.0 _U
Dissolved Gases Ethane Ethene Methane General Chemistry Chloride Nitrate (as N) Sulfate Total Organic Carbon (TOC)	μg/L μg/L μg/L mg/l mg/l mg/l			Notes: B D J U UJ - (1) (2)	< CRDL but >= Instrument Detection Limit (IDL). Compounds at secondary dilution factor. Estimated. Non-detect at associated value. The analyte was not detected above the sample quantitation limit. The reported quantitation is an estimated quantity. Not applicable. Analytical parameter list modified in January 2004. Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, updated November 2001. Practical Quantitation Limit (PQL), "Washington State Department of Ecology Toxics Cleanup Program, Guidance on Sampling and Data Analysis Methods," January 1995.									

Table D.1Geosyntec Consultants

Groundwater Analytical Database Bonneville Administration Site Taylor Way Tacoma, Washington

Sample Location:MW9-30Sample ID:9-30-1103Sample Date:11/10/2003

Parameter	Units	
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	μg/L μg/L μg/L μg/L μg/L	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U
Semi-Volatiles bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene	μg/L μg/L μg/L	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved) Iron Manganese Manganese (Dissolved)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 - 3.0 _U
Dissolved Gases Ethane Ethene Methane	μg/L μg/L μg/L	
General Chemistry Chloride Nitrate (as N) Sulfate Total Organic Carbon (TOC)	mg/l mg/l mg/l mg/l	